./PaxHeaders/elk-10.4.90000644000000000000000000000013214762655577011546 xustar0030 mtime=1741380479.335065271 30 atime=1741380446.850895448 30 ctime=1741380479.335065271 elk-10.4.9/0000755002504400250440000000000014762655577014210 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/PaxHeaders/src0000644000000000000000000000013214762655565012175 xustar0030 mtime=1741380469.607014414 30 atime=1741380466.333997303 30 ctime=1741380469.607014414 elk-10.4.9/src/0000755002504400250440000000000014762655565014774 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/src/PaxHeaders/eos0000644000000000000000000000013214762655562012760 xustar0030 mtime=1741380466.374997518 30 atime=1741380466.345997366 30 ctime=1741380466.374997518 elk-10.4.9/src/eos/0000755002504400250440000000000014762655562015557 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/src/eos/PaxHeaders/readinput.f900000644000000000000000000000013214762655562015350 xustar0030 mtime=1741380466.349997387 30 atime=1741380466.348997382 30 ctime=1741380466.349997387 elk-10.4.9/src/eos/readinput.f900000644002504400250440000000143114762655562020071 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readinput use modmain implicit none ! local variables integer ipt open(50,file='eos.in',action='READ',status='OLD',form='FORMATTED') read(50,*) cname read(50,*) natoms if (natoms <= 0) then write(*,*) write(*,'("Error(readinput): natoms <= 0 : ",I8)') natoms write(*,*) stop end if read(50,*) etype read(50,*) vplt1,vplt2,nvplt read(50,*) nevpt if (nevpt <= 0) then write(*,*) write(*,'("Error(readinput): nevpt <= 0 : ",I8)') nevpt write(*,*) stop end if allocate(vpt(nevpt),ept(nevpt)) do ipt=1,nevpt read(50,*) vpt(ipt),ept(ipt) end do close(50) end subroutine elk-10.4.9/src/eos/PaxHeaders/eos.f900000644000000000000000000000013214762655562014143 xustar0030 mtime=1741380466.351997397 30 atime=1741380466.351997397 30 ctime=1741380466.351997397 elk-10.4.9/src/eos/eos.f900000644002504400250440000000051214762655562016663 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. program eos use modmain implicit none call readinput call getedata(etype,nparam,ename,pname) call fitdata call output end program elk-10.4.9/src/eos/PaxHeaders/eveos.f900000644000000000000000000000013214762655562014476 xustar0030 mtime=1741380466.354997413 30 atime=1741380466.353997408 30 ctime=1741380466.354997413 elk-10.4.9/src/eos/eveos.f900000644002504400250440000000501514762655562017221 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function eveos(etype,param,v) implicit none ! arguments integer, intent(in) :: etype real(8), intent(in) :: param(*),v ! local variables real(8) v0,e0,b0,b0p,b0pp real(8) t1,t2,t3,t4,t5,t6,t7 eveos=0.d0 select case(etype) case(1) ! Universal equation of state v0=param(1) e0=param(2) b0=param(3) b0p=param(4) if (v0 < 1.d-5) v0=1.d-5 if (abs(b0p-1.d0) < 1.d-5) b0p=b0p+1.d-5 t1=b0*v0 t2=b0p-1.d0 t3=(v/v0)**(1.d0/3.d0) t4=exp(-3.d0/2.d0*t2*(-1.d0+t3)) t5=t2**2 t6=1.d0/t5 eveos=-2.d0*t1*t4*(3.d0*t3*b0p-3.d0*t3+5.d0-3.d0*b0p)*t6+4.d0*t1*t6+e0 case(2) ! Murnaghan equation of state v0=param(1) e0=param(2) b0=param(3) b0p=param(4) if (v0 < 1.d-5) v0=1.d-5 if (abs(b0p) < 1.d-5) b0p=1.d-5 if (abs(b0p-1.d0) < 1.d-5) b0p=b0p+1.d-5 t1=(v0/v)**b0p t2=1.d0/(b0p-1.d0) eveos=b0*(b0p-1.d0+t1)/b0p*t2*v-b0*v0*t2+e0 case(3) ! Birch-Murnaghan third-order equation of state v0=param(1) e0=param(2) b0=param(3) b0p=param(4) if (v0 < 1.d-5) v0=1.d-5 t1=(v0/v)**(1.d0/3.d0) t2=t1**2 t3=t2-1.d0 eveos=9.d0/8.d0*b0*v0*t3**2*(b0p*t3/2.d0-2.d0*t2+3.d0)+e0 case(4) ! Birch-Murnaghan fourth-order equation of state v0=param(1) e0=param(2) b0=param(3) b0p=param(4) b0pp=param(5) if (v0 < 1.d-5) v0=1.d-5 t1=(v0/v)**(1.d0/3.d0) t2=t1**2 t3=t2-1.d0 t4=t3**2/4.d0 t5=b0p**2 eveos=3.d0/8.d0*b0*v0*t4*(9.d0*t4*b0*b0pp+9.d0*t4*t5-63.d0*t4*b0p+143.d0*t4 & +6.d0*b0p*t3-24.d0*t2+36.d0)+e0 case(5) ! Natural strain third-order equation of state v0=param(1) e0=param(2) b0=param(3) b0p=param(4) if (v0 < 1.d-5) v0=1.d-5 t1=b0*v0 t2=log(v0/v) t3=t2**2 t4=t3*t2 eveos=t1*t3/2.d0+t1*t4*b0p/6.d0-t1*t4/3.d0+e0 case(6) ! Natural strain fourth-order equation of state v0=param(1) e0=param(2) b0=param(3) b0p=param(4) b0pp=param(5) if (v0 < 1.d-5) v0=1.d-5 t1=b0*v0 t2=log(v0/v) t3=t2**2 t4=t3**2 t5=b0**2 t6=b0p**2 t7=t3*t2 eveos=t1*t4/8.d0+t5*v0*t4*b0pp/24.d0-t1*t4*b0p/8.d0+t1*t4*t6/24.d0 & +t1*t7*b0p/6.d0-t1*t7/3.d0+t1*t3/2.d0+e0 case(7) ! cubic polynomial v0=param(1) e0=param(2) b0=param(3) b0p=param(4) if (v0 < 1.d-5) v0=1.d-5 t1=v0**2 t2=v0-v t3=t2**2 eveos=(1.d0+b0p)*b0/t1*t3*t2/6.d0+b0/v0*t3/2.d0+e0 case default write(*,*) write(*,'("Error(eveos): etype not defined : ",I4)') etype write(*,*) stop end select end function elk-10.4.9/src/eos/PaxHeaders/pveos.f900000644000000000000000000000013214762655562014511 xustar0030 mtime=1741380466.356997424 30 atime=1741380466.355997418 30 ctime=1741380466.356997424 elk-10.4.9/src/eos/pveos.f900000644002504400250440000000113014762655562017226 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function pveos(etype,param,v) ! pressure-volume equation of state function implicit none ! arguments integer, intent(in) :: etype real(8), intent(in) :: param(*),v ! local variables real(8) vm,vp,pm,pp,dv ! external functions real(8), external :: eveos ! use central differences dv=1.d-3 vm=v-dv vp=v+dv pm=eveos(etype,param,vm) pp=eveos(etype,param,vp) pveos=-(pp-pm)/(2.d0*dv) end function elk-10.4.9/src/eos/PaxHeaders/getedata.f900000644000000000000000000000013214762655562015133 xustar0030 mtime=1741380466.358997434 30 atime=1741380466.357997429 30 ctime=1741380466.358997434 elk-10.4.9/src/eos/getedata.f900000644002504400250440000000352314762655562017660 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getedata(etype,nparam,ename,pname) ! get eos name and number of parameters implicit none ! arguments integer, intent(in) :: etype integer, intent(out) :: nparam character(256), intent(out) :: ename(2),pname(*) select case(etype) case(1) ename(1)="Universal EOS" ename(2)="Vinet P. et al., J. Phys.: Condens. Matter 1, p1941 (1989)" nparam=4 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" case(2) ename(1)="Murnaghan EOS" ename(2)="Murnaghan F. D., Am. J. Math. 49, p235 (1937)" nparam=4 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" case(3) ename(1)="Birch-Murnaghan 3rd-order EOS" ename(2)="Birch F., Phys. Rev. 71, p809 (1947)" nparam=4 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" case(4) ename(1)="Birch-Murnaghan 4th-order EOS" ename(2)="Birch F., Phys. Rev. 71, p809 (1947)" nparam=5 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" pname(5)="B0''" case(5) ename(1)="Natural strain 3rd-order EOS" ename(2)="Poirier J-P. and Tarantola A., Phys. Earth Planet Int. 109, p1 (1998)" nparam=4 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" case(6) ename(1)="Natural strain 4th-order EOS" ename(2)="Poirier J-P. and Tarantola A., Phys. Earth Planet Int. 109, p1 (1998)" nparam=5 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" pname(5)="B0''" case(7) ename(1)="Cubic polynomial in (V-V0)" ename(2)="" nparam=4 pname(1)="V0" pname(2)="E0" pname(3)="B0" pname(4)="B0'" case default write(*,*) write(*,'("Error(getedata): etype not defined : ",I4)') etype write(*,*) stop end select end subroutine elk-10.4.9/src/eos/PaxHeaders/minf_nm.f900000644000000000000000000000013214762655562015000 xustar0030 mtime=1741380466.360997445 30 atime=1741380466.360997445 30 ctime=1741380466.360997445 elk-10.4.9/src/eos/minf_nm.f900000644002504400250440000000365714762655562017535 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst and D. W. H. Rankin. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine minf_nm(n,x,maxit,iter,eps) implicit none ! arguments integer, intent(in) :: n real(8), intent(inout) :: x(n,n+1) integer, intent(in) :: maxit integer, intent(out) :: iter real(8), intent(in) :: eps ! local variables integer i,j,il,iu ! Nelder-Mead parmeters real(8), parameter :: alpha=1.d0,gamma=2.d0 real(8), parameter :: beta=0.5d0,sigma=0.5d0 real(8) fr,fe,fc,sm,t1 ! automatic arrays real(8) f(n+1),xm(n),xr(n),xe(n),xc(n) ! external functions real(8), external :: fmin_nm if (n < 1) then write(*,*) write(*,'("Error(minf_nm): n < 1 : ",I8)') n write(*,*) stop end if ! evaluate the function at each vertex do i=1,n+1 f(i)=fmin_nm(x(:,i)) end do iter=0 10 continue iter=iter+1 if (iter >= maxit) return ! find the lowest and highest vertex il=1 iu=1 do i=2,n+1 if (f(i) < f(il)) il=i if (f(i) > f(iu)) iu=i end do ! check for convergence if ((f(iu)-f(il)) < eps) return ! compute the mean of the n lowest vertices t1=1.d0/dble(n) do i=1,n sm=0.d0 do j=1,iu-1 sm=sm+x(i,j) end do do j=iu+1,n+1 sm=sm+x(i,j) end do xm(i)=t1*sm end do xr(:)=xm(:)+alpha*(xm(:)-x(:,iu)) fr=fmin_nm(xr) if (f(il) > fr) goto 30 if ((f(il) <= fr).and.(fr < f(iu))) then ! reflection x(:,iu)=xr(:) f(iu)=fr goto 10 else goto 40 end if 30 continue xe(:)=xm(:)+gamma*(xr(:)-xm(:)) fe=fmin_nm(xe) if (fr > fe) then ! expansion x(:,iu)=xe(:) f(iu)=fe else ! reflection x(:,iu)=xr(:) f(iu)=fr end if goto 10 40 continue xc(:)=xm(:)+beta*(x(:,iu)-xm(:)) fc=fmin_nm(xc) if (fc < f(iu)) then ! contraction x(:,iu)=xc(:) f(iu)=fc goto 10 end if ! shrinkage do j=1,il-1 x(:,j)=x(:,il)+sigma*(x(:,j)-x(:,il)) f(j)=fmin_nm(x(1,j)) end do do j=il+1,n+1 x(:,j)=x(:,il)+sigma*(x(:,j)-x(:,il)) f(j)=fmin_nm(x(1,j)) end do goto 10 end subroutine elk-10.4.9/src/eos/PaxHeaders/modmain.f900000644000000000000000000000013014762655562014777 xustar0029 mtime=1741380466.36399746 30 atime=1741380466.362997455 29 ctime=1741380466.36399746 elk-10.4.9/src/eos/modmain.f900000644002504400250440000000366714762655562017537 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modmain ! crystal name character(256) cname ! number of atoms integer natoms ! EOS type integer etype ! number of volume points to plot integer nvplt ! volume plot range real(8) vplt1,vplt2 ! number of energy data points to fit integer nevpt ! volume and energy data point sets real(8), allocatable :: vpt(:) real(8), allocatable :: ept(:) ! maximum number of parameters for an EOS integer, parameter :: maxparam=100 ! number of parameters integer nparam ! EOS name character(256) ename(2) ! optimized parameter set real(8) popt(maxparam) ! parameter names character(256) pname(maxparam) !-----------------------------! ! numerical constants ! !-----------------------------! real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: twopi=6.2831853071795864769d0 ! Planck constant in SI units (exact, CODATA 2018) real(8), parameter :: h_si=6.62607015d-34 ! reduced Planck constant in SI units real(8), parameter :: hbar_si=h_si/twopi ! Hartree in SI units (CODATA 2018) real(8), parameter :: ha_si=4.3597447222071d-18 ! Hartree in eV (CODATA 2018) real(8), parameter :: ha_ev=27.211386245988d0 ! Bohr radius in SI units (CODATA 2018) real(8), parameter :: br_si=0.529177210903d-10 ! Bohr radius in Angstroms real(8), parameter :: br_ang=br_si*1.d10 ! electron mass in SI (CODATA 2018) real(8), parameter :: em_si=9.1093837015d-31 ! atomic unit of time in SI real(8), parameter :: t_si=hbar_si/ha_si ! atomic pressure unit in GPa real(8), parameter :: pr_gpa=1.d-9*em_si/(br_si*t_si**2) ! atomic pressure unit in eV/ų real(8), parameter :: pr_eva3=ha_ev/br_ang**3 !---------------------------------! ! miscellaneous variables ! !---------------------------------! ! code version integer version(3) data version /1,5,0/ end module elk-10.4.9/src/eos/PaxHeaders/Makefile0000644000000000000000000000013214762655562014475 xustar0030 mtime=1741380466.364997465 30 atime=1741380466.364997465 30 ctime=1741380466.364997465 elk-10.4.9/src/eos/Makefile0000644002504400250440000000134614762655562017223 0ustar00dewhurstdewhurst00000000000000 include ../../make.inc #------------------------------------------------------------------------------- # Suffix rules #------------------------------------------------------------------------------- .SUFFIXES: .o .f90 .f90.o: $(F90) $(F90_OPTS) -c $< #------------------------------------------------------------------------------- # Source files #------------------------------------------------------------------------------- SRC = modmain.f90 eos.f90 eveos.f90 pveos.f90 readinput.f90 getedata.f90 \ fitdata.f90 output.f90 minf_nm.f90 fmin_nm.f90 OBJ = $(SRC:.f90=.o) EXE = eos eos: $(OBJ) $(F90) $(F90_OPTS) -o $(EXE) $(OBJ) clean: rm -f *.o *.mod *~ fort.* ifc* *.gcno *.OUT gmon.out $(EXE) spaces: ../rmspaces $(SRC) elk-10.4.9/src/eos/PaxHeaders/README0000644000000000000000000000013214762655562013715 xustar0030 mtime=1741380466.366997476 30 atime=1741380466.366997476 30 ctime=1741380466.366997476 elk-10.4.9/src/eos/README0000644002504400250440000000254414762655562016444 0ustar00dewhurstdewhurst00000000000000 +---------------------------+ | EOS Version 1.4.0 | +---------------------------+ Equation of state (EOS) program for fitting energy-volume data. The following variables are set in the file eos.in: cname : name of crystal up to 256 characters natoms : number of atoms in unit cell etype : equation of state type (see below) vplt1, vplt2, nvplt : volume interval over which to plot energy, pressure etc. as well as the number of points in the plot nevpt : number of energy-volume points to be inputted vpt(i) ept(i) : energy-volume points (atomic units) Note that the input units are atomic - Bohr and Hartree (NOT Rydbergs). The equations of state currently implemented are: 1. Universal EOS (Vinet P et al., J. Phys.: Condens. Matter 1, p1941 (1989)) 2. Murnaghan EOS (Murnaghan F D, Am. J. Math. 49, p235 (1937)) 3. Birch-Murnaghan 3rd-order EOS (Birch F, Phys. Rev. 71, p809 (1947)) 4. Birch-Murnaghan 4th-order EOS 5. Natural strain 3rd-order EOS (Poirier J-P and Tarantola A, Phys. Earth Planet Int. 109, p1 (1998)) 6. Natural strain 4th-order EOS 7. Cubic polynomial in (V-V0) -------------------------------------------------------------------------------- J. K. Dewhurst August 2005 elk-10.4.9/src/eos/PaxHeaders/eos.in0000644000000000000000000000013214762655562014153 xustar0030 mtime=1741380466.368997486 30 atime=1741380466.368997486 30 ctime=1741380466.368997486 elk-10.4.9/src/eos/eos.in0000644002504400250440000000063514762655562016701 0ustar00dewhurstdewhurst00000000000000 "Silicon" : cname 2 : natoms 1 : etype 140.0 450.0 1000 : vplt1, vplt2, nvplt 8 : nevpt 165.8207473 -578.0660968 196.8383062 -578.1728409 231.5010189 -578.2305598 270.0113940 -578.2548962 312.5719400 -578.2566194 359.3851654 -578.2453281 410.6535788 -578.2253154 466.5796888 -578.2028836 elk-10.4.9/src/eos/PaxHeaders/fitdata.f900000644000000000000000000000013214762655562014771 xustar0030 mtime=1741380466.371997502 30 atime=1741380466.370997497 30 ctime=1741380466.371997502 elk-10.4.9/src/eos/fitdata.f900000644002504400250440000000172314762655562017516 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine fitdata use modmain implicit none ! local variables integer, parameter :: maxit=1000000 integer i,iter real(8), parameter :: eps=1.d-14 ! automatic arrays real(8) x(nparam,nparam+1) ! initial guess: it is assumed that param(1)=V0, param(2)=E0 and param(3)=B0 x(:,1)=0.d0 x(1,1)=vpt(1) x(2,1)=ept(1) x(3,1)=0.003d0 ! fit V0 and E0 do i=1,nparam x(:,i+1)=x(:,1) end do x(1,2)=x(1,2)+1.d0 x(2,3)=x(2,3)+0.1d0 call minf_nm(nparam,x,maxit,iter,eps) ! fit V0, E0 and B0 do i=1,nparam x(:,i+1)=x(:,1) end do x(1,2)=x(1,2)+1.d0 x(2,3)=x(2,3)+0.1d0 x(3,4)=x(3,4)+0.001d0 call minf_nm(nparam,x,maxit,iter,eps) ! fit everything do i=1,nparam x(:,i+1)=x(:,1) x(i,i+1)=x(i,i+1)+0.1d0 end do call minf_nm(nparam,x,maxit,iter,eps) popt(1:nparam)=x(1:nparam,1) end subroutine elk-10.4.9/src/eos/PaxHeaders/output.f900000644000000000000000000000013214762655562014715 xustar0030 mtime=1741380466.373997512 30 atime=1741380466.373997512 30 ctime=1741380466.373997512 elk-10.4.9/src/eos/output.f900000644002504400250440000000574714762655562017454 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine output use modmain implicit none ! local variables integer ip,ipt,iplt real(8) v ! external functions real(8), external :: eveos,pveos ! output parameters open(60,file='PARAM.OUT') write(60,'(A)') trim(cname) write(60,*) write(60,'(A)') trim(ename(1)) write(60,'(A)') trim(ename(2)) write(60,*) write(60,'("(Default units are atomic: Hartree, Bohr etc.) ")') write(60,*) write(60,'(I4,T25,":",T30,A)') natoms,"number of atoms" write(60,'(I4,T25,":",T30,A)') nparam,"number of parameters" write(60,*) do ip=1,nparam write(60,'(G18.10,T25,":",T30,A)') popt(ip),trim(pname(ip)) end do write(60,*) do ip=1,nparam if (trim(pname(ip)) == "V0") then write(60,'(G18.10,T25,":",T30,A)') popt(ip)*br_ang**3,"V0 (ų)" end if if (trim(pname(ip)) == "E0") then write(60,'(G18.10,T25,":",T30,A)') popt(ip)*ha_ev,"E0 (eV)" end if if (trim(pname(ip)) == "B0") then write(60,'(G18.10,T25,":",T30,A)') popt(ip)*pr_eva3,"B0 (eV/ų)" write(60,'(G18.10,T25,":",T30,A)') popt(ip)*pr_gpa,"B0 (GPa)" end if if (trim(pname(ip)) == "B0''") then write(60,'(G18.10,T25,":",T30,A)') popt(ip)/pr_eva3,"B0'' (ų/eV)" write(60,'(G18.10,T25,":",T30,A)') popt(ip)/pr_gpa,"B0'' (/GPa)" end if end do write(60,*) close(60) ! output energy vs volume per atom at data points open(60,file='EVPAP.OUT') do ipt=1,nevpt write(60,*) vpt(ipt)/dble(natoms),ept(ipt)/dble(natoms) end do close(60) ! output energy vs volume per atom over volume interval open(60,file='EVPAI.OUT') do iplt=1,nvplt v=(vplt2-vplt1)*dble(iplt)/dble(nvplt)+vplt1 write(60,*) v/dble(natoms),eveos(etype,popt,v)/dble(natoms) end do close(60) ! output pressure vs volume per atom at data points open(60,file='PVPAP.OUT') do ipt=1,nevpt write(60,*) vpt(ipt)/dble(natoms),pveos(etype,popt,vpt(ipt))*pr_gpa end do close(60) ! output pressure vs volume per atom over volume interval open(60,file='PVPAI.OUT') do iplt=1,nvplt v=(vplt2-vplt1)*dble(iplt)/dble(nvplt)+vplt1 write(60,*) v/dble(natoms),pveos(etype,popt,v)*pr_gpa end do close(60) ! output enthalpy vs pressure per atom over volume interval open(60,file='HPPAI.OUT') do iplt=1,nvplt v=(vplt2-vplt1)*dble(iplt)/dble(nvplt)+vplt1 write(60,*) pveos(etype,popt,v)*pr_gpa, & (eveos(etype,popt,v)+pveos(etype,popt,v)*v)/dble(natoms) end do close(60) write(*,*) write(*,'("All units are atomic unless otherwise stated")') write(*,'("EOS parameters written to PARAM.OUT")') write(*,'("Energy-volume per atom at data points written to EVPAP.OUT")') write(*,'("Energy-volume per atom over interval written to EVPAI.OUT")') write(*,'("Pressure(GPa)-volume per atom at data points written to PVPAP.OUT")') write(*,'("Pressure(GPa)-volume per atom over interval written to PVPAI.OUT")') write(*,'("Enthalpy-pressure(GPa) per atom over interval written to HPPAI.OUT")') write(*,*) end subroutine elk-10.4.9/src/eos/PaxHeaders/fmin_nm.f900000644000000000000000000000013214762655562015000 xustar0030 mtime=1741380466.375997523 30 atime=1741380466.375997523 30 ctime=1741380466.375997523 elk-10.4.9/src/eos/fmin_nm.f900000644002504400250440000000073514762655562017527 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function fmin_nm(x) use modmain implicit none ! arguments real(8), intent(in) :: x ! local variables integer i real(8) sum ! external functions real(8), external :: eveos sum=0.d0 do i=1,nevpt sum=sum+(eveos(etype,x,vpt(i))-ept(i))**2 end do fmin_nm=sum end function elk-10.4.9/src/PaxHeaders/spacegroup0000644000000000000000000000013014762655562014340 xustar0029 mtime=1741380466.43099781 30 atime=1741380466.388997591 29 ctime=1741380466.43099781 elk-10.4.9/src/spacegroup/0000755002504400250440000000000014762655562017141 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/src/spacegroup/PaxHeaders/spacegroup.in0000644000000000000000000000013214762655562017117 xustar0030 mtime=1741380466.391997607 30 atime=1741380466.390997601 30 ctime=1741380466.391997607 elk-10.4.9/src/spacegroup/spacegroup.in0000644002504400250440000000101714762655562021640 0ustar00dewhurstdewhurst00000000000000 'Bmab' : hrmg 10.0605232 10.0605232 24.972729 : a, b, c 90.0 90.0 90.0 : bc, ac, ab 1 1 1 : ncell .true. : primcell 3 : nspecies 'La' : spsymb 1 : nwpos 0.0000 0.0000 0.3608 : wpos 'Cu' 1 0.0000 0.0000 0.0000 'O' 2 0.2500 0.2500 0.0000 0.0000 0.0000 0.1820 elk-10.4.9/src/spacegroup/PaxHeaders/findprimcell.f900000644000000000000000000000013214762655562017407 xustar0030 mtime=1741380466.393997617 30 atime=1741380466.393997617 30 ctime=1741380466.393997617 elk-10.4.9/src/spacegroup/findprimcell.f900000644002504400250440000000734414762655562022141 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: findprimcell ! !INTERFACE: subroutine findprimcell ! !USES: use modmain ! !DESCRIPTION: ! This routine finds the smallest primitive cell which produces the same ! crystal structure as the conventional cell. This is done by searching ! through all the vectors which connect atomic positions and finding those ! which leave the crystal structure invariant. Of these, the three shortest ! which produce a non-zero unit cell volume are chosen. ! ! !REVISION HISTORY: ! Created April 2007 (JKD) !EOP !BOC implicit none ! local variables integer is,js,ia,ja,ka,na integer i1,i2,i3,i,j,n real(8) v1(3),v2(3),v3(3) real(8) t1,t2 ! allocatable arrays real(8), allocatable :: dp(:) real(8), allocatable :: vp(:,:) do is=1,nspecies do ia=1,natoms(is) ! make sure all atomic coordinates are in [0,1) call r3frac(epslat,atposl(:,ia,is)) ! determine atomic Cartesian coordinates call r3mv(avec,atposl(:,ia,is),atposc(:,ia,is)) end do end do ! find the smallest set of atoms is=1 do js=1,nspecies ! if a species has only one atom the cell must be primitive if (natoms(js) == 1) return if (natoms(js) < natoms(is)) is=js end do n=27*natoms(is) allocate(dp(n),vp(3,n)) ! generate set of possible lattice vectors n=0 do ia=1,natoms(is) v1(:)=atposl(:,ia,is)-atposl(:,1,is) do i1=-1,1 v2(1)=v1(1)+dble(i1) do i2=-1,1 v2(2)=v1(2)+dble(i2) do i3=-1,1 v2(3)=v1(3)+dble(i3) t1=abs(v2(1))+abs(v2(2))+abs(v2(3)) if (t1 < epslat) goto 20 ! check if vector v2 leaves conventional cell invariant do js=1,nspecies do ja=1,natoms(js) v3(:)=atposl(:,ja,js)+v2(:) call r3frac(epslat,v3) do ka=1,natoms(js) ! check both positions and magnetic fields are the same t1=sum(abs(atposl(:,ka,js)-v3(:))) t2=sum(abs(bfcmt0(:,ja,js)-bfcmt0(:,ka,js))) if ((t1 < epslat).and.(t2 < epslat)) goto 10 end do ! atom ja has no equivalent under translation by v2 goto 20 10 continue end do end do ! cell invariant under translation by v2, so add to list n=n+1 call r3mv(avec,v2,vp(:,n)) dp(n)=sqrt(vp(1,n)**2+vp(2,n)**2+vp(3,n)**2) 20 continue end do end do end do end do if (n == 0) then write(*,*) write(*,'("Error(findprimcell): cannot find any lattice vectors")') write(*,*) stop end if ! find the shortest lattice vector j=1 t1=1.d8 do i=1,n if (dp(i) < t1+epslat) then j=i t1=dp(i) end if end do avec(:,1)=vp(:,j) ! find the next shortest lattice vector not parallel to the first j=1 t1=1.d8 do i=1,n call r3cross(avec(:,1),vp(:,i),v1) t2=sqrt(v1(1)**2+v1(2)**2+v1(3)**2) if (t2 > epslat) then if (dp(i) < t1+epslat) then j=i t1=dp(i) end if end if end do avec(:,2)=vp(:,j) ! find the next shortest lattice vector which gives non-zero unit cell volume call r3cross(avec(:,1),avec(:,2),v1) j=1 t1=1.d8 do i=1,n t2=dot_product(vp(:,i),v1(:)) if (abs(t2) > epslat) then if (dp(i) < t1+epslat) then j=i t1=dp(i) end if end if end do avec(:,3)=vp(:,j) call r3minv(avec,ainv) ! remove redundant atoms do is=1,nspecies na=0 do ia=1,natoms(is) call r3mv(ainv,atposc(:,ia,is),v1) call r3frac(epslat,v1) do ja=1,na t1=sum(abs(atposl(:,ja,is)-v1(:))) if (t1 < epslat) goto 30 end do na=na+1 atposl(:,na,is)=v1(:) call r3mv(avec,atposl(:,na,is),atposc(:,na,is)) bfcmt0(:,na,is)=bfcmt0(:,ia,is) 30 continue end do natoms(is)=na end do deallocate(dp,vp) return end subroutine !EOC elk-10.4.9/src/spacegroup/PaxHeaders/gengroup.f900000644000000000000000000000013214762655562016565 xustar0030 mtime=1741380466.396997633 30 atime=1741380466.396997633 30 ctime=1741380466.396997633 elk-10.4.9/src/spacegroup/gengroup.f900000644002504400250440000000331614762655562021312 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengroup(ngen,srgen,stgen,ngrp,srgrp,stgrp) implicit none ! arguments integer, intent(in) :: ngen real(8), intent(in) :: srgen(3,3,ngen) real(8), intent(in) :: stgen(3,ngen) integer, intent(out) :: ngrp real(8), intent(out) :: srgrp(3,3,192) real(8), intent(out) :: stgrp(3,192) ! local variables integer i,j,k real(8), parameter :: eps=1.d-6 real(8) sr(3,3),st(3) ! external functions logical seitzeq external seitzeq ! store the identity ngrp=1 srgrp(1,1,1)=1.d0; srgrp(1,2,1)=0.d0; srgrp(1,3,1)=0.d0 srgrp(2,1,1)=0.d0; srgrp(2,2,1)=1.d0; srgrp(2,3,1)=0.d0 srgrp(3,1,1)=0.d0; srgrp(3,2,1)=0.d0; srgrp(3,3,1)=1.d0 stgrp(:,1)=0.d0 10 continue ! right multiply by the generators do i=1,ngen do j=1,ngrp call seitzmul(eps,srgrp(:,:,j),stgrp(:,j),srgen(:,:,i),stgen(:,i),sr,st) ! check if the new element already exists do k=1,ngrp if (seitzeq(eps,srgrp(:,:,k),stgrp(:,k),sr,st)) goto 20 end do goto 40 20 continue end do end do ! left multiply by the generators do i=1,ngen do j=1,ngrp call seitzmul(eps,srgen(:,:,i),stgen(:,i),srgrp(:,:,j),stgrp(:,j),sr,st) ! check if the new element already exists do k=1,ngrp if (seitzeq(eps,srgrp(:,:,k),stgrp(:,k),sr,st)) goto 30 end do goto 40 30 continue end do end do ! all elements accounted for return 40 continue ! add new element ngrp=ngrp+1 if (ngrp > 192) then write(*,*) write(*,'("Error(gengroup): more than 192 group elements")') write(*,*) stop end if srgrp(:,:,ngrp)=sr(:,:) stgrp(:,ngrp)=st(:) goto 10 return end subroutine elk-10.4.9/src/spacegroup/PaxHeaders/main.f900000644000000000000000000000013214762655562015663 xustar0030 mtime=1741380466.399997648 30 atime=1741380466.398997643 30 ctime=1741380466.399997648 elk-10.4.9/src/spacegroup/main.f900000644002504400250440000013267614762655562020424 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. program main implicit none ! read the input parameters from spacegroup.in call readinput ! generate the lattice and atomic basis call gencrystal ! write the structural data to GEOMETRY.OUT call writegeom ! write the XCrySDen and V_Sim files for plotting call geomplot stop end program !BOI ! !TITLE: {\huge{\sc The Spacegroup Manual}}\\ \Large{\sc Version 1.2.1} ! !AUTHORS: {\sc J. K. Dewhurst, S. Sharma and L. Nordstr\"{o}m} ! !AFFILIATION: ! !INTRODUCTION: Introduction ! Spacegroup is a utility which produces crystal geometry for use with the Elk ! code, from the space group defined by its Hermann-Mauguin symbol and lattice ! vector lengths and angles. Spacegroup recognises all 230 space groups in ! various coordinate settings giving a total of 530 possible symbols, which are ! tabulated below. The code also provides output compatible with the XCrysDen or ! V\_Sim packages for visualisation of the crystal structure. ! \section{Usage} ! Only one input file, {\tt spacegroup.in}, is required. The structure of this ! file is illustrated by the following example for the high $T_c$ superconductor ! La$_2$CuO$_4$: ! \begin{verbatim} ! 'Bmab' : hrmg ! 10.0605232 10.0605232 24.972729 : a, b, c ! 90.0 90.0 90.0 : bc, ac, ab ! 1 1 1 : ncell ! .true. : primcell ! 3 : nspecies ! 'La' : spsymb ! 1 : nwpos ! 0.0000 0.0000 0.3608 : wpos ! 'Cu' ! 1 ! 0.0000 0.0000 0.0000 ! 'O' ! 2 ! 0.2500 0.2500 0.0000 ! 0.0000 0.0000 0.1820 ! \end{verbatim} ! The input parameters are defined as follows: ! \vskip 6pt ! {\tt hrmg}\\ ! The Hermann-Mauguin symbol of a space group listed in the table below. ! (case-sensitive) ! \vskip 6pt ! {\tt a}, {\tt b}, {\tt c}\\ ! Lattice vector lengths in Bohr (i.e. atomic units, {\bf NOT} \AA ngstroms). ! \vskip 6pt ! {\tt bc}, {\tt ac}, {\tt ab}\\ ! Angles in degrees between lattice vectors ${\bf b}$ and ${\bf c}$ ($\alpha$); ! ${\bf a}$ and ${\bf c}$ ($\beta$); and ${\bf a}$ and ${\bf b}$ ($\gamma$). ! \vskip 6pt ! {\tt ncell}\\ ! The number of unit cells required in each direction. ! \vskip 6pt ! {\tt primcell}\\ ! Set to {\tt .true.} if the primitive unit cell should be found. ! \vskip 6pt ! {\tt nspecies}\\ ! Number of atomic species. ! \vskip 6pt ! {\tt spsymb}\\ ! The atomic species symbol. ! \vskip 6pt ! {\tt nwpos}\\ ! The number of Wyckoff positional coordinates. ! \vskip 6pt ! {\tt wpos}\\ ! Wyckoff positional coordinates in fractions of the lattice vectors. ! \vskip 6pt ! Note that {\tt nwpos} and {\tt wpos} are repeated as many times as there are ! species. After creating the input file, the {\tt spacegroup} command is run ! and the files {\tt GEOMETRY.OUT} and {\tt crystal.xsf} should be produced. ! The {\tt GEOMETRY.OUT} file can simply be appended to an {\tt elk.in} file. If ! XCrysDen is available, then use the command ! \vskip 6pt ! \hskip 24pt {\tt xcrysden --xsf crystal.xsf} ! \vskip 6pt ! to render the unit cell. ! \section{Table of space group symbols} ! We acknowledge Ralf W. Grosse-Kunstleve ({\tt http://cci.lbl.gov/sginfo/}) ! for the following table which associates space group numbers, Sch\"{o}nflies ! symbols, Hermann-Mauguin symbols, and Hall symbols. ! \newpage ! \begin{center} ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 1 & C$_{1}^{1}$ & P1 & P 1 \\ ! 2 & C$_{i}^{1}$ & P-1 & -P 1 \\ ! 3:b & C$_{2}^{1}$ & P2:b = P121 & P 2y \\ ! 3:c & C$_{2}^{1}$ & P2:c = P112 & P 2 \\ ! 3:a & C$_{2}^{1}$ & P2:a = P211 & P 2x \\ ! 4:b & C$_{2}^{2}$ & P21:b = P1211 & P 2yb \\ ! 4:c & C$_{2}^{2}$ & P21:c = P1121 & P 2c \\ ! 4:a & C$_{2}^{2}$ & P21:a = P2111 & P 2xa \\ ! 5:b1 & C$_{2}^{3}$ & C2:b1 = C121 & C 2y \\ ! 5:b2 & C$_{2}^{3}$ & C2:b2 = A121 & A 2y \\ ! 5:b3 & C$_{2}^{3}$ & C2:b3 = I121 & I 2y \\ ! 5:c1 & C$_{2}^{3}$ & C2:c1 = A112 & A 2 \\ ! 5:c2 & C$_{2}^{3}$ & C2:c2 = B112 = B2 & B 2 \\ ! 5:c3 & C$_{2}^{3}$ & C2:c3 = I112 & I 2 \\ ! 5:a1 & C$_{2}^{3}$ & C2:a1 = B211 & B 2x \\ ! 5:a2 & C$_{2}^{3}$ & C2:a2 = C211 & C 2x \\ ! 5:a3 & C$_{2}^{3}$ & C2:a3 = I211 & I 2x \\ ! 6:b & C$_{s}^{1}$ & Pm:b = P1m1 & P -2y \\ ! 6:c & C$_{s}^{1}$ & Pm:c = P11m & P -2 \\ ! 6:a & C$_{s}^{1}$ & Pm:a = Pm11 & P -2x \\ ! 7:b1 & C$_{s}^{2}$ & Pc:b1 = P1c1 & P -2yc \\ ! 7:b2 & C$_{s}^{2}$ & Pc:b2 = P1n1 & P -2yac \\ ! 7:b3 & C$_{s}^{2}$ & Pc:b3 = P1a1 & P -2ya \\ ! 7:c1 & C$_{s}^{2}$ & Pc:c1 = P11a & P -2a \\ ! 7:c2 & C$_{s}^{2}$ & Pc:c2 = P11n & P -2ab \\ ! 7:c3 & C$_{s}^{2}$ & Pc:c3 = P11b = Pb & P -2b \\ ! 7:a1 & C$_{s}^{2}$ & Pc:a1 = Pb11 & P -2xb \\ ! 7:a2 & C$_{s}^{2}$ & Pc:a2 = Pn11 & P -2xbc \\ ! 7:a3 & C$_{s}^{2}$ & Pc:a3 = Pc11 & P -2xc \\ ! 8:b1 & C$_{s}^{3}$ & Cm:b1 = C1m1 & C -2y \\ ! 8:b2 & C$_{s}^{3}$ & Cm:b2 = A1m1 & A -2y \\ ! 8:b3 & C$_{s}^{3}$ & Cm:b3 = I1m1 & I -2y \\ ! 8:c1 & C$_{s}^{3}$ & Cm:c1 = A11m & A -2 \\ ! 8:c2 & C$_{s}^{3}$ & Cm:c2 = B11m = Bm & B -2 \\ ! 8:c3 & C$_{s}^{3}$ & Cm:c3 = I11m & I -2 \\ ! 8:a1 & C$_{s}^{3}$ & Cm:a1 = Bm11 & B -2x \\ ! 8:a2 & C$_{s}^{3}$ & Cm:a2 = Cm11 & C -2x \\ ! 8:a3 & C$_{s}^{3}$ & Cm:a3 = Im11 & I -2x \\ ! 9:b1 & C$_{s}^{4}$ & Cc:b1 = C1c1 & C -2yc \\ ! 9:b2 & C$_{s}^{4}$ & Cc:b2 = A1n1 & A -2yac \\ ! 9:b3 & C$_{s}^{4}$ & Cc:b3 = I1a1 & I -2ya \\ ! 9:-b1 & C$_{s}^{4}$ & Cc:-b1 = A1a1 & A -2ya \\ ! 9:-b2 & C$_{s}^{4}$ & Cc:-b2 = C1n1 & C -2ybc \\ ! 9:-b3 & C$_{s}^{4}$ & Cc:-b3 = I1c1 & I -2yc \\ ! 9:c1 & C$_{s}^{4}$ & Cc:c1 = A11a & A -2a \\ ! 9:c2 & C$_{s}^{4}$ & Cc:c2 = B11n & B -2bc \\ ! 9:c3 & C$_{s}^{4}$ & Cc:c3 = I11b & I -2b \\ ! 9:-c1 & C$_{s}^{4}$ & Cc:-c1 = B11b = Bb & B -2b \\ ! 9:-c2 & C$_{s}^{4}$ & Cc:-c2 = A11n & A -2ac \\ ! 9:-c3 & C$_{s}^{4}$ & Cc:-c3 = I11a & I -2a \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 9:a1 & C$_{s}^{4}$ & Cc:a1 = Bb11 & B -2xb \\ ! 9:a2 & C$_{s}^{4}$ & Cc:a2 = Cn11 & C -2xbc \\ ! 9:a3 & C$_{s}^{4}$ & Cc:a3 = Ic11 & I -2xc \\ ! 9:-a1 & C$_{s}^{4}$ & Cc:-a1 = Cc11 & C -2xc \\ ! 9:-a2 & C$_{s}^{4}$ & Cc:-a2 = Bn11 & B -2xbc \\ ! 9:-a3 & C$_{s}^{4}$ & Cc:-a3 = Ib11 & I -2xb \\ ! 10:b & C$_{2h}^{1}$ & P2/m:b = P12/m1 & -P 2y \\ ! 10:c & C$_{2h}^{1}$ & P2/m:c = P112/m & -P 2 \\ ! 10:a & C$_{2h}^{1}$ & P2/m:a = P2/m11 & -P 2x \\ ! 11:b & C$_{2h}^{2}$ & P21/m:b = P121/m1 & -P 2yb \\ ! 11:c & C$_{2h}^{2}$ & P21/m:c = P1121/m & -P 2c \\ ! 11:a & C$_{2h}^{2}$ & P21/m:a = P21/m11 & -P 2xa \\ ! 12:b1 & C$_{2h}^{3}$ & C2/m:b1 = C12/m1 & -C 2y \\ ! 12:b2 & C$_{2h}^{3}$ & C2/m:b2 = A12/m1 & -A 2y \\ ! 12:b3 & C$_{2h}^{3}$ & C2/m:b3 = I12/m1 & -I 2y \\ ! 12:c1 & C$_{2h}^{3}$ & C2/m:c1 = A112/m & -A 2 \\ ! 12:c2 & C$_{2h}^{3}$ & C2/m:c2 = B112/m = B2/m & -B 2 \\ ! 12:c3 & C$_{2h}^{3}$ & C2/m:c3 = I112/m & -I 2 \\ ! 12:a1 & C$_{2h}^{3}$ & C2/m:a1 = B2/m11 & -B 2x \\ ! 12:a2 & C$_{2h}^{3}$ & C2/m:a2 = C2/m11 & -C 2x \\ ! 12:a3 & C$_{2h}^{3}$ & C2/m:a3 = I2/m11 & -I 2x \\ ! 13:b1 & C$_{2h}^{4}$ & P2/c:b1 = P12/c1 & -P 2yc \\ ! 13:b2 & C$_{2h}^{4}$ & P2/c:b2 = P12/n1 & -P 2yac \\ ! 13:b3 & C$_{2h}^{4}$ & P2/c:b3 = P12/a1 & -P 2ya \\ ! 13:c1 & C$_{2h}^{4}$ & P2/c:c1 = P112/a & -P 2a \\ ! 13:c2 & C$_{2h}^{4}$ & P2/c:c2 = P112/n & -P 2ab \\ ! 13:c3 & C$_{2h}^{4}$ & P2/c:c3 = P112/b = P2/b & -P 2b \\ ! 13:a1 & C$_{2h}^{4}$ & P2/c:a1 = P2/b11 & -P 2xb \\ ! 13:a2 & C$_{2h}^{4}$ & P2/c:a2 = P2/n11 & -P 2xbc \\ ! 13:a3 & C$_{2h}^{4}$ & P2/c:a3 = P2/c11 & -P 2xc \\ ! 14:b1 & C$_{2h}^{5}$ & P21/c:b1 = P121/c1 & -P 2ybc \\ ! 14:b2 & C$_{2h}^{5}$ & P21/c:b2 = P121/n1 & -P 2yn \\ ! 14:b3 & C$_{2h}^{5}$ & P21/c:b3 = P121/a1 & -P 2yab \\ ! 14:c1 & C$_{2h}^{5}$ & P21/c:c1 = P1121/a & -P 2ac \\ ! 14:c2 & C$_{2h}^{5}$ & P21/c:c2 = P1121/n & -P 2n \\ ! 14:c3 & C$_{2h}^{5}$ & P21/c:c3 = P1121/b = P21/b & -P 2bc \\ ! 14:a1 & C$_{2h}^{5}$ & P21/c:a1 = P21/b11 & -P 2xab \\ ! 14:a2 & C$_{2h}^{5}$ & P21/c:a2 = P21/n11 & -P 2xn \\ ! 14:a3 & C$_{2h}^{5}$ & P21/c:a3 = P21/c11 & -P 2xac \\ ! 15:b1 & C$_{2h}^{6}$ & C2/c:b1 = C12/c1 & -C 2yc \\ ! 15:b2 & C$_{2h}^{6}$ & C2/c:b2 = A12/n1 & -A 2yac \\ ! 15:b3 & C$_{2h}^{6}$ & C2/c:b3 = I12/a1 & -I 2ya \\ ! 15:-b1 & C$_{2h}^{6}$ & C2/c:-b1 = A12/a1 & -A 2ya \\ ! 15:-b2 & C$_{2h}^{6}$ & C2/c:-b2 = C12/n1 & -C 2ybc \\ ! 15:-b3 & C$_{2h}^{6}$ & C2/c:-b3 = I12/c1 & -I 2yc \\ ! 15:c1 & C$_{2h}^{6}$ & C2/c:c1 = A112/a & -A 2a \\ ! 15:c2 & C$_{2h}^{6}$ & C2/c:c2 = B112/n & -B 2bc \\ ! 15:c3 & C$_{2h}^{6}$ & C2/c:c3 = I112/b & -I 2b \\ ! 15:-c1 & C$_{2h}^{6}$ & C2/c:-c1 = B112/b = B2/b & -B 2b \\ ! 15:-c2 & C$_{2h}^{6}$ & C2/c:-c2 = A112/n & -A 2ac \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 15:-c3 & C$_{2h}^{6}$ & C2/c:-c3 = I112/a & -I 2a \\ ! 15:a1 & C$_{2h}^{6}$ & C2/c:a1 = B2/b11 & -B 2xb \\ ! 15:a2 & C$_{2h}^{6}$ & C2/c:a2 = C2/n11 & -C 2xbc \\ ! 15:a3 & C$_{2h}^{6}$ & C2/c:a3 = I2/c11 & -I 2xc \\ ! 15:-a1 & C$_{2h}^{6}$ & C2/c:-a1 = C2/c11 & -C 2xc \\ ! 15:-a2 & C$_{2h}^{6}$ & C2/c:-a2 = B2/n11 & -B 2xbc \\ ! 15:-a3 & C$_{2h}^{6}$ & C2/c:-a3 = I2/b11 & -I 2xb \\ ! 16 & D$_{2}^{1}$ & P222 & P 2 2 \\ ! 17 & D$_{2}^{2}$ & P2221 & P 2c 2 \\ ! 17:cab & D$_{2}^{2}$ & P2122 & P 2a 2a \\ ! 17:bca & D$_{2}^{2}$ & P2212 & P 2 2b \\ ! 18 & D$_{2}^{3}$ & P21212 & P 2 2ab \\ ! 18:cab & D$_{2}^{3}$ & P22121 & P 2bc 2 \\ ! 18:bca & D$_{2}^{3}$ & P21221 & P 2ac 2ac \\ ! 19 & D$_{2}^{4}$ & P212121 & P 2ac 2ab \\ ! 20 & D$_{2}^{5}$ & C2221 & C 2c 2 \\ ! 20:cab & D$_{2}^{5}$ & A2122 & A 2a 2a \\ ! 20:bca & D$_{2}^{5}$ & B2212 & B 2 2b \\ ! 21 & D$_{2}^{6}$ & C222 & C 2 2 \\ ! 21:cab & D$_{2}^{6}$ & A222 & A 2 2 \\ ! 21:bca & D$_{2}^{6}$ & B222 & B 2 2 \\ ! 22 & D$_{2}^{7}$ & F222 & F 2 2 \\ ! 23 & D$_{2}^{8}$ & I222 & I 2 2 \\ ! 24 & D$_{2}^{9}$ & I212121 & I 2b 2c \\ ! 25 & C$_{2v}^{1}$ & Pmm2 & P 2 -2 \\ ! 25:cab & C$_{2v}^{1}$ & P2mm & P -2 2 \\ ! 25:bca & C$_{2v}^{1}$ & Pm2m & P -2 -2 \\ ! 26 & C$_{2v}^{2}$ & Pmc21 & P 2c -2 \\ ! 26:ba-c & C$_{2v}^{2}$ & Pcm21 & P 2c -2c \\ ! 26:cab & C$_{2v}^{2}$ & P21ma & P -2a 2a \\ ! 26:-cba & C$_{2v}^{2}$ & P21am & P -2 2a \\ ! 26:bca & C$_{2v}^{2}$ & Pb21m & P -2 -2b \\ ! 26:a-cb & C$_{2v}^{2}$ & Pm21b & P -2b -2 \\ ! 27 & C$_{2v}^{3}$ & Pcc2 & P 2 -2c \\ ! 27:cab & C$_{2v}^{3}$ & P2aa & P -2a 2 \\ ! 27:bca & C$_{2v}^{3}$ & Pb2b & P -2b -2b \\ ! 28 & C$_{2v}^{4}$ & Pma2 & P 2 -2a \\ ! 28:ba-c & C$_{2v}^{4}$ & Pbm2 & P 2 -2b \\ ! 28:cab & C$_{2v}^{4}$ & P2mb & P -2b 2 \\ ! 28:-cba & C$_{2v}^{4}$ & P2cm & P -2c 2 \\ ! 28:bca & C$_{2v}^{4}$ & Pc2m & P -2c -2c \\ ! 28:a-cb & C$_{2v}^{4}$ & Pm2a & P -2a -2a \\ ! 29 & C$_{2v}^{5}$ & Pca21 & P 2c -2ac \\ ! 29:ba-c & C$_{2v}^{5}$ & Pbc21 & P 2c -2b \\ ! 29:cab & C$_{2v}^{5}$ & P21ab & P -2b 2a \\ ! 29:-cba & C$_{2v}^{5}$ & P21ca & P -2ac 2a \\ ! 29:bca & C$_{2v}^{5}$ & Pc21b & P -2bc -2c \\ ! 29:a-cb & C$_{2v}^{5}$ & Pb21a & P -2a -2ab \\ ! 30 & C$_{2v}^{6}$ & Pnc2 & P 2 -2bc \\ ! 30:ba-c & C$_{2v}^{6}$ & Pcn2 & P 2 -2ac \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 30:cab & C$_{2v}^{6}$ & P2na & P -2ac 2 \\ ! 30:-cba & C$_{2v}^{6}$ & P2an & P -2ab 2 \\ ! 30:bca & C$_{2v}^{6}$ & Pb2n & P -2ab -2ab \\ ! 30:a-cb & C$_{2v}^{6}$ & Pn2b & P -2bc -2bc \\ ! 31 & C$_{2v}^{7}$ & Pmn21 & P 2ac -2 \\ ! 31:ba-c & C$_{2v}^{7}$ & Pnm21 & P 2bc -2bc \\ ! 31:cab & C$_{2v}^{7}$ & P21mn & P -2ab 2ab \\ ! 31:-cba & C$_{2v}^{7}$ & P21nm & P -2 2ac \\ ! 31:bca & C$_{2v}^{7}$ & Pn21m & P -2 -2bc \\ ! 31:a-cb & C$_{2v}^{7}$ & Pm21n & P -2ab -2 \\ ! 32 & C$_{2v}^{8}$ & Pba2 & P 2 -2ab \\ ! 32:cab & C$_{2v}^{8}$ & P2cb & P -2bc 2 \\ ! 32:bca & C$_{2v}^{8}$ & Pc2a & P -2ac -2ac \\ ! 33 & C$_{2v}^{9}$ & Pna21 & P 2c -2n \\ ! 33:ba-c & C$_{2v}^{9}$ & Pbn21 & P 2c -2ab \\ ! 33:cab & C$_{2v}^{9}$ & P21nb & P -2bc 2a \\ ! 33:-cba & C$_{2v}^{9}$ & P21cn & P -2n 2a \\ ! 33:bca & C$_{2v}^{9}$ & Pc21n & P -2n -2ac \\ ! 33:a-cb & C$_{2v}^{9}$ & Pn21a & P -2ac -2n \\ ! 34 & C$_{2v}^{10}$ & Pnn2 & P 2 -2n \\ ! 34:cab & C$_{2v}^{10}$ & P2nn & P -2n 2 \\ ! 34:bca & C$_{2v}^{10}$ & Pn2n & P -2n -2n \\ ! 35 & C$_{2v}^{11}$ & Cmm2 & C 2 -2 \\ ! 35:cab & C$_{2v}^{11}$ & A2mm & A -2 2 \\ ! 35:bca & C$_{2v}^{11}$ & Bm2m & B -2 -2 \\ ! 36 & C$_{2v}^{12}$ & Cmc21 & C 2c -2 \\ ! 36:ba-c & C$_{2v}^{12}$ & Ccm21 & C 2c -2c \\ ! 36:cab & C$_{2v}^{12}$ & A21ma & A -2a 2a \\ ! 36:-cba & C$_{2v}^{12}$ & A21am & A -2 2a \\ ! 36:bca & C$_{2v}^{12}$ & Bb21m & B -2 -2b \\ ! 36:a-cb & C$_{2v}^{12}$ & Bm21b & B -2b -2 \\ ! 37 & C$_{2v}^{13}$ & Ccc2 & C 2 -2c \\ ! 37:cab & C$_{2v}^{13}$ & A2aa & A -2a 2 \\ ! 37:bca & C$_{2v}^{13}$ & Bb2b & B -2b -2b \\ ! 38 & C$_{2v}^{14}$ & Amm2 & A 2 -2 \\ ! 38:ba-c & C$_{2v}^{14}$ & Bmm2 & B 2 -2 \\ ! 38:cab & C$_{2v}^{14}$ & B2mm & B -2 2 \\ ! 38:-cba & C$_{2v}^{14}$ & C2mm & C -2 2 \\ ! 38:bca & C$_{2v}^{14}$ & Cm2m & C -2 -2 \\ ! 38:a-cb & C$_{2v}^{14}$ & Am2m & A -2 -2 \\ ! 39 & C$_{2v}^{15}$ & Abm2 & A 2 -2c \\ ! 39:ba-c & C$_{2v}^{15}$ & Bma2 & B 2 -2c \\ ! 39:cab & C$_{2v}^{15}$ & B2cm & B -2c 2 \\ ! 39:-cba & C$_{2v}^{15}$ & C2mb & C -2b 2 \\ ! 39:bca & C$_{2v}^{15}$ & Cm2a & C -2b -2b \\ ! 39:a-cb & C$_{2v}^{15}$ & Ac2m & A -2c -2c \\ ! 40 & C$_{2v}^{16}$ & Ama2 & A 2 -2a \\ ! 40:ba-c & C$_{2v}^{16}$ & Bbm2 & B 2 -2b \\ ! 40:cab & C$_{2v}^{16}$ & B2mb & B -2b 2 \\ ! 40:-cba & C$_{2v}^{16}$ & C2cm & C -2c 2 \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 40:bca & C$_{2v}^{16}$ & Cc2m & C -2c -2c \\ ! 40:a-cb & C$_{2v}^{16}$ & Am2a & A -2a -2a \\ ! 41 & C$_{2v}^{17}$ & Aba2 & A 2 -2ac \\ ! 41:ba-c & C$_{2v}^{17}$ & Bba2 & B 2 -2bc \\ ! 41:cab & C$_{2v}^{17}$ & B2cb & B -2bc 2 \\ ! 41:-cba & C$_{2v}^{17}$ & C2cb & C -2bc 2 \\ ! 41:bca & C$_{2v}^{17}$ & Cc2a & C -2bc -2bc \\ ! 41:a-cb & C$_{2v}^{17}$ & Ac2a & A -2ac -2ac \\ ! 42 & C$_{2v}^{18}$ & Fmm2 & F 2 -2 \\ ! 42:cab & C$_{2v}^{18}$ & F2mm & F -2 2 \\ ! 42:bca & C$_{2v}^{18}$ & Fm2m & F -2 -2 \\ ! 43 & C$_{2v}^{19}$ & Fdd2 & F 2 -2d \\ ! 43:cab & C$_{2v}^{19}$ & F2dd & F -2d 2 \\ ! 43:bca & C$_{2v}^{19}$ & Fd2d & F -2d -2d \\ ! 44 & C$_{2v}^{20}$ & Imm2 & I 2 -2 \\ ! 44:cab & C$_{2v}^{20}$ & I2mm & I -2 2 \\ ! 44:bca & C$_{2v}^{20}$ & Im2m & I -2 -2 \\ ! 45 & C$_{2v}^{21}$ & Iba2 & I 2 -2c \\ ! 45:cab & C$_{2v}^{21}$ & I2cb & I -2a 2 \\ ! 45:bca & C$_{2v}^{21}$ & Ic2a & I -2b -2b \\ ! 46 & C$_{2v}^{22}$ & Ima2 & I 2 -2a \\ ! 46:ba-c & C$_{2v}^{22}$ & Ibm2 & I 2 -2b \\ ! 46:cab & C$_{2v}^{22}$ & I2mb & I -2b 2 \\ ! 46:-cba & C$_{2v}^{22}$ & I2cm & I -2c 2 \\ ! 46:bca & C$_{2v}^{22}$ & Ic2m & I -2c -2c \\ ! 46:a-cb & C$_{2v}^{22}$ & Im2a & I -2a -2a \\ ! 47 & D$_{2h}^{1}$ & Pmmm & -P 2 2 \\ ! 48:1 & D$_{2h}^{2}$ & Pnnn:1 & P 2 2 -1n \\ ! 48:2 & D$_{2h}^{2}$ & Pnnn:2 & -P 2ab 2bc \\ ! 49 & D$_{2h}^{3}$ & Pccm & -P 2 2c \\ ! 49:cab & D$_{2h}^{3}$ & Pmaa & -P 2a 2 \\ ! 49:bca & D$_{2h}^{3}$ & Pbmb & -P 2b 2b \\ ! 50:1 & D$_{2h}^{4}$ & Pban:1 & P 2 2 -1ab \\ ! 50:2 & D$_{2h}^{4}$ & Pban:2 & -P 2ab 2b \\ ! 50:1cab & D$_{2h}^{4}$ & Pncb:1 & P 2 2 -1bc \\ ! 50:2cab & D$_{2h}^{4}$ & Pncb:2 & -P 2b 2bc \\ ! 50:1bca & D$_{2h}^{4}$ & Pcna:1 & P 2 2 -1ac \\ ! 50:2bca & D$_{2h}^{4}$ & Pcna:2 & -P 2a 2c \\ ! 51 & D$_{2h}^{5}$ & Pmma & -P 2a 2a \\ ! 51:ba-c & D$_{2h}^{5}$ & Pmmb & -P 2b 2 \\ ! 51:cab & D$_{2h}^{5}$ & Pbmm & -P 2 2b \\ ! 51:-cba & D$_{2h}^{5}$ & Pcmm & -P 2c 2c \\ ! 51:bca & D$_{2h}^{5}$ & Pmcm & -P 2c 2 \\ ! 51:a-cb & D$_{2h}^{5}$ & Pmam & -P 2 2a \\ ! 52 & D$_{2h}^{6}$ & Pnna & -P 2a 2bc \\ ! 52:ba-c & D$_{2h}^{6}$ & Pnnb & -P 2b 2n \\ ! 52:cab & D$_{2h}^{6}$ & Pbnn & -P 2n 2b \\ ! 52:-cba & D$_{2h}^{6}$ & Pcnn & -P 2ab 2c \\ ! 52:bca & D$_{2h}^{6}$ & Pncn & -P 2ab 2n \\ ! 52:a-cb & D$_{2h}^{6}$ & Pnan & -P 2n 2bc \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 53 & D$_{2h}^{7}$ & Pmna & -P 2ac 2 \\ ! 53:ba-c & D$_{2h}^{7}$ & Pnmb & -P 2bc 2bc \\ ! 53:cab & D$_{2h}^{7}$ & Pbmn & -P 2ab 2ab \\ ! 53:-cba & D$_{2h}^{7}$ & Pcnm & -P 2 2ac \\ ! 53:bca & D$_{2h}^{7}$ & Pncm & -P 2 2bc \\ ! 53:a-cb & D$_{2h}^{7}$ & Pman & -P 2ab 2 \\ ! 54 & D$_{2h}^{8}$ & Pcca & -P 2a 2ac \\ ! 54:ba-c & D$_{2h}^{8}$ & Pccb & -P 2b 2c \\ ! 54:cab & D$_{2h}^{8}$ & Pbaa & -P 2a 2b \\ ! 54:-cba & D$_{2h}^{8}$ & Pcaa & -P 2ac 2c \\ ! 54:bca & D$_{2h}^{8}$ & Pbcb & -P 2bc 2b \\ ! 54:a-cb & D$_{2h}^{8}$ & Pbab & -P 2b 2ab \\ ! 55 & D$_{2h}^{9}$ & Pbam & -P 2 2ab \\ ! 55:cab & D$_{2h}^{9}$ & Pmcb & -P 2bc 2 \\ ! 55:bca & D$_{2h}^{9}$ & Pcma & -P 2ac 2ac \\ ! 56 & D$_{2h}^{10}$ & Pccn & -P 2ab 2ac \\ ! 56:cab & D$_{2h}^{10}$ & Pnaa & -P 2ac 2bc \\ ! 56:bca & D$_{2h}^{10}$ & Pbnb & -P 2bc 2ab \\ ! 57 & D$_{2h}^{11}$ & Pbcm & -P 2c 2b \\ ! 57:ba-c & D$_{2h}^{11}$ & Pcam & -P 2c 2ac \\ ! 57:cab & D$_{2h}^{11}$ & Pmca & -P 2ac 2a \\ ! 57:-cba & D$_{2h}^{11}$ & Pmab & -P 2b 2a \\ ! 57:bca & D$_{2h}^{11}$ & Pbma & -P 2a 2ab \\ ! 57:a-cb & D$_{2h}^{11}$ & Pcmb & -P 2bc 2c \\ ! 58 & D$_{2h}^{12}$ & Pnnm & -P 2 2n \\ ! 58:cab & D$_{2h}^{12}$ & Pmnn & -P 2n 2 \\ ! 58:bca & D$_{2h}^{12}$ & Pnmn & -P 2n 2n \\ ! 59:1 & D$_{2h}^{13}$ & Pmmn:1 & P 2 2ab -1ab \\ ! 59:2 & D$_{2h}^{13}$ & Pmmn:2 & -P 2ab 2a \\ ! 59:1cab & D$_{2h}^{13}$ & Pnmm:1 & P 2bc 2 -1bc \\ ! 59:2cab & D$_{2h}^{13}$ & Pnmm:2 & -P 2c 2bc \\ ! 59:1bca & D$_{2h}^{13}$ & Pmnm:1 & P 2ac 2ac -1ac \\ ! 59:2bca & D$_{2h}^{13}$ & Pmnm:2 & -P 2c 2a \\ ! 60 & D$_{2h}^{14}$ & Pbcn & -P 2n 2ab \\ ! 60:ba-c & D$_{2h}^{14}$ & Pcan & -P 2n 2c \\ ! 60:cab & D$_{2h}^{14}$ & Pnca & -P 2a 2n \\ ! 60:-cba & D$_{2h}^{14}$ & Pnab & -P 2bc 2n \\ ! 60:bca & D$_{2h}^{14}$ & Pbna & -P 2ac 2b \\ ! 60:a-cb & D$_{2h}^{14}$ & Pcnb & -P 2b 2ac \\ ! 61 & D$_{2h}^{15}$ & Pbca & -P 2ac 2ab \\ ! 61:ba-c & D$_{2h}^{15}$ & Pcab & -P 2bc 2ac \\ ! 62 & D$_{2h}^{16}$ & Pnma & -P 2ac 2n \\ ! 62:ba-c & D$_{2h}^{16}$ & Pmnb & -P 2bc 2a \\ ! 62:cab & D$_{2h}^{16}$ & Pbnm & -P 2c 2ab \\ ! 62:-cba & D$_{2h}^{16}$ & Pcmn & -P 2n 2ac \\ ! 62:bca & D$_{2h}^{16}$ & Pmcn & -P 2n 2a \\ ! 62:a-cb & D$_{2h}^{16}$ & Pnam & -P 2c 2n \\ ! 63 & D$_{2h}^{17}$ & Cmcm & -C 2c 2 \\ ! 63:ba-c & D$_{2h}^{17}$ & Ccmm & -C 2c 2c \\ ! 63:cab & D$_{2h}^{17}$ & Amma & -A 2a 2a \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 63:-cba & D$_{2h}^{17}$ & Amam & -A 2 2a \\ ! 63:bca & D$_{2h}^{17}$ & Bbmm & -B 2 2b \\ ! 63:a-cb & D$_{2h}^{17}$ & Bmmb & -B 2b 2 \\ ! 64 & D$_{2h}^{18}$ & Cmca & -C 2bc 2 \\ ! 64:ba-c & D$_{2h}^{18}$ & Ccmb & -C 2bc 2bc \\ ! 64:cab & D$_{2h}^{18}$ & Abma & -A 2ac 2ac \\ ! 64:-cba & D$_{2h}^{18}$ & Acam & -A 2 2ac \\ ! 64:bca & D$_{2h}^{18}$ & Bbcm & -B 2 2bc \\ ! 64:a-cb & D$_{2h}^{18}$ & Bmab & -B 2bc 2 \\ ! 65 & D$_{2h}^{19}$ & Cmmm & -C 2 2 \\ ! 65:cab & D$_{2h}^{19}$ & Ammm & -A 2 2 \\ ! 65:bca & D$_{2h}^{19}$ & Bmmm & -B 2 2 \\ ! 66 & D$_{2h}^{20}$ & Cccm & -C 2 2c \\ ! 66:cab & D$_{2h}^{20}$ & Amaa & -A 2a 2 \\ ! 66:bca & D$_{2h}^{20}$ & Bbmb & -B 2b 2b \\ ! 67 & D$_{2h}^{21}$ & Cmma & -C 2b 2 \\ ! 67:ba-c & D$_{2h}^{21}$ & Cmmb & -C 2b 2b \\ ! 67:cab & D$_{2h}^{21}$ & Abmm & -A 2c 2c \\ ! 67:-cba & D$_{2h}^{21}$ & Acmm & -A 2 2c \\ ! 67:bca & D$_{2h}^{21}$ & Bmcm & -B 2 2c \\ ! 67:a-cb & D$_{2h}^{21}$ & Bmam & -B 2c 2 \\ ! 68:1 & D$_{2h}^{22}$ & Ccca:1 & C 2 2 -1bc \\ ! 68:2 & D$_{2h}^{22}$ & Ccca:2 & -C 2b 2bc \\ ! 68:1ba-c & D$_{2h}^{22}$ & Cccb:1 & C 2 2 -1bc \\ ! 68:2ba-c & D$_{2h}^{22}$ & Cccb:2 & -C 2b 2c \\ ! 68:1cab & D$_{2h}^{22}$ & Abaa:1 & A 2 2 -1ac \\ ! 68:2cab & D$_{2h}^{22}$ & Abaa:2 & -A 2a 2c \\ ! 68:1-cba & D$_{2h}^{22}$ & Acaa:1 & A 2 2 -1ac \\ ! 68:2-cba & D$_{2h}^{22}$ & Acaa:2 & -A 2ac 2c \\ ! 68:1bca & D$_{2h}^{22}$ & Bbcb:1 & B 2 2 -1bc \\ ! 68:2bca & D$_{2h}^{22}$ & Bbcb:2 & -B 2bc 2b \\ ! 68:1a-cb & D$_{2h}^{22}$ & Bbab:1 & B 2 2 -1bc \\ ! 68:2a-cb & D$_{2h}^{22}$ & Bbab:2 & -B 2b 2bc \\ ! 69 & D$_{2h}^{23}$ & Fmmm & -F 2 2 \\ ! 70:1 & D$_{2h}^{24}$ & Fddd:1 & F 2 2 -1d \\ ! 70:2 & D$_{2h}^{24}$ & Fddd:2 & -F 2uv 2vw \\ ! 71 & D$_{2h}^{25}$ & Immm & -I 2 2 \\ ! 72 & D$_{2h}^{26}$ & Ibam & -I 2 2c \\ ! 72:cab & D$_{2h}^{26}$ & Imcb & -I 2a 2 \\ ! 72:bca & D$_{2h}^{26}$ & Icma & -I 2b 2b \\ ! 73 & D$_{2h}^{27}$ & Ibca & -I 2b 2c \\ ! 73:ba-c & D$_{2h}^{27}$ & Icab & -I 2a 2b \\ ! 74 & D$_{2h}^{28}$ & Imma & -I 2b 2 \\ ! 74:ba-c & D$_{2h}^{28}$ & Immb & -I 2a 2a \\ ! 74:cab & D$_{2h}^{28}$ & Ibmm & -I 2c 2c \\ ! 74:-cba & D$_{2h}^{28}$ & Icmm & -I 2 2b \\ ! 74:bca & D$_{2h}^{28}$ & Imcm & -I 2 2a \\ ! 74:a-cb & D$_{2h}^{28}$ & Imam & -I 2c 2 \\ ! 75 & C$_{4}^{1}$ & P4 & P 4 \\ ! 76 & C$_{4}^{2}$ & P41 & P 4w \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 77 & C$_{4}^{3}$ & P42 & P 4c \\ ! 78 & C$_{4}^{4}$ & P43 & P 4cw \\ ! 79 & C$_{4}^{5}$ & I4 & I 4 \\ ! 80 & C$_{4}^{6}$ & I41 & I 4bw \\ ! 81 & S$_{4}^{1}$ & P-4 & P -4 \\ ! 82 & S$_{4}^{2}$ & I-4 & I -4 \\ ! 83 & C$_{4h}^{1}$ & P4/m & -P 4 \\ ! 84 & C$_{4h}^{2}$ & P42/m & -P 4c \\ ! 85:1 & C$_{4h}^{3}$ & P4/n:1 & P 4ab -1ab \\ ! 85:2 & C$_{4h}^{3}$ & P4/n:2 & -P 4a \\ ! 86:1 & C$_{4h}^{4}$ & P42/n:1 & P 4n -1n \\ ! 86:2 & C$_{4h}^{4}$ & P42/n:2 & -P 4bc \\ ! 87 & C$_{4h}^{5}$ & I4/m & -I 4 \\ ! 88:1 & C$_{4h}^{6}$ & I41/a:1 & I 4bw -1bw \\ ! 88:2 & C$_{4h}^{6}$ & I41/a:2 & -I 4ad \\ ! 89 & D$_{4}^{1}$ & P422 & P 4 2 \\ ! 90 & D$_{4}^{2}$ & P4212 & P 4ab 2ab \\ ! 91 & D$_{4}^{3}$ & P4122 & P 4w 2c \\ ! 92 & D$_{4}^{4}$ & P41212 & P 4abw 2nw \\ ! 93 & D$_{4}^{5}$ & P4222 & P 4c 2 \\ ! 94 & D$_{4}^{6}$ & P42212 & P 4n 2n \\ ! 95 & D$_{4}^{7}$ & P4322 & P 4cw 2c \\ ! 96 & D$_{4}^{8}$ & P43212 & P 4nw 2abw \\ ! 97 & D$_{4}^{9}$ & I422 & I 4 2 \\ ! 98 & D$_{4}^{10}$ & I4122 & I 4bw 2bw \\ ! 99 & C$_{4v}^{1}$ & P4mm & P 4 -2 \\ ! 100 & C$_{4v}^{2}$ & P4bm & P 4 -2ab \\ ! 101 & C$_{4v}^{3}$ & P42cm & P 4c -2c \\ ! 102 & C$_{4v}^{4}$ & P42nm & P 4n -2n \\ ! 103 & C$_{4v}^{5}$ & P4cc & P 4 -2c \\ ! 104 & C$_{4v}^{6}$ & P4nc & P 4 -2n \\ ! 105 & C$_{4v}^{7}$ & P42mc & P 4c -2 \\ ! 106 & C$_{4v}^{8}$ & P42bc & P 4c -2ab \\ ! 107 & C$_{4v}^{9}$ & I4mm & I 4 -2 \\ ! 108 & C$_{4v}^{10}$ & I4cm & I 4 -2c \\ ! 109 & C$_{4v}^{11}$ & I41md & I 4bw -2 \\ ! 110 & C$_{4v}^{12}$ & I41cd & I 4bw -2c \\ ! 111 & D$_{2d}^{1}$ & P-42m & P -4 2 \\ ! 112 & D$_{2d}^{2}$ & P-42c & P -4 2c \\ ! 113 & D$_{2d}^{3}$ & P-421m & P -4 2ab \\ ! 114 & D$_{2d}^{4}$ & P-421c & P -4 2n \\ ! 115 & D$_{2d}^{5}$ & P-4m2 & P -4 -2 \\ ! 116 & D$_{2d}^{6}$ & P-4c2 & P -4 -2c \\ ! 117 & D$_{2d}^{7}$ & P-4b2 & P -4 -2ab \\ ! 118 & D$_{2d}^{8}$ & P-4n2 & P -4 -2n \\ ! 119 & D$_{2d}^{9}$ & I-4m2 & I -4 -2 \\ ! 120 & D$_{2d}^{10}$ & I-4c2 & I -4 -2c \\ ! 121 & D$_{2d}^{11}$ & I-42m & I -4 2 \\ ! 122 & D$_{2d}^{12}$ & I-42d & I -4 2bw \\ ! 123 & D$_{4h}^{1}$ & P4/mmm & -P 4 2 \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 124 & D$_{4h}^{2}$ & P4/mcc & -P 4 2c \\ ! 125:1 & D$_{4h}^{3}$ & P4/nbm:1 & P 4 2 -1ab \\ ! 125:2 & D$_{4h}^{3}$ & P4/nbm:2 & -P 4a 2b \\ ! 126:1 & D$_{4h}^{4}$ & P4/nnc:1 & P 4 2 -1n \\ ! 126:2 & D$_{4h}^{4}$ & P4/nnc:2 & -P 4a 2bc \\ ! 127 & D$_{4h}^{5}$ & P4/mbm & -P 4 2ab \\ ! 128 & D$_{4h}^{6}$ & P4/mnc & -P 4 2n \\ ! 129:1 & D$_{4h}^{7}$ & P4/nmm:1 & P 4ab 2ab -1ab \\ ! 129:2 & D$_{4h}^{7}$ & P4/nmm:2 & -P 4a 2a \\ ! 130:1 & D$_{4h}^{8}$ & P4/ncc:1 & P 4ab 2n -1ab \\ ! 130:2 & D$_{4h}^{8}$ & P4/ncc:2 & -P 4a 2ac \\ ! 131 & D$_{4h}^{9}$ & P42/mmc & -P 4c 2 \\ ! 132 & D$_{4h}^{10}$ & P42/mcm & -P 4c 2c \\ ! 133:1 & D$_{4h}^{11}$ & P42/nbc:1 & P 4n 2c -1n \\ ! 133:2 & D$_{4h}^{11}$ & P42/nbc:2 & -P 4ac 2b \\ ! 134:1 & D$_{4h}^{12}$ & P42/nnm:1 & P 4n 2 -1n \\ ! 134:2 & D$_{4h}^{12}$ & P42/nnm:2 & -P 4ac 2bc \\ ! 135 & D$_{4h}^{13}$ & P42/mbc & -P 4c 2ab \\ ! 136 & D$_{4h}^{14}$ & P42/mnm & -P 4n 2n \\ ! 137:1 & D$_{4h}^{15}$ & P42/nmc:1 & P 4n 2n -1n \\ ! 137:2 & D$_{4h}^{15}$ & P42/nmc:2 & -P 4ac 2a \\ ! 138:1 & D$_{4h}^{16}$ & P42/ncm:1 & P 4n 2ab -1n \\ ! 138:2 & D$_{4h}^{16}$ & P42/ncm:2 & -P 4ac 2ac \\ ! 139 & D$_{4h}^{17}$ & I4/mmm & -I 4 2 \\ ! 140 & D$_{4h}^{18}$ & I4/mcm & -I 4 2c \\ ! 141:1 & D$_{4h}^{19}$ & I41/amd:1 & I 4bw 2bw -1bw \\ ! 141:2 & D$_{4h}^{19}$ & I41/amd:2 & -I 4bd 2 \\ ! 142:1 & D$_{4h}^{20}$ & I41/acd:1 & I 4bw 2aw -1bw \\ ! 142:2 & D$_{4h}^{20}$ & I41/acd:2 & -I 4bd 2c \\ ! 143 & C$_{3}^{1}$ & P3 & P 3 \\ ! 144 & C$_{3}^{2}$ & P31 & P 31 \\ ! 145 & C$_{3}^{3}$ & P32 & P 32 \\ ! 146:H & C$_{3}^{4}$ & R3:H & R 3 \\ ! 146:R & C$_{3}^{4}$ & R3:R & P 3* \\ ! 147 & C$_{3i}^{1}$ & P-3 & -P 3 \\ ! 148:H & C$_{3i}^{2}$ & R-3:H & -R 3 \\ ! 148:R & C$_{3i}^{2}$ & R-3:R & -P 3* \\ ! 149 & D$_{3}^{1}$ & P312 & P 3 2 \\ ! 150 & D$_{3}^{2}$ & P321 & P 3 2$''$ \\ ! 151 & D$_{3}^{3}$ & P3112 & P 31 2c (0 0 1) \\ ! 152 & D$_{3}^{4}$ & P3121 & P 31 2$''$ \\ ! 153 & D$_{3}^{5}$ & P3212 & P 32 2c (0 0 -1) \\ ! 154 & D$_{3}^{6}$ & P3221 & P 32 2$''$ \\ ! 155:H & D$_{3}^{7}$ & R32:H & R 3 2$''$ \\ ! 155:R & D$_{3}^{7}$ & R32:R & P 3* 2 \\ ! 156 & C$_{3v}^{1}$ & P3m1 & P 3 -2$''$ \\ ! 157 & C$_{3v}^{2}$ & P31m & P 3 -2 \\ ! 158 & C$_{3v}^{3}$ & P3c1 & P 3 -2$''$c \\ ! 159 & C$_{3v}^{4}$ & P31c & P 3 -2c \\ ! 160:H & C$_{3v}^{5}$ & R3m:H & R 3 -2$''$ \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 160:R & C$_{3v}^{5}$ & R3m:R & P 3* -2 \\ ! 161:H & C$_{3v}^{6}$ & R3c:H & R 3 -2$''$c \\ ! 161:R & C$_{3v}^{6}$ & R3c:R & P 3* -2n \\ ! 162 & D$_{3d}^{1}$ & P-31m & -P 3 2 \\ ! 163 & D$_{3d}^{2}$ & P-31c & -P 3 2c \\ ! 164 & D$_{3d}^{3}$ & P-3m1 & -P 3 2$''$ \\ ! 165 & D$_{3d}^{4}$ & P-3c1 & -P 3 2$''$c \\ ! 166:H & D$_{3d}^{5}$ & R-3m:H & -R 3 2$''$ \\ ! 166:R & D$_{3d}^{5}$ & R-3m:R & -P 3* 2 \\ ! 167:H & D$_{3d}^{6}$ & R-3c:H & -R 3 2$''$c \\ ! 167:R & D$_{3d}^{6}$ & R-3c:R & -P 3* 2n \\ ! 168 & C$_{6}^{1}$ & P6 & P 6 \\ ! 169 & C$_{6}^{2}$ & P61 & P 61 \\ ! 170 & C$_{6}^{3}$ & P65 & P 65 \\ ! 171 & C$_{6}^{4}$ & P62 & P 62 \\ ! 172 & C$_{6}^{5}$ & P64 & P 64 \\ ! 173 & C$_{6}^{6}$ & P63 & P 6c \\ ! 174 & C$_{3h}^{1}$ & P-6 & P -6 \\ ! 175 & C$_{6h}^{1}$ & P6/m & -P 6 \\ ! 176 & C$_{6h}^{2}$ & P63/m & -P 6c \\ ! 177 & D$_{6}^{1}$ & P622 & P 6 2 \\ ! 178 & D$_{6}^{2}$ & P6122 & P 61 2 (0 0 -1) \\ ! 179 & D$_{6}^{3}$ & P6522 & P 65 2 (0 0 1) \\ ! 180 & D$_{6}^{4}$ & P6222 & P 62 2c (0 0 1) \\ ! 181 & D$_{6}^{5}$ & P6422 & P 64 2c (0 0 -1) \\ ! 182 & D$_{6}^{6}$ & P6322 & P 6c 2c \\ ! 183 & C$_{6v}^{1}$ & P6mm & P 6 -2 \\ ! 184 & C$_{6v}^{2}$ & P6cc & P 6 -2c \\ ! 185 & C$_{6v}^{3}$ & P63cm & P 6c -2 \\ ! 186 & C$_{6v}^{4}$ & P63mc & P 6c -2c \\ ! 187 & D$_{3h}^{1}$ & P-6m2 & P -6 2 \\ ! 188 & D$_{3h}^{2}$ & P-6c2 & P -6c 2 \\ ! 189 & D$_{3h}^{3}$ & P-62m & P -6 -2 \\ ! 190 & D$_{3h}^{4}$ & P-62c & P -6c -2c \\ ! 191 & D$_{6h}^{1}$ & P6/mmm & -P 6 2 \\ ! 192 & D$_{6h}^{2}$ & P6/mcc & -P 6 2c \\ ! 193 & D$_{6h}^{3}$ & P63/mcm & -P 6c 2 \\ ! 194 & D$_{6h}^{4}$ & P63/mmc & -P 6c 2c \\ ! 195 & T$_{}^{1}$ & P23 & P 2 2 3 \\ ! 196 & T$_{}^{2}$ & F23 & F 2 2 3 \\ ! 197 & T$_{}^{3}$ & I23 & I 2 2 3 \\ ! 198 & T$_{}^{4}$ & P213 & P 2ac 2ab 3 \\ ! 199 & T$_{}^{5}$ & I213 & I 2b 2c 3 \\ ! 200 & T$_{h}^{1}$ & Pm-3 & -P 2 2 3 \\ ! 201:1 & T$_{h}^{2}$ & Pn-3:1 & P 2 2 3 -1n \\ ! 201:2 & T$_{h}^{2}$ & Pn-3:2 & -P 2ab 2bc 3 \\ ! 202 & T$_{h}^{3}$ & Fm-3 & -F 2 2 3 \\ ! 203:1 & T$_{h}^{4}$ & Fd-3:1 & F 2 2 3 -1d \\ ! 203:2 & T$_{h}^{4}$ & Fd-3:2 & -F 2uv 2vw 3 \\ ! 204 & T$_{h}^{5}$ & Im-3 & -I 2 2 3 \\ ! \hline ! \end{tabular} ! \newpage ! \begin{tabular}{|l|l|l|l|} ! \hline ! Number & Schoenflies & Hermann-Mauguin & Hall \\ ! \hline ! 205 & T$_{h}^{6}$ & Pa-3 & -P 2ac 2ab 3 \\ ! 206 & T$_{h}^{7}$ & Ia-3 & -I 2b 2c 3 \\ ! 207 & O$^{1}$ & P432 & P 4 2 3 \\ ! 208 & O$^{2}$ & P4232 & P 4n 2 3 \\ ! 209 & O$^{3}$ & F432 & F 4 2 3 \\ ! 210 & O$^{4}$ & F4132 & F 4d 2 3 \\ ! 211 & O$^{5}$ & I432 & I 4 2 3 \\ ! 212 & O$^{6}$ & P4332 & P 4acd 2ab 3 \\ ! 213 & O$^{7}$ & P4132 & P 4bd 2ab 3 \\ ! 214 & O$^{8}$ & I4132 & I 4bd 2c 3 \\ ! 215 & T$_{d}^{1}$ & P-43m & P -4 2 3 \\ ! 216 & T$_{d}^{2}$ & F-43m & F -4 2 3 \\ ! 217 & T$_{d}^{3}$ & I-43m & I -4 2 3 \\ ! 218 & T$_{d}^{4}$ & P-43n & P -4n 2 3 \\ ! 219 & T$_{d}^{5}$ & F-43c & F -4c 2 3 \\ ! 220 & T$_{d}^{6}$ & I-43d & I -4bd 2c 3 \\ ! 221 & O$_{h}^{1}$ & Pm-3m & -P 4 2 3 \\ ! 222:1 & O$_{h}^{2}$ & Pn-3n:1 & P 4 2 3 -1n \\ ! 222:2 & O$_{h}^{2}$ & Pn-3n:2 & -P 4a 2bc 3 \\ ! 223 & O$_{h}^{3}$ & Pm-3n & -P 4n 2 3 \\ ! 224:1 & O$_{h}^{4}$ & Pn-3m:1 & P 4n 2 3 -1n \\ ! 224:2 & O$_{h}^{4}$ & Pn-3m:2 & -P 4bc 2bc 3 \\ ! 225 & O$_{h}^{5}$ & Fm-3m & -F 4 2 3 \\ ! 226 & O$_{h}^{6}$ & Fm-3c & -F 4c 2 3 \\ ! 227:1 & O$_{h}^{7}$ & Fd-3m:1 & F 4d 2 3 -1d \\ ! 227:2 & O$_{h}^{7}$ & Fd-3m:2 & -F 4vw 2vw 3 \\ ! 228:1 & O$_{h}^{8}$ & Fd-3c:1 & F 4d 2 3 -1cd \\ ! 228:2 & O$_{h}^{8}$ & Fd-3c:2 & -F 4cvw 2vw 3 \\ ! 229 & O$_{h}^{9}$ & Im-3m & -I 4 2 3 \\ ! 230 & O$_{h}^{10}$ & Ia-3d & -I 4bd 2c 3 \\ ! \hline ! \end{tabular} ! \end{center} ! !EOI elk-10.4.9/src/spacegroup/PaxHeaders/r3cross.f900000644000000000000000000000013214762655562016335 xustar0030 mtime=1741380466.402997664 30 atime=1741380466.401997659 30 ctime=1741380466.402997664 elk-10.4.9/src/spacegroup/r3cross.f900000644002504400250440000000134214762655562021057 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3cross ! !INTERFACE: pure subroutine r3cross(x,y,z) ! !INPUT/OUTPUT PARAMETERS: ! x : input vector 1 (in,real(3)) ! y : input vector 2 (in,real(3)) ! z : output cross-product (out,real(3)) ! !DESCRIPTION: ! Returns the cross product of two real 3-vectors. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x(3),y(3) real(8), intent(out) :: z(3) z(1)=x(2)*y(3)-x(3)*y(2) z(2)=x(3)*y(1)-x(1)*y(3) z(3)=x(1)*y(2)-x(2)*y(1) end subroutine !EOC elk-10.4.9/src/spacegroup/PaxHeaders/r3minv.f900000644000000000000000000000013214762655562016155 xustar0030 mtime=1741380466.404997675 30 atime=1741380466.403997669 30 ctime=1741380466.404997675 elk-10.4.9/src/spacegroup/r3minv.f900000644002504400250440000000235314762655562020702 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3minv ! !INTERFACE: subroutine r3minv(a,b) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,real(3,3)) ! b : output matrix (out,real(3,3)) ! !DESCRIPTION: ! Computes the inverse of a real $3\times 3$ matrix. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3) real(8), intent(out) :: b(3,3) ! local variables real(8) t1 t1=a(1,2)*a(2,3)*a(3,1)-a(1,3)*a(2,2)*a(3,1)+a(1,3)*a(2,1)*a(3,2) & -a(1,1)*a(2,3)*a(3,2)+a(1,1)*a(2,2)*a(3,3)-a(1,2)*a(2,1)*a(3,3) if (abs(t1) < 1.d-40) then write(*,*) write(*,'("Error(r3minv): singular matrix")') write(*,*) stop end if t1=1.d0/t1 b(1,1)=t1*(a(2,2)*a(3,3)-a(2,3)*a(3,2)) b(2,1)=t1*(a(2,3)*a(3,1)-a(2,1)*a(3,3)) b(3,1)=t1*(a(2,1)*a(3,2)-a(2,2)*a(3,1)) b(1,2)=t1*(a(1,3)*a(3,2)-a(1,2)*a(3,3)) b(2,2)=t1*(a(1,1)*a(3,3)-a(1,3)*a(3,1)) b(3,2)=t1*(a(1,2)*a(3,1)-a(1,1)*a(3,2)) b(1,3)=t1*(a(1,2)*a(2,3)-a(1,3)*a(2,2)) b(2,3)=t1*(a(1,3)*a(2,1)-a(1,1)*a(2,3)) b(3,3)=t1*(a(1,1)*a(2,2)-a(1,2)*a(2,1)) end subroutine !EOC elk-10.4.9/src/spacegroup/PaxHeaders/Makefile0000644000000000000000000000012714762655562016063 xustar0029 mtime=1741380466.40599768 29 atime=1741380466.40599768 29 ctime=1741380466.40599768 elk-10.4.9/src/spacegroup/Makefile0000644002504400250440000000216714762655562020607 0ustar00dewhurstdewhurst00000000000000 include ../../make.inc #------------------------------------------------------------------------------- # Suffix rules #------------------------------------------------------------------------------- .SUFFIXES: .o .f90 .f90.o: $(F90) $(F90_OPTS) -c $< #------------------------------------------------------------------------------- # Source files #------------------------------------------------------------------------------- SRC_modules = modmain.f90 SRC_main = main.f90 SRC_routines = readinput.f90 gencrystal.f90 sgsymb.f90 seitzgen.f90 \ gengroup.f90 seitzeq.f90 seitzmul.f90 writegeom.f90 geomplot.f90 \ findprimcell.f90 r3frac.f90 r3mv.f90 r3cross.f90 r3minv.f90 r3mm.f90 SRC = $(SRC_modules) $(SRC_main) $(SRC_routines) OBJ = $(SRC:.f90=.o) EXE = spacegroup spacegroup: $(OBJ) $(F90) $(F90_OPTS) -o $(EXE) $(OBJ) clean: rm -f *.o *.mod *~ fort.* ifc* *.gcno *.OUT *.xsf *.ascii gmon.out \ *.aux *.dvi *.log *.pdf *.tex *.toc *.out $(EXE) doc: ../protex -s $(SRC_main) $(SRC_modules) $(SRC_routines) > spacegroup.tex pdflatex spacegroup;pdflatex spacegroup;pdflatex spacegroup spaces: ../rmspaces $(SRC) elk-10.4.9/src/spacegroup/PaxHeaders/r3mv.f900000644000000000000000000000012714762655562015632 xustar0029 mtime=1741380466.40799769 29 atime=1741380466.40799769 29 ctime=1741380466.40799769 elk-10.4.9/src/spacegroup/r3mv.f900000644002504400250440000000140614762655562020351 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mv ! !INTERFACE: pure subroutine r3mv(a,x,y) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,real(3,3)) ! x : input vector (in,real(3)) ! y : output vector (out,real(3)) ! !DESCRIPTION: ! Multiplies a real $3\times 3$ matrix with a vector. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3),x(3) real(8), intent(out) :: y(3) y(1)=a(1,1)*x(1)+a(1,2)*x(2)+a(1,3)*x(3) y(2)=a(2,1)*x(1)+a(2,2)*x(2)+a(2,3)*x(3) y(3)=a(3,1)*x(1)+a(3,2)*x(2)+a(3,3)*x(3) end subroutine !EOC elk-10.4.9/src/spacegroup/PaxHeaders/seitzeq.f900000644000000000000000000000013214762655562016423 xustar0030 mtime=1741380466.409997701 30 atime=1741380466.409997701 30 ctime=1741380466.409997701 elk-10.4.9/src/spacegroup/seitzeq.f900000644002504400250440000000126614762655562021152 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. logical function seitzeq(eps,sr1,st1,sr2,st2) implicit none ! arguments real(8), intent(in) :: eps real(8), intent(in) :: sr1(3,3) real(8), intent(in) :: st1(3) real(8), intent(in) :: sr2(3,3) real(8), intent(in) :: st2(3) ! local variables integer j real(8) v1(3),v2(3) seitzeq=.false. do j=1,3 v1(:)=sr1(:,j)+st1(:) v2(:)=sr2(:,j)+st2(:) if ((abs(v1(1)-v2(1)) > eps).or. & (abs(v1(2)-v2(2)) > eps).or. & (abs(v1(3)-v2(3)) > eps)) return end do seitzeq=.true. return end function elk-10.4.9/src/spacegroup/PaxHeaders/seitzmul.f900000644000000000000000000000013214762655562016613 xustar0030 mtime=1741380466.411997711 30 atime=1741380466.411997711 30 ctime=1741380466.411997711 elk-10.4.9/src/spacegroup/seitzmul.f900000644002504400250440000000112314762655562021332 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine seitzmul(eps,sr1,st1,sr2,st2,sr3,st3) implicit none ! arguments real(8), intent(in) :: eps real(8), intent(in) :: sr1(3,3) real(8), intent(in) :: st1(3) real(8), intent(in) :: sr2(3,3) real(8), intent(in) :: st2(3) real(8), intent(out) :: sr3(3,3) real(8), intent(out) :: st3(3) call r3mv(sr1,st2,st3) st3(:)=st3(:)+st1(:) call r3frac(eps,st3) call r3mm(sr1,sr2,sr3) return end subroutine elk-10.4.9/src/spacegroup/PaxHeaders/writegeom.f900000644000000000000000000000013214762655562016741 xustar0030 mtime=1741380466.413997722 30 atime=1741380466.413997722 30 ctime=1741380466.413997722 elk-10.4.9/src/spacegroup/writegeom.f900000644002504400250440000000334614762655562021471 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writegeom use modmain implicit none ! local variables integer is,ia,ip open(50,file='GEOMETRY.OUT',action='WRITE',form='FORMATTED') write(50,*) write(50,'("! Atomic positions generated by spacegroup version ",& &I1.1,".",I1.1,".",I2.2)') version write(50,'("! Hermann-Mauguin symbol : ",A)') trim(hrmg) write(50,'("! Hall symbol : ",A)') trim(hall) write(50,'("! Schoenflies symbol : ",A)') trim(schn) write(50,'("! space group number : ",A)') trim(num) write(50,'("! lattice constants (a,b,c) : ",3G18.10)') a,b,c write(50,'("! angles in degrees (bc,ac,ab) : ",3G18.10)') bc,ac,ab write(50,'("! number of conventional unit cells : ",3I4)') ncell write(50,'("! reduction to primitive cell : ",L1)') primcell write(50,'("! Wyckoff positions :")') do is=1,nspecies write(50,'("! species : ",I4,", ",A)') is,trim(spsymb(is)) do ip=1,nwpos(is) write(50,'("! ",3G18.10)') wpos(:,ip,is) end do end do write(50,*) write(50,'("avec")') write(50,'(3G18.10)') avec(:,1) write(50,'(3G18.10)') avec(:,2) write(50,'(3G18.10)') avec(:,3) write(50,*) write(50,'("atoms")') write(50,'(I4,T40," : nspecies")') nspecies do is=1,nspecies write(50,'("''",A,"''",T40," : spfname")') trim(spsymb(is))//'.in' write(50,'(I4,T40," : natoms; atposl, bfcmt below")') natoms(is) do ia=1,natoms(is) write(50,'(3F14.8," ",3F12.8)') atposl(:,ia,is),bfcmt0(:,ia,is) end do end do close(50) write(*,*) write(*,'("Info(writegeom):")') write(*,'(" Elk lattice vectors and atomic positions written to GEOMETRY.OUT")') return end subroutine elk-10.4.9/src/spacegroup/PaxHeaders/gencrystal.f900000644000000000000000000000013214762655562017112 xustar0030 mtime=1741380466.416997737 30 atime=1741380466.415997732 30 ctime=1741380466.416997737 elk-10.4.9/src/spacegroup/gencrystal.f900000644002504400250440000000576714762655562021653 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gencrystal use modmain implicit none ! local variables integer is,ia,ip,i,j integer i1,i2,i3 integer ngen,ngrp real(8) abr,acr,bcr real(8) sab,cab,cac,cbc real(8) v1(3),v2(3),t1 ! space group generator Seitz matrices real(8) srgen(3,3,12),stgen(3,12) ! space group Seitz matrices real(8) srgrp(3,3,192),stgrp(3,192) ! convert angles from degrees to radians abr=ab*(pi/180.d0) acr=ac*(pi/180.d0) bcr=bc*(pi/180.d0) ! setup lattice vectors sab=sin(abr) if (abs(sab) < epslat) then write(*,*) write(*,'("Error(gencrystal): degenerate lattice vectors")') write(*,*) stop end if cab=cos(abr) cac=cos(acr) cbc=cos(bcr) avec(1,1)=a avec(2,1)=0.d0 avec(3,1)=0.d0 avec(1,2)=b*cab avec(2,2)=b*sab avec(3,2)=0.d0 avec(1,3)=c*cac avec(2,3)=c*(cbc-cab*cac)/sab avec(3,3)=c*sqrt(sab**2-cac**2+2.d0*cab*cac*cbc-cbc**2)/sab do i=1,3 do j=1,3 if (abs(avec(i,j)) < epslat) avec(i,j)=0.d0 end do end do ! scale lattice vectors by the number of unit cells do i=1,3 avec(:,i)=avec(:,i)*dble(ncell(i)) end do ! determine the Hall symbol from the Hermann-Mauguin symbol call sgsymb(hrmg,num,schn,hall) ! determine the space group generators call seitzgen(hall,ngen,srgen,stgen) ! compute the space group operations call gengroup(ngen,srgen,stgen,ngrp,srgrp,stgrp) ! compute the equivalent atomic positions do is=1,nspecies natoms(is)=0 do ip=1,nwpos(is) do j=1,ngrp ! apply the space group operation call r3mv(srgrp(:,1,j),wpos(:,ip,is),v1) v1(:)=v1(:)+stgrp(:,j) do i1=0,ncell(1)-1 do i2=0,ncell(2)-1 do i3=0,ncell(3)-1 v2(1)=(v1(1)+dble(i1))/dble(ncell(1)) v2(2)=(v1(2)+dble(i2))/dble(ncell(2)) v2(3)=(v1(3)+dble(i3))/dble(ncell(3)) call r3frac(epslat,v2) ! check if new position already exists do ia=1,natoms(is) t1=sum(abs(v2(:)-atposl(:,ia,is))) if (t1 < epslat) goto 30 end do ! add new position to list natoms(is)=natoms(is)+1 if (natoms(is) > maxatoms) then write(*,*) write(*,'("Error(gencrystal): natoms too large")') write(*,'(" for species ",I4)') is write(*,'("Adjust maxatoms and recompile code")') write(*,*) stop end if atposl(:,natoms(is),is)=v2(:) end do end do end do 30 continue end do end do natmtot=natmtot+natoms(is) end do ! set magnetic fields to zero bfcmt0(:,:,:)=0.d0 ! reduce conventional cell to primitive cell if required if (primcell) call findprimcell ! find the total number of atoms natmtot=0 do is=1,nspecies natmtot=natmtot+natoms(is) end do ! determine the Cartesian atomic coordinates do is=1,nspecies do ia=1,natoms(is) call r3mv(avec,atposl(:,ia,is),atposc(:,ia,is)) end do end do return end subroutine elk-10.4.9/src/spacegroup/PaxHeaders/geomplot.f900000644000000000000000000000013214762655562016565 xustar0030 mtime=1741380466.418997748 30 atime=1741380466.417997742 30 ctime=1741380466.418997748 elk-10.4.9/src/spacegroup/geomplot.f900000644002504400250440000000445314762655562021315 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine geomplot use modmain implicit none ! local variables integer is,ia ! Bohr to Angstroms (CODATA 2002) real(8), parameter :: au_to_ang=0.5291772108d0 real(8) v1(3),v2(3),v3(3),v4(3),t1 real(8) dxx,dyx,dyy,dzx,dzy,dzz !------------------------------------------------! ! write the XCrysden file to crystal.xsf ! !------------------------------------------------! open(50,file='crystal.xsf',action='WRITE',form='FORMATTED') write(50,*) write(50,'("CRYSTAL")') write(50,*) write(50,'("PRIMVEC")') write(50,'(3G18.10)') avec(:,1)*au_to_ang write(50,'(3G18.10)') avec(:,2)*au_to_ang write(50,'(3G18.10)') avec(:,3)*au_to_ang write(50,*) write(50,'("PRIMCOORD")') write(50,'(2I8)') natmtot,1 do is=1,nspecies do ia=1,natoms(is) call r3mv(avec,atposl(:,ia,is),v1) write(50,'(A,3G18.10)') trim(spsymb(is)),v1(:)*au_to_ang end do end do close(50) write(*,*) write(*,'("Info(writexsf):")') write(*,'(" XCrysDen file written to crystal.xsf")') !-----------------------------------------------! ! write the V_Sim file to crystal.ascii ! !-----------------------------------------------! ! determine coordinate system vectors t1=sqrt(avec(1,1)**2+avec(2,1)**2+avec(3,1)**2) v1(:)=avec(:,1)/t1 t1=sqrt(avec(1,2)**2+avec(2,2)**2+avec(3,2)**2) v2(:)=avec(:,2)/t1 call r3cross(v1,v2,v3) t1=sqrt(v3(1)**2+v3(2)**2+v3(3)**2) v3(:)=v3(:)/t1 call r3cross(v3,v1,v2) t1=sqrt(v2(1)**2+v2(2)**2+v2(3)**2) v2(:)=v2(:)/t1 dxx=dot_product(avec(:,1),v1(:)) dyx=dot_product(avec(:,2),v1(:)) dyy=dot_product(avec(:,2),v2(:)) dzx=dot_product(avec(:,3),v1(:)) dzy=dot_product(avec(:,3),v2(:)) dzz=dot_product(avec(:,3),v3(:)) open(50,file='crystal.ascii',action='WRITE',form='FORMATTED') write(50,*) write(50,'(3G18.10)') dxx,dyx,dyy write(50,'(3G18.10)') dzx,dzy,dzz write(50,*) do is=1,nspecies do ia=1,natoms(is) v4(1)=dot_product(atposc(:,ia,is),v1(:)) v4(2)=dot_product(atposc(:,ia,is),v2(:)) v4(3)=dot_product(atposc(:,ia,is),v3(:)) write(50,'(3G18.10," ",A)') v4,trim(spsymb(is)) end do end do close(50) write(*,*) write(*,'("Info(writevsim):")') write(*,'(" V_Sim file written to crystal.ascii")') return end subroutine elk-10.4.9/src/spacegroup/PaxHeaders/modmain.f900000644000000000000000000000013214762655562016363 xustar0030 mtime=1741380466.420997758 30 atime=1741380466.419997753 30 ctime=1741380466.420997758 elk-10.4.9/src/spacegroup/modmain.f900000644002504400250440000000454314762655562021113 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !MODULE: modmain ! !DESCRIPTION: ! Contains all the global variables required by the spacegroup code. ! ! !REVISION HISTORY: ! Created October 2006 (JKD) !EOP !BOC module modmain !-------------------------------! ! space group variables ! !-------------------------------! ! Hermann-Mauguin symbol character(20) hrmg ! space-group number character(20) num ! Schoenflies symbol character(20) schn ! Hall symbol character(20) hall !----------------------------! ! lattice parameters ! !----------------------------! ! number of unit cells integer ncell(3) ! lattice vector lengths real(8) a,b,c ! lattice vector angles real(8) ab,ac,bc ! lattice vectors stored column-wise real(8) avec(3,3) ! inverse of lattice vector matrix real(8) ainv(3,3) ! any vector with length less than epslat is considered zero real(8), parameter :: epslat=1.d-6 !--------------------------! ! atomic variables ! !--------------------------! ! maximum allowed species integer, parameter :: maxspecies=8 ! maximum allowed atoms per species integer, parameter :: maxatoms=1000 ! number of species integer nspecies ! number of atoms for each species integer natoms(maxspecies) ! total number of atoms integer natmtot ! primcell is .true. if primitive unit cell is to be found automatically logical primcell ! maximum allowed Wyckoff positions integer, parameter :: maxwpos=100 ! number of Wyckoff positions integer nwpos(maxspecies) ! Wyckoff positions real(8) wpos(3,maxwpos,maxspecies) ! atomic positions in lattice coordinates real(8) atposl(3,maxatoms,maxspecies) ! atomic positions in Cartesian coordinates real(8) atposc(3,maxatoms,maxspecies) ! magnetic fields real(8) bfcmt0(3,maxatoms,maxspecies) !----------------------------------! ! atomic species variables ! !----------------------------------! ! species symbol character(256) spsymb(maxspecies) !-----------------------------! ! numerical constants ! !-----------------------------! real(8), parameter :: pi=3.1415926535897932385d0 !---------------------------------! ! miscellaneous variables ! !---------------------------------! ! code version integer version(3) data version / 1,2,1 / end module !EOC elk-10.4.9/src/spacegroup/PaxHeaders/r3frac.f900000644000000000000000000000013214762655562016117 xustar0030 mtime=1741380466.422997769 30 atime=1741380466.422997769 30 ctime=1741380466.422997769 elk-10.4.9/src/spacegroup/r3frac.f900000644002504400250440000000221614762655562020642 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3frac ! !INTERFACE: pure subroutine r3frac(eps,v) ! !INPUT/OUTPUT PARAMETERS: ! eps : zero component tolerance (in,real) ! v : input vector (inout,real(3)) ! !DESCRIPTION: ! Finds the fractional part of each component of a real 3-vector using the ! function ${\rm frac}\,(x)=x-\lfloor x\rfloor$. A component is taken to be ! zero if it lies within the intervals $[0,\epsilon)$ or $(1-\epsilon,1]$. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) ! Removed iv, September 2011 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: eps real(8), intent(inout) :: v(3) ! local variables real(8) t1 t1=1.d0-eps v(1)=v(1)-int(v(1)) if (v(1) < 0.d0) v(1)=v(1)+1.d0 if ((v(1) < eps).or.(v(1) > t1)) v(1)=0.d0 v(2)=v(2)-int(v(2)) if (v(2) < 0.d0) v(2)=v(2)+1.d0 if ((v(2) < eps).or.(v(2) > t1)) v(2)=0.d0 v(3)=v(3)-int(v(3)) if (v(3) < 0.d0) v(3)=v(3)+1.d0 if ((v(3) < eps).or.(v(3) > t1)) v(3)=0.d0 end subroutine !EOC elk-10.4.9/src/spacegroup/PaxHeaders/r3mm.f900000644000000000000000000000013214762655562015615 xustar0030 mtime=1741380466.424997779 30 atime=1741380466.424997779 30 ctime=1741380466.424997779 elk-10.4.9/src/spacegroup/r3mm.f900000644002504400250440000000210414762655562020334 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mm ! !INTERFACE: pure subroutine r3mm(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,real(3,3)) ! b : input matrix 2 (in,real(3,3)) ! c : output matrix (out,real(3,3)) ! !DESCRIPTION: ! Multiplies two real $3\times 3$ matrices. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3),b(3,3) real(8), intent(out) :: c(3,3) c(1,1)=a(1,1)*b(1,1)+a(1,2)*b(2,1)+a(1,3)*b(3,1) c(2,1)=a(2,1)*b(1,1)+a(2,2)*b(2,1)+a(2,3)*b(3,1) c(3,1)=a(3,1)*b(1,1)+a(3,2)*b(2,1)+a(3,3)*b(3,1) c(1,2)=a(1,1)*b(1,2)+a(1,2)*b(2,2)+a(1,3)*b(3,2) c(2,2)=a(2,1)*b(1,2)+a(2,2)*b(2,2)+a(2,3)*b(3,2) c(3,2)=a(3,1)*b(1,2)+a(3,2)*b(2,2)+a(3,3)*b(3,2) c(1,3)=a(1,1)*b(1,3)+a(1,2)*b(2,3)+a(1,3)*b(3,3) c(2,3)=a(2,1)*b(1,3)+a(2,2)*b(2,3)+a(2,3)*b(3,3) c(3,3)=a(3,1)*b(1,3)+a(3,2)*b(2,3)+a(3,3)*b(3,3) end subroutine !EOC elk-10.4.9/src/spacegroup/PaxHeaders/readinput.f900000644000000000000000000000012714762655562016736 xustar0029 mtime=1741380466.42699779 29 atime=1741380466.42699779 29 ctime=1741380466.42699779 elk-10.4.9/src/spacegroup/readinput.f900000644002504400250440000000277614762655562021470 0ustar00dewhurstdewhurst00000000000000subroutine readinput use modmain implicit none ! local variables integer is,ip open(50,file='spacegroup.in',action='READ',status='OLD',form='FORMATTED') ! read the Hermann-Mauguin symbol read(50,*) hrmg hrmg=adjustl(hrmg) ! read lattice vector lengths read(50,*) a,b,c ! read angles between lattice vectors: alpha, beta, gamma ! (convention fixed by F. Cricchio) read(50,*) bc,ac,ab ! read number of unit cells read(50,*) ncell if ((ncell(1) < 1).or.(ncell(2) < 1).or.(ncell(3) < 1)) then write(*,*) write(*,'("Error(readinput): invalid ncell : ",3I8)') ncell write(*,*) stop end if read(50,*) primcell read(50,*) nspecies if (nspecies <= 0) then write(*,*) write(*,'("Error(readinput): nspecies <= 0 : ",I8)') nspecies write(*,*) stop end if if (nspecies > maxspecies) then write(*,*) write(*,'("Error(readinput): nspecies too large : ",I8)') nspecies write(*,'("Adjust maxspecies and recompile code")') write(*,*) stop end if do is=1,nspecies read(50,*) spsymb(is) read(50,*) nwpos(is) if (nwpos(is) <= 0) then write(*,*) write(*,'("Error(readinput): nwpos <= 0 : ",I8)') nwpos(is) write(*,'(" for species ",I4)') is write(*,*) stop end if if (nwpos(is) > maxwpos) then write(*,*) write(*,'("Error(readinput): nwpos too large : ",I8)') nwpos(is) write(*,'(" for species ",I4)') is write(*,'("Adjust maxwpos and reompile code")') write(*,*) stop end if do ip=1,nwpos(is) read(50,*) wpos(:,ip,is) end do end do close(50) return end subroutine elk-10.4.9/src/spacegroup/PaxHeaders/seitzgen.f900000644000000000000000000000013014762655562016565 xustar0030 mtime=1741380466.429997805 28 atime=1741380466.4289978 30 ctime=1741380466.429997805 elk-10.4.9/src/spacegroup/seitzgen.f900000644002504400250440000002566614762655562021330 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine seitzgen(hall,ngen,srgen,stgen) implicit none character(20), intent(in) :: hall integer, intent(out) :: ngen real(8), intent(out) :: srgen(3,3,12) real(8), intent(out) :: stgen(3,12) ! local variables logical pr integer i,m,n,no,nop,axis ! zero vector tolerance real(8), parameter :: eps=1.d-6 real(8) av(3),r(3,3),t1 real(8) v1(3),v2(3),v3(3) character(20) str1,str2,str3 str1=trim(adjustl(hall))//' ' no=0 nop=0 axis=0 n=0 10 continue ! check for origin shift vector if (scan(str1,'(') == 1) then if (index(str1,'(0 0 1)') /= 0) then v1(1)=0.d0; v1(2)=0.d0; v1(3)=1.d0 else if (index(str1,'(0 0 -1)') /= 0) then v1(1)=0.d0; v1(2)=0.d0; v1(3)=-1.d0 else write(*,*) write(*,'("Error(seitzgen): origin-shift not available : ",A)') trim(str1) write(*,*) stop end if v1(:)=v1(:)/12.d0 ! apply vector shift to all Seitz matrices do i=1,ngen v3(:)=-v1(:) call r3mv(srgen(:,:,i),v3,v2) v2(:)=v2(:)+stgen(:,i) stgen(:,i)=v2(:)+v1(:) end do goto 20 end if m=scan(str1,' ') if (m <= 1) goto 20 str2=str1(1:m-1) n=n+1 !------------------------------! ! lattice translations ! !------------------------------! if (n == 1) then stgen(:,1)=0.d0 if (scan(str2,'P') /= 0) then ngen=1 else if (scan(str2,'A') /= 0) then stgen(1,2)=0.d0 stgen(2,2)=0.5d0 stgen(3,2)=0.5d0 ngen=2 else if (scan(str2,'B') /= 0) then stgen(1,2)=0.5d0 stgen(2,2)=0.d0 stgen(3,2)=0.5d0 ngen=2 else if (scan(str2,'C') /= 0) then stgen(1,2)=0.5d0 stgen(2,2)=0.5d0 stgen(3,2)=0.d0 ngen=2 else if (scan(str2,'I') /= 0) then stgen(:,2)=0.5d0 ngen=2 else if (scan(str2,'R') /= 0) then stgen(1,2)=0.6666666666666666667d0 stgen(2,2)=0.3333333333333333333d0 stgen(3,2)=0.3333333333333333333d0 stgen(1,3)=0.3333333333333333333d0 stgen(2,3)=0.6666666666666666667d0 stgen(3,3)=0.6666666666666666667d0 ngen=3 else if (scan(str2,'S') /= 0) then stgen(1,2)=0.3333333333333333333d0 stgen(2,2)=0.3333333333333333333d0 stgen(3,2)=0.6666666666666666667d0 stgen(1,3)=0.6666666666666666667d0 stgen(2,3)=0.6666666666666666667d0 stgen(3,3)=0.3333333333333333333d0 ngen=3 else if (scan(str2,'T') /= 0) then stgen(1,2)=0.3333333333333333333d0 stgen(2,2)=0.6666666666666666667d0 stgen(3,2)=0.3333333333333333333d0 stgen(1,3)=0.6666666666666666667d0 stgen(2,3)=0.3333333333333333333d0 stgen(3,3)=0.6666666666666666667d0 ngen=3 else if (scan(str2,'F') /= 0) then stgen(1,2)=0.d0 stgen(2,2)=0.5d0 stgen(3,2)=0.5d0 stgen(1,3)=0.5d0 stgen(2,3)=0.d0 stgen(3,3)=0.5d0 stgen(1,4)=0.5d0 stgen(2,4)=0.5d0 stgen(3,4)=0.d0 ngen=4 else write(*,*) write(*,'("Error(seitzgen): Lattice symbol ''",A,"'' not found")') & trim(str2) write(*,*) stop end if ! set the rotations to the identity do i=1,ngen srgen(1,1,i)=1.d0; srgen(1,2,i)=0.d0; srgen(1,3,i)=0.d0 srgen(2,1,i)=0.d0; srgen(2,2,i)=1.d0; srgen(2,3,i)=0.d0 srgen(3,1,i)=0.d0; srgen(3,2,i)=0.d0; srgen(3,3,i)=1.d0 end do ! check if lattice is centrosymmetric if (scan(str2,'-') /= 0) then do i=ngen+1,2*ngen srgen(:,:,i)=-srgen(:,:,i-ngen) stgen(:,i)=stgen(:,i-ngen) end do ngen=2*ngen end if end if !-------------------------------! ! rotation-translations ! !-------------------------------! if (n >= 2) then ! determine if rotation is proper or improper if (scan(str2,'-') == 1) then pr=.false. ! remove the minus sign str3=str2(2:) str2=str3 else pr=.true. end if ! determine the order of rotation if (scan(str2,'1') == 1) then no=1 else if (scan(str2,'2') == 1) then no=2 else if (scan(str2,'3') == 1) then no=3 else if (scan(str2,'4') == 1) then no=4 else if (scan(str2,'6') == 1) then no=6 else write(*,*) write(*,'("Error(seitzgen): invalid rotation order for Hall symbol ''",A,& &"''")') trim(hall) write(*,*) stop end if ! determine the axis of rotation if (scan(str2,'x') /= 0) then ! a axis axis=1 else if (scan(str2,'y') /= 0) then ! b axis axis=2 else if (scan(str2,'z') /= 0) then ! c axis axis=3 else if (scan(str2,'"') /= 0) then ! a+b axis=5 else if (scan(str2,'*') /= 0) then ! a+b+c axis axis=6 else if (n == 2) then ! default first rotation is along c axis=3 else if ((n == 3).and.(no == 2)) then ! default second rotation if ((nop == 2).or.(nop == 4)) then ! a axis axis=1 else if ((nop == 3).or.(nop == 6)) then ! a-b axis axis=4 else write(*,*) write(*,'("Error(seitzgen): malformed Hall symbol ''",A,"''")') trim(hall) write(*,'(" for default second rotation")') write(*,*) stop end if else if ((n == 4).and.(no == 3)) then ! third rotation around a+b+c axis axis=6 else if (no == 1) then ! arbitrary axis for identity axis=1 else write(*,*) write(*,'("Error(seitzgen): malformed Hall symbol ''",A,"''")') trim(hall) write(*,*) stop end if ! determine axis vector av(:)=0.d0 if (axis == 1) then ! a axis av(1)=1.d0 else if (axis == 2) then ! b axis av(2)=1.d0 else if (axis == 3) then ! c axis av(3)=1.d0 else if (axis == 4) then ! a-b axis av(1)=1.d0 av(2)=-1.d0 else if (axis == 5) then ! a+b axis av(1)=1.d0 av(2)=1.d0 else if (axis == 6) then ! a+b+c axis av(:)=1.d0 end if ! compute the rotation part of the Seitz matrix if (axis == 1) then ! a axis if (no == 1) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 else if (no == 2) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)=-1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)=-1.d0 else if (no == 3) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 0.d0; r(2,3)=-1.d0 r(3,1)= 0.d0; r(3,2)= 1.d0; r(3,3)=-1.d0 else if (no == 4) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 0.d0; r(2,3)=-1.d0 r(3,1)= 0.d0; r(3,2)= 1.d0; r(3,3)= 0.d0 else if (no == 6) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)=-1.d0 r(3,1)= 0.d0; r(3,2)= 1.d0; r(3,3)= 0.d0 end if else if (axis == 2) then ! b axis if (no == 1) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 else if (no == 2) then r(1,1)=-1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)=-1.d0 else if (no == 3) then r(1,1)=-1.d0; r(1,2)= 0.d0; r(1,3)= 1.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)=-1.d0; r(3,2)= 0.d0; r(3,3)= 0.d0 else if (no == 4) then r(1,1)= 0.d0; r(1,2)= 0.d0; r(1,3)= 1.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)=-1.d0; r(3,2)= 0.d0; r(3,3)= 0.d0 else if (no == 6) then r(1,1)= 0.d0; r(1,2)= 0.d0; r(1,3)= 1.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)=-1.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 end if else if (axis == 3) then ! c axis if (no == 1) then r(1,1)= 1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)= 1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 else if (no == 2) then r(1,1)=-1.d0; r(1,2)= 0.d0; r(1,3)= 0.d0 r(2,1)= 0.d0; r(2,2)=-1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 else if (no == 3) then r(1,1)= 0.d0; r(1,2)=-1.d0; r(1,3)= 0.d0 r(2,1)= 1.d0; r(2,2)=-1.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 else if (no == 4) then r(1,1)= 0.d0; r(1,2)=-1.d0; r(1,3)= 0.d0 r(2,1)= 1.d0; r(2,2)= 0.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 else if (no == 6) then r(1,1)= 1.d0; r(1,2)=-1.d0; r(1,3)= 0.d0 r(2,1)= 1.d0; r(2,2)= 0.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)= 1.d0 end if else if (axis == 4) then ! a-b axis r(1,1)= 0.d0; r(1,2)=-1.d0; r(1,3)= 0.d0 r(2,1)=-1.d0; r(2,2)= 0.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)=-1.d0 else if (axis == 5) then ! a+b axis r(1,1)= 0.d0; r(1,2)= 1.d0; r(1,3)= 0.d0 r(2,1)= 1.d0; r(2,2)= 0.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 0.d0; r(3,3)=-1.d0 else if (axis == 6) then ! a+b+c axis r(1,1)= 0.d0; r(1,2)= 0.d0; r(1,3)= 1.d0 r(2,1)= 1.d0; r(2,2)= 0.d0; r(2,3)= 0.d0 r(3,1)= 0.d0; r(3,2)= 1.d0; r(3,3)= 0.d0 end if ! check if axis is invariant with respect to rotation call r3mv(r,av,v1) t1=sum(abs(av(:)-v1(:))) if (t1 > eps) then write(*,*) write(*,'("Error(seitzgen): axis not invariant with respect to rotation")') write(*,'(" for Hall symbol ''",A,"''")') trim(hall) write(*,*) stop end if ! apply inverse for improper rotation if (.not.pr) r(:,:)=-r(:,:) ! increment Seitz matrix count ngen=ngen+1 ! store rotation in main array srgen(:,:,ngen)=r(:,:) ! remove rotation symbol str3=str2(2:) str2=str3 ! determine translations stgen(:,ngen)=0.d0 if (scan(str2,'a') /= 0) then stgen(1,ngen)=stgen(1,ngen)+0.5d0 end if if (scan(str2,'b') /= 0) then stgen(2,ngen)=stgen(2,ngen)+0.5d0 end if if (scan(str2,'c') /= 0) then stgen(3,ngen)=stgen(3,ngen)+0.5d0 end if if (scan(str2,'n') /= 0) then stgen(:,ngen)=stgen(:,ngen)+0.5d0 end if if (scan(str2,'u') /= 0) then stgen(1,ngen)=stgen(1,ngen)+0.25d0 end if if (scan(str2,'v') /= 0) then stgen(2,ngen)=stgen(2,ngen)+0.25d0 end if if (scan(str2,'w') /= 0) then stgen(3,ngen)=stgen(3,ngen)+0.25d0 end if if (scan(str2,'d') /= 0) then stgen(:,ngen)=stgen(:,ngen)+0.25d0 end if if (scan(str2,'1') /= 0) then if (no == 3) then stgen(:,ngen)=stgen(:,ngen)+0.3333333333333333333d0*av(:) else if (no == 4) then stgen(:,ngen)=stgen(:,ngen)+0.25d0*av(:) else if (no == 6) then stgen(:,ngen)=stgen(:,ngen)+0.1666666666666666667d0*av(:) end if else if (scan(str2,'2') /= 0) then if (no == 3) then stgen(:,ngen)=stgen(:,ngen)+0.6666666666666666667d0*av(:) else if (no == 6) then stgen(:,ngen)=stgen(:,ngen)+0.3333333333333333333d0*av(:) end if else if (scan(str2,'3') /= 0) then if (no == 4) then stgen(:,ngen)=stgen(:,ngen)+0.75d0*av(:) end if else if (scan(str2,'4') /= 0) then if (no == 6) then stgen(:,ngen)=stgen(:,ngen)+0.6666666666666666667d0*av(:) end if else if (scan(str2,'5') /= 0) then if (no == 6) then stgen(:,ngen)=stgen(:,ngen)+0.8333333333333333333d0*av(:) end if end if end if str3=adjustl(str1(m:)) str1=str3 nop=no goto 10 20 continue ! map translations to [0,1) do i=1,ngen call r3frac(eps,stgen(:,i)) end do return end subroutine elk-10.4.9/src/spacegroup/PaxHeaders/sgsymb.f900000644000000000000000000000013214762655562016243 xustar0030 mtime=1741380466.431997816 30 atime=1741380466.431997816 30 ctime=1741380466.431997816 elk-10.4.9/src/spacegroup/sgsymb.f900000644002504400250440000010040014762655562020760 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: sgsymb ! !INTERFACE: subroutine sgsymb(hrmg,num,schn,hall) ! !INPUT/OUTPUT PARAMETERS: ! hrmg : Hermann-Mauguin symbol (in,character(20)) ! num : space group number (out,character(20)) ! schn : Schoenflies symbol (out,character(20)) ! hall : Hall symbol (out,character(20)) ! !DESCRIPTION: ! Returns the space group number, Schoenflies and Hall symbols given the ! Hermann-Mauguin symbol. The routine is case-sensitive. With acknowledgements ! to Ralf W. Grosse-Kunstleve and the tables available at ! {\tt http://cci.lbl.gov/sginfo/}. ! ! !REVISION HISTORY: ! Created October 2006 (JKD) !EOP !BOC implicit none ! arguments character(20), intent(in) :: hrmg character(20), intent(out) :: num character(20), intent(out) :: schn character(20), intent(out) :: hall select case(trim(adjustl(hrmg))) case('P1') num='1' schn='C1^1' hall='P 1' case('P-1') num='2' schn='Ci^1' hall='-P 1' case('P2:b') num='3:b' schn='C2^1' hall='P 2y' case('P2:c') num='3:c' schn='C2^1' hall='P 2' case('P2:a') num='3:a' schn='C2^1' hall='P 2x' case('P21:b') num='4:b' schn='C2^2' hall='P 2yb' case('P21:c') num='4:c' schn='C2^2' hall='P 2c' case('P21:a') num='4:a' schn='C2^2' hall='P 2xa' case('C2:b1') num='5:b1' schn='C2^3' hall='C 2y' case('C2:b2') num='5:b2' schn='C2^3' hall='A 2y' case('C2:b3') num='5:b3' schn='C2^3' hall='I 2y' case('C2:c1') num='5:c1' schn='C2^3' hall='A 2' case('C2:c2') num='5:c2' schn='C2^3' hall='B 2' case('C2:c3') num='5:c3' schn='C2^3' hall='I 2' case('C2:a1') num='5:a1' schn='C2^3' hall='B 2x' case('C2:a2') num='5:a2' schn='C2^3' hall='C 2x' case('C2:a3') num='5:a3' schn='C2^3' hall='I 2x' case('Pm:b') num='6:b' schn='Cs^1' hall='P -2y' case('Pm:c') num='6:c' schn='Cs^1' hall='P -2' case('Pm:a') num='6:a' schn='Cs^1' hall='P -2x' case('Pc:b1') num='7:b1' schn='Cs^2' hall='P -2yc' case('Pc:b2') num='7:b2' schn='Cs^2' hall='P -2yac' case('Pc:b3') num='7:b3' schn='Cs^2' hall='P -2ya' case('Pc:c1') num='7:c1' schn='Cs^2' hall='P -2a' case('Pc:c2') num='7:c2' schn='Cs^2' hall='P -2ab' case('Pc:c3') num='7:c3' schn='Cs^2' hall='P -2b' case('Pc:a1') num='7:a1' schn='Cs^2' hall='P -2xb' case('Pc:a2') num='7:a2' schn='Cs^2' hall='P -2xbc' case('Pc:a3') num='7:a3' schn='Cs^2' hall='P -2xc' case('Cm:b1') num='8:b1' schn='Cs^3' hall='C -2y' case('Cm:b2') num='8:b2' schn='Cs^3' hall='A -2y' case('Cm:b3') num='8:b3' schn='Cs^3' hall='I -2y' case('Cm:c1') num='8:c1' schn='Cs^3' hall='A -2' case('Cm:c2') num='8:c2' schn='Cs^3' hall='B -2' case('Cm:c3') num='8:c3' schn='Cs^3' hall='I -2' case('Cm:a1') num='8:a1' schn='Cs^3' hall='B -2x' case('Cm:a2') num='8:a2' schn='Cs^3' hall='C -2x' case('Cm:a3') num='8:a3' schn='Cs^3' hall='I -2x' case('Cc:b1') num='9:b1' schn='Cs^4' hall='C -2yc' case('Cc:b2') num='9:b2' schn='Cs^4' hall='A -2yac' case('Cc:b3') num='9:b3' schn='Cs^4' hall='I -2ya' case('Cc:-b1') num='9:-b1' schn='Cs^4' hall='A -2ya' case('Cc:-b2') num='9:-b2' schn='Cs^4' hall='C -2ybc' case('Cc:-b3') num='9:-b3' schn='Cs^4' hall='I -2yc' case('Cc:c1') num='9:c1' schn='Cs^4' hall='A -2a' case('Cc:c2') num='9:c2' schn='Cs^4' hall='B -2bc' case('Cc:c3') num='9:c3' schn='Cs^4' hall='I -2b' case('Cc:-c1') num='9:-c1' schn='Cs^4' hall='B -2b' case('Cc:-c2') num='9:-c2' schn='Cs^4' hall='A -2ac' case('Cc:-c3') num='9:-c3' schn='Cs^4' hall='I -2a' case('Cc:a1') num='9:a1' schn='Cs^4' hall='B -2xb' case('Cc:a2') num='9:a2' schn='Cs^4' hall='C -2xbc' case('Cc:a3') num='9:a3' schn='Cs^4' hall='I -2xc' case('Cc:-a1') num='9:-a1' schn='Cs^4' hall='C -2xc' case('Cc:-a2') num='9:-a2' schn='Cs^4' hall='B -2xbc' case('Cc:-a3') num='9:-a3' schn='Cs^4' hall='I -2xb' case('P2/m:b') num='10:b' schn='C2h^1' hall='-P 2y' case('P2/m:c') num='10:c' schn='C2h^1' hall='-P 2' case('P2/m:a') num='10:a' schn='C2h^1' hall='-P 2x' case('P21/m:b') num='11:b' schn='C2h^2' hall='-P 2yb' case('P21/m:c') num='11:c' schn='C2h^2' hall='-P 2c' case('P21/m:a') num='11:a' schn='C2h^2' hall='-P 2xa' case('C2/m:b1') num='12:b1' schn='C2h^3' hall='-C 2y' case('C2/m:b2') num='12:b2' schn='C2h^3' hall='-A 2y' case('C2/m:b3') num='12:b3' schn='C2h^3' hall='-I 2y' case('C2/m:c1') num='12:c1' schn='C2h^3' hall='-A 2' case('C2/m:c2') num='12:c2' schn='C2h^3' hall='-B 2' case('C2/m:c3') num='12:c3' schn='C2h^3' hall='-I 2' case('C2/m:a1') num='12:a1' schn='C2h^3' hall='-B 2x' case('C2/m:a2') num='12:a2' schn='C2h^3' hall='-C 2x' case('C2/m:a3') num='12:a3' schn='C2h^3' hall='-I 2x' case('P2/c:b1') num='13:b1' schn='C2h^4' hall='-P 2yc' case('P2/c:b2') num='13:b2' schn='C2h^4' hall='-P 2yac' case('P2/c:b3') num='13:b3' schn='C2h^4' hall='-P 2ya' case('P2/c:c1') num='13:c1' schn='C2h^4' hall='-P 2a' case('P2/c:c2') num='13:c2' schn='C2h^4' hall='-P 2ab' case('P2/c:c3') num='13:c3' schn='C2h^4' hall='-P 2b' case('P2/c:a1') num='13:a1' schn='C2h^4' hall='-P 2xb' case('P2/c:a2') num='13:a2' schn='C2h^4' hall='-P 2xbc' case('P2/c:a3') num='13:a3' schn='C2h^4' hall='-P 2xc' case('P21/c:b1') num='14:b1' schn='C2h^5' hall='-P 2ybc' case('P21/c:b2') num='14:b2' schn='C2h^5' hall='-P 2yn' case('P21/c:b3') num='14:b3' schn='C2h^5' hall='-P 2yab' case('P21/c:c1') num='14:c1' schn='C2h^5' hall='-P 2ac' case('P21/c:c2') num='14:c2' schn='C2h^5' hall='-P 2n' case('P21/c:c3') num='14:c3' schn='C2h^5' hall='-P 2bc' case('P21/c:a1') num='14:a1' schn='C2h^5' hall='-P 2xab' case('P21/c:a2') num='14:a2' schn='C2h^5' hall='-P 2xn' case('P21/c:a3') num='14:a3' schn='C2h^5' hall='-P 2xac' case('C2/c:b1') num='15:b1' schn='C2h^6' hall='-C 2yc' case('C2/c:b2') num='15:b2' schn='C2h^6' hall='-A 2yac' case('C2/c:b3') num='15:b3' schn='C2h^6' hall='-I 2ya' case('C2/c:-b1') num='15:-b1' schn='C2h^6' hall='-A 2ya' case('C2/c:-b2') num='15:-b2' schn='C2h^6' hall='-C 2ybc' case('C2/c:-b3') num='15:-b3' schn='C2h^6' hall='-I 2yc' case('C2/c:c1') num='15:c1' schn='C2h^6' hall='-A 2a' case('C2/c:c2') num='15:c2' schn='C2h^6' hall='-B 2bc' case('C2/c:c3') num='15:c3' schn='C2h^6' hall='-I 2b' case('C2/c:-c1') num='15:-c1' schn='C2h^6' hall='-B 2b' case('C2/c:-c2') num='15:-c2' schn='C2h^6' hall='-A 2ac' case('C2/c:-c3') num='15:-c3' schn='C2h^6' hall='-I 2a' case('C2/c:a1') num='15:a1' schn='C2h^6' hall='-B 2xb' case('C2/c:a2') num='15:a2' schn='C2h^6' hall='-C 2xbc' case('C2/c:a3') num='15:a3' schn='C2h^6' hall='-I 2xc' case('C2/c:-a1') num='15:-a1' schn='C2h^6' hall='-C 2xc' case('C2/c:-a2') num='15:-a2' schn='C2h^6' hall='-B 2xbc' case('C2/c:-a3') num='15:-a3' schn='C2h^6' hall='-I 2xb' case('P222') num='16' schn='D2^1' hall='P 2 2' case('P2221') num='17' schn='D2^2' hall='P 2c 2' case('P2122') num='17:cab' schn='D2^2' hall='P 2a 2a' case('P2212') num='17:bca' schn='D2^2' hall='P 2 2b' case('P21212') num='18' schn='D2^3' hall='P 2 2ab' case('P22121') num='18:cab' schn='D2^3' hall='P 2bc 2' case('P21221') num='18:bca' schn='D2^3' hall='P 2ac 2ac' case('P212121') num='19' schn='D2^4' hall='P 2ac 2ab' case('C2221') num='20' schn='D2^5' hall='C 2c 2' case('A2122') num='20:cab' schn='D2^5' hall='A 2a 2a' case('B2212') num='20:bca' schn='D2^5' hall='B 2 2b' case('C222') num='21' schn='D2^6' hall='C 2 2' case('A222') num='21:cab' schn='D2^6' hall='A 2 2' case('B222') num='21:bca' schn='D2^6' hall='B 2 2' case('F222') num='22' schn='D2^7' hall='F 2 2' case('I222') num='23' schn='D2^8' hall='I 2 2' case('I212121') num='24' schn='D2^9' hall='I 2b 2c' case('Pmm2') num='25' schn='C2v^1' hall='P 2 -2' case('P2mm') num='25:cab' schn='C2v^1' hall='P -2 2' case('Pm2m') num='25:bca' schn='C2v^1' hall='P -2 -2' case('Pmc21') num='26' schn='C2v^2' hall='P 2c -2' case('Pcm21') num='26:ba-c' schn='C2v^2' hall='P 2c -2c' case('P21ma') num='26:cab' schn='C2v^2' hall='P -2a 2a' case('P21am') num='26:-cba' schn='C2v^2' hall='P -2 2a' case('Pb21m') num='26:bca' schn='C2v^2' hall='P -2 -2b' case('Pm21b') num='26:a-cb' schn='C2v^2' hall='P -2b -2' case('Pcc2') num='27' schn='C2v^3' hall='P 2 -2c' case('P2aa') num='27:cab' schn='C2v^3' hall='P -2a 2' case('Pb2b') num='27:bca' schn='C2v^3' hall='P -2b -2b' case('Pma2') num='28' schn='C2v^4' hall='P 2 -2a' case('Pbm2') num='28:ba-c' schn='C2v^4' hall='P 2 -2b' case('P2mb') num='28:cab' schn='C2v^4' hall='P -2b 2' case('P2cm') num='28:-cba' schn='C2v^4' hall='P -2c 2' case('Pc2m') num='28:bca' schn='C2v^4' hall='P -2c -2c' case('Pm2a') num='28:a-cb' schn='C2v^4' hall='P -2a -2a' case('Pca21') num='29' schn='C2v^5' hall='P 2c -2ac' case('Pbc21') num='29:ba-c' schn='C2v^5' hall='P 2c -2b' case('P21ab') num='29:cab' schn='C2v^5' hall='P -2b 2a' case('P21ca') num='29:-cba' schn='C2v^5' hall='P -2ac 2a' case('Pc21b') num='29:bca' schn='C2v^5' hall='P -2bc -2c' case('Pb21a') num='29:a-cb' schn='C2v^5' hall='P -2a -2ab' case('Pnc2') num='30' schn='C2v^6' hall='P 2 -2bc' case('Pcn2') num='30:ba-c' schn='C2v^6' hall='P 2 -2ac' case('P2na') num='30:cab' schn='C2v^6' hall='P -2ac 2' case('P2an') num='30:-cba' schn='C2v^6' hall='P -2ab 2' case('Pb2n') num='30:bca' schn='C2v^6' hall='P -2ab -2ab' case('Pn2b') num='30:a-cb' schn='C2v^6' hall='P -2bc -2bc' case('Pmn21') num='31' schn='C2v^7' hall='P 2ac -2' case('Pnm21') num='31:ba-c' schn='C2v^7' hall='P 2bc -2bc' case('P21mn') num='31:cab' schn='C2v^7' hall='P -2ab 2ab' case('P21nm') num='31:-cba' schn='C2v^7' hall='P -2 2ac' case('Pn21m') num='31:bca' schn='C2v^7' hall='P -2 -2bc' case('Pm21n') num='31:a-cb' schn='C2v^7' hall='P -2ab -2' case('Pba2') num='32' schn='C2v^8' hall='P 2 -2ab' case('P2cb') num='32:cab' schn='C2v^8' hall='P -2bc 2' case('Pc2a') num='32:bca' schn='C2v^8' hall='P -2ac -2ac' case('Pna21') num='33' schn='C2v^9' hall='P 2c -2n' case('Pbn21') num='33:ba-c' schn='C2v^9' hall='P 2c -2ab' case('P21nb') num='33:cab' schn='C2v^9' hall='P -2bc 2a' case('P21cn') num='33:-cba' schn='C2v^9' hall='P -2n 2a' case('Pc21n') num='33:bca' schn='C2v^9' hall='P -2n -2ac' case('Pn21a') num='33:a-cb' schn='C2v^9' hall='P -2ac -2n' case('Pnn2') num='34' schn='C2v^10' hall='P 2 -2n' case('P2nn') num='34:cab' schn='C2v^10' hall='P -2n 2' case('Pn2n') num='34:bca' schn='C2v^10' hall='P -2n -2n' case('Cmm2') num='35' schn='C2v^11' hall='C 2 -2' case('A2mm') num='35:cab' schn='C2v^11' hall='A -2 2' case('Bm2m') num='35:bca' schn='C2v^11' hall='B -2 -2' case('Cmc21') num='36' schn='C2v^12' hall='C 2c -2' case('Ccm21') num='36:ba-c' schn='C2v^12' hall='C 2c -2c' case('A21ma') num='36:cab' schn='C2v^12' hall='A -2a 2a' case('A21am') num='36:-cba' schn='C2v^12' hall='A -2 2a' case('Bb21m') num='36:bca' schn='C2v^12' hall='B -2 -2b' case('Bm21b') num='36:a-cb' schn='C2v^12' hall='B -2b -2' case('Ccc2') num='37' schn='C2v^13' hall='C 2 -2c' case('A2aa') num='37:cab' schn='C2v^13' hall='A -2a 2' case('Bb2b') num='37:bca' schn='C2v^13' hall='B -2b -2b' case('Amm2') num='38' schn='C2v^14' hall='A 2 -2' case('Bmm2') num='38:ba-c' schn='C2v^14' hall='B 2 -2' case('B2mm') num='38:cab' schn='C2v^14' hall='B -2 2' case('C2mm') num='38:-cba' schn='C2v^14' hall='C -2 2' case('Cm2m') num='38:bca' schn='C2v^14' hall='C -2 -2' case('Am2m') num='38:a-cb' schn='C2v^14' hall='A -2 -2' case('Abm2') num='39' schn='C2v^15' hall='A 2 -2c' case('Bma2') num='39:ba-c' schn='C2v^15' hall='B 2 -2c' case('B2cm') num='39:cab' schn='C2v^15' hall='B -2c 2' case('C2mb') num='39:-cba' schn='C2v^15' hall='C -2b 2' case('Cm2a') num='39:bca' schn='C2v^15' hall='C -2b -2b' case('Ac2m') num='39:a-cb' schn='C2v^15' hall='A -2c -2c' case('Ama2') num='40' schn='C2v^16' hall='A 2 -2a' case('Bbm2') num='40:ba-c' schn='C2v^16' hall='B 2 -2b' case('B2mb') num='40:cab' schn='C2v^16' hall='B -2b 2' case('C2cm') num='40:-cba' schn='C2v^16' hall='C -2c 2' case('Cc2m') num='40:bca' schn='C2v^16' hall='C -2c -2c' case('Am2a') num='40:a-cb' schn='C2v^16' hall='A -2a -2a' case('Aba2') num='41' schn='C2v^17' hall='A 2 -2ac' case('Bba2') num='41:ba-c' schn='C2v^17' hall='B 2 -2bc' case('B2cb') num='41:cab' schn='C2v^17' hall='B -2bc 2' case('C2cb') num='41:-cba' schn='C2v^17' hall='C -2bc 2' case('Cc2a') num='41:bca' schn='C2v^17' hall='C -2bc -2bc' case('Ac2a') num='41:a-cb' schn='C2v^17' hall='A -2ac -2ac' case('Fmm2') num='42' schn='C2v^18' hall='F 2 -2' case('F2mm') num='42:cab' schn='C2v^18' hall='F -2 2' case('Fm2m') num='42:bca' schn='C2v^18' hall='F -2 -2' case('Fdd2') num='43' schn='C2v^19' hall='F 2 -2d' case('F2dd') num='43:cab' schn='C2v^19' hall='F -2d 2' case('Fd2d') num='43:bca' schn='C2v^19' hall='F -2d -2d' case('Imm2') num='44' schn='C2v^20' hall='I 2 -2' case('I2mm') num='44:cab' schn='C2v^20' hall='I -2 2' case('Im2m') num='44:bca' schn='C2v^20' hall='I -2 -2' case('Iba2') num='45' schn='C2v^21' hall='I 2 -2c' case('I2cb') num='45:cab' schn='C2v^21' hall='I -2a 2' case('Ic2a') num='45:bca' schn='C2v^21' hall='I -2b -2b' case('Ima2') num='46' schn='C2v^22' hall='I 2 -2a' case('Ibm2') num='46:ba-c' schn='C2v^22' hall='I 2 -2b' case('I2mb') num='46:cab' schn='C2v^22' hall='I -2b 2' case('I2cm') num='46:-cba' schn='C2v^22' hall='I -2c 2' case('Ic2m') num='46:bca' schn='C2v^22' hall='I -2c -2c' case('Im2a') num='46:a-cb' schn='C2v^22' hall='I -2a -2a' case('Pmmm') num='47' schn='D2h^1' hall='-P 2 2' case('Pnnn:1') num='48:1' schn='D2h^2' hall='P 2 2 -1n' case('Pnnn:2') num='48:2' schn='D2h^2' hall='-P 2ab 2bc' case('Pccm') num='49' schn='D2h^3' hall='-P 2 2c' case('Pmaa') num='49:cab' schn='D2h^3' hall='-P 2a 2' case('Pbmb') num='49:bca' schn='D2h^3' hall='-P 2b 2b' case('Pban:1') num='50:1' schn='D2h^4' hall='P 2 2 -1ab' case('Pban:2') num='50:2' schn='D2h^4' hall='-P 2ab 2b' case('Pncb:1') num='50:1cab' schn='D2h^4' hall='P 2 2 -1bc' case('Pncb:2') num='50:2cab' schn='D2h^4' hall='-P 2b 2bc' case('Pcna:1') num='50:1bca' schn='D2h^4' hall='P 2 2 -1ac' case('Pcna:2') num='50:2bca' schn='D2h^4' hall='-P 2a 2c' case('Pmma') num='51' schn='D2h^5' hall='-P 2a 2a' case('Pmmb') num='51:ba-c' schn='D2h^5' hall='-P 2b 2' case('Pbmm') num='51:cab' schn='D2h^5' hall='-P 2 2b' case('Pcmm') num='51:-cba' schn='D2h^5' hall='-P 2c 2c' case('Pmcm') num='51:bca' schn='D2h^5' hall='-P 2c 2' case('Pmam') num='51:a-cb' schn='D2h^5' hall='-P 2 2a' case('Pnna') num='52' schn='D2h^6' hall='-P 2a 2bc' case('Pnnb') num='52:ba-c' schn='D2h^6' hall='-P 2b 2n' case('Pbnn') num='52:cab' schn='D2h^6' hall='-P 2n 2b' case('Pcnn') num='52:-cba' schn='D2h^6' hall='-P 2ab 2c' case('Pncn') num='52:bca' schn='D2h^6' hall='-P 2ab 2n' case('Pnan') num='52:a-cb' schn='D2h^6' hall='-P 2n 2bc' case('Pmna') num='53' schn='D2h^7' hall='-P 2ac 2' case('Pnmb') num='53:ba-c' schn='D2h^7' hall='-P 2bc 2bc' case('Pbmn') num='53:cab' schn='D2h^7' hall='-P 2ab 2ab' case('Pcnm') num='53:-cba' schn='D2h^7' hall='-P 2 2ac' case('Pncm') num='53:bca' schn='D2h^7' hall='-P 2 2bc' case('Pman') num='53:a-cb' schn='D2h^7' hall='-P 2ab 2' case('Pcca') num='54' schn='D2h^8' hall='-P 2a 2ac' case('Pccb') num='54:ba-c' schn='D2h^8' hall='-P 2b 2c' case('Pbaa') num='54:cab' schn='D2h^8' hall='-P 2a 2b' case('Pcaa') num='54:-cba' schn='D2h^8' hall='-P 2ac 2c' case('Pbcb') num='54:bca' schn='D2h^8' hall='-P 2bc 2b' case('Pbab') num='54:a-cb' schn='D2h^8' hall='-P 2b 2ab' case('Pbam') num='55' schn='D2h^9' hall='-P 2 2ab' case('Pmcb') num='55:cab' schn='D2h^9' hall='-P 2bc 2' case('Pcma') num='55:bca' schn='D2h^9' hall='-P 2ac 2ac' case('Pccn') num='56' schn='D2h^10' hall='-P 2ab 2ac' case('Pnaa') num='56:cab' schn='D2h^10' hall='-P 2ac 2bc' case('Pbnb') num='56:bca' schn='D2h^10' hall='-P 2bc 2ab' case('Pbcm') num='57' schn='D2h^11' hall='-P 2c 2b' case('Pcam') num='57:ba-c' schn='D2h^11' hall='-P 2c 2ac' case('Pmca') num='57:cab' schn='D2h^11' hall='-P 2ac 2a' case('Pmab') num='57:-cba' schn='D2h^11' hall='-P 2b 2a' case('Pbma') num='57:bca' schn='D2h^11' hall='-P 2a 2ab' case('Pcmb') num='57:a-cb' schn='D2h^11' hall='-P 2bc 2c' case('Pnnm') num='58' schn='D2h^12' hall='-P 2 2n' case('Pmnn') num='58:cab' schn='D2h^12' hall='-P 2n 2' case('Pnmn') num='58:bca' schn='D2h^12' hall='-P 2n 2n' case('Pmmn:1') num='59:1' schn='D2h^13' hall='P 2 2ab -1ab' case('Pmmn:2') num='59:2' schn='D2h^13' hall='-P 2ab 2a' case('Pnmm:1') num='59:1cab' schn='D2h^13' hall='P 2bc 2 -1bc' case('Pnmm:2') num='59:2cab' schn='D2h^13' hall='-P 2c 2bc' case('Pmnm:1') num='59:1bca' schn='D2h^13' hall='P 2ac 2ac -1ac' case('Pmnm:2') num='59:2bca' schn='D2h^13' hall='-P 2c 2a' case('Pbcn') num='60' schn='D2h^14' hall='-P 2n 2ab' case('Pcan') num='60:ba-c' schn='D2h^14' hall='-P 2n 2c' case('Pnca') num='60:cab' schn='D2h^14' hall='-P 2a 2n' case('Pnab') num='60:-cba' schn='D2h^14' hall='-P 2bc 2n' case('Pbna') num='60:bca' schn='D2h^14' hall='-P 2ac 2b' case('Pcnb') num='60:a-cb' schn='D2h^14' hall='-P 2b 2ac' case('Pbca') num='61' schn='D2h^15' hall='-P 2ac 2ab' case('Pcab') num='61:ba-c' schn='D2h^15' hall='-P 2bc 2ac' case('Pnma') num='62' schn='D2h^16' hall='-P 2ac 2n' case('Pmnb') num='62:ba-c' schn='D2h^16' hall='-P 2bc 2a' case('Pbnm') num='62:cab' schn='D2h^16' hall='-P 2c 2ab' case('Pcmn') num='62:-cba' schn='D2h^16' hall='-P 2n 2ac' case('Pmcn') num='62:bca' schn='D2h^16' hall='-P 2n 2a' case('Pnam') num='62:a-cb' schn='D2h^16' hall='-P 2c 2n' case('Cmcm') num='63' schn='D2h^17' hall='-C 2c 2' case('Ccmm') num='63:ba-c' schn='D2h^17' hall='-C 2c 2c' case('Amma') num='63:cab' schn='D2h^17' hall='-A 2a 2a' case('Amam') num='63:-cba' schn='D2h^17' hall='-A 2 2a' case('Bbmm') num='63:bca' schn='D2h^17' hall='-B 2 2b' case('Bmmb') num='63:a-cb' schn='D2h^17' hall='-B 2b 2' case('Cmca') num='64' schn='D2h^18' hall='-C 2bc 2' case('Ccmb') num='64:ba-c' schn='D2h^18' hall='-C 2bc 2bc' case('Abma') num='64:cab' schn='D2h^18' hall='-A 2ac 2ac' case('Acam') num='64:-cba' schn='D2h^18' hall='-A 2 2ac' case('Bbcm') num='64:bca' schn='D2h^18' hall='-B 2 2bc' case('Bmab') num='64:a-cb' schn='D2h^18' hall='-B 2bc 2' case('Cmmm') num='65' schn='D2h^19' hall='-C 2 2' case('Ammm') num='65:cab' schn='D2h^19' hall='-A 2 2' case('Bmmm') num='65:bca' schn='D2h^19' hall='-B 2 2' case('Cccm') num='66' schn='D2h^20' hall='-C 2 2c' case('Amaa') num='66:cab' schn='D2h^20' hall='-A 2a 2' case('Bbmb') num='66:bca' schn='D2h^20' hall='-B 2b 2b' case('Cmma') num='67' schn='D2h^21' hall='-C 2b 2' case('Cmmb') num='67:ba-c' schn='D2h^21' hall='-C 2b 2b' case('Abmm') num='67:cab' schn='D2h^21' hall='-A 2c 2c' case('Acmm') num='67:-cba' schn='D2h^21' hall='-A 2 2c' case('Bmcm') num='67:bca' schn='D2h^21' hall='-B 2 2c' case('Bmam') num='67:a-cb' schn='D2h^21' hall='-B 2c 2' case('Ccca:1') num='68:1' schn='D2h^22' hall='C 2 2 -1bc' case('Ccca:2') num='68:2' schn='D2h^22' hall='-C 2b 2bc' case('Cccb:1') num='68:1ba-c' schn='D2h^22' hall='C 2 2 -1bc' case('Cccb:2') num='68:2ba-c' schn='D2h^22' hall='-C 2b 2c' case('Abaa:1') num='68:1cab' schn='D2h^22' hall='A 2 2 -1ac' case('Abaa:2') num='68:2cab' schn='D2h^22' hall='-A 2a 2c' case('Acaa:1') num='68:1-cba' schn='D2h^22' hall='A 2 2 -1ac' case('Acaa:2') num='68:2-cba' schn='D2h^22' hall='-A 2ac 2c' case('Bbcb:1') num='68:1bca' schn='D2h^22' hall='B 2 2 -1bc' case('Bbcb:2') num='68:2bca' schn='D2h^22' hall='-B 2bc 2b' case('Bbab:1') num='68:1a-cb' schn='D2h^22' hall='B 2 2 -1bc' case('Bbab:2') num='68:2a-cb' schn='D2h^22' hall='-B 2b 2bc' case('Fmmm') num='69' schn='D2h^23' hall='-F 2 2' case('Fddd:1') num='70:1' schn='D2h^24' hall='F 2 2 -1d' case('Fddd:2') num='70:2' schn='D2h^24' hall='-F 2uv 2vw' case('Immm') num='71' schn='D2h^25' hall='-I 2 2' case('Ibam') num='72' schn='D2h^26' hall='-I 2 2c' case('Imcb') num='72:cab' schn='D2h^26' hall='-I 2a 2' case('Icma') num='72:bca' schn='D2h^26' hall='-I 2b 2b' case('Ibca') num='73' schn='D2h^27' hall='-I 2b 2c' case('Icab') num='73:ba-c' schn='D2h^27' hall='-I 2a 2b' case('Imma') num='74' schn='D2h^28' hall='-I 2b 2' case('Immb') num='74:ba-c' schn='D2h^28' hall='-I 2a 2a' case('Ibmm') num='74:cab' schn='D2h^28' hall='-I 2c 2c' case('Icmm') num='74:-cba' schn='D2h^28' hall='-I 2 2b' case('Imcm') num='74:bca' schn='D2h^28' hall='-I 2 2a' case('Imam') num='74:a-cb' schn='D2h^28' hall='-I 2c 2' case('P4') num='75' schn='C4^1' hall='P 4' case('P41') num='76' schn='C4^2' hall='P 4w' case('P42') num='77' schn='C4^3' hall='P 4c' case('P43') num='78' schn='C4^4' hall='P 4cw' case('I4') num='79' schn='C4^5' hall='I 4' case('I41') num='80' schn='C4^6' hall='I 4bw' case('P-4') num='81' schn='S4^1' hall='P -4' case('I-4') num='82' schn='S4^2' hall='I -4' case('P4/m') num='83' schn='C4h^1' hall='-P 4' case('P42/m') num='84' schn='C4h^2' hall='-P 4c' case('P4/n:1') num='85:1' schn='C4h^3' hall='P 4ab -1ab' case('P4/n:2') num='85:2' schn='C4h^3' hall='-P 4a' case('P42/n:1') num='86:1' schn='C4h^4' hall='P 4n -1n' case('P42/n:2') num='86:2' schn='C4h^4' hall='-P 4bc' case('I4/m') num='87' schn='C4h^5' hall='-I 4' case('I41/a:1') num='88:1' schn='C4h^6' hall='I 4bw -1bw' case('I41/a:2') num='88:2' schn='C4h^6' hall='-I 4ad' case('P422') num='89' schn='D4^1' hall='P 4 2' case('P4212') num='90' schn='D4^2' hall='P 4ab 2ab' case('P4122') num='91' schn='D4^3' hall='P 4w 2c' case('P41212') num='92' schn='D4^4' hall='P 4abw 2nw' case('P4222') num='93' schn='D4^5' hall='P 4c 2' case('P42212') num='94' schn='D4^6' hall='P 4n 2n' case('P4322') num='95' schn='D4^7' hall='P 4cw 2c' case('P43212') num='96' schn='D4^8' hall='P 4nw 2abw' case('I422') num='97' schn='D4^9' hall='I 4 2' case('I4122') num='98' schn='D4^10' hall='I 4bw 2bw' case('P4mm') num='99' schn='C4v^1' hall='P 4 -2' case('P4bm') num='100' schn='C4v^2' hall='P 4 -2ab' case('P42cm') num='101' schn='C4v^3' hall='P 4c -2c' case('P42nm') num='102' schn='C4v^4' hall='P 4n -2n' case('P4cc') num='103' schn='C4v^5' hall='P 4 -2c' case('P4nc') num='104' schn='C4v^6' hall='P 4 -2n' case('P42mc') num='105' schn='C4v^7' hall='P 4c -2' case('P42bc') num='106' schn='C4v^8' hall='P 4c -2ab' case('I4mm') num='107' schn='C4v^9' hall='I 4 -2' case('I4cm') num='108' schn='C4v^10' hall='I 4 -2c' case('I41md') num='109' schn='C4v^11' hall='I 4bw -2' case('I41cd') num='110' schn='C4v^12' hall='I 4bw -2c' case('P-42m') num='111' schn='D2d^1' hall='P -4 2' case('P-42c') num='112' schn='D2d^2' hall='P -4 2c' case('P-421m') num='113' schn='D2d^3' hall='P -4 2ab' case('P-421c') num='114' schn='D2d^4' hall='P -4 2n' case('P-4m2') num='115' schn='D2d^5' hall='P -4 -2' case('P-4c2') num='116' schn='D2d^6' hall='P -4 -2c' case('P-4b2') num='117' schn='D2d^7' hall='P -4 -2ab' case('P-4n2') num='118' schn='D2d^8' hall='P -4 -2n' case('I-4m2') num='119' schn='D2d^9' hall='I -4 -2' case('I-4c2') num='120' schn='D2d^10' hall='I -4 -2c' case('I-42m') num='121' schn='D2d^11' hall='I -4 2' case('I-42d') num='122' schn='D2d^12' hall='I -4 2bw' case('P4/mmm') num='123' schn='D4h^1' hall='-P 4 2' case('P4/mcc') num='124' schn='D4h^2' hall='-P 4 2c' case('P4/nbm:1') num='125:1' schn='D4h^3' hall='P 4 2 -1ab' case('P4/nbm:2') num='125:2' schn='D4h^3' hall='-P 4a 2b' case('P4/nnc:1') num='126:1' schn='D4h^4' hall='P 4 2 -1n' case('P4/nnc:2') num='126:2' schn='D4h^4' hall='-P 4a 2bc' case('P4/mbm') num='127' schn='D4h^5' hall='-P 4 2ab' case('P4/mnc') num='128' schn='D4h^6' hall='-P 4 2n' case('P4/nmm:1') num='129:1' schn='D4h^7' hall='P 4ab 2ab -1ab' case('P4/nmm:2') num='129:2' schn='D4h^7' hall='-P 4a 2a' case('P4/ncc:1') num='130:1' schn='D4h^8' hall='P 4ab 2n -1ab' case('P4/ncc:2') num='130:2' schn='D4h^8' hall='-P 4a 2ac' case('P42/mmc') num='131' schn='D4h^9' hall='-P 4c 2' case('P42/mcm') num='132' schn='D4h^10' hall='-P 4c 2c' case('P42/nbc:1') num='133:1' schn='D4h^11' hall='P 4n 2c -1n' case('P42/nbc:2') num='133:2' schn='D4h^11' hall='-P 4ac 2b' case('P42/nnm:1') num='134:1' schn='D4h^12' hall='P 4n 2 -1n' case('P42/nnm:2') num='134:2' schn='D4h^12' hall='-P 4ac 2bc' case('P42/mbc') num='135' schn='D4h^13' hall='-P 4c 2ab' case('P42/mnm') num='136' schn='D4h^14' hall='-P 4n 2n' case('P42/nmc:1') num='137:1' schn='D4h^15' hall='P 4n 2n -1n' case('P42/nmc:2') num='137:2' schn='D4h^15' hall='-P 4ac 2a' case('P42/ncm:1') num='138:1' schn='D4h^16' hall='P 4n 2ab -1n' case('P42/ncm:2') num='138:2' schn='D4h^16' hall='-P 4ac 2ac' case('I4/mmm') num='139' schn='D4h^17' hall='-I 4 2' case('I4/mcm') num='140' schn='D4h^18' hall='-I 4 2c' case('I41/amd:1') num='141:1' schn='D4h^19' hall='I 4bw 2bw -1bw' case('I41/amd:2') num='141:2' schn='D4h^19' hall='-I 4bd 2' case('I41/acd:1') num='142:1' schn='D4h^20' hall='I 4bw 2aw -1bw' case('I41/acd:2') num='142:2' schn='D4h^20' hall='-I 4bd 2c' case('P3') num='143' schn='C3^1' hall='P 3' case('P31') num='144' schn='C3^2' hall='P 31' case('P32') num='145' schn='C3^3' hall='P 32' case('R3:H') num='146:H' schn='C3^4' hall='R 3' case('R3:R') num='146:R' schn='C3^4' hall='P 3*' case('P-3') num='147' schn='C3i^1' hall='-P 3' case('R-3:H') num='148:H' schn='C3i^2' hall='-R 3' case('R-3:R') num='148:R' schn='C3i^2' hall='-P 3*' case('P312') num='149' schn='D3^1' hall='P 3 2' case('P321') num='150' schn='D3^2' hall='P 3 2"' case('P3112') num='151' schn='D3^3' hall='P 31 2c (0 0 1)' case('P3121') num='152' schn='D3^4' hall='P 31 2"' case('P3212') num='153' schn='D3^5' hall='P 32 2c (0 0 -1)' case('P3221') num='154' schn='D3^6' hall='P 32 2"' case('R32:H') num='155:H' schn='D3^7' hall='R 3 2"' case('R32:R') num='155:R' schn='D3^7' hall='P 3* 2' case('P3m1') num='156' schn='C3v^1' hall='P 3 -2"' case('P31m') num='157' schn='C3v^2' hall='P 3 -2' case('P3c1') num='158' schn='C3v^3' hall='P 3 -2"c' case('P31c') num='159' schn='C3v^4' hall='P 3 -2c' case('R3m:H') num='160:H' schn='C3v^5' hall='R 3 -2"' case('R3m:R') num='160:R' schn='C3v^5' hall='P 3* -2' case('R3c:H') num='161:H' schn='C3v^6' hall='R 3 -2"c' case('R3c:R') num='161:R' schn='C3v^6' hall='P 3* -2n' case('P-31m') num='162' schn='D3d^1' hall='-P 3 2' case('P-31c') num='163' schn='D3d^2' hall='-P 3 2c' case('P-3m1') num='164' schn='D3d^3' hall='-P 3 2"' case('P-3c1') num='165' schn='D3d^4' hall='-P 3 2"c' case('R-3m:H') num='166:H' schn='D3d^5' hall='-R 3 2"' case('R-3m:R') num='166:R' schn='D3d^5' hall='-P 3* 2' case('R-3c:H') num='167:H' schn='D3d^6' hall='-R 3 2"c' case('R-3c:R') num='167:R' schn='D3d^6' hall='-P 3* 2n' case('P6') num='168' schn='C6^1' hall='P 6' case('P61') num='169' schn='C6^2' hall='P 61' case('P65') num='170' schn='C6^3' hall='P 65' case('P62') num='171' schn='C6^4' hall='P 62' case('P64') num='172' schn='C6^5' hall='P 64' case('P63') num='173' schn='C6^6' hall='P 6c' case('P-6') num='174' schn='C3h^1' hall='P -6' case('P6/m') num='175' schn='C6h^1' hall='-P 6' case('P63/m') num='176' schn='C6h^2' hall='-P 6c' case('P622') num='177' schn='D6^1' hall='P 6 2' case('P6122') num='178' schn='D6^2' hall='P 61 2 (0 0 -1)' case('P6522') num='179' schn='D6^3' hall='P 65 2 (0 0 1)' case('P6222') num='180' schn='D6^4' hall='P 62 2c (0 0 1)' case('P6422') num='181' schn='D6^5' hall='P 64 2c (0 0 -1)' case('P6322') num='182' schn='D6^6' hall='P 6c 2c' case('P6mm') num='183' schn='C6v^1' hall='P 6 -2' case('P6cc') num='184' schn='C6v^2' hall='P 6 -2c' case('P63cm') num='185' schn='C6v^3' hall='P 6c -2' case('P63mc') num='186' schn='C6v^4' hall='P 6c -2c' case('P-6m2') num='187' schn='D3h^1' hall='P -6 2' case('P-6c2') num='188' schn='D3h^2' hall='P -6c 2' case('P-62m') num='189' schn='D3h^3' hall='P -6 -2' case('P-62c') num='190' schn='D3h^4' hall='P -6c -2c' case('P6/mmm') num='191' schn='D6h^1' hall='-P 6 2' case('P6/mcc') num='192' schn='D6h^2' hall='-P 6 2c' case('P63/mcm') num='193' schn='D6h^3' hall='-P 6c 2' case('P63/mmc') num='194' schn='D6h^4' hall='-P 6c 2c' case('P23') num='195' schn='T^1' hall='P 2 2 3' case('F23') num='196' schn='T^2' hall='F 2 2 3' case('I23') num='197' schn='T^3' hall='I 2 2 3' case('P213') num='198' schn='T^4' hall='P 2ac 2ab 3' case('I213') num='199' schn='T^5' hall='I 2b 2c 3' case('Pm-3') num='200' schn='Th^1' hall='-P 2 2 3' case('Pn-3:1') num='201:1' schn='Th^2' hall='P 2 2 3 -1n' case('Pn-3:2') num='201:2' schn='Th^2' hall='-P 2ab 2bc 3' case('Fm-3') num='202' schn='Th^3' hall='-F 2 2 3' case('Fd-3:1') num='203:1' schn='Th^4' hall='F 2 2 3 -1d' case('Fd-3:2') num='203:2' schn='Th^4' hall='-F 2uv 2vw 3' case('Im-3') num='204' schn='Th^5' hall='-I 2 2 3' case('Pa-3') num='205' schn='Th^6' hall='-P 2ac 2ab 3' case('Ia-3') num='206' schn='Th^7' hall='-I 2b 2c 3' case('P432') num='207' schn='O^1' hall='P 4 2 3' case('P4232') num='208' schn='O^2' hall='P 4n 2 3' case('F432') num='209' schn='O^3' hall='F 4 2 3' case('F4132') num='210' schn='O^4' hall='F 4d 2 3' case('I432') num='211' schn='O^5' hall='I 4 2 3' case('P4332') num='212' schn='O^6' hall='P 4acd 2ab 3' case('P4132') num='213' schn='O^7' hall='P 4bd 2ab 3' case('I4132') num='214' schn='O^8' hall='I 4bd 2c 3' case('P-43m') num='215' schn='Td^1' hall='P -4 2 3' case('F-43m') num='216' schn='Td^2' hall='F -4 2 3' case('I-43m') num='217' schn='Td^3' hall='I -4 2 3' case('P-43n') num='218' schn='Td^4' hall='P -4n 2 3' case('F-43c') num='219' schn='Td^5' hall='F -4c 2 3' case('I-43d') num='220' schn='Td^6' hall='I -4bd 2c 3' case('Pm-3m') num='221' schn='Oh^1' hall='-P 4 2 3' case('Pn-3n:1') num='222:1' schn='Oh^2' hall='P 4 2 3 -1n' case('Pn-3n:2') num='222:2' schn='Oh^2' hall='-P 4a 2bc 3' case('Pm-3n') num='223' schn='Oh^3' hall='-P 4n 2 3' case('Pn-3m:1') num='224:1' schn='Oh^4' hall='P 4n 2 3 -1n' case('Pn-3m:2') num='224:2' schn='Oh^4' hall='-P 4bc 2bc 3' case('Fm-3m') num='225' schn='Oh^5' hall='-F 4 2 3' case('Fm-3c') num='226' schn='Oh^6' hall='-F 4c 2 3' case('Fd-3m:1') num='227:1' schn='Oh^7' hall='F 4d 2 3 -1d' case('Fd-3m:2') num='227:2' schn='Oh^7' hall='-F 4vw 2vw 3' case('Fd-3c:1') num='228:1' schn='Oh^8' hall='F 4d 2 3 -1cd' case('Fd-3c:2') num='228:2' schn='Oh^8' hall='-F 4cvw 2vw 3' case('Im-3m') num='229' schn='Oh^9' hall='-I 4 2 3' case('Ia-3d') num='230' schn='Oh^10' hall='-I 4bd 2c 3' case default write(*,*) write(*,'("Error(sgsymb): Hermann-Mauguin symbol ''",A,"'' not found")') & trim(adjustl(hrmg)) write(*,*) stop end select return end subroutine !EOC elk-10.4.9/src/PaxHeaders/modmain.f900000644000000000000000000000013114762655564014214 xustar0030 mtime=1741380468.458008407 29 atime=1741380466.44999791 30 ctime=1741380468.458008407 elk-10.4.9/src/modmain.f900000644002504400250440000012771014762655564016747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2009 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modmain !----------------------------! ! lattice parameters ! !----------------------------! ! lattice vectors stored column-wise real(8) avec(3,3),avec0(3,3),davec(3,3) ! inverse of lattice vector matrix real(8) ainv(3,3) ! reciprocal lattice vectors real(8) bvec(3,3),bvec0(3,3) ! inverse of reciprocal lattice vector matrix real(8) binv(3,3),binv0(3,3) ! unit cell volume real(8) omega,omega0 ! Brillouin zone volume real(8) omegabz ! any vector with length less than epslat is considered zero real(8) epslat !--------------------------! ! atomic variables ! !--------------------------! ! maximum allowed species integer, parameter :: maxspecies=8 ! maximum allowed atoms per species integer, parameter :: maxatoms=200 ! number of species integer nspecies ! number of atoms for each species integer natoms(maxspecies),natoms0(maxspecies) ! maximum number of atoms over all the species integer natmmax ! total number of atoms integer natmtot,natmtot0 ! index to atoms and species integer idxas(maxatoms,maxspecies) ! inverse atoms and species indices integer idxis(maxatoms*maxspecies),idxis0(maxatoms*maxspecies) integer idxia(maxatoms*maxspecies) ! molecule is .true. is the system is an isolated molecule logical molecule ! primcell is .true. if primitive unit cell is to be found automatically logical primcell,primcell0 ! atomic positions in lattice coordinates real(8) atposl(3,maxatoms,maxspecies),atposl0(3,maxatoms,maxspecies) real(8) datposl(3,maxatoms,maxspecies) ! atomic positions in Cartesian coordinates real(8) atposc(3,maxatoms,maxspecies),atposc0(3,maxatoms,maxspecies) ! magnitude of random displacements added to the atomic positions real(8) rndatposc ! tatdisp is .true. if small amplitude atomic displacements are to be included ! when calculating the Coulomb potential logical :: tatdisp=.false. ! trdatdv is .true. if the atomic displacements and velocities are to be read ! from file logical trdatdv ! atomic displacements and velocities in Cartesian coordinates real(8) atdvc(3,0:1,maxatoms,maxspecies) ! atomic damping force coefficient real(8) atdfc !----------------------------------! ! atomic species variables ! !----------------------------------! ! species files path character(256) sppath ! species filenames character(256) spfname(maxspecies) ! species name character(64) spname(maxspecies) ! species symbol character(64) spsymb(maxspecies) ! species nuclear charge real(8) spzn(maxspecies) ! ptnucl is .true. if the nuclei are to be treated as point charges, if .false. ! the nuclei have a finite spherical distribution logical ptnucl ! nuclear radius real(8) rnucl(maxspecies) ! nuclear volume real(8) volnucl(maxspecies) ! number of radial mesh points to nuclear radius integer nrnucl(maxspecies) ! nuclear Coulomb potential real(8), allocatable :: vcln(:,:) ! species electronic charge real(8) spze(maxspecies) ! species mass real(8) spmass(maxspecies) ! smallest radial point for each species real(8) rminsp(maxspecies) ! effective infinity for species real(8) rmaxsp(maxspecies) ! number of radial points to effective infinity for each species integer nrsp(maxspecies) ! maximum nrsp over all the species integer nrspmax ! maximum allowed states for each species integer, parameter :: maxstsp=40 ! number of states for each species integer nstsp(maxspecies) ! maximum nstsp over all the species integer nstspmax ! core-valence cut-off energy for species file generation real(8) ecvcut ! semi-core-valence cut-off energy for species file generation real(8) esccut ! state principle quantum number for each species integer nsp(maxstsp,maxspecies) ! state l value for each species integer lsp(maxstsp,maxspecies) ! state k value for each species integer ksp(maxstsp,maxspecies) ! spcore is .true. if species state is core logical spcore(maxstsp,maxspecies) ! total number of core states integer nstcr ! state eigenvalue for each species real(8) evalsp(maxstsp,maxspecies) ! state occupancy for each species real(8) occsp(maxstsp,maxspecies) ! species radial mesh to effective infinity real(8), allocatable :: rsp(:,:) ! species charge density real(8), allocatable :: rhosp(:,:) ! species self-consistent potential real(8), allocatable :: vrsp(:,:) ! exchange-correlation type for atomic species (the converged ground-state of ! the crystal does not depend on this choice) integer xctsp(3) !---------------------------------------------------------------! ! muffin-tin radial mesh and angular momentum variables ! !---------------------------------------------------------------! ! scale factor for number of muffin-tin points real(8) nrmtscf,dnrmtscf ! number of muffin-tin radial points for each species integer nrmt(maxspecies) ! maximum nrmt over all the species integer nrmtmax ! muffin-tin radius scale factor real(8) rmtscf ! order of averaging applied to the muffin-tin radii integer mrmtav ! optional default muffin-tin radius for all atoms real(8) rmtall ! minimum allowed distance between muffin-tin surfaces real(8) rmtdelta ! muffin-tin radii real(8) rmt(maxspecies),rmt0(maxspecies) ! trmt0 is .true. if the original muffin-tin radii rmt0 are to be retained ! between tasks logical trmt0 ! (R_mt)^l for l up to lmaxo+3 real(8), allocatable :: rmtl(:,:) ! total muffin-tin volume real(8) omegamt ! radial step length for coarse mesh integer lradstp ! number of coarse radial mesh points integer nrcmt(maxspecies) ! maximum nrcmt over all the species integer nrcmtmax ! coarse muffin-tin radial mesh real(8), allocatable :: rcmt(:,:) ! r^l on fine radial mesh real(8), allocatable :: rlmt(:,:,:) ! r^l on coarse radial mesh real(8), allocatable :: rlcmt(:,:,:) ! weights for spline integration on fine radial mesh real(8), allocatable :: wrmt(:,:) ! weights for spline integration on fine radial mesh multiplied by r² real(8), allocatable :: wr2mt(:,:) ! weights for spline partial integration on fine radial mesh real(8), allocatable :: wprmt(:,:,:) ! weights for spline coefficients on fine radial mesh real(8), allocatable :: wcrmt(:,:,:) ! weights for spline integration on coarse radial mesh multiplied by r² real(8), allocatable :: wr2cmt(:,:) ! weights for spline partial integration on coarse radial mesh real(8), allocatable :: wprcmt(:,:,:) ! weights for spline coefficients on coarse radial mesh real(8), allocatable :: wcrcmt(:,:,:) ! maximum allowable angular momentum for augmented plane waves integer, parameter :: maxlapw=30 ! maximum angular momentum for augmented plane waves integer lmaxapw,dlmaxapw ! (lmaxapw+1)^2 integer lmmaxapw ! maximum angular momentum on the outer part of the muffin-tin integer lmaxo,dlmaxo ! (lmaxo+1)^2 integer lmmaxo ! maximum angular momentum on the inner part of the muffin-tin integer lmaxi,lmaxi0 ! (lmaxi+1)^2 integer lmmaxi ! fraction of muffin-tin radius which constitutes the inner part real(8) fracinr ! number of fine/coarse radial points on the inner part of the muffin-tin integer nrmti(maxspecies),nrcmti(maxspecies) ! number of fine/coarse points in packed muffin-tins integer npmti(maxspecies),npmt(maxspecies) integer npcmti(maxspecies),npcmt(maxspecies) ! maximum number of points over all packed muffin-tins integer npmtmax,npcmtmax ! smoothing order used when calculating gradients in the muffin-tin integer msmgmt !--------------------------------! ! spin related variables ! !--------------------------------! ! spinpol is .true. for spin-polarised calculations logical spinpol,spinpol0 ! spinorb is .true. for spin-orbit coupling logical spinorb,spinorb0 ! scale factor of spin-orbit coupling term in Hamiltonian real(8) socscf ! dimension of magnetisation and magnetic vector fields (1 or 3) integer ndmag ! ncmag is .true. if the magnetisation is non-collinear, i.e. when ndmag = 3 logical ncmag ! if cmagz is .true. then collinear magnetism along the z-axis is enforced logical cmagz,cmagz0 ! fixed spin moment type ! 0 : none ! 1 (-1) : total moment (direction) ! 2 (-2) : individual muffin-tin moments (direction) ! 3 (-3) : total and muffin-tin moments (direction) integer fsmtype,fsmtype0 ! fixed total spin magnetic moment real(8) momfix(3),momfix0(3),dmomfix(3) ! fixed spin moment global effective field in Cartesian coordinates real(8) bfsmc(3) ! muffin-tin fixed spin moments real(8) mommtfix(3,maxatoms,maxspecies),mommtfix0(3,maxatoms,maxspecies) ! muffin-tin fixed spin moment effective fields in Cartesian coordinates real(8), allocatable :: bfsmcmt(:,:) ! fixed spin moment field step size real(8) taufsm ! second-variational spinor dimension (1 or 2) integer nspinor ! global external magnetic field in Cartesian coordinates real(8) bfieldc(3) ! initial field real(8) bfieldc0(3),bfieldc00(3),dbfieldc0(3) ! external magnetic field in each muffin-tin in Cartesian coordinates real(8) bfcmt(3,maxatoms,maxspecies) ! initial field as read in from input file real(8) bfcmt0(3,maxatoms,maxspecies),bfcmt00(3,maxatoms,maxspecies) ! magnitude of random vectors added to muffin-tin fields real(8) rndbfcmt ! external magnetic fields are multiplied by reducebf after each s.c. loop real(8) reducebf,reducebf0 ! small change in magnetic field used for calculating the magnetoelectric tensor real(8) deltabf ! spinsprl is .true. if a spin-spiral is to be calculated logical spinsprl,spinsprl0 ! ssdph is .true. if the muffin-tin spin-spiral magnetisation is de-phased logical ssdph ! spin-spiral phase factor for each atom complex(8), allocatable :: zqss(:) ! number of spin-dependent first-variational functions per state integer nspnfv ! map from second- to first-variational spin index integer jspnfv(2) ! spin-spiral q-vector in lattice coordinates real(8) vqlss(3),dvqlss(3) ! spin-spiral q-vector in Cartesian coordinates real(8) vqcss(3) ! current q-point in spin-spiral supercell calculation integer iqss ! number of primitive unit cells in spin-spiral supercell integer nscss ! number of fixed spin direction points on the sphere for finding the magnetic ! anisotropy energy (MAE) integer npmae0,npmae ! (theta,phi) coordinates for each MAE direction real(8), allocatable :: tpmae(:,:) !----------------------------------------------------! ! static electric field and vector potential ! !----------------------------------------------------! ! tefield is .true. if a polarising constant electric field is applied logical tefield ! electric field vector in Cartesian coordinates real(8) efieldc(3) ! electric field vector in lattice coordinates real(8) efieldl(3) ! average electric field in Cartesian coordinates in each muffin-tin real(8), allocatable :: efcmt(:,:) ! maximum distance over which the electric field is applied real(8) dmaxefc ! maximum allowed absolute value of the potential generated by efieldc real(8) vmaxefc ! tafield is .true. if a constant vector potential is applied logical tafield ! vector potential A-field in Cartesian coordinates which couples to the ! paramagnetic current real(8) afieldc(3),afieldc0(3),dafieldc(3) ! A-field in lattice coordinates real(8) afieldl(3) ! tafsp is .true. if a constant spin-dependent vector potential is applied logical tafsp ! spin-dependent vector potential (3 x 3 tensor) in Cartesian coordinates real(8) afspc(3,3),dafspc(3,3) !----------------------------! ! symmetry variables ! !----------------------------! ! type of symmetry allowed for the crystal ! 0 : only the identity element is used ! 1 : full symmetry group is used ! 2 : only symmorphic symmetries are allowed integer symtype ! number of Bravais lattice point group symmetries integer nsymlat ! Bravais lattice point group symmetries integer symlat(3,3,48) ! determinants of lattice symmetry matrices (1 or -1) integer symlatd(48) ! index to inverses of the lattice symmetries integer isymlat(48) ! lattice point group symmetries in Cartesian coordinates real(8) symlatc(3,3,48) ! tshift is .true. if atomic basis is allowed to be shifted logical tshift,tshift0 ! tsyminv is .true. if the crystal has inversion symmetry logical tsyminv ! maximum of symmetries allowed integer, parameter :: maxsymcrys=192 ! number of crystal symmetries integer nsymcrys ! crystal symmetry translation vector in lattice and Cartesian coordinates real(8) vtlsymc(3,maxsymcrys),vtcsymc(3,maxsymcrys) ! tv0symc is .true. if the translation vector is zero logical tv0symc(maxsymcrys) ! spatial rotation element in lattice point group for each crystal symmetry integer lsplsymc(maxsymcrys) ! global spin rotation element in lattice point group for each crystal symmetry integer lspnsymc(maxsymcrys) ! equivalent atom index for each crystal symmetry integer, allocatable :: ieqatom(:,:,:) ! eqatoms(ia,ja,is) is .true. if atoms ia and ja are equivalent logical, allocatable :: eqatoms(:,:,:) ! tfeqat is .true. if this is the first atom in a subset of equivalent atoms logical, allocatable :: tfeqat(:,:) ! number of site symmetries integer, allocatable :: nsymsite(:) ! site symmetry spatial rotation element in lattice point group integer, allocatable :: lsplsyms(:,:) ! site symmetry global spin rotation element in lattice point group integer, allocatable :: lspnsyms(:,:) !----------------------------! ! G-vector variables ! !----------------------------! ! G-vector cut-off for interstitial potential and density real(8) gmaxvr,dgmaxvr ! G-vector grid sizes integer ngridg(3),ngridg0(3) ! G-vector grid sizes for coarse grid with |G| < 2 gkmax integer ngdgc(3) ! total number of G-vectors integer ngtot,ngtot0 ! total number of G-vectors for coarse grid integer ngtc ! integer grid intervals for each direction integer intgv(2,3) ! number of G-vectors with |G| < gmaxvr integer ngvec ! number of G-vectors for coarse grid with |G| < 2 gkmax integer ngvc ! G-vector integer coordinates (i1,i2,i3) integer, allocatable :: ivg(:,:),ivg0(:,:) ! map from (i1,i2,i3) to G-vector index integer, allocatable :: ivgig(:,:,:) ! number of prime factors for the G-vector FFT integer npfftg ! map from G-vector index to FFT array integer, allocatable :: igfft(:),igfft0(:) ! number of prime factors for the coarse G-vector FFT integer npfftgc ! map from G-vector index to FFT array for coarse grid integer, allocatable :: igfc(:) ! number of complex FFT elements for real-complex transforms integer nfgrz ! number of elements on the coarse grid integer nfgrzc ! map from real-complex FFT index to G-point index integer, allocatable :: igrzf(:) ! map on the coarse grid integer, allocatable :: igrzfc(:) ! G-vectors in Cartesian coordinates real(8), allocatable :: vgc(:,:) ! length of G-vectors real(8), allocatable :: gc(:) ! Coulomb Green's function in G-space = 4π / G² real(8), allocatable :: gclg(:) ! spherical Bessel functions jₗ(|G|Rₘₜ) real(8), allocatable :: jlgrmt(:,:,:) ! spherical harmonics of the G-vectors complex(8), allocatable :: ylmg(:,:) ! structure factors for the G-vectors complex(8), allocatable :: sfacg(:,:) ! smooth step function form factors for all species and G-vectors real(8), allocatable :: ffacg(:,:) ! characteristic function in G-space: 0 inside the muffin-tins and 1 outside complex(8), allocatable :: cfunig(:) ! characteristic function in real-space: 0 inside the muffin-tins and 1 outside real(8), allocatable :: cfunir(:) ! characteristic function in real-space for coarse grid real(8), allocatable :: cfrc(:) !---------------------------! ! k-point variables ! !---------------------------! ! autokpt is .true. if the k-point set is determined automatically logical autokpt,autokpt0 ! radius of sphere used to determine k-point density when autokpt is .true. real(8) radkpt ! k-point grid sizes integer ngridk(3),ngridk0(3),dngridk(3) ! k-point offset real(8) vkloff(3),vkloff0(3) ! type of reduction to perform on k-point set ! 0 : no reduction ! 1 : reduce with full crystal symmetry group ! 2 : reduce with symmorphic symmetries only integer reducek,reducek0 ! number of point group symmetries used for k-point reduction integer nsymkpt ! point group symmetry matrices used for k-point reduction integer symkpt(3,3,48) ! total number of reduced k-points integer nkpt ! total number of non-reduced k-points integer nkptnr ! locations of k-points on integer grid integer, allocatable :: ivk(:,:) ! map from integer grid to reduced k-point index integer, allocatable :: ivkik(:,:,:) ! map from integer grid to non-reduced k-point index integer, allocatable :: ivkiknr(:,:,:) ! k-points in lattice coordinates real(8), allocatable :: vkl(:,:) ! k-points in Cartesian coordinates real(8), allocatable :: vkc(:,:) ! reduced k-point weights real(8), allocatable :: wkpt(:) ! weight of each non-reduced k-point real(8) wkptnr ! k-point at which to determine effective mass tensor real(8) vklem(3) ! displacement size for computing the effective mass tensor real(8) deltaem ! number of displacements in each direction integer ndspem ! number of k-points subdivision used for calculating the polarisation phase integer nkspolar !------------------------------! ! G+k-vector variables ! !------------------------------! ! species for which the muffin-tin radius will be used for calculating gkmax integer isgkmax ! smallest muffin-tin radius times gkmax real(8) rgkmax,drgkmax ! maximum |G+k| cut-off for APW functions real(8) gkmax ! number of G+k-vectors for augmented plane waves integer, allocatable :: ngk(:,:) ! maximum number of G+k-vectors over all k-points integer ngkmax ! index from G+k-vectors to G-vectors integer, allocatable :: igkig(:,:,:) ! G+k-vectors in lattice coordinates real(8), allocatable :: vgkl(:,:,:,:) ! G+k-vectors in Cartesian coordinates real(8), allocatable :: vgkc(:,:,:,:) ! length of G+k-vectors real(8), allocatable :: gkc(:,:,:) ! structure factors for the G+k-vectors complex(8), allocatable :: sfacgk(:,:,:,:) !---------------------------! ! q-point variables ! !---------------------------! ! q-point grid sizes integer ngridq(3) ! integer grid intervals for the q-points integer intq(2,3) ! type of reduction to perform on q-point set (see reducek) integer reduceq ! number of point group symmetries used for q-point reduction integer nsymqpt ! point group symmetry matrices used for q-point reduction integer symqpt(3,3,48) ! total number of reduced q-points integer nqpt ! total number of non-reduced q-points integer nqptnr ! locations of q-points on integer grid integer, allocatable :: ivq(:,:) ! map from integer grid to reduced index integer, allocatable :: ivqiq(:,:,:) ! map from integer grid to non-reduced index integer, allocatable :: ivqiqnr(:,:,:) ! number of prime factors for the q-vector FFT integer npfftq ! map from q-vector index to complex-complex FFT array integer, allocatable :: iqfft(:) ! number of complex FFT elements for real-complex transforms integer nfqrz ! map from q-point index to real-complex FFT index integer, allocatable :: ifqrz(:) ! map from real-complex FFT index to q-point index integer, allocatable :: iqrzf(:) ! q-points in lattice coordinates real(8), allocatable :: vql(:,:) ! q-points in Cartesian coordinates real(8), allocatable :: vqc(:,:) ! q-point weights real(8), allocatable :: wqpt(:) ! weight for each non-reduced q-point real(8) wqptnr ! regularised Coulomb Green's function in q-space real(8), allocatable :: gclq(:) ! if t0gclq0 is .true. then the Coulomb Green's function at q = 0 is set to zero logical t0gclq0 !-----------------------------------------------------! ! spherical harmonic transform (SHT) matrices ! !-----------------------------------------------------! ! trotsht is .true. if the spherical cover used for the SHT is to be rotated logical :: trotsht=.false. ! spherical cover rotation matrix real(8) rotsht(3,3) ! real backward SHT matrix for lmaxi real(8), allocatable :: rbshti(:,:) ! real forward SHT matrix for lmaxi real(8), allocatable :: rfshti(:,:) ! real backward SHT matrix for lmaxo real(8), allocatable :: rbshto(:,:) ! real forward SHT matrix for lmaxo real(8), allocatable :: rfshto(:,:) ! complex backward SHT matrix for lmaxi complex(8), allocatable :: zbshti(:,:) ! complex forward SHT matrix for lmaxi complex(8), allocatable :: zfshti(:,:) ! complex backward SHT matrix for lmaxo complex(8), allocatable :: zbshto(:,:) ! complex forward SHT matrix for lmaxo complex(8), allocatable :: zfshto(:,:) ! single-precision copies of the complex SHT matrices complex(4), allocatable :: cbshti(:,:),cfshti(:,:) complex(4), allocatable :: cbshto(:,:),cfshto(:,:) !---------------------------------------------------------------! ! density, potential and exchange-correlation variables ! !---------------------------------------------------------------! ! exchange-correlation functional type integer xctype(3) ! exchange-correlation functional description character(264) xcdescr ! exchange-correlation functional spin requirement integer xcspin ! exchange-correlation functional density gradient requirement ! 0 : no gradients ! 1 : gradients required for GGA with no post-processing: |grad rho|, ! grad^2 rho, (grad rho).(grad |grad rho|) ! 2 : gradients required for GGA with post-processing: |grad rho|^2 ! 3 : as 2 but with the laplacian, grad^2 rho ! 4 : as 2 but with the kinetic energy density, tau ! 5 : as 4 but with the laplacian, grad^2 rho integer xcgrad ! small constant used to stabilise non-collinear GGA real(8) dncgga ! kinetic energy density functional type integer ktype(3) ! kinetic energy density functional description character(264) kdescr ! kinetic energy density gradient requirement (see xcgrad) integer kgrad ! muffin-tin and interstitial charge density real(8), allocatable :: rhomt(:,:),rhoir(:) ! trhonorm is .true. if the density is to be normalised after every iteration logical trhonorm ! muffin-tin and interstitial magnetisation vector field real(8), allocatable :: magmt(:,:,:),magir(:,:) ! tjr is .true. if the current density j(r) is to be calculated logical tjr,tjr0 ! muffin-tin and interstitial gauge-invariant current density vector field real(8), allocatable :: jrmt(:,:,:),jrir(:,:) ! muffin-tin and interstitial Coulomb potential real(8), allocatable :: vclmt(:,:),vclir(:) ! Poisson solver pseudocharge density constant integer npsd ! lmaxo+npsd+1 integer lnpsd ! muffin-tin and interstitial exchange energy density real(8), allocatable :: exmt(:,:),exir(:) ! muffin-tin and interstitial correlation energy density real(8), allocatable :: ecmt(:,:),ecir(:) ! muffin-tin and interstitial exchange-correlation potential real(8), allocatable :: vxcmt(:,:),vxcir(:) ! muffin-tin and interstitial exchange-correlation magnetic field real(8), allocatable :: bxcmt(:,:,:),bxcir(:,:) ! muffin-tin and interstitial magnetic dipole field real(8), allocatable :: bdmt(:,:,:),bdir(:,:) ! tbdip is .true. if the spin and current dipole fields are to be added to the ! Kohn-Sham magnetic field logical tbdip ! dipole magnetic field scaling factor (default 1) real(8) bdipscf ! combined target array for vsmt, vsir, bsmt and bsir real(8), allocatable, target :: vsbs(:) ! muffin-tin Kohn-Sham effective potential real(8), pointer, contiguous :: vsmt(:,:) ! interstitial Kohn-Sham effective potential real(8), allocatable :: vsir(:) ! vsir multiplied by the characteristic function and stored on a coarse grid real(8), pointer, contiguous :: vsirc(:) ! muffin-tin Kohn-Sham effective magnetic field in spherical coordinates and on ! a coarse radial mesh real(8), pointer, contiguous :: bsmt(:,:,:) ! interstitial Kohn-Sham effective magnetic field real(8), allocatable :: bsir(:,:) ! bsir multiplied by the characteristic function and stored on a coarse grid real(8), pointer, contiguous :: bsirc(:,:) ! G-space interstitial Kohn-Sham effective potential complex(8), allocatable :: vsig(:) ! nosource is .true. if the field is to be made source-free logical nosource ! tssxc is .true. if scaled spin exchange-correlation is to be used logical tssxc ! spin exchange-correlation scaling factor real(8) sxcscf,dsxcscf ! spin-orbit coupling radial function real(8), allocatable :: socfr(:,:) ! kinetic energy density real(8), allocatable :: taumt(:,:,:),tauir(:,:) ! core kinetic energy density real(8), allocatable :: taucr(:,:,:) ! meta-GGA exchange-correlation potential real(8), allocatable :: wxcmt(:,:),wxcir(:) ! if trdstate is .true. the density and potential can be read from STATE.OUT logical :: trdstate=.false. ! temperature in degrees Kelvin real(8) tempk !--------------------------! ! mixing variables ! !--------------------------! ! type of mixing to use for the potential integer mixtype ! mixing type description character(64) mixdescr ! if mixsave is .true. then the mixer work array is saved after each self- ! consistent loop and will be read in at the beginning of a restart logical mixsave ! adaptive mixing parameters (formerly beta0 and betamax) real(8) amixpm(2) ! subspace dimension for Broyden mixing integer mixsdb ! Broyden mixing parameters alpha and w0 real(8) broydpm(2) !----------------------------------------------! ! charge, moment and current variables ! !----------------------------------------------! ! tolerance for error in total charge real(8) epschg ! total nuclear charge real(8) chgzn ! core charges real(8) chgcr(maxspecies) ! total core charge real(8) chgcrtot ! core leakage charge real(8), allocatable :: chgcrlk(:) ! total valence charge real(8) chgval ! excess charge real(8) chgexs,dchgexs ! total charge real(8) chgtot ! calculated total charge real(8) chgcalc ! interstitial region charge real(8) chgir ! muffin-tin charges real(8), allocatable :: chgmt(:) ! total muffin-tin charge real(8) chgmttot ! effective Wigner radius real(8) rwigner ! total moment real(8) momtot(3) ! total moment magnitude real(8) momtotm ! interstitial region moment real(8) momir(3) ! muffin-tin moments real(8), allocatable :: mommt(:,:) ! total muffin-tin moment real(8) mommttot(3) ! total gauge-invariant current and its magnitude real(8) jtot(3),jtotm !-----------------------------------------! ! APW and local-orbital variables ! !-----------------------------------------! ! maximum allowable APW order integer, parameter :: maxapword=3 ! polynomial order used for APW radial derivatives integer, parameter :: npapw=8 ! APW order integer apword(0:maxlapw,maxspecies) ! maximum of apword over all angular momenta and species integer apwordmax ! total number of APW coefficients (l, m and order) for each species integer lmoapw(maxspecies) ! energy step size used for APW numerical derivatives real(8) deapw ! APW initial linearisation energies real(8) apwe0(maxapword,0:maxlapw,maxspecies) ! APW linearisation energies real(8), allocatable :: apwe(:,:,:) ! APW derivative order integer apwdm(maxapword,0:maxlapw,maxspecies) ! apwve is .true. if the linearisation energies are allowed to vary logical apwve(maxapword,0:maxlapw,maxspecies) ! APW radial functions real(8), allocatable :: apwfr(:,:,:,:,:) ! derivate of radial functions at the muffin-tin surface multiplied by R_MT²/2 real(8), allocatable :: apwdfr(:,:,:) ! maximum number of local-orbitals integer, parameter :: maxlorb=200 ! maximum allowable local-orbital order integer, parameter :: maxlorbord=4 ! polynomial order used for local-orbital radial derivatives integer, parameter :: nplorb=8 ! number of local-orbitals integer nlorb(maxspecies) ! maximum nlorb over all species integer nlomax ! total number of local-orbitals integer nlotot ! local-orbital order integer lorbord(maxlorb,maxspecies) ! maximum lorbord over all species integer lorbordmax ! local-orbital angular momentum integer lorbl(maxlorb,maxspecies) ! maximum lorbl over all species integer lolmax ! (lolmax+1)^2 integer lolmmax ! energy step size used for local-orbital numerical derivatives real(8) delorb ! local-orbital initial energies real(8) lorbe0(maxlorbord,maxlorb,maxspecies) ! local-orbital energies real(8), allocatable :: lorbe(:,:,:) ! local-orbital derivative order integer lorbdm(maxlorbord,maxlorb,maxspecies) ! lorbve is .true. if the linearisation energies are allowed to vary logical lorbve(maxlorbord,maxlorb,maxspecies) ! local-orbital radial functions real(8), allocatable :: lofr(:,:,:,:) ! band energy search tolerance real(8) epsband ! maximum allowed change in energy during band energy search; enforced only if ! default energy is less than zero real(8) demaxbnd ! minimum default linearisation energy over all APWs and local-orbitals real(8) e0min ! if autolinengy is .true. then the fixed linearisation energies are set to the ! Fermi energy minus dlefe logical autolinengy ! difference between linearisation and Fermi energies when autolinengy is .true. real(8) dlefe ! lorbcnd is .true. if conduction state local-orbitals should be added logical lorbcnd ! conduction state local-orbital order integer lorbordc ! excess order of the APW and local-orbital functions integer nxoapwlo ! excess local orbitals integer nxlo ! number of (l,m) components used for generating the muffin-tin wavefunctions integer nlmwf(maxspecies) !-------------------------------------------! ! overlap and Hamiltonian variables ! !-------------------------------------------! ! overlap and Hamiltonian matrices sizes at each k-point integer, allocatable :: nmat(:,:) ! maximum nmat over all k-points integer nmatmax ! index to the position of the local-orbitals in the H and O matrices integer, allocatable :: idxlo(:,:,:) ! APW-local-orbital overlap integrals real(8), allocatable :: oalo(:,:,:) ! local-orbital-local-orbital overlap integrals real(8), allocatable :: ololo(:,:,:) ! APW-APW Hamiltonian integrals real(8), allocatable :: haa(:,:,:,:,:,:) ! local-orbital-APW Hamiltonian integrals real(8), allocatable :: hloa(:,:,:,:,:) ! local-orbital-local-orbital Hamiltonian integrals real(8), allocatable :: hlolo(:,:,:,:) ! complex Gaunt coefficient array complex(8), allocatable :: gntyry(:,:,:) ! tefvr is .true. if the first-variational eigenvalue equation is to be solved ! as a real symmetric problem logical tefvr ! tefvit is .true. if the first-variational eigenvalue equation is to be solved ! iteratively logical tefvit ! minimum and maximum allowed number of eigenvalue equation iterations integer minitefv,maxitefv ! eigenvalue mixing parameter for iterative solver real(8) befvit ! iterative solver convergence tolerance real(8) epsefvit !--------------------------------------------! ! eigenvalue and occupancy variables ! !--------------------------------------------! ! number of empty states per atom and spin real(8) nempty0,dnempty0 ! number of empty states integer nempty ! number of first-variational states integer nstfv ! number of second-variational states integer nstsv ! smearing type integer stype ! smearing function description character(64) sdescr ! smearing width real(8) swidth,swidth0 ! autoswidth is .true. if the smearing width is to be determined automatically logical autoswidth ! effective mass used in smearing width formula real(8) mstar ! maximum allowed occupancy (1 or 2) real(8) occmax ! convergence tolerance for occupation numbers real(8) epsocc ! second-variational occupation numbers real(8), allocatable :: occsv(:,:) ! Fermi energy for second-variational states real(8) efermi ! tscissor is .true. if the scissor correction is non-zero logical tscissor ! scissor correction applied to eigenvalues and momentum matrix elements real(8) scissor ! density of states at the Fermi energy real(8) fermidos ! estimated indirect and direct band gaps real(8) bandgap(2) ! k-points of indirect and direct gaps integer ikgap(3) ! error tolerance for the first-variational eigenvalues real(8) evaltol ! second-variational eigenvalues real(8), allocatable :: evalsv(:,:) ! tevecsv is .true. if second-variational eigenvectors are calculated logical tevecsv ! maximum number of k-point and states indices in user-defined list integer, parameter :: maxkst=20 ! number of k-point and states indices in user-defined list integer nkstlist ! user-defined list of k-point and state indices integer kstlist(2,maxkst) !------------------------------! ! core state variables ! !------------------------------! ! occupation numbers for core states real(8), allocatable :: occcr(:,:) ! eigenvalues for core states real(8), allocatable :: evalcr(:,:) ! radial wavefunctions for core states real(8), allocatable :: rwfcr(:,:,:,:) ! radial charge density for core states real(8), allocatable :: rhocr(:,:,:) ! spincore is .true. if the core is to be treated as spin-polarised logical spincore ! number of core spin-channels integer nspncr !--------------------------! ! energy variables ! !--------------------------! ! eigenvalue sum real(8) evalsum ! electron kinetic energy real(8) engykn ! core electron kinetic energy real(8) engykncr ! nuclear-nuclear energy real(8) engynn ! electron-nuclear energy real(8) engyen ! Hartree energy real(8) engyhar ! Coulomb energy (E_nn + E_en + E_H) real(8) engycl ! electronic Coulomb potential energy real(8) engyvcl ! Madelung term real(8) engymad ! exchange-correlation potential energy real(8) engyvxc ! exchange-correlation effective field energy real(8) engybxc ! energy of external global magnetic field real(8) engybext ! exchange energy real(8) engyx ! correlation energy real(8) engyc ! electronic entropy real(8) entrpy ! entropic contribution to free energy real(8) engyts ! total energy real(8) engytot !--------------------------------------------! ! force, stress and strain variables ! !--------------------------------------------! ! tforce is .true. if force should be calculated logical tforce,tforce0 ! Hellmann-Feynman force on each atom real(8), allocatable :: forcehf(:,:) ! total force on each atom real(8), allocatable :: forcetot(:,:) ! previous total force on each atom real(8), allocatable :: forcetotp(:,:) ! maximum force magnitude over all atoms real(8) forcemax ! maximum allowed force magnitude; if this force is reached for any atom then ! all forces are rescaled so that the maximum force magnitude is this value real(8) maxforce ! tfav0 is .true. if the average force should be zero in order to prevent ! translation of the atomic basis logical tfav0,tfav00 ! atomic position optimisation type ! 0 : no optimisation ! 1 : unconstrained optimisation integer atpopt ! maximum number of atomic position optimisation steps integer maxatpstp ! default step size parameter for atomic position optimisation real(8) tau0atp ! step size parameters for each atom real(8), allocatable :: tauatp(:) ! number of strain tensors integer nstrain ! current strain tensor integer :: istrain=0 ! strain tensors real(8) strain(3,3,9) ! small displacement parameter multiplied by the strain tensor for computing the ! stress tensor; also used for calculating the piezoelectric tensor real(8) deltast ! symmetry reduced stress tensor components real(8) stress(9) ! previous stress tensor real(8) stressp(9) ! stress tensor component magnitude maximum real(8) stressmax ! reference lattice vectors for generating the G-vectors and derived quantities real(8) avecref(3,3) ! tavref is .true. if avecref is non-zero logical tavref ! lattice vector optimisation type ! 0 : no optimisation ! 1 : unconstrained optimisation ! 2 : iso-volumetric optimisation integer latvopt ! maximum number of lattice vector optimisation steps integer maxlatvstp ! default step size parameter for lattice vector optimisation real(8) tau0latv ! step size for each stress tensor component acting on the lattice vectors real(8) taulatv(9) !--------------------------------------------------------! ! self-consistent loop and convergence variables ! !--------------------------------------------------------! ! maximum number of self-consistent loops integer maxscl,maxscl0 ! current self-consistent loop number integer iscl ! tlast is .true. if the calculation is on the last self-consistent loop logical tlast ! tstop is .true. if the STOP file exists logical tstop ! trestart is .true. if the code should be completely restarted logical trestart ! number of self-consistent loops after which STATE.OUT is written integer nwrite ! Kohn-Sham potential convergence tolerance real(8) epspot ! energy convergence tolerance real(8) epsengy ! force convergence tolerance real(8) epsforce ! stress tensor convergence tolerance real(8) epsstress !----------------------------------------------------------! ! density of states, optics and response variables ! !----------------------------------------------------------! ! number of energy intervals in the DOS/optics function plot integer nwplot ! fine k-point grid size for integration of functions in the Brillouin zone integer ngrkf ! smoothing level for DOS/optics function plot integer nswplot ! energy interval for DOS/optics function plot real(8) wplot(2) ! maximum angular momentum for the partial DOS plot integer lmaxdos ! dosocc is .true. if the DOS is to be weighted by the occupancy logical dosocc ! tpdos is .true. if the partial DOS should be calculated logical tpdos ! dosmsum is .true. if the partial DOS is to be summed over m logical dosmsum ! dosssum is .true. if the partial DOS is to be summed over spin logical dosssum ! number of optical matrix components required integer noptcomp ! required optical matrix components integer optcomp(3,27) ! intraband is .true. if the intraband term is to be added to the optical matrix logical intraband ! lmirep is .true. if the (l,m) band characters should correspond to the ! irreducible representations of the site symmetries logical lmirep ! spin-quantisation axis in Cartesian coordinates used when plotting the ! spin-resolved DOS (z-axis by default) real(8) sqados(3) ! q-vector in lattice and Cartesian coordinates for calculating the matrix ! elements < i,k+q | exp(iq.r) | j,k > real(8) vecql(3),vecqc(3) ! maximum initial-state energy allowed in ELNES transitions real(8) emaxelnes ! structure factor energy window real(8) wsfac(2) !-------------------------------------! ! 1D/2D/3D plotting variables ! !-------------------------------------! ! number of vertices in 1D plot integer nvp1d ! total number of points in 1D plot integer npp1d ! starting point for 1D plot integer ip01d ! vertices in lattice coordinates for 1D plot real(8), allocatable :: vvlp1d(:,:) ! distance to vertices in 1D plot real(8), allocatable :: dvp1d(:) ! plot vectors in lattice coordinates for 1D plot real(8), allocatable :: vplp1d(:,:) ! distance to points in 1D plot real(8), allocatable :: dpp1d(:) ! corner vectors of 2D plot in lattice coordinates real(8) vclp2d(3,0:2) ! grid sizes of 2D plot integer np2d(2) ! corner vectors of 3D plot in lattice coordinates real(8) vclp3d(3,0:3) ! grid sizes of 3D plot integer np3d(3) !-------------------------------------------------------------! ! OEP, Hartree-Fock and Kohn-Sham inversion variables ! !-------------------------------------------------------------! ! maximum number of core states over all species integer ncrmax ! maximum number of OEP iterations integer maxitoep ! OEP initial and subsequent step sizes real(8) tau0oep,tauoep ! exchange potential and magnetic field real(8), allocatable :: vxmt(:,:),vxir(:),bxmt(:,:,:),bxir(:,:) ! OEP residual functions real(8), allocatable :: dvxmt(:,:),dvxir(:),dbxmt(:,:,:),dbxir(:,:) ! magnitude of the OEP residual real(8) resoep ! hybrid is .true. if a hybrid functional is to be used logical hybrid,hybrid0 ! hybrid functional mixing coefficient real(8) hybridc !-------------------------------------------------------------! ! response function and perturbation theory variables ! !-------------------------------------------------------------! ! |G| cut-off for response functions real(8) gmaxrf ! energy cut-off for response functions real(8) emaxrf ! number of G-vectors for response functions integer ngrf ! number of response function frequencies integer nwrf ! complex response function frequencies complex(8), allocatable :: wrf(:) ! maximum number of spherical Bessel functions on the coarse radial mesh over ! all species integer njcmax !-------------------------------------------------! ! Bethe-Salpeter equation (BSE) variables ! !-------------------------------------------------! ! number of valence and conduction states for transitions integer nvbse,ncbse ! default number of valence and conduction states integer nvbse0,ncbse0 ! maximum number of extra valence and conduction states integer, parameter :: maxxbse=20 ! number of extra valence and conduction states integer nvxbse,ncxbse ! extra valence and conduction states integer istxbse(maxxbse),jstxbse(maxxbse) ! total number of transitions integer nvcbse ! size of blocks in BSE Hamiltonian matrix integer nbbse ! size of BSE matrix (= 2*nbbse) integer nmbse ! index from BSE valence states to second-variational states integer, allocatable :: istbse(:,:) ! index from BSE conduction states to second-variational states integer, allocatable :: jstbse(:,:) ! index from BSE valence-conduction pair and k-point to location in BSE matrix integer, allocatable :: ijkbse(:,:,:) ! BSE Hamiltonian complex(8), allocatable :: hmlbse(:,:) ! BSE Hamiltonian eigenvalues real(8), allocatable :: evalbse(:) ! if bsefull is .true. then the full BSE Hamiltonian is calculated, otherwise ! only the Hermitian block logical bsefull ! if hxbse/hdbse is .true. then the exchange/direct term is included in the BSE ! Hamiltonian logical hxbse,hdbse !--------------------------! ! timing variables ! !--------------------------! ! initialisation real(8) timeinit ! Hamiltonian and overlap matrix set up real(8) timemat ! first-variational calculation real(8) timefv ! second-variational calculation real(8) timesv ! charge density calculation real(8) timerho ! potential calculation real(8) timepot ! force calculation real(8) timefor !-----------------------------! ! numerical constants ! !-----------------------------! real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: twopi=6.2831853071795864769d0 real(8), parameter :: fourpi=12.566370614359172954d0 ! spherical harmonic Y₀₀ and its inverse real(8), parameter :: y00=0.28209479177387814347d0 real(8), parameter :: y00i=3.54490770181103205460d0 ! complex constants complex(4), parameter :: czero=(0.e0,0.e0),cone=(1.e0,0.e0) complex(4), parameter :: ci=(0.e0,1.e0),cmi=(0.e0,-1.e0) complex(8), parameter :: zzero=(0.d0,0.d0),zone=(1.d0,0.d0) complex(8), parameter :: zi=(0.d0,1.d0),zmi=(0.d0,-1.d0) ! Pauli spin matrices: ! σ_x = ⎛0 1⎞ σ_y = ⎛0 -i⎞ σ_z = ⎛1 0⎞ ! ⎝1 0⎠ ⎝i 0⎠ ⎝0 -1⎠ ! Planck constant in SI units (exact, CODATA 2018) real(8), parameter :: h_si=6.62607015d-34 ! reduced Planck constant ℏ in SI units real(8), parameter :: hbar_si=h_si/twopi ! speed of light in SI units (exact, CODATA 2018) real(8), parameter :: sol_si=299792458d0 ! speed of light in atomic units (1/α) (CODATA 2018) real(8), parameter :: sol=137.035999084d0 ! scaled speed of light real(8) solsc ! Hartree in SI units (CODATA 2018) real(8), parameter :: ha_si=4.3597447222071d-18 ! Hartree in eV (CODATA 2018) real(8), parameter :: ha_ev=27.211386245988d0 ! Hartree in inverse meters real(8), parameter :: ha_im=ha_si/(h_si*sol_si) ! Boltzmann constant in SI units (exact, CODATA 2018) real(8), parameter :: kb_si=1.380649d-23 ! Boltzmann constant in Hartree/kelvin real(8), parameter :: kboltz=kb_si/ha_si ! electron charge in SI units (exact, CODATA 2018) real(8), parameter :: e_si=1.602176634d-19 ! Bohr radius in SI units (CODATA 2018) real(8), parameter :: br_si=0.529177210903d-10 ! Bohr radius in Angstroms real(8), parameter :: br_ang=br_si*1.d10 ! atomic unit of magnetic flux density in SI real(8), parameter :: b_si=hbar_si/(e_si*br_si**2) ! atomic unit of electric field in SI real(8), parameter :: ef_si=ha_si/(e_si*br_si) ! atomic unit of time in SI real(8), parameter :: t_si=hbar_si/ha_si ! electron g-factor (CODATA 2018) real(8), parameter :: gfacte=2.00231930436256d0 ! electron mass in SI (CODATA 2018) real(8), parameter :: em_si=9.1093837015d-31 ! atomic mass unit in SI (CODATA 2018) real(8), parameter :: amu_si=1.66053906660d-27 ! atomic mass unit in electron masses real(8), parameter :: amu=amu_si/em_si !---------------------------------! ! miscellaneous variables ! !---------------------------------! ! code version integer, parameter :: version(3)=[10,4,9] ! maximum number of tasks integer, parameter :: maxtasks=40 ! number of tasks integer ntasks ! task index integer itask ! task array integer tasks(maxtasks) ! current task integer task ! filename extension for files generated by gndstate character(256) :: filext='.OUT' ! scratch space path character(256) scrpath ! number of note lines integer notelns ! notes to include in INFO.OUT character(256), allocatable :: notes(:) end module elk-10.4.9/src/PaxHeaders/modmpi.f900000644000000000000000000000013214762655564014056 xustar0030 mtime=1741380468.460008418 30 atime=1741380466.453997931 30 ctime=1741380468.460008418 elk-10.4.9/src/modmpi.f900000644002504400250440000000074214762655564016603 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modmpi use mpi ! MPI communicator for main code integer mpicom ! number of MPI processes integer np_mpi ! local MPI process number integer lp_mpi ! mp_mpi is .true. if the local MPI process is the master (0) logical mp_mpi ! commonly used error variable integer ierror end module elk-10.4.9/src/PaxHeaders/modramdisk.f900000644000000000000000000000013214762655564014723 xustar0030 mtime=1741380468.461008423 30 atime=1741380466.456997946 30 ctime=1741380468.461008423 elk-10.4.9/src/modramdisk.f900000644002504400250440000001723514762655564017455 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modramdisk ! ramdisk is .true. if the RAM disk should be used logical ramdisk ! maximum allowed number of files on the RAM disk integer, parameter, private :: maxfiles=32 ! maximum number of records per file integer, parameter, private :: maxrec=32768 ! wrtdsk is .true. if files should also be written to disk logical wrtdsk,wrtdsk0 ! record data stored as 4-byte words type, private :: rec_t integer(4), allocatable :: dat(:) end type ! RAM disk file consisting of the filename and an array of records type, private :: file_t character(len=:), allocatable :: fname type(rec_t), allocatable :: rec(:) end type ! arrays of files constituting the RAM disk type(file_t), allocatable, private :: file(:) ! private subroutines private findfile,openfile contains subroutine initrd ! this subroutine should not be called from a parallel region implicit none ! local variables integer i ! check if the RAM disk is already initialised if (allocated(file)) return ! allocate the files array and null the file names allocate(file(maxfiles)) do i=1,maxfiles file(i)%fname='' end do end subroutine subroutine findfile(fname,fnum) implicit none ! arguments character(*), intent(in) :: fname integer, intent(out) :: fnum ! local variables integer i if (.not.allocated(file)) then write(*,*) write(*,'("Error(findfile): RAM disk not initialised")') write(*,*) stop end if fnum=0 do i=1,maxfiles if (file(i)%fname == fname) then fnum=i return end if end do end subroutine subroutine openfile(fname,fnum) implicit none ! arguments character(*), intent(in) :: fname integer, intent(out) :: fnum ! local variables integer i ! check to see if the file already exists call findfile(fname,fnum) if (fnum /= 0) return ! use the first available file number do i=1,maxfiles if (file(i)%fname == '') then ! assign the filename file(i)%fname=fname ! allocate the record array allocate(file(i)%rec(maxrec)) fnum=i return end if end do write(*,*) write(*,'("Error(openfile): too many RAM disk files open : ",I8)') maxfiles write(*,*) stop end subroutine subroutine delfrd(fname) ! this subroutine should not be called from a parallel region implicit none ! arguments character(*), intent(in) :: fname ! local variables integer fnum,i ! determine the file number call findfile(fname,fnum) ! return if the file does not exist if (fnum == 0) return ! erase filename file(fnum)%fname='' ! deallocate associated arrays do i=1,maxrec if (allocated(file(fnum)%rec(i)%dat)) deallocate(file(fnum)%rec(i)%dat) end do deallocate(file(fnum)%rec) end subroutine subroutine putrd(fname,irec,n1,n2,n3,v1,v2,nrv,rva,nzv,zva) ! this subroutine should be called from an OpenMP critical section implicit none ! arguments character(*), intent(in) :: fname integer, intent(in) :: irec integer, optional, intent(in) :: n1,n2,n3 real(8), optional, intent(in) :: v1(3),v2(3) integer, optional, intent(in) :: nrv real(8), optional, intent(in) :: rva(*) integer, optional, intent(in) :: nzv complex(8), optional, intent(in) :: zva(*) ! local variables integer fnum,n,i,j ! check that the record number does not exceed the maximum if (irec > maxrec) then ! fail safe by enabling disk writes wrtdsk=.true. return end if ! find the record length in 4-byte words n=0 if (present(n1)) n=n+1 if (present(n2)) n=n+1 if (present(n3)) n=n+1 if (present(v1)) n=n+6 if (present(v2)) n=n+6 if (present(rva)) then if (present(nrv)) then n=n+2*nrv else write(*,*) write(*,'("Error(putrd): missing argument nrv")') write(*,*) stop end if end if if (present(zva)) then if (present(nzv)) then n=n+4*nzv else write(*,*) write(*,'("Error(putrd): missing argument nzv")') write(*,*) stop end if end if ! open the file call openfile(fname,fnum) ! allocate the record data array if required if (allocated(file(fnum)%rec(irec)%dat)) then if (size(file(fnum)%rec(irec)%dat) < n) then deallocate(file(fnum)%rec(irec)%dat) end if end if if (.not.allocated(file(fnum)%rec(irec)%dat)) then allocate(file(fnum)%rec(irec)%dat(n)) end if i=1 if (present(n1)) then file(fnum)%rec(irec)%dat(i)=n1 i=i+1 end if if (present(n2)) then file(fnum)%rec(irec)%dat(i)=n2 i=i+1 end if if (present(n3)) then file(fnum)%rec(irec)%dat(i)=n3 i=i+1 end if if (present(v1)) then j=i+5 file(fnum)%rec(irec)%dat(i:j)=transfer(v1(1:3),file(fnum)%rec(irec)%dat(i:j)) i=i+6 end if if (present(v2)) then j=i+5 file(fnum)%rec(irec)%dat(i:j)=transfer(v2(1:3),file(fnum)%rec(irec)%dat(i:j)) i=i+6 end if if (present(rva)) then j=i+2*nrv-1 file(fnum)%rec(irec)%dat(i:j)=transfer(rva(1:nrv), & file(fnum)%rec(irec)%dat(i:j)) i=i+2*nrv end if if (present(zva)) then j=i+4*nzv-1 file(fnum)%rec(irec)%dat(i:j)=transfer(zva(1:nzv), & file(fnum)%rec(irec)%dat(i:j)) end if end subroutine subroutine getrd(fname,irec,tgs,n1,n2,n3,v1,v2,nrv,rva,nzv,zva) implicit none ! arguments character(*), intent(in) :: fname integer, intent(in) :: irec logical, intent(out) :: tgs integer, optional, intent(out) :: n1,n2,n3 real(8), optional, intent(out) :: v1(3),v2(3) integer, optional, intent(in) :: nrv real(8), optional, intent(out) :: rva(*) integer, optional, intent(in) :: nzv complex(8), optional, intent(out) :: zva(*) ! local variables integer fnum,n,i if (present(rva)) then if (.not.present(nrv)) then write(*,*) write(*,'("Error(getrd): missing argument nrv")') write(*,*) stop end if end if if (present(zva)) then if (.not.present(nzv)) then write(*,*) write(*,'("Error(getrd): missing argument nzv")') write(*,*) stop end if end if tgs=.false. if (irec > maxrec) return ! determine the file number call findfile(fname,fnum) ! return unsuccessfully if file is not found or record is unavailable if (fnum == 0) return if (.not.allocated(file(fnum)%rec(irec)%dat)) return n=size(file(fnum)%rec(irec)%dat) i=1 if (present(n1)) then if (n < 1) return n1=file(fnum)%rec(irec)%dat(i) i=i+1 n=n-1 end if if (present(n2)) then if (n < 1) return n2=file(fnum)%rec(irec)%dat(i) i=i+1 n=n-1 end if if (present(n3)) then if (n < 1) return n3=file(fnum)%rec(irec)%dat(i) i=i+1 n=n-1 end if if (present(v1)) then if (n < 6) return v1(1:3)=transfer(file(fnum)%rec(irec)%dat(i:i+5),v1(1:3)) i=i+6 n=n-6 end if if (present(v2)) then if (n < 6) return v2(1:3)=transfer(file(fnum)%rec(irec)%dat(i:i+5),v2(1:3)) i=i+6 n=n-6 end if if (present(rva)) then if (n < 2*nrv) return rva(1:nrv)=transfer(file(fnum)%rec(irec)%dat(i:i+2*nrv-1),rva(1:nrv)) i=i+2*nrv n=n-2*nrv end if if (present(zva)) then if (n < 4*nzv) return zva(1:nzv)=transfer(file(fnum)%rec(irec)%dat(i:i+4*nzv-1),zva(1:nzv)) end if ! flag the get operation as successful tgs=.true. end subroutine subroutine rdstatus ! this subroutine should not be called from a parallel region implicit none ! local variables integer nf,nr,i,j integer(8) m,n write(*,*) write(*,'("Info(rdstatus):")') if (.not.allocated(file)) then write(*,'(" RAM disk not initialised")') return end if nf=0 n=0 do i=1,maxfiles if (file(i)%fname /= '') then write(*,*) write(*,'(" Filename : ",A)') file(i)%fname nf=nf+1 nr=0 m=0 do j=1,maxrec if (allocated(file(i)%rec(j)%dat)) then nr=nr+1 m=m+size(file(i)%rec(j)%dat) end if end do n=n+m write(*,'(" number of records : ",I8)') nr write(*,'(" total number of bytes : ",I14)') 4*m end if end do write(*,*) write(*,'(" Number of files on RAM disk : ",I4)') nf write(*,'(" Total number of bytes used by RAM disk : ",I14)') 4*n end subroutine end module elk-10.4.9/src/PaxHeaders/libxcifc_stub.f900000644000000000000000000000013214762655565015412 xustar0030 mtime=1741380469.588014315 30 atime=1741380466.458997957 30 ctime=1741380469.588014315 elk-10.4.9/src/libxcifc_stub.f900000644002504400250440000000407314762655565020140 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. ! Stub routines for libxc. See Elk manual for libxc installation instructions. module libxcifc integer libxcv(3) contains subroutine xcifc_libxc(xctype,n,tempa,rho,rhoup,rhodn,g2rho,g2up,g2dn,grho2, & gup2,gdn2,gupdn,tau,tauup,taudn,ex,ec,vx,vc,vxup,vxdn,vcup,vcdn,dxdgr2,dxdgu2,& dxdgd2,dxdgud,dcdgr2,dcdgu2,dcdgd2,dcdgud,dxdg2r,dxdg2u,dxdg2d,dcdg2r,dcdg2u, & dcdg2d,wx,wxup,wxdn,wc,wcup,wcdn) implicit none ! mandatory arguments integer, intent(in) :: xctype(3),n ! optional arguments real(8), optional :: tempa real(8), optional :: rho(n),rhoup(n),rhodn(n) real(8), optional :: g2rho(n),g2up(n),g2dn(n) real(8), optional :: grho2(n),gup2(n),gdn2(n),gupdn(n) real(8), optional :: tau(n),tauup(n),taudn(n) real(8), optional :: ex(n),ec(n),vx(n),vc(n) real(8), optional :: vxup(n),vxdn(n),vcup(n),vcdn(n) real(8), optional :: dxdgr2(n),dxdgu2(n),dxdgd2(n),dxdgud(n) real(8), optional :: dcdgr2(n),dcdgu2(n),dcdgd2(n),dcdgud(n) real(8), optional :: dxdg2r(n),dxdg2u(n),dxdg2d(n) real(8), optional :: dcdg2r(n),dcdg2u(n),dcdg2d(n) real(8), optional :: wx(n),wxup(n),wxdn(n) real(8), optional :: wc(n),wcup(n),wcdn(n) write(*,*) write(*,'("Error(libxcifc): libxc not or improperly installed")') write(*,*) stop end subroutine subroutine fxcifc_libxc(fxctype,n,rho,rhoup,rhodn,fxc,fxcuu,fxcud,fxcdd) implicit none ! mandatory arguments integer, intent(in) :: fxctype(3),n ! optional arguments real(8), optional :: rho(n),rhoup(n),rhodn(n) real(8), optional :: fxc(n),fxcuu(n),fxcud(n),fxcdd(n) write(*,*) write(*,'("Error(libxcifc): libxc not or improperly installed")') write(*,*) stop end subroutine subroutine xcdata_libxc(xctype,xcdescr,xcspin,xcgrad,hybrid,hybridc) implicit none ! arguments integer xctype(3) character(264) xcdescr integer xcspin integer xcgrad logical hybrid real(8) hybridc write(*,*) write(*,'("Error(libxcifc): libxc not or improperly installed")') write(*,*) stop end subroutine !EOC end module elk-10.4.9/src/PaxHeaders/modxcifc.f900000644000000000000000000000013214762655564014365 xustar0030 mtime=1741380468.465008444 30 atime=1741380466.460997967 30 ctime=1741380468.465008444 elk-10.4.9/src/modxcifc.f900000644002504400250440000004622214762655564017115 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modxcifc use libxcifc contains !BOP ! !ROUTINE: xcifc ! !INTERFACE: subroutine xcifc(xctype,n,tempa,rho,rhoup,rhodn,grho,gup,gdn,g2rho,g2up,g2dn, & g3rho,g3up,g3dn,grho2,gup2,gdn2,gupdn,tau,tauup,taudn,ex,ec,vx,vc,vxup,vxdn, & vcup,vcdn,dxdgr2,dxdgu2,dxdgd2,dxdgud,dcdgr2,dcdgu2,dcdgd2,dcdgud,dxdg2r, & dxdg2u,dxdg2d,dcdg2r,dcdg2u,dcdg2d,wx,wxup,wxdn,wc,wcup,wcdn,dtdr,dtdru,dtdrd,& dtdgr2,dtdgu2,dtdgd2,dtdg2r,dtdg2u,dtdg2d) ! !INPUT/OUTPUT PARAMETERS: ! xctype : type of exchange-correlation functional (in,integer(3)) ! n : number of density points (in,integer) ! tempa : temperature in atomic units (in,real,optional) ! rho : spin-unpolarised charge density (in,real(n),optional) ! rhoup : spin-up charge density (in,real(n),optional) ! rhodn : spin-down charge density (in,real(n),optional) ! grho : |grad rho| (in,real(n),optional) ! gup : |grad rhoup| (in,real(n),optional) ! gdn : |grad rhodn| (in,real(n),optional) ! g2rho : grad^2 rho (in,real(n),optional) ! g2up : grad^2 rhoup (in,real(n),optional) ! g2dn : grad^2 rhodn (in,real(n),optional) ! g3rho : (grad rho).(grad |grad rho|) (in,real(n),optional) ! g3up : (grad rhoup).(grad |grad rhoup|) (in,real(n),optional) ! g3dn : (grad rhodn).(grad |grad rhodn|) (in,real(n),optional) ! grho2 : |grad rho|^2 (in,real(n),optional) ! gup2 : |grad rhoup|^2 (in,real(n),optional) ! gdn2 : |grad rhodn|^2 (in,real(n),optional) ! gupdn : (grad rhoup).(grad rhodn) (in,real(n),optional) ! tau : kinetic energy density (in,real(n),optional) ! tauup : spin-up kinetic energy density (in,real(n),optional) ! taudn : spin-down kinetic energy density (in,real(n),optional) ! ex : exchange energy density (out,real(n),optional) ! ec : correlation energy density (out,real(n),optional) ! vx : spin-unpolarised exchange potential (out,real(n),optional) ! vc : spin-unpolarised correlation potential (out,real(n),optional) ! vxup : spin-up exchange potential (out,real(n),optional) ! vxdn : spin-down exchange potential (out,real(n),optional) ! vcup : spin-up correlation potential (out,real(n),optional) ! vcdn : spin-down correlation potential (out,real(n),optional) ! dxdgr2 : de_x/d(|grad rho|^2) (out,real(n),optional) ! dxdgu2 : de_x/d(|grad rhoup|^2) (out,real(n),optional) ! dxdgd2 : de_x/d(|grad rhodn|^2) (out,real(n),optional) ! dxdgud : de_x/d((grad rhoup).(grad rhodn)) (out,real(n),optional) ! dcdgr2 : de_c/d(|grad rho|^2) (out,real(n),optional) ! dcdgu2 : de_c/d(|grad rhoup|^2) (out,real(n),optional) ! dcdgd2 : de_c/d(|grad rhodn|^2) (out,real(n),optional) ! dcdgud : de_c/d((grad rhoup).(grad rhodn)) (out,real(n),optional) ! dxdg2r : de_x/d(grad^2 rho) (out,real(n),optional) ! dxdg2u : de_x/d(grad^2 rhoup) (out,real(n),optional) ! dxdg2d : de_x/d(grad^2 rhodn) (out,real(n),optional) ! dcdg2r : de_c/d(grad^2 rho) (out,real(n),optional) ! dcdg2u : de_c/d(grad^2 rhoup) (out,real(n),optional) ! dcdg2d : de_c/d(grad^2 rhodn) (out,real(n),optional) ! wx : de_x/dtau (out,real(n),optional) ! wxup : de_x/dtauup (out,real(n),optional) ! wxdn : de_x/dtaudn (out,real(n),optional) ! wc : de_c/dtau (out,real(n),optional) ! wcup : de_c/dtauup (out,real(n),optional) ! wcdn : de_c/dtaudn (out,real(n),optional) ! dtdr : dtau/drho (out,real(n),optional) ! dtdru : dtauup/drhoup (out,real(n),optional) ! dtdrd : dtaudn/drhodn (out,real(n),optional) ! dtdgr2 : dtau/d|grad rho|^2 (out,real(n),optional) ! dtdgu2 : dtauup/d(|grad rhoup|^2) (out,real(n),optional) ! dtdgd2 : dtaudn/d(|grad rhodn|^2) (out,real(n),optional) ! dtdg2r : dtau/d(grad^2 rho) (out,real(n),optional) ! dtdg2u : dtauup/d(grad^2 rhoup) (out,real(n),optional) ! dtdg2d : dtaudn/d(grad^2 rhodn) (out,real(n),optional) ! !DESCRIPTION: ! Interface to the exchange-correlation routines. In the most general case ! (meta-GGA), the exchange-correlation energy is given by ! $$ E_{xc}[\rho^{\uparrow},\rho^{\downarrow}]=\int d^3r\, ! \rho({\bf r})\,\varepsilon_{xc}(\rho^{\uparrow},\rho^{\downarrow}, ! |\nabla\rho|,|\nabla\rho^{\uparrow}|,|\nabla\rho^{\downarrow}|, ! \nabla^2\rho^{\uparrow},\nabla^2\rho^{\downarrow},\tau), $$ ! where $\rho({\bf r})=\rho^{\uparrow}({\bf r})+\rho^{\downarrow}({\bf r})$ is ! the density; ! $$ \tau({\bf r})\equiv\sum_{i\;{\rm occ}}\nabla\psi({\bf r})\cdot ! \nabla\psi({\bf r}) $$ ! is twice the spin-contracted kinetic energy density; and $\varepsilon_{xc}$ ! is the exchange-correlation energy per electron. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! mandatory arguments integer, intent(in) :: xctype(3),n ! optional arguments real(8), optional, intent(in) :: tempa real(8), optional, intent(in) :: rho(n),rhoup(n),rhodn(n) real(8), optional, intent(in) :: grho(n),gup(n),gdn(n) real(8), optional, intent(in) :: g2rho(n),g2up(n),g2dn(n) real(8), optional, intent(in) :: g3rho(n),g3up(n),g3dn(n) real(8), optional, intent(in) :: grho2(n),gup2(n),gdn2(n),gupdn(n) real(8), optional, intent(in) :: tau(n),tauup(n),taudn(n) real(8), optional, intent(out) :: ex(n),ec(n),vx(n),vc(n) real(8), optional, intent(out) :: vxup(n),vxdn(n),vcup(n),vcdn(n) real(8), optional, intent(out) :: dxdgr2(n),dxdgu2(n),dxdgd2(n),dxdgud(n) real(8), optional, intent(out) :: dxdg2r(n),dxdg2u(n),dxdg2d(n) real(8), optional, intent(out) :: wx(n),wxup(n),wxdn(n) real(8), optional, intent(out) :: dcdgr2(n),dcdgu2(n),dcdgd2(n),dcdgud(n) real(8), optional, intent(out) :: dcdg2r(n),dcdg2u(n),dcdg2d(n) real(8), optional, intent(out) :: wc(n),wcup(n),wcdn(n) real(8), optional, intent(out) :: dtdr(n),dtdru(n),dtdrd(n) real(8), optional, intent(out) :: dtdgr2(n),dtdgu2(n),dtdgd2(n) real(8), optional, intent(out) :: dtdg2r(n),dtdg2u(n),dtdg2d(n) ! local variables real(8) kappa,mu,beta ! allocatable arrays real(8), allocatable :: ra(:,:) if (n < 1) then write(*,*) write(*,'("Error(xcifc): n < 1 : ",I8)') n write(*,*) stop end if select case(abs(xctype(1))) case(1) ! No density-derived exchange-correlation energy or potential if (present(ex)) ex(1:n)=0.d0 if (present(ec)) ec(1:n)=0.d0 if (present(vx)) vx(1:n)=0.d0 if (present(vc)) vc(1:n)=0.d0 if (present(vxup)) vxup(1:n)=0.d0 if (present(vxdn)) vxdn(1:n)=0.d0 if (present(vcup)) vcup(1:n)=0.d0 if (present(vcdn)) vcdn(1:n)=0.d0 case(2) ! Perdew-Zunger parameterisation of Ceperley-Alder electron gas ! J. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981) ! D. M. Ceperly and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980) if (present(rho).and.present(ex).and.present(ec).and.present(vx) & .and.present(vc)) then call xc_pzca(n,rho,ex,ec,vx,vc) else goto 10 end if case(3) ! Perdew-Wang parameterisation of the spin-polarised Ceperley-Alder electron gas ! J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992) ! D. M. Ceperly and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980) if (present(rhoup).and.present(rhodn).and.present(ex).and.present(ec) & .and.present(vxup).and.present(vxdn).and.present(vcup) & .and.present(vcdn)) then ! spin-polarised density call xc_pwca(n,rhoup,rhodn,ex,ec,vxup,vxdn,vcup,vcdn) else if (present(rho).and.present(ex).and.present(ec).and.present(vx) & .and.present(vc)) then ! divide spin-unpolarised density into up and down allocate(ra(n,2)) ra(1:n,1)=0.5d0*rho(1:n) call xc_pwca(n,ra,ra,ex,ec,vx,ra(:,2),vc,ra(:,2)) deallocate(ra) else goto 10 end if case(4) ! X-alpha approximation ! J. C. Slater, Phys. Rev. 81, 385 (1951) if (present(rho).and.present(ex).and.present(ec).and.present(vx) & .and.present(vc)) then call xc_xalpha(n,rho,ex,vx) ! set correlation energy and potential to zero ec(1:n)=0.d0 vc(1:n)=0.d0 else goto 10 end if case(5) ! U. von Barth and L. Hedin parameterisation of LSDA ! J. Phys. C, 5, 1629 (1972) if (present(rhoup).and.present(rhodn).and.present(ex).and.present(ec) & .and.present(vxup).and.present(vxdn).and.present(vcup) & .and.present(vcdn)) then ! spin-polarised density call xc_vbh(n,rhoup,rhodn,ex,ec,vxup,vxdn,vcup,vcdn) else if (present(rho).and.present(ex).and.present(ec).and.present(vx) & .and.present(vc)) then ! divide spin-unpolarised density into up and down allocate(ra(n,2)) ra(1:n,1)=0.5d0*rho(1:n) call xc_vbh(n,ra,ra,ex,ec,vx,ra(:,2),vc,ra(:,2)) deallocate(ra) else goto 10 end if case(20,21,22) ! original PBE kappa kappa=0.804d0 if (xctype(1) == 21) then ! Zhang-Yang kappa kappa=1.245d0 end if ! original PBE mu and beta mu=0.2195149727645171d0 beta=0.06672455060314922d0 if (xctype(1) == 22) then ! PBEsol parameters mu=10.d0/81.d0 beta=0.046d0 end if ! Perdew-Burke-Ernzerhof generalised gradient approximation ! Phys. Rev. Lett. 77, 3865 (1996); 78, 1396(E) (1997) ! Revised PBE, Zhang-Yang, Phys. Rev. Lett. 80, 890 (1998) if (present(rhoup).and.present(rhodn).and.present(grho).and.present(gup) & .and.present(gdn).and.present(g2up).and.present(g2dn).and.present(g3rho) & .and.present(g3up).and.present(g3dn).and.present(ex).and.present(ec) & .and.present(vxup).and.present(vxdn).and.present(vcup) & .and.present(vcdn)) then call xc_pbe(n,kappa,mu,beta,rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up, & g3dn,ex,ec,vxup,vxdn,vcup,vcdn) else if (present(rho).and.present(grho).and.present(g2rho) & .and.present(g3rho).and.present(ex).and.present(ec).and.present(vx) & .and.present(vc)) then allocate(ra(n,5)) ra(1:n,1)=0.5d0*rho(1:n) ra(1:n,2)=0.5d0*grho(1:n) ra(1:n,3)=0.5d0*g2rho(1:n) ra(1:n,4)=0.25d0*g3rho(1:n) call xc_pbe(n,kappa,mu,beta,ra,ra,grho,ra(:,2),ra(:,2),ra(:,3),ra(:,3), & g3rho,ra(:,4),ra(:,4),ex,ec,vx,ra(:,5),vc,ra(:,5)) deallocate(ra) else goto 10 end if case(26) ! Wu-Cohen exchange with PBE correlation generalised gradient functional ! Zhigang Wu and R. E. Cohen, Phys. Rev. B 73, 235116 (2006) if (present(rho).and.present(grho).and.present(g2rho).and.present(g3rho) & .and.present(ex).and.present(ec).and.present(vx).and.present(vc)) then call xc_wc06(n,rho,grho,g2rho,g3rho,ex,ec,vx,vc) else goto 10 end if case(30) ! Armiento-Mattsson generalised gradient functional ! R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005) if (present(rho).and.present(grho).and.present(g2rho).and.present(g3rho) & .and.present(ex).and.present(ec).and.present(vx).and.present(vc)) then call xc_am05(n,rho,grho,g2rho,g3rho,ex,ec,vx,vc) else goto 10 end if case(50) ! Thomas-Fermi kinetic energy functional derivative δτ(r')/δρ(r) if (present(rhoup).and.present(rhodn).and.present(dtdru) & .and.present(dtdrd)) then call k_tf_sp(n,rhoup,rhodn,dtdru,dtdrd) if (present(dtdgu2)) dtdgu2(1:n)=0.d0 if (present(dtdgd2)) dtdgd2(1:n)=0.d0 else if (present(rho).and.present(dtdr)) then call k_tf(n,rho,dtdr) if (present(dtdgr2)) dtdgr2(1:n)=0.d0 else goto 10 end if case(51) ! Thomas-Fermi kinetic energy functional derivative scaled by the ratio of the ! exact τ to the TF τ if (present(rhoup).and.present(rhodn).and.present(tauup).and.present(taudn) & .and.present(dtdru).and.present(dtdrd)) then call k_tfsc_sp(n,rhoup,rhodn,tauup,taudn,dtdru,dtdrd) if (present(dtdgu2)) dtdgu2(1:n)=0.d0 if (present(dtdgd2)) dtdgd2(1:n)=0.d0 else if (present(rho).and.present(tau).and.present(dtdr)) then call k_tfsc(n,rho,tau,dtdr) if (present(dtdgr2)) dtdgr2(1:n)=0.d0 else goto 10 end if case(52) ! Thomas-Fermi-von Weizsacker kinetic energy functional derivative if (present(rhoup).and.present(rhodn).and.present(gup2).and.present(gdn2) & .and.present(dtdru).and.present(dtdrd).and.present(dtdgu2) & .and.present(dtdgd2)) then call k_tfvw_sp(n,rhoup,rhodn,gup2,gdn2,dtdru,dtdrd,dtdgu2,dtdgd2) else if (present(rho).and.present(grho2).and.present(dtdr) & .and.present(dtdgr2)) then call k_tfvw(n,rho,grho2,dtdr,dtdgr2) else goto 10 end if case(100) ! libxc library functionals if (present(rhoup).and.present(rhodn).and.present(g2up).and.present(g2dn) & .and.present(gup2).and.present(gdn2).and.present(gupdn).and.present(tauup) & .and.present(taudn).and.present(ex).and.present(ec).and.present(vxup) & .and.present(vxdn).and.present(vcup).and.present(vcdn).and.present(dxdgu2) & .and.present(dxdgd2).and.present(dxdgud).and.present(dcdgu2) & .and.present(dcdgd2).and.present(dcdgud).and.present(dxdg2u) & .and.present(dxdg2d).and.present(dcdg2u).and.present(dcdg2d) & .and.present(wxup).and.present(wxdn).and.present(wcup) & .and.present(wcdn)) then ! spin-polarised meta-GGA call xcifc_libxc(xctype,n,rhoup=rhoup,rhodn=rhodn,g2up=g2up,g2dn=g2dn, & gup2=gup2,gdn2=gdn2,gupdn=gupdn,tauup=tauup,taudn=taudn,ex=ex,ec=ec, & vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn,dxdgu2=dxdgu2,dxdgd2=dxdgd2, & dxdgud=dxdgud,dcdgu2=dcdgu2,dcdgd2=dcdgd2,dcdgud=dcdgud,dxdg2u=dxdg2u, & dxdg2d=dxdg2d,dcdg2u=dcdg2u,dcdg2d=dcdg2d,wxup=wxup,wxdn=wxdn,wcup=wcup, & wcdn=wcdn) else if (present(rhoup).and.present(rhodn).and.present(gup2) & .and.present(gdn2).and.present(gupdn).and.present(ex).and.present(ec) & .and.present(vxup).and.present(vxdn).and.present(vcup).and.present(vcdn) & .and.present(dxdgu2).and.present(dxdgd2).and.present(dxdgud) & .and.present(dcdgu2).and.present(dcdgd2).and.present(dcdgud)) then ! spin-polarised GGA call xcifc_libxc(xctype,n,rhoup=rhoup,rhodn=rhodn,gup2=gup2,gdn2=gdn2, & gupdn=gupdn,ex=ex,ec=ec,vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn, & dxdgu2=dxdgu2,dxdgd2=dxdgd2,dxdgud=dxdgud,dcdgu2=dcdgu2,dcdgd2=dcdgd2, & dcdgud=dcdgud) else if (present(rhoup).and.present(rhodn).and.present(g2up) & .and.present(g2dn).and.present(gup2).and.present(gdn2).and.present(tauup) & .and.present(taudn).and.present(dtdru).and.present(dtdrd) & .and.present(dtdg2u).and.present(dtdg2d).and.present(dtdgu2) & .and.present(dtdgd2).and.present(wxup).and.present(wxdn)) then ! spin-polarised LSDA, GGA or meta-GGA kinetic energy functional call xcifc_libxc(xctype,n,rhoup=rhoup,rhodn=rhodn,g2up=g2up,g2dn=g2dn, & gup2=gup2,gdn2=gdn2,tauup=tauup,taudn=taudn,vxup=dtdru,vxdn=dtdrd, & dxdg2u=dtdg2u,dxdg2d=dtdg2d,dxdgu2=dtdgu2,dxdgd2=dtdgd2,wxup=wxup, & wxdn=wxdn) else if (present(rhoup).and.present(rhodn).and.present(ex).and.present(ec) & .and.present(vxup).and.present(vxdn).and.present(vcup) & .and.present(vcdn)) then ! spin-polarised LSDA call xcifc_libxc(xctype,n,tempa=tempa,rhoup=rhoup,rhodn=rhodn,ex=ex,ec=ec, & vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn) else if (present(rho).and.present(g2rho).and.present(grho2).and.present(tau) & .and.present(ex).and.present(ec).and.present(vx).and.present(vc) & .and.present(dxdgr2).and.present(dcdgr2).and.present(dxdg2r) & .and.present(dcdg2r).and.present(wx).and.present(wc)) then ! spin-unpolarised meta-GGA call xcifc_libxc(xctype,n,rho=rho,g2rho=g2rho,grho2=grho2,tau=tau,ex=ex, & ec=ec,vx=vx,vc=vc,dxdgr2=dxdgr2,dcdgr2=dcdgr2,dxdg2r=dxdg2r, & dcdg2r=dcdg2r,wx=wx,wc=wc) else if (present(rho).and.present(grho2).and.present(ex).and.present(ec) & .and.present(vx).and.present(vc).and.present(dxdgr2) & .and.present(dcdgr2)) then ! spin-unpolarised GGA call xcifc_libxc(xctype,n,rho=rho,grho2=grho2,ex=ex,ec=ec,vx=vx,vc=vc, & dxdgr2=dxdgr2,dcdgr2=dcdgr2) else if (present(rho).and.present(g2rho).and.present(grho2).and.present(tau) & .and.present(dtdr).and.present(dtdgr2).and.present(dtdg2r) & .and.present(wx)) then ! spin-unpolarised LDA, GGA or meta-GGA kinetic energy functional call xcifc_libxc(xctype,n,rho=rho,g2rho=g2rho,grho2=grho2,tau=tau,vx=dtdr, & dxdgr2=dtdgr2,dxdg2r=dtdg2r,wx=wx) else if (present(rho).and.present(ex).and.present(ec).and.present(vx) & .and.present(vc)) then ! spin-unpolarised LDA call xcifc_libxc(xctype,n,tempa=tempa,rho=rho,ex=ex,ec=ec,vx=vx,vc=vc) else goto 10 end if case default write(*,*) write(*,'("Error(xcifc): xctype not defined : ",I8)') xctype(1) write(*,*) stop end select ! set exchange potential to zero for EXX if (xctype(1) <= -2) then if (present(vx)) vx(1:n)=0.d0 if (present(vxup)) vxup(1:n)=0.d0 if (present(vxdn)) vxdn(1:n)=0.d0 end if return 10 continue write(*,*) write(*,'("Error(xcifc): missing arguments for exchange-correlation type ",& &3I6)') xctype(:) write(*,*) stop end subroutine !EOC !BOP ! !ROUTINE: getxcdata ! !INTERFACE: subroutine getxcdata(xctype,xcdescr,xcspin,xcgrad,hybrid,hybridc) ! !INPUT/OUTPUT PARAMETERS: ! xctype : type of exchange-correlation functional (in,integer(3)) ! xcdescr : description of functional (out,character(264)) ! xcspin : spin treatment (out,integer) ! xcgrad : gradient treatment (out,integer) ! hybrid : .true. if functional a hybrid (out,logical) ! hybridc : hybrid exact exchange mixing coefficient (out,real(8)) ! !DESCRIPTION: ! Returns data on the exchange-correlation functional labeled by {\tt xctype}. ! The character array {\tt xcdescr} contains a short description of the ! functional including journal references. The variable {\tt xcspin} is set to ! 1 or 0 for spin-polarised or -unpolarised functionals, respectively. For ! functionals which require the gradients of the density {\tt xcgrad} is set ! to 1, otherwise it is set to 0. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: xctype(3) character(264), intent(out) :: xcdescr integer, intent(out) :: xcspin,xcgrad logical, intent(out) :: hybrid real(8), intent(out) :: hybridc select case(abs(xctype(1))) case(1) xcdescr='No density-derived exchange-correlation energy or potential' ! spin-polarisation or gradient status not required xcspin=-1 xcgrad=-1 case(2) xcdescr='Perdew-Zunger/Ceperley-Alder, Phys. Rev. B 23, 5048 (1981)' xcspin=0 xcgrad=0 case(3) xcdescr='Perdew-Wang/Ceperley-Alder, Phys. Rev. B 45, 13244 (1992)' xcspin=1 xcgrad=0 case(4) xcdescr='X-alpha approximation, J. C. Slater, Phys. Rev. 81, 385 (1951)' xcspin=0 xcgrad=0 case(5) xcdescr='von Barth-Hedin, J. Phys. C 5, 1629 (1972)' xcspin=1 xcgrad=0 case(20) xcdescr='Perdew-Burke-Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)' xcspin=1 xcgrad=1 case(21) xcdescr='Revised PBE, Zhang-Yang, Phys. Rev. Lett. 80, 890 (1998)' xcspin=1 xcgrad=1 case(22) xcdescr='PBEsol, Phys. Rev. Lett. 100, 136406 (2008)' xcspin=1 xcgrad=1 case(26) xcdescr='Wu-Cohen exchange + PBE correlation, Phys. Rev. B 73, 235116 (2006)' xcspin=0 xcgrad=1 case(30) xcdescr='Armiento-Mattsson functional, Phys. Rev. B 72, 85108 (2005)' xcspin=0 xcgrad=1 case(50) xcdescr='Thomas-Fermi kinetic energy functional' xcspin=-1 xcgrad=0 case(51) xcdescr='Thomas-Fermi kinetic energy functional scaled by the ratio of the & &exact τ to the TF τ' xcspin=-1 xcgrad=0 case(52) xcdescr='Thomas-Fermi-von Weizsacker kinetic energy functional' xcspin=-1 xcgrad=1 case(100) ! libxc library functionals call xcdata_libxc(xctype,xcdescr,xcspin,xcgrad,hybrid,hybridc) case default write(*,*) write(*,'("Error(getxcdata): xctype not defined : ",I8)') xctype(1) write(*,*) stop end select end subroutine !EOC end module elk-10.4.9/src/PaxHeaders/modfxcifc.f900000644000000000000000000000013214762655564014533 xustar0030 mtime=1741380468.466008449 30 atime=1741380466.463997983 30 ctime=1741380468.466008449 elk-10.4.9/src/modfxcifc.f900000644002504400250440000000414714762655564017263 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modfxcifc use libxcifc contains subroutine fxcifc(fxctype,n,rho,rhoup,rhodn,fxc,fxcuu,fxcud,fxcdd) implicit none ! mandatory arguments integer, intent(in) :: fxctype(3),n ! optional arguments real(8), optional, intent(in) :: rho(n),rhoup(n),rhodn(n) real(8), optional, intent(out) :: fxc(n),fxcuu(n),fxcud(n),fxcdd(n) ! allocatable arrays real(8), allocatable :: ra(:,:) if (n < 1) then write(*,*) write(*,'("Error(fxcifc): n < 1 : ",I8)') n write(*,*) stop end if select case(abs(fxctype(1))) case(0,1) ! f_xc = 0 if (present(fxcuu).and.present(fxcud).and.present(fxcdd)) then fxcuu(1:n)=0.d0 fxcud(1:n)=0.d0 fxcdd(1:n)=0.d0 else if (present(fxc)) then fxc(1:n)=0.d0 else goto 10 end if case(3) ! Perdew-Wang-Ceperley-Alder if (present(rhoup).and.present(rhodn).and.present(fxcuu).and.present(fxcud) & .and.present(fxcdd)) then ! spin-polarised density call fxc_pwca(n,rhoup,rhodn,fxcuu,fxcud,fxcdd) else if (present(rho).and.present(fxc)) then ! divide spin-unpolarised density into up and down allocate(ra(n,4)) ra(1:n,1)=0.5d0*rho(1:n) call fxc_pwca(n,ra(:,1),ra(:,1),ra(:,2),ra(:,3),ra(:,4)) fxc(1:n)=0.5d0*(ra(1:n,2)+ra(1:n,3)) deallocate(ra) else goto 10 end if case(100) ! libxc library functionals if (present(rhoup).and.present(rhodn).and.present(fxcuu).and.present(fxcud) & .and.present(fxcdd)) then ! LSDA call fxcifc_libxc(fxctype,n,rhoup=rhoup,rhodn=rhodn,fxcuu=fxcuu, & fxcud=fxcud,fxcdd=fxcdd) else if (present(rho).and.present(fxc)) then ! LDA call fxcifc_libxc(fxctype,n,rho=rho,fxc=fxc) else goto 10 end if case default write(*,*) write(*,'("Error(fxcifc): response function unavailable for fxctype ",3I8)') & fxctype write(*,*) stop end select return 10 continue write(*,*) write(*,'("Error(fxcifc): missing arguments for exchange-correlation type ",& &3I6)') fxctype(:) write(*,*) stop end subroutine end module elk-10.4.9/src/PaxHeaders/moddftu.f900000644000000000000000000000013014762655564014231 xustar0029 mtime=1741380468.46800846 30 atime=1741380466.465997993 29 ctime=1741380468.46800846 elk-10.4.9/src/moddftu.f900000644002504400250440000000636614762655564016770 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module moddftu use modmain !-----------------------------------------------------------! ! muffin-tin density and potential matrix variables ! !-----------------------------------------------------------! ! maximum angular momentum for muffin-tin density matrix integer, parameter :: lmaxdm=3 integer, parameter :: lmmaxdm=(lmaxdm+1)**2 ! density matrix in each muffin-tin complex(8), allocatable :: dmatmt(:,:,:,:,:) ! tolerance for checking invariance of density matrix under symmetry operations real(8) epsdmat ! potential matrix in each muffin-tin complex(8), allocatable :: vmatmt(:,:,:,:,:) ! potential matrix in spherical coordinates for lmaxi and lmaxo complex(4), allocatable :: vmatmti(:,:,:,:,:),vmatmto(:,:,:,:,:) ! tvmatmt is .true. if the potential matrices are calculated logical tvmatmt ! tvmmt is .true. if the potential matrix for that l and atom is non-zero logical, allocatable :: tvmmt(:,:) !-------------------------! ! DFT+U variables ! !-------------------------! ! type of DFT+U to use (0 = none) integer dftu ! input type for DFT+U calculation (1:5) integer inpdftu ! maximum number of DFT+U entries integer, parameter :: maxdftu=10 ! number of DFT+U entries integer ndftu ! species and angular momentum for each entry integer isldu(2,maxdftu) ! U and J values for each entry real(8) ujdu(2,maxdftu) ! DFT+U energy for each atom and entry real(8), allocatable :: engyadu(:,:) ! energy from the DFT+U correction real(8) engydu ! Slater parameters real(8) fdu(0:2*lmaxdm,maxdftu) ! Racah parameters real(8) edu(0:lmaxdm,maxdftu) ! screening length of Yukawa potential to calculate Slater integrals real(8) lamdu(maxdftu) ! initial values of screening length if U is fixed real(8) lamdu0(maxdftu) ! energies to calculate radial functions for Slater integrals real(8), allocatable :: efdu(:,:) ! radial functions to calculate Slater integrals real(8), allocatable :: fdufr(:,:,:) ! fixed value of U for which screening length has to be determined real(8) udufix(maxdftu),dudufix(maxdftu) !---------------------------------! ! tensor moment variables ! !---------------------------------! ! tmwrite is .true. if tensor moments are written out at every s.c. loop logical tmwrite ! fixed tensor moment type ! 0 : none ! 1 (-1) : fixed 3-index tensor moment (or just lowering the symmetry) integer ftmtype ! number of fixed tensor moment entries integer ntmfix ! tensor moment indices for each entry: ! is, ia, l for the species, atom, angular momentum ! k, p, r, t for the 3-index tensor moment and vector component integer, allocatable :: itmfix(:,:) ! 3-index tensor component with conventional normalisation real(8), allocatable :: wkprfix(:) ! density matrices corresponding to the fixed tensor moments complex(8), allocatable :: dmftm(:,:,:,:,:) ! fixed tensor moment potential matrix complex(8), allocatable :: vmftm(:,:,:,:,:) ! fixed tensor moment step size real(8) tauftm ! tensor moments at t=0 of a TDDFT+U calculations real(8), allocatable :: wkpr0(:,:) ! tm3old is .true. if the tensor moments should be in the old complex convention logical tm3old end module elk-10.4.9/src/PaxHeaders/modrdm.f900000644000000000000000000000013014762655564014051 xustar0029 mtime=1741380468.47000847 30 atime=1741380466.468998009 29 ctime=1741380468.47000847 elk-10.4.9/src/modrdm.f900000644002504400250440000000213314762655564016574 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modrdm use modmain !--------------------------------------------------------------------! ! reduced density matrix functional theory (RDMFT) variables ! !--------------------------------------------------------------------! ! Coulomb potential matrix elements complex(8), allocatable :: vclmat(:,:,:) ! derivative of kinetic energy w.r.t. natural orbital coefficients complex(8), allocatable :: dkdc(:,:,:) ! step size for occupation numbers real(8) taurdmn ! step size for natural orbital coefficients real(8) taurdmc ! xc functional integer rdmxctype ! maximum number of self-consistent loops integer rdmmaxscl ! maximum number of iterations for occupation number optimisation integer maxitn ! maximum number of iteration for natural orbital optimisation integer maxitc ! exponent for the Power and hybrid functionals real(8) rdmalpha ! temperature real(8) rdmtemp ! entropy real(8) rdmentrpy end module elk-10.4.9/src/PaxHeaders/modphonon.f900000644000000000000000000000013114762655564014571 xustar0030 mtime=1741380468.471008475 29 atime=1741380466.47099802 30 ctime=1741380468.471008475 elk-10.4.9/src/modphonon.f900000644002504400250440000001334014762655564017315 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modphonon use modmain !--------------------------! ! phonon variables ! !--------------------------! ! number of phonon branches (3*natmtot) integer nbph ! current phonon q-point, species, atom and polarisation index integer iqph,isph,iaph,iasph,ipph ! tphq0 is .true. if q = 0 logical tphq0 ! number of vectors for writing out frequencies and eigenvectors integer nphwrt ! vectors in lattice coordinates for writing out frequencies and eigenvectors real(8), allocatable :: vqlwrt(:,:) ! Coulomb pseudopotential real(8) mustar ! number of temperatures for the Eliashberg equations and thermal properties integer ntemp ! dynamical matrices for all q-points complex(8), allocatable :: dynq(:,:,:) ! dynamical matrices for all R-points real(8), allocatable :: dynr(:,:,:) ! phonon frequencies for all q-points real(8), allocatable :: wphq(:,:) ! tphnat is .true. if the non-analytic term is to be added to the phonon ! dispersion; this requires the Born effective charges and dielectric function logical tphnat ! Born effective charge tensor for each atom real(8), allocatable :: bec(:,:,:) ! static dielectric tensor real(8) epsw0(3,3) !-----------------------------! ! supercell variables ! !-----------------------------! ! number of primitive unit cells in phonon supercell integer nscph ! Cartesian offset vectors for each primitive cell in the supercell real(8), allocatable :: vscph(:,:) ! phonon displacement distance real(8) deltaph !---------------------! ! k+q-vectors ! !---------------------! ! k+q-vectors in lattice coordinates real(8), allocatable :: vkql(:,:) ! k+q-vectors in Cartesian coordinates real(8), allocatable :: vkqc(:,:) !------------------------------! ! G+q-vector variables ! !------------------------------! ! G+q-vectors in Cartesian coordinates real(8), allocatable :: vgqc(:,:) ! G+q-vector lengths real(8), allocatable :: gqc(:) ! regularised Coulomb Green's function in G+q-space real(8), allocatable :: gclgq(:) ! spherical Bessel functions j_l(|G+q|R_mt) real(8), allocatable :: jlgqrmt(:,:,:) ! spherical harmonics for G+q-vectors complex(8), allocatable :: ylmgq(:,:) ! structure factors for G+q-vectors complex(8), allocatable :: sfacgq(:,:) ! smooth step function form factors for all species and G+q-vectors real(8), allocatable :: ffacgq(:,:) ! characteristic function derivative in G- and G+q-space complex(8), allocatable :: dcfunig(:) ! characteristic function derivative in real-space complex(8), allocatable :: dcfunir(:) !--------------------------------! ! G+k+q-vector variables ! !--------------------------------! ! number of G+k+q-vector for each k-point integer, allocatable :: ngkq(:,:) ! index from G+k+q-vectors to G-vectors integer, allocatable :: igkqig(:,:,:) ! G+k+q-vectors in lattice and Cartesian coordinates real(8), allocatable :: vgkql(:,:,:,:),vgkqc(:,:,:,:) ! G+k+q-vector lengths real(8), allocatable :: gkqc(:,:,:) ! structure factors for the G+k+q-vectors complex(8), allocatable :: sfacgkq(:,:,:,:) !----------------------------------------------------------! ! density functional perturbation theory variables ! !----------------------------------------------------------! ! density derivative complex(8), allocatable :: drhomt(:,:),drhoir(:) ! magnetisation derivative complex(8), allocatable :: dmagmt(:,:,:),dmagir(:,:) ! Coulomb potential derivative complex(8), allocatable :: dvclmt(:,:),dvclir(:) ! gradient of vsmt for the displaced muffin-tin complex(8), allocatable :: gvsmt(:) ! combined target array for dvsmt, dvsir, dbsmt and dbsir complex(8), allocatable, target :: dvsbs(:) ! muffin-tin Kohn-Sham potential derivative complex(8), pointer, contiguous :: dvsmt(:,:) ! interstitial Kohn-Sham potential derivative complex(8), allocatable :: dvsir(:) ! G+q-space interstitial Kohn-Sham potential derivative complex(8), pointer, contiguous :: dvsig(:) ! Kohn-Sham effective magnetic field derivative complex(8), pointer, contiguous :: dbsmt(:,:,:),dbsir(:,:) ! spin-orbit coupling radial function derivative complex(8), allocatable :: dsocfr(:,:) ! APW-APW Hamiltonian integral derivatives complex(8), allocatable :: dhaa(:,:,:,:,:,:) ! local-orbital-APW Hamiltonian integral derivatives complex(8), allocatable :: dhloa(:,:,:,:,:) ! local-orbital-local-orbital Hamiltonian integral derivatives complex(8), allocatable :: dhlolo(:,:,:,:) ! real Gaunt coefficient array real(8), allocatable :: gntyyy(:,:,:) ! smallest allowed perturbation theory denominator for eigenvector derivatives real(8) epsdev ! Fermi energy derivative real(8) defermi ! first-variational eigenvalue derivatives real(8), allocatable :: devalfv(:,:,:) ! second-variational eigenvalue derivatives real(8), allocatable :: devalsv(:,:) ! second-variational occupation number derivatives real(8), allocatable :: doccsv(:,:) !-------------------------------------------+ ! electron-phonon mean-field theory | !-------------------------------------------+ ! energy change of the electron system real(8) dengye ! energy change of the phonon system real(8) dengyph ! sum of energy changes in electron and phonon systems real(8) dengy ! phonon frequency cut-off below which modes are neglected real(8) wphcut ! scale factor of the electron-phonon term and its mixing parameter real(8) ephscf(2) ! anomalous is .true. if only the anomalous density matrix is to be used in the ! construction of the electron-phonon Hamiltonian logical anomalous ! tephde is .true. if D = D0 + E, otherwise D = D0 logical tephde ! single-precision electron-phonon matrix element array for each k- and q-point complex(4), allocatable :: ephmkq(:,:,:,:,:) end module elk-10.4.9/src/PaxHeaders/modtest.f900000644000000000000000000000013214762655564014250 xustar0030 mtime=1741380468.473008486 30 atime=1741380466.473998035 30 ctime=1741380468.473008486 elk-10.4.9/src/modtest.f900000644002504400250440000000467614762655564017007 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modtest use modmpi ! if test is .true. then the test variables are written to file logical test contains subroutine writetest(id,descr,nv,iv,iva,tol,rv,rva,zv,zva) implicit none ! arguments integer, intent(in) :: id character(*), intent(in) :: descr integer, optional, intent(in) :: nv integer, optional, intent(in) :: iv integer, optional, intent(in) :: iva(*) real(8), optional, intent(in) :: tol real(8), optional, intent(in) :: rv real(8), optional, intent(in) :: rva(*) complex(8), optional, intent(in) :: zv complex(8), optional, intent(in) :: zva(*) ! local variables integer j character(256) fname if (.not.test) return if (.not.mp_mpi) return if ((id < 0).or.(id > 999)) then write(*,*) write(*,'("Error(writetest): id out of range : ",I8)') id write(*,*) stop end if if ((present(iva)).or.(present(rva)).or.(present(zva))) then if (.not.present(nv)) then write(*,*) write(*,'("Error(writetest): missing argument nv")') write(*,*) stop else if (nv < 1) then write(*,*) write(*,'("Error(writetest): nv < 1 : ",I8)') nv write(*,*) stop end if end if end if if ((present(rv)).or.(present(rva)).or.(present(zv)).or.(present(zva))) then if (.not.present(tol)) then write(*,*) write(*,'("Error(writetest): missing argument tol")') write(*,*) stop end if end if write(fname,'("TEST_",I3.3,".OUT")') id !$OMP CRITICAL(writetest_) open(90,file=trim(fname),form='FORMATTED',action='WRITE') write(90,'("''",A,"''")') trim(descr) if (present(iv)) then write(90,'(2I8)') 1,1 write(90,'(2I8)') 1,iv else if (present(rv)) then write(90,'(2I8)') 2,1 write(90,'(G22.12)') tol write(90,'(I8,G22.12)') 1,rv else if (present(zv)) then write(90,'(2I8)') 3,1 write(90,'(G22.12)') tol write(90,'(I8,2G22.12)') 1,dble(zv),aimag(zv) else if (present(iva)) then write(90,'(2I8)') 1,nv do j=1,nv write(90,'(2I8)') j,iva(j) end do else if (present(rva)) then write(90,'(2I8)') 2,nv write(90,'(G22.12)') tol do j=1,nv write(90,'(I8,G22.12)') j,rva(j) end do else if (present(zva)) then write(90,'(2I8)') 3,nv write(90,'(G22.12)') tol do j=1,nv write(90,'(I8,2G22.12)') j,dble(zva(j)),aimag(zva(j)) end do end if close(90) !$OMP END CRITICAL(writetest_) end subroutine end module elk-10.4.9/src/PaxHeaders/modrandom.f900000644000000000000000000000013214762655564014551 xustar0030 mtime=1741380468.475008496 30 atime=1741380466.475998046 30 ctime=1741380468.475008496 elk-10.4.9/src/modrandom.f900000644002504400250440000000251414762655564017275 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modrandom ! random number generator state integer(8) :: rndstate(0:5)=[799047353, 1322018920, 1014372120, 1198189977, & 832907020, 5678910] contains !BOP ! !ROUTINE: randomu ! !INTERFACE: real(8) function randomu() ! !DESCRIPTION: ! Generates random numbers with a uniform distribution in the interval $[0,1]$ ! using the fifth-order multiple recursive generator of P. L'Ecuyer, ! F. Blouin, and R. Coutre, {\it ACM Trans. Modeling Comput. Simulation} ! {\bf 3}, 87 (1993). The sequence of numbers $r_i$ is produced from ! $$ x_i=(a_1 x_{i-1}+a_5 x_{i-5})\mod m $$ ! with $r_i=x_i/m$. The period is about $2^{155}$. ! ! !REVISION HISTORY: ! Created January 2012 (JKD) ! Changed initial state, April 2017 (JKD) !EOP !BOC implicit none ! local variables ! parameters taken from the GNU Scientific Library (GSL) integer(8), parameter :: a1=107374182, a5=104480, m=2147483647 integer(8) :: i=0 integer(8) i1,i5 !$OMP CRITICAL(randomu_) i=modulo(i+1,6_8) i1=modulo(i-1,6_8) i5=modulo(i-5,6_8) rndstate(i)=int(mod(a1*rndstate(i1)+a5*rndstate(i5),m)) randomu=dble(rndstate(i))/dble(m) !$OMP END CRITICAL(randomu_) end function !EOC end module elk-10.4.9/src/PaxHeaders/modpw.f900000644000000000000000000000013214762655564013717 xustar0030 mtime=1741380468.476008501 30 atime=1741380466.477998056 30 ctime=1741380468.476008501 elk-10.4.9/src/modpw.f900000644002504400250440000000320214762655564016436 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modpw !----------------------------! ! H-vector variables ! !----------------------------! ! reduceh is .true. if the H-vectors are reduced with the crystal symmetries logical reduceh ! H-vector cut-off for interstitial potential and density real(8) hmaxvr ! H-vector grid sizes integer ngridh(3) ! total number of H-vectors integer nhtot ! integer grid intervals for each direction integer inthv(2,3) ! number of H-vectors with |H| < hmaxvr integer nhvec ! H-vector integer coordinates (i1,i2,i3) integer, allocatable :: ivh(:,:) ! H-vector multiplicity after symmetry reduction integer, allocatable :: mulh(:) ! H-vectors in Cartesian coordinates real(8), allocatable :: vhc(:,:) ! length of H-vectors real(8), allocatable :: hc(:) ! H-vector transformation matrix real(8) vhmat(3,3) !------------------------------! ! H+k-vector variables ! !------------------------------! ! maximum |H+k| cut-off for plane wave real(8) hkmax ! number of H+k-vectors for plane waves integer, allocatable :: nhk(:,:) ! maximum number of H+k-vectors over all k-points integer nhkmax ! index from H+k-vectors to G-vectors integer, allocatable :: ihkig(:,:,:) ! H+k-vectors in lattice coordinates real(8), allocatable :: vhkl(:,:,:,:) ! H+k-vectors in Cartesian coordinates real(8), allocatable :: vhkc(:,:,:,:) ! length of H+k-vectors real(8), allocatable :: hkc(:,:,:) ! structure factors for the H+k-vectors complex(8), allocatable :: sfachk(:,:,:,:) end module elk-10.4.9/src/PaxHeaders/modvars.f900000644000000000000000000000013214762655564014244 xustar0030 mtime=1741380468.478008512 30 atime=1741380466.480998072 30 ctime=1741380468.478008512 elk-10.4.9/src/modvars.f900000644002504400250440000000450614762655564016773 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modvars ! if wrtvars is .true. then variables are written to VARIABLES.OUT logical wrtvars ! if batch is .true. then Elk will run in batch mode logical batch contains subroutine writevars(vname,n1,n2,n3,n4,n5,n6,nv,iv,iva,rv,rva,zv,zva,sv,sva) implicit none ! arguments character(*), intent(in) :: vname integer, optional, intent(in) :: n1,n2,n3,n4,n5,n6 integer, optional, intent(in) :: nv,iv,iva(*) real(8), optional, intent(in) :: rv,rva(*) complex(8), optional, intent(in) :: zv,zva(*) character(*), optional, intent(in) :: sv,sva(*) ! local variables integer i if ((present(iva)).or.(present(rva)).or.(present(zva)).or.(present(sva))) then if (.not.present(nv)) then write(*,*) write(*,'("Error(writevars): missing argument nv")') write(*,*) stop else if (nv < 0) then write(*,*) write(*,'("Error(writevars): nv < 0 : ",I8)') nv write(*,*) stop end if end if end if open(95,file='VARIABLES.OUT',position='APPEND',form='FORMATTED',action='WRITE') write(95,*) write(95,'(A)',advance='NO') trim(vname) if (present(n1)) write(95,'(I8)',advance='NO') n1 if (present(n2)) write(95,'(I8)',advance='NO') n2 if (present(n3)) write(95,'(I8)',advance='NO') n3 if (present(n4)) write(95,'(I8)',advance='NO') n4 if (present(n5)) write(95,'(I8)',advance='NO') n5 if (present(n6)) write(95,'(I8)',advance='NO') n6 write(95,*) if (present(iv)) then write(95,'(2I8)') 1,1 write(95,'(I8)') iv else if (present(rv)) then write(95,'(2I8)') 2,1 write(95,'(G22.12)') rv else if (present(zv)) then write(95,'(2I8)') 3,1 write(95,'(2G22.12)') dble(zv),aimag(zv) else if (present(sv)) then write(95,'(2I8)') 4,1 write(95,'(A)') trim(sv) else if (present(iva)) then write(95,'(2I8)') 1,nv do i=1,nv write(95,'(I8)') iva(i) end do else if (present(rva)) then write(95,'(2I8)') 2,nv do i=1,nv write(95,'(G22.12)') rva(i) end do else if (present(zva)) then write(95,'(2I8)') 3,nv do i=1,nv write(95,'(2G22.12)') dble(zva(i)),aimag(zva(i)) end do else if (present(sva)) then write(95,'(2I8)') 4,nv do i=1,nv write(95,'(A)') trim(sva(i)) end do end if close(95) end subroutine end module elk-10.4.9/src/PaxHeaders/modtddft.f900000644000000000000000000000013214762655564014376 xustar0030 mtime=1741380468.479008517 30 atime=1741380466.483998088 30 ctime=1741380468.479008517 elk-10.4.9/src/modtddft.f900000644002504400250440000001003414762655564017116 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modtddft !-----------------------------------------! ! TDDFT linear response variables ! !-----------------------------------------! ! exchange-correlation kernel type integer fxctype(3) ! parameters for long-range correction (LRC) kernel real(8) fxclrc(2) ! number of independent spin components of the f_xc spin tensor integer nscfxc ! magnetic linear dichroism (MLD) angle between the electric and magnetic fields real(8) thetamld !---------------------------------------------! ! TDDFT real-time evolution variables ! !---------------------------------------------! ! number of laser pulses defining the time-dependent A-field integer npulse ! laser pulse parameters: vector amplitude, frequency, phase, chirp rate, ! peak time, full-width at half-maximum, spin components real(8), allocatable :: pulse(:,:) ! number of A-field ramps integer nramp ! ramp parameters: vector amplitude, ramp start time, linear, quadratic, cubic, ! quartic coefficients, spin components real(8), allocatable :: ramp(:,:) ! number of A-field steps integer nstep ! step parameters: vector amplitude, step start and stop times, spin components real(8), allocatable :: step(:,:) ! total simulation time real(8) tstime ! time step length real(8) dtimes ! number of time steps integer ntimes ! starting time step integer itimes0 ! current time step integer itimes ! time steps real(8), allocatable :: times(:) ! tdt0 is .true. if the time evolution starts at t=0 logical tdt0 ! phase defining complex direction of time evolution real(8) tdphi ! number of time steps after which the time-dependent eigenvectors are backed up integer ntsbackup ! tafieldt is .true. if a time-dependent vector potential is applied logical tafieldt ! time-dependent total A-field (external plus induced) real(8), allocatable :: afieldt(:,:) ! tafspt is .true. if the A-field is spin- and time-dependent logical tafspt ! spin- and time-dependent A-field real(8), allocatable :: afspt(:,:,:) ! tbaspat is .true. if the effective magnetic field B = 1/c²((Aₛ)ᵗA)⋅σ should be ! added to the time-dependent Hamiltonian logical tbaspat ! induced A-field and its time derivative at the current time step real(8) afindt(3,0:1) ! induced A-field parameters real(8) afindpm(0:2) ! if tafindt is .true. then the induced A-field is determined from Maxwell's ! equation and added to the total logical tafindt ! electric field at current time step real(8) efieldt(3) ! observables are written to file every ntswrite(1) time steps; this begins ! at or after time step ntswrite(2); writing occurs at the first time step ! irrespective of ntswrite integer ntswrite(2) ! ttswrite is .true. if observables are to be written for the current time step logical ttswrite ! static charge density real(8), allocatable :: rhosmt(:,:,:),rhosir(:,:) ! total static charge real(8) chgstot(3) ! muffin-tin static charge real(8), allocatable :: chgsmt(:,:) ! gradient of the muffin-tin Coulomb potential of the nucleus and static density complex(8), allocatable :: gvnsmt(:,:,:) ! the following variables are .true. if the corresponding quantities are to be ! written every ntswrite time steps logical tdrho1d,tdrho2d,tdrho3d logical tdmag1d,tdmag2d,tdmag3d logical tdjr1d,tdjr2d,tdjr3d logical tddos,tdlsj,tdjtk,tdxrmk ! magnitude of complex numbers added to initial eigenvectors real(8) rndevt0 ! number of time steps between force calculations integer ntsforce ! ttsforce is .true. if forces are calculated for the current time step logical ttsforce ! total atomic forces at each time step real(8), allocatable :: forcet(:,:,:) ! number of time steps after which the time-dependent Kohn-Sham orbitals are ! made strictly orthogonal using a singular value decomposition integer ntsorth ! jtconst0 is .true. if the constant part of J(t) should be set to zero when ! calculating the dielectric function; this effectively removes the Drude term logical jtconst0 end module elk-10.4.9/src/PaxHeaders/modgw.f900000644000000000000000000000013214762655564013706 xustar0030 mtime=1741380468.480008522 30 atime=1741380466.485998098 30 ctime=1741380468.480008522 elk-10.4.9/src/modgw.f900000644002504400250440000000272314762655564016434 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. module modgw ! maximum Matsubara frequency for the GW calculation real(8) wmaxgw ! maximum number of Matsubara frequencies integer nwgw ! integer grid intervals for Matsubara frequencies integer intwgw(2) ! number of prime factors for the Matsubara frequency FFT integer npfftw ! map from frequency index to FFT array integer, allocatable :: iwfft(:) ! maximum fermionic Matsubara frequency index to be used for the GW calculation integer nwfm ! maximum bosonic frequency index integer nwbs ! imaginary frequencies used for the GW calculation real(8), allocatable :: wgw(:) ! complex fermionic frequencies complex(8), allocatable :: wfm(:) ! twdiag is .true. if the screened interaction W is taken to be diagonal logical twdiag ! tsediag is .true. if the GW self-energy is taken to be diagonal logical tsediag ! type of analytic continuation to be used for determining the self-energy on ! the real axis integer actype ! number of poles used for fitting the self-energy matrix elements integer npole ! number of complex shifts used in averaging the Pade approximant for the ! analytic continuation of the self-energy to the real axis integer nspade ! ksgwrho is .true. if the GW density is to be used in the self-consistent ! Kohn-Sham calculation logical ksgwrho end module elk-10.4.9/src/PaxHeaders/modulr.f900000644000000000000000000000013214762655564014073 xustar0030 mtime=1741380468.482008533 30 atime=1741380466.488998114 30 ctime=1741380468.482008533 elk-10.4.9/src/modulr.f900000644002504400250440000000701014762655564016613 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modulr !-----------------------------! ! ultracell variables ! !-----------------------------! ! ultracell lattice vectors stored column-wise real(8) avecu(3,3) ! ultracell reciprocal lattice vectors real(8) bvecu(3,3) ! ultracell volume and Brillouin zone volume real(8) omegau,omegabzu ! original number of k-points integer nkpt0 ! kappa-point grid sizes integer ngridkpa(3) ! integer grid intervals for the kappa-points integer intkpa(2,3) ! number of kappa-points integer nkpa ! R-vectors in Cartesian coordinates spanning the ultracell real(8), allocatable :: vrcu(:,:) !------------------------------! ! G+Q-vector variables ! !------------------------------! ! small Q cut-off for non-zero Q-vectors real(8) q0cut ! G+Q-vectors in Cartesian coordinates real(8), allocatable :: vgqc(:,:,:) ! |G+Q| for all G+Q-vectors real(8), allocatable :: gqc(:,:) ! Coulomb Green's function in G+Q-space = 4 pi / |G+Q|^2 real(8), allocatable :: gclgq(:,:) ! spherical Bessel functions j_l(|G+Q|R_mt) real(8), allocatable :: jlgqrmt(:,:,:,:) ! spherical harmonics of the G+Q-vectors complex(8), allocatable :: ylmgq(:,:,:) ! structure factors for the G+Q-vectors complex(8), allocatable :: sfacgq(:,:,:) ! phase factor functions exp(iQ.r) in each muffin-tin complex(8), allocatable :: expqmt(:,:,:) !---------------------------------------------------! ! ultra long-range densities and potentials ! !---------------------------------------------------! ! R-dependent density and magnetisation real(8), allocatable :: rhormt(:,:,:),rhorir(:,:) real(8), allocatable :: magrmt(:,:,:,:),magrir(:,:,:) ! muffin-tin charges each R-vector real(8), allocatable :: chgmtru(:,:) ! muffin-tin, interstitial and total moments for each R-vector real(8), allocatable :: mommtru(:,:,:),momirru(:,:),momtotru(:,:) ! Q-dependent density and magnetisation complex(8), allocatable :: rhoqmt(:,:,:),rhoqir(:,:) complex(8), allocatable :: magqmt(:,:,:,:),magqir(:,:,:) ! trdvclr is .true. if the real-space external Coulomb potential should be read ! in from file logical trdvclr ! Q-dependent external Coulomb potential (FFT ordering) complex(8), allocatable :: vclq(:) ! Q-dependent external magnetic field complex(8), allocatable :: bfcq(:,:) ! Q-dependent external muffin-tin magnetic fields complex(8), allocatable :: bfcmtq(:,:,:) ! global external magnetic field in Cartesian coordinates real(8) bfielduc(3) ! electric field vector in Cartesian coordinates real(8) efielduc(3) ! if tbdipu is .true. then the spin dipole-dipole interaction is included logical tbdipu ! Q-dependent magnetic dipole field complex(8), allocatable :: bdipq(:,:) ! Q-dependent Kohn-Sham potential and magnetic field complex(8), allocatable, target :: vsbsq(:) complex(8), pointer, contiguous :: vsqmt(:,:,:),vsqir(:,:) complex(8), pointer, contiguous :: bsqmt(:,:,:,:),bsqir(:,:,:) ! random amplitude used for initialising the long-range magnetic field real(8) rndbfcu ! if tplotq0 is .true. then the Q=0 term is included when generating plots logical tplotq0 !----------------------------------------------! ! eigenvalue and eigenvector variables ! !----------------------------------------------! ! number of ultra long-range states integer nstulr ! long-range eigenvalues real(8), allocatable :: evalu(:,:) ! long-range occupation numbers real(8), allocatable :: occulr(:,:) end module elk-10.4.9/src/PaxHeaders/modbog.f900000644000000000000000000000013214762655564014040 xustar0030 mtime=1741380468.483008538 30 atime=1741380466.490998124 30 ctime=1741380468.483008538 elk-10.4.9/src/modbog.f900000644002504400250440000000304114762655564016560 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modbog ! combined target array for fermionic and bosonic density matrices complex(8), allocatable, target :: duvwx(:) !----------------------------------------! ! fermionic Bogoliubov variables ! !----------------------------------------! ! Bogoliubov equation eigenvalues real(8), allocatable :: evaluv(:,:) ! V-norm for each state and k-point real(8), allocatable :: vnorm(:,:) ! Fermi energy adjustment step size real(8) tauefm ! Fermi energy convergence tolerance real(8) epsefm ! Hartree-Fock-Bogoliubov coupling constant real(8) ehfb ! density matrices VV† and UV† complex(8), pointer, contiguous :: dvv(:,:,:),duv(:,:,:) ! fermionic anomalous correlation entropy real(8) face ! bdiag is .true. if the matrix B is taken to be diagonal logical bdiag ! cut-off energy for matrix B (elements outside this window are set to zero) real(8) ecutb !--------------------------------------! ! bosonic Bogoliubov variables ! !--------------------------------------! ! Bogoliubov equation eigenvalues real(8), allocatable :: evalwx(:,:) ! power used in formula for (W,X) pseudo-normalisation (see article) integer pwxpsn ! X-norm for each branch and q-point real(8), allocatable :: xnorm(:,:) ! density matrices XX† and WX† complex(8), pointer, contiguous :: dxx(:,:,:),dwx(:,:,:) ! ediag is .true. if the matrix E is taken to be diagonal logical ediag end module elk-10.4.9/src/PaxHeaders/modtdhfc.f900000644000000000000000000000013114762655564014360 xustar0030 mtime=1741380468.485008549 29 atime=1741380466.49399814 30 ctime=1741380468.485008549 elk-10.4.9/src/modtdhfc.f900000644002504400250440000000103114762655564017076 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. Harris-Lee. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modtdhfc ! energy cut-off for TDHFC states around the Fermi energy real(8) ecutthc ! total number of states integer nthc ! maximum number of states used per k-point integer nthcpk ! number of states for each k-point integer, allocatable :: nstthc(:) ! index to used states for each k-point integer, allocatable :: idxthc(:,:) end module elk-10.4.9/src/PaxHeaders/moddelf.f900000644000000000000000000000013214762655564014203 xustar0030 mtime=1741380468.486008554 30 atime=1741380466.496998155 30 ctime=1741380468.486008554 elk-10.4.9/src/moddelf.f900000644002504400250440000000401514762655564016725 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module moddelf use modphonon use modramdisk use modmpi contains subroutine delfile(fname) implicit none ! arguments character(*), intent(in) :: fname ! local variables integer ios open(40,file=fname,iostat=ios) close(40,status='DELETE',iostat=ios) end subroutine subroutine delfiles(evec,devec,eval,occ,pmat,epsi) implicit none ! arguments logical, optional, intent(in) :: evec,devec,eval,occ,pmat,epsi ! local variables character(256) fext,fname if (present(evec)) then ! delete the first-variational eigenvector file fname=trim(scrpath)//'EVECFV'//trim(filext) if (mp_mpi) call delfile(fname) if (ramdisk) call delfrd(fname) ! delete the second-variational eigenvector file fname=trim(scrpath)//'EVECSV'//trim(filext) if (mp_mpi) call delfile(fname) if (ramdisk) call delfrd(fname) end if if (present(devec)) then ! construct the dynamical matrix file extension call dynfext(iqph,isph,iaph,ipph,fext) ! delete the eigenvector derivative files fname=trim(scrpath)//'DEVECFV'//trim(fext) if (mp_mpi) call delfile(fname) if (ramdisk) call delfrd(fname) fname=trim(scrpath)//'DEVECSV'//trim(fext) if (mp_mpi) call delfile(fname) if (ramdisk) call delfrd(fname) end if if (present(eval)) then ! delete the first-variational eigenvalue file fname='EVALFV'//trim(filext) if (mp_mpi) call delfile(fname) if (ramdisk) call delfrd(fname) ! delete the second-variational eigenvalue file if (mp_mpi) call delfile('EVALSV'//trim(filext)) end if if (present(occ)) then ! delete the occupation number file if (mp_mpi) call delfile('OCCSV'//trim(filext)) end if if (present(pmat)) then ! delete the momentum matrix elements file if (mp_mpi) call delfile('PMAT.OUT') if (ramdisk) call delfrd('PMAT.OUT') end if if (present(epsi)) then ! delete the inverse dielectric function file if (mp_mpi) call delfile('EPSINV.OUT') end if end subroutine end module elk-10.4.9/src/PaxHeaders/modomp.f900000644000000000000000000000013214762655564014064 xustar0030 mtime=1741380468.487008559 30 atime=1741380466.498998166 30 ctime=1741380468.487008559 elk-10.4.9/src/modomp.f900000644002504400250440000000572514762655564016617 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module modomp use omp_lib ! maximum number of OpenMP threads available integer maxthd ! maximum number of OpenMP threads for the first nesting level integer maxthd1 ! maximum number of threads available to MKL integer maxthdmkl ! maximum OpenMP nesting level integer maxlvl ! number of active OpenMP threads for each nesting level integer, allocatable, protected :: nathd(:) interface integer function mkl_set_num_threads_local(num_threads) integer, intent(in) :: num_threads end function end interface contains subroutine omp_init implicit none ! determine the maximum number of available threads select case(maxthd) case(:-1) ! set the number of threads equal to a fraction of the number of processors maxthd=omp_get_num_procs()/abs(maxthd) maxthd=max(maxthd,1) call omp_set_num_threads(maxthd) case(0) ! use the system default number of threads maxthd=omp_get_max_threads() case default ! use the number of threads specified in the input file call omp_set_num_threads(maxthd) end select ! determine the maximum number of threads available at first nesting level select case(maxthd1) case(:-1) maxthd1=maxthd/abs(maxthd1) maxthd1=max(maxthd1,1) case(0) maxthd1=maxthd case default maxthd1=min(maxthd1,maxthd) end select ! switch off dynamic allocation of threads call omp_set_dynamic(.false.) ! allow nested parallelism (deprecated in OpenMP version 5) call omp_set_nested(.true.) ! set the maximum nesting level call omp_set_max_active_levels(maxlvl) ! allocate the number of active threads array if (allocated(nathd)) deallocate(nathd) allocate(nathd(0:maxlvl)) ! initialise the number of active threads call omp_reset end subroutine subroutine omp_reset implicit none ! number of active threads at each nesting level nathd(0)=1 nathd(1:maxlvl)=0 end subroutine subroutine holdthd(nloop,nthd) implicit none ! arguments integer, intent(in) :: nloop integer, intent(out) :: nthd ! local variables integer lvl,na,n ! current nesting level lvl=omp_get_level() if ((lvl < 0).or.(lvl >= maxlvl)) then nthd=1 return end if ! determine number of active threads at the current nesting level na=nathd(lvl) na=max(min(na,maxthd),1) ! number of threads allowed for this loop nthd=maxthd/na if (mod(maxthd,na) > 0) nthd=nthd+1 if (lvl == 0) nthd=min(nthd,maxthd1) nthd=max(min(nthd,maxthd,nloop),1) ! add to number of active threads in next nesting level n=nathd(lvl+1)+nthd n=max(min(n,maxthd),0) !$OMP ATOMIC WRITE nathd(lvl+1)=n end subroutine subroutine freethd(nthd) implicit none ! arguments integer, intent(in) :: nthd ! local variables integer lvl,n ! current nesting level lvl=omp_get_level() if ((lvl < 0).or.(lvl >= maxlvl)) return ! subtract from the number of active threads in next nesting level n=nathd(lvl+1)-nthd n=max(min(n,maxthd),0) !$OMP ATOMIC WRITE nathd(lvl+1)=n end subroutine end module elk-10.4.9/src/PaxHeaders/mkl_init.f900000644000000000000000000000013214762655564014377 xustar0030 mtime=1741380468.488008564 30 atime=1741380466.501998182 30 ctime=1741380468.488008564 elk-10.4.9/src/mkl_init.f900000644002504400250440000000117614762655564017126 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine mkl_init use modomp implicit none ! set the initial global number of MKL threads equal to one call mkl_set_num_threads(1) ! set the maximum number of threads available to MKL select case(maxthdmkl) case(:-1) maxthdmkl=maxthd/abs(maxthdmkl) maxthdmkl=max(maxthdmkl,1) case(0) maxthdmkl=maxthd case default maxthdmkl=min(maxthdmkl,maxthd) end select ! enable dynamic thread allocation call mkl_set_dynamic(.true.) end subroutine elk-10.4.9/src/PaxHeaders/w90_stub.f900000644000000000000000000000013014762655565014244 xustar0029 mtime=1741380469.56801421 30 atime=1741380466.504998197 29 ctime=1741380469.56801421 elk-10.4.9/src/w90_stub.f900000644002504400250440000000322114762655565016766 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin and Lars Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. ! Stub routines for Wannier90 library. subroutine wannier_setup(seed__name,mp_grid_loc,num_kpts_loc, & real_lattice_loc,recip_lattice_loc,kpt_latt_loc,num_bands_tot, & num_atoms_loc,atom_symbols_loc,atoms_cart_loc, gamma_only_loc,spinors_loc, & nntot_loc,nnlist_loc,nncell_loc,num_bands_loc,num_wann_loc, & proj_site_loc,proj_l_loc,proj_m_loc,proj_radial_loc,proj_z_loc, & proj_x_loc,proj_zona_loc,exclude_bands_loc,proj_s_loc,proj_s_qaxis_loc) implicit none ! arguments character(*) seed__name integer mp_grid_loc(3) integer num_kpts_loc real(8) real_lattice_loc(3,3) real(8) recip_lattice_loc(3,3) real(8) kpt_latt_loc(3,num_kpts_loc) integer num_bands_tot integer num_atoms_loc character(*) atom_symbols_loc(num_atoms_loc) real(8) atoms_cart_loc(3,num_atoms_loc) logical gamma_only_loc logical spinors_loc integer nntot_loc integer nnlist_loc(num_kpts_loc,*) integer nncell_loc(3,num_kpts_loc,*) integer num_bands_loc integer num_wann_loc real(8) proj_site_loc(3,num_bands_tot) integer proj_l_loc(num_bands_tot) integer proj_m_loc(num_bands_tot) integer proj_radial_loc(num_bands_tot) real(8) proj_z_loc(3,num_bands_tot) real(8) proj_x_loc(3,num_bands_tot) real(8) proj_zona_loc(num_bands_tot) integer exclude_bands_loc(num_bands_tot) integer, optional :: proj_s_loc(num_bands_tot) real(8), optional :: proj_s_qaxis_loc(3,num_bands_tot) write(*,*) write(*,'("Error(wannier_setup): libwannier not or improperly installed")') write(*,*) error stop end subroutine !EOC elk-10.4.9/src/PaxHeaders/modw90.f900000644000000000000000000000013014762655564013706 xustar0029 mtime=1741380468.49100858 30 atime=1741380466.506998208 29 ctime=1741380468.49100858 elk-10.4.9/src/modw90.f900000644002504400250440000000257614762655564016444 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Jon Lafuente and Manh Duc Le; 2017-18 Arsenii Gerasimov, ! Yaroslav Kvashnin and Lars Nordstrom. This file is distributed under the terms ! of the GNU General Public License. See the file COPYING for license details. module modw90 !---------------------------------------! ! Wannier90 interface variables ! !---------------------------------------! ! seedname for all Wannier90 files character(256) seedname ! number of extra lines to write to .win file integer nxlwin ! extra lines to write to .win file character(256), allocatable :: xlwin(:) ! number of Wannier functions to calculate integer num_wann ! number of bands to pass to Wannier90 integer num_bands ! index to bands integer, allocatable :: idxw90(:) ! number of iterations for the minimisation of omega integer num_iter ! number of iterations for disentanglement integer dis_num_iter ! trial step for the line search minimisation real(8) trial_step ! maximum number of nearest neighbours per k-point integer, parameter :: num_nnmax=12 ! total number of nearest neighbours for each k-point integer nntot ! list of nearest neighbours for each k-point integer, allocatable :: nnlist(:,:) ! G-vector offset for each nearest neighbour integer, allocatable :: nncell(:,:,:) ! wrtunk is .true. if the UNKkkkkk.s files are to be written in order to ! enable real-space wavefunction plotting logical wrtunk end module elk-10.4.9/src/PaxHeaders/zfftifc_fftw.f900000644000000000000000000000013214762655565015253 xustar0030 mtime=1741380469.602014388 30 atime=1741380466.510998229 30 ctime=1741380469.602014388 elk-10.4.9/src/zfftifc_fftw.f900000644002504400250440000000264214762655565020001 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zfftifc(nd,n,sgn,z) implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn complex(8), intent(inout) :: z(*) ! local variables integer, parameter :: FFTW_ESTIMATE=64 integer p integer(8) plan real(8) t1 ! interface to FFTW version 3 !$OMP CRITICAL(fftw_) call dfftw_plan_dft(plan,nd,n,z,z,sgn,FFTW_ESTIMATE) !$OMP END CRITICAL(fftw_) call dfftw_execute(plan) !$OMP CRITICAL(fftw_) call dfftw_destroy_plan(plan) !$OMP END CRITICAL(fftw_) if (sgn == -1) then p=product(n(1:nd)) t1=1.d0/dble(p) call zdscal(p,t1,z,1) end if end subroutine subroutine rzfftifc(nd,n,sgn,r,z) implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn real(8), intent(inout) :: r(*) complex(8), intent(inout) :: z(*) ! local variables integer, parameter :: FFTW_ESTIMATE=64 integer p integer(8) plan real(8) t1 !$OMP CRITICAL(fftw_) if (sgn == -1) then call dfftw_plan_dft_r2c(plan,nd,n,r,z,FFTW_ESTIMATE) else call dfftw_plan_dft_c2r(plan,nd,n,z,r,FFTW_ESTIMATE) end if !$OMP END CRITICAL(fftw_) call dfftw_execute(plan) !$OMP CRITICAL(fftw_) call dfftw_destroy_plan(plan) !$OMP END CRITICAL(fftw_) if (sgn == -1) then p=product(n(1:nd)) t1=1.d0/dble(p) p=p/n(1) p=p*(n(1)/2+1) call zdscal(p,t1,z,1) end if end subroutine elk-10.4.9/src/PaxHeaders/cfftifc_fftw.f900000644000000000000000000000013214762655565015224 xustar0030 mtime=1741380469.603014393 30 atime=1741380466.513998244 30 ctime=1741380469.603014393 elk-10.4.9/src/cfftifc_fftw.f900000644002504400250440000000261214762655565017747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cfftifc(nd,n,sgn,c) implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn complex(4), intent(inout) :: c(*) ! local variables integer, parameter :: FFTW_ESTIMATE=64 integer p integer(8) plan real(4) t1 ! interface to FFTW version 3 !$OMP CRITICAL(fftw_) call sfftw_plan_dft(plan,nd,n,c,c,sgn,FFTW_ESTIMATE) !$OMP END CRITICAL(fftw_) call sfftw_execute(plan) !$OMP CRITICAL(fftw_) call sfftw_destroy_plan(plan) !$OMP END CRITICAL(fftw_) if (sgn == -1) then p=product(n(1:nd)) t1=1.e0/real(p) call csscal(p,t1,c,1) end if end subroutine subroutine rcfftifc(nd,n,sgn,r,c) implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn real(4), intent(inout) :: r(*) complex(4), intent(inout) :: c(*) ! local variables integer, parameter :: FFTW_ESTIMATE=64 integer p integer(8) plan real(4) t1 !$OMP CRITICAL(fftw_) if (sgn == -1) then call sfftw_plan_dft_r2c(plan,nd,n,r,c,FFTW_ESTIMATE) else call sfftw_plan_dft_c2r(plan,nd,n,c,r,FFTW_ESTIMATE) end if !$OMP END CRITICAL(fftw_) call sfftw_execute(plan) !$OMP CRITICAL(fftw_) call sfftw_destroy_plan(plan) !$OMP END CRITICAL(fftw_) if (sgn == -1) then p=product(n(1:nd)) t1=1.e0/real(p) p=p/n(1) p=p*(n(1)/2+1) call csscal(p,t1,c,1) end if end subroutine elk-10.4.9/src/PaxHeaders/elk.f900000644000000000000000000000013114762655564013343 xustar0030 mtime=1741380468.496008606 29 atime=1741380466.51699826 30 ctime=1741380468.496008606 elk-10.4.9/src/elk.f900000644002504400250440000026064514762655564016103 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2011 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. ! main routine for the Elk code program elk use modmain use modmpi use modomp use modvars use modramdisk use moddelf implicit none ! local variables logical exist character(64) str ! initialise MPI execution environment call mpi_init(ierror) ! duplicate mpi_comm_world call mpi_comm_dup(mpi_comm_world,mpicom,ierror) ! determine the number of MPI processes call mpi_comm_size(mpicom,np_mpi,ierror) ! determine the local MPI process number call mpi_comm_rank(mpicom,lp_mpi,ierror) ! determine if the local process is the master if (lp_mpi == 0) then mp_mpi=.true. write(str,'("Elk code version ",I0,".",I0,".",I0," started")') version call writebox(6,trim(str)) else mp_mpi=.false. end if 10 continue ! read input files call readinput ! initialise OpenMP variables call omp_init ! initialise the MKL library call mkl_init if (mp_mpi) then write(*,*) write(*,'("Number of MPI processes : ",I6)') np_mpi write(*,'("Number of OpenMP threads per MPI process : ",I4)') maxthd write(*,'("Total number of threads (MPI x OpenMP) : ",I6)') np_mpi*maxthd write(*,'("Maximum OpenMP nesting level : ",I4)') maxlvl write(*,'("Number of OpenMP threads at first nesting level : ",I4)') maxthd1 write(*,'("Number of MKL threads : ",I4)') maxthdmkl ! check if Elk is already running in this directory inquire(file='RUNNING',exist=exist) if (exist) then write(*,*) write(*,'("Info(elk): several copies of Elk may be running in this path")') write(*,'("(this could be intentional, or result from a previous crash,")') write(*,'(" or arise from an incorrect MPI compilation)")') else open(50,file='RUNNING') close(50) end if if (batch) then wrtvars=.true. write(*,*) write(*,'("Batch mode enabled")') end if if (wrtvars) then ! delete the VARIABLES.OUT file call delfile('VARIABLES.OUT') ! write version number to VARIABLES.OUT call writevars('version',nv=3,iva=version) end if else wrtvars=.false. end if ! initialise the RAM disk if required if (ramdisk) then call initrd if (mp_mpi) then write(*,*) write(*,'("RAM disk enabled")') if (.not.wrtdsk) then write(*,*) write(*,'("Info(elk): some direct access files are not written to disk")') end if end if else wrtdsk=.true. end if ! perform the tasks do itask=1,ntasks task=tasks(itask) if (mp_mpi) then write(str,'("Current task : ",I0)') task call writebox(6,trim(str)) end if ! increment the batch variables if required if (batch) call batchdv ! check if task can be run with MPI if (lp_mpi > 0) then if (all(task /= [0,1,2,3,5,15,16,28,29,61,62,63,110,120,121,125,135,136, & 162,170,180,185,200,201,202,205,208,209,240,241,270,271,300,320,330,331, & 350,351,352,371,372,373,380,390,420,421,440,460,461,462,463,471,478,600, & 610,620,640,680,700,701,720])) then write(*,'("Info(elk): MPI process ",I6," idle for task ",I6)') lp_mpi,task goto 20 end if end if ! write task to VARIABLES.OUT if (wrtvars) call writevars('task',iv=task) select case(task) case(0,1) call gndstate case(2,3) call geomopt case(5) call hartfock case(10) call writedos case(14) call writesf case(15,16) call writelsj case(20,21,22,23) call bandstr case(25) call effmass case(28,29) call mae case(31,32,33) call rhoplot case(41,42,43) call potplot case(51,52,53) call elfplot case(61,62,63,162) call wfplot case(65) call wfcrplot case(68) call rdstatus case(71,72,73,81,82,83,141,142,143,151,152,153) call vecplot case(91,92,93) call dbxcplot case(100,101,103,104) call fermisurf case(102) call fermisurfbxsf case(105) call nesting case(110) call mossbauer case(115) call writeefg case(120) call writepmat case(121) call dielectric case(122) call moke case(125) call nonlinopt case(130) call writeexpmat case(135) call writewfpw case(140) call elnes case(150) call writeevsp case(160) call torque case(170) call writeemd case(171,172,173) call emdplot case(180) call writeepsinv case(185) call writehmlbse case(186) call writeevbse case(187) call dielectric_bse case(190) call geomplot case(195) call sfacrho case(196) call sfacmag case(200,201,202) call phononsc case(205) call phonon case(208,209) call bornechg case(210) call phdos case(220) call phdisp case(230) call writephn case(240,241) call ephcouple case(245) call phlwidth case(250) call alpha2f case(260) call eliashberg case(270,271) call gndsteph case(280) call ephdos case(285) call aceplot case(300) call rdmft case(320) call tddftlr case(330,331) call tddftsplr case(341,342,343) call wxcplot case(350,351,352) call spiralsc case(371,372,373) call jprplot case(380) call piezoelt case(390) call magnetoelt case(400) call writetm case(420,421) call moldyn case(430) call writestrain case(440) call writestress case(450) call genafieldt case(455) call writeafpdt case(456) call writeefieldw case(460,461,462,463) call tddft case(471) call rhosplot case(478) call bornecdyn case(480,481) call dielectric_tdrt case(500) call testcheck case(550) call writew90 case(600) call gwsefm case(610) call gwspecf case(620) call gwbandstr case(640) call gwdmat case(680) call tdhfc case(700,701) call gndstulr case(710) call writedosu case(720) call bandstrulr case(731,732,733) call rhouplot case(741,742,743) call potuplot case(771,772,773) call maguplot case default write(*,*) write(*,'("Error(elk): task not defined : ",I8)') task write(*,*) stop end select ! reset the OpenMP thread variables call omp_reset 20 continue ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! check if a restart is requested call checkrst if (trestart) then if (mp_mpi) then write(*,*) write(*,'("Restarting Elk")') end if goto 10 end if end do if (mp_mpi) then call delfile('RUNNING') call writebox(6,"Elk code stopped") end if ! terminate MPI execution environment call mpi_finalize(ierror) end program !BOI ! !TITLE: {\huge{\sc The Elk Code Manual}}\\ \Large{\sc Version 10.4.9}\\ \vskip 20pt \includegraphics[height=1cm]{elk_silhouette.pdf} ! !AUTHORS: {\sc J. K. Dewhurst, S. Sharma} \\ {\sc L. Nordstr\"{o}m, F. Cricchio, O. Gr\aa n\"{a}s} \\ {\sc E. K. U. Gross} ! !AFFILIATION: ! !INTRODUCTION: Introduction ! Welcome to the Elk Code! Elk is an all-electron full-potential linearised ! augmented-plane-wave (FP-LAPW) code for determining the properties of ! crystalline solids. It was developed originally at the ! Karl-Franzens-Universit\"{a}t Graz as part of the EXCITING EU Research and ! Training Network project\footnote{EXCITING code developed under the Research ! and Training Network EXCITING funded by the EU, contract No. ! HPRN-CT-2002-00317}. The guiding philosophy during the implementation of the ! code was to keep it as simple as possible for both users and developers ! without compromising on its capabilities. All the routines are released ! under either the GNU General Public License (GPL) or the GNU Lesser General ! Public License (LGPL) in the hope that they may inspire other scientists to ! implement new developments in the field of density functional theory and ! beyond. ! ! \section{Acknowledgments} ! Lots of people contributed to the Elk code with ideas, checking and testing, ! writing code or documentation and general encouragement. They include ! Claudia Ambrosch-Draxl, Clas Persson, Fredrik Bultmark, Christian Brouder, ! Rickard Armiento, Andrew Chizmeshya, Per Anderson, Igor Nekrasov, Sushil ! Auluck, Frank Wagner, Fateh Kalarasse, J\"{u}rgen Spitaler, Stefano ! Pittalis, Nektarios Lathiotakis, Tobias Burnus, Stephan Sagmeister, ! Christian Meisenbichler, S\'{e}bastien Leb\`{e}gue, Yigang Zhang, Fritz ! K\"{o}rmann, Alexey Baranov, Anton Kozhevnikov, Shigeru Suehara, Frank ! Essenberger, Antonio Sanna, Tyrel McQueen, Tim Baldsiefen, Marty Blaber, ! Anton Filanovich, Torbj\"{o}rn Bj\"{o}rkman, Martin Stankovski, Jerzy ! Goraus, Markus Meinert, Daniel Rohr, Vladimir Nazarov, Kevin Krieger, Pink ! Floyd, Arkardy Davydov, Florian Eich, Aldo Romero Castro, Koichi Kitahara, ! James Glasbrenner, Konrad Bussmann, Igor Mazin, Matthieu Verstraete, David ! Ernsting, Stephen Dugdale, Peter Elliott, Marcin Dulak, Jos\'{e} A. Flores ! Livas, Stefaan Cottenier, Yasushi Shinohara, Michael Fechner, Yaroslav ! Kvashnin, Tristan M\"uller, Arsenii Gerasimov, Manh Duc Le, Jon Lafuente ! Bartolom\'{e}, Ren\'{e} Wirnata, Jagdish Kumar, Andrew Shyichuk, Nisha ! Singh, Pietro Bonfa, Ronald Cohen, Alyn James, Chung-Yu Wang, Leon Kerber, ! Yunfan Liang, Xavier Gonze, Mike Bruckhoff, Eddie Harris-Lee, Andreas ! Fischer, Wenhan Chen and Jyoti Krishna. Special mention of David Singh's ! very useful book on the LAPW method\footnote{D. J. Singh, {\it Planewaves, ! Pseudopotentials and the LAPW Method} (Kluwer Academic Publishers, Boston, ! 1994).} must also be made. Finally we would like to acknowledge the generous ! support of Karl-Franzens-Universit\"{a}t Graz, the EU Marie-Curie Research ! Training Networks initiative, the Max Born Institute and the Max Planck ! Society. ! ! \vspace{24pt} ! Kay Dewhurst, Sangeeta Sharma \\ ! Lars Nordstr\"{o}m, Francesco Cricchio, Oscar Gr\aa n\"{a}s \\ ! Hardy Gross ! ! \vspace{12pt} ! Halle, Berlin, Uppsala and Jerusalem ! \newpage ! ! \section{Units} ! Unless explicitly stated otherwise, Elk uses atomic units. In this system ! $\hbar=1$, the electron mass $m=1$, the Bohr radius $a_0=1$ and the electron ! charge $e=1$ (note that the electron charge is positive, so that the atomic ! numbers $Z$ are negative). Thus the atomic unit of length is ! 0.529177210903(80) \AA, and the atomic unit of energy is the Hartree which ! equals 27.211386245988(53) eV. The unit of the external magnetic fields is ! defined such that one unit of magnetic field in {\tt elk.in} equals ! 1715.255541 Tesla. ! ! \section{Compiling and running Elk} ! \subsection{Compiling the code} ! Unpack the code from the archive file. Edit the file {\tt make.inc} in the ! {\tt elk} directory and adjust the compiler options for your computer ! system. Use of machine-optimised BLAS/LAPACK and FFT libraries will result ! in significant increase in performance. Following this, run ! \begin{verbatim} ! make ! \end{verbatim} ! This will hopefully compile the entire code and all the libraries into one ! executable, {\tt elk}, located in the {\tt elk/src} directory. It will also ! compile two useful auxiliary programs, namely {\tt spacegroup} for producing ! crystal geometries from spacegroup data and {\tt eos} for fitting equations ! of state to energy-volume data. If you want to compile everything all over ! again, then run {\tt make clean} from the {\tt elk} directory, followed by ! {\tt make}. ! \subsubsection{Parallelism in Elk} ! Three forms of parallelism are implemented in Elk, and all can be used in ! combination with each other, with efficiency depending on the particular ! task, crystal structure and computer system. You may need to contact your ! system administrator for assistance with running Elk in parallel. ! \begin{enumerate} ! \item ! OpenMP works for symmetric multiprocessors, i.e. computers that have many ! cores with the same unified memory accessible to each. It is enabled by ! setting the appropriate command-line options (e.g. {\tt -qopenmp} for the ! Intel compiler) before compiling, and also at runtime by the environment ! variable ! \begin{verbatim} ! export OMP_NUM_THREADS=n ! \end{verbatim} ! where n is the number of cores available on a particular node. The same can ! be accomplished in {\tt elk.in} with ! \begin{verbatim} ! maxthd ! n ! \end{verbatim} ! In addition, some vendor-supplied BLAS/LAPACK libraries use OpenMP ! internally. The maximum number of threads used for LAPACK operations by ! Intel's MKL can be set with ! \begin{verbatim} ! maxthdmkl ! n ! \end{verbatim} ! \item ! The message passing interface (MPI) is particularly suitable for running ! Elk across multiple nodes of a cluster, with scaling to hundreds of ! processors possible. To enable MPI, comment out the lines indicated in ! {\tt elk/make.inc}. Then run {\tt make clean} followed by {\tt make}. If ! $y$ is the number of nodes and $x$ is the number of cores per node, then at ! runtime envoke ! \begin{verbatim} ! mpirun -np z ./elk ! \end{verbatim} ! where $z=x y$ is the total number of cores available on the machine. ! Highest efficiency is obtained by using hybrid parallelism with OpenMP on ! each node and MPI across nodes. This can be done by compiling the code ! using the MPI Fortran compiler in combination with the OpenMP command-line ! option. At runtime set {\tt export OMP\_NUM\_THREADS=x} and start the MPI ! run with {\em one process per node} as follows ! \begin{verbatim} ! mpirun -pernode -np y ./elk ! \end{verbatim} ! The number of MPI processes is reported in the file {\tt INFO.OUT} which ! serves as a check that MPI is running correctly. Note that version 2 of the ! MPI libraries is required to run Elk. ! \item ! Phonon calculations use a simple form of parallelism by just examining the ! run directory for dynamical matrix files. These files are of the form ! \begin{verbatim} ! DYN_Qqqqq_qqqq_qqqq_Sss_Aaa_Pp.OUT ! \end{verbatim} ! and contain a single row of a particular dynamical matrix. Elk simply finds ! which {\tt DYN} files do not exist, chooses one and runs it. This way many ! independent runs of Elk can be started in the same directory on a networked ! file system (NFS), and will run until all the dynamical matrices files are ! completed. Should a particular run crash, then delete the associated empty ! {\tt DYN} file and rerun Elk. ! \end{enumerate} ! ! \subsection{Memory requirements} ! Elk is a memory-bound code and runs best on processors with large caches and ! a large number of memory channels per core. Some tasks in Elk require a ! considerable amount of memory which can exceed the physical memory of the ! computer. In such cases, the number of threads at the first nesting level ! can be reduced with (for example) ! \begin{verbatim} ! maxthd1 ! -4 ! \end{verbatim} ! which restricts the number of threads at the first nesting level to ! maxthd/4. Deeper nesting levels, which generally require less memory, will ! still utilise the full compliment of available threads. ! \subsubsection{Stack space} ! The latest versions of Elk use stack space aggressively. This is because ! accessing variables is faster on the stack than on the heap. This can, ! however, result in the code crashing as threads run out of their stack ! space. To avoid this, increase the stack size for each OpenMP thread with ! (for example) ! \begin{verbatim} ! export OMP_STACKSIZE=512M ! \end{verbatim} ! before running the code. ! ! \subsection{Linking with the Libxc functional library} ! Libxc is a library of exchange-correlation functionals. Elk can use the ! complete set of LDA and GGA functionals available in Libxc as well as some ! meta-GGAs. In order to enable this, first download and compile Libxc. This ! should have produced the files {\tt libxc.a} and {\tt libxcf03.a} in the ! Libxc directory {\tt src/.libs}. Copy these to the {\tt elk/src} directory ! and then uncomment the lines indicated for Libxc in {\tt elk/make.inc}. Once ! this is done, run {\tt make clean} followed by {\tt make}. To select a ! particular functional of Libxc, use the block ! \begin{verbatim} ! xctype ! 100 nx nc ! \end{verbatim} ! where {\tt nx} and {\tt nc} are, respectively, the numbers of the exchange ! and correlation functionals in the Libxc library. See the file ! {\tt elk/src/libxcf03.f90} for a list of the functionals and their ! associated numbers. ! ! \subsection{Running the code} ! As a rule, all input files for the code are in lower case and end with the ! extension {\tt .in}. All output files are uppercase and have the extension ! {\tt .OUT}. For most cases, the user will only need to modify the file ! {\tt elk.in}. In this file input parameters are arranged in blocks. ! Each block consists of a block name on one line and the block variables on ! subsequent lines. Almost all blocks are optional: the code uses reasonable ! default values in cases where they are absent. Blocks can appear in any ! order, if a block is repeated then the second instance is used. Comment ! lines can be included in the input file and begin with the {\tt !} ! character. ! ! \subsubsection{Species files} ! The only other input files are those describing the atomic species which go ! into the crystal. These files are found in the {\tt species} directory and ! are named with the element symbol and the extension {\tt .in}, for example ! {\tt Sb.in}. They contain parameters like the atomic charge, mass, ! muffin-tin radius, occupied atomic states and the type of linearisation ! required. Here as an example is the copper species file {\tt Cu.in}: ! \begin{verbatim} ! 'Cu' : spsymb ! 'copper' : spname ! -29.0000 : spzn ! 115837.2716 : spmass ! 0.371391E-06 2.0000 34.8965 500 : rminsp, rmt, rmaxsp, nrmt ! 10 : nstsp ! 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore ! 2 0 1 2.00000 T ! 2 1 1 2.00000 T ! 2 1 2 4.00000 T ! 3 0 1 2.00000 T ! 3 1 1 2.00000 F ! 3 1 2 4.00000 F ! 3 2 2 4.00000 F ! 3 2 3 6.00000 F ! 4 0 1 1.00000 F ! 1 : apword ! 0.1500 0 F : apwe0, apwdm, apwve ! 1 : nlx ! 2 2 : lx, apword ! 0.1500 0 T : apwe0, apwdm, apwve ! 0.1500 1 T ! 4 : nlorb ! 0 2 : lorbl, lorbord ! 0.1500 0 F : lorbe0, lorbdm, lorbve ! 0.1500 1 F ! 1 2 ! 0.1500 0 F ! 0.1500 1 F ! 2 2 ! 0.1500 0 F ! 0.1500 1 F ! 1 3 ! 0.1500 0 F ! 0.1500 1 F ! -2.8652 0 T ! \end{verbatim} ! The input parameters are defined as follows: ! \vskip 6pt ! {\tt spsymb} \\ ! The symbol of the element. ! \vskip 6pt ! {\tt spname} \\ ! The name of the element. ! \vskip 6pt ! {\tt spzn} \\ ! Nuclear charge: should be negative since the electron charge is taken to be ! postive in the code; it can also be fractional for purposes of doping. ! \vskip 6pt ! {\tt spmass} \\ ! Nuclear mass in atomic units. ! \vskip 6pt ! {\tt rminsp}, {\tt rmt}, {\tt rmaxsp}, {\tt nrmt} \\ ! Respectively, the minimum radius on logarithmic radial mesh; muffin-tin ! radius; effective infinity for atomic radial mesh; and number of radial mesh ! points to muffin-tin radius. ! \vskip 6pt ! {\tt nstsp} \\ ! Number of atomic states. ! \vskip 6pt ! {\tt nsp}, {\tt lsp}, {\tt ksp}, {\tt occsp}, {\tt spcore} \\ ! Respectively, the principal quantum number of the radial Dirac equation; ! quantum number $l$; quantum number $k$ ($l$ or $l+1$); occupancy of atomic ! state (can be fractional); {\tt .T.} if state is in the core and therefore ! treated with the Dirac equation in the spherical part of the muffin-tin ! Kohn-Sham potential. ! \vskip 6pt ! {\tt apword} \\ ! Default APW function order, i.e. the number of radial functions and ! therefore the order of the radial derivative matching at the muffin-tin ! surface. ! \vskip 6pt ! {\tt apwe0}, {\tt apwdm}, {\tt apwve} \\ ! Respectively, the default APW linearisation energy; the order of the energy ! derivative of the APW radial function $\partial^m u(r)/\partial E^m$; and ! {\tt .T.} if the linearisation energy is allowed to vary. ! \vskip 6pt ! {\tt nlx} \\ ! The number of exceptions to the default APW configuration. These should be ! listed on subsequent lines for particular angular momenta. In this example, ! the fixed energy APW with angular momentum $d$ ({\tt lx} $=2$) is replaced ! with a LAPW, which has variable linearisation energy. ! \vskip 6pt ! {\tt nlorb} \\ ! Number of local-orbitals. ! \vskip 6pt ! {\tt lorbl}, {\tt lorbord} \\ ! Respectively, the angular momentum $l$ of the local-orbital; and the order ! of the radial derivative which goes to zero at the muffin-tin surface. ! \vskip 6pt ! {\tt lorbe0}, {\tt lorbdm}, {\tt lorbve} \\ ! Respectively, the default local-orbital linearisation energy; the order of ! the energy derivative of the local-orbital radial function; and {\tt .T.} if ! the linearisation energy is allowed to vary. ! ! \subsubsection{Examples} ! The best way to learn to use Elk is to run the examples included with the ! package. These can be found in the {\tt examples} directory and use many of ! the code's capabilities. The following section which describes all the input ! parameters will be of invaluable assistance. ! ! \section{Input blocks} ! This section lists all the input blocks available. It is arranged with the ! name of the block followed by a table which lists each parameter name, what ! the parameter does, its type and default value. A horizontal line in the ! table indicates a new line in {\tt elk.in}. Below the table is a brief ! overview of the block's function. ! ! \block{atoms}{ ! {\tt nspecies} & number of species & integer & 0 \\ ! \hline ! {\tt spfname(i)} & species filename for species $i$ & string & - \\ ! \hline ! {\tt natoms(i)} & number of atoms for species $i$ & integer & - \\ ! \hline ! {\tt atposl(j,i)} & atomic position in lattice coordinates for atom $j$ ! & real(3) & - \\ ! {\tt bfcmt(j,i)} & muffin-tin external magnetic field in Cartesian ! coordinates for atom $j$ & real(3) & -} ! Defines the atomic species as well as their positions in the unit cell and ! the external magnetic field applied throughout the muffin-tin. These fields ! are used to break spin symmetry and should be considered infinitesimal as ! they do not contribute directly to the total energy. Collinear calculations ! are more efficient if the field is applied in the $z$-direction. One could, ! for example, set up an antiferromagnetic crystal by pointing the field on ! one atom in the positive $z$-direction and in the opposite direction on ! another atom. If {\tt molecule} is {\tt .true.} then the atomic positions ! are assumed to be in Cartesian coordinates. See also {\tt sppath}, ! {\tt bfieldc} and {\tt molecule}. ! ! \block{autokpt}{ ! {\tt autokpt} & {\tt .true.} if the $k$-point set is to be determined ! automatically & logical & {\tt .false.}} ! See {\tt radkpt} for details. ! ! \block{autolinengy}{ ! {\tt autolinengy} & {\tt .true.} if the fixed linearisation energies are ! to be determined automatically & logical & {\tt .false.}} ! See {\tt dlefe} for details. ! ! \block{autoswidth}{ ! {\tt autoswidth} & {\tt .true.} if the smearing parameter {\tt swidth} ! should be determined automatically & logical & {\tt .false.}} ! Calculates the smearing width from the $k$-point density, $V_{\rm BZ}/n_k$; ! the valence band width, $W$; and an effective mass parameter, $m^{*}$; ! according to ! $$ \sigma=\frac{\sqrt{2W}}{m^{*}}\left(\frac{3}{4\pi} ! \frac{V_{\rm BZ}}{n_k}\right)^{1/3}. $$ ! The variable {\tt mstar} then replaces {\tt swidth} as the control parameter ! of the smearing width. A large value of $m^{*}$ gives a narrower smearing ! function. Since {\tt swidth} is adjusted according to the fineness of the ! ${\bf k}$-mesh, the smearing parameter can then be eliminated. It is not ! recommended that {\tt autoswidth} be used in conjunction with the ! Fermi-Dirac smearing function, since the electronic temperature will then be ! a function of the $k$-point mesh. See T. Bj\"orkman and O. Gr\aa n\"as, ! {\it Int. J. Quant. Chem.} DOI: 10.1002/qua.22476 (2010) for details. See ! also {\tt stype} and {\tt swidth}. ! ! \block{avec}{ ! {\tt avec(1)} & first lattice vector & real(3) & $(1.0,0.0,0.0)$ \\ ! \hline ! {\tt avec(2)} & second lattice vector & real(3) & $(0.0,1.0,0.0)$ \\ ! \hline ! {\tt avec(3)} & third lattice vector & real(3) & $(0.0,0.0,1.0)$} ! Lattice vectors of the crystal in atomic units (Bohr). ! ! \block{avecref}{ ! {\tt avecref(1)} & first reference lattice vector, etc. & real(3) & ! $(0.0,0.0,0.0)$} ! Reference lattice vectors for calculating the ${\bf G}$-vector grid and ! derived quantities. If any of these elements are non-zero then the code ! computes the corresponding reciprocal lattice vectors and set of ! ${\bf G}$-vectors. These are then transformed to be identical to those ! calculated with {\tt avec}. The purpose of this is to enable accurate ! energy-volume curves, where the number of grid points should remain fixed ! for all volumes. ! ! \block{beta0}{ ! {\tt beta0} & adaptive mixing parameter & real & $0.05$} ! This determines how much of the potential from the previous self-consistent ! loop is mixed with the potential from the current loop. It should be made ! smaller if the calculation is unstable. See {\tt betamax} and also the ! routine {\tt mixadapt}. ! ! \block{betamax}{ ! {\tt betamax} & maximum adaptive mixing parameter & real & $0.5$} ! Maximum allowed mixing parameter used in routine {\tt mixadapt}. ! ! \block{bfieldc}{ ! {\tt bfieldc} & global external magnetic field in Cartesian coordinates & ! real(3) & $(0.0,0.0,0.0)$} ! This is a constant magnetic field applied throughout the entire unit cell ! and enters the second-variational Hamiltonian as ! $$ \frac{g_e}{4c}\,\vec{\sigma}\cdot{\bf B}_{\rm ext}, $$ ! where $g_e$ is the electron $g$-factor. This field is normally used to break ! spin symmetry for spin-polarised calculations and considered to be ! infinitesimal with no direct contribution to the total energy. In cases ! where the magnetic field is finite (for example when computing magnetic ! response) the external ${\bf B}$-field energy reported in {\tt INFO.OUT} ! should be added to the total by hand. This field is applied throughout the ! entire unit cell. To apply magnetic fields in particular muffin-tins use the ! {\tt bfcmt} vectors in the {\tt atoms} block. Collinear calculations are ! more efficient if the field is applied in the $z$-direction. ! ! \block{bfielduc}{ ! {\tt bfielduc} & global external magnetic field in Cartesian coordinates & ! real(3) & $(0.0,0.0,0.0)$} ! As with {\tt bfieldc} but applied only in the ultracell during an ultra ! long-range calculation. ! ! \block{broydpm}{ ! {\tt broydpm} & Broyden mixing parameters $\alpha$ and $w_0$ & real & ! $(0.4,0.15)$} ! See {\tt mixtype} and {\tt mixsdb}. ! ! \block{chgexs}{ ! {\tt chgexs} & excess electronic charge & real & $0.0$} ! This controls the amount of charge in the unit cell beyond that required to ! maintain neutrality. It can be set positive or negative depending on whether ! electron or hole doping is required. ! ! \block{cmagz}{ ! {\tt cmagz} & .true. if $z$-axis collinear magnetism is to be enforced & ! logical & {\tt .false.}} ! This variable can be set to .true. in cases where the magnetism is ! predominantly collinear in the $z$-direction, for example a ferromagnet with ! spin-orbit coupling. This will make the calculation considerably faster at ! the slight expense of precision. ! ! \block{deltaem}{ ! {\tt deltaem} & the size of the ${\bf k}$-vector displacement used when ! calculating numerical derivatives for the effective mass tensor & real & ! $0.025$} ! See {\tt ndspem} and {\tt vklem}. ! ! \block{deltaph}{ ! {\tt deltaph} & size of the atomic displacement used for calculating ! dynamical matrices & real & $0.01$} ! Phonon calculations are performed by constructing a supercell corresponding ! to a particular ${\bf q}$-vector and making a small periodic displacement of ! the atoms. The magnitude of this displacement is given by {\tt deltaph}. ! This should not be made too large, as anharmonic terms could then become ! significant, neither should it be too small as this can introduce numerical ! error. ! ! \block{deltast}{ ! {\tt deltast} & size of the change in lattice vectors used for calculating ! the stress tensor & real & $0.005$} ! The stress tensor is computed by changing the lattice vector matrix $A$ by ! $$ A\rightarrow (1+\delta t\,e_k)A, $$ ! where $\delta t$ is an infinitesimal equal in practice to {\tt deltast} and ! $e_k$ is the $k^{\rm th}$ strain tensor. Numerical finite differences are ! used to compute the stress tensor as the derivative of the total energy ! $dE_k/dt$. ! ! \block{dft+u}{ ! {\tt dftu} & type of DFT+$U$ calculation & integer & 0 \\ ! {\tt inpdftu} & type of input for DFT+U calculation & integer & 1 \\ ! \hline ! {\tt is} & species number & integer & - \\ ! {\tt l} & angular momentum value & integer & -1 \\ ! {\tt u} & the desired $U$ value & real & $0.0$ \\ ! {\tt j} & the desired $J$ value & real & $0.0$} ! This block contains the parameters required for an DFT+$U$ calculation, with ! the list of parameters for each species terminated with a blank line. The ! type of double counting required is set with the parameter {\tt dftu}. ! Currently implemented are: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! 0 & No DFT+$U$ calculation \\ ! 1 & Fully localised limit (FLL) \\ ! 2 & Around mean field (AFM) \\ ! 3 & An interpolation between FLL and AFM \\ ! \end{tabularx} ! \vskip 6pt ! The type of input parameters is set with the parameter {\tt inpdftu}. ! The current possibilities are: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! 1 & U and J \\ ! 2 & Slater parameters \\ ! 3 & Racah parameters \\ ! 4 & Yukawa screening length \\ ! 5 & U and determination of corresponding Yukawa screening length ! \end{tabularx} ! \vskip 6pt ! See (amongst others) {\it Phys. Rev. B} {\bf 67}, 153106 (2003), ! {\it Phys. Rev. B} {\bf 52}, R5467 (1995), {\it Phys. Rev. B} {\bf 60}, ! 10763 (1999), and {\it Phys. Rev. B} {\bf 80}, 035121 (2009). ! ! \block{dlefe}{ ! {\tt dlefe} & difference between the fixed linearisation energy and the ! Fermi energy & real & $-0.1$} ! When {\tt autolinengy} is {\tt .true.} then the fixed linearisation energies ! are set to the Fermi energy plus {\tt dlefe}. ! ! \block{dncgga}{ ! {\tt dncgga} & small constant used to stabilise non-collinear GGA & ! real & $1\times 10^{-8}$} ! This small constant, $d$, is required in order to remove the infinite ! gradients obtained when using `Kubler's trick' in conjunction with GGA and ! non-collinear magnetism. It is applied by calculating the up and down ! densities as ! $$ \rho^{\uparrow}({\bf r})=\rho({\bf r})+\widetilde{m}({\bf r}) ! \qquad \rho^{\downarrow}({\bf r})=\rho({\bf r})-\widetilde{m}({\bf r}), $$ ! where $\widetilde{m}({\bf r})=\sqrt{{\bf m}^2({\bf r})+d}$, ! and should be taken as the smallest value for which the exchange-correlation ! magnetic field ${\bf B}_{\rm xc}$ is smooth. ! ! \block{dosmsum}{ ! {\tt dosmsum} & {\tt .true.} if the partial DOS is to be summed over $m$ & ! logical & {\tt .false.}} ! By default, the partial density of states is resolved over $(l,m)$ quantum ! numbers. If {\tt dosmsum} is set to {\tt .true.} then the partial DOS is ! summed over $m$, and thus depends only on $l$. ! ! \block{dosssum}{ ! {\tt dosssum} & {\tt .true.} if the partial DOS is to be summed over spin & ! logical & {\tt .false.}} ! By default, the partial density of states for spin-polarised systems is spin ! resolved. ! ! \block{dtimes}{ ! {\tt dtimes} & time step used in time evolution run & real & $0.1$} ! See also {\tt tstime}. ! ! \block{epsband}{ ! {\tt epsband} & convergence tolerance for determining band energies & real & ! $1\times 10^{-12}$} ! APW and local-orbital linearisation energies are determined from the band ! energies. This is done by first searching upwards in energy until the radial ! wavefunction at the muffin-tin radius is zero. This is the energy at the top ! of the band, denoted $E_{\rm t}$. A downward search is now performed from ! $E_{\rm t}$ until the slope of the radial wavefunction at the muffin-tin ! radius is zero. This energy, $E_{\rm b}$, is at the bottom of the band. The ! band energy is taken as $(E_{\rm t}+E_{\rm b})/2$. If either $E_{\rm t}$ or ! $E_{\rm b}$ is not found, then the band energy is set to the default value. ! ! \block{epschg}{ ! {\tt epschg} & maximum allowed error in the calculated total charge beyond ! which a warning message will be issued & real & $1\times 10^{-3}$} ! ! \block{epsengy}{ ! {\tt epsengy} & convergence criterion for the total energy & real & ! $1\times 10^{-4}$} ! See {\tt epspot}. ! ! \block{epsforce}{ ! {\tt epsforce} & convergence tolerance for the forces during a geometry ! optimisation run & real & $5\times 10^{-3}$} ! If the mean absolute value of the atomic forces is less than {\tt epsforce} ! then the geometry optimisation run is ended. See also {\tt tasks} and ! {\tt latvopt}. ! ! \block{epslat}{ ! {\tt epslat } & vectors with lengths less than this are considered zero & ! real & $10^{-6}$} ! Sets the tolerance for determining if a vector or its components are zero. ! This is to account for any numerical error in real or reciprocal space ! vectors. ! ! \block{epsocc}{ ! {\tt epsocc} & smallest occupancy for which a state will contribute to the ! density & real & $1\times 10^{-8}$} ! ! \block{epspot}{ ! {\tt epspot} & convergence criterion for the Kohn-Sham potential and field & ! real & $1\times 10^{-6}$} ! If the RMS change in the Kohn-Sham potential and magnetic field is smaller ! than {\tt epspot} and the absolute change in the total energy is less than ! {\tt epsengy}, then the self-consistent loop is considered converged ! and exited. For geometry optimisation runs this results in the forces being ! calculated, the atomic positions updated and the loop restarted. See also ! {\tt epsengy} and {\tt maxscl}. ! ! \block{epsstress}{ ! {\tt epsstress} & convergence tolerance for the stress tensor during a ! geometry optimisation run with lattice vector relaxation & real & ! $2\times 10^{-3}$} ! See also {\tt epsforce} and {\tt latvopt}. ! ! \block{emaxelnes}{ ! {\tt emaxelnes} & maximum allowed initial-state eigenvalue for ELNES ! calculations & real & $-1.2$} ! ! \block{emaxrf}{ ! {\tt emaxrf} & energy cut-off used when calculating Kohn-Sham response ! functions & real & $10^6$} ! A typical Kohn-Sham response function is of the form ! \begin{align*} ! \chi_s({\bf r},{\bf r}',\omega) ! \equiv\frac{\delta\rho({\bf r},\omega)}{\delta v_s({\bf r}',\omega)} ! =\frac{1}{N_k}\sum_{i{\bf k},j{\bf k}'}(f_{i{\bf k}}-f_{j{\bf k}'}) ! \frac{\langle i{\bf k}|\hat{\rho}({\bf r})|j{\bf k}'\rangle ! \langle j{\bf k}'|\hat{\rho}({\bf r}')|i{\bf k}\rangle} ! {w+(\varepsilon_{i{\bf k}}-\varepsilon_{j{\bf k}'})+i\eta}, ! \end{align*} ! where $\hat{\rho}$ is the density operator; $N_k$ is the number of ! $k$-points; $\varepsilon_{i{\bf k}}$ and $f_{i{\bf k}}$ are the eigenvalues ! and occupation numbers, respectively. The variable {\tt emaxrf} is an energy ! window which limits the summation over states in the formula above so that ! $|\varepsilon_{i{\bf k}}-\varepsilon_{\rm Fermi}|<{\tt emaxrf}$. Reducing ! this can result in a faster calculation at the expense of accuracy. ! ! \block{fracinr}{ ! {\tt fracinr} & fraction of the muffin-tin radius up to which {\tt lmaxi} ! is used as the angular momentum cut-off & real & $0.01$} ! If {\tt fracinr} is negative then the fraction is determined from ! $f=\sqrt{({\tt lmaxi}+1)^2/({\tt lmaxo}+1)^2}$ in order to ! maintain a minimum density of points throughout the muffin-tin. See ! {\tt lmaxi} and {\tt lmaxo}. ! ! \block{fsmtype}{ ! {\tt fsmtype} & 0 for no fixed spin moment (FSM), 1 for total FSM, 2 for ! local muffin-tin FSM, and 3 for both total and local FSM & integer & 0} ! Set to 1, 2 or 3 for fixed spin moment calculations. To fix only the ! direction and not the magnitude set to $-1$, $-2$ or $-3$. See also ! {\tt momfix}, {\tt mommtfix}, {\tt taufsm} and {\tt spinpol}. ! ! \block{ftmtype}{ ! {\tt ftmtype} & 1 to enable a fixed tensor moment (FTM) calculation, ! 0 otherwise & integer & 0} ! If {\tt ftmtype} is $-1$ then the symmetry corresponding to the tensor ! moment is broken but no FTM calculation is performed. See also {\tt tm3fix}. ! ! \block{fxclrc}{ ! {\tt fxclrc} & parameters for the dynamical long-range contribution (LRC) to ! the TDDFT exchange-correlation kernel & real(2) & $(0.0,0.0)$} ! These are the parameters $\alpha$ and $\beta$ for the kernel proposed in ! {\it Phys. Rev. B} {\bf 72}, 125203 (2005), namely ! $$ f_{xc}({\bf G},{\bf G}',{\bf q},\omega)=-\frac{\alpha+\beta\omega^2}{q^2} ! \delta_{{\bf G},{\bf G}'}\delta_{{\bf G},{\bf 0}}. $$ ! ! \block{fxctype}{ ! {\tt fxctype} & integer defining the type of exchange-correlation kernel ! $f_{\rm xc}$ & integer & $-1$} ! The acceptable values are: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! $-1$ & $f_{\rm xc}$ defined by {\tt xctype} \\ ! 0,1 & RPA ($f_{\rm xc}=0$) \\ ! 200 & Long-range contribution (LRC) kernel, S. Botti {\it et al.}, ! {\it Phys. Rev. B} {\bf 72}, 125203 (2005); see {\tt fxclrc} \\ ! 210 & `Bootstrap' kernel, S. Sharma, J. K. Dewhurst, A. Sanna and ! E. K. U. Gross, {\it Phys. Rev. Lett.} {\bf 107}, 186401 (2011) \\ ! 211 & Single iteration bootstrap ! \end{tabularx} ! ! \block{gmaxrf}{ ! {\tt gmaxrf} & maximum length of $|{\bf G}|$ for computing response ! functions & real & $3.0$} ! ! \block{gmaxvr}{ ! {\tt gmaxvr} & maximum length of $|{\bf G}|$ for expanding the interstitial ! density and potential & real & $12.0$} ! This variable has a lower bound which is enforced by the code as follows: ! $$ {\rm gmaxvr}\rightarrow\max\,({\rm gmaxvr},2\times{\rm gkmax} ! +{\rm epslat}) $$ ! See {\tt rgkmax}. ! ! \block{hdbse}{ ! {\tt hdbse} & {\tt .true.} if the direct term is to be included in the BSE ! Hamiltonian & logical & {\tt .true.}} ! ! \block{highq}{ ! {\tt highq} & {\tt .true.} if a high-quality parameter set should be used & ! logical & {\tt .false.}} ! Setting this to {\tt .true.} results in some default parameters being ! changed to ensure good convergence in most situations. These changes can be ! overruled by subsequent blocks in the input file. See also {\tt vhighq}. ! ! \block{hmaxvr}{ ! {\tt hmaxvr} & maximum length of ${\bf H}$-vectors & real & $6.0$} ! The ${\bf H}$-vectors are used for calculating X-ray and magnetic structure ! factors. They are also used in linear response phonon calculations for ! expanding the density and potential in plane waves. See also {\tt gmaxvr}, ! {\tt vhmat}, {\tt reduceh}, {\tt wsfac} and {\tt hkmax}. ! ! \block{hxbse}{ ! {\tt hxbse} & {\tt .true.} if the exchange term is to be included in the BSE ! Hamiltonian & {\tt .true.}} ! ! \block{hybrid}{ ! {\tt hybrid} & {\tt .true} if a hybrid functional is to be used when running ! a Hartree-Fock calculation & logical & {\tt .false}} ! See also {\tt hybridc} and {\tt xctype}. ! ! \block{hybridc}{ ! {\tt hybridc} & hybrid functional mixing coefficient & real & $1.0$} ! ! \block{intraband}{ ! {\tt intraband} & {\tt .true.} if the intraband (Drude-like) contribution is ! to be added to the dieletric tensor & logical & {\tt .false.}} ! ! \block{isgkmax}{ ! {\tt isgkmax} & species for which the muffin-tin radius will be used for ! calculating {\tt gkmax} & integer & $-1$} ! The APW cut-off is determined from ${\tt gkmax}={\tt rgkmax}/R$. The ! variable {\tt isgkmax} determines which muffin-tin radius is to be used for ! $R$. These are the options: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! -4 & Use the largest radius \\ ! -3 & Use the smallest radius \\ ! -2 & Use the fixed value $R=2.0$ \\ ! -1 & Use the average of the muffin-tin radii \\ ! $n\ge 1$ & Use the radius of species $n$ ! \end{tabularx} ! ! \block{kstlist}{ ! {\tt kstlist(i)} & $i$th $k$-point and state pair & integer(2) & $(1,1)$} ! This is a user-defined list of $k$-point and state index pairs which are ! those used for plotting wavefunctions and writing ${\bf L}$, ${\bf S}$ and ! ${\bf J}$ expectation values. Only the first pair is used by the ! aforementioned tasks. The list should be terminated by a blank line. ! ! \block{latvopt}{ ! {\tt latvopt} & type of lattice vector optimisation to be performed during ! structural relaxation & integer & 0} ! Optimisation of the lattice vectors will be performed with ${\tt task}=2,3$ ! when ${\tt latvopt}\ne 0$. When ${\tt latvopt}=1$ the lattice vector ! optimisation will be constrained only by symmetry. Optimisation over all ! symmetry-preserving strains except isotropic scaling is performed when ! ${\tt latvopt}=2$. If ${\tt latvopt}<0$ then the optimisation will be over ! strain number $|{\tt latvopt}|$. The list of symmetric strain tensors can be ! produced with ${\tt task}=430$. By default (${\tt latvopt}=0$) no lattice ! vector optimisation is performed during structural relaxation. See also ! {\tt tau0latv} and {\tt atpopt}. ! ! \block{lmaxapw}{ ! {\tt lmaxapw} & angular momentum cut-off for the APW functions & integer & ! $8$} ! ! \block{lmaxdos}{ ! {\tt lmaxdos} & angular momentum cut-off for the partial DOS plot & ! integer & $3$} ! ! \block{lmaxi}{ ! {\tt lmaxi} & angular momentum cut-off for the muffin-tin density and ! potential on the inner part of the muffin-tin & integer & 2} ! Close to the nucleus, the density and potential is almost spherical and ! therefore the spherical harmonic expansion can be truncated a low angular ! momentum. See also {\tt fracinr}. ! ! \block{lmaxo}{ ! {\tt lmaxo} & angular momentum cut-off for the muffin-tin density and ! potential & integer & 6} ! ! \block{lmirep}{ ! {\tt lmirep} & {\tt .true.} if the $Y_{lm}$ basis is to be transformed ! into the basis of irreducible representations of the site symmetries for ! DOS plotting & logical & {\tt .true.}} ! When lmirep is set to .true., the spherical harmonic basis is transformed ! into one in which the site symmetries are block diagonal. Band characters ! determined from the density matrix expressed in this basis correspond to ! irreducible representations, and allow the partial DOS to be resolved into ! physically relevant contributions, for example $e_g$ and $t_{2g}$. ! ! \block{lorbcnd}{ ! {\tt lorbcnd} & {\tt .true.} if conduction state local-orbitals are to be ! automatically added to the basis & logical & {\tt .false.}} ! Adding these higher energy local-orbitals can improve calculations which ! rely on accurate unoccupied states, such as the response function. See also ! {\tt lorbordc}. ! ! \block{lorbordc}{ ! {\tt lorbordc} & the order of the conduction state local-orbitals & ! integer & 2} ! See {\tt lorbcnd}. ! ! \block{lradstp}{ ! {\tt lradstp} & radial step length for determining coarse radial mesh & ! integer & 4} ! Some muffin-tin functions (such as the density) are calculated on a coarse ! radial mesh and then interpolated onto a fine mesh. This is done for the ! sake of efficiency. {\tt lradstp} defines the step size in going from the ! fine to the coarse radial mesh. If it is too large, loss of precision may ! occur. ! ! \block{maxitoep}{ ! {\tt maxitoep} & maximum number of iterations when solving the exact ! exchange integral equations & integer & 300} ! See {\tt tau0oep}. ! ! \block{maxscl}{ ! {\tt maxscl } & maximum number of self-consistent loops allowed & integer & ! 200} ! This determines after how many loops the self-consistent cycle will ! terminate if the convergence criterion is not met. If {\tt maxscl} is $1$ ! then the density and potential file, {\tt STATE.OUT}, will {\bf not} be ! written to disk at the end of the loop. See {\tt epspot}. ! ! \block{mixsave}{ ! {\tt mixsave} & {\tt .true.} if the mixer work array is to be saved during a ! ground-state run & logical & {\tt .false.}} ! If {\tt mixsave} is {\tt .true.}, then the mixer work array is saved to ! {\tt MIXWORK.OUT} every {\tt nwrite} iterations and at the end of the ! self-consistent loop. This array is subsequently read in at the beginning of ! a restarted calculation in order to improve convergence. ! ! \block{mixtype}{ ! {\tt mixtype } & type of mixing required for the potential & integer & 3} ! Currently implemented are: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! 0 & Linear mixing \\ ! 1 & Adaptive linear mixing \\ ! 3 & Broyden mixing, {\it J. Phys. A: Math. Gen.} {\bf 17}, L317 (1984) ! \end{tabularx} ! ! \block{mixsdb}{ ! {\tt mixsdb} & subspace dimension for Broyden mixing & integer & 5} ! This is the number of mixing vectors which define the subspace in which the ! Hessian matrix is calculated. See {\tt mixtype} and {\tt broydpm}. ! ! \block{molecule}{ ! {\tt molecule} & {\tt .true.} if the system is an isolated molecule & ! logical & {\tt .false.}} ! If {\tt molecule} is {\tt .true.}, then the atomic positions given in the ! {\tt atoms} block are assumed to be in Cartesian coordinates. ! ! \block{momfix}{ ! {\tt momfix} & the desired total moment for a FSM calculation & ! real(3) & $(0.0,0.0,0.0)$} ! Note that all three components must be specified (even for collinear ! calculations). See {\tt fsmtype}, {\tt taufsm} and {\tt spinpol}. ! ! \block{mommtfix}{ ! {\tt is} & species number & integer & 0 \\ ! {\tt ia} & atom number & integer & 0 \\ ! {\tt mommtfix} & the desired muffin-tin moment for a FSM calculation & ! real(3) & $(0.0,0.0,0.0)$} ! The local muffin-tin moments are specified for a subset of atoms, with the ! list terminated with a blank line. Note that all three components must be ! specified (even for collinear calculations). See {\tt fsmtype}, {\tt taufsm} ! and {\tt spinpol}. ! ! \block{mrmtav}{ ! {\tt mrmtav} & order of averaging applied to the muffin-tin radii & ! integer & 0} ! Crystal structures with muffin-tin radii which are widely varying in size ! can cause calculations to become unstable. Applying a simple averaging ! procedure to the radii reduces this variation and can improve stability. ! The larger {\tt mrmtav}, the more equal the muffin-tin radii will become. ! See the routine {\tt rmtavrg}. ! ! \block{mstar}{ ! {\tt mstar} & value of the effective mass parameter used for adaptive ! determination of {\tt swidth} & real & $10.0$} ! See {\tt autoswidth}. ! ! \block{mustar}{ ! {\tt mustar} & Coulomb pseudopotential, $\mu^*$, used in the ! McMillan-Allen-Dynes equation & real & $0.15$} ! This is used when calculating the superconducting critical temperature with ! the formula {\it Phys. Rev. B 12, 905 (1975)} ! $$ T_c=\frac{\omega_{\rm log}}{1.2 k_B}\exp\left[\frac{-1.04(1+\lambda)} ! {\lambda-\mu^*(1+0.62\lambda)}\right], $$ ! where $\omega_{\rm log}$ is the logarithmic average frequency and $\lambda$ ! is the electron-phonon coupling constant. ! ! \block{ncbse}{ ! {\tt ncbse} & number of conduction states to be used for BSE calculations & ! integer & 3} ! See also {\tt nvbse}. ! ! \block{ndspem}{ ! {\tt ndspem} & the number of {\bf k}-vector displacements in each direction ! around {\tt vklem} when computing the numerical derivatives for the ! effective mass tensor & integer & 1} ! See {\tt deltaem} and {\tt vklem}. ! ! \block{nempty}{ ! {\tt nempty} & the number of empty states per atom and spin & real & $4.0$ } ! Defines the number of eigenstates beyond that required for charge ! neutrality. When running metals it is not known {\it a priori} how many ! states will be below the Fermi energy for each $k$-point. Setting ! {\tt nempty} greater than zero allows the additional states to act as a ! buffer in such cases. Furthermore, magnetic calculations use the ! first-variational eigenstates as a basis for setting up the ! second-variational Hamiltonian, and thus {\tt nempty} will determine the ! size of this basis set. Convergence with respect to this quantity should be ! checked. ! ! \block{ngridk}{ ! {\tt ngridk } & the $k$-point mesh sizes & integer(3) & $(1,1,1)$} ! The ${\bf k}$-vectors are generated using ! $$ {\bf k}=(\frac{i_1+v_1}{n_1},\frac{i_2+v_2}{n_2},\frac{i_3+v_3}{n_3}), $$ ! where $i_j$ runs from 0 to $n_j-1$ and $0\le v_j<1$ for $j=1,2,3$. The ! vector ${\bf v}$ is given by the variable {\tt vkloff}. See also ! {\tt reducek}. ! ! \block{ngridq}{ ! {\tt ngridq } & the phonon $q$-point mesh sizes & integer(3) & $(1,1,1)$} ! Same as {\tt ngridk}, except that this mesh is for the phonon $q$-points ! and other tasks. See also {\tt reduceq}. ! ! \block{nosource}{ ! {\tt nosource} & when set to {\tt .true.}, source fields are projected out ! of the exchange-correlation magnetic field & logical & {\tt .false.}} ! Experimental feature. ! ! \block{notes}{ ! {\tt notes(i)} & the $i$th line of the notes & string & -} ! This block allows users to add their own notes to the file {\tt INFO.OUT}. ! The block should be terminated with a blank line, and no line should exceed ! 80 characters. ! ! \block{npmae}{ ! {\tt npmae } & number or distribution of directions for MAE calculations & ! integer & $-1$} ! Automatic determination of the magnetic anisotropy energy (MAE) requires ! that the total energy is determined for a set of directions of the total ! magnetic moment. This variable controls the number or distribution of these ! directions. The convention is: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! $-4,-3,-2,-1$ & Cardinal directions given by the primitive translation ! vectors $n_1{\bf A}_1+n_2{\bf A}_2+n_3{\bf A}_3$, where ! $1\le n_i\le|{\tt npmae}|$ \\ ! 2 & Cartesian $x$ and $z$ directions \\ ! 3 & Cartesian $x$, $y$ and $z$ directions \\ ! $4,5,\ldots$ & Even distribution of {\tt npmae} directions ! \end{tabularx} ! ! \block{ntemp}{ ! {\tt ntemp} & number of temperature steps & integer & 40} ! This is the number of temperature steps to be used in the Eliashberg gap ! and thermodynamic properties calculations. ! ! \block{num\_wann}{ ! {\tt num\_wann} & number of Wannier90 wavefunctions & integer & 0} ! If ${\tt num\_wann}>0$ then this is the number of Wannier wavefunctions ! to be found by the Wannier90 package. If ${\tt num\_wann}\le 0$ then the ! number of wavefunctions is given by ${\tt num\_bands}+{\tt num\_wann}$. ! ! \block{nvbse}{ ! {\tt nvbse} & number of valence states to be used for BSE calculations & ! integer & 2} ! See also {\tt ncbse}. ! ! \block{nwrite}{ ! {\tt nwrite} & number of self-consistent loops after which {\tt STATE.OUT} ! is to be written & integer & 0} ! Normally, the density and potentials are written to the file {\tt STATE.OUT} ! only after completion of the self-consistent loop. By setting {\tt nwrite} ! to a positive integer the file will instead be written every {\tt nwrite} ! loops. ! ! \block{nxoapwlo}{ ! {\tt nxoapwlo} & extra order of radial functions to be added to the existing ! APW and local-orbital set & integer & 0} ! Setting this variable will result in the APWs and local-orbitals for all ! species becoming higher order with corresponding increase in derivative ! matching at the muffin-tin surface. For example, setting {\tt nxoapwlo}=1 ! turns all APWs into LAPWs. ! ! \block{optcomp}{ ! {\tt optcomp} & the components of the first- or second-order optical tensor ! to be calculated & integer(3) & $(1,1,1)$} ! This selects which components of the optical tensor you would like to plot. ! Only the first two are used for the first-order tensor. Several components ! can be listed one after the other with a blank line terminating the list. ! ! \block{phwrite}{ ! {\tt nphwrt} & number of $q$-points for which phonon modes are to be found & ! integer & 1 \\ ! \hline ! {\tt vqlwrt(i)} & the $i$th $q$-point in lattice coordinates & real(3) & ! $(0.0,0.0,0.0)$} ! This is used in conjunction with {\tt task}=230. The code will write the ! phonon frequencies and eigenvectors to the file {\tt PHONON.OUT} for all the ! $q$-points in the list. The $q$-points can be anywhere in the Brillouin zone ! and do not have to lie on the mesh defined by {\tt ngridq}. Obviously, all ! the dynamical matrices have to be computed first using {\tt task}=200. ! ! \block{plot1d}{ ! {\tt nvp1d} & number of vertices & integer & 2 \\ ! {\tt npp1d} & number of plotting points & integer & 200 \\ ! \hline ! {\tt vvlp1d(i)} & lattice coordinates for vertex $i$ & real(3) & ! $(0.0,0.0,0.0)\rightarrow(1.0,1.0,1.0)$} ! Defines the path in either real or reciprocal space along which the 1D plot ! is to be produced. The user should provide {\tt nvp1d} vertices in lattice ! coordinates. ! ! \block{plot2d}{ ! {\tt vclp2d(0)} & zeroth corner (origin) & real(3) & $(0.0,0.0,0.0)$ \\ ! \hline ! {\tt vclp2d(1)} & first corner & real(3) & $(1.0,0.0,0.0)$ \\ ! \hline ! {\tt vclp2d(2)} & second corner & real(3) & $(0.0,1.0,0.0)$ \\ ! \hline ! {\tt np2d} & number of plotting points in both directions & integer(2) & ! $(40,40)$} ! Defines the corners of a parallelogram and the grid size used for producing ! 2D plots. ! ! \block{plot3d}{ ! {\tt vclp3d(0)} & zeroth corner (origin) & real(3) & $(0.0,0.0,0.0)$ \\ ! \hline ! {\tt vclp3d(1)} & first corner & real(3) & $(1.0,0.0,0.0)$ \\ ! \hline ! {\tt vclp3d(2)} & second corner & real(3) & $(0.0,1.0,0.0)$ \\ ! \hline ! {\tt vclp3d(3)} & third corner & real(3) & $(0.0,0.0,1.0)$ \\ ! \hline ! {\tt np3d} & number of plotting points each direction & integer(3) & ! $(20,20,20)$} ! Defines the corners of a box and the grid size used for producing 3D plots. ! ! \block{primcell}{ ! {\tt primcell} & {\tt .true.} if the primitive unit cell should be found ! & logical & {\tt .false.}} ! Allows the primitive unit cell to be determined automatically from the ! conventional cell. This is done by searching for lattice vectors among all ! those which connect atomic sites, and using the three shortest which produce ! a unit cell with non-zero volume. ! ! \block{pulse}{ ! {\tt n} & number of pulses & integer & - \\ ! \hline ! {\tt a0(i)} & polarisation vector (including amplitude) & real(3) & - \\ ! {\tt w(i)} & frequency & real & - \\ ! {\tt phi(i)} & phase in degrees & real & - \\ ! {\tt rc(i)} & chirp rate & real & - \\ ! {\tt t0(i)} & peak time & real & - \\ ! {\tt d(i)} & full-width at half-maximum & real & -} ! Parameters used to generate a time-dependent vector potential ${\bf A}(t)$ ! representing a laser pulse. The total vector potential is the sum of ! individual pulses and is given by the formula ! $$ {\bf A}(t)=\sum_{i=1}^n {\bf A}_0^i\exp ! \left[-(t-t_0^i)^2/2\sigma_i^2\right] ! \sin\left[w_i(t-t_0^i)+\phi_i+r_{\rm c}^i t^2/2\right], $$ ! where $\sigma=d/2\sqrt{2\ln 2}$. See also {\tt ramp}. ! ! \block{q0cut}{ ! {\tt q0cut} & Q-vector cut-off for the ultra long-range Coulomb Green's ! function & real & $0.0$} ! The ultra long-range Poisson equation is solved using the Green's function ! $4\pi/|{\bf G}+{\bf Q}|^2$. This is set to zero for all ! $|{\bf G}+{\bf Q}| <{\tt q0cut}$ in order to improve stability of the ! self-consistent calculation. ! ! \block{radkpt}{ ! {\tt radkpt} & radius of sphere used to determine $k$-point density & ! real & $40.0$} ! Used for the automatic determination of the $k$-point mesh. If {\tt autokpt} ! is set to {\tt .true.} then the mesh sizes will be determined by ! $n_i=R_k|{\bf B}_i|+1$, where ${\bf B}_i$ are the primitive reciprocal ! lattice vectors. ! ! \block{ramp}{ ! {\tt n} & number of ramps & integer & - \\ ! \hline ! {\tt a0(i)} & polarisation vector (including amplitude) & real(3) & - \\ ! {\tt t0(i)} & ramp start time & real & - \\ ! {\tt c1(i)} & linear coefficient of ${\bf A}(t)$ & real & - \\ ! {\tt c2(i)} & quadratic coefficient & real & -} ! Parameters used to generate a time-dependent vector potential ${\bf A}(t)$ ! representing a constant or linearly increasing electric field ! ${\bf E}(t)=-\partial{\bf A}(t)/\partial t$. The vector potential is given ! by ! $$ {\bf A}(t)=\sum_{i=1}^n {\bf A}_0^i ! \left[c_1(t-t_0)+c_2(t-t_0)^2\right]\Theta(t-t_0). $$ ! ! \block{readadu}{ ! {\tt readadu} & set to {\tt .true.} if the interpolation constant for ! DFT+$U$ should be read from file rather than calculated & logical & ! {\tt .false.}} ! When {\tt dftu}=3, the DFT+$U$ energy and potential are interpolated ! between FLL and AFM. The interpolation constant, $\alpha$, is normally ! calculated from the density matrix, but can also be read in from the file ! {\tt ALPHADU.OUT}. This allows the user to fix $\alpha$, but is also ! necessary when calculating forces, since the contribution of the potential ! of the variation of $\alpha$ with respect to the density matrix is not ! computed. See {\tt dft+u}. ! ! \block{reducebf}{ ! {\tt reducebf} & reduction factor for the external magnetic fields & real & ! $1.0$} ! After each self-consistent loop, the external magnetic fields are multiplied ! with {\tt reducebf}. This allows for a large external magnetic field at the ! start of the self-consistent loop to break spin symmetry, while at the end ! of the loop the field will be effectively zero, i.e. infinitesimal. See ! {\tt bfieldc} and {\tt atoms}. ! ! \block{reduceh}{ ! {\tt reduceh} & set to {\tt .true.} if the reciprocal ${\bf H}$-vectors ! should be reduced by the symmorphic crystal symmetries & logical & .true.} ! See {\tt hmaxvr} and {\tt vmat}. ! ! \block{reducek}{ ! {\tt reducek} & type of reduction of the $k$-point set & integer & 1} ! Types of reduction are defined by the symmetry group used: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! 0 & no reduction \\ ! 1 & reduce with full crystal symmetry group (including non-symmorphic ! symmetries) \\ ! 2 & reduce with symmorphic symmetries only ! \end{tabularx} ! \vskip 6pt ! See also {\tt ngridk} and {\tt vkloff}. ! ! \block{reduceq}{ ! {\tt reduceq} & type of reduction of the $q$-point set & integer & 1} ! See {\tt reducek} and {\tt ngridq}. ! ! \block{rgkmax}{ ! {\tt rgkmax} & $R^{\rm MT}_{\rm min}\times\max\{|{\bf G}+{\bf k}|\}$ & ! real & $7.0$} ! This sets the maximum length for the ${\bf G}+{\bf k}$ vectors, defined as ! {\tt rgkmax} divided by the average muffin-tin radius. See {\tt isgkmax}. ! ! \block{rmtall}{ ! {\tt rmtall} & muffin-tin radius for all species & real & $-1.0$} ! If {\tt rmtall} is positive then all muffin-tin radii are set to this value. ! ! \block{rmtdelta}{ ! {\tt rmtdelta} & minimum allowed distance between muffin-tin surfaces & ! real & $0.05$} ! ! \block{rmtscf}{ ! {\tt rmtscf} & muffin-tin radius scaling factor & real & $1.0$} ! All muffin-tin radii read from the species files are scaled by this factor. ! ! \block{rndavec}{ ! {\tt rndavec} & lattice vector randomisation amplitude & real & $0.0$} ! Setting this to a number larger than zero causes the code add random jitter ! to the lattice vectors proportional to this amplitude. This can be used to ! break lattice symmetry. ! ! \block{rotavec}{ ! {\tt axang} & axis-angle representation of lattice vector rotation & ! real(4) & $(0.0,0.0,0.0,0.0)$} ! This determines the rotation matrix which is applied to the lattice vectors ! prior to any calculation. The first three components specify the axis and ! the last component is the angle in degrees. The `right-hand rule' convention ! is followed. ! ! \block{scale}{ ! {\tt scale } & lattice vector scaling factor & real & $1.0$} ! Scaling factor for all three lattice vectors. Applied in conjunction with ! {\tt scale1}, {\tt scale2} and {\tt scale3}. ! ! \block{scale1/2/3}{ ! {\tt scale1/2/3 } & separate scaling factors for each lattice vector & ! real & $1.0$} ! ! \block{scissor}{ ! {\tt scissor} & the scissor correction & real & $0.0$} ! This is the scissor shift applied to states above the Fermi energy ! {\it Phys. Rev. B} {\bf 43}, 4187 (1991). Affects optics calculations only. ! ! \block{scrpath}{ ! {\tt scrpath} & scratch space path & string & null} ! This is the scratch space path where the eigenvector files {\tt EVALFV.OUT} ! and {\tt EVALSV.OUT} will be written. If the run directory is accessed via a ! network then {\tt scrpath} can be set to a directory on the local disk, for ! example {\tt /tmp/}. Note that the forward slash {\tt /} at the end of the ! path must be included. ! ! \block{socscf}{ ! {\tt socscf} & scaling factor for the spin-orbit coupling term in the ! Hamiltonian & real & $1.0$} ! This can be used to enhance the effect of spin-orbit coupling in order to ! accurately determine the magnetic anisotropy energy (MAE). ! ! \block{spincore}{ ! {\tt spincore} & set to {\tt .true.} if the core should be spin-polarised ! & logical & {\tt .false.}} ! ! \block{spinorb}{ ! {\tt spinorb} & set to {\tt .true.} if a spin-orbit coupling is required ! & logical & {\tt .false.}} ! If {\tt spinorb} is {\tt .true.}, then a $\boldsymbol\sigma\cdot{\bf L}$ ! term is added to the second-variational Hamiltonian. See {\tt spinpol}. ! ! \block{spinpol}{ ! {\tt spinpol} & set to {\tt .true.} if a spin-polarised calculation is ! required & logical & {\tt .false.}} ! If {\tt spinpol} is {\tt .true.}, then the spin-polarised Hamiltonian is ! solved as a second-variational step using two-component spinors in the ! Kohn-Sham magnetic field. The first variational scalar wavefunctions are ! used as a basis for setting this Hamiltonian. ! ! \block{spinsprl}{ ! {\tt spinsprl} & set to {\tt .true.} if a spin-spiral calculation is ! required & logical & {\tt .false.}} ! Experimental feature for the calculation of spin-spiral states. See ! {\tt vqlss} for details. ! ! \block{sppath}{ ! {\tt sppath} & path where the species files can be found & string & null} ! Note that the forward slash {\tt /} at the end of the path must be included. ! ! \block{ssdph}{ ! {\tt ssdph} & set to {\tt .true.} if a complex de-phasing factor is to be ! used in spin-spiral calculations & logical & {\tt .true.}} ! If this is {\tt .true.} then spin-spiral wavefunctions in each muffin-tin at ! position ${\bf r}_{\alpha}$ are de-phased by the matrix ! $$ \begin{pmatrix} e^{-i{\bf q}\cdot{\bf r}_{\alpha}/2} & 0 \\ ! 0 & e^{i{\bf q}\cdot{\bf r}_{\alpha}/2} \end{pmatrix}. $$ ! In simple situations, this has the advantage of producing magnon dynamical ! matrices which are already in diagonal form. This option should be used with ! care, and a full understanding of the spin-spiral configuration is required. ! See {\tt spinsprl}. ! ! \block{stype}{ ! {\tt stype} & integer defining the type of smearing to be used & integer & ! $3$} ! A smooth approximation to the Dirac delta function is needed to compute the ! occupation numbers of the Kohn-Sham states. The variable {\tt swidth} ! determines the width of the approximate delta function. Currently ! implemented are ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! 0 & Gaussian \\ ! 1 & Methfessel-Paxton order 1, Phys. Rev. B {\bf 40}, 3616 (1989) \\ ! 2 & Methfessel-Paxton order 2 \\ ! 3 & Fermi-Dirac ! \end{tabularx} ! \vskip 6pt ! See also {\tt autoswidth}, {\tt swidth} and {\tt tempk}. ! ! \block{swidth}{ ! {\tt swidth} & width of the smooth approximation to the Dirac delta ! function & real & $0.001$} ! See {\tt stype} for details and the variable {\tt tempk}. ! ! \newpage ! \block{tasks}{ ! {\tt task(i) } & the $i$th task & integer & $-1$} ! A list of tasks for the code to perform sequentially. The list should be ! terminated with a blank line. Each task has an associated integer as ! follows: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! 0 & Ground-state run starting from the atomic densities. \\ ! 1 & Resumption of ground-state run using density in {\tt STATE.OUT}. \\ ! 2 & Geometry optimisation run starting from the atomic densities, with ! atomic positions written to {\tt GEOMETRY.OUT}. \\ ! 3 & Resumption of geometry optimisation run using density in {\tt STATE.OUT} ! but with positions from {\tt elk.in}. \\ ! 5 & Ground-state Hartree-Fock run. \\ ! 10 & Total, partial and interstitial density of states (DOS). \\ ! 14 & Plots the smooth Dirac delta and Heaviside step functions used by the ! code to calculate occupation numbers. \\ ! 15 & Output ${\bf L}$, ${\bf S}$ and ${\bf J}$ total expectation values. \\ ! 16 & Output ${\bf L}$, ${\bf S}$ and ${\bf J}$ expectation values for each ! $k$-point and state in {\tt kstlist}. \\ ! 20 & Band structure plot. \\ ! 21 & Band structure plot which includes total and angular momentum ! characters for every atom. \\ ! 22 & Band structure plot which includes $(l,m)$ character for every atom. \\ ! 23 & Band structure plot which includes spin character for every atom. \\ ! 25 & Compute the effective mass tensor at the $k$-point given by ! {\tt vklem}. \\ ! 31/2/3 & 1/2/3D charge density plot. \\ ! 41/2/3 & 1/2/3D exchange-correlation and Coulomb potential plots. \\ ! 51/2/3 & 1/2/3D electron localisation function (ELF) plot. \\ ! 61/2/3 & 1/2/3D wavefunction plot: ! $\left|\Psi_{i{\bf k}}({\bf r})\right|^2$. \\ ! 65 & Write the core wavefunctions to file for plotting. \\ ! 68 & Output the status of the RAM disk. \\ ! 71/2/3 & 1/2/3D plot of magnetisation vector field, ${\bf m}({\bf r})$. \\ ! 81/2/3 & 1/2/3D plot of exchange-correlation magnetic vector field, ! ${\bf B}_{\rm xc}({\bf r})$. \\ ! 91/2/3 & 1/2/3D plot of $\nabla\cdot{\bf B}_{\rm xc}({\bf r})$. \\ ! 100 & 3D Fermi surface plot using the scalar product ! $p({\bf k})=\prod_i(\epsilon_{i{\bf k}}-\epsilon_{\rm F})$. \\ ! 101 & 3D Fermi surface plot using separate bands (minus the Fermi ! energy). \\ ! 102 & 3D Fermi surface which can be plotted with XCrysDen. \\ ! 105 & 3D nesting function plot. \\ ! 110 & Calculation of M\"{o}ssbauer contact charge densities and magnetic ! fields at the nuclear sites. \\ ! 115 & Calculation of the electric field gradient (EFG) at the nuclear ! sites. \\ ! 120 & Output of the momentum matrix elements ! $\langle\Psi_{i{\bf k}}|-i\nabla|\Psi_{j{\bf k}}\rangle$. \\ ! 121 & Linear optical dielectric response tensor calculated within the random ! phase approximation (RPA) and in the $q\rightarrow 0$ limit, with no ! microscopic contributions. \\ ! 122 & Magneto optical Kerr effect (MOKE) angle. \\ ! 125 & Non-linear optical second harmonic generation. \\ ! 130 & Output matrix elements of the type ! $\langle\Psi_{i{\bf k+q}}|e^{i{\bf q}\cdot{\bf r}}| ! \Psi_{j{\bf k}}\rangle$. ! \end{tabularx} ! ! \begin{tabularx}{\textwidth}[h]{lX} ! 135 & Output all wavefunctions expanded in the plane wave basis up to a ! cut-off defined by {\tt hkmax}. \\ ! 140 & Energy loss near edge structure (ELNES). \\ ! 141/2/3 & 1/2/3D plot of the electric field ! ${\bf E}({\bf r})\equiv\nabla V_{\rm C}({\bf r})$. \\ ! 150 & Write out the atomic eigenvalues for each species. \\ ! 151/2/3 & 1/2/3D plot of ! ${\bf m}({\bf r})\times{\bf B}_{\rm xc}({\bf r})$. \\ ! 160 & Calculates the total exchange-correlation spin-torque acting on the ! system: $\boldsymbol\tau=\int d^3r\, {\bf m}({\bf r})\times ! {\bf B}_{\rm xc}({\bf r}).$ \\ ! 162 & 2D scanning-tunneling microscopy (STM) image. \\ ! 170 & Writes the electron momentum density to {\tt EMD.OUT}. \\ ! 171/2/3 & 1/2/3D plot of the electron momentum density. \\ ! 180 & Generate the RPA inverse dielectric function with local contributions ! $\epsilon^{-1}({\bf G},{\bf G}',{\bf q},\omega)$ and write it to file. \\ ! 185 & Write the Bethe-Salpeter equation (BSE) Hamiltonian to file. \\ ! 186 & Diagonalise the BSE Hamiltonian and write the eigenvectors and ! eigenvalues to file. \\ ! 187 & Output the BSE dielectric response function. \\ ! 190 & Write the atomic geometry to file for plotting with XCrySDen and ! V\_Sim. \\ ! 195 & Calculation of X-ray density structure factors. \\ ! 196 & Calculation of magnetic structure factors. \\ ! 200 & Calculation of phonon dynamical matrices on a $q$-point set defined by ! {\tt ngridq} using the supercell method. \\ ! 202 & Phonon dry run: just produce a set of empty {\tt DYN} files. \\ ! 205 & Calculation of phonon dynamical matrices using density functional ! perturbation theory (DFPT). \\ ! 208 & Calculation of static Born effective charges. \\ ! 209 & Born effective charge dry run: produce a set of empty {\tt BEC} ! files. \\ ! 210 & Phonon density of states. \\ ! 220 & Phonon dispersion plot. \\ ! 230 & Phonon frequencies and eigenvectors for an arbitrary $q$-point. \\ ! 240/1 & Generate the ${\bf q}$-dependent phonon linewidths and ! electron-phonon coupling constants and write them to file. Task 241 also ! writes the complete set of electron-phonon coupling matrix elements to ! {\tt EPHMAT.OUT}. \\ ! 245 & Phonon linewidths plot. \\ ! 250 & Eliashberg function $\alpha^2F(\omega)$, electron-phonon coupling ! constant $\lambda$, and the McMillan-Allen-Dynes critical temperature ! $T_c$. \\ ! 260 & Solves the Eliashberg equations to find the superconducting gap. \\ ! 270 & Electron-phonon Bogoliubov equation ground-state. \\ ! 271 & Resumption of the Bogoliubov ground-state. \\ ! 280 & Electron-phonon Bogoliubov density of states. \\ ! 285 & Electron and phonon anomalous correlation entropy (ACE). \\ ! 300 & Reduced density matrix functional theory (RDMFT) calculation. \\ ! 320 & Time-dependent density functional theory (TDDFT) calculation of the ! dielectric response function including microscopic contributions. \\ ! 330/1 & TDDFT calculation of the spin-polarised response function for ! arbitrary ${\bf q}$-vectors. Task 331 writes the entire response function ! $\overleftrightarrow{\chi}({\bf G},{\bf G}',{\bf q},\omega)$ to file. ! \end{tabularx} ! ! \begin{tabularx}{\textwidth}[h]{lX} ! 341/2/3 & 1/2/3D plot of ! $w_{\rm xc}({\bf r})\equiv \left.\delta E_{\rm xc}[\rho,\tau]/ ! \delta \tau({\bf r})\right|_{\rho}$ which is calculated for meta-GGA ! functionals. \\ ! 350/1/2 & Spin-spiral supercell calculations (spin-orbit coupling can be ! included). Task 352 is a dry run: produce a set of empty {\tt SS} files. \\ ! 371/2/3 & 1/2/3D plot of the paramagnetic current density ! ${\bf j}_{\rm p}({\bf r})$. \\ ! 380 & Piezoelectric tensor. \\ ! 390 & Magnetoelectric tensor. \\ ! 400 & Calculation of tensor moments and corresponding DFT+$U$ Hartree-Fock ! energy contributions. \\ ! 420/1 & Molecular dynamics (MD) calculation within the adiabatic ! approximation. Task 421 restarts an interrupted MD calculation. \\ ! 430 & Write the strain tensors to {\tt STRAIN.OUT}. \\ ! 440 & Write the stress tensor components corresponding to the strain tensors ! to {\tt STRESS.OUT}. \\ ! 450 & Generates a laser pulse in the form of a time-dependent vector ! potential ${\bf A}(t)$ and writes it to {\tt AFIELDT.OUT}. \\ ! 455 & Writes the time-dependent power density and total energy density of ! ${\bf A}(t)$. \\ ! 456 & Writes the frequency-dependent electric field ${\bf E}(\omega)$ ! corresponding to ${\bf A}(t)$. \\ ! 460/1/2/3 & Time evolution run using TDDFT under the influence of ! ${\bf A}(t)$. Tasks 462 and 463 include nuclear Ehrenfest dynamics. Tasks ! 461 and 463 restart interrupted calculations. \\ ! 471 & 1D plot of the static charge density. \\ ! 478 & Calculation of the dynamical Born effective charges. \\ ! 480/1 & Computes the dielectric function from the time-dependent current ! density in {\tt JTOT\_TD.OUT}. Task 481 assumes that the vector potential ! ${\bf A}(t)$ is a step function at $t=0$, while task 480 makes no such ! assumptions. \\ ! 500 & Checks the test files generated when {\tt test} is {\tt .true.} \\ ! 550 & Writes the files required by Wannier90. \\ ! 600 & Output the $GW$ self-energy matrix elements. \\ ! 610 & Generates the $GW$ spectral function. \\ ! 620 & Generates the $GW$ band structure, i.e. the ${\bf k}$-dependent ! spectral function). \\ ! 640 & Determines the $GW$ density matrix in terms of natural orbitals and ! occupation numbers. The files {\tt EVECSV.OUT} and {\tt OCCSV.OUT} are ! overwritten by these and can then be used for other calculations. \\ ! 700/1 & Ultra long-range ground-state calculation. Task 701 is for ! restarting from the potential in {\tt STATE\_ULR.OUT}. \\ ! 731/2/3 & 1/2/3D plot of the ultra long-range density. \\ ! 741/2/3 & 1/2/3D plot of the ultra long-range Kohn-Sham potential. \\ ! 771/2/3 & 1/2/3D plot of the ultra long-range magnetisation. ! \end{tabularx} ! ! \block{tau0atp}{ ! {\tt tau0atp} & the step size to be used for atomic position optimisation & ! real & $0.25$} ! The position of atom $\alpha$ is updated on step $m$ of a geometry ! optimisation run using ! $$ {\bf r}_{\alpha}^{m+1}={\bf r}_{\alpha}^m+\tau_{\alpha}^m ! \left({\bf F}_{\alpha}^m+{\bf F}_{\alpha}^{m-1}\right), $$ ! where $\tau_{\alpha}$ is set to {\tt tau0atp} for $m=0$, and incremented by ! the same amount if the atom is moving in the same direction between steps. ! If the direction changes then $\tau_{\alpha}$ is reset to {\tt tau0atp}. ! ! \block{tau0latv}{ ! {\tt tau0latv} & the step size to be used for lattice vector optimisation & ! real & $0.25$} ! This parameter is used for lattice vector optimisation in a procedure ! identical to that for atomic position optimisation. See {\tt tau0atp} and ! {\tt latvopt}. ! ! \block{tau0oep}{ ! {\tt tau0oep} & initial step length for the OEP iterative solver & real & ! $0.5$} ! The optimised effective potential is determined using an interative method ! [Phys. Rev. Lett. 98, 196405 (2007)]. This variable sets the step length as ! described in the article. See {\tt maxitoep}. ! ! \block{taufsm}{ ! {\tt taufsm} & the step size to be used when finding the effective magnetic ! field in fixed spin moment calculations & real & $0.01$} ! An effective magnetic field, ${\bf B}_{\rm FSM}$, is required for fixing the ! spin moment to a given value, ${\bf M}_{\rm FSM}$. This is found by adding a ! vector to the field which is proportional to the difference between the ! moment calculated in the $i$th self-consistent loop and the required moment: ! $$ {\bf B}_{\rm FSM}^{i+1}={\bf B}_{\rm FSM}^i+\lambda\left({\bf M}^i ! -{\bf M}_{\rm FSM}\right), $$ ! where $\lambda$ is proportional to {\tt taufsm}. See also {\tt fsmtype}, ! {\tt momfix} and {\tt spinpol}. ! ! \block{tempk}{ ! {\tt tempk} & temperature $T$ of the electronic system in kelvin & real & -} ! Assigning a value to this variable sets {\tt stype} to 3 (Fermi-Dirac) and ! the smearing width to $k_{\rm B}T$. ! ! \block{tforce}{ ! {\tt tforce} & set to {\tt .true.} if the force should be calculated at the ! end of the self-consistent cycle & logical & {\tt .false.}} ! This variable is automatically set to {\tt .true.} when performing geometry ! optimisation. ! ! \block{tefvit}{ ! {\tt tefvit} & set to {\tt .true.} if the first-variational eigenvalue ! equation should be solved iteratively & logical & {\tt .false.}} ! ! \block{tefvr}{ ! {\tt tefvr} & set to {\tt .true.} if a real symmetric eigenvalue solver ! should be used for crystals which have inversion symmetry & logical & ! {\tt .true.}} ! For crystals with inversion symmetry, the first-variational Hamiltonian and ! overlap matrices can be made real by using appropriate transformations. In ! this case, a real symmetric (instead of complex Hermitian) eigenvalue solver ! can be used. This makes the calculation about three times faster. ! ! \block{tm3fix}{ ! {\tt ntmfix} & number of tensor moments (TM) to be fixed & integer & 0 \\ ! \hline ! {\tt is(i)} & species number for entry $i$ & integer & - \\ ! {\tt ia(i)} & atom number & integer & - \\ ! {\tt l(i)} & $l$ of TM & integer & - \\ ! \hline ! {\tt (k, p, r, t)(i)} & indices for the 3-index TM & integer & - \\ ! \hline ! {\tt wkpr(t)(i)} & real TM value & real & - } ! This block sets up the fixed tensor moment (FTM). There should be as many ! TM entries as {\tt ntmfix}. See the routine {\tt tm3todm} for the tensor ! moment indexing convention. ! ! \block{tmwrite}{ ! {\tt tmwrite} & set to {\tt .true.} if the tensor moments and the ! corresponding decomposition of DFT+$U$ energy should be calculated ! at every loop of the self-consistent cycle & logical & {\tt .false.}} ! This variable is useful to check the convergence of the tensor moments in ! DFT+$U$ caculations. Alternatively, with {\tt task} equal to 400, one can ! calculate the tensor moments and corresponding DFT+$U$ energy contributions ! from a given density matrix and set of Slater parameters at the end of the ! self-consistent cycle. ! ! \block{tsediag}{ ! {\tt tsediag} & set to {\tt .true.} if the self-energy matrix should be ! treated as diagonal & logical & {\tt .true.}} ! When this variable is {\tt .true.}, the self-energy used in a $GW$ ! calculation $\Sigma_{ij}({\bf k},\omega)$ is taken to be diagonal in the ! Kohn-Sham state indices $i$ and $j$. When {\tt tsediag} is {\tt .false.}, ! the entire matrix is used. See also {\tt twdiag}. ! ! \block{tshift}{ ! {\tt tshift} & set to {\tt .true.} if the crystal can be shifted so that the ! atom closest to the origin is exactly at the origin & ! logical & {\tt .true.}} ! ! \block{tstime}{ ! {\tt tstime} & total simulation time of time evolution run & real & ! $1000.0$} ! See also {\tt dtimes}. ! ! \block{twdiag}{ ! {\tt twdiag} & set to {\tt .true.} if the screened interaction matrix should ! be treated as diagonal & logical & {\tt .false.}} ! When this variable is {\tt .true.}, the screened interaction used in a $GW$ ! calculation $W({\bf G},{\bf G}',{\bf q},\omega)$ is taken to be diagonal in ! the plane wave indices ${\bf G}$ and ${\bf G}'$. See also {\tt tsediag}. ! ! \block{vhmat}{ ! {\tt vhmat(1)} & matrix row 1 & real(3) & $(1.0,0.0,0.0)$ \\ ! \hline ! {\tt vhmat(2)} & matrix row 2 & real(3) & $(0.0,1.0,0.0)$ \\ ! \hline ! {\tt vhmat(3)} & matrix row 3 & real(3) & $(0.0,0.0,1.0)$} ! This is the transformation matrix $M$ applied to every vector $\bf H$ in the ! structure factor output files {\tt SFACRHO.OUT} and {\tt SFACMAG.OUT}. It is ! stored in the usual row-column setting and applied directly as ! ${\bf H}'=M{\bf H}$ to every vector but {\em only} when writing the output ! files. See also {\tt hmaxvr} and {\tt reduceh}. ! ! \block{vhighq}{ ! {\tt vhighq} & {\tt .true.} if a very high-quality parameter set should be ! used & logical & {\tt .false.}} ! Setting this to {\tt .true.} results in some default parameters being ! changed to ensure excellent convergence in most situations. See also ! {\tt highq}. ! ! \block{vklem}{ ! {\tt vklem} & the $k$-point in lattice coordinates at which to compute the ! effective mass tensors & real(3) & $(0.0,0.0,0.0)$} ! See {\tt deltaem} and {\tt ndspem}. ! ! \block{vkloff}{ ! {\tt vkloff } & the $k$-point offset vector in lattice coordinates & ! real(3) & $(0.0,0.0,0.0)$} ! See {\tt ngridk}. ! ! \block{vqlss}{ ! {\tt vqlss} & the ${\bf q}$-vector of the spin-spiral state in lattice ! coordinates & real(3) & $(0.0,0.0,0.0)$} ! Spin-spirals arise from spinor states assumed to be of the form ! $$ \Psi^{\bf q}_{\bf k}({\bf r})= ! \left( \begin{array}{c} ! U^{{\bf q}\uparrow}_{\bf k}({\bf r})e^{i({\bf k+q/2})\cdot{\bf r}} \\ ! U^{{\bf q}\downarrow}_{\bf k}({\bf r})e^{i({\bf k-q/2})\cdot{\bf r}} \\ ! \end{array} \right). $$ ! These are determined using a second-variational approach, and give rise to a ! magnetisation density of the form ! $$ {\bf m}^{\bf q}({\bf r})=(m_x({\bf r})\cos({\bf q \cdot r}), ! m_y({\bf r})\sin({\bf q \cdot r}),m_z({\bf r})), $$ ! where $m_x$, $m_y$ and $m_z$ are lattice periodic. See also {\tt spinsprl}. ! ! \block{wmaxgw}{ ! {\tt wmaxgw} & maximum Matsubara frequency for $GW$ calculations & real & ! $-5.0$} ! This defines the cut-off of the Matsubara frequencies on the imaginary ! axis for calculating the $GW$ self-energy and solving the Dyson equation. ! If this number is negative then the cut-off is taken to be ! $|{\tt wmaxgw}|\times\Delta\epsilon$, where $\Delta\epsilon$ is the ! difference between the largest and smallest Kohn-Sham valence eigenvalues. ! ! \block{wplot}{ ! {\tt nwplot} & number of frequency/energy points in the DOS or optics plot & ! integer & $500$ \\ ! {\tt ngrkf} & fine $k$-point grid size used for integrating functions in the ! Brillouin zone & integer & $100$ \\ ! {\tt nswplot} & level of smoothing applied to DOS/optics output & integer & ! $1$ \\ ! \hline ! {\tt wplot} & frequency/energy window for the DOS or optics plot & real(2) & ! $(-0.5,0.5)$} ! DOS and optics plots require integrals of the kind ! $$ g(\omega_i)=\frac{\Omega}{(2\pi)^3}\int_{\rm BZ} f({\bf k}) ! \delta(\omega_i-e({\bf k}))d{\bf k}. $$ ! These are calculated by first interpolating the functions $e({\bf k})$ and ! $f({\bf k})$ with the trilinear method on a much finer mesh whose size is ! determined by {\tt ngrkf}. Then the $\omega$-dependent histogram of the ! integrand is accumulated over the fine mesh. If the output function is noisy ! then either {\tt ngrkf} should be increased or {\tt nwplot} decreased. ! Alternatively, the output function can be artificially smoothed up to a ! level given by {\tt nswplot}. This is the number of successive 3-point ! averages to be applied to the function $g$. ! ! \block{wsfac}{ ! {\tt wsfac} & energy window to be used when calculating density or magnetic ! structure factors & real(2) & $(-10^6,10^6)$} ! Only those states with eigenvalues within this window will contribute to the ! density or magnetisation. See also {\tt hmaxvr} and {\tt vhmat}. ! ! \block{xctype}{ ! {\tt xctype} & integers defining the type of exchange-correlation functional ! to be used & integer(3) & $(3,0,0)$} ! Normally only the first value is used to define the functional type. The ! other value may be used for external libraries. Currently implemented are: ! \vskip 6pt ! \begin{tabularx}{\textwidth}[h]{lX} ! $-n$ & Exact-exchange optimised effective potential (EXX-OEP) method with ! correlation energy and potential given by functional number $n$ \\ ! 1 & No exchange-correlation funtional ($E_{\rm xc}\equiv 0$) \\ ! 2 & LDA, Perdew-Zunger/Ceperley-Alder, {\it Phys. Rev. B} {\bf 23}, 5048 ! (1981) \\ ! 3 & LSDA, Perdew-Wang/Ceperley-Alder, {\it Phys. Rev. B} {\bf 45}, 13244 ! (1992) \\ ! 4 & LDA, X-alpha approximation, J. C. Slater, {\it Phys. Rev.} {\bf 81}, 385 ! (1951) \\ ! 5 & LSDA, von Barth-Hedin, {\it J. Phys. C} {\bf 5}, 1629 (1972) \\ ! 20 & GGA, Perdew-Burke-Ernzerhof, {\it Phys. Rev. Lett.} {\bf 77}, 3865 ! (1996) \\ ! 21 & GGA, Revised PBE, Zhang-Yang, {\it Phys. Rev. Lett.} {\bf 80}, 890 ! (1998) \\ ! 22 & GGA, PBEsol, Phys. Rev. Lett. 100, 136406 (2008) \\ ! 26 & GGA, Wu-Cohen exchange (WC06) with PBE correlation, {\it Phys. Rev. B} ! {\bf 73}, 235116 (2006) \\ ! 30 & GGA, Armiento-Mattsson (AM05) spin-unpolarised functional, ! {\it Phys. Rev. B} {\bf 72}, 085108 (2005) \\ ! 100 & Libxc functionals; the second and third values of {\tt xctype} define ! the exchange and correlation functionals in the Libxc library, ! respectively \\ ! \end{tabularx} ! ! \section{Contributing to Elk} ! Please bear in mind when writing code for the Elk project that it should be ! an exercise in physics and not software engineering. All code should ! therefore be kept as simple and concise as possible, and above all it should ! be easy for anyone to locate and follow the Fortran representation of the ! original mathematics. We would also appreciate the following conventions ! being adhered to: ! \begin{itemize} ! \item Strict Fortran 2008 should be used. Features which are marked as ! obsolescent in Fortran 2008 should be avoided. These include assigned ! format specifiers, labeled do-loops, computed goto statements and statement ! functions. ! \item Modules should be used in place of common blocks for declaring ! global variables. Use the existing modules to declare new global variables. ! \item Any code should be written in lower-case free form style, starting ! from column one. Try and keep the length of each line to fewer than 80 ! characters using the \& character for line continuation. ! \item Every function or subroutine, no matter how small, should be in its ! own file named {\tt routine.f90}, where {\tt routine} is the function or ! subroutine name. It is recommended that the routines are named so as to ! make their purpose apparent from the name alone. ! \item Use of {\tt implicit none} is mandatory. Remember also to define the ! {\tt intent} of any passed arguments. ! \item Local allocatable arrays must be deallocated on exit of the routine to ! prevent memory leakage. Use of automatic arrays should be limited to arrays ! of small size. ! \item Every function or subroutine must be documented with the Protex source ! code documentation system. This should include a short \LaTeX\ description ! of the algorithms and methods involved. Equations which need to be ! referenced should be labeled with {\tt routine\_1}, {\tt routine\_2}, etc. ! The authorship of each new piece of code or modification should be ! indicated in the {\tt REVISION HISTORY} part of the header. See the Protex ! documentation for details. ! \item Ensure as much as possible that a routine will terminate the program ! when given improper input instead of continuing with erroneous results. ! Specifically, functions should have a well-defined domain for which they ! return accurate results. Input outside that domain should result in an ! error message and termination. ! \item Report errors prior to termination with a short description, for ! example: ! \begin{verbatim} ! write(*,*) ! write(*,'("Error(readinput): natoms < 1 : ",I8)') natoms(is) ! write(*,'(" for species ",I4)') is ! write(*,*) ! stop ! \end{verbatim} ! \item Wherever possible, real numbers outputted as ASCII data should be ! formatted with the {\tt G18.10} specifier. ! \item Avoid redundant or repeated code: check to see if the routine you need ! already exists, before writing a new one. ! \item All reading in of ASCII data should be done in the subroutine ! {\tt readinput}. For binary data, separate routines for reading and writing ! should be used (for example {\tt writestate} and {\tt readstate}). ! \item Input filenames should be in lowercase and have the extension ! {\tt .in} . All output filenames should be in uppercase with the extension ! {\tt .OUT} . ! \item All internal units should be atomic. Input and output units should be ! atomic by default and clearly stated otherwise. Rydbergs should not be used ! under any circumstances. ! \end{itemize} ! \subsection{Licensing} ! Routines which constitute the main part of the code are released under the ! GNU General Public License (GPL). Library routines are released under the ! less restrictive GNU Lesser General Public License (LGPL). Both licenses ! are contained in the file {\tt COPYING}. Any contribution to the code must ! be licensed at the authors' discretion under either the GPL or LGPL. ! Author(s) of the code retain the copyrights. Copyright and (L)GPL ! information must be included at the beginning of every file, and no code ! will be accepted without this. ! !EOI elk-10.4.9/src/PaxHeaders/energynn.f900000644000000000000000000000013214762655564014416 xustar0030 mtime=1741380468.498008617 30 atime=1741380466.520998281 30 ctime=1741380468.498008617 elk-10.4.9/src/energynn.f900000644002504400250440000000230214762655564017135 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine energynn use modmain implicit none ! local variables integer is,ias,nr,nri integer iro,i0,i1 real(8) t1 ! allocatable arrays complex(8), allocatable :: zvclmt(:,:),zvclir(:),zrhoir(:) allocate(zvclmt(npmtmax,natmtot)) ! generate the nuclear monopole potentials do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 i1=lmmaxi*(nri-1)+1 zvclmt(1:npmt(is),ias)=0.d0 zvclmt(1:i1:lmmaxi,ias)=vcln(1:nri,is) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zvclmt(i0:i1:lmmaxo,ias)=vcln(iro:nr,is) end do allocate(zrhoir(ngtot),zvclir(ngtot)) ! set the interstitial density to zero zrhoir(1:ngtot)=0.d0 ! solve the complex Poisson's equation call zpotcoul(0,nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gc,gclg,ngvec, & jlgrmt,ylmg,sfacg,zrhoir,npmtmax,zvclmt,zvclir) ! compute the nuclear-nuclear energy engynn=0.d0 do ias=1,natmtot is=idxis(ias) t1=(dble(zvclmt(1,ias))-vcln(1,is))*y00 engynn=engynn+spzn(is)*t1 end do engynn=0.5d0*engynn deallocate(zvclmt,zvclir,zrhoir) end subroutine elk-10.4.9/src/PaxHeaders/genvmatk.f900000644000000000000000000000013214762655564014405 xustar0030 mtime=1741380468.499008622 30 atime=1741380466.523998297 30 ctime=1741380468.499008622 elk-10.4.9/src/genvmatk.f900000644002504400250440000000675014762655564017137 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genvmatk(vmt,vir,ngp,igpig,wfmt,ld,wfgp,vmat) use modmain use moddftu use modomp implicit none ! arguments ! the potential is multiplied by the radial integration weights in the ! muffin-tin and by the characteristic function in the interstitial region real(8), intent(in) :: vmt(npcmtmax,natmtot),vir(ngtc) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(4), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nstsv) integer, intent(in) :: ld complex(4), intent(in) :: wfgp(ld,nspinor,nstsv) complex(8), intent(out) :: vmat(nstsv,nstsv) ! local variables integer ist,jst,ispn,jspn integer is,ias,nrc,nrci,nrco integer npc,npc2,ipco integer n,igp,nthd ! automatic arrays complex(4) wfmt1(npcmtmax),wfmt2(npcmtmax) complex(4) wfir(ngtc),c(ngkmax) ! external functions real(4), external :: sdot complex(4), external :: cdotc ! zero the upper triangular matrix elements do jst=1,nstsv vmat(1:jst,jst)=0.d0 end do call holdthd(nstsv,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfmt1,wfmt2,wfir,c) & !$OMP PRIVATE(ist,jst,ispn,jspn) & !$OMP PRIVATE(ias,is,nrc,nrci,nrco) & !$OMP PRIVATE(npc,npc2,ipco,n,igp) & !$OMP NUM_THREADS(nthd) !-------------------------! ! muffin-tin part ! !-------------------------! !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci npc=npcmt(is) npc2=npc*2 ipco=npcmti(is)+1 wfmt1(1:npc)=vmt(1:npc,ias)*wfmt(1:npc,ias,ispn,jst) ! apply muffin-tin DFT+U potential matrix if required (note that this should be ! used only in the spin-unpolarised case) if (dftu /= 0) then if (any(tvmmt(0:lmaxdm,ias))) then call cgemm('N','N',lmmaxi,nrci,lmmaxi,cone,vmatmti(1,1,1,1,ias), & lmmaxi,wfmt(1,ias,ispn,jst),lmmaxi,czero,wfmt2,lmmaxi) call cgemm('N','N',lmmaxo,nrco,lmmaxo,cone,vmatmto(1,1,1,1,ias), & lmmaxo,wfmt(ipco,ias,ispn,jst),lmmaxo,czero,wfmt2(ipco),lmmaxo) call cfcmtwr(nrc,nrci,wr2cmt(:,is),wfmt2) wfmt1(1:npc)=wfmt1(1:npc)+wfmt2(1:npc) end if end if ! compute the inner products do ist=1,jst-1 vmat(ist,jst)=vmat(ist,jst)+cdotc(npc,wfmt(1,ias,ispn,ist),1,wfmt1,1) end do vmat(jst,jst)=vmat(jst,jst)+sdot(npc2,wfmt(1,ias,ispn,jst),1,wfmt1,1) end do end do end do !$OMP END DO !---------------------------! ! interstitial part ! !---------------------------! !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv do ispn=1,nspinor jspn=jspnfv(ispn) n=ngp(jspn) ! Fourier transform wavefunction to real-space wfir(1:ngtc)=0.e0 do igp=1,n wfir(igfc(igpig(igp,jspn)))=wfgp(igp,ispn,jst) end do call cfftifc(3,ngdgc,1,wfir) ! apply potential to wavefunction wfir(1:ngtc)=vir(1:ngtc)*wfir(1:ngtc) ! Fourier transform to G+p-space call cfftifc(3,ngdgc,-1,wfir) do igp=1,n c(igp)=wfir(igfc(igpig(igp,jspn))) end do ! compute the inner products do ist=1,jst-1 vmat(ist,jst)=vmat(ist,jst)+cdotc(n,wfgp(1,ispn,ist),1,c,1) end do vmat(jst,jst)=vmat(jst,jst)+sdot(n*2,wfgp(1,ispn,jst),1,c,1) end do end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) ! lower triangular part do ist=1,nstsv do jst=1,ist-1 vmat(ist,jst)=conjg(vmat(jst,ist)) end do end do end subroutine elk-10.4.9/src/PaxHeaders/symdmat.f900000644000000000000000000000013214762655564014247 xustar0030 mtime=1741380468.500008627 30 atime=1741380466.525998307 30 ctime=1741380468.500008627 elk-10.4.9/src/symdmat.f900000644002504400250440000000360514762655564016775 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine symdmat(lmax,ld,dmat) use modmain implicit none ! arguments integer, intent(in) :: lmax,ld complex(8), intent(inout) :: dmat(ld,nspinor,ld,nspinor,natmtot) ! local variables integer is,ia,ja,ias,jas integer isym,lspl,lspn,lmmax real(8) t1 ! allocatable arrays complex(8), allocatable :: dm(:,:,:,:,:) lmmax=(lmax+1)**2 ! allocate local arrays allocate(dm(ld,nspinor,ld,nspinor,natmmax)) t1=1.d0/dble(nsymcrys) do is=1,nspecies ! make copy of the density matrices do ia=1,natoms(is) ias=idxas(ia,is) dm(1:lmmax,:,1:lmmax,:,ia)=dmat(1:lmmax,:,1:lmmax,:,ias) end do ! loop over atoms do ia=1,natoms(is) ! only symmetrise first equivalent atom (rotate into others) if (.not.tfeqat(ia,is)) cycle ias=idxas(ia,is) dmat(:,:,:,:,ias)=0.d0 do isym=1,nsymcrys lspl=lsplsymc(isym) lspn=lspnsymc(isym) ! equivalent atom index (symmetry rotates atom ja into atom ia) ja=ieqatom(ia,is,isym) call rotdmat(symlatc(:,:,lspl),symlatc(:,:,lspn),lmax,nspinor,ld, & dm(:,:,:,:,ja),dmat(:,:,:,:,ias)) ! end loop over crystal symmetries end do ! normalise dmat(:,:,:,:,ias)=t1*dmat(:,:,:,:,ias) ! rotate into equivalent atoms do ja=1,natoms(is) if (eqatoms(ia,ja,is).and.(ia /= ja)) then isym=findloc(ieqatom(ia,is,1:nsymcrys),ja,1) jas=idxas(ja,is) ! inverse symmetry (which rotates atom ia into atom ja) lspl=isymlat(lsplsymc(isym)) lspn=isymlat(lspnsymc(isym)) dmat(:,:,:,:,jas)=0.d0 call rotdmat(symlatc(:,:,lspl),symlatc(:,:,lspn),lmax,nspinor,ld, & dmat(:,:,:,:,ias),dmat(:,:,:,:,jas)) end if end do ! end loop over atoms and species end do end do deallocate(dm) end subroutine elk-10.4.9/src/PaxHeaders/gradzf.f900000644000000000000000000000013214762655564014046 xustar0030 mtime=1741380468.502008637 30 atime=1741380466.528998323 30 ctime=1741380468.502008637 elk-10.4.9/src/gradzf.f900000644002504400250440000000234214762655564016571 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gradzf(zfmt,zfir,gzfmt,gzfir) use modmain use modomp implicit none ! arguments complex(8), intent(in) :: zfmt(npmtmax,natmtot),zfir(ngtot) complex(8), intent(out) :: gzfmt(npmtmax,natmtot,3),gzfir(ngtot,3) ! local variables integer is,ias,ld,i integer ig,ifg,nthd ! allocatable arrays complex(8), allocatable :: zfft(:) ! muffin-tin gradient ld=npmtmax*natmtot call holdthd(natmtot+1,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(zfft,is,i,ig,ifg) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) call gradzfmt(nrmt(is),nrmti(is),rlmt(:,-1,is),wcrmt(:,:,is),zfmt(:,ias),ld, & gzfmt(1,ias,1)) end do !$OMP END DO NOWAIT ! interstitial gradient !$OMP SINGLE allocate(zfft(ngtot)) zfft(1:ngtot)=zfir(1:ngtot) call zfftifc(3,ngridg,-1,zfft) do i=1,3 do ig=1,ngvec ifg=igfft(ig) gzfir(ifg,i)=vgc(i,ig)*zi*zfft(ifg) end do gzfir(igfft(ngvec+1:ngtot),i)=0.d0 call zfftifc(3,ngridg,1,gzfir(:,i)) end do deallocate(zfft) !$OMP END SINGLE !$OMP END PARALLEL call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/rfirctof.f900000644000000000000000000000013214762655564014407 xustar0030 mtime=1741380468.503008643 30 atime=1741380466.530998333 30 ctime=1741380468.503008643 elk-10.4.9/src/rfirctof.f900000644002504400250440000000255014762655564017133 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rfirctof ! !INTERFACE: subroutine rfirctof(rfirc,rfir) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! rfirc : real input function on coarse grid (in,real(ngtc)) ! rfir : real output function on fine grid (out,real(ngtot)) ! !DESCRIPTION: ! Converts a real function on a coarse grid given by sizes {\tt ngdgc} to a ! function on a fine grid given by {\tt ngridg}. This is done by first ! Fourier transforming {\tt rfirc} to $G$-space, zeroing the missing values ! and then transforming back to {\tt rfir}. ! ! !REVISION HISTORY: ! Created March 2020 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rfirc(ngtc) real(8), intent(out) :: rfir(ngtot) ! local variables integer ig,ifg ! automatic arrays complex(8) zfftc(ngtc) ! allocatable arrays complex(8), allocatable :: zfft(:) ! Fourier transform function on coarse grid to G-space zfftc(1:ngtc)=rfirc(1:ngtc) call zfftifc(3,ngdgc,-1,zfftc) ! Fourier transform to fine real-space grid allocate(zfft(nfgrz)) do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft(ifg)=zfftc(igfc(ig)) else zfft(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,rfir,zfft) deallocate(zfft) end subroutine !EOC elk-10.4.9/src/PaxHeaders/wfmtsv.f900000644000000000000000000000013214762655564014117 xustar0030 mtime=1741380468.504008648 30 atime=1741380466.533998349 30 ctime=1741380468.504008648 elk-10.4.9/src/wfmtsv.f900000644002504400250440000001125114762655564016641 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wfmtsv(tsh,lrstp,is,ias,nst,idx,ngp,apwalm,evecfv,evecsv,ld,wfmt) use modmain use modomp implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: lrstp,is,ias,nst,idx(*),ngp(nspnfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) integer, intent(in) :: ld complex(8), intent(out) :: wfmt(ld,nspinor,nst) ! local variables logical tasv integer io,ilo,ispn,jspn integer nr,nri,nro,iro integer l,lm,np,npi integer n,p,i,j,k,nthd complex(8) zq(2),z1 ! automatic arrays complex(8) x(nstfv,nspnfv),y(nlmwf(is),nspinor,nst) ! external functions complex(8), external :: zdotu iro=nrmti(is)+lrstp if (lrstp == 1) then nr=nrmt(is) nri=nrmti(is) np=npmt(is) npi=npmti(is) else nr=nrcmt(is) nri=nrcmti(is) np=npcmt(is) npi=npcmti(is) end if nro=nr-nri ! de-phasing factor for spin-spirals if (ssdph) then zq(1)=zqss(ias) zq(2)=conjg(zq(1)) end if ! check if all the second-variational wavefunctions should be calculated tasv=(idx(1) == 0) call holdthd(nst,nthd) !-----------------------! ! APW functions ! !-----------------------! !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(p,l,lm,io,ispn,jspn) & !$OMP PRIVATE(n,i,j,k,z1,ilo) & !$OMP NUM_THREADS(nthd) p=0 do l=0,lmaxo do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) p=p+1 if (tevecsv) then do jspn=1,nspnfv n=ngp(jspn) !$OMP DO SCHEDULE(DYNAMIC) do j=1,nstfv x(j,jspn)=zdotu(n,evecfv(:,j,jspn),1,apwalm(:,io,lm,ias,jspn),1) end do !$OMP END DO end do ! loop only over required states !$OMP DO SCHEDULE(DYNAMIC) do j=1,nst ! index to state in evecsv if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=zdotu(nstfv,evecsv(1,k),1,x,1) if (spinpol) then jspn=jspnfv(2) y(p,2,j)=zdotu(nstfv,evecsv(nstfv+1,k),1,x(1,jspn),1) end if end do !$OMP END DO else !$OMP DO SCHEDULE(DYNAMIC) do j=1,nst if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=zdotu(ngp(1),evecfv(:,k,1),1,apwalm(:,io,lm,ias,1),1) end do !$OMP END DO end if end do end do end do !$OMP DO SCHEDULE(DYNAMIC) do j=1,nst wfmt(1:np,1:nspinor,j)=0.d0 do ispn=1,nspinor p=0 do l=0,lmaxo do lm=l**2+1,(l+1)**2 i=npi+lm do io=1,apword(l,is) p=p+1 z1=y(p,ispn,j) if (abs(dble(z1))+abs(aimag(z1)) < 1.d-10) cycle if (ssdph) z1=z1*zq(ispn) if (l <= lmaxi) then call zfzrf(nri,z1,apwfr(1,1,io,l,ias),lmmaxi,wfmt(lm,ispn,j)) end if call zfzrf(nro,z1,apwfr(iro,1,io,l,ias),lmmaxo,wfmt(i,ispn,j)) end do end do end do end do end do !$OMP END DO !---------------------------------! ! local-orbital functions ! !---------------------------------! p=0 do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 p=p+1 i=idxlo(lm,ilo,ias) if (tevecsv) then do jspn=1,nspnfv n=ngp(jspn) x(1:nstfv,jspn)=evecfv(n+i,1:nstfv,jspn) end do !$OMP DO SCHEDULE(DYNAMIC) do j=1,nst if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=zdotu(nstfv,evecsv(1,k),1,x,1) if (spinpol) then jspn=jspnfv(2) y(p,2,j)=zdotu(nstfv,evecsv(nstfv+1,k),1,x(1,jspn),1) end if end do !$OMP END DO else do j=1,nst if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=evecfv(ngp(1)+i,k,1) end do end if end do end do !$OMP DO SCHEDULE(DYNAMIC) do j=1,nst do ispn=1,nspinor p=0 do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 p=p+1 i=npi+lm z1=y(p,ispn,j) if (abs(dble(z1))+abs(aimag(z1)) < 1.d-10) cycle if (ssdph) z1=z1*zq(ispn) if (l <= lmaxi) then call zfzrf(nri,z1,lofr(1,1,ilo,ias),lmmaxi,wfmt(lm,ispn,j)) end if call zfzrf(nro,z1,lofr(iro,1,ilo,ias),lmmaxo,wfmt(i,ispn,j)) end do end do ! convert to spherical coordinates if required if (.not.tsh) call zbshtip(nr,nri,wfmt(:,ispn,j)) end do end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) return contains pure subroutine zfzrf(n,z,rf,ld,zf) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: z real(8), intent(in) :: rf(lrstp,n) integer, intent(in) :: ld complex(8), intent(inout) :: zf(ld,n) zf(1,1:n)=zf(1,1:n)+z*rf(1,1:n) end subroutine end subroutine elk-10.4.9/src/PaxHeaders/wfmtsv_sp.f900000644000000000000000000000013214762655564014621 xustar0030 mtime=1741380468.506008658 30 atime=1741380466.535998359 30 ctime=1741380468.506008658 elk-10.4.9/src/wfmtsv_sp.f900000644002504400250440000001112414762655564017342 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wfmtsv_sp(tsh,is,ias,nst,idx,ngp,apwalm,evecfv,evecsv,ld,wfmt) use modmain use modomp implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: is,ias,nst,idx(*),ngp(nspnfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) integer, intent(in) :: ld complex(4), intent(out) :: wfmt(ld,nspinor,nst) ! local variables logical tasv integer io,ilo,ispn,jspn integer nrc,nrci,nrco,iro integer l,lm,npc,npci integer n,p,i,j,k,nthd complex(8) zq(2),z1 ! automatic arrays complex(8) x(nstfv,nspnfv),y(nlmwf(is),nspinor,nst) ! external functions complex(8), external :: zdotu iro=nrmti(is)+lradstp nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci npc=npcmt(is) npci=npcmti(is) ! de-phasing factor for spin-spirals if (ssdph) then zq(1)=zqss(ias) zq(2)=conjg(zq(1)) end if ! check if all the second-variational wavefunctions should be calculated tasv=(idx(1) == 0) call holdthd(nst,nthd) !-----------------------! ! APW functions ! !-----------------------! !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(p,l,lm,io,ispn,jspn) & !$OMP PRIVATE(n,i,j,k,z1,ilo) & !$OMP NUM_THREADS(nthd) p=0 do l=0,lmaxo do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) p=p+1 if (tevecsv) then do jspn=1,nspnfv n=ngp(jspn) !$OMP DO SCHEDULE(DYNAMIC) do j=1,nstfv x(j,jspn)=zdotu(n,evecfv(:,j,jspn),1,apwalm(:,io,lm,ias,jspn),1) end do !$OMP END DO end do ! loop only over required states !$OMP DO SCHEDULE(DYNAMIC) do j=1,nst ! index to state in evecsv if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=zdotu(nstfv,evecsv(1,k),1,x,1) if (spinpol) then jspn=jspnfv(2) y(p,2,j)=zdotu(nstfv,evecsv(nstfv+1,k),1,x(1,jspn),1) end if end do !$OMP END DO else !$OMP DO SCHEDULE(DYNAMIC) do j=1,nst if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=zdotu(ngp(1),evecfv(:,k,1),1,apwalm(:,io,lm,ias,1),1) end do !$OMP END DO end if end do end do end do !$OMP DO SCHEDULE(DYNAMIC) do j=1,nst wfmt(1:npc,1:nspinor,j)=0.e0 do ispn=1,nspinor p=0 do l=0,lmaxo do lm=l**2+1,(l+1)**2 i=npci+lm do io=1,apword(l,is) p=p+1 z1=y(p,ispn,j) if (abs(dble(z1))+abs(aimag(z1)) < 1.d-10) cycle if (ssdph) z1=z1*zq(ispn) if (l <= lmaxi) then call cfzrf(nrci,z1,apwfr(1,1,io,l,ias),lmmaxi,wfmt(lm,ispn,j)) end if call cfzrf(nrco,z1,apwfr(iro,1,io,l,ias),lmmaxo,wfmt(i,ispn,j)) end do end do end do end do end do !$OMP END DO !---------------------------------! ! local-orbital functions ! !---------------------------------! p=0 do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 p=p+1 i=idxlo(lm,ilo,ias) if (tevecsv) then do jspn=1,nspnfv n=ngp(jspn) x(1:nstfv,jspn)=evecfv(n+i,1:nstfv,jspn) end do !$OMP DO SCHEDULE(DYNAMIC) do j=1,nst if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=zdotu(nstfv,evecsv(1,k),1,x,1) if (spinpol) then jspn=jspnfv(2) y(p,2,j)=zdotu(nstfv,evecsv(nstfv+1,k),1,x(1,jspn),1) end if end do !$OMP END DO else do j=1,nst if (tasv) then; k=j; else; k=idx(j); end if y(p,1,j)=evecfv(ngp(1)+i,k,1) end do end if end do end do !$OMP DO SCHEDULE(DYNAMIC) do j=1,nst do ispn=1,nspinor p=0 do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 p=p+1 i=npci+lm z1=y(p,ispn,j) if (abs(dble(z1))+abs(aimag(z1)) < 1.d-10) cycle if (ssdph) z1=z1*zq(ispn) if (l <= lmaxi) then call cfzrf(nrci,z1,lofr(1,1,ilo,ias),lmmaxi,wfmt(lm,ispn,j)) end if call cfzrf(nrco,z1,lofr(iro,1,ilo,ias),lmmaxo,wfmt(i,ispn,j)) end do end do ! convert to spherical coordinates if required if (.not.tsh) call cbshtip(nrc,nrci,wfmt(:,ispn,j)) end do end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) return contains pure subroutine cfzrf(n,z,rf,ld,cf) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: z real(8), intent(in) :: rf(lradstp,n) integer, intent(in) :: ld complex(4), intent(inout) :: cf(ld,n) cf(1,1:n)=cf(1,1:n)+z*rf(1,1:n) end subroutine end subroutine elk-10.4.9/src/PaxHeaders/genwfsv.f900000644000000000000000000000013214762655564014250 xustar0030 mtime=1741380468.507008664 30 atime=1741380466.538998375 30 ctime=1741380468.507008664 elk-10.4.9/src/genwfsv.f900000644002504400250440000000602714762655564016777 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genwfsv ! !INTERFACE: subroutine genwfsv(tsh,tgp,nst,idx,ngridg_,igfft_,ngp,igpig,apwalm,evecfv, & evecsv,wfmt,ld,wfir) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! tsh : .true. if wfmt should be in spherical harmonic basis, otherwise ! in spherical coordinates (in,logical) ! tgp : .true. if wfir should be in G+p-space, otherwise in real-space ! (in,logical) ! nst : number of states to be calculated (in,integer) ! idx : index to states which are to be calculated; if idx(1)=0 then ! all states are calculated in the usual order (in,integer(*)) ! ngridg_ : G-vector grid sizes (in,integer(3)) ! igfft_ : map from G-vector index to FFT array (in,integer(*)) ! ngp : number of G+p-vectors (in,integer(nspnfv)) ! igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax,nspnfv)) ! apwalm : APW matching coefficients ! (in,complex(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) ! evecfv : first-variational eigenvectors (in,complex(nmatmax,nstfv,nspnfv)) ! evecsv : second-variational eigenvectors (in,complex(nstsv,nstsv)) ! wfmt : muffin-tin part of the wavefunctions for every state in spherical ! coordinates (out,complex(npcmtmax,natmtot,nspinor,nst)) ! ld : leading dimension of wfir (in,integer) ! wfir : interstitial part of the wavefunctions for every state ! (out,complex(ld,nspinor,nst)) ! !DESCRIPTION: ! Calculates the second-variational spinor wavefunctions in both the ! muffin-tin and interstitial regions for every state of a particular ! $k$-point. A coarse radial mesh is assumed in the muffin-tins with angular ! momentum cut-off of {\tt lmaxo}. ! ! !REVISION HISTORY: ! Created November 2004 (Sharma) ! Updated for spin-spirals, June 2010 (JKD) ! Packed muffin-tins, April 2016 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tsh,tgp integer, intent(in) :: nst,idx(*),ngridg_(3),igfft_(*) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) complex(8), intent(out) :: wfmt(npcmtmax,natmtot,nspinor,nst) integer, intent(in) :: ld complex(8), intent(out) :: wfir(ld,nspinor,nst) ! local variables integer is,ias,ldmt,nthd if (nst < 1) return ! muffin-tin wavefunction ldmt=npcmtmax*natmtot call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call wfmtsv(tsh,lradstp,is,ias,nst,idx,ngp,apwalm,evecfv,evecsv,ldmt, & wfmt(1,ias,1,1)) end do !$OMP END PARALLEL DO call freethd(nthd) ! interstitial wavefunction call wfirsv(tgp,nst,idx,ngridg_,igfft_,ngp,igpig,evecfv,evecsv,ld,wfir) end subroutine !EOC elk-10.4.9/src/PaxHeaders/genwfsv_sp.f900000644000000000000000000000013214762655564014752 xustar0030 mtime=1741380468.508008669 30 atime=1741380466.540998386 30 ctime=1741380468.508008669 elk-10.4.9/src/genwfsv_sp.f900000644002504400250440000000242714762655564017501 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genwfsv_sp(tsh,tgp,nst,idx,ngridg_,igfft_,ngp,igpig,apwalm,evecfv, & evecsv,wfmt,ld,wfir) use modmain use modomp implicit none ! arguments logical, intent(in) :: tsh,tgp integer, intent(in) :: nst,idx(*),ngridg_(3),igfft_(*) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) complex(4), intent(out) :: wfmt(npcmtmax,natmtot,nspinor,nst) integer, intent(in) :: ld complex(4), intent(out) :: wfir(ld,nspinor,nst) ! local variables integer is,ias,ldmt,nthd if (nst < 1) return ! muffin-tin wavefunction ldmt=npcmtmax*natmtot call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call wfmtsv_sp(tsh,is,ias,nst,idx,ngp,apwalm,evecfv,evecsv,ldmt, & wfmt(1,ias,1,1)) end do !$OMP END PARALLEL DO call freethd(nthd) ! interstitial wavefunction call wfirsv_sp(tgp,nst,idx,ngridg_,igfft_,ngp,igpig,evecfv,evecsv,ld,wfir) end subroutine elk-10.4.9/src/PaxHeaders/rfinp.f900000644000000000000000000000013214762655564013707 xustar0030 mtime=1741380468.510008679 30 atime=1741380466.543998401 30 ctime=1741380468.510008679 elk-10.4.9/src/rfinp.f900000644002504400250440000000366614762655564016444 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rfinp ! !INTERFACE: real(8) function rfinp(rfmt1,rfir1,rfmt2,rfir2) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! rfmt1 : first function in real spherical harmonics for all muffin-tins ! (in,real(npmtmax,natmtot)) ! rfir1 : first real interstitial function in real-space (in,real(ngtot)) ! rfmt2 : second function in real spherical harmonics for all muffin-tins ! (in,real(npmtmax,natmtot)) ! rfir2 : second real interstitial function in real-space (in,real(ngtot)) ! !DESCRIPTION: ! Calculates the inner product of two real functions over the entire unit ! cell. The input muffin-tin functions should have angular momentum cut-off ! {\tt lmaxo}. In the interstitial region, the integrand is multiplied with ! the characteristic function, $\tilde{\Theta}({\bf r})$, to remove the ! contribution from the muffin-tin. See routines {\tt rfmtinp} and ! {\tt gencfun}. ! ! !REVISION HISTORY: ! Created July 2004 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rfmt1(npmtmax,natmtot),rfir1(ngtot) real(8), intent(in) :: rfmt2(npmtmax,natmtot),rfir2(ngtot) ! local variables integer is,ias,nthd real(8) t1 ! external functions real(8), external :: rfmtinp rfinp=0.d0 call holdthd(natmtot+1,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(is,t1) REDUCTION(+:rfinp) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) ! muffin-tin contribution rfinp=rfinp+rfmtinp(nrmt(is),nrmti(is),wr2mt(:,is),rfmt1(:,ias),rfmt2(:,ias)) end do !$OMP END DO NOWAIT ! interstitial contribution !$OMP SINGLE t1=sum(rfir1(1:ngtot)*rfir2(1:ngtot)*cfunir(1:ngtot)) rfinp=rfinp+t1*omega/dble(ngtot) !$OMP END SINGLE !$OMP END PARALLEL call freethd(nthd) end function !EOC elk-10.4.9/src/PaxHeaders/elnes.f900000644000000000000000000000013214762655564013677 xustar0030 mtime=1741380468.511008684 30 atime=1741380466.545998412 30 ctime=1741380468.511008684 elk-10.4.9/src/elnes.f900000644002504400250440000000714214762655564016425 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine elnes use modmain use modomp use modtest implicit none ! local variables integer ik,jk,ikq,isym,nsk(3) integer ist,jst,iw,n,nthd real(8) vgqc(3),gqc real(8) vkql(3),v(3) real(8) q,wd,dw,w,t1 ! allocatable arrays real(8), allocatable :: jlgqr(:,:),ddcs(:) real(8), allocatable :: e(:,:,:),f(:,:,:) complex(8), allocatable :: ylmgq(:),sfacgq(:) complex(8), allocatable :: expmt(:,:),emat(:,:) ! initialise universal variables call init0 call init1 call init2 ! check q-vector is commensurate with k-point grid v(:)=dble(ngridk(:))*vecql(:) v(:)=abs(v(:)-nint(v(:))) if ((v(1) > epslat).or.(v(2) > epslat).or.(v(3) > epslat)) then write(*,*) write(*,'("Error(elnes): q-vector incommensurate with k-point grid")') write(*,'(" ngridk : ",3I6)') ngridk write(*,'(" vecql : ",3G18.10)') vecql write(*,*) stop end if ! read in the density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the second-variational eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! generate the phase factor function exp(iq.r) in the muffin-tins allocate(jlgqr(njcmax,nspecies)) allocate(ylmgq(lmmaxo),sfacgq(natmtot)) allocate(expmt(npcmtmax,natmtot)) call gengqf(1,vecqc,vgqc,gqc,jlgqr,ylmgq,sfacgq) call genexpmt(1,jlgqr,ylmgq,1,sfacgq,expmt) deallocate(jlgqr,ylmgq,sfacgq) allocate(e(nstsv,nstsv,nkptnr),f(nstsv,nstsv,nkptnr)) e(:,:,:)=0.d0 f(:,:,:)=0.d0 ! begin parallel loop over non-reduced k-points call holdthd(nkptnr,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(emat,jk,vkql,isym) & !$OMP PRIVATE(ikq,ist,jst,t1) & !$OMP NUM_THREADS(nthd) allocate(emat(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkptnr !$OMP CRITICAL(elnes_) write(*,'("Info(elnes): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(elnes_) ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! k+q-vector in lattice coordinates vkql(:)=vkl(:,ik)+vecql(:) ! index to k+q-vector call findkpt(vkql,isym,ikq) ! compute < i,k+q | exp(iq.r) | j,k > matrix elements call genexpmat(vkl(:,ik),expmt,emat) ! add to the double differential scattering cross-section do jst=1,nstsv if (evalsv(jst,jk) < emaxelnes) then do ist=1,nstsv e(ist,jst,ik)=evalsv(ist,ikq)-evalsv(jst,jk) t1=dble(emat(ist,jst))**2+aimag(emat(ist,jst))**2 f(ist,jst,ik)=t1*occsv(jst,jk)*(occmax-occsv(ist,ikq)) end do end if end do end do !$OMP END DO deallocate(emat) !$OMP END PARALLEL call freethd(nthd) ! number of subdivisions used for interpolation nsk(:)=max(ngrkf/ngridk(:),1) n=nstsv*nstsv ! integrate over the Brillouin zone allocate(ddcs(nwplot)) call brzint(nswplot,ngridk,nsk,ivkiknr,nwplot,wplot,n,n,e,f,ddcs) q=sqrt(vecqc(1)**2+vecqc(2)**2+vecqc(3)**2) t1=2.d0/(omega*occmax) if (q > epslat) t1=t1/q**4 ddcs(:)=t1*ddcs(:) open(50,file='ELNES.OUT',form='FORMATTED') wd=wplot(2)-wplot(1) dw=wd/dble(nwplot) do iw=1,nwplot w=dw*dble(iw-1)+wplot(1) write(50,'(2G18.10)') w,ddcs(iw) end do close(50) write(*,*) write(*,'("Info(elnes):")') write(*,'(" ELNES double differential cross-section written to ELNES.OUT")') ! write ELNES distribution to test file call writetest(140,'ELNES cross-section',nv=nwplot,tol=1.d-2,rva=ddcs) deallocate(e,f,ddcs,expmt) end subroutine elk-10.4.9/src/PaxHeaders/axangsu2.f900000644000000000000000000000013014762655564014317 xustar0029 mtime=1741380468.51200869 30 atime=1741380466.548998427 29 ctime=1741380468.51200869 elk-10.4.9/src/axangsu2.f900000644002504400250440000000254614762655564017052 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: axangsu2 ! !INTERFACE: pure subroutine axangsu2(v,th,su2) ! !INPUT/OUTPUT PARAMETERS: ! v : rotation axis vector (in,real(3)) ! th : rotation angle (in,real) ! su2 : SU(2) representation of rotation (out,complex(2,2)) ! !DESCRIPTION: ! Finds the complex ${\rm SU}(2)$ representation of a rotation defined by an ! axis vector $\hat{\bf v}$ and angle $\theta$. The spinor rotation matrix is ! given explicitly by ! $$ R^{1/2}(\hat{\bf v},\theta)=I\cos\frac{\theta}{2} ! -i(\hat{\bf v}\cdot\vec{\sigma})\sin\frac{\theta}{2}. $$ ! ! !REVISION HISTORY: ! Created August 2007 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: v(3),th complex(8), intent(out) :: su2(2,2) ! local variables real(8) x,y,z,cs,sn,t1 x=v(1); y=v(2); z=v(3) t1=sqrt(x**2+y**2+z**2) ! return the identity matrix for a zero-length axis if (t1 < 1.d-8) then su2(1,1)=1.d0 su2(2,1)=0.d0 su2(1,2)=0.d0 su2(2,2)=1.d0 return end if ! normalise the vector t1=1.d0/t1 x=x*t1; y=y*t1; z=z*t1 cs=cos(0.5d0*th) sn=sin(0.5d0*th) su2(1,1)=cmplx(cs,-z*sn,8) su2(2,1)=cmplx(y*sn,-x*sn,8) su2(1,2)=cmplx(-y*sn,-x*sn,8) su2(2,2)=cmplx(cs,z*sn,8) end subroutine !EOC elk-10.4.9/src/PaxHeaders/gradzvcln.f900000644000000000000000000000012614762655564014566 xustar0028 mtime=1741380468.5140087 30 atime=1741380466.550998438 28 ctime=1741380468.5140087 elk-10.4.9/src/gradzvcln.f900000644002504400250440000000152314762655564017306 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gradzvcln(is,gzfmt) use modmain implicit none ! arguments integer, intent(in) :: is complex(8), intent(out) :: gzfmt(npmtmax,3) ! local variables integer nr,nri,iro,i0,i1 ! allocatable arrays complex(8), allocatable :: zvclmt(:) allocate(zvclmt(npmtmax)) nr=nrmt(is) nri=nrmti(is) iro=nri+1 ! convert nuclear Coulomb potential to complex spherical harmonics expansion zvclmt(1:npmt(is))=0.d0 i1=lmmaxi*(nri-1)+1 zvclmt(1:i1:lmmaxi)=vcln(1:nri,is) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zvclmt(i0:i1:lmmaxo)=vcln(iro:nr,is) ! compute the gradient of the potential call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),zvclmt,npmtmax,gzfmt) deallocate(zvclmt) end subroutine elk-10.4.9/src/PaxHeaders/gentpmae.f900000644000000000000000000000013214762655564014371 xustar0030 mtime=1741380468.515008705 30 atime=1741380466.553998453 30 ctime=1741380468.515008705 elk-10.4.9/src/gentpmae.f900000644002504400250440000000357214762655564017122 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gentpmae use modmain implicit none ! local variables integer na,n,i1,i2,i3,i integer isym,lspl real(8) v1(3),v2(3),t1 ! allocatable arrays real(8), allocatable :: vp(:,:) if (allocated(tpmae)) deallocate(tpmae) select case(npmae0) case(4:) ! distribute points evenly on a sphere npmae=npmae0 allocate(tpmae(2,npmae)) call sphcover(npmae,tpmae) case(-4:-1) ! use symmetry reduced cardinal directions na=abs(npmae0) n=(2*na+1)**3 allocate(vp(3,n)) npmae=0 do i1=-na,na v1(1)=dble(i1) do i2=-na,na v1(2)=dble(i2) do i3=-na,na v1(3)=dble(i3) if ((i1 == 0).and.(i2 == 0).and.(i3 == 0)) cycle do isym=1,nsymcrys lspl=lsplsymc(isym) v2(1:3)=symlat(1:3,1,lspl)*v1(1) & +symlat(1:3,2,lspl)*v1(2) & +symlat(1:3,3,lspl)*v1(3) do i=1,npmae t1=abs(vp(1,i)-v2(1))+abs(vp(2,i)-v2(2))+abs(vp(3,i)-v2(3)) if (t1 < epslat) goto 10 end do end do npmae=npmae+1 vp(1:3,npmae)=v1(1:3) 10 continue end do end do end do ! convert vectors to spherical coordinates allocate(tpmae(2,npmae)) do i=1,npmae call sphcrd(vp(:,i),t1,tpmae(:,i)) end do deallocate(vp) case(2) ! use x- and z-directions npmae=2 allocate(tpmae(2,npmae)) tpmae(1,1)=pi/2.d0 tpmae(2,1)=0.d0 tpmae(1,2)=0.d0 tpmae(2,2)=0.d0 case(3) ! use x-, y- and z-directions npmae=3 allocate(tpmae(2,npmae)) tpmae(1,1)=pi/2.d0 tpmae(2,1)=0.d0 tpmae(1,2)=pi/2.d0 tpmae(2,2)=pi/2.d0 tpmae(1,3)=0.d0 tpmae(2,3)=0.d0 case default write(*,*) write(*,'("Error(gentpmae): invalid npmae : ",I8)') npmae0 write(*,*) stop end select end subroutine elk-10.4.9/src/PaxHeaders/zfcmtwr.f900000644000000000000000000000013214762655564014265 xustar0030 mtime=1741380468.517008716 30 atime=1741380466.555998464 30 ctime=1741380468.517008716 elk-10.4.9/src/zfcmtwr.f900000644002504400250440000000134714762655564017014 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine zfcmtwr(nr,nri,wr,zfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(8), intent(inout) :: zfmt(*) ! local variables integer n,ir,i real(8) t1 i=1 if (lmaxi == 1) then do ir=1,nri zfmt(i:i+3)=(pi*wr(ir))*zfmt(i:i+3) i=i+4 end do else t1=fourpi/dble(lmmaxi) n=lmmaxi-1 do ir=1,nri zfmt(i:i+n)=(t1*wr(ir))*zfmt(i:i+n) i=i+lmmaxi end do end if t1=fourpi/dble(lmmaxo) n=lmmaxo-1 do ir=nri+1,nr zfmt(i:i+n)=(t1*wr(ir))*zfmt(i:i+n) i=i+lmmaxo end do end subroutine elk-10.4.9/src/PaxHeaders/cfcmtwr.f900000644000000000000000000000013114762655564014235 xustar0030 mtime=1741380468.518008721 29 atime=1741380466.55899848 30 ctime=1741380468.518008721 elk-10.4.9/src/cfcmtwr.f900000644002504400250440000000134714762655564016765 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine cfcmtwr(nr,nri,wr,cfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(4), intent(inout) :: cfmt(*) ! local variables integer n,ir,i real(8) t1 i=1 if (lmaxi == 1) then do ir=1,nri cfmt(i:i+3)=(pi*wr(ir))*cfmt(i:i+3) i=i+4 end do else t1=fourpi/dble(lmmaxi) n=lmmaxi-1 do ir=1,nri cfmt(i:i+n)=(t1*wr(ir))*cfmt(i:i+n) i=i+lmmaxi end do end if t1=fourpi/dble(lmmaxo) n=lmmaxo-1 do ir=nri+1,nr cfmt(i:i+n)=(t1*wr(ir))*cfmt(i:i+n) i=i+lmmaxo end do end subroutine elk-10.4.9/src/PaxHeaders/projsbf.f900000644000000000000000000000013114762655564014235 xustar0030 mtime=1741380468.519008726 29 atime=1741380466.56099849 30 ctime=1741380468.519008726 elk-10.4.9/src/projsbf.f900000644002504400250440000000421414762655564016761 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine projsbf use modmain implicit none ! local variables integer idm,is,ias,np real(8) t1 ! allocatable arrays real(8), allocatable :: rfmt(:,:),rfir(:) real(8), allocatable :: grfmt(:,:,:),grfir(:,:) complex(8), allocatable :: zrhomt(:,:),zrhoir(:) complex(8), allocatable :: zvclmt(:,:),zvclir(:) allocate(rfmt(npmtmax,natmtot),rfir(ngtot)) allocate(grfmt(npmtmax,natmtot,3),grfir(ngtot,3)) allocate(zrhomt(npmtmax,natmtot),zrhoir(ngtot)) allocate(zvclmt(npmtmax,natmtot),zvclir(ngtot)) ! compute the divergence of B_xc rfmt(1:npmtmax,1:natmtot)=0.d0 rfir(1:ngtot)=0.d0 do idm=1,3 call gradrf(bxcmt(:,:,idm),bxcir(:,idm),grfmt,grfir) do ias=1,natmtot is=idxis(ias) np=npmt(is) rfmt(1:np,ias)=rfmt(1:np,ias)+grfmt(1:np,ias,idm) end do rfir(1:ngtot)=rfir(1:ngtot)+grfir(1:ngtot,idm) end do ! convert real muffin-tin divergence to complex spherical harmonic expansion do ias=1,natmtot is=idxis(ias) call rtozfmt(nrmt(is),nrmti(is),rfmt(:,ias),zrhomt(:,ias)) end do ! store real interstitial divergence in a complex array zrhoir(1:ngtot)=rfir(1:ngtot) ! solve the complex Poisson's equation call genzvclmt(nrmt,nrmti,nrmtmax,rlmt,wprmt,npmtmax,zrhomt,zvclmt) call zpotcoul(0,nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gc,gclg,ngvec, & jlgrmt,ylmg,sfacg,zrhoir,npmtmax,zvclmt,zvclir) ! convert complex muffin-tin potential to real spherical harmonic expansion do ias=1,natmtot is=idxis(ias) call ztorfmt(nrmt(is),nrmti(is),zvclmt(:,ias),rfmt(:,ias)) end do ! store complex interstitial potential in real array rfir(1:ngtot)=dble(zvclir(1:ngtot)) ! compute the gradient call gradrf(rfmt,rfir,grfmt,grfir) ! add gradient over 4π to existing B_xc t1=1.d0/fourpi do idm=1,3 do ias=1,natmtot is=idxis(ias) np=npmt(is) bxcmt(1:np,ias,idm)=bxcmt(1:np,ias,idm)+t1*grfmt(1:np,ias,idm) end do end do bxcir(1:ngtot,1:3)=bxcir(1:ngtot,1:3)+t1*grfir(1:ngtot,1:3) deallocate(rfmt,rfir,grfmt,grfir) deallocate(zrhomt,zrhoir,zvclmt,zvclir) end subroutine elk-10.4.9/src/PaxHeaders/timesec.f900000644000000000000000000000013214762655564014222 xustar0030 mtime=1741380468.521008737 30 atime=1741380466.563998506 30 ctime=1741380468.521008737 elk-10.4.9/src/timesec.f900000644002504400250440000000122214762655564016741 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: timesec ! !INTERFACE: subroutine timesec(ts) ! !INPUT/OUTPUT PARAMETERS: ! ts : system time in seconds (out,real) ! !DESCRIPTION: ! Outputs the system time in seconds. ! ! !REVISION HISTORY: ! Created September 2010 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(out) :: ts ! local variables integer count,count_rate call system_clock(count=count,count_rate=count_rate) ts=dble(count)/dble(count_rate) end subroutine !EOC elk-10.4.9/src/PaxHeaders/ztorfmt.f900000644000000000000000000000013214762655564014276 xustar0030 mtime=1741380468.522008742 30 atime=1741380466.565998516 30 ctime=1741380468.522008742 elk-10.4.9/src/ztorfmt.f900000644002504400250440000000431514762655564017023 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine ztorfmt(nr,nri,zfmt,rfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(8), intent(in) :: zfmt(*) real(8), intent(out) :: rfmt(*) ! local variables integer i call ztorflmn(lmaxi,nri,lmmaxi,zfmt,rfmt) i=lmmaxi*nri+1 call ztorflmn(lmaxo,nr-nri,lmmaxo,zfmt(i),rfmt(i)) return contains !BOP ! !ROUTINE: ztorflmn ! !INTERFACE: pure subroutine ztorflmn(lmax,n,ld,zflm,rflm) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum angular momentum (in,integer) ! n : number of functions to convert (in,integer) ! ld : leading dimension (in,integer) ! zflm : coefficients of complex spherical harmonic expansion ! (in,complex(ld,n)) ! rflm : coefficients of real spherical harmonic expansion (out,real(ld,n)) ! !DESCRIPTION: ! Converts a real function, $z_{lm}$, expanded in terms of complex spherical ! harmonics into a real spherical harmonic expansion, $r_{lm}$: ! $$ r_{lm}=\begin{cases} ! \frac{1}{\sqrt{2}}{\rm Re}(z_{lm}+(-1)^m z_{l-m}) & m>0 \\ ! \frac{1}{\sqrt{2}}{\rm Im}(-z_{lm}+(-1)^m z_{l-m}) & m<0 \\ ! {\rm Re}(z_{lm}) & m=0 ! \end{cases} $$ ! See routine {\tt genrlm}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax,n,ld complex(8), intent(in) :: zflm(ld,n) real(8), intent(out) :: rflm(ld,n) ! local variables integer l,m,lm1,lm2 ! real constant 1/sqrt(2) real(8), parameter :: c1=0.7071067811865475244d0 lm1=0 do l=0,lmax lm2=lm1+2*(l+1) do m=-l,-1 lm1=lm1+1 lm2=lm2-1 if (mod(m,2) /= 0) then rflm(lm1,1:n)=-c1*(aimag(zflm(lm1,1:n))+aimag(zflm(lm2,1:n))) else rflm(lm1,1:n)=c1*(aimag(zflm(lm2,1:n))-aimag(zflm(lm1,1:n))) end if end do lm1=lm1+1 lm2=lm2-1 rflm(lm1,1:n)=dble(zflm(lm1,1:n)) do m=1,l lm1=lm1+1 lm2=lm2-1 if (mod(m,2) /= 0) then rflm(lm1,1:n)=c1*(dble(zflm(lm1,1:n))-dble(zflm(lm2,1:n))) else rflm(lm1,1:n)=c1*(dble(zflm(lm1,1:n))+dble(zflm(lm2,1:n))) end if end do end do end subroutine !EOC end subroutine elk-10.4.9/src/PaxHeaders/zfmtctof.f900000644000000000000000000000013214762655564014425 xustar0030 mtime=1741380468.523008747 30 atime=1741380466.567998527 30 ctime=1741380468.523008747 elk-10.4.9/src/zfmtctof.f900000644002504400250440000000435714762655564017160 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine zfmtctof(zfmt) use modmain use modomp implicit none ! arguments complex(8), intent(inout) :: zfmt(npmtmax,natmtot) ! local variables integer is,ias,lm integer nr,nri,nro,iro integer nrc,nrci,nrco,irco integer i0,i1,nthd ! automatic arrays real(8) fi1(nrcmtmax),fi2(nrcmtmax) real(8) fo1(nrmtmax),fo2(nrmtmax) complex(8) zfmt1(npcmtmax) if (lradstp == 1) return call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(zfmt1,fi1,fi2,fo1,fo2,is) & !$OMP PRIVATE(nr,nri,nro,iro) & !$OMP PRIVATE(nrc,nrci,nrco,irco) & !$OMP PRIVATE(lm,i0,i1) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) nro=nr-nri iro=nri+1 nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci irco=nrci+1 ! copy the input function zfmt1(1:npcmt(is))=zfmt(1:npcmt(is),ias) ! interpolate up to lmaxi over entire muffin-tin do lm=1,lmmaxi i1=lmmaxi*(nrci-1)+lm fi1(1:nrci)=dble(zfmt1(lm:i1:lmmaxi)) fi2(1:nrci)=aimag(zfmt1(lm:i1:lmmaxi)) i0=i1+lmmaxi i1=lmmaxo*(nrc-irco)+i0 fi1(irco:nrc)=dble(zfmt1(i0:i1:lmmaxo)) fi2(irco:nrc)=aimag(zfmt1(i0:i1:lmmaxo)) call rfinterp(nrc,rcmt(:,is),wcrcmt(:,:,is),fi1,nr,rlmt(:,1,is),fo1) call rfinterp(nrc,rcmt(:,is),wcrcmt(:,:,is),fi2,nr,rlmt(:,1,is),fo2) i1=lmmaxi*(nri-1)+lm zfmt(lm:i1:lmmaxi,ias)=cmplx(fo1(1:nri),fo2(1:nri),8) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zfmt(i0:i1:lmmaxo,ias)=cmplx(fo1(iro:nr),fo2(iro:nr),8) end do ! interpolate up to lmaxo on outer part of muffin-tin do lm=lmmaxi+1,lmmaxo i0=lmmaxi*nrci+lm i1=lmmaxo*(nrc-irco)+i0 fi1(irco:nrc)=dble(zfmt1(i0:i1:lmmaxo)) fi2(irco:nrc)=aimag(zfmt1(i0:i1:lmmaxo)) call rfinterp(nrco,rcmt(irco,is),wcrcmt(:,irco,is),fi1(irco),nro, & rsp(iro,is),fo1(iro)) call rfinterp(nrco,rcmt(irco,is),wcrcmt(:,irco,is),fi2(irco),nro, & rsp(iro,is),fo2(iro)) i0=lmmaxi*nri+lm i1=lmmaxo*(nr-iro)+i0 zfmt(i0:i1:lmmaxo,ias)=cmplx(fo1(iro:nr),fo2(iro:nr),8) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/gaunt.f900000644000000000000000000000013214762655564013707 xustar0030 mtime=1741380468.524008752 30 atime=1741380466.570998543 30 ctime=1741380468.524008752 elk-10.4.9/src/gaunt.f900000644002504400250440000000407314762655564016435 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gaunt ! !INTERFACE: real(8) function gaunt(l1,l2,l3,m1,m2,m3) ! !INPUT/OUTPUT PARAMETERS: ! l1, l2, l3 : angular momentum quantum numbers (in,integer) ! m1, m2, m3 : magnetic quantum numbers (in,integer) ! !DESCRIPTION: ! Returns the Gaunt coefficient given by ! $$ \langle Y^{l_1}_{m_1}|Y^{l_2}_{m_2}|Y^{l_3}_{m_3} \rangle ! = (-1)^{m_1}\left[\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi} \right] ! ^{\frac{1}{2}} ! \begin{pmatrix} l_1 & l_2 & l_3 \\ 0 & 0 & 0 \end{pmatrix} ! \begin{pmatrix} l_1 & l_2 & l_3 \\ -m_1 & m_2 & m_3 \end{pmatrix}. $$ ! Suitable for $l_i$ less than 50. ! ! !REVISION HISTORY: ! Created November 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: l1,l2,l3 integer, intent(in) :: m1,m2,m3 ! local variables integer j,j1,j2,j3,jh real(8) t1 ! real constant 1/sqrt(4*pi) real(8), parameter :: c1=0.28209479177387814347d0 ! external functions real(8), external :: wigner3j,factn,factr if ((l1 < 0).or.(l2 < 0).or.(l3 < 0).or.(abs(m1) > l1).or.(abs(m2) > l2) & .or.(abs(m3) > l3)) then write(*,*) write(*,'("Error(gaunt): non-physical arguments :")') write(*,'("l1 = ",I8," l2 = ",I8," l3 = ",I8)') l1,l2,l3 write(*,'("m1 = ",I8," m2 = ",I8," m3 = ",I8)') m1,m2,m3 write(*,*) stop end if if ((l1 > 50).or.(l2 > 50).or.(l3 > 50)) then write(*,*) write(*,'("Error(gaunt): angular momenta out of range : ",3I8)') l1,l2,l3 write(*,*) stop end if if (m1-m2-m3 /= 0) then gaunt=0.d0 return end if j1=l2-l1+l3 j2=l1-l2+l3 j3=l1+l2-l3 if ((j1 < 0).or.(j2 < 0).or.(j3 < 0)) then gaunt=0.d0 return end if j=l1+l2+l3 if (mod(j,2) /= 0) then gaunt=0.d0 return end if jh=j/2 t1=sqrt(dble((2*l1+1)*(2*l2+1)*(2*l3+1))*factr(j1,j+1)*factn(j2)*factn(j3)) t1=t1*factr(jh,jh-l1)/(factn(jh-l2)*factn(jh-l3)) gaunt=t1*c1*wigner3j(l1,l2,l3,-m1,m2,m3) if (mod(m1+jh,2) /= 0) gaunt=-gaunt end function !EOC elk-10.4.9/src/PaxHeaders/potxcmt.f900000644000000000000000000000013214762655564014267 xustar0030 mtime=1741380468.526008763 30 atime=1741380466.572998553 30 ctime=1741380468.526008763 elk-10.4.9/src/potxcmt.f900000644002504400250440000002612614762655564017020 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potxcmt(tsh,ias,xctype_,rhomt_,magmt_,taumt_,exmt_,ecmt_,vxcmt_, & bxcmt_,wxcmt_) use modmain use modxcifc implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: ias,xctype_(3) real(8), intent(in) :: rhomt_(npmtmax,natmtot),magmt_(npmtmax,natmtot,ndmag) real(8), intent(in) :: taumt_(npmtmax,natmtot,nspinor) real(8), intent(out) :: exmt_(npmtmax,natmtot),ecmt_(npmtmax,natmtot) real(8), intent(out) :: vxcmt_(npmtmax,natmtot),bxcmt_(npmtmax,natmtot,ndmag) real(8), intent(out) :: wxcmt_(npmtmax,natmtot) ! local variables integer ispn,idm,is integer nr,nri,n,i real(8) t0,t1,t2,t3,t4 ! allocatable arrays real(8), allocatable :: rho(:),rhoup(:),rhodn(:) real(8), allocatable :: gvrho(:,:),gvup(:,:),gvdn(:,:) real(8), allocatable :: grho(:),gup(:),gdn(:) real(8), allocatable :: g2rho(:),g2up(:),g2dn(:) real(8), allocatable :: g3rho(:),g3up(:),g3dn(:) real(8), allocatable :: grho2(:),gup2(:),gdn2(:),gupdn(:) real(8), allocatable :: ex(:),ec(:),vxc(:) real(8), allocatable :: vx(:),vxup(:),vxdn(:) real(8), allocatable :: vc(:),vcup(:),vcdn(:) real(8), allocatable :: mag(:,:),bxc(:,:),tau(:,:) real(8), allocatable :: dxdgr2(:),dxdgu2(:),dxdgd2(:),dxdgud(:) real(8), allocatable :: dcdgr2(:),dcdgu2(:),dcdgd2(:),dcdgud(:) real(8), allocatable :: dxdg2r(:),dxdg2u(:),dxdg2d(:) real(8), allocatable :: dcdg2r(:),dcdg2u(:),dcdg2d(:) real(8), allocatable :: dtdr(:),dtdru(:),dtdrd(:) real(8), allocatable :: wx(:),wxup(:),wxdn(:) real(8), allocatable :: wc(:),wcup(:),wcdn(:) is=idxis(ias) n=npmt(is) ! allocate local arrays allocate(rho(n),ex(n),ec(n),vxc(n)) if (any(xcgrad == [3,4,5])) allocate(tau(n,nspinor)) if (spinpol) then allocate(mag(n,3),bxc(n,3)) end if if (spinpol) then allocate(rhoup(n),rhodn(n)) allocate(vxup(n),vxdn(n),vcup(n),vcdn(n)) if (xcgrad == 1) then allocate(grho(n),gup(n),gdn(n)) allocate(g2up(n),g2dn(n)) allocate(g3rho(n),g3up(n),g3dn(n)) else if (xcgrad == 2) then allocate(g2up(n),g2dn(n)) allocate(gvup(n,3),gvdn(n,3)) allocate(gup2(n),gdn2(n),gupdn(n)) allocate(dxdgu2(n),dxdgd2(n),dxdgud(n)) allocate(dcdgu2(n),dcdgd2(n),dcdgud(n)) else if (any(xcgrad == [3,4,5])) then allocate(g2up(n),g2dn(n)) allocate(gvup(n,3),gvdn(n,3)) allocate(gup2(n),gdn2(n),gupdn(n)) allocate(dxdgu2(n),dxdgd2(n),dxdgud(n)) allocate(dcdgu2(n),dcdgd2(n),dcdgud(n)) allocate(dxdg2u(n),dxdg2d(n)) allocate(dcdg2u(n),dcdg2d(n)) allocate(dtdru(n),dtdrd(n)) allocate(wxup(n),wxdn(n),wcup(n),wcdn(n)) end if else allocate(vx(n),vc(n)) if (xcgrad == 1) then allocate(grho(n),g2rho(n),g3rho(n)) else if (xcgrad == 2) then allocate(g2rho(n),gvrho(n,3),grho2(n)) allocate(dxdgr2(n),dcdgr2(n)) else if (any(xcgrad == [3,4,5])) then allocate(g2rho(n),gvrho(n,3),grho2(n)) allocate(dxdgr2(n),dcdgr2(n)) allocate(dxdg2r(n),dcdg2r(n)) allocate(dtdr(n),wx(n),wc(n)) end if end if nr=nrmt(is) nri=nrmti(is) if (tsh) then ! convert the density to spherical coordinates call rbsht(nr,nri,rhomt_(:,ias),rho) else rho(1:n)=rhomt_(1:n,ias) end if ! convert tau to spherical coordinates if required if (any(xcgrad == [3,4,5])) then do ispn=1,nspinor if (tsh) then call rbsht(nr,nri,taumt_(:,ias,ispn),tau(:,ispn)) else tau(1:n,ispn)=taumt_(1:n,ias,ispn) end if end do end if if (spinpol) then !------------------------! ! spin-polarised ! !------------------------! ! magnetisation in spherical coordinates do idm=1,ndmag if (tsh) then call rbsht(nr,nri,magmt_(:,ias,idm),mag(:,idm)) else mag(1:n,idm)=magmt_(1:n,ias,idm) end if end do ! use scaled spin exchange-correlation if required if (tssxc) mag(1:n,1:ndmag)=mag(1:n,1:ndmag)*sxcscf if (ncmag) then ! non-collinear (use Kubler's trick) if (xcgrad == 0) then ! LSDA do i=1,n ! compute rhoup=(rho+|m|)/2 and rhodn=(rho-|m|)/2 t0=rho(i) t1=sqrt(mag(i,1)**2+mag(i,2)**2+mag(i,3)**2) rhoup(i)=0.5d0*(t0+t1) rhodn(i)=0.5d0*(t0-t1) end do else ! functionals which require gradients do i=1,n t0=rho(i) t1=sqrt(mag(i,1)**2+mag(i,2)**2+mag(i,3)**2+dncgga) rhoup(i)=0.5d0*(t0+t1) rhodn(i)=0.5d0*(t0-t1) end do end if else ! collinear do i=1,n ! compute rhoup=(rho+m_z)/2 and rhodn=(rho-m_z)/2 t0=rho(i) t1=mag(i,1) rhoup(i)=0.5d0*(t0+t1) rhodn(i)=0.5d0*(t0-t1) end do end if ! call the exchange-correlation interface routine if (xcgrad < 1) then call xcifc(xctype_,n,tempa=swidth,rhoup=rhoup,rhodn=rhodn,ex=ex,ec=ec, & vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn) else if (xcgrad == 1) then call ggamt_sp_1(is,n,rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn) call xcifc(xctype_,n,rhoup=rhoup,rhodn=rhodn,grho=grho,gup=gup,gdn=gdn, & g2up=g2up,g2dn=g2dn,g3rho=g3rho,g3up=g3up,g3dn=g3dn,ex=ex,ec=ec,vxup=vxup,& vxdn=vxdn,vcup=vcup,vcdn=vcdn) else if (xcgrad == 2) then call ggamt_sp_2a(is,n,rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn) call xcifc(xctype_,n,rhoup=rhoup,rhodn=rhodn,gup2=gup2,gdn2=gdn2, & gupdn=gupdn,ex=ex,ec=ec,vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn, & dxdgu2=dxdgu2,dxdgd2=dxdgd2,dxdgud=dxdgud,dcdgu2=dcdgu2,dcdgd2=dcdgd2, & dcdgud=dcdgud) call ggamt_sp_2b(is,n,g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2, & dxdgd2,dxdgud,dcdgu2,dcdgd2,dcdgud) else if (any(xcgrad == [3,4,5])) then call ggamt_sp_2a(is,n,rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn) ! enforce the von Weizsacker lower bound call k_vwlb(n,rhoup,gup2,tau(:,1)) call k_vwlb(n,rhodn,gdn2,tau(:,2)) call xcifc(xctype_,n,rhoup=rhoup,rhodn=rhodn,g2up=g2up,g2dn=g2dn,gup2=gup2,& gdn2=gdn2,gupdn=gupdn,tauup=tau(:,1),taudn=tau(:,2),ex=ex,ec=ec,vxup=vxup,& vxdn=vxdn,vcup=vcup,vcdn=vcdn,dxdgu2=dxdgu2,dxdgd2=dxdgd2,dxdgud=dxdgud, & dcdgu2=dcdgu2,dcdgd2=dcdgd2,dcdgud=dcdgud,dxdg2u=dxdg2u,dxdg2d=dxdg2d, & dcdg2u=dcdg2u,dcdg2d=dcdg2d,wxup=wxup,wxdn=wxdn,wcup=wcup,wcdn=wcdn) call ggamt_sp_2b(is,n,g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2, & dxdgd2,dxdgud,dcdgu2,dcdgd2,dcdgud) ! determine δτ(r')/δρ(r) using an approximate kinetic energy functional if (xcgrad /= 3) then call xcifc(ktype,n,rhoup=rhoup,rhodn=rhodn,g2up=g2up,g2dn=g2dn,gup2=gup2,& gdn2=gdn2,tauup=tau(:,1),taudn=tau(:,2),dtdru=dtdru,dtdrd=dtdrd, & dtdgu2=dxdgu2,dtdgd2=dxdgd2,dtdg2u=dxdg2u,dtdg2d=dxdg2d,wxup=dcdgu2, & wxdn=dcdgd2) call ggamt_4(is,n,gvup,vxup,vcup,wxup,wcup,dtdru,dxdgu2) call ggamt_4(is,n,gvdn,vxdn,vcdn,wxdn,wcdn,dtdrd,dxdgd2) if (kgrad == 3) then call ggamt_3(is,n,vxup,vcup,wxup,wcup,dxdg2u) call ggamt_3(is,n,vxdn,vcdn,wxdn,wcdn,dxdg2d) end if end if wxcmt_(1:n,ias)=0.5d0*(wxup(1:n)+wxdn(1:n)+wcup(1:n)+wcdn(1:n)) if (tsh) call rfshtip(nr,nri,wxcmt_(:,ias)) end if ! hybrid functionals if (hybrid) then t1=1.d0-hybridc ! scale exchange part of energy ex(1:n)=t1*ex(1:n) ! scale exchange part of potential vxup(1:n)=t1*vxup(1:n) vxdn(1:n)=t1*vxdn(1:n) end if if (ncmag) then ! non-collinear: locally spin rotate the exchange-correlation potential do i=1,n t1=vxup(i)+vcup(i) t2=vxdn(i)+vcdn(i) vxc(i)=0.5d0*(t1+t2) ! determine the exchange-correlation magnetic field t3=0.5d0*(t1-t2) ! |m| = rhoup - rhodn t4=rhoup(i)-rhodn(i) if (abs(t4) > 1.d-8) t4=t3/t4 bxc(i,1:3)=mag(i,1:3)*t4 end do else ! collinear do i=1,n t1=vxup(i)+vcup(i) t2=vxdn(i)+vcdn(i) vxc(i)=0.5d0*(t1+t2) bxc(i,1)=0.5d0*(t1-t2) end do end if ! scale B_xc if required if (tssxc) bxc(1:n,1:ndmag)=bxc(1:n,1:ndmag)*sxcscf do idm=1,ndmag if (tsh) then ! convert field to spherical harmonics call rfsht(nr,nri,bxc(:,idm),bxcmt_(:,ias,idm)) else bxcmt_(1:n,ias,idm)=bxc(1:n,idm) end if end do else !--------------------------! ! spin-unpolarised ! !--------------------------! if (xcgrad < 1) then call xcifc(xctype_,n,tempa=swidth,rho=rho,ex=ex,ec=ec,vx=vx,vc=vc) else if (xcgrad == 1) then call ggamt_1(tsh,is,n,rhomt_(:,ias),grho,g2rho,g3rho) call xcifc(xctype_,n,rho=rho,grho=grho,g2rho=g2rho,g3rho=g3rho,ex=ex,ec=ec,& vx=vx,vc=vc) else if (xcgrad == 2) then call ggamt_2a(tsh,is,n,rhomt_(:,ias),g2rho,gvrho,grho2) call xcifc(xctype_,n,rho=rho,grho2=grho2,ex=ex,ec=ec,vx=vx,vc=vc, & dxdgr2=dxdgr2,dcdgr2=dcdgr2) call ggamt_2b(is,n,g2rho,gvrho,vx,vc,dxdgr2,dcdgr2) else if (any(xcgrad == [3,4,5])) then call ggamt_2a(tsh,is,n,rhomt_(:,ias),g2rho,gvrho,grho2) ! enforce the von Weizsacker lower bound call k_vwlb(n,rho,grho2,tau) call xcifc(xctype_,n,rho=rho,g2rho=g2rho,grho2=grho2,tau=tau,ex=ex,ec=ec, & vx=vx,vc=vc,dxdgr2=dxdgr2,dcdgr2=dcdgr2,dxdg2r=dxdg2r,dcdg2r=dcdg2r,wx=wx,& wc=wc) call ggamt_2b(is,n,g2rho,gvrho,vx,vc,dxdgr2,dcdgr2) ! determine δτ(r')/δρ(r) using an approximate kinetic energy functional if (xcgrad /= 3) then call xcifc(ktype,n,rho=rho,g2rho=g2rho,grho2=grho2,tau=tau,dtdr=dtdr, & dtdgr2=dxdgr2,dtdg2r=dxdg2r,wx=dcdgr2) call ggamt_4(is,n,gvrho,vx,vc,wx,wc,dtdr,dxdgr2) if (kgrad == 3) then call ggamt_3(is,n,vx,vc,wx,wc,dxdg2r) end if end if wxcmt_(1:n,ias)=wx(1:n)+wc(1:n) if (tsh) call rfshtip(nr,nri,wxcmt_(:,ias)) end if ! hybrid functionals if (hybrid) then t1=1.d0-hybridc ! scale exchange part of energy ex(1:n)=t1*ex(1:n) ! scale exchange part of potential vxc(1:n)=t1*vx(1:n)+vc(1:n) else vxc(1:n)=vx(1:n)+vc(1:n) end if end if if (tsh) then ! convert exchange and correlation energy densities to spherical harmonics call rfsht(nr,nri,ex,exmt_(:,ias)) call rfsht(nr,nri,ec,ecmt_(:,ias)) ! convert exchange-correlation potential to spherical harmonics call rfsht(nr,nri,vxc,vxcmt_(:,ias)) else exmt_(1:n,ias)=ex(1:n) ecmt_(1:n,ias)=ec(1:n) vxcmt_(1:n,ias)=vxc(1:n) end if deallocate(rho,ex,ec,vxc) if (any(xcgrad == [3,4,5])) deallocate(tau) if (spinpol) then deallocate(mag,bxc) deallocate(rhoup,rhodn,vxup,vxdn,vcup,vcdn) if (xcgrad == 1) then deallocate(grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn) else if (xcgrad == 2) then deallocate(g2up,g2dn) deallocate(gvup,gvdn) deallocate(gup2,gdn2,gupdn) deallocate(dxdgu2,dxdgd2,dxdgud) deallocate(dcdgu2,dcdgd2,dcdgud) else if (any(xcgrad == [3,4,5])) then deallocate(g2up,g2dn) deallocate(gvup,gvdn) deallocate(gup2,gdn2,gupdn) deallocate(dxdgu2,dxdgd2,dxdgud) deallocate(dcdgu2,dcdgd2,dcdgud) deallocate(dxdg2u,dxdg2d) deallocate(dcdg2u,dcdg2d) deallocate(dtdru,dtdrd) deallocate(wxup,wxdn,wcup,wcdn) end if else deallocate(vx,vc) if (xcgrad == 1) then deallocate(grho,g2rho,g3rho) else if (xcgrad == 2) then deallocate(g2rho,gvrho,grho2) deallocate(dxdgr2,dcdgr2) else if (any(xcgrad == [3,4,5])) then deallocate(g2rho,gvrho,grho2) deallocate(dxdgr2,dcdgr2,dxdg2r,dcdg2r) deallocate(dtdr,wx,wc) end if end if end subroutine elk-10.4.9/src/PaxHeaders/sdelta_mp.f900000644000000000000000000000013214762655564014541 xustar0030 mtime=1741380468.528008773 30 atime=1741380466.575998568 30 ctime=1741380468.528008773 elk-10.4.9/src/sdelta_mp.f900000644002504400250440000000335614762655564017272 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sdelta_mp ! !INTERFACE: real(8) function sdelta_mp(n,x) ! !INPUT/OUTPUT PARAMETERS: ! n : order (in,integer) ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the smooth approximation to the Dirac delta function of order $N$ ! given by Methfessel and Paxton, {\it Phys. Rev. B} {\bf 40}, 3616 (1989), ! $$ \tilde\delta(x)=\sum_{i=0}^N \frac{(-1)^i}{i!4^n\sqrt\pi} H_{2i}(x) ! e^{-x^2},$$ ! where $H_j$ is the $j$th-order Hermite polynomial. This function has the ! property ! $$ \int_{-\infty}^{\infty}\tilde\delta(x)P(x)=P(0), $$ ! where $P(x)$ is any polynomial of degree $2N+1$ or less. The case $N=0$ ! corresponds to Gaussian smearing. This procedure is numerically stable ! and accurate to near machine precision for $N\le 10$. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x ! local variables integer i real(8), parameter :: sqpi=1.7724538509055160273d0 real(8) sm,t0,t1 ! external functions real(8), external :: factn,hermite if (n == 0) then sdelta_mp=exp(-x**2)/sqpi return end if if (n < 0) then write(*,*) write(*,'("Error(sdelta_mp): n < 0 : ",I8)') n write(*,*) stop end if if (n > 10) then write(*,*) write(*,'("Error(sdelta_mp): n out of range : ",I8)') n write(*,*) stop end if if (abs(x) > 12.d0) then sdelta_mp=0.d0 return end if t0=exp(-x**2)/sqpi sm=t0 do i=1,n t1=t0/(factn(i)*dble(4**i)) if (mod(i,2) /= 0) t1=-t1 sm=sm+t1*hermite(2*i,x) end do sdelta_mp=sm end function !EOC elk-10.4.9/src/PaxHeaders/stheta_mp.f900000644000000000000000000000013214762655564014555 xustar0030 mtime=1741380468.529008779 30 atime=1741380466.578998584 30 ctime=1741380468.529008779 elk-10.4.9/src/stheta_mp.f900000644002504400250440000000335214762655564017302 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: stheta_mp ! !INTERFACE: real(8) function stheta_mp(n,x) ! !INPUT/OUTPUT PARAMETERS: ! n : order (in,integer) ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the smooth approximation to the Heaviside step function of order ! $N$ given by Methfessel and Paxton, {\it Phys. Rev. B} {\bf 40}, 3616 ! (1989), ! $$ \tilde\Theta(x)=1-S_N(x) $$ ! where ! \begin{align*} ! S_N(x)&=S_0(x)+\sum_{i=1}^N \frac{(-1)^i}{i!4^n\sqrt\pi} H_{2i-1}(x) ! e^{-x^2},\\ ! S_0(x)&=\frac{1}{2}(1-{\rm erf}(x)) ! \end{align*} ! and $H_j$ is the $j$th-order Hermite polynomial. This procedure is ! numerically stable and accurate to near machine precision for $N\le 10$. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x ! local variables integer i real(8), parameter :: sqpi=1.7724538509055160273d0 real(8) sm,t0,t1 ! external functions real(8), external :: factn,hermite,erf if (n == 0) then stheta_mp=0.5d0*(1.d0+erf(x)) return end if if (n < 0) then write(*,*) write(*,'("Error(stheta_mp): n < 0 : ",I8)') n write(*,*) stop end if if (n > 10) then write(*,*) write(*,'("Error(stheta_mp): n out of range : ",I8)') n write(*,*) stop end if if (x < -12.d0) then stheta_mp=0.d0 return end if if (x > 12.d0) then stheta_mp=1.d0 return end if t0=-exp(-x**2)/sqpi sm=0.5d0*(1.d0+erf(x)) do i=1,n t1=t0/(factn(i)*dble(4**i)) if (mod(i,2) /= 0) t1=-t1 sm=sm+t1*hermite(2*i-1,x) end do stheta_mp=sm end function !EOC elk-10.4.9/src/PaxHeaders/sdelta_fd.f900000644000000000000000000000013214762655564014516 xustar0030 mtime=1741380468.530008784 30 atime=1741380466.580998595 30 ctime=1741380468.530008784 elk-10.4.9/src/sdelta_fd.f900000644002504400250440000000135214762655564017241 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sdelta_fd ! !INTERFACE: elemental real(8) function sdelta_fd(x) ! !INPUT/OUTPUT PARAMETERS: ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the Fermi-Dirac approximation to the Dirac delta function ! $$ \tilde\delta(x)=\frac{e^{-x}}{(1+e^{-x})^2}. $$ ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x ! local variables real(8) t1 if (abs(x) > 50.d0) then sdelta_fd=0.d0 else t1=exp(-x) sdelta_fd=t1/((1.d0+t1)**2) end if end function !EOC elk-10.4.9/src/PaxHeaders/stheta_fd.f900000644000000000000000000000013114762655564014531 xustar0030 mtime=1741380468.532008794 29 atime=1741380466.58399861 30 ctime=1741380468.532008794 elk-10.4.9/src/stheta_fd.f900000644002504400250440000000134214762655564017254 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: stheta_fd ! !INTERFACE: elemental real(8) function stheta_fd(x) ! !INPUT/OUTPUT PARAMETERS: ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the Fermi-Dirac approximation to the Heaviside step function ! $$ \tilde\Theta(x)=\frac{1}{1+e^{-x}}. $$ ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x if (x > 50.d0) then stheta_fd=1.d0 else if (x < -50.d0) then stheta_fd=0.d0 else stheta_fd=1.d0/(1.d0+exp(-x)) end if end function !EOC elk-10.4.9/src/PaxHeaders/writelsj.f900000644000000000000000000000013214762655564014434 xustar0030 mtime=1741380468.533008799 30 atime=1741380466.585998621 30 ctime=1741380468.533008799 elk-10.4.9/src/writelsj.f900000644002504400250440000000773214762655564017167 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma, C. Ambrosch-Draxl and ! F. Cricchio. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine writelsj use modmain use moddftu use modmpi use modtest implicit none ! local variables integer kst,ik,ist integer is,ia,ias real(8) xl(3),xs(3) ! allocatable arrays real(8), allocatable :: xj(:,:) complex(8), allocatable :: dmat(:,:,:,:,:) ! initialise universal variables call init0 call init1 ! read density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! allocate local arrays allocate(xj(3,natmtot)) allocate(dmat(lmmaxo,nspinor,lmmaxo,nspinor,natmtot)) if (task == 15) then ! compute total L, S and J ! read in the occupation numbers do ik=1,nkpt call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! generate the density matrix in each muffin-tin call gendmat(.false.,.false.,0,lmaxo,lmmaxo,dmat) if (mp_mpi) then open(50,file='LSJ.OUT',form='FORMATTED',action='WRITE') write(50,*) write(50,'("Expectation values are computed only over the muffin-tin")') ! loop over species and atoms do is=1,nspecies write(50,*) write(50,'("Species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) ! calculate the expectation value of L and S call dmatls(dmat(:,:,:,:,ias),xl,xs) ! J = L + S xj(:,ias)=xl(:)+xs(:) write(50,'(" atom : ",I4)') ia write(50,'(" L : ",3G18.10)') xl(:) write(50,'(" S : ",3G18.10)') xs(:) write(50,'(" J : ",3G18.10)') xj(:,ias) ! end loop over atoms and species end do end do close(50) write(*,*) write(*,'("Info(writelsj):")') write(*,'(" muffin-tin L, S and J expectation values written to LSJ.OUT")') end if ! write J to test file call writetest(15,'total muffin-tin angular momentum',nv=3*natmtot,tol=1.d-3,& rva=xj) else ! compute L, S and J for all states in kstlist if (mp_mpi) then open(50,file='LSJ_KST.OUT',form='FORMATTED',action='WRITE') write(50,*) write(50,'("Expectation values are computed only over the muffin-tin")') end if do kst=1,nkstlist ik=kstlist(1,kst) ist=kstlist(2,kst) if ((ik < 1).or.(ik > nkpt)) then write(*,*) write(*,'("Error(writelsj): k-point out of range : ",I8)') ik write(*,*) stop end if if ((ist < 1).or.(ist > nstsv)) then write(*,*) write(*,'("Error(writelsj): state out of range : ",I8)') ist write(*,*) stop end if ! select a particular wavefunction using its occupancy occsv(:,:)=0.d0 occsv(ist,ik)=1.d0/wkpt(ik) ! no symmetrisation required nsymcrys=1 ! generate the density matrix in each muffin-tin call gendmat(.false.,.false.,0,lmaxo,lmmaxo,dmat) if (mp_mpi) then ! loop over species and atoms do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! calculate the expectation value of L and S call dmatls(dmat(:,:,:,:,ias),xl,xs) ! J = L + S xj(:,ias)=xl(:)+xs(:) write(50,*) write(50,'("k-point : ",I6,3G18.10)') ik,vkl(:,ik) write(50,'("state : ",I6)') ist write(50,'("species : ",I4," (",A,"), atom : ",I4)') is, & trim(spsymb(is)),ia write(50,'(" L : ",3G18.10)') xl(:) write(50,'(" S : ",3G18.10)') xs(:) write(50,'(" J : ",3G18.10)') xj(:,ias) end do end do end if end do if (mp_mpi) then close(50) write(*,*) write(*,'("Info(writelsj):")') write(*,'(" muffin-tin L, S and J expectation values for each k-point and & &state")') write(*,'(" in kstlist written to LSJ_KST.OUT")') end if ! write J to test file call writetest(16,'muffin-tin angular momentum for one state',nv=3*natmtot, & tol=1.d-3,rva=xj) end if deallocate(xj,dmat) end subroutine elk-10.4.9/src/PaxHeaders/eveqnzh.f900000644000000000000000000000013214762655564014251 xustar0030 mtime=1741380468.534008805 30 atime=1741380466.588998637 30 ctime=1741380468.534008805 elk-10.4.9/src/eveqnzh.f900000644002504400250440000000226414762655564016777 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnzh(n,ld,a,w) use modmain use modomp implicit none ! arguments integer, intent(in) :: n,ld complex(8), intent(inout) :: a(ld,n) real(8), intent(out) :: w(n) ! local variables integer nb,lwork,lrwork integer nts,info,nthd ! automatic arrays integer iwork(3+5*n) ! allocatable arrays real(8), allocatable :: rwork(:) complex(8), allocatable :: work(:) ! external functions integer, external :: ilaenv ! find the optimal blocksize for allocating the work array nb=ilaenv(1,'ZHETRD','U',n,-1,-1,-1) lwork=max(2*n+n**2,(nb+1)*n) lrwork=1+5*n+2*n**2 allocate(work(lwork),rwork(lrwork)) ! enable MKL parallelism call holdthd(maxthdmkl,nthd) nts=mkl_set_num_threads_local(nthd) call zheevd('V','U',n,a,ld,w,work,lwork,rwork,lrwork,iwork,3+5*n,info) nts=mkl_set_num_threads_local(0) call freethd(nthd) if (info /= 0) then write(*,*) write(*,'("Error(eveqnzh): diagonalisation failed")') write(*,'(" ZHEEVD returned INFO = ",I8)') info write(*,*) stop end if deallocate(rwork,work) end subroutine elk-10.4.9/src/PaxHeaders/gensmatk.f900000644000000000000000000000013214762655564014402 xustar0030 mtime=1741380468.536008815 30 atime=1741380466.590998647 30 ctime=1741380468.536008815 elk-10.4.9/src/gensmatk.f900000644002504400250440000000203514762655564017124 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gensmatk(evecsv,smat) use modmain implicit none ! arguments complex(8), intent(in) :: evecsv(nstsv,nstsv) complex(8), intent(out) :: smat(nstsv,nstsv,2,2) ! local variables integer ist,jst,i ! external functions complex(8), external :: zdotc i=nstfv+1 do jst=1,nstsv do ist=1,jst smat(ist,jst,1,1)=zdotc(nstfv,evecsv(1,ist),1,evecsv(1,jst),1) smat(ist,jst,2,1)=zdotc(nstfv,evecsv(i,ist),1,evecsv(1,jst),1) smat(ist,jst,1,2)=zdotc(nstfv,evecsv(1,ist),1,evecsv(i,jst),1) smat(ist,jst,2,2)=zdotc(nstfv,evecsv(i,ist),1,evecsv(i,jst),1) end do end do ! set the lower triangular parts do jst=1,nstsv do ist=1,jst-1 smat(jst,ist,1,1)=conjg(smat(ist,jst,1,1)) smat(jst,ist,2,1)=conjg(smat(ist,jst,1,2)) smat(jst,ist,1,2)=conjg(smat(ist,jst,2,1)) smat(jst,ist,2,2)=conjg(smat(ist,jst,2,2)) end do end do end subroutine elk-10.4.9/src/PaxHeaders/gensfacgp.f900000644000000000000000000000013014762655564014524 xustar0029 mtime=1741380468.53700882 30 atime=1741380466.593998663 29 ctime=1741380468.53700882 elk-10.4.9/src/gensfacgp.f900000644002504400250440000000253214762655564017252 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gensfacgp ! !INTERFACE: pure subroutine gensfacgp(ngp,vgpc,ld,sfacgp) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer) ! vgpc : G+p-vectors in Cartesian coordinates (in,real(3,*)) ! ld : leading dimension (in,integer) ! sfacgp : structure factors of G+p-vectors (out,complex(ld,natmtot)) ! !DESCRIPTION: ! Generates the atomic structure factors for a set of ${\bf G+p}$-vectors: ! $$ S_{\alpha}({\bf G+p})=\exp(i({\bf G+p})\cdot{\bf r}_{\alpha}), $$ ! where ${\bf r}_{\alpha}$ is the position of atom $\alpha$. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp real(8), intent(in) :: vgpc(3,ngp) integer, intent(in) :: ld complex(8), intent(out) :: sfacgp(ld,natmtot) ! local variables integer is,ia,ias,igp real(8) v1,v2,v3,t1 do ias=1,natmtot is=idxis(ias) ia=idxia(ias) v1=atposc(1,ia,is); v2=atposc(2,ia,is); v3=atposc(3,ia,is) !$OMP SIMD PRIVATE(t1) SIMDLEN(8) do igp=1,ngp t1=vgpc(1,igp)*v1+vgpc(2,igp)*v2+vgpc(3,igp)*v3 sfacgp(igp,ias)=cmplx(cos(t1),sin(t1),8) end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/rhomag.f900000644000000000000000000000013214762655564014046 xustar0030 mtime=1741380468.539008831 30 atime=1741380466.595998673 30 ctime=1741380468.539008831 elk-10.4.9/src/rhomag.f900000644002504400250440000000141214762655564016566 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhomag use modmain use modmpi use modomp implicit none ! local variables integer nthd ! calculate the valence density and magnetisation call rhomagv ! add the core density and magnetisation to the total call rhocore call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP SECTION ! calculate the charges call charge ! normalise the density call rhonorm !$OMP SECTION ! calculate the moments if (spinpol) call moment !$OMP END PARALLEL SECTIONS call freethd(nthd) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/wsplintp.f900000644000000000000000000000013214762655564014451 xustar0030 mtime=1741380468.540008836 30 atime=1741380466.598998689 30 ctime=1741380468.540008836 elk-10.4.9/src/wsplintp.f900000644002504400250440000000306414762655564017176 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wsplintp(n,x,wp) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x(n) real(8), intent(out) :: wp(4,n) ! local variables integer i real(8) f(4),t1,t2 ! external functions real(8), external :: polynm if (n < 4) then write(*,*) write(*,'("Error(wsplintp): n < 4 : ",I8)') n write(*,*) stop end if wp(:,1)=0.d0 f(1)=1.d0 f(2:)=0.d0 wp(1,2)=polynm(-1,4,x,f,x(2)) f(1)=0.d0 f(2)=1.d0 wp(2,2)=polynm(-1,4,x,f,x(2)) f(2)=0.d0 f(3)=1.d0 wp(3,2)=polynm(-1,4,x,f,x(2)) f(3)=0.d0 f(4)=1.d0 wp(4,2)=polynm(-1,4,x,f,x(2)) do i=3,n-1 f(1)=1.d0 f(2:)=0.d0 t1=polynm(-1,4,x(i-2),f,x(i-1)) t2=polynm(-1,4,x(i-2),f,x(i)) wp(1,i)=t2-t1 f(1)=0.d0 f(2)=1.d0 t1=polynm(-1,4,x(i-2),f,x(i-1)) t2=polynm(-1,4,x(i-2),f,x(i)) wp(2,i)=t2-t1 f(2)=0.d0 f(3)=1.d0 t1=polynm(-1,4,x(i-2),f,x(i-1)) t2=polynm(-1,4,x(i-2),f,x(i)) wp(3,i)=t2-t1 f(3)=0.d0 f(4)=1.d0 t1=polynm(-1,4,x(i-2),f,x(i-1)) t2=polynm(-1,4,x(i-2),f,x(i)) wp(4,i)=t2-t1 end do f(1)=1.d0 f(2:)=0.d0 t1=polynm(-1,4,x(n-3),f,x(n-1)) t2=polynm(-1,4,x(n-3),f,x(n)) wp(1,n)=t2-t1 f(1)=0.d0 f(2)=1.d0 t1=polynm(-1,4,x(n-3),f,x(n-1)) t2=polynm(-1,4,x(n-3),f,x(n)) wp(2,n)=t2-t1 f(2)=0.d0 f(3)=1.d0 t1=polynm(-1,4,x(n-3),f,x(n-1)) t2=polynm(-1,4,x(n-3),f,x(n)) wp(3,n)=t2-t1 f(3)=0.d0 f(4)=1.d0 t1=polynm(-1,4,x(n-3),f,x(n-1)) t2=polynm(-1,4,x(n-3),f,x(n)) wp(4,n)=t2-t1 end subroutine elk-10.4.9/src/PaxHeaders/checkmt.f900000644000000000000000000000013214762655564014207 xustar0030 mtime=1741380468.542008847 30 atime=1741380466.600998699 30 ctime=1741380468.542008847 elk-10.4.9/src/checkmt.f900000644002504400250440000000352014762655564016731 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: checkmt ! !INTERFACE: subroutine checkmt ! !USES: use modmain use modmpi use modvars ! !DESCRIPTION: ! Checks for muffin-tins which are too close together or intersecting. If any ! such muffin-tins are found then the radii of their associated atomic species ! are adjusted so that the minimum distance between their surfaces is ! {\tt rmtdelta}. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) ! Modified, October 2011 (JKD) !EOP !BOC implicit none ! local variables integer is,js real(8) dmin,t1,t2 real(8) rmtp(nspecies) if (nspecies < 1) return ! store previous muffin-tin radii rmtp(1:nspecies)=rmt(1:nspecies) ! restore original muffin-tin radii read from species files if required if (trmt0) rmt(1:nspecies)=rmt0(1:nspecies) do ! find the minimum distance between muffin-tin surfaces call mtdmin(is,js,dmin) if (dmin > rmtdelta-1.d-4) exit ! adjust muffin-tin radii t1=rmt(is)+rmt(js) t2=(t1+dmin-rmtdelta)/t1 rmt(is)=rmt(is)*t2 if (is /= js) rmt(js)=rmt(js)*t2 end do do is=1,nspecies if (rmt(is) < 0.1d0) then write(*,*) write(*,'("Error(checkmt): muffin-tin radius too small for species ",I4,& &" (",A,")")') is,trim(spsymb(is)) write(*,'(" Radius : ",G18.10)') rmt(is) write(*,*) stop end if ! report changed muffin-tin radii t1=abs(rmt(is)-rmtp(is)) if (t1 > 1.d-4) then if (mp_mpi) then write(*,'("Info(checkmt): changed muffin-tin radius of species ",I3,& &" (",A,") from ",F8.4," to ",F8.4)') is,trim(spsymb(is)),rmtp(is), & rmt(is) end if end if end do ! write to VARIABLES.OUT if (wrtvars) call writevars('rmt',nv=nspecies,rva=rmt) end subroutine !EOC elk-10.4.9/src/PaxHeaders/reciplat.f900000644000000000000000000000013214762655564014374 xustar0030 mtime=1741380468.543008852 30 atime=1741380466.603998715 30 ctime=1741380468.543008852 elk-10.4.9/src/reciplat.f900000644002504400250440000000333614762655564017123 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: reciplat ! !INTERFACE: subroutine reciplat(avec,bvec,omega,omegabz) ! !INPUT/OUTPUT PARAMETERS: ! avec : lattice vectors (in,real(3,3)) ! bvec : reciprocal lattice vectors (out,real(3,3)) ! omega : unit cell volume (out,real) ! omegabz : Brillouin zone volume (out,real) ! !DESCRIPTION: ! Generates the reciprocal lattice vectors from the real-space lattice vectors ! \begin{align*} ! {\bf b}_1&=\frac{2\pi}{s}({\bf a}_2\times{\bf a}_3)\\ ! {\bf b}_2&=\frac{2\pi}{s}({\bf a}_3\times{\bf a}_1)\\ ! {\bf b}_3&=\frac{2\pi}{s}({\bf a}_1\times{\bf a}_2) ! \end{align*} ! and finds the unit cell volume $\Omega=|s|$, where ! $s={\bf a}_1\cdot({\bf a}_2\times{\bf a}_3)$, and the Brillouin zone volume ! $\Omega_{\rm BZ}=(2\pi)^3/\Omega$. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: avec(3,3) real(8), intent(out) :: bvec(3,3),omega,omegabz ! local variables real(8), parameter :: twopi=6.2831853071795864769d0 real(8) t1 call r3cross(avec(:,2),avec(:,3),bvec(:,1)) call r3cross(avec(:,3),avec(:,1),bvec(:,2)) call r3cross(avec(:,1),avec(:,2),bvec(:,3)) t1=avec(1,1)*bvec(1,1)+avec(2,1)*bvec(2,1)+avec(3,1)*bvec(3,1) ! unit cell volume omega=abs(t1) if (omega < 1.d-6) then write(*,*) write(*,'("Error(reciplat) omega too small : ",G18.10)') omega write(*,'(" Lattice vectors may be collinear")') write(*,*) stop end if bvec(:,:)=(twopi/t1)*bvec(:,:) ! Brillouin zone volume omegabz=(twopi**3)/omega end subroutine !EOC elk-10.4.9/src/PaxHeaders/gradrf.f900000644000000000000000000000013214762655564014036 xustar0030 mtime=1741380468.544008857 30 atime=1741380466.605998725 30 ctime=1741380468.544008857 elk-10.4.9/src/gradrf.f900000644002504400250440000000245114762655564016562 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gradrf(rfmt,rfir,grfmt,grfir) use modmain use modomp implicit none ! arguments real(8), intent(in) :: rfmt(npmtmax,natmtot),rfir(ngtot) real(8), intent(out) :: grfmt(npmtmax,natmtot,3),grfir(ngtot,3) ! local variables integer is,ias,ld,i integer ig,ifg,nthd ! allocatable arrays complex(8), allocatable :: zfft1(:),zfft2(:) ! muffin-tin gradient ld=npmtmax*natmtot call holdthd(natmtot+1,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(zfft1,zfft2) & !$OMP PRIVATE(is,i,ifg,ig) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) call gradrfmt(nrmt(is),nrmti(is),rlmt(:,-1,is),wcrmt(:,:,is),rfmt(:,ias),ld, & grfmt(1,ias,1)) end do !$OMP END DO NOWAIT ! interstitial gradient !$OMP SINGLE allocate(zfft1(nfgrz),zfft2(nfgrz)) call rzfftifc(3,ngridg,-1,rfir,zfft1) do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvec) then zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,grfir(:,i),zfft2) end do deallocate(zfft1,zfft2) !$OMP END SINGLE !$OMP END PARALLEL call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/gencfrm.f900000644000000000000000000000013214762655564014212 xustar0030 mtime=1741380468.546008868 30 atime=1741380466.608998741 30 ctime=1741380468.546008868 elk-10.4.9/src/gencfrm.f900000644002504400250440000000267314762655564016744 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2010 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gencfrm(wfmt11,wfmt12,wfir11,wfir12,wfmt21,wfmt22,wfir21,wfir22, & crhomt,crhoir,cmagmt,cmagir) use modmain use modomp implicit none ! arguments complex(4), intent(in) :: wfmt11(npcmtmax,natmtot),wfmt12(npcmtmax,natmtot) complex(4), intent(in) :: wfir11(ngtot),wfir12(ngtot) complex(4), intent(in) :: wfmt21(npcmtmax,natmtot),wfmt22(npcmtmax,natmtot) complex(4), intent(in) :: wfir21(ngtot),wfir22(ngtot) complex(4), intent(out) :: crhomt(npcmtmax,natmtot),crhoir(ngtot) complex(4), intent(out) :: cmagmt(npcmtmax,natmtot,ndmag),cmagir(ngtot,ndmag) ! local variables integer ld,is,ias,nthd ld=npcmtmax*natmtot call holdthd(natmtot+1,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(ias,is) & !$OMP NUM_THREADS(nthd) !-------------------------! ! muffin-tin part ! !-------------------------! !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) call gencrm(npcmt(is),wfmt11(:,ias),wfmt12(:,ias),wfmt21(:,ias), & wfmt22(:,ias),crhomt(:,ias),ld,cmagmt(:,ias,1)) end do !$OMP END DO NOWAIT !---------------------------! ! interstitial part ! !---------------------------! !$OMP SINGLE call gencrm(ngtot,wfir11,wfir12,wfir21,wfir22,crhoir,ngtot,cmagir) !$OMP END SINGLE !$OMP END PARALLEL call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/mixadapt.f900000644000000000000000000000013214762655564014400 xustar0030 mtime=1741380468.547008873 30 atime=1741380466.610998752 30 ctime=1741380468.547008873 elk-10.4.9/src/mixadapt.f900000644002504400250440000000501514762655564017123 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: mixadapt ! !INTERFACE: pure subroutine mixadapt(iscl,beta0,betamax,n,nu,mu,beta,f,d) ! !INPUT/OUTPUT PARAMETERS: ! iscl : self-consistent loop number (in,integer) ! beta0 : mixing parameter (in,real) ! betamax : maximum mixing parameter (in,real) ! n : vector length (in,integer) ! nu : current output vector as well as the next input vector of the ! self-consistent loop (inout,real(n)) ! mu : used internally (inout,real(n)) ! beta : used internally (inout,real(n)) ! f : used internally (inout,real(n)) ! d : RMS difference between old and new output vectors (out,real) ! !DESCRIPTION: ! Given the input vector $\mu^i$ and output vector $\nu^i$ of the $i$th ! self-consistent loop, this routine generates the next input vector to the ! loop using an adaptive mixing scheme. The $j$th component of the output ! vector is mixed with a fraction of the same component of the input vector: ! $$ \mu^{i+1}_j=\beta^i_j\nu^i_j+(1-\beta^i_j)\mu^i_j, $$ ! where $\beta^{i+1}_j=\beta^i_j+\beta_0$ if $f^i_j\equiv\nu^i_j-\mu^i_j$ does ! not change sign between loops. If $f^i_j$ does change sign, then ! $\beta^{i+1}_j=(\beta^i_j+\beta_0)/2$. Note that the array {\tt nu} serves ! for both input and output, and the arrays {\tt mu}, {\tt beta} and {\tt f} ! are used internally and should not be changed between calls. The routine is ! thread-safe so long as each thread has its own independent work arrays. ! Complex arrays may be passed as real arrays with $n$ doubled. ! ! !REVISION HISTORY: ! Created March 2003 (JKD) ! Modified, September 2008 (JKD) ! Modified, August 2011 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: iscl real(8), intent(in) :: beta0,betamax integer, intent(in) :: n real(8), intent(inout) :: nu(n),mu(n),beta(n),f(n) real(8), intent(out) :: d ! local variables integer i real(8) t1 if (n < 1) return ! initialise mixer if (iscl < 1) then mu(1:n)=nu(1:n) f(1:n)=0.d0 beta(1:n)=beta0 d=1.d0 return end if d=0.d0 do i=1,n t1=nu(i)-mu(i) d=d+t1**2 if (t1*f(i) >= 0.d0) then beta(i)=beta(i)+beta0 if (beta(i) > betamax) beta(i)=betamax else beta(i)=0.5d0*(beta(i)+beta0) end if f(i)=t1 nu(i)=beta(i)*nu(i)+(1.d0-beta(i))*mu(i) mu(i)=nu(i) end do d=sqrt(d/dble(n)) end subroutine !EOC elk-10.4.9/src/PaxHeaders/zftrf.f900000644000000000000000000000013214762655564013724 xustar0030 mtime=1741380468.549008883 30 atime=1741380466.613998767 30 ctime=1741380468.549008883 elk-10.4.9/src/zftrf.f900000644002504400250440000001255114762655564016452 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 Alexey I. Baranov. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zftrf ! !INTERFACE: subroutine zftrf(npv,ivp,vpc,rfmt,rfir,zfp) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! npv : number of P-vectors (in,integer) ! ivp : integer coordinates of the P-vectors (in,integer(3,npv)) ! vpc : P-vectors in Cartesian coordinates (in,real(3,npv)) ! rfmt : real muffin-tin function (in,real(npmtmax,natmtot)) ! rfir : real interstitial function (in,real(ngtot)) ! zfp : Fourier expansion coefficients of the real-space function ! (out,complex(npv)) ! !DESCRIPTION: ! Given a real function periodic in the unit cell, $f({\bf r})$, this routine ! calculates its complex Fourier expansion coefficients: ! $$ f({\bf P})=\frac{1}{\Omega}\int d^3r\,f({\bf r})\tilde{\Theta}({\bf r}) ! e^{-i{\bf P}\cdot{\bf r}} ! +\frac{4\pi}{\Omega}\sum_{\alpha}e^{-i{\bf P}\cdot{\bf R}_{\alpha}} ! \sum_{lm}(-i)^l Y_{lm}(\hat{\bf P}) ! \int_{0}^{R_{\alpha}}dr\,r^2 j_{l}(|{\bf P}|r)f_{lm}^{\alpha}(r), $$ ! where $\tilde{\Theta}$ is the smooth characteristic function of the ! interstitial region, $\Omega$ is the unit cell volume and $R_{\alpha}$ is ! the muffin-tin radius of atom $\alpha$. ! ! !REVISION HISTORY: ! Created July 2010 (Alexey I. Baranov) ! Modified, November 2010 (JKD) ! Optimised, May 2024 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: npv,ivp(3,npv) real(8), intent(in) :: vpc(3,npv),rfmt(npmtmax,natmtot),rfir(ngtot) complex(8), intent(out) :: zfp(npv) ! local variables integer is,ia,ias,ip,ig,ifg integer nrc,nrci,irco,irc integer l,lm,n,i real(8) p,t0,t1 complex(8) zsm,z1,z2 ! automatic arrays real(8) jl(0:lmaxo,nrcmtmax),rfmt1(npcmtmax) complex(8) ylm(lmmaxo) ! allocatable arrays complex(8), allocatable :: zfft(:),zfmt(:,:) allocate(zfft(ngtot),zfmt(npcmtmax,natmtot)) ! zero the coefficients zfp(1:npv)=0.d0 !---------------------------! ! interstitial part ! !---------------------------! ! Fourier transform to G-space zfft(1:ngtot)=rfir(1:ngtot) call zfftifc(3,ngridg,-1,zfft) ! find coefficients for all required input vectors do ip=1,npv if ((ivp(1,ip) >= intgv(1,1)).and.(ivp(1,ip) <= intgv(2,1)).and. & (ivp(2,ip) >= intgv(1,2)).and.(ivp(2,ip) <= intgv(2,2)).and. & (ivp(3,ip) >= intgv(1,3)).and.(ivp(3,ip) <= intgv(2,3))) then ig=ivgig(ivp(1,ip),ivp(2,ip),ivp(3,ip)) zfp(ip)=zfft(igfft(ig)) end if end do !-------------------------! ! muffin-tin part ! !-------------------------! ! convert function from real to complex spherical harmonic expansion on coarse ! radial mesh do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) call rfmtftoc(nrc,nrci,rfmt(:,ias),rfmt1) call rtozfmt(nrc,nrci,rfmt1,zfmt(:,ias)) end do ! remove continuation of interstitial function into muffin-tin do ig=1,ngvec ifg=igfft(ig) ! conjugate spherical harmonics 4π iˡ Yₗₘ(G)* call genylmv(.true.,lmaxo,vgc(:,ig),ylm) ylm(1:lmmaxo)=conjg(ylm(1:lmmaxo)) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) irco=nrci+1 ! generate spherical Bessel functions do irc=1,nrci t1=gc(ig)*rcmt(irc,is) call sbessel(lmaxi,t1,jl(:,irc)) end do do irc=irco,nrc t1=gc(ig)*rcmt(irc,is) call sbessel(lmaxo,t1,jl(:,irc)) end do do ia=1,natoms(is) ias=idxas(ia,is) ! structure factor t1=vgc(1,ig)*atposc(1,ia,is) & +vgc(2,ig)*atposc(2,ia,is) & +vgc(3,ig)*atposc(3,ia,is) z1=zfft(ifg)*cmplx(cos(t1),sin(t1),8) i=1 do irc=1,nrci do l=0,lmaxi n=2*l lm=l**2+1 z2=z1*jl(l,irc) zfmt(i:i+n,ias)=zfmt(i:i+n,ias)-z2*ylm(lm:lm+n) i=i+n+1 end do end do do irc=irco,nrc do l=0,lmaxo n=2*l lm=l**2+1 z2=z1*jl(l,irc) zfmt(i:i+n,ias)=zfmt(i:i+n,ias)-z2*ylm(lm:lm+n) i=i+n+1 end do end do end do end do end do t0=1.d0/omega ! loop over input P-vectors do ip=1,npv ! length of P-vector p=sqrt(vpc(1,ip)**2+vpc(2,ip)**2+vpc(3,ip)**2) ! spherical harmonics 4π (-i)ˡ Yₗₘ(P) call genylmv(.true.,lmaxo,vpc(:,ip),ylm) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) irco=nrci+1 ! generate spherical Bessel functions do irc=1,nrci t1=p*rcmt(irc,is) call sbessel(lmaxi,t1,jl(:,irc)) end do do irc=irco,nrc t1=p*rcmt(irc,is) call sbessel(lmaxo,t1,jl(:,irc)) end do do ia=1,natoms(is) ias=idxas(ia,is) zsm=0.d0 i=1 do irc=1,nrci z1=jl(0,irc)*zfmt(i,ias)*ylm(1) i=i+1 do l=1,lmaxi n=2*l lm=l**2+1 z1=z1+jl(l,irc)*sum(zfmt(i:i+n,ias)*ylm(lm:lm+n)) i=i+n+1 end do zsm=zsm+wr2cmt(irc,is)*z1 end do do irc=irco,nrc z1=jl(0,irc)*zfmt(i,ias)*ylm(1) i=i+1 do l=1,lmaxo n=2*l lm=l**2+1 z1=z1+jl(l,irc)*sum(zfmt(i:i+n,ias)*ylm(lm:lm+n)) i=i+n+1 end do zsm=zsm+wr2cmt(irc,is)*z1 end do ! conjugate structure factor t1=vpc(1,ip)*atposc(1,ia,is) & +vpc(2,ip)*atposc(2,ia,is) & +vpc(3,ip)*atposc(3,ia,is) z1=t0*cmplx(cos(t1),-sin(t1),8) zfp(ip)=zfp(ip)+z1*zsm end do end do end do deallocate(zfft,zfmt) end subroutine ! EOC elk-10.4.9/src/PaxHeaders/sbessel.f900000644000000000000000000000013214762655564014231 xustar0030 mtime=1741380468.550008888 30 atime=1741380466.615998778 30 ctime=1741380468.550008888 elk-10.4.9/src/sbessel.f900000644002504400250440000000514314762655564016756 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sbessel ! !INTERFACE: subroutine sbessel(lmax,x,jl) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum order of Bessel function (in,integer) ! x : real argument (in,real) ! jl : array of returned values (out,real(0:lmax)) ! !DESCRIPTION: ! Computes the spherical Bessel functions of the first kind, $j_l(x)$, for ! real argument $x$ and $l=0\ldots l_{\rm max}$. The recurrence relation ! $$ j_{l+1}(x)=\frac{2l+1}{x}j_l(x)-j_{l-1}(x) $$ ! is used downwards for $x 50)) then write(*,*) write(*,'("Error(sbessel): lmax out of range : ",I8)') lmax write(*,*) stop end if if ((x < 0.d0).or.(x > 1.d5)) then write(*,*) write(*,'("Error(sbessel): x out of range : ",G18.10)') x write(*,*) stop end if ! treat x << 1 if (x < 1.d-8) then jl(0)=1.d0 t1=1.d0 do l=1,lmax t1=t1*x/dble(2*l+1) jl(l)=t1 end do return end if if (lmax == 0) then jl(0)=sin(x)/x return end if xi=1.d0/x if (x < lmax) then ! for x < lmax recurse down j1=1.d0 j0=0.d0 ! starting value for l above lmax lst=lmax+lmax/8+14 do l=lst,lmax+1,-1 t1=(2*l+1)*j1*xi-j0 j0=j1 j1=t1 ! check for overflow if (abs(j1) > rsc) then ! rescale t1=t1*rsci j0=j0*rsci j1=j1*rsci end if end do do l=lmax,0,-1 t1=(2*l+1)*j1*xi-j0 j0=j1 j1=t1 ! check for overflow if (abs(j1) > rsc) then ! rescale t1=t1*rsci j0=j0*rsci j1=j1*rsci jl(l+1:lmax)=jl(l+1:lmax)*rsci end if jl(l)=j0 end do ! rescaling constant t1=sin(x)/(x*j0) jl(0:lmax)=t1*jl(0:lmax) else ! for x >= lmax recurse up jl(0)=sin(x)*xi jl(1)=(jl(0)-cos(x))*xi if (lmax == 1) return j0=jl(0) j1=jl(1) do l=2,lmax t1=(2*l-1)*j1*xi-j0 j0=j1 j1=t1 jl(l)=j1 end do end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/gengclgq.f900000644000000000000000000000013214762655564014360 xustar0030 mtime=1741380468.551008894 30 atime=1741380466.618998793 30 ctime=1741380468.551008894 elk-10.4.9/src/gengclgq.f900000644002504400250440000000166514762655564017112 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine gengclgq(treg,iq,ngq,gqc,gclgq) use modmain implicit none ! arguments logical, intent(in) :: treg integer, intent(in) :: iq,ngq real(8), intent(in) :: gqc(ngq) real(8), intent(out) :: gclgq(ngq) ! local variables integer ig real(8) t1,t2 if (treg) then ! regularise 1/(G+q)² for G+q in the first Brillouin zone t1=sqrt(vqc(1,iq)**2+vqc(2,iq)**2+vqc(3,iq)**2) do ig=1,ngq t2=gqc(ig) if (abs(t1-t2) < epslat) then gclgq(ig)=gclq(iq) else if (t2 > epslat) then gclgq(ig)=fourpi/t2**2 else gclgq(ig)=0.d0 end if end do else ! no regularisation do ig=1,ngq t1=gqc(ig) if (t1 > epslat) then gclgq(ig)=fourpi/t1**2 else gclgq(ig)=0.d0 end if end do end if end subroutine elk-10.4.9/src/PaxHeaders/genstress.f900000644000000000000000000000013214762655564014606 xustar0030 mtime=1741380468.553008904 30 atime=1741380466.620998804 30 ctime=1741380468.553008904 elk-10.4.9/src/genstress.f900000644002504400250440000000243614762655564017335 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genstress use modmain use modmpi implicit none ! local variables real(8) et0 ! store original parameters avec0(:,:)=avec(:,:) tforce0=tforce tforce=.false. ! restore original symmetries call symmetry ! generate the strain tensors call genstrain ! zero the stress tensor components stress(:)=0.d0 ! run the ground-state calculation call gndstate ! check for stop signal if (tstop) goto 10 ! subsequent calculations will read in the potential from STATE.OUT trdstate=.true. ! store the total energy et0=engytot ! loop over strain tensors do istrain=1,nstrain if (mp_mpi) then write(*,'("Info(genstress): strain tensor ",I1," of ",I1)') istrain,nstrain end if ! restore the lattice vectors avec(:,:)=avec0(:,:) ! run the ground-state calculation call gndstate ! check for stop signal if (tstop) goto 10 ! compute the stress tensor component stress(istrain)=(engytot-et0)/deltast end do 10 continue ! compute the maximum stress magnitude over all lattice vectors stressmax=maxval(abs(stress(1:nstrain))) ! restore original parameters istrain=0 avec(:,:)=avec0(:,:) tforce=tforce0 end subroutine elk-10.4.9/src/PaxHeaders/force.f900000644000000000000000000000013214762655564013667 xustar0030 mtime=1741380468.554008909 30 atime=1741380466.622998814 30 ctime=1741380468.554008909 elk-10.4.9/src/force.f900000644002504400250440000002030314762655564016407 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: force ! !INTERFACE: subroutine force ! !USES: use modmain use modtddft use modtest use modmpi use modomp ! !DESCRIPTION: ! Computes the various contributions to the atomic forces. In principle, the ! force acting on a nucleus is simply the gradient at that site of the ! classical electrostatic potential from the other nuclei and the electronic ! density. This is a result of the Hellmann-Feynman theorem. However because ! the basis set is dependent on the nuclear coordinates and is not complete, ! the Hellman-Feynman force is inaccurate and corrections to it are required. ! The first is the core correction which arises because the core wavefunctions ! were determined by neglecting the non-spherical parts of the Kohn-Sham ! potential $v_s$. Explicitly this is given by ! $$ {\bf F}_{\rm core}^{\alpha}=\int_{\rm MT_{\alpha}} v_s({\bf r}) ! \nabla\rho_{\rm core}^{\alpha}({\bf r})\,d{\bf r} $$ ! for atom $\alpha$. The second, which is the incomplete basis set (IBS) ! correction, is due to the position dependence of the APW functions, and is ! derived by considering the change in total energy if the eigenvector ! coefficients were fixed and the APW functions themselves were changed. This ! would result in changes to the first-variational Hamiltonian and overlap ! matrices given by ! \begin{align*} ! \delta H_{\bf G,G'}^{\alpha}&=i({\bf G-G'}) ! \left(H^{\alpha}_{\bf G+k,G'+k}-\frac{1}{2}({\bf G+k})\cdot({\bf G'+k}) ! \tilde{\Theta}_{\alpha}({\bf G-G'})e^{-i({\bf G-G'})\cdot{\bf r}_{\alpha}} ! \right)\\ ! \delta O_{\bf G,G'}^{\alpha}&=i({\bf G-G'})\left(O^{\alpha}_{\bf G+k,G'+k} ! -\tilde{\Theta}_{\alpha}({\bf G-G'})e^{-i({\bf G-G'})\cdot{\bf r}_{\alpha}} ! \right) ! \end{align*} ! where both ${\bf G}$ and ${\bf G'}$ run over the APW indices; ! $\tilde{\Theta}_{\alpha}$ is the form factor of the smooth step function for ! muffin-tin $\alpha$; and $H^{\alpha}$ and $O^{\alpha}$ are the muffin-tin ! Hamiltonian and overlap matrices, respectively. The APW-local-orbital part ! is given by ! \begin{align*} ! \delta H_{\bf G,G'}^{\alpha}&=i({\bf G+k})H^{\alpha}_{\bf G+k,G'+k}\\ ! \delta O_{\bf G,G'}^{\alpha}&=i({\bf G+k})O^{\alpha}_{\bf G+k,G'+k} ! \end{align*} ! where ${\bf G}$ runs over the APW indices and ${\bf G'}$ runs over the ! local-orbital indices. There is no contribution from the ! local-orbital-local-orbital part of the matrices. We can now write the IBS ! correction in terms of the basis of first-variational states as ! \begin{align*} ! {\bf F}_{ij}^{\alpha{\bf k}}=\sum_{\bf G,G'} ! b^{i{\bf k}*}_{\bf G}b^{j{\bf k}}_{\bf G'}\left( ! \delta H_{\bf G,G'}^{\alpha}-\epsilon_j\delta O_{\bf G,G'}^{\alpha}\right), ! \end{align*} ! where $b^{i{\bf k}}$ is the first-variational eigenvector. ! Finally, the ${\bf F}_{ij}^{\alpha{\bf k}}$ matrix elements can be ! multiplied by the second-variational coefficients, and contracted over all ! indices to obtain the IBS force: ! \begin{align*} ! {\bf F}_{\rm IBS}^{\alpha}=\sum_{\bf k}w_{\bf k}\sum_{l\sigma}n_{l{\bf k}} ! \sum_{ij}c_{\sigma i}^{l{\bf k}*}c_{\sigma j}^{l{\bf k}} ! {\bf F}_{ij}^{\alpha{\bf k}} ! +\int_{\rm MT_{\alpha}}v_s({\bf r})\nabla\left[\rho({\bf r}) ! -\rho^{\alpha}_{\rm core}({\bf r})\right]\,d{\bf r}, ! \end{align*} ! where $c^{l{\bf k}}$ are the second-variational coefficients, $w_{\bf k}$ ! are the $k$-point weights, $n_{l{\bf k}}$ are the occupation numbers. ! ! !REVISION HISTORY: ! Created January 2004 (JKD) ! Fixed problem with second-variational forces, May 2008 (JKD) !EOP !BOC implicit none ! local variables integer ik,idm,is,ias integer nr,nri,i,j,nthd real(8) fav(3),ca,t1,t2 real(8) ts0,ts1 ! automatic arrays real(8) forceibs(3,natmtot),grfmt(npmtmax,3) ! allocatable arrays real(8), allocatable :: rfmt(:,:) ! external functions real(8), external :: rfmtinp,rfmtint call timesec(ts0) ! coupling constant of the external A-field (-1/c) ca=-1.d0/solsc !---------------------------------! ! Hellmann-Feynman forces ! !---------------------------------! do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),vclmt(:,ias),npmtmax,grfmt) ! force from Coulomb potential forcehf(1:3,ias)=-spzn(is)*grfmt(1,1:3)*y00 ! force on nuclei from time-dependent E-field if (tafieldt) then do i=1,3 t1=(chgsmt(ias,i)+spzn(is))*efieldt(i) forcehf(i,ias)=forcehf(i,ias)+t1 end do end if end do ! symmetrise Hellmann-Feynman forces call symveca(forcehf) !----------------------------------! ! IBS correction to forces ! !----------------------------------! ! set the IBS forces to zero forceibs(:,:)=0.d0 ! compute k-point dependent contribution to the IBS forces call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP REDUCTION(+:forceibs) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call forcek(ik,forceibs) end do !$OMP END PARALLEL DO call freethd(nthd) ! add IBS forces from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,forceibs,3*natmtot,mpi_double_precision, & mpi_sum,mpicom,ierror) end if if (tafieldt) then t2=afieldt(1,itimes)**2+afieldt(2,itimes)**2+afieldt(3,itimes)**2 t2=t2*ca**2 end if ! integral of Kohn-Sham potential with gradient of density do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rhomt(:,ias),npmtmax,grfmt) do i=1,3 t1=rfmtinp(nr,nri,wr2mt(:,is),vsmt(:,ias),grfmt(:,i)) ! remove contribution from gauge correction to the current density if (tafieldt) then t1=t1-t2*rfmtint(nr,nri,wr2mt(:,is),grfmt(:,i)) end if forceibs(i,ias)=forceibs(i,ias)+t1 end do end do ! integral of Kohn-Sham magnetic field with magnetisation gradient if (spinpol) then allocate(rfmt(npmtmax,natmtot)) do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call rfsht(nrcmt(is),nrcmti(is),bsmt(:,ias,idm),rfmt(:,ias)) end do call rfmtctof(rfmt) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),magmt(:,ias,idm), & npmtmax,grfmt) do i=1,3 t1=rfmtinp(nr,nri,wr2mt(:,is),rfmt(:,ias),grfmt(:,i)) forceibs(i,ias)=forceibs(i,ias)+t1 end do end do end do deallocate(rfmt) end if ! time-dependent vector potential times integral of the gradient of the current ! density over the muffin-tin if (tafieldt.and.tjr) then do j=1,3 t1=ca*afieldt(j,itimes) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),jrmt(:,ias,j),npmtmax, & grfmt) do i=1,3 t2=rfmtint(nr,nri,wr2mt(:,is),grfmt(:,i)) forceibs(i,ias)=forceibs(i,ias)+t1*t2 end do end do end do end if ! symmetrise IBS forces call symveca(forceibs) ! total force on each atom do ias=1,natmtot forcetot(1:3,ias)=forcehf(1:3,ias)+forceibs(1:3,ias) end do ! symmetrise total forces call symveca(forcetot) ! remove the average force, if required, to prevent translation of atomic basis if (tfav0) then fav(1:3)=0.d0 do ias=1,natmtot fav(1:3)=fav(1:3)+forcetot(1:3,ias) end do fav(1:3)=fav(1:3)/dble(natmtot) do ias=1,natmtot forcetot(1:3,ias)=forcetot(1:3,ias)-fav(1:3) end do end if ! zero force on atoms with negative mass do ias=1,natmtot is=idxis(ias) if (spmass(is) <= 0.d0) forcetot(1:3,ias)=0.d0 end do ! compute maximum force magnitude over all atoms forcemax=0.d0 do ias=1,natmtot t1=norm2(forcetot(:,ias)) if (t1 > forcemax) forcemax=t1 end do ! restrict maximum force magnitude if required if (maxforce >= 0.d0) then if (forcemax > maxforce) then t1=maxforce/forcemax forcetot(1:3,1:natmtot)=t1*forcetot(1:3,1:natmtot) end if end if call timesec(ts1) timefor=timefor+ts1-ts0 ! write total forces to test file call writetest(750,'total forces',nv=3*natmtot,tol=1.d-3,rva=forcetot) end subroutine !EOC elk-10.4.9/src/PaxHeaders/genvbmatk.f900000644000000000000000000000013114762655564014546 xustar0030 mtime=1741380468.555008914 29 atime=1741380466.62599883 30 ctime=1741380468.555008914 elk-10.4.9/src/genvbmatk.f900000644002504400250440000001375714762655564017306 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genvbmatk(vmt,vir,bmt,bir,ngp,igpig,wfmt,ld,wfgp,vbmat) use modmain use moddftu use modomp implicit none ! arguments ! the potential and field are multiplied by the radial integration weights in ! the muffin-tin and by the characteristic function in the interstitial region real(8), intent(in) :: vmt(npcmtmax,natmtot),vir(ngtc) real(8), intent(in) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(4), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nstsv) integer, intent(in) :: ld complex(4), intent(in) :: wfgp(ld,nspinor,nstsv) complex(8), intent(out) :: vbmat(nstsv,nstsv) ! local variables integer ist,jst,ispn,jspn integer is,ias,nrc,nrci,nrco integer npc,npc2,ipco integer n,igp,nthd ! automatic arrays complex(4) wfmt1(npcmtmax,2),wfmt2(npcmtmax,2) complex(4) wfir1(ngtc,nspinor),wfir2(ngtc,nspinor),c(ngkmax) ! external functions real(4), external :: sdot complex(4), external :: cdotc ! zero the upper triangular matrix elements do jst=1,nstsv vbmat(1:jst,jst)=0.d0 end do call holdthd(nstsv,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfmt1,wfmt2,wfir1,wfir2,c) & !$OMP PRIVATE(ist,jst,ias,is,nrc) & !$OMP PRIVATE(nrci,nrco,npc,npc2) & !$OMP PRIVATE(ipco,ispn,jspn,igp,n) & !$OMP NUM_THREADS(nthd) !-------------------------! ! muffin-tin part ! !-------------------------! !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci npc=npcmt(is) npc2=npc*2 ipco=npcmti(is)+1 ! apply local potential and magnetic field to spinor wavefunction if (ncmag) then ! non-collinear case call vbmk1(npc,vmt(:,ias),bmt(:,ias,1),bmt(:,ias,2),bmt(:,ias,3), & wfmt(:,ias,1,jst),wfmt(:,ias,2,jst),wfmt1,wfmt1(:,2)) else ! collinear case call vbmk2(npc,vmt(:,ias),bmt(:,ias,1),wfmt(:,ias,1,jst), & wfmt(:,ias,2,jst),wfmt1,wfmt1(:,2)) end if ! apply muffin-tin DFT+U potential matrix if required if (dftu /= 0) then if (any(tvmmt(0:lmaxdm,ias))) then ! multiply wavefunction by radial integration weights wfmt2(1:npc,1)=wfmt(1:npc,ias,1,jst) wfmt2(1:npc,2)=wfmt(1:npc,ias,2,jst) call cfcmtwr(nrc,nrci,wr2cmt(:,is),wfmt2(1,1)) call cfcmtwr(nrc,nrci,wr2cmt(:,is),wfmt2(1,2)) call cgemm('N','N',lmmaxi,nrci,lmmaxi,cone,vmatmti(1,1,1,1,ias), & lmmaxi,wfmt2(1,1),lmmaxi,cone,wfmt1(1,1),lmmaxi) call cgemm('N','N',lmmaxo,nrco,lmmaxo,cone,vmatmto(1,1,1,1,ias), & lmmaxo,wfmt2(ipco,1),lmmaxo,cone,wfmt1(ipco,1),lmmaxo) call cgemm('N','N',lmmaxi,nrci,lmmaxi,cone,vmatmti(1,1,2,2,ias), & lmmaxi,wfmt2(1,2),lmmaxi,cone,wfmt1(1,2),lmmaxi) call cgemm('N','N',lmmaxo,nrco,lmmaxo,cone,vmatmto(1,1,2,2,ias), & lmmaxo,wfmt2(ipco,2),lmmaxo,cone,wfmt1(ipco,2),lmmaxo) if (ncmag) then call cgemm('N','N',lmmaxi,nrci,lmmaxi,cone,vmatmti(1,1,1,2,ias), & lmmaxi,wfmt2(1,2),lmmaxi,cone,wfmt1(1,1),lmmaxi) call cgemm('N','N',lmmaxo,nrco,lmmaxo,cone,vmatmto(1,1,1,2,ias), & lmmaxo,wfmt2(ipco,2),lmmaxo,cone,wfmt1(ipco,1),lmmaxo) call cgemm('N','N',lmmaxi,nrci,lmmaxi,cone,vmatmti(1,1,2,1,ias), & lmmaxi,wfmt2(1,1),lmmaxi,cone,wfmt1(1,2),lmmaxi) call cgemm('N','N',lmmaxo,nrco,lmmaxo,cone,vmatmto(1,1,2,1,ias), & lmmaxo,wfmt2(ipco,1),lmmaxo,cone,wfmt1(ipco,2),lmmaxo) end if end if end if ! compute the inner products do ist=1,jst-1 vbmat(ist,jst)=vbmat(ist,jst) & +cdotc(npc,wfmt(1,ias,1,ist),1,wfmt1(1,1),1) & +cdotc(npc,wfmt(1,ias,2,ist),1,wfmt1(1,2),1) end do vbmat(jst,jst)=vbmat(jst,jst) & +sdot(npc2,wfmt(1,ias,1,jst),1,wfmt1(1,1),1) & +sdot(npc2,wfmt(1,ias,2,jst),1,wfmt1(1,2),1) end do end do !$OMP END DO !---------------------------! ! interstitial part ! !---------------------------! !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv ! Fourier transform wavefunction to real-space do ispn=1,nspinor jspn=jspnfv(ispn) wfir1(1:ngtc,ispn)=0.e0 do igp=1,ngp(jspn) wfir1(igfc(igpig(igp,jspn)),ispn)=wfgp(igp,ispn,jst) end do call cfftifc(3,ngdgc,1,wfir1(:,ispn)) end do ! apply local potential and magnetic field to spinor wavefunction if (ncmag) then ! non-collinear case call vbmk1(ngtc,vir,bir,bir(:,2),bir(:,3),wfir1,wfir1(:,2),wfir2,wfir2(:,2)) else ! collinear case call vbmk2(ngtc,vir,bir,wfir1,wfir1(:,2),wfir2,wfir2(:,2)) end if do ispn=1,nspinor jspn=jspnfv(ispn) n=ngp(jspn) ! Fourier transform to G+p-space call cfftifc(3,ngdgc,-1,wfir2(:,ispn)) do igp=1,n c(igp)=wfir2(igfc(igpig(igp,jspn)),ispn) end do do ist=1,jst-1 vbmat(ist,jst)=vbmat(ist,jst)+cdotc(n,wfgp(1,ispn,ist),1,c,1) end do vbmat(jst,jst)=vbmat(jst,jst)+sdot(2*n,wfgp(1,ispn,jst),1,c,1) end do end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) ! lower triangular part do ist=1,nstsv do jst=1,ist-1 vbmat(ist,jst)=conjg(vbmat(jst,ist)) end do end do return contains pure subroutine vbmk1(n,v,b1,b2,b3,wf11,wf12,wf21,wf22) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: v(n),b1(n),b2(n),b3(n) complex(4), intent(in) :: wf11(n),wf12(n) complex(4), intent(out) :: wf21(n),wf22(n) ! local variables integer i !$OMP SIMD SIMDLEN(8) do i=1,n wf21(i)=(v(i)+b3(i))*wf11(i)+cmplx(b1(i),-b2(i),8)*wf12(i) wf22(i)=(v(i)-b3(i))*wf12(i)+cmplx(b1(i),b2(i),8)*wf11(i) end do end subroutine pure subroutine vbmk2(n,v,b,wf11,wf12,wf21,wf22) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: v(n),b(n) complex(4), intent(in) :: wf11(n),wf12(n) complex(4), intent(out) :: wf21(n),wf22(n) ! local variables integer i !$OMP SIMD SIMDLEN(8) do i=1,n wf21(i)=(v(i)+b(i))*wf11(i) wf22(i)=(v(i)-b(i))*wf12(i) end do end subroutine end subroutine elk-10.4.9/src/PaxHeaders/forcek.f900000644000000000000000000000013214762655564014042 xustar0030 mtime=1741380468.557008925 30 atime=1741380466.628998846 30 ctime=1741380468.557008925 elk-10.4.9/src/forcek.f900000644002504400250440000001200014762655564016555 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: forcek ! !INTERFACE: subroutine forcek(ik,forceibs) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! ik : reduced k-point number (in,integer) ! forceibs : IBS force (inout,real(3,natmtot)) ! !DESCRIPTION: ! Computes the {\bf k}-dependent contribution to the incomplete basis set ! (IBS) force. See the calling routine {\tt force} for a full description. ! ! !REVISION HISTORY: ! Created June 2006 (JKD) ! Updated for spin-spiral case, May 2007 (Francesco Cricchio and JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ik real(8), intent(inout) :: forceibs(3,natmtot) ! local variables integer ispn0,ispn1,ispn,jspn integer n,nm,is,ias,ist,jst integer j1,j2,j3,ig,i,j,l,nthd real(8) v1,v2,v3,sm,t1 complex(8) z1,z2 ! automatic arrays real(8) evalfv(nstfv,nspnfv) complex(8) vh(nmatmax),vo(nmatmax) complex(8) ffv(nstfv,nstfv),y(nstfv) ! allocatable arrays integer, allocatable :: ijg(:,:) real(8), allocatable :: dp(:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:,:),evecsv(:,:) complex(8), allocatable :: h(:,:),o(:,:),dlh(:,:),dlo(:,:) ! external functions complex(8), external :: zdotc ! allocate local arrays allocate(ijg(nmatmax,nmatmax),dp(nmatmax,nmatmax)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv(nmatmax,nstfv,nspnfv)) allocate(h(nmatmax,nmatmax),o(nmatmax,nmatmax)) allocate(dlh(nmatmax,nmatmax),dlo(nmatmax,nmatmax)) ! get the eigenvalues/vectors from file call getevalfv(filext,ik,vkl(:,ik),evalfv) call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) if (tevecsv) then allocate(evecsv(nstsv,nstsv)) call getevecsv(filext,ik,vkl(:,ik),evecsv) end if ! loop over first-variational spin components do jspn=1,nspnfv if (spinsprl) then ispn0=jspn; ispn1=jspn else ispn0=1; ispn1=nspinor end if n=ngk(jspn,ik) nm=nmat(jspn,ik) do j=1,n ig=igkig(j,jspn,ik) j1=ivg(1,ig); j2=ivg(2,ig); j3=ivg(3,ig) v1=0.5d0*vgkc(1,j,jspn,ik) v2=0.5d0*vgkc(2,j,jspn,ik) v3=0.5d0*vgkc(3,j,jspn,ik) do i=1,j ig=igkig(i,jspn,ik) ijg(i,j)=ivgig(ivg(1,ig)-j1,ivg(2,ig)-j2,ivg(3,ig)-j3) dp(i,j)=vgkc(1,i,jspn,ik)*v1+vgkc(2,i,jspn,ik)*v2+vgkc(3,i,jspn,ik)*v3 end do end do ! find the matching coefficients call match(n,vgkc(:,:,jspn,ik),gkc(:,jspn,ik),sfacgk(:,:,jspn,ik),apwalm) ! zero the local-orbital-local-orbital contribution do j=n+1,nm dlh(n+1:j,j)=0.d0 dlo(n+1:j,j)=0.d0 end do ! loop over species and atoms do ias=1,natmtot is=idxis(ias) ! Hamiltonian and overlap matrices do j=1,nm h(1:j,j)=0.d0 end do call hmlaa(.false.,is,ias,n,apwalm(:,:,:,ias),nmatmax,h) call hmlalo(is,ias,n,apwalm(:,:,:,ias),nmatmax,h) do j=1,nm o(1:j,j)=0.d0 end do call olpaa(.false.,is,n,apwalm(:,:,:,ias),nmatmax,o) call olpalo(is,ias,n,apwalm(:,:,:,ias),nmatmax,o) ! loop over Cartesian directions do l=1,3 ! APW-APW contribution do j=1,n do i=1,j ig=ijg(i,j) t1=vgc(l,ig) z1=-ffacg(ig,is)*conjg(sfacg(ig,ias)) z2=t1*(dp(i,j)*z1+h(i,j)) dlh(i,j)=zi*z2 z2=t1*(z1+o(i,j)) dlo(i,j)=zi*z2 end do end do ! APW-local-orbital contribution do j=n+1,nm do i=1,n t1=vgkc(l,i,jspn,ik) z1=t1*h(i,j) dlh(i,j)=zi*z1 z1=t1*o(i,j) dlo(i,j)=zi*z1 end do end do ! compute the force matrix elements in the first-variational basis call holdthd(nstfv,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(vh,vo,t1,ist,z1,z2) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do jst=1,nstfv call zhemv('U',nm,zone,dlh,nmatmax,evecfv(:,jst,jspn),1,zzero,vh,1) call zhemv('U',nm,zone,dlo,nmatmax,evecfv(:,jst,jspn),1,zzero,vo,1) t1=evalfv(jst,jspn) do ist=1,nstfv z1=zdotc(nm,evecfv(:,ist,jspn),1,vh,1) z2=zdotc(nm,evecfv(:,ist,jspn),1,vo,1) ffv(ist,jst)=z1-t1*z2 end do end do !$OMP END PARALLEL DO call freethd(nthd) ! compute the force using the second-variational coefficients if required sm=0.d0 if (tevecsv) then ! spin-polarised case do j=1,nstsv do ispn=ispn0,ispn1 i=(ispn-1)*nstfv+1 call zgemv('N',nstfv,nstfv,zone,ffv,nstfv,evecsv(i,j),1,zzero,y,1) z1=zdotc(nstfv,evecsv(i,j),1,y,1) sm=sm+occsv(j,ik)*dble(z1) end do end do else ! spin-unpolarised case do j=1,nstsv sm=sm+occsv(j,ik)*dble(ffv(j,j)) end do end if forceibs(l,ias)=forceibs(l,ias)+wkpt(ik)*sm ! end loop over Cartesian components end do ! end loop over atoms and species end do ! end loop over first-variational spins end do deallocate(ijg,dp,apwalm,evecfv) deallocate(h,o,dlh,dlo) if (tevecsv) deallocate(evecsv) end subroutine !EOC elk-10.4.9/src/PaxHeaders/writeepsinv.f900000644000000000000000000000013014762655564015146 xustar0029 mtime=1741380468.55800893 30 atime=1741380466.630998856 29 ctime=1741380468.55800893 elk-10.4.9/src/writeepsinv.f900000644002504400250440000000157014762655564017675 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeepsinv use modmain use modmpi implicit none ! initialise global variables call init0 call init1 call init2 call init3 ! read density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! read the eigenvalues and occupation numbers from file call readevalsv call readoccsv ! generate the inverse dielectric function and write to file call epsinv if (mp_mpi) then write(*,*) write(*,'("Info(writeepsinv):")') write(*,'(" inverse RPA dielectric function, ϵ⁻¹(G,G'',q,w), written to & &EPSINV.OUT")') end if end subroutine elk-10.4.9/src/PaxHeaders/polark.f900000644000000000000000000000013214762655564014061 xustar0030 mtime=1741380468.560008941 30 atime=1741380466.633998872 30 ctime=1741380468.560008941 elk-10.4.9/src/polark.f900000644002504400250440000000340014762655564016600 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine polark(ik,l,expqmt,pl) use modmain implicit none ! arguments integer, intent(in) :: ik,l complex(8), intent(in) :: expqmt(npcmtmax,natmtot) real(8), intent(inout) :: pl ! local variables integer jk,nst,ist real(8) vkql(3) complex(8) z1 ! automatic arrays integer idx(nstsv),ngp(nspnfv),igpig(ngkmax,nspnfv) ! allocatable arrays complex(8), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(8), allocatable :: wfmtq(:,:,:,:),wfgkq(:,:,:) complex(8), allocatable :: oq(:,:) ! external functions complex(8), external :: zmdet ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! find the adjacent k-point in lattice coordinates vkql(1:3)=vkl(1:3,ik) vkql(l)=vkql(l)+1.d0/dble(ngridk(l)) ! count and index the occupied states nst=0 do ist=1,nstsv if (evalsv(ist,jk) > efermi) cycle nst=nst+1 idx(nst)=ist end do ! generate the wavefunctions for occupied states at k allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfir(ngtc,nspinor,nst)) call genwfsvp(.false.,.false.,nst,idx,ngdgc,igfc,vkl(:,ik),ngp,igpig,wfmt,ngtc,& wfir) ! generate the wavefunctions for occupied states at k+q allocate(wfmtq(npcmtmax,natmtot,nspinor,nst),wfgkq(ngkmax,nspinor,nst)) call genwfsvp(.false.,.true.,nst,idx,ngdgc,igfc,vkql,ngp,igpig,wfmtq,ngkmax, & wfgkq) ! determine the overlap matrix for all occupied states allocate(oq(nst,nst)) call genolpq(nst,expqmt,ngp,igpig,wfmt,wfir,wfmtq,wfgkq,oq) ! compute the determinant of the matrix z1=zmdet(nst,oq) ! determine the phase of the determinant and add to total polarisation pl=pl+atan2(aimag(z1),dble(z1)) deallocate(wfmt,wfir,wfmtq,wfgkq,oq) end subroutine elk-10.4.9/src/PaxHeaders/zfmtinp.f900000644000000000000000000000013214762655564014260 xustar0030 mtime=1741380468.561008946 30 atime=1741380466.635998882 30 ctime=1741380468.561008946 elk-10.4.9/src/zfmtinp.f900000644002504400250440000000370014762655564017002 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zfmtinp ! !INTERFACE: pure complex(8) function zfmtinp(nr,nri,wr,zfmt1,zfmt2) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on the inner part of the muffin-tin (in,integer) ! wr : weights for integration on radial mesh (in,real(nr)) ! zfmt1 : first complex muffin-tin function in spherical harmonics ! (in,complex(*)) ! zfmt2 : second complex muffin-tin function (in,complex(*)) ! !DESCRIPTION: ! Calculates the inner product of two complex fuctions in the muffin-tin. In ! other words, given two complex functions of the form ! $$ f({\bf r})=\sum_{l=0}^{l_{\rm max}}\sum_{m=-l}^{l}f_{lm}(r)Y_{lm} ! (\hat{\bf r}), $$ ! the function returns ! $$ I=\sum_{l=0}^{l_{\rm max}}\sum_{m=-l}^{l}\int f_{lm}^{1*}(r) ! f_{lm}^2(r)r^2\,dr\;. $$ ! ! !REVISION HISTORY: ! Created November 2003 (Sharma) ! Modified, September 2013 (JKD) ! Modified for packed functions, June 2016 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(8), intent(in) :: zfmt1(*),zfmt2(*) ! local variables integer n,ir,i ! compute the dot-products for each radial point and integrate over r zfmtinp=0.d0 if (lmaxi == 1) then do ir=1,nri i=4*(ir-1)+1 zfmtinp=zfmtinp+wr(ir) & *(conjg(zfmt1(i))*zfmt2(i) & +conjg(zfmt1(i+1))*zfmt2(i+1) & +conjg(zfmt1(i+2))*zfmt2(i+2) & +conjg(zfmt1(i+3))*zfmt2(i+3)) end do i=4*nri+1 else i=1 n=lmmaxi-1 do ir=1,nri zfmtinp=zfmtinp+wr(ir)*dot_product(zfmt1(i:i+n),zfmt2(i:i+n)) i=i+lmmaxi end do end if n=lmmaxo-1 do ir=nri+1,nr zfmtinp=zfmtinp+wr(ir)*dot_product(zfmt1(i:i+n),zfmt2(i:i+n)) i=i+lmmaxo end do end function !EOC elk-10.4.9/src/PaxHeaders/mixbroyden.f900000644000000000000000000000013214762655564014751 xustar0030 mtime=1741380468.562008951 30 atime=1741380466.638998898 30 ctime=1741380468.562008951 elk-10.4.9/src/mixbroyden.f900000644002504400250440000000442514762655564017500 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine mixbroyden(iscl,n,msd,alpha,w0,nu,mu,f,df,u,a,d) use modomp implicit none ! arguments integer, intent(in) :: iscl,n,msd real(8), intent(in) :: alpha,w0 real(8), intent(inout) :: nu(n),mu(n,2) real(8), intent(inout) :: f(n,2),df(n,msd) real(8), intent(inout) :: u(n,msd),a(msd,msd) real(8), intent(out) :: d ! local variables integer jc,kp,kc,k,m integer info,nthd real(8) t1 ! automatic arrays integer ipiv(msd) real(8) c(msd),beta(msd,msd),gamma(msd),work(msd) ! external functions real(8), external :: ddot if (n < 1) then write(*,*) write(*,'("Error(mixbroyden): n < 1 : ",I8)') n write(*,*) stop end if if (msd < 2) then write(*,*) write(*,'("Error(mixbroyden): msd < 2 : ",I8)') msd write(*,*) stop end if ! initialise mixer if (iscl < 1) then mu(1:n,1)=nu(1:n) mu(1:n,2)=nu(1:n) f(1:n,1)=0.d0 df(1:n,1)=0.d0 u(1:n,1)=0.d0 a(1:msd,1:msd)=0.d0 d=1.d0 return end if ! current subspace dimension m=min(iscl+1,msd) ! current index modulo m jc=mod(iscl,m)+1 ! previous index modulo 2 kp=mod(iscl-1,2)+1 ! current index modulo 2 kc=mod(iscl,2)+1 f(1:n,kc)=nu(1:n)-mu(1:n,kp) d=sum(f(1:n,kc)**2) d=sqrt(d/dble(n)) df(1:n,jc)=f(1:n,kc)-f(1:n,kp) t1=norm2(df(1:n,jc)) if (t1 > 1.d-8) t1=1.d0/t1 df(1:n,jc)=t1*df(1:n,jc) u(1:n,jc)=alpha*df(1:n,jc)+t1*(mu(1:n,kp)-mu(1:n,kc)) call holdthd(2*m,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do k=1,m c(k)=ddot(n,df(1,k),1,f(1,kc),1) end do !$OMP END DO NOWAIT !$OMP DO SCHEDULE(DYNAMIC) do k=1,m a(k,jc)=ddot(n,df(1,k),1,df(1,jc),1) a(jc,k)=a(k,jc) end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) beta(1:msd,1:msd)=a(1:msd,1:msd) do k=1,m beta(k,k)=beta(k,k)+w0**2 end do ! invert beta call dgetrf(m,m,beta,msd,ipiv,info) if (info == 0) call dgetri(m,beta,msd,ipiv,work,m,info) if (info /= 0) then write(*,*) write(*,'("Error(mixbroyden): could not invert matrix")') write(*,*) stop end if do k=1,m gamma(k)=sum(c(1:m)*beta(1:m,k)) end do nu(1:n)=mu(1:n,kp)+alpha*f(1:n,kc) do k=1,m t1=-gamma(k) nu(1:n)=nu(1:n)+t1*u(1:n,k) end do mu(1:n,kc)=nu(1:n) end subroutine elk-10.4.9/src/PaxHeaders/grad2rfmt.f900000644000000000000000000000013214762655564014461 xustar0030 mtime=1741380468.564008962 30 atime=1741380466.640998908 30 ctime=1741380468.564008962 elk-10.4.9/src/grad2rfmt.f900000644002504400250440000000476614762655564017220 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: grad2rfmt ! !INTERFACE: subroutine grad2rfmt(nr,nri,ri,ri2,wcr,rfmt,g2rfmt) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on the inner part of the muffin-tin (in,integer) ! ri : 1/r on the radial mesh (in,real(nr)) ! ri2 : 1/r^2 on the radial mesh (in,real(nr)) ! wcr : weights for spline coefficients on radial mesh (in,real(12,nr)) ! rfmt : real muffin-tin function (in,real(*)) ! g2rfmt : laplacian of the input function (out,real(*)) ! !DESCRIPTION: ! Calculates the Laplacian of a real muffin-tin function. In other words, ! given the real spherical harmonic expansion coefficients $f_{lm}(r)$ of a ! function $f({\bf r})$, the routine returns ! $$ F_{lm}(r)=\frac{1}{r}\frac{\partial^2}{\partial r^2}\big(rf_{lm}(r)\big) ! -\frac{l(l+1)}{r^2}f_{lm}(r) $$ ! which yields ! $$ \nabla^2 f({\bf r})=\sum_{lm} F_{lm}(r)R_{lm}(\hat{\bf r}), $$ ! where $R_{lm}$ is a real spherical harmonic function. ! ! !REVISION HISTORY: ! Created July 2009 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: ri(nr),ri2(nr),wcr(12,nr),rfmt(*) real(8), intent(out) :: g2rfmt(*) ! local variables integer nro,iro,npi integer l,lm,i1,j0,j1 real(8) t1 ! automatic arrays real(8) fr(nr),cf(3,nr) nro=nr-nri iro=nri+1 npi=lmmaxi*nri do l=0,lmaxi t1=-dble(l*(l+1)) do lm=l**2+1,(l+1)**2 ! use a cubic spline to compute radial derivatives i1=lmmaxi*(nri-1)+lm j0=i1+lmmaxi j1=lmmaxo*(nr-iro)+j0 fr(1:nri)=rfmt(lm:i1:lmmaxi) fr(iro:nr)=rfmt(j0:j1:lmmaxo) call splinew(nr,wcr,fr,cf) ! apply Laplacian g2rfmt(lm:i1:lmmaxi)=2.d0*(ri(1:nri)*cf(1,1:nri)+cf(2,1:nri)) & +t1*ri2(1:nri)*rfmt(lm:i1:lmmaxi) g2rfmt(j0:j1:lmmaxo)=2.d0*(ri(iro:nr)*cf(1,iro:nr)+cf(2,iro:nr)) & +t1*ri2(iro:nr)*rfmt(j0:j1:lmmaxo) end do end do do l=lmaxi+1,lmaxo t1=-dble(l*(l+1)) do lm=l**2+1,(l+1)**2 j0=lmmaxi*nri+lm j1=lmmaxo*(nr-iro)+j0 fr(iro:nr)=rfmt(j0:j1:lmmaxo) call splinew(nro,wcr(:,iro),fr(iro),cf(1,iro)) g2rfmt(j0:j1:lmmaxo)=2.d0*(ri(iro:nr)*cf(1,iro:nr)+cf(2,iro:nr)) & +t1*ri2(iro:nr)*rfmt(j0:j1:lmmaxo) end do end do ! improve stability by smoothing the laplacian call rfmtsm(msmgmt,nr,nri,g2rfmt) end subroutine !EOC elk-10.4.9/src/PaxHeaders/effmass.f900000644000000000000000000000013214762655564014215 xustar0030 mtime=1741380468.566008972 30 atime=1741380466.643998924 30 ctime=1741380468.566008972 elk-10.4.9/src/effmass.f900000644002504400250440000001124614762655564016743 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine effmass use modmain use modomp use modtest implicit none ! local variables integer ik0,ik,ist,info integer i,j,k,l,m,n,nthd integer i1,i2,i3,j1,j2,j3 real(8) d(3,3),em(3,3) real(8) v1(3),v2(3) real(8) w(3),work(9) ! allocatable arrays integer, allocatable :: ipiv(:) real(8), allocatable :: a(:,:),b(:,:,:,:),c(:,:,:),evalfv(:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) ! initialise universal variables call init0 call init1 allocate(ipiv(nkpt)) allocate(a(nkpt,nkpt)) n=2*ndspem+1 allocate(b(0:n-1,0:n-1,0:n-1,nstsv)) allocate(c(0:n-1,0:n-1,0:n-1)) ! read density and potentials from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ik0=0 ! begin parallel loop over k-points call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evalfv,evecfv,evecsv) & !$OMP PRIVATE(i1,i2,i3,j1,j2,j3,ist) & !$OMP NUM_THREADS(nthd) allocate(evalfv(nstfv,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv)) allocate(evecsv(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt i1=ivk(1,ik); i2=ivk(2,ik); i3=ivk(3,ik) if ((i1 == 0).and.(i2 == 0).and.(i3 == 0)) ik0=ik ! solve the first- and second-variational eigenvalue equations call eveqn(ik,evalfv,evecfv,evecsv) ! copy eigenvalues to new array j1=i1+ndspem; j2=i2+ndspem; j3=i3+ndspem do ist=1,nstsv b(j1,j2,j3,ist)=evalsv(ist,ik) end do end do !$OMP END DO deallocate(evalfv,evecfv,evecsv) !$OMP END PARALLEL call freethd(nthd) ! set up polynomial matrix i=0 do i3=-ndspem,ndspem do i2=-ndspem,ndspem do i1=-ndspem,ndspem i=i+1 v1(1)=dble(i1); v1(2)=dble(i2); v1(3)=dble(i3) v1(:)=v1(:)*deltaem j=0 v2(3)=1.d0 do j3=0,n-1 v2(2)=1.d0 do j2=0,n-1 v2(1)=1.d0 do j1=0,n-1 j=j+1 a(i,j)=v2(1)*v2(2)*v2(3) v2(1)=v2(1)*v1(1) end do v2(2)=v2(2)*v1(2) end do v2(3)=v2(3)*v1(3) end do end do end do end do ! solve for the polynomial coefficients call dgesv(nkpt,nstsv,a,nkpt,ipiv,b,nkpt,info) if (info /= 0) then write(*,*) write(*,'("Error(effmass): could not determine polynomial coefficients")') write(*,'(" DGESV returned INFO = ",I8)') info write(*,*) stop end if open(50,file='EFFMASS.OUT',form='FORMATTED') write(50,*) write(50,'("(effective mass matrices are in Cartesian coordinates)")') write(50,*) write(50,'("k-point (lattice coordinates) :")') write(50,'(3G18.10)') vklem write(50,*) write(50,'("k-point (Cartesian coordinates) :")') call r3mv(bvec,vklem,v1) write(50,'(3G18.10)') v1 ! begin loop over states do ist=1,nstsv ! compute matrix of derivatives with respect to k-vector do k=1,3 do l=1,3 c(:,:,:)=b(:,:,:,ist) do i=1,2 if (i == 1) then m=k else m=l end if if (m == 1) then do j=0,n-2 c(j,:,:)=dble(j+1)*c(j+1,:,:) end do c(n-1,:,:)=0.d0 else if (m == 2) then do j=0,n-2 c(:,j,:)=dble(j+1)*c(:,j+1,:) end do c(:,n-1,:)=0.d0 else if (m == 3) then do j=0,n-2 c(:,:,j)=dble(j+1)*c(:,:,j+1) end do c(:,:,n-1)=0.d0 end if end do ! derivative evaluated at zero d(k,l)=c(0,0,0) end do end do write(50,*) write(50,*) write(50,'("State, eigenvalue : ",I6,G18.10)') ist,evalsv(ist,ik0) write(50,*) write(50,'(" matrix of eigenvalue derivatives with respect to k :")') do i=1,3 write(50,'(3G18.10)') (d(i,j),j=1,3) end do write(50,'(" trace : ",G18.10)') d(1,1)+d(2,2)+d(3,3) ! invert derivative matrix call r3minv(d,em) write(50,*) write(50,'(" effective mass tensor (inverse of derivative matrix) :")') do i=1,3 write(50,'(3G18.10)') (em(i,j),j=1,3) end do write(50,'(" trace : ",G18.10)') em(1,1)+em(2,2)+em(3,3) ! find the eigenvalues call dsyev('N','U',3,em,3,w,work,9,info) write(50,'(" eigenvalues :")') write(50,'(3G18.10)') w ! end loop over states end do close(50) write(*,*) write(*,'("Info(effmass):")') write(*,'(" Effective mass tensor for each state written to EFFMASS.OUT")') write(*,'(" for k-point (lattice) ",3G18.10)') vklem ! write the effective mass eigenvalues of the last state to test file call writetest(25,'effective mass',nv=3,tol=1.d-5,rva=w) deallocate(ipiv,a,b,c) end subroutine elk-10.4.9/src/PaxHeaders/sfacmag.f900000644000000000000000000000013114762655564014171 xustar0030 mtime=1741380468.567008977 29 atime=1741380466.64699894 30 ctime=1741380468.567008977 elk-10.4.9/src/sfacmag.f900000644002504400250440000000550614762655564016722 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 A. I. Baranov and F. Wagner. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: sfacmag ! !INTERFACE: subroutine sfacmag ! !USES: use modmain use modpw use modtest ! !DESCRIPTION: ! Outputs magnetic structure factors, i.e. the Fourier transform coefficients ! of each component $j$ of magnetization ${\bf m}({\bf r})$, ! $$ F_j({\bf H})=\int_{\Omega}d^3r\,m_j({\bf r})e^{i{\bf H}\cdot{\bf r}}, $$ ! to the files {\tt SFACMAG\_j.OUT}. The lattice coordinates $(h,k,l)$ of ! $\bf H$-vectors in this file are transformed by the matrix {\tt vhmat}. See ! also routines {\tt zftrf} and {\tt genhvec}. ! ! !REVISION HISTORY: ! Created July 2010 (Alexey I. Baranov) ! Added multiplicity of the H-vectors, Oct. 2010 (Alexey I. Baranov) !EOP !BOC implicit none ! local variables integer idm,ih,iv(3) real(8) v(3),a,b,r character(256) fname ! allocatable arrays complex(8), allocatable :: zmagh(:) if (.not.spinpol) return ! initialise the structure factor specific variables call sfacinit ! generate the magnetic structure factors allocate(zmagh(nhvec)) do idm=1,ndmag call zftrf(nhvec,ivh,vhc,magmt(:,:,idm),magir(:,idm),zmagh) write(fname,'("SFACMAG_",I1.1,".OUT")') idm open(50,file=trim(fname),form='FORMATTED') write(50,*) write(50,'("h k l indices transformed by vhmat matrix:")') write(50,'(3G18.10)') vhmat(:,1) write(50,'(3G18.10)') vhmat(:,2) write(50,'(3G18.10)') vhmat(:,3) write(50,*) write(50,'(" h k l multipl. |H| Re(F)& & Im(F) |F|")') write(50,*) do ih=1,nhvec ! apply transformation matrix v(:)=vhmat(:,1)*dble(ivh(1,ih)) & +vhmat(:,2)*dble(ivh(2,ih)) & +vhmat(:,3)*dble(ivh(3,ih)) ! in crystallography the forward Fourier transform of real-space density is ! usually done with positive phase and without 1/omega prefactor a=dble(zmagh(ih))*omega b=-aimag(zmagh(ih))*omega r=abs(zmagh(ih))*omega iv(:)=nint(v(:)) if ((abs(v(1)-iv(1)) <= epslat).and. & (abs(v(2)-iv(2)) <= epslat).and. & (abs(v(3)-iv(3)) <= epslat)) then ! integer hkl write(50,'(4I7,4G16.8)') iv(:),mulh(ih),hc(ih),a,b,r else ! non-integer hkl write(50,'(3F7.2,I7,4G16.8)') v(:),mulh(ih),hc(ih),a,b,r end if end do close(50) end do write(*,*) write(*,'("Info(sfacmag): magnetic structure factors written to & &SFACMAG_j.OUT")') write(*,'(" for magnetic components j = ",3I2)') (idm,idm=1,ndmag) if (ndmag == 1) then write(*,'(" (this corresponds to the z-component of the magnetisation)")') end if write(*,*) write(*,'(" Energy window : ",2G18.10)') wsfac(:) ! write the structure factors to test file call writetest(196,'magnetic structure factors',nv=nhvec,tol=1.d-4,zva=zmagh(:)) deallocate(zmagh) end subroutine !EOC elk-10.4.9/src/PaxHeaders/polynm.f900000644000000000000000000000013114762655564014106 xustar0030 mtime=1741380468.568008983 29 atime=1741380466.64899895 30 ctime=1741380468.568008983 elk-10.4.9/src/polynm.f900000644002504400250440000000370714762655564016640 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: polynm ! !INTERFACE: pure real(8) function polynm(m,np,xa,ya,x) ! !INPUT/OUTPUT PARAMETERS: ! m : order of derivative (in,integer) ! np : number of points to fit (in,integer) ! ip : point at which m'th derivative is to be evaluated (in,integer) ! xa : abscissa array (in,real(np)) ! ya : ordinate array (in,real(np)) ! x : evaluation abscissa (in,real) ! !DESCRIPTION: ! Fits a polynomial of order $n_p-1$ to a set of $n_p$ points. If $m\ge 0$ the ! function returns the $m$th derviative of the polynomial at $x$, while for ! $m<0$ the integral of the polynomial from the first point in the array to ! $x$ is returned. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) ! Simplified, January 2025 (JKD) !EOP !BOC implicit none ! argmuments integer, intent(in) :: m,np real(8), intent(in) :: xa(np),ya(np),x ! local variables integer i,j,k real(8) x0,t1 ! automatic arrays real(8) c(np) if ((np < 1).or.(m >= np)) then polynm=0.d0 return end if ! find the polynomial coefficients in divided differences form c(1:np)=ya(1:np) do i=2,np do j=np,i,-1 c(j)=(c(j)-c(j-1))/(xa(j)-xa(j+1-i)) end do end do ! special case m = 0 if (m == 0) then polynm=c(1) t1=1.d0 do i=2,np t1=t1*(x-xa(i-1)) polynm=polynm+c(i)*t1 end do return end if x0=xa(1) ! convert to standard form do j=1,np-1 do i=1,np-j k=np-i c(k)=c(k)+(x0-xa(k-j+1))*c(k+1) end do end do if (m > 0) then ! take the m'th derivative do j=1,m do i=m+1,np c(i)=c(i)*dble(i-j) end do end do polynm=c(np) t1=x-x0 do i=np-1,m+1,-1 polynm=polynm*t1+c(i) end do else ! find the integral polynm=c(np)/dble(np) t1=x-x0 do i=np-1,1,-1 polynm=polynm*t1+c(i)/dble(i) end do polynm=polynm*t1 end if end function !EOC elk-10.4.9/src/PaxHeaders/epsinv.f900000644000000000000000000000013214762655564014075 xustar0030 mtime=1741380468.570008993 30 atime=1741380466.650998961 30 ctime=1741380468.570008993 elk-10.4.9/src/epsinv.f900000644002504400250440000000514614762655564016625 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine epsinv use modmain use modmpi use modomp implicit none ! local variables integer iq,ik,ig,iw integer n,nthd ! automatic arrays integer(omp_lock_kind) lock(nwrf) real(8) vgqc(3,ngrf),gqc(ngrf),gclgq(ngrf) ! allocatable arrays real(8), allocatable :: jlgqr(:,:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:),epsi(:,:,:) ! allocate local arrays allocate(jlgqr(njcmax,nspecies,ngrf)) allocate(ylmgq(lmmaxo,ngrf),sfacgq(ngrf,natmtot)) allocate(epsi(ngrf,ngrf,nwrf)) ! initialise the OpenMP locks do iw=1,nwrf call omp_init_lock(lock(iw)) end do if (mp_mpi) write(*,*) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! loop over q-points do iq=1,nqpt if (mp_mpi) write(*,'("Info(epsinv): ",I6," of ",I6," q-points")') iq,nqpt ! generate the G+q-vectors and related functions call gengqf(ngrf,vqc(:,iq),vgqc,gqc,jlgqr,ylmgq,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngrf,gqc,gclgq) ! use the symmetric form gclgq(1:ngrf)=sqrt(gclgq(1:ngrf)) ! zero the response function (stored in epsi) epsi(1:ngrf,1:ngrf,1:nwrf)=0.d0 call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! compute v¹⸍² χ₀ v¹⸍² call genvchi0(.false.,ik,lock,vql(:,iq),gclgq,jlgqr,ylmgq,sfacgq,ngrf,epsi) end do !$OMP END PARALLEL DO call freethd(nthd) ! add epsi from each process and redistribute if (np_mpi > 1) then n=ngrf*ngrf*nwrf call mpi_allreduce(mpi_in_place,epsi,n,mpi_double_complex,mpi_sum,mpicom, & ierror) end if ! negate and add δ(G,G') epsi(1:ngrf,1:ngrf,1:nwrf)=-epsi(1:ngrf,1:ngrf,1:nwrf) do ig=1,ngrf epsi(ig,ig,1:nwrf)=epsi(ig,ig,1:nwrf)+1.d0 end do !-------------------------------------! ! invert epsilon over G-space ! !-------------------------------------! call holdthd(nwrf,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do iw=1,nwrf call zminv(ngrf,epsi(:,:,iw)) end do !$OMP END PARALLEL DO call freethd(nthd) ! write inverse RPA epsilon to EPSINV.OUT if (mp_mpi) call putepsinv(iq,epsi) ! end loop over q-points end do ! destroy the OpenMP locks do iw=1,nwrf call omp_destroy_lock(lock(iw)) end do deallocate(jlgqr,ylmgq,sfacgq,epsi) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/rfinpc.f900000644000000000000000000000013214762655564014052 xustar0030 mtime=1741380468.571008998 30 atime=1741380466.653998976 30 ctime=1741380468.571008998 elk-10.4.9/src/rfinpc.f900000644002504400250440000000174514762655564016603 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function rfinpc(ld,rfmt1,rfir1,rfmt2,rfir2) use modmain use modomp implicit none ! arguments integer, intent(in) :: ld real(8), intent(in) :: rfmt1(ld,natmtot),rfir1(ngtot) real(8), intent(in) :: rfmt2(ld,natmtot),rfir2(ngtot) ! local variables integer is,ias,nthd ! external functions real(8), external :: rfmtinp ! interstitial contribution rfinpc=sum(rfir1(1:ngtot)*rfir2(1:ngtot)*cfunir(1:ngtot)) rfinpc=rfinpc*omega/dble(ngtot) ! muffin-tin contribution call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) REDUCTION(+:rfinpc) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) rfinpc=rfinpc+rfmtinp(nrcmt(is),nrcmti(is),wr2cmt(:,is),rfmt1(:,ias), & rfmt2(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) end function elk-10.4.9/src/PaxHeaders/writeiad.f900000644000000000000000000000013214762655564014401 xustar0030 mtime=1741380468.572009003 30 atime=1741380466.655998987 30 ctime=1741380468.572009003 elk-10.4.9/src/writeiad.f900000644002504400250440000000254714762655564017133 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writeiad ! !INTERFACE: subroutine writeiad(fnum) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! fnum : file number for writing output (in,integer) ! !DESCRIPTION: ! Outputs the interatomic distances to file. ! ! !REVISION HISTORY: ! Created May 2005 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,js,ia,ja integer i1,i2,i3 real(8) d,dmin,v(3) do is=1,nspecies do ia=1,natoms(is) write(fnum,*) write(fnum,'("Distance between is = ",I4," (",A,"), ia = ",I4," and")') & is,trim(spsymb(is)),ia do js=1,nspecies do ja=1,natoms(js) dmin=1.d8 do i1=-1,1 do i2=-1,1 do i3=-1,1 v(:)=dble(i1)*avec(:,1) & +dble(i2)*avec(:,2) & +dble(i3)*avec(:,3)+atposc(:,ja,js) v(:)=v(:)-atposc(:,ia,is) d=sqrt(v(1)**2+v(2)**2+v(3)**2) dmin=min(d,dmin) end do end do end do write(fnum,'(" is = ",I4," (",A,"), ia = ",I4," : ",G18.10)') js, & trim(spsymb(js)),ja,dmin end do end do end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/genapwfr.f900000644000000000000000000000013214762655564014402 xustar0030 mtime=1741380468.574009014 30 atime=1741380466.658999002 30 ctime=1741380468.574009014 elk-10.4.9/src/genapwfr.f900000644002504400250440000001001214762655564017116 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genapwfr ! !INTERFACE: subroutine genapwfr ! !USES: use modmain ! !DESCRIPTION: ! Generates the APW radial functions. This is done by integrating the scalar ! relativistic Schr\"{o}dinger equation (or its energy deriatives) at the ! current linearisation energies using the spherical part of the Kohn-Sham ! potential. The number of radial functions at each $l$-value is given by the ! variable {\tt apword} (at the muffin-tin boundary, the APW functions have ! continuous derivatives up to order ${\tt apword}-1$). Within each $l$, these ! functions are orthonormalised with the Gram-Schmidt method. The radial ! Hamiltonian is applied to the orthonormalised functions and the results are ! stored in the global array {\tt apwfr}. ! ! !REVISION HISTORY: ! Created March 2003 (JKD) ! Copied to equivalent atoms, February 2010 (A. Kozhevnikov and JKD) !EOP !BOC implicit none ! local variables integer is,ia,ja,ias,jas integer nr,nri,iro,ir integer i0,i1,nn,l,io,jo real(8) e,t1 ! automatic arrays real(8) vr(nrmtmax),fr(nrmtmax) real(8) p0(nrmtmax,apwordmax),p1(nrmtmax),p1s(apwordmax) real(8) q0(nrmtmax),q1(nrmtmax),ep0(nrmtmax,apwordmax) ! loop over species do is=1,nspecies nr=nrmt(is) nri=nrmti(is) iro=nri+1 ! loop over atoms do ia=1,natoms(is) ! perform calculation for only the first equivalent atom if (.not.tfeqat(ia,is)) cycle ias=idxas(ia,is) ! use spherical part of potential i1=lmmaxi*(nri-1)+1 vr(1:nri)=vsmt(1:i1:lmmaxi,ias)*y00 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 vr(iro:nr)=vsmt(i0:i1:lmmaxo,ias)*y00 do l=0,lmaxapw do io=1,apword(l,is) ! linearisation energy accounting for energy derivative e=apwe(io,l,ias)+dble(apwdm(io,l,is))*deapw ! integrate the radial Schrodinger equation call rschrodint(solsc,l,e,nr,rlmt(:,1,is),vr,nn,p0(:,io),p1,q0,q1) ! multiply by the linearisation energy ep0(1:nr,io)=e*p0(1:nr,io) ! normalise radial functions fr(1:nr)=p0(1:nr,io)**2 t1=dot_product(wrmt(1:nr,is),fr(1:nr)) t1=1.d0/sqrt(abs(t1)) p0(1:nr,io)=t1*p0(1:nr,io) p1s(io)=t1*p1(nr) ep0(1:nr,io)=t1*ep0(1:nr,io) ! subtract linear combination of previous vectors do jo=1,io-1 fr(1:nr)=p0(1:nr,io)*p0(1:nr,jo) t1=-dot_product(wrmt(1:nr,is),fr(1:nr)) p0(1:nr,io)=p0(1:nr,io)+t1*p0(1:nr,jo) p1s(io)=p1s(io)+t1*p1s(jo) ep0(1:nr,io)=ep0(1:nr,io)+t1*ep0(1:nr,jo) end do ! normalise radial functions again if (io > 1) then fr(1:nr)=p0(1:nr,io)**2 t1=abs(dot_product(wrmt(1:nr,is),fr(1:nr))) if (t1 < 1.d-25) then write(*,*) write(*,'("Error(genapwfr): degenerate APW radial functions")') write(*,'(" for species ",I4)') is write(*,'(" atom ",I4)') ia write(*,'(" angular momentum ",I4)') l write(*,'(" and order ",I4)') io write(*,*) stop end if t1=1.d0/sqrt(t1) p0(1:nr,io)=t1*p0(1:nr,io) p1s(io)=t1*p1s(io) ep0(1:nr,io)=t1*ep0(1:nr,io) end if ! divide by r and store in global array do ir=1,nr t1=rlmt(ir,-1,is) apwfr(ir,1,io,l,ias)=t1*p0(ir,io) apwfr(ir,2,io,l,ias)=t1*ep0(ir,io) end do ! derivative at the muffin-tin surface multiplied by R_MT²/2 apwdfr(io,l,ias)=(p1s(io)*rmt(is)-p0(nr,io))/2.d0 end do end do ! copy to equivalent atoms do ja=1,natoms(is) if (eqatoms(ia,ja,is).and.(ia /= ja)) then jas=idxas(ja,is) do l=0,lmaxapw do io=1,apword(l,is) apwfr(1:nr,1:2,io,l,jas)=apwfr(1:nr,1:2,io,l,ias) apwdfr(io,l,jas)=apwdfr(io,l,ias) end do end do end if end do ! end loop over atoms and species end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/gengclq.f900000644000000000000000000000013214762655564014211 xustar0030 mtime=1741380468.575009019 30 atime=1741380466.660999013 30 ctime=1741380468.575009019 elk-10.4.9/src/gengclq.f900000644002504400250440000000557414762655564016746 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gengclq ! !INTERFACE: subroutine gengclq ! !USES: use modmain use modtest ! !DESCRIPTION: ! The Fock matrix elements ! $$ V_{ij{\bf k}}\equiv\sum_{l{\bf k'}}\int ! \frac{\Psi^{\dag}_{i{\bf k}}({\bf r})\cdot\Psi_{l{\bf k}'}({\bf r}) ! \Psi^{\dag}_{l{\bf k}'}({\bf r}')\cdot\Psi_{j{\bf k}}({\bf r}')} ! {|{\bf r}-{\bf r'}|}\,d^3r\,d^3r' $$ ! contain a divergent term in the sum over ${\bf k}'$ which behaves as ! $1/q^2$, where ${\bf q}\equiv{\bf k}-{\bf k}'$ is in the first Brillouin ! zone. The resulting convergence with respect to the number of discrete ! $q$-points, $N_q$, is very slow. This routine computes the regularised ! Coulomb Green's function ! \begin{align} ! g({\bf q}_i)=\frac{4\pi}{V}\int_{V_i}\frac{1}{q^2}\,d^3q, ! \end{align} ! where the integral is over the small parallelepiped with volume ! $V=\Omega_{\rm BZ}/N_q$ and centered on the discrete point ${\bf q}_i$. ! This dramatically increases the rate of convergence of methods which involve ! a summation over the $1/q^2$ part of the Coulomb interaction. The above ! integral is evaluated numerically on increasingly finer grids and then ! extrapolated to the continuum. ! ! !REVISION HISTORY: ! Created August 2004 (JKD,SS) ! Changed from genwiq2, July 2017 (JKD) !EOP !BOC implicit none ! local variables integer, parameter :: np=5,ns0=10,nss=20 integer ns,iq,i1,i2,i3,ip real(8) d(3),sm,t1,t2 real(8) v1(3),v2(3),v3(3) real(8) xa(np),ya(np) ! external functions real(8), external :: polynm ! allocate global gclq array if (allocated(gclq)) deallocate(gclq) allocate(gclq(nqpt)) ! begin loop over q-points, note that the vectors vqc are assumed to be in the ! first Brillouin zone do iq=1,nqpt ! loop over different subdivisions ns=ns0 do ip=1,np ! subdivision vectors in lattice coordinates d(1:3)=1.d0/dble(ngridq(1:3)*2*ns) ! compute the integral of 1/q² sm=0.d0 do i1=-ns,ns-1 t1=dble(i1)*d(1) v1(1:3)=vqc(1:3,iq)+t1*bvec(1:3,1) do i2=-ns,ns-1 t1=dble(i2)*d(2) v2(1:3)=v1(1:3)+t1*bvec(1:3,2) do i3=-ns,ns-1 t1=dble(i3)*d(3) v3(1:3)=v2(1:3)+t1*bvec(1:3,3) t2=v3(1)**2+v3(2)**2+v3(3)**2 if (t2 > 1.d-14) sm=sm+1.d0/t2 end do end do end do t1=1.d0/dble(2*ns) xa(ip)=t1 ya(ip)=fourpi*sm*t1**3 ! increment number of subdivisions ns=ns+nss end do ! extrapolate the volume element to zero with a polynomial gclq(iq)=polynm(0,np,xa,ya,0.d0) end do ! zero the Green's function at q = 0 if required if (t0gclq0) gclq(1)=0.d0 ! write gclq to test file call writetest(700,"regularised Coulomb Green''s function (gclq)",nv=nqpt, & tol=1.d-8,rva=gclq) end subroutine !EOC elk-10.4.9/src/PaxHeaders/addbfsm.f900000644000000000000000000000013014762655564014167 xustar0029 mtime=1741380468.57700903 30 atime=1741380466.663999029 29 ctime=1741380468.57700903 elk-10.4.9/src/addbfsm.f900000644002504400250440000000163014762655564016713 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine addbfsm use modmain implicit none ! local variables integer idm,is,ias,npc real(8) t1 ! add the global fixed spin moment B-field to the Kohn-Sham field if ((abs(fsmtype) == 1).or.(abs(fsmtype) == 3)) then do idm=1,ndmag t1=bfsmc(idm) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) bsmt(1:npc,ias,idm)=bsmt(1:npc,ias,idm)+t1 end do bsirc(1:ngtc,idm)=bsirc(1:ngtc,idm)+t1*cfrc(1:ngtc) end do end if ! add the muffin-tin fields if ((abs(fsmtype) == 2).or.(abs(fsmtype) == 3)) then do idm=1,ndmag do ias=1,natmtot is=idxis(ias) npc=npcmt(is) t1=bfsmcmt(idm,ias) bsmt(1:npc,ias,idm)=bsmt(1:npc,ias,idm)+t1 end do end do end if end subroutine elk-10.4.9/src/PaxHeaders/genylmv.f900000644000000000000000000000013214762655564014252 xustar0030 mtime=1741380468.578009035 30 atime=1741380466.665999039 30 ctime=1741380468.578009035 elk-10.4.9/src/genylmv.f900000644002504400250440000000707514762655564017005 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: genylmv ! !INTERFACE: pure subroutine genylmv(t4pil,lmax,v,ylm) ! !INPUT/OUTPUT PARAMETERS: ! t4pil : .true. if the plane wave prefactor should be included (in,logical) ! lmax : maximum angular momentum (in,integer) ! v : input vector (in,real(3)) ! ylm : array of spherical harmonics (out,complex((lmax+1)**2)) ! !DESCRIPTION: ! Generates a sequence of spherical harmonics, including the Condon-Shortley ! phase, evaluated at angles $(\theta,\phi)$ for $0 eps) then t1=v(3)/r if (t1 >= 1.d0) then st=0.d0 ct=1.d0 else if (t1 <= -1.d0) then st=0.d0 ct=-1.d0 else st=sqrt(1.d0-t1**2) ct=t1 end if if ((abs(v(1)) > eps).or.(abs(v(2)) > eps)) then t1=1.d0/sqrt(v(1)**2+v(2)**2) sp=t1*v(2) cp=t1*v(1) else sp=0.d0 cp=1.d0 end if else st=0.d0 ct=1.d0 sp=0.d0 cp=1.d0 end if z1=cmplx(cp,sp,8) ylm(3)=0.48860251190291992159d0*ct ylm(4)=-0.34549414947133547927d0*st*z1 ylm(2)=-conjg(ylm(4)) do l=2,lmax lm1=(l+1)**2 lm2=l**2 lm3=(l-1)**2+1 lm4=lm2+1 ylm(lm1)=-st*sqrt(dble(2*l+1)/dble(2*l))*z1*ylm(lm2) if (mod(l,2) == 0) then ylm(lm4)=conjg(ylm(lm1)) else ylm(lm4)=-conjg(ylm(lm1)) end if lm1=lm1-1 ylm(lm1)=ct*sqrt(dble(2*l+1))*ylm(lm2) lm4=lm4+1 if (mod(l-1,2) == 0) then ylm(lm4)=conjg(ylm(lm1)) else ylm(lm4)=-conjg(ylm(lm1)) end if t1=ct*sqrt(dble((2*l-1)*(2*l+1))) t2=sqrt(dble((2*l+1))/dble(2*l-3)) do m=l-2,1,-1 lm1=lm1-1; lm2=lm2-1; lm3=lm3-1; lm4=lm4+1 t3=1.d0/sqrt(dble((l-m)*(l+m))) t4=t2*sqrt(dble((l-m-1)*(l+m-1))) ylm(lm1)=t3*(t1*ylm(lm2)-t4*ylm(lm3)) if (mod(m,2) == 0) then ylm(lm4)=conjg(ylm(lm1)) else ylm(lm4)=-conjg(ylm(lm1)) end if end do lm1=lm1-1; lm2=lm2-1; lm3=lm3-1 t3=1.d0/dble(l) t4=t2*dble(l-1) ylm(lm1)=t3*(t1*ylm(lm2)-t4*ylm(lm3)) end do ! multiply by 4π (-i)ˡ if required if (t4pil) then ylm(1)=fourpi*ylm(1) do l=1,lmax lm1=l**2+1; lm2=lm1+2*l select case(mod(l,4)) case(0) ylm(lm1:lm2)=fourpi*ylm(lm1:lm2) case(1) ylm(lm1:lm2)=fourpi*zmi*ylm(lm1:lm2) case(2) ylm(lm1:lm2)=-fourpi*ylm(lm1:lm2) case default ylm(lm1:lm2)=fourpi*zi*ylm(lm1:lm2) end select end do end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/olpfv.f900000644000000000000000000000013014762655564013715 xustar0029 mtime=1741380468.57900904 30 atime=1741380466.668999055 29 ctime=1741380468.57900904 elk-10.4.9/src/olpfv.f900000644002504400250440000000204414762655564016441 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine olpfv(nmatp,ngp,igpig,apwalm,o) use modmain use modomp implicit none ! arguments integer, intent(in) :: nmatp,ngp,igpig(ngkmax) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) complex(8), intent(out) :: o(nmatp,nmatp) ! local variables integer is,ias,j,nthd ! interstitial contribution call olpistl(ngp,igpig,nmatp,o) ! APW-APW contribution do ias=1,natmtot is=idxis(ias) call olpaa(tefvr,is,ngp,apwalm(:,:,:,ias),nmatp,o) end do ! zero the APW-lo and lo-lo part of the matrix do j=ngp+1,nmatp o(1:j,j)=0.d0 end do call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call olpalo(is,ias,ngp,apwalm(:,:,:,ias),nmatp,o) call olplolo(is,ias,ngp,nmatp,o) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/hmlfv.f900000644000000000000000000000013014762655564013703 xustar0029 mtime=1741380468.58100905 30 atime=1741380466.670999065 29 ctime=1741380468.58100905 elk-10.4.9/src/hmlfv.f900000644002504400250440000000213014762655564016423 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmlfv(nmatp,ngp,igpig,vgpc,apwalm,h) use modmain use modomp implicit none ! arguments integer, intent(in) :: nmatp,ngp,igpig(ngkmax) real(8), intent(in) :: vgpc(3,ngkmax) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) complex(8), intent(out) :: h(nmatp,nmatp) ! local variables integer is,ias,j,nthd ! interstitial contribution call hmlistl(ngp,igpig,vgpc,nmatp,h) ! APW-APW contribution do ias=1,natmtot is=idxis(ias) call hmlaa(tefvr,is,ias,ngp,apwalm(:,:,:,ias),nmatp,h) end do ! zero the APW-lo and lo-lo part of the matrix do j=ngp+1,nmatp h(1:j,j)=0.d0 end do call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call hmlalo(is,ias,ngp,apwalm(:,:,:,ias),nmatp,h) call hmllolo(is,ias,ngp,nmatp,h) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/genexpmt.f900000644000000000000000000000013214762655564014420 xustar0030 mtime=1741380468.582009056 30 atime=1741380466.673999081 30 ctime=1741380468.582009056 elk-10.4.9/src/genexpmt.f900000644002504400250440000000273614762655564017152 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genexpmt(ngp,jlgpr,ylmgp,ld,sfacgp,expmt) use modmain implicit none ! arguments integer, intent(in) :: ngp real(8), intent(in) :: jlgpr(njcmax,nspecies,ngp) complex(8), intent(in) :: ylmgp(lmmaxo,ngp) integer, intent(in) :: ld complex(8), intent(in) :: sfacgp(ld,natmtot) complex(8), intent(out) :: expmt(npcmtmax,natmtot,ngp) ! local variables integer ig,is,ia,ias integer nrc,nrci,irc,npc integer l,lma,lmb,i,j real(8) t1 complex(8) z1 ! automatic arrays complex(8) ylm(lmmaxo),zfmt(npcmtmax) do ig=1,ngp ylm(1:lmmaxo)=conjg(ylmgp(1:lmmaxo,ig)) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) i=0 j=0 do irc=1,nrci do l=0,lmaxi j=j+1 t1=jlgpr(j,is,ig) lma=l**2+1; lmb=lma+2*l zfmt(i+lma:i+lmb)=t1*ylm(lma:lmb) end do i=i+lmmaxi end do do irc=nrci+1,nrc do l=0,lmaxo j=j+1 t1=jlgpr(j,is,ig) lma=l**2+1; lmb=lma+2*l zfmt(i+lma:i+lmb)=t1*ylm(lma:lmb) end do i=i+lmmaxo end do ! convert to spherical coordinates call zbshtip(nrc,nrci,zfmt) ! mutiply by phase factors and store for all atoms do ia=1,natoms(is) ias=idxas(ia,is) z1=sfacgp(ig,ias) expmt(1:npc,ias,ig)=z1*zfmt(1:npc) end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/sphcover.f900000644000000000000000000000013214762655564014422 xustar0030 mtime=1741380468.584009066 30 atime=1741380466.676999096 30 ctime=1741380468.584009066 elk-10.4.9/src/sphcover.f900000644002504400250440000000254414762655564017151 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sphcover ! !INTERFACE: subroutine sphcover(n,tp) ! !INPUT/OUTPUT PARAMETERS: ! n : number of required points (in,integer) ! tp : (theta, phi) coordinates (out,real(2,n)) ! !DESCRIPTION: ! Produces a set of $N$ points which cover the unit sphere nearly optimally. ! The points in spherical $(\theta,\phi)$ coordinates are generated using the ! explicit `golden section' formula: ! \begin{align*} ! \theta_k&=\arccos\left[1-\left(k-\tfrac{1}{2}\right)\delta z\right] \\ ! \phi_k&=(k-1)\delta\phi, ! \end{align*} ! where $\delta z=2/n$ and $\delta\phi=\pi(1-\sqrt{5})$. ! ! !REVISION HISTORY: ! Created April 2008 (JKD) ! Improved covering, October 2009 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(out) :: tp(2,n) ! local variables integer k real(8), parameter :: pi=3.1415926535897932385d0 real(8) z,dz,p,dp if (n < 1) then write(*,*) write(*,'("Error(sphcover): n < 1 : ",I8)') n write(*,*) stop end if dz=2.d0/dble(n) z=1.d0-dz/2.d0 tp(1,1)=acos(z) dp=pi*(1.d0-sqrt(5.d0)) p=0.d0 tp(2,1)=p do k=2,n z=z-dz tp(1,k)=acos(z) p=p+dp tp(2,k)=mod(p,2.d0*pi) end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/genppts.f900000644000000000000000000000013214762655564014251 xustar0030 mtime=1741380468.585009071 30 atime=1741380466.678999107 30 ctime=1741380468.585009071 elk-10.4.9/src/genppts.f900000644002504400250440000001366414762655564017005 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: genppts ! !INTERFACE: subroutine genppts(tfbz,nsym,sym,ngridp,npptnr,epslat,bvec,boxl,nppt,ipvip, & ipvipnr,ivp,vpl,vpc,wppt,wpptnr) ! !INPUT/OUTPUT PARAMETERS: ! tfbz : .true. if vpl and vpc should be mapped to the first Brillouin zone ! (in,logical) ! nsym : number of point group symmetries used for reduction, set to 1 for ! no reduction (in,integer) ! sym : symmetry matrices in lattice coordinates (in,integer(3,3,*)) ! ngridp : p-point grid sizes (in,integer(3)) ! npptnr : number of non-reduced p-points: ngridp(1)*ngridp(2)*ngridp(3) ! (in,integer) ! epslat : tolerance for determining identical vectors (in,real) ! bvec : reciprocal lattice vectors (in,real(3,3)) ! boxl : corners of box containing p-points in lattice coordinates, the ! zeroth vector is the origin (in,real(3,0:3)) ! nppt : total number of p-points (out,integer) ! ipvip : map from (i1,i2,i3) to reduced p-point index ! (out,integer(0:ngridp(1)-1,0:ngridp(2)-1,0:ngridp(3)-1)) ! ipvipnr : map from (i1,i2,i3) to non-reduced p-point index ! (out,integer(0:ngridp(1)-1,0:ngridp(2)-1,0:ngridp(3)-1)) ! ivp : integer coordinates of the p-points ! (out,integer(3,ngridp(1)*ngridp(2)*ngridp(3))) ! vpl : lattice coordinates of each p-point ! (out,real(3,ngridp(1)*ngridp(2)*ngridp(3))) ! vpc : Cartesian coordinates of each p-point ! (out,real(3,ngridp(1)*ngridp(2)*ngridp(3))) ! wppt : weights of each reduced p-point ! (out,real(ngridp(1)*ngridp(2)*ngridp(3))) ! wpptnr : weight of each non-reduced p-point (out,real) ! !DESCRIPTION: ! This routine is used for generating $k$-point or $q$-point sets. Since these ! are stored in global arrays, the points passed to this and other routines ! are referred to as $p$-points. In lattice coordinates, the ${\bf p}$ vectors ! are given by ! $$ {\bf p}=\left(\begin{matrix} & & \\ ! {\bf B}_2-{\bf B}_1 & {\bf B}_3-{\bf B}_1 & {\bf B}_4-{\bf B}_1 \\ ! & & \end{matrix}\right) ! \left(\begin{matrix}i_1/n_1 \\ i_2/n_2 \\ i_3/n_3 \end{matrix}\right) ! +{\bf B}_1 $$ ! where $i_j$ runs from 0 to $n_j-1$, and the ${\bf B}$ vectors define the ! corners of a box with ${\bf B}_1$ as the origin. If {\tt tfbz} is ! {\tt .true.} then each {\tt vpl} vector is mapped to the first Brillouin ! zone. If {\tt tfbz} is {\tt .false.} and then the coordinates of each ! {\tt vpl} are mapped to the $[0,1)$ interval. The $p$-point weights are ! stored in {\tt wppt} and the array {\tt ipvip} contains the map from the ! integer coordinates to the reduced index. ! ! !REVISION HISTORY: ! Created August 2002 (JKD) ! Updated April 2007 (JKD) ! Added mapping to the first Brillouin zone, September 2008 (JKD) ! Made independent of modmain, February 2010 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tfbz integer, intent(in) :: nsym,sym(3,3,*),ngridp(3),npptnr real(8), intent(in) :: epslat,bvec(3,3),boxl(3,0:3) integer, intent(out) :: nppt integer, intent(out) :: ipvip(0:ngridp(1)-1,0:ngridp(2)-1,0:ngridp(3)-1) integer, intent(out) :: ipvipnr(0:ngridp(1)-1,0:ngridp(2)-1,0:ngridp(3)-1) integer, intent(out) :: ivp(3,npptnr) real(8), intent(out) :: vpl(3,npptnr),vpc(3,npptnr) real(8), intent(out) :: wppt(npptnr),wpptnr ! local variables integer i1,i2,i3,i integer isym,ip,jp real(8) v1(3),v2(3),v3(3) real(8) b(3,3),t1 if ((ngridp(1) < 1).or.(ngridp(2) < 1).or.(ngridp(3) < 1)) then write(*,*) write(*,'("Error(genppts): invalid ngridp : ",3I8)') ngridp write(*,*) stop end if if (npptnr /= ngridp(1)*ngridp(2)*ngridp(3)) then write(*,*) write(*,'("Error(genppts): mismatched npptnr and ngridp : ",4I8)') npptnr, & ngridp write(*,*) stop end if ! box vector matrix b(1:3,1)=boxl(1:3,1)-boxl(1:3,0) b(1:3,2)=boxl(1:3,2)-boxl(1:3,0) b(1:3,3)=boxl(1:3,3)-boxl(1:3,0) ! weight of each non-reduced p-point wpptnr=1.d0/dble(ngridp(1)*ngridp(2)*ngridp(3)) ip=0 jp=npptnr do i3=0,ngridp(3)-1 v1(3)=dble(i3)/dble(ngridp(3)) do i2=0,ngridp(2)-1 v1(2)=dble(i2)/dble(ngridp(2)) do i1=0,ngridp(1)-1 v1(1)=dble(i1)/dble(ngridp(1)) call r3mv(b,v1,v2) v2(1:3)=v2(1:3)+boxl(1:3,0) ! map vector components to [0,1) call r3frac(epslat,v2) if (nsym > 1) then ! determine if this point is equivalent to one already in the set do isym=1,nsym call i3mtrv(sym(:,:,isym),v2,v3) call r3frac(epslat,v3) do i=1,ip t1=abs(vpl(1,i)-v3(1))+abs(vpl(2,i)-v3(2))+abs(vpl(3,i)-v3(3)) if (t1 < epslat) then ! equivalent p-point found so add to existing weight ipvip(i1,i2,i3)=i wppt(i)=wppt(i)+wpptnr ! add new point to back of set ipvipnr(i1,i2,i3)=jp ivp(1,jp)=i1; ivp(2,jp)=i2; ivp(3,jp)=i3 vpl(1:3,jp)=v2(1:3) wppt(jp)=0.d0 jp=jp-1 goto 10 end if end do end do end if ! add new point to front of set ip=ip+1 ipvip(i1,i2,i3)=ip ipvipnr(i1,i2,i3)=ip ivp(1,ip)=i1; ivp(2,ip)=i2; ivp(3,ip)=i3 vpl(1:3,ip)=v2(1:3) wppt(ip)=wpptnr 10 continue end do end do end do nppt=ip do ip=1,npptnr ! map vpl to the first Brillouin zone if required if (tfbz) call vecfbz(epslat,bvec,vpl(:,ip)) ! determine the Cartesian coordinates of the p-points call r3mv(bvec,vpl(:,ip),vpc(:,ip)) end do return contains pure subroutine i3mtrv(a,x,y) implicit none ! arguments integer, intent(in) :: a(3,3) real(8), intent(in) :: x(3) real(8), intent(out) :: y(3) y(1)=a(1,1)*x(1)+a(2,1)*x(2)+a(3,1)*x(3) y(2)=a(1,2)*x(1)+a(2,2)*x(2)+a(3,2)*x(3) y(3)=a(1,3)*x(1)+a(2,3)*x(2)+a(3,3)*x(3) end subroutine end subroutine !EOC elk-10.4.9/src/PaxHeaders/eveqnzg.f900000644000000000000000000000013214762655564014250 xustar0030 mtime=1741380468.586009077 30 atime=1741380466.681999123 30 ctime=1741380468.586009077 elk-10.4.9/src/eveqnzg.f900000644002504400250440000000203614762655564016773 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnzg(n,ld,a,w) use modomp implicit none ! arguments integer, intent(in) :: n,ld complex(8), intent(inout) :: a(ld,n) complex(8), intent(out) :: w(n) ! local variables integer lwork,info integer nthd,nts ! automatic arrays real(8) rwork(2*n) ! allocatable arrays complex(8), allocatable :: vr(:,:),work(:) lwork=2*n allocate(vr(n,n),work(lwork)) ! enable MKL parallelism call holdthd(maxthdmkl,nthd) nts=mkl_set_num_threads_local(nthd) ! determine the eigenvalues and right eigenvectors call zgeev('N','V',n,a,ld,w,vr,1,vr,n,work,lwork,rwork,info) nts=mkl_set_num_threads_local(0) call freethd(nthd) if (info /= 0) then write(*,*) write(*,'("Error(eveqnzg): diagonalisation failed")') write(*,'(" ZGEEV returned INFO = ",I8)') info write(*,*) stop end if ! copy right eigenvectors to output array a(1:n,1:n)=vr(1:n,1:n) deallocate(vr,work) end subroutine elk-10.4.9/src/PaxHeaders/fderiv.f900000644000000000000000000000013214762655564014050 xustar0030 mtime=1741380468.588009087 30 atime=1741380466.683999133 30 ctime=1741380468.588009087 elk-10.4.9/src/fderiv.f900000644002504400250440000000324014762655564016571 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: fderiv ! !INTERFACE: subroutine fderiv(m,n,x,f,g) ! !INPUT/OUTPUT PARAMETERS: ! m : order of derivative (in,integer) ! n : number of points (in,integer) ! x : abscissa array (in,real(n)) ! f : function array (in,real(n)) ! g : (anti-)derivative of f (out,real(n)) ! !DESCRIPTION: ! Given function $f$ defined on a set of points $x_i$ then if $m\ge 0$ this ! routine computes the $m$th derivative of $f$ at each point. If $m=-1$ the ! anti-derivative of $f$ given by ! $$ g(x_i)=\int_{x_1}^{x_i} f(x)\,dx $$ ! is calculated. Both derivatives and integrals are computed by first fitting ! the function to a clamped cubic spline. ! ! !REVISION HISTORY: ! Created May 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: m,n real(8), intent(in) :: x(n),f(n) real(8), intent(out) :: g(n) ! local variables integer i real(8) sm,dx ! automatic arrays real(8) cf(3,n) if (n < 1) then write(*,*) write(*,'("Error(fderiv): n < 1 : ",I8)') n write(*,*) stop end if ! high accuracy integration/differentiation from spline interpolation call spline(n,x,f,cf) select case(m) case(:-1) g(1)=0.d0 sm=0.d0 do i=1,n-1 dx=x(i+1)-x(i) sm=sm+dx*(f(i) & +dx*(0.5d0*cf(1,i) & +dx*(0.3333333333333333333d0*cf(2,i) & +dx*0.25d0*cf(3,i)))) g(i+1)=sm end do case(1) g(1:n)=cf(1,1:n) case(2) g(1:n)=2.d0*cf(2,1:n) case(3) g(1:n)=6.d0*cf(3,1:n) case(4:) g(1:n)=0.d0 end select end subroutine !EOC elk-10.4.9/src/PaxHeaders/genpmat.f900000644000000000000000000000013214762655564014224 xustar0030 mtime=1741380468.589009092 30 atime=1741380466.686999149 30 ctime=1741380468.589009092 elk-10.4.9/src/genpmat.f900000644002504400250440000000151114762655564016744 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genpmat use modmain use modmpi use modomp implicit none ! local variables integer ik,nthd if (mp_mpi) write(*,*) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(genpmat_) write(*,'("Info(genpmat): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(genpmat_) call putpmat(ik) end do !$OMP END PARALLEL DO call freethd(nthd) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/genexpmat.f900000644000000000000000000000013214762655564014561 xustar0030 mtime=1741380468.591009103 30 atime=1741380466.689999165 30 ctime=1741380468.591009103 elk-10.4.9/src/genexpmat.f900000644002504400250440000001247414762655564017313 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genexpmat(vpl,expmt,emat) use modmain implicit none ! arguments real(8), intent(in) :: vpl(3) complex(8), intent(in) :: expmt(npcmtmax,natmtot) complex(8), intent(out) :: emat(nstsv,nstsv) ! local variables integer ist,jst,ispn,i,j,k,l integer is,ia,ias,nrc,nrci integer npc,ngp,ngpq,igp,ifg real(8) vpc(3),vpql(3),vpqc(3),t1 complex(8) z1 ! allocatable arrays integer, allocatable :: igpig(:),igpqig(:) real(8), allocatable :: vgpl(:,:),vgpc(:,:),gpc(:) real(8), allocatable :: vgpql(:,:),vgpqc(:,:),gpqc(:) complex(8), allocatable :: sfacgp(:,:),sfacgpq(:,:) complex(8), allocatable :: apwalm1(:,:,:,:),apwalm2(:,:,:,:) complex(8), allocatable :: evecfv1(:,:),evecfv2(:,:) complex(8), allocatable :: evecsv1(:,:),evecsv2(:,:) complex(8), allocatable :: wfmt1(:),wfmt2(:,:) complex(8), allocatable :: zfir(:),z(:),em(:,:) ! external functions complex(8), external :: zfmtinp,zdotc ! check if q-vector is zero t1=abs(vecql(1))+abs(vecql(2))+abs(vecql(3)) if (t1 < epslat) then emat(:,:)=0.d0 do i=1,nstsv emat(i,i)=1.d0 end do return end if ! allocate local arrays allocate(igpig(ngkmax),igpqig(ngkmax)) allocate(vgpl(3,ngkmax),vgpc(3,ngkmax),gpc(ngkmax)) allocate(vgpql(3,ngkmax),vgpqc(3,ngkmax),gpqc(ngkmax)) allocate(sfacgp(ngkmax,natmtot),sfacgpq(ngkmax,natmtot)) allocate(apwalm1(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(apwalm2(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv1(nmatmax,nstfv),evecfv2(nmatmax,nstfv)) if (tevecsv) then allocate(evecsv1(nstsv,nstsv),evecsv2(nstsv,nstsv)) end if allocate(wfmt1(npcmtmax),wfmt2(npcmtmax,nstfv)) allocate(zfir(ngtot),z(ngkmax),em(nstfv,nstfv)) ! p-vector in Cartesian coordinates call r3mv(bvec,vpl,vpc) ! generate the G+p-vectors call gengkvec(ngvc,ivg,vgc,vpl,vpc,gkmax,ngkmax,ngp,igpig,vgpl,vgpc,gpc) ! generate the structure factors call gensfacgp(ngp,vgpc,ngkmax,sfacgp) ! find the matching coefficients for k-point p call match(ngp,vgpc,gpc,sfacgp,apwalm1) ! get the eigenvectors for k-point p call getevecfv(filext,0,vpl,vgpl,evecfv1) ! p+q-vector in lattice coordinates vpql(:)=vpl(:)+vecql(:) ! p+q-vector in Cartesian coordinates call r3mv(bvec,vpql,vpqc) ! generate the G+p+q-vectors call gengkvec(ngvc,ivg,vgc,vpql,vpqc,gkmax,ngkmax,ngpq,igpqig,vgpql,vgpqc,gpqc) ! generate the structure factors call gensfacgp(ngpq,vgpqc,ngkmax,sfacgpq) ! find the matching coefficients for k-point p+q call match(ngpq,vgpqc,gpqc,sfacgpq,apwalm2) ! get the eigenvectors for k-point p+q call getevecfv(filext,0,vpql,vgpql,evecfv2) ! set the first-variational matrix element array to zero em(:,:)=0.d0 !------------------------------------! ! muffin-tin matrix elements ! !------------------------------------! do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do ist=1,nstfv ! calculate the wavefunction for k-point p+q call wfmtfv(ias,ngpq,apwalm2(:,:,:,ias),evecfv2(:,ist),wfmt1) ! convert from spherical harmonics to spherical coordinates call zbsht(nrc,nrci,wfmt1,wfmt2(:,ist)) ! multiply by exp(-iq.r) (conjugate because zfmtinp conjugates first function) wfmt1(1:npc)=conjg(expmt(1:npc,ias))*wfmt2(1:npc,ist) ! convert from spherical coordinates to spherical harmonics call zfsht(nrc,nrci,wfmt1,wfmt2(:,ist)) end do do jst=1,nstfv ! calculate the wavefunction for k-point p call wfmtfv(ias,ngp,apwalm1(:,:,:,ias),evecfv1(:,jst),wfmt1) do ist=1,nstfv em(ist,jst)=em(ist,jst)+zfmtinp(nrc,nrci,wr2cmt(:,is),wfmt2(:,ist), & wfmt1) end do end do ! end loops over atoms and species end do end do !--------------------------------------! ! interstitial matrix elements ! !--------------------------------------! ! compute interstitial wavefunctions for k-point p do jst=1,nstfv zfir(:)=0.d0 do igp=1,ngp ifg=igfft(igpig(igp)) zfir(ifg)=evecfv1(igp,jst) end do ! Fourier transform wavefunction to real-space call zfftifc(3,ngridg,1,zfir) ! multiply with the characteristic function zfir(:)=zfir(:)*cfunir(:) ! Fourier transform back to G-space call zfftifc(3,ngridg,-1,zfir) ! store as wavefunction with G+p+q index do igp=1,ngpq ifg=igfft(igpqig(igp)) z(igp)=zfir(ifg) end do ! add to the first-variational matrix elements do ist=1,nstfv em(ist,jst)=em(ist,jst)+zdotc(ngpq,evecfv2(:,ist),1,z,1) end do end do !-------------------------------------------! ! second-variational matrix elements ! !-------------------------------------------! if (tevecsv) then ! get the second-variational eigenvectors call getevecsv(filext,0,vpl,evecsv1) call getevecsv(filext,0,vpql,evecsv2) do i=1,nstsv do j=1,nstsv z1=0.d0 k=0 do ispn=1,nspinor do ist=1,nstfv k=k+1 l=(ispn-1)*nstfv do jst=1,nstfv l=l+1 z1=z1+em(ist,jst)*conjg(evecsv2(k,i))*evecsv1(l,j) end do end do end do emat(i,j)=z1 end do end do else emat(:,:)=em(:,:) end if deallocate(igpig,igpqig,vgpl,vgpc,gpc) deallocate(vgpql,vgpqc,gpqc,sfacgp,sfacgpq) deallocate(apwalm1,apwalm2,evecfv1,evecfv2) if (tevecsv) deallocate(evecsv1,evecsv2) deallocate(wfmt1,wfmt2,zfir,z,em) end subroutine elk-10.4.9/src/PaxHeaders/writeforces.f900000644000000000000000000000013214762655564015125 xustar0030 mtime=1741380468.592009108 30 atime=1741380466.691999175 30 ctime=1741380468.592009108 elk-10.4.9/src/writeforces.f900000644002504400250440000000153714762655564017655 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2004-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeforces(fnum) use modmain implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,ia,ias write(fnum,*) write(fnum,'("Forces :")') do is=1,nspecies write(fnum,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(fnum,'(" atom : ",I4)') ia write(fnum,'(" Hellmann-Feynman",T30,": ",3F14.8)') forcehf(:,ias) write(fnum,'(" IBS",T30,": ",3F14.8)') forcetot(:,ias)-forcehf(:,ias) write(fnum,'(" total force",T30,": ",3F14.8)') forcetot(:,ias) write(fnum,'(" total magnitude",T30,": ",F14.8)') norm2(forcetot(:,ias)) end do end do end subroutine elk-10.4.9/src/PaxHeaders/r3cross.f900000644000000000000000000000013214762655564014167 xustar0030 mtime=1741380468.593009113 30 atime=1741380466.694999191 30 ctime=1741380468.593009113 elk-10.4.9/src/r3cross.f900000644002504400250440000000134214762655564016711 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3cross ! !INTERFACE: pure subroutine r3cross(x,y,z) ! !INPUT/OUTPUT PARAMETERS: ! x : input vector 1 (in,real(3)) ! y : input vector 2 (in,real(3)) ! z : output cross-product (out,real(3)) ! !DESCRIPTION: ! Returns the cross product of two real 3-vectors. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x(3),y(3) real(8), intent(out) :: z(3) z(1)=x(2)*y(3)-x(3)*y(2) z(2)=x(3)*y(1)-x(1)*y(3) z(3)=x(1)*y(2)-x(2)*y(1) end subroutine !EOC elk-10.4.9/src/PaxHeaders/genspchi0.f900000644000000000000000000000013214762655564014451 xustar0030 mtime=1741380468.595009124 30 atime=1741380466.696999201 30 ctime=1741380468.595009124 elk-10.4.9/src/genspchi0.f900000644002504400250440000001540314762655564017176 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genspchi0 ! !INTERFACE: subroutine genspchi0(ik,lock,vqpl,jlgqr,ylmgq,sfacgq,chi0) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! ik : k-point from non-reduced set (in,integer) ! lock : OpenMP locks for frequency index of chi0 (in,integer(nwrf)) ! vqpl : input q-point in lattice coordinates (in,real(3)) ! jlgqr : spherical Bessel functions evaluated on the coarse radial mesh for ! all species and G+q-vectors (in,real(njcmax,nspecies,ngrf)) ! ylmgq : spherical harmonics of the G+q-vectors (in,complex(lmmaxo,ngrf)) ! sfacgq : structure factors of G+q-vectors (in,complex(ngrf,natmtot)) ! chi0 : spin-dependent Kohn-Sham response function in G-space ! (out,complex(ngrf,4,ngrf,4,nwrf)) ! !DESCRIPTION: ! Computes the spin-dependent Kohn-Sham response function: ! \begin{align*} ! \chi_{\alpha\beta,\alpha'\beta'}({\bf r},{\bf r}',\omega) ! & \equiv\frac{\delta\rho_{\alpha\beta}({\bf r},\omega)} ! {\delta v_{\alpha'\beta'}({\bf r}',\omega)} \\ ! & =\frac{1}{N_k}\sum_{i{\bf k},j{\bf k}'}(f_{i{\bf k}}-f_{j{\bf k}'}) ! \frac{\langle i{\bf k}|\hat{\rho}_{\beta\alpha}({\bf r})|j{\bf k}'\rangle ! \langle j{\bf k}'|\hat{\rho}_{\alpha'\beta'}({\bf r}')|i{\bf k}\rangle} ! {w+(\varepsilon_{i{\bf k}}-\varepsilon_{j{\bf k}'})+i\eta}, ! \end{align*} ! where $\alpha$ and $\beta$ are spin-coordinates, $N_k$ is the number of ! $k$-points, $f_{i{\bf k}}$ are the occupation numbers, $v$ is the Kohn-Sham ! potential and $\hat{\rho}$ is the spin-density operator. With translational ! symmetry in mind, we adopt the following convention for its Fourier ! transform: ! $$ \chi_{\alpha\beta,\alpha'\beta'}({\bf G},{\bf G}',{\bf q},\omega)= ! \frac{1}{\Omega}\int d^3r\,d^3r'\,e^{-i({\bf G}+{\bf q})\cdot{\bf r}} ! e^{i({\bf G}'+{\bf q})\cdot{\bf r}'} ! \chi_{\alpha\beta,\alpha'\beta'}({\bf r},{\bf r}',\omega). $$ ! Let ! $$ Z_{i{\bf k},j{\bf k}+{\bf q}}^{\alpha\beta}({\bf G})\equiv ! \int d^3r\,e^{i({\bf G}+{\bf q})\cdot{\bf r}} ! \varphi_{j{\bf k}+{\bf q},\alpha}^*({\bf r}) ! \varphi_{i{\bf k},\beta}({\bf r}) $$ ! then the response function in $G$-space can be written ! $$ \chi_{\alpha\beta,\alpha'\beta'}({\bf G},{\bf G}',{\bf q},\omega)= ! \frac{1}{N_k\Omega}\sum_{i{\bf k},j{\bf k}+{\bf q}} ! (f_{i{\bf k}}-f_{j{\bf k}}) ! \frac{\left[Z_{i{\bf k},j{\bf k}+{\bf q}}^{\alpha\beta}({\bf G})\right]^* ! Z_{i{\bf k},j{\bf k}+{\bf q}}^{\alpha'\beta'}({\bf G}')} ! {w+(\varepsilon_{i{\bf k}}-\varepsilon_{j{\bf k}+{\bf q}})+i\eta}. $$ ! ! !REVISION HISTORY: ! Created March 2012 (SS and JKD) !EOP !BOC implicit none ! local variables integer, intent(in) :: ik integer(omp_lock_kind), intent(inout) :: lock(nwrf) real(8), intent(in) :: vqpl(3),jlgqr(njcmax,nspecies,ngrf) complex(8), intent(in) :: ylmgq(lmmaxo,ngrf),sfacgq(ngrf,natmtot) complex(8), intent(inout) :: chi0(ngrf,4,ngrf,4,nwrf) ! local variables logical tz(4) integer isym,jk,jkq,iw integer nst,nstq,ist,jst,kst,lst integer ig,jg,a,b,i,j,nthd real(8) vkql(3),ei,ej,eij,t1 complex(8) z1 ! automatic arrays integer idx(nstsv),idxq(nstsv) integer ngp(nspnfv),ngpq(nspnfv) ! allocatable arrays integer, allocatable :: igpig(:,:),igpqig(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(4), allocatable :: wfmtq(:,:,:,:),wfirq(:,:,:) complex(4), allocatable :: crhomt(:,:),crhoir(:) complex(8), allocatable :: zrhoig(:,:),zw(:),c(:,:,:,:) if (.not.spinpol) then write(*,*) write(*,'("Error(genspchi0): spin-unpolarised calculation")') write(*,*) stop end if ! k+q-vector in lattice coordinates vkql(1:3)=vkl(1:3,ik)+vqpl(1:3) ! equivalent reduced k-points for k and k+q jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) call findkpt(vkql,isym,jkq) ! count and index states at k and k+q in energy window nst=0 do ist=1,nstsv if (abs(evalsv(ist,jk)-efermi) > emaxrf) cycle nst=nst+1 idx(nst)=ist end do nstq=0 do ist=1,nstsv if (abs(evalsv(ist,jkq)-efermi) > emaxrf) cycle nstq=nstq+1 idxq(nstq)=ist end do ! generate the wavefunctions for all states at k and k+q in energy window allocate(igpig(ngkmax,nspnfv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfir(ngtc,nspinor,nst)) call genwfsvp_sp(.false.,.false.,nst,idx,ngdgc,igfc,vkl(:,ik),ngp,igpig,wfmt, & ngtc,wfir) deallocate(igpig) allocate(igpqig(ngkmax,nspnfv)) allocate(wfmtq(npcmtmax,natmtot,nspinor,nstq),wfirq(ngtc,nspinor,nstq)) call genwfsvp_sp(.false.,.false.,nstq,idxq,ngdgc,igfc,vkql,ngpq,igpqig,wfmtq, & ngtc,wfirq) deallocate(igpqig) call holdthd(nst,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(crhomt,crhoir,zrhoig,zw,c) & !$OMP PRIVATE(jst,kst,lst,ei,ej,eij,t1) & !$OMP PRIVATE(iw,i,j,a,b,tz,ig,jg,z1) & !$OMP NUM_THREADS(nthd) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) allocate(zrhoig(ngrf,4),zw(nwrf),c(ngrf,4,ngrf,4)) !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nst kst=idx(ist) ei=evalsv(kst,jk) do jst=1,nstq lst=idxq(jst) t1=wkptnr*omega*(occsv(kst,jk)-occsv(lst,jkq)) if (abs(t1) < 1.d-8) cycle ej=evalsv(lst,jkq) eij=ei-ej ! frequency-dependent part in response function formula for all frequencies do iw=1,nwrf zw(iw)=t1/(eij+wrf(iw)) end do ! compute the complex density in G+q-space i=0 do a=1,2 do b=1,2 i=i+1 ! find which contributions are zero for collinear case tz(i)=.false. if (.not.ncmag) then if (((a == 1).and.(kst > nstfv)).or. & ((a == 2).and.(kst <= nstfv)).or. & ((b == 1).and.(lst > nstfv)).or. & ((b == 2).and.(lst <= nstfv))) then tz(i)=.true. cycle end if end if call gencrho(.true.,.false.,ngtc,wfmt(:,:,a,ist),wfir(:,a,ist), & wfmtq(:,:,b,jst),wfirq(:,b,jst),crhomt,crhoir) call zftcf(ngrf,jlgqr,ylmgq,ngrf,sfacgq,crhomt,crhoir,zrhoig(:,i)) end do end do ! Hermitian part of matrix do j=1,4 if (tz(j)) cycle do jg=1,ngrf z1=conjg(zrhoig(jg,j)) do i=1,4 if (tz(i)) cycle do ig=1,ngrf c(ig,i,jg,j)=zrhoig(ig,i)*z1 end do end do end do end do do iw=1,nwrf z1=zw(iw) call omp_set_lock(lock(iw)) do j=1,4 if (tz(j)) cycle do jg=1,ngrf do i=1,4 if (tz(i)) cycle call zaxpy(ngrf,z1,c(:,i,jg,j),1,chi0(:,i,jg,j,iw),1) end do end do end do call omp_unset_lock(lock(iw)) end do ! end loop over jst end do ! end loop over ist end do !$OMP END DO deallocate(crhomt,crhoir,zrhoig,zw,c) !$OMP END PARALLEL call freethd(nthd) deallocate(wfmt,wfmtq,wfir,wfirq) end subroutine !EOC elk-10.4.9/src/PaxHeaders/potefield.f900000644000000000000000000000013214762655564014544 xustar0030 mtime=1741380468.596009129 30 atime=1741380466.699999217 30 ctime=1741380468.596009129 elk-10.4.9/src/potefield.f900000644002504400250440000000345114762655564017271 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potefield use modmain implicit none ! local variables integer is,ia,ias integer nr,nri,ir integer i,i1,i2,i3 real(8) e,tp(2),r,t1,t2 real(8) v0,e00,elm(-1:1) real(8) v1(3),v2(3) ! constant added to potential so that it is zero at the unit cell center v1(:)=0.5d0*(avec(:,1)+avec(:,2)+avec(:,3)) v0=dot_product(efieldc(:),v1(:)) ! determine the electric field vector in spherical coordinates call sphcrd(efieldc,e,tp) ! coefficients for real spherical harmonics R_1-1, R_10 and R_11 t1=e*sqrt(fourpi/3.d0) elm(-1)=t1*sin(tp(1))*sin(tp(2)) elm(0)=-t1*cos(tp(1)) elm(1)=t1*sin(tp(1))*cos(tp(2)) ! muffin-tin potential do is=1,nspecies nr=nrmt(is) nri=nrmti(is) do ia=1,natoms(is) ias=idxas(ia,is) ! coefficient for R_00 e00=v0-dot_product(efieldc(:),atposc(:,ia,is)) e00=e00*y00i i=1 do ir=1,nr r=rsp(ir,is) vclmt(i,ias)=vclmt(i,ias)+e00 vclmt(i+1,ias)=vclmt(i+1,ias)+elm(-1)*r vclmt(i+2,ias)=vclmt(i+2,ias)+elm(0)*r vclmt(i+3,ias)=vclmt(i+3,ias)+elm(1)*r if (ir <= nri) then i=i+lmmaxi else i=i+lmmaxo end if end do end do end do ! interstitial potential t2=0.5d0*vmaxefc ir=0 do i3=0,ngridg(3)-1 v1(3)=dble(i3)/dble(ngridg(3)) do i2=0,ngridg(2)-1 v1(2)=dble(i2)/dble(ngridg(2)) do i1=0,ngridg(1)-1 v1(1)=dble(i1)/dble(ngridg(1)) ir=ir+1 call r3mv(avec,v1,v2) t1=efieldc(1)*v2(1)+efieldc(2)*v2(2)+efieldc(3)*v2(3) t1=v0-t1 if (abs(t1) < vmaxefc) then vclir(ir)=vclir(ir)+t1 else vclir(ir)=vclir(ir)+sign(t2,t1) end if end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/rhoinit.f900000644000000000000000000000013214762655564014245 xustar0030 mtime=1741380468.598009139 30 atime=1741380466.702999232 30 ctime=1741380468.598009139 elk-10.4.9/src/rhoinit.f900000644002504400250440000000743314762655564016776 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rhoinit ! !INTERFACE: subroutine rhoinit ! !USES: use modmain use modomp ! !DESCRIPTION: ! Initialises the crystal charge density. Inside the muffin-tins it is set to ! the spherical atomic density. In the interstitial region it is taken to be ! constant such that the total charge is correct. Requires that the atomic ! densities have already been calculated. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! local variables integer lmax,is,ia,ias,nthd integer nr,nri,nro,nrs,iro,ir integer nrc,nrci,irco,irc integer l,lm,i0,i1,ig,ifg real(8) x,sm,t1,t2 complex(8) z1,z2 ! automatic arrays real(8) ffg(ngvc),wr(nrspmax),jl(0:lmaxi,nrcmtmax) complex(8) zfmt(npcmtmax),zfft(ngtc) lmax=min(lmaxi,1) ! compute the superposition of all the atomic density tails zfft(1:ngtc)=0.d0 call holdthd(nspecies,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ffg,wr,nr,nrs,nro,ig) & !$OMP PRIVATE(t1,t2,sm,ir,x,ia,ias,ifg) & !$OMP REDUCTION(+:zfft) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do is=1,nspecies nr=nrmt(is) nrs=nrsp(is) nro=nrs-nr+1 ! determine the weights for the radial integral call wsplint(nro,rsp(nr,is),wr(nr)) do ig=1,ngvc t1=gc(ig) ! spherical bessel function j_0(x) times the atomic density tail if (t1 > epslat) then t2=1.d0/t1 sm=0.d0 do ir=nr,nrs x=t1*rsp(ir,is) sm=sm+t2*sin(x)*rhosp(ir,is)*rsp(ir,is)*wr(ir) end do else sm=sum(rhosp(nr:nrs,is)*(rsp(nr:nrs,is)**2)*wr(nr:nrs)) end if ! apply low-pass filter t1=sm*exp(-4.d0*(gc(ig)/gmaxvr)**2) ffg(ig)=(fourpi/omega)*t1 end do do ia=1,natoms(is) ias=idxas(ia,is) do ig=1,ngvc ifg=igfc(ig) zfft(ifg)=zfft(ifg)+ffg(ig)*conjg(sfacg(ig,ias)) end do end do end do !$OMP END PARALLEL DO call freethd(nthd) ! compute the tails in each muffin-tin call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(jl,zfmt,is,nrc,nrci) & !$OMP PRIVATE(irco,ig,ifg,irc,x) & !$OMP PRIVATE(z1,z2,lm,l,i0,i1) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) irco=nrci+1 zfmt(1:npcmt(is))=0.d0 do ig=1,ngvc ifg=igfc(ig) do irc=1,nrc x=gc(ig)*rcmt(irc,is) call sbessel(lmax,x,jl(:,irc)) end do z1=zfft(ifg)*sfacg(ig,ias) do l=0,lmax do lm=l**2+1,(l+1)**2 z2=z1*conjg(ylmg(lm,ig)) i1=lmmaxi*(nrci-1)+lm zfmt(lm:i1:lmmaxi)=zfmt(lm:i1:lmmaxi)+jl(l,1:nrci)*z2 i0=i1+lmmaxi i1=lmmaxo*(nrc-irco)+i0 zfmt(i0:i1:lmmaxo)=zfmt(i0:i1:lmmaxo)+jl(l,irco:nrc)*z2 end do end do end do call ztorfmt(nrc,nrci,zfmt,rhomt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! convert the density from a coarse to a fine radial mesh call rfmtctof(rhomt) ! add the atomic charge density and the excess charge in each muffin-tin t1=chgexs/omega do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 i1=lmmaxi*(nri-1)+1 rhomt(1:i1:lmmaxi,ias)=rhomt(1:i1:lmmaxi,ias)+(t1+rhosp(1:nri,is))*y00i i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 rhomt(i0:i1:lmmaxo,ias)=rhomt(i0:i1:lmmaxo,ias)+(t1+rhosp(iro:nr,is))*y00i end do ! deallocate the global array rhosp as it is not used again deallocate(rhosp) ! interstitial density determined from the atomic tails and excess charge call zfftifc(3,ngdgc,1,zfft) do ir=1,ngtc rhoir(ir)=dble(zfft(ir))+t1 ! make sure that the density is always positive if (rhoir(ir) < 1.d-10) rhoir(ir)=1.d-10 end do ! convert the interstitial density from coarse to fine grid call rfirctof(rhoir,rhoir) end subroutine !EOC elk-10.4.9/src/PaxHeaders/eveqnsv.f900000644000000000000000000000013214762655564014260 xustar0030 mtime=1741380468.599009145 30 atime=1741380466.704999243 30 ctime=1741380468.599009145 elk-10.4.9/src/eveqnsv.f900000644002504400250440000002673214762655564017014 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2010 J. K. Dewhurst, S. Sharma, C. Ambrosch-Draxl, ! F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnsv(ngp,igpig,vgpc,apwalm,evalfv,evecfv,evalsvp,evecsv) use modmain use moddftu use modomp implicit none ! arguments integer, intent(in) :: ngp,igpig(ngkmax) real(8), intent(in) :: vgpc(3,ngkmax) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) real(8), intent(in) :: evalfv(nstfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv) real(8), intent(out) :: evalsvp(nstsv) complex(8), intent(out) :: evecsv(nstsv,nstsv) ! local variables logical todsb,socz integer ld,ist,jst,ispn,is,ias integer nrc,nrci,nrco,irco,irc integer l,lm,nm,npc,npc2,npci,ipco integer ngp2,igp,i0,i,j,nthd real(8) ca,a(3),asp(3,3),t1 real(8) ts0,ts1 complex(8) z1,z2,z3 complex(4) c1 ! automatic arrays complex(8) wfmt2(npcmtmax),wfmt4(npcmtmax,3) complex(8) wfmt31(npcmtmax),wfmt32(npcmtmax),wfmt33(npcmtmax) complex(4) wfmt5(npcmtmax),wfgp1(ngkmax),wfgp2(ngkmax),wfgp3(ngkmax) complex(4) wfir1(ngtc),wfir2(ngtc) ! allocatable arrays complex(4), allocatable :: wfmt0(:,:),wfgp0(:,:) complex(8), allocatable :: wfmt1(:,:) ! external functions real(4), external :: sdot complex(4), external :: cdotc ! no calculation of second-variational eigenvectors if (.not.tevecsv) then evalsvp(1:nstsv)=evalfv(1:nstsv) evecsv(1:nstsv,1:nstsv)=0.d0 do i=1,nstsv evecsv(i,i)=1.d0 end do return end if call timesec(ts0) ! coupling constant of the external A-field (-1/c) ca=-1.d0/solsc if (tafield) a(1:3)=ca*afieldc(1:3) if (tafsp) asp(1:3,1:3)=ca*afspc(1:3,1:3) ! check if the off-diagonal spin block of the Hamiltonian is required todsb=(spinpol.and.(ncmag.or.spinorb)) ! special case of spin-orbit coupling and collinear magnetism socz=(spinorb.and.cmagz) ld=lmmaxdm*nspinor call holdthd(nstfv,nthd) ! zero the second-variational Hamiltonian (stored in the eigenvector array) evecsv(1:nstsv,1:nstsv)=0.d0 ! set the diagonal elements equal to the first-variational eigenvalues do ispn=1,nspinor do ist=1,nstfv i=nstfv*(ispn-1)+ist evecsv(i,i)=evalfv(ist) end do end do !-------------------------! ! muffin-tin part ! !-------------------------! allocate(wfmt0(npcmtmax,nstfv),wfmt1(npcmtmax,nstfv)) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfmt2,wfmt31,wfmt32,wfmt33,wfmt4,wfmt5) & !$OMP PRIVATE(ias,is,nrc,nrci,nrco,irco) & !$OMP PRIVATE(npc,npc2,npci,ipco,ist,jst,irc) & !$OMP PRIVATE(t1,i0,i,j,l,nm,lm,z1,z2,z3) & !$OMP NUM_THREADS(nthd) ! begin loop over atoms do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci irco=nrci+1 npc=npcmt(is) npc2=npc*2 npci=npcmti(is) ipco=npci+1 ! compute the first-variational wavefunctions !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv call wfmtfv(ias,ngp,apwalm(:,:,:,ias),evecfv(:,ist),wfmt1(:,ist)) ! multiply wavefunction by integration weights and store as single-precision call zcfmtwr(nrc,nrci,wr2cmt(:,is),wfmt1(:,ist),wfmt0(:,ist)) end do !$OMP END DO ! begin loop over states !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstfv if (spinpol) then ! convert wavefunction to spherical coordinates call zbsht(nrc,nrci,wfmt1(:,jst),wfmt2) ! apply Kohn-Sham effective magnetic field wfmt32(1:npc)=bsmt(1:npc,ias,ndmag)*wfmt2(1:npc) ! convert to spherical harmonics call zfsht(nrc,nrci,wfmt32,wfmt31) ! non-collinear magnetic field if (socz) then wfmt33(1:npc)=0.d0 else if (ncmag) then wfmt32(1:npc)=cmplx(bsmt(1:npc,ias,1),-bsmt(1:npc,ias,2),8)*wfmt2(1:npc) call zfsht(nrc,nrci,wfmt32,wfmt33) end if wfmt32(1:npc)=-wfmt31(1:npc) ! apply spin-orbit coupling if required if (spinorb) then call lopzflmn(lmaxi,nrci,lmmaxi,wfmt1(1,jst),wfmt4,wfmt4(1,2), & wfmt4(1,3)) call lopzflmn(lmaxo,nrco,lmmaxo,wfmt1(ipco,jst),wfmt4(ipco,1), & wfmt4(ipco,2),wfmt4(ipco,3)) ! inner part of muffin-tin do irc=1,nrci t1=socfr(irc,ias) i0=lmmaxi*(irc-1) do i=i0+1,i0+lmmaxi wfmt31(i)=wfmt31(i)+t1*wfmt4(i,3) wfmt32(i)=wfmt32(i)-t1*wfmt4(i,3) wfmt33(i)=wfmt33(i)+t1*(wfmt4(i,1)+zmi*wfmt4(i,2)) end do end do ! outer part of muffin-tin do irc=irco,nrc t1=socfr(irc,ias) i0=npci+lmmaxo*(irc-irco) do i=i0+1,i0+lmmaxo wfmt31(i)=wfmt31(i)+t1*wfmt4(i,3) wfmt32(i)=wfmt32(i)-t1*wfmt4(i,3) wfmt33(i)=wfmt33(i)+t1*(wfmt4(i,1)+zmi*wfmt4(i,2)) end do end do end if else wfmt31(1:npc)=0.d0 end if ! apply muffin-tin DFT+U potential matrix if required if (tvmatmt) then do l=0,lmaxdm if (tvmmt(l,ias)) then nm=2*l+1 lm=l**2+1 i=npci+lm if (l <= lmaxi) then call zgemm('N','N',nm,nrci,nm,zone,vmatmt(lm,1,lm,1,ias),ld, & wfmt1(lm,jst),lmmaxi,zone,wfmt31(lm),lmmaxi) end if call zgemm('N','N',nm,nrco,nm,zone,vmatmt(lm,1,lm,1,ias),ld, & wfmt1(i,jst),lmmaxo,zone,wfmt31(i),lmmaxo) if (spinpol) then if (l <= lmaxi) then call zgemm('N','N',nm,nrci,nm,zone,vmatmt(lm,2,lm,2,ias),ld, & wfmt1(lm,jst),lmmaxi,zone,wfmt32(lm),lmmaxi) end if call zgemm('N','N',nm,nrco,nm,zone,vmatmt(lm,2,lm,2,ias),ld, & wfmt1(i,jst),lmmaxo,zone,wfmt32(i),lmmaxo) if (todsb) then if (l <= lmaxi) then call zgemm('N','N',nm,nrci,nm,zone,vmatmt(lm,1,lm,2,ias),ld, & wfmt1(lm,jst),lmmaxi,zone,wfmt33(lm),lmmaxi) end if call zgemm('N','N',nm,nrco,nm,zone,vmatmt(lm,1,lm,2,ias),ld, & wfmt1(i,jst),lmmaxo,zone,wfmt33(i),lmmaxo) end if end if end if end do end if ! apply vector potential if required if (tafield.or.tafsp) then call gradzfmt(nrc,nrci,rlcmt(:,-1,is),wcrcmt(:,:,is),wfmt1(:,jst), & npcmtmax,wfmt4) if (tafield) then do i=1,npc z1=zmi*(a(1)*wfmt4(i,1)+a(2)*wfmt4(i,2)+a(3)*wfmt4(i,3)) wfmt31(i)=wfmt31(i)+z1 if (spinpol) wfmt32(i)=wfmt32(i)+z1 end do end if ! apply spin-dependent vector potential if required if (tafsp) then do i=1,npc z3=zmi*(asp(1,3)*wfmt4(i,1)+asp(2,3)*wfmt4(i,2)+asp(3,3)*wfmt4(i,3)) wfmt31(i)=wfmt31(i)+z3 wfmt32(i)=wfmt32(i)-z3 if (ncmag) then z1=asp(1,1)*wfmt4(i,1)+asp(2,1)*wfmt4(i,2)+asp(3,1)*wfmt4(i,3) z2=asp(1,2)*wfmt4(i,1)+asp(2,2)*wfmt4(i,2)+asp(3,2)*wfmt4(i,3) wfmt33(i)=wfmt33(i)+zmi*z1-z2 end if end do end if end if ! add to second-variational Hamiltonian matrix ! upper diagonal block wfmt5(1:npc)=wfmt31(1:npc) do ist=1,jst-1 evecsv(ist,jst)=evecsv(ist,jst)+cdotc(npc,wfmt0(:,ist),1,wfmt5,1) end do evecsv(jst,jst)=evecsv(jst,jst)+sdot(npc2,wfmt0(:,jst),1,wfmt5,1) if (spinpol) then j=jst+nstfv ! lower diagonal block wfmt5(1:npc)=wfmt32(1:npc) do ist=1,jst-1 i=ist+nstfv evecsv(i,j)=evecsv(i,j)+cdotc(npc,wfmt0(:,ist),1,wfmt5,1) end do evecsv(j,j)=evecsv(j,j)+sdot(npc2,wfmt0(:,jst),1,wfmt5,1) ! off-diagonal block if (todsb) then wfmt5(1:npc)=wfmt33(1:npc) do ist=1,nstfv evecsv(ist,j)=evecsv(ist,j)+cdotc(npc,wfmt0(:,ist),1,wfmt5,1) end do end if end if ! end loop over states end do !$OMP END DO ! end loop over atoms end do !$OMP END PARALLEL deallocate(wfmt0,wfmt1) !---------------------------! ! interstitial part ! !---------------------------! if (spinpol.or.tafield) then if (socz) todsb=.false. ngp2=ngp*2 allocate(wfgp0(ngp,nstfv)) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfir1,wfir2,wfgp1,wfgp2,wfgp3) & !$OMP PRIVATE(ist,jst,igp,t1,c1,i,j) & !$OMP NUM_THREADS(nthd) ! make single-precision copy of wavefunction !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv wfgp0(1:ngp,ist)=evecfv(1:ngp,ist) end do !$OMP END DO ! begin loop over states !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstfv wfir1(1:ngtc)=0.e0 do igp=1,ngp wfir1(igfc(igpig(igp)))=wfgp0(igp,jst) end do ! Fourier transform wavefunction to real-space call cfftifc(3,ngdgc,1,wfir1) ! multiply with magnetic field and transform to G-space if (spinpol) then wfir2(1:ngtc)=bsirc(1:ngtc,ndmag)*wfir1(1:ngtc) call cfftifc(3,ngdgc,-1,wfir2) do igp=1,ngp wfgp1(igp)=wfir2(igfc(igpig(igp))) end do wfgp2(1:ngp)=-wfgp1(1:ngp) if (ncmag) then wfir2(1:ngtc)=cmplx(bsirc(1:ngtc,1),-bsirc(1:ngtc,2),8)*wfir1(1:ngtc) call cfftifc(3,ngdgc,-1,wfir2) do igp=1,ngp wfgp3(igp)=wfir2(igfc(igpig(igp))) end do end if else wfgp1(1:ngp)=0.e0 end if ! apply vector potential if required if (tafield) then wfir1(1:ngtc)=0.e0 do igp=1,ngp t1=a(1)*vgpc(1,igp)+a(2)*vgpc(2,igp)+a(3)*vgpc(3,igp) wfir1(igfc(igpig(igp)))=t1*wfgp0(igp,jst) end do call cfftifc(3,ngdgc,1,wfir1) wfir1(1:ngtc)=wfir1(1:ngtc)*cfrc(1:ngtc) call cfftifc(3,ngdgc,-1,wfir1) do igp=1,ngp c1=wfir1(igfc(igpig(igp))) wfgp1(igp)=wfgp1(igp)+c1 if (spinpol) wfgp2(igp)=wfgp2(igp)+c1 end do end if ! apply spin-dependent vector potential if required if (tafsp) then do j=1,3 if (sum(abs(asp(1:3,j))) < 1.d-8) cycle wfir1(1:ngtc)=0.e0 do igp=1,ngp t1=asp(1,j)*vgpc(1,igp)+asp(2,j)*vgpc(2,igp)+asp(3,j)*vgpc(3,igp) wfir1(igfc(igpig(igp)))=t1*wfgp0(igp,jst) end do call cfftifc(3,ngdgc,1,wfir1) wfir1(1:ngtc)=wfir1(1:ngtc)*cfrc(1:ngtc) call cfftifc(3,ngdgc,-1,wfir1) if (j == 1) then do igp=1,ngp wfgp3(igp)=wfgp3(igp)+wfir1(igfc(igpig(igp))) end do else if (j == 2) then do igp=1,ngp c1=wfir1(igfc(igpig(igp))) wfgp3(igp)=wfgp3(igp)+cmi*c1 end do else do igp=1,ngp c1=wfir1(igfc(igpig(igp))) wfgp1(igp)=wfgp1(igp)+c1 wfgp2(igp)=wfgp2(igp)-c1 end do end if end do end if ! add to second-variational Hamiltonian matrix ! upper diagonal block do ist=1,jst-1 evecsv(ist,jst)=evecsv(ist,jst)+cdotc(ngp,wfgp0(:,ist),1,wfgp1,1) end do evecsv(jst,jst)=evecsv(jst,jst)+sdot(ngp2,wfgp0(:,jst),1,wfgp1,1) if (spinpol) then j=jst+nstfv ! lower diagonal block do ist=1,jst-1 i=ist+nstfv evecsv(i,j)=evecsv(i,j)+cdotc(ngp,wfgp0(:,ist),1,wfgp2,1) end do evecsv(j,j)=evecsv(j,j)+sdot(ngp2,wfgp0(:,jst),1,wfgp2,1) ! off-diagonal block if (todsb) then do ist=1,nstfv evecsv(ist,j)=evecsv(ist,j)+cdotc(ngp,wfgp0(:,ist),1,wfgp3,1) end do end if end if ! end loop over states end do !$OMP END DO !$OMP END PARALLEL deallocate(wfgp0) end if call freethd(nthd) if (ncmag.or.spinorb.or.(.not.spinpol)) then ! spins are coupled; or spin-unpolarised: full diagonalisation call eveqnzh(nstsv,nstsv,evecsv,evalsvp) else ! spins not coupled: block diagonalise H call eveqnzh(nstfv,nstsv,evecsv,evalsvp) evecsv(nstfv+1:nstsv,1:nstfv)=0.d0 evecsv(1:nstfv,nstfv+1:nstsv)=0.d0 i=nstfv+1 call eveqnzh(nstfv,nstsv,evecsv(i,i),evalsvp(i)) end if call timesec(ts1) !$OMP ATOMIC timesv=timesv+ts1-ts0 end subroutine elk-10.4.9/src/PaxHeaders/roteuler.f900000644000000000000000000000013214762655564014432 xustar0030 mtime=1741380468.601009155 30 atime=1741380466.707999259 30 ctime=1741380468.601009155 elk-10.4.9/src/roteuler.f900000644002504400250440000000535114762655564017160 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: roteuler ! !INTERFACE: subroutine roteuler(rot,ang) ! !INPUT/OUTPUT PARAMETERS: ! rot : proper rotation matrix (in,real(3,3)) ! ang : Euler angles (alpha, beta, gamma) (out,real(3)) ! !DESCRIPTION: ! Given a rotation matrix ! \begin{align*} ! &R(\alpha,\beta,\gamma)=\\ ! &\left(\begin{matrix} ! \cos\gamma\cos\beta\cos\alpha-\sin\gamma\sin\alpha & ! \cos\gamma\cos\beta\sin\alpha+\sin\gamma\cos\alpha & ! -\cos\gamma\sin\beta \\ ! -\sin\gamma\cos\beta\cos\alpha-\cos\gamma\sin\alpha & ! -\sin\gamma\cos\beta\sin\alpha+\cos\gamma\cos\alpha & ! \sin\gamma\sin\beta \\ ! \sin\beta\cos\alpha & ! \sin\beta\sin\alpha & ! \cos\beta ! \end{matrix}\right), ! \end{align*} ! this routine determines the Euler angles, $(\alpha,\beta,\gamma)$. This ! corresponds to the so-called `$y$-convention', which involves the following ! successive rotations of the coordinate system: ! \begin{itemize} ! \item[1.]{The $x_1$-, $x_2$-, $x_3$-axes are rotated anticlockwise through ! an angle $\alpha$ about the $x_3$ axis} ! \item[2.]{The $x_1'$-, $x_2'$-, $x_3'$-axes are rotated anticlockwise ! through an angle $\beta$ about the $x_2'$ axis} ! \item[3.]{The $x_1''$-, $x_2''$-, $x_3''$-axes are rotated anticlockwise ! through an angle $\gamma$ about the $x_3''$ axis} ! \end{itemize} ! Note that the Euler angles are not necessarily unique for a given rotation ! matrix. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) ! Fixed problem thanks to Frank Wagner, June 2013 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rot(3,3) real(8), intent(out) :: ang(3) ! local variables real(8), parameter :: eps=1.d-8 real(8), parameter :: pi=3.1415926535897932385d0 real(8) det ! find the determinant det=rot(1,1)*(rot(2,2)*rot(3,3)-rot(3,2)*rot(2,3)) & +rot(2,1)*(rot(3,2)*rot(1,3)-rot(1,2)*rot(3,3)) & +rot(3,1)*(rot(1,2)*rot(2,3)-rot(2,2)*rot(1,3)) if (abs(det-1.d0) > eps) then write(*,*) write(*,'("Error(roteuler): matrix improper or not unitary")') write(*,'(" Determinant : ",G18.10)') det write(*,*) stop end if if ((abs(rot(3,1)) > eps).or.(abs(rot(3,2)) > eps)) then ang(1)=atan2(rot(3,2),rot(3,1)) if (abs(rot(3,1)) > abs(rot(3,2))) then ang(2)=atan2(rot(3,1)/cos(ang(1)),rot(3,3)) else ang(2)=atan2(rot(3,2)/sin(ang(1)),rot(3,3)) end if ang(3)=atan2(rot(2,3),-rot(1,3)) else ang(1)=atan2(rot(1,2),rot(1,1)) if (rot(3,3) > 0.d0) then ang(2)=0.d0 ang(3)=0.d0 else ang(2)=pi ang(3)=pi end if end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/genrmesh.f900000644000000000000000000000013014762655564014377 xustar0029 mtime=1741380468.60200916 30 atime=1741380466.710999274 29 ctime=1741380468.60200916 elk-10.4.9/src/genrmesh.f900000644002504400250440000001045514762655564017130 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genrmesh ! !INTERFACE: subroutine genrmesh ! !USES: use modmain use modvars ! !DESCRIPTION: ! Generates the coarse and fine radial meshes for each atomic species in the ! crystal. Also determines which points are in the inner part of the ! muffin-tin using the value of {\tt fracinr}. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) !EOP !BOC implicit none ! local variables integer is,nr,nrc,ir,irc,l real(8) t1 ! estimate the number of radial mesh points to infinity nrspmax=1 do is=1,nspecies ! logarithmic mesh t1=log(rmaxsp(is)/rminsp(is))/log(rmt(is)/rminsp(is)) t1=dble(nrmt(is)-1)*t1 nrsp(is)=nint(t1)+1 nrspmax=max(nrspmax,nrsp(is)) end do ! compute and store (R_mt)ˡ if (allocated(rmtl)) deallocate(rmtl) allocate(rmtl(0:lmaxo+3,nspecies)) do is=1,nspecies rmtl(0,is)=1.d0 do l=1,lmaxo+3 rmtl(l,is)=rmtl(l-1,is)*rmt(is) end do end do ! generate the radial meshes if (allocated(rsp)) deallocate(rsp) allocate(rsp(nrspmax,nspecies)) if (allocated(rlmt)) deallocate(rlmt) allocate(rlmt(nrmtmax,-lmaxo-1:lmaxo+2,nspecies)) if (allocated(wrmt)) deallocate(wrmt) allocate(wrmt(nrmtmax,nspecies)) if (allocated(wr2mt)) deallocate(wr2mt) allocate(wr2mt(nrmtmax,nspecies)) if (allocated(wprmt)) deallocate(wprmt) allocate(wprmt(4,nrmtmax,nspecies)) if (allocated(wcrmt)) deallocate(wcrmt) allocate(wcrmt(12,nrmtmax,nspecies)) do is=1,nspecies ! generate logarithmic radial mesh t1=log(rmt(is)/rminsp(is))/dble(nrmt(is)-1) do ir=1,nrsp(is) rsp(ir,is)=rminsp(is)*exp(dble(ir-1)*t1) end do ! calculate rˡ on the fine radial mesh nr=nrmt(is) rlmt(1:nr,-1,is)=1.d0/rsp(1:nr,is) rlmt(1:nr,0,is)=1.d0 rlmt(1:nr,1,is)=rsp(1:nr,is) do l=-2,-lmaxo-1,-1 rlmt(1:nr,l,is)=rlmt(1:nr,l+1,is)*rlmt(1:nr,-1,is) end do do l=2,lmaxo+2 rlmt(1:nr,l,is)=rlmt(1:nr,l-1,is)*rlmt(1:nr,1,is) end do ! determine the weights for spline integration on the fine radial mesh call wsplint(nr,rsp(:,is),wrmt(:,is)) ! multiply by r² and store in separate array wr2mt(1:nr,is)=wrmt(1:nr,is)*rlmt(1:nr,2,is) ! determine the weights for partial integration on fine radial mesh call wsplintp(nr,rsp(:,is),wprmt(:,:,is)) ! determine the weights for the spline coefficients call wspline(nr,rsp(:,is),wcrmt(:,:,is)) end do ! determine the fraction of the muffin-tin radius which defines the inner part if (fracinr < 0.d0) fracinr=sqrt(dble(lmmaxi)/dble(lmmaxo)) ! set up the coarse radial meshes and find the inner part of the muffin-tin ! where rho is calculated with lmaxi if (allocated(rcmt)) deallocate(rcmt) allocate(rcmt(nrcmtmax,nspecies)) if (allocated(rlcmt)) deallocate(rlcmt) allocate(rlcmt(nrcmtmax,-lmaxo-1:lmaxo+2,nspecies)) if (allocated(wr2cmt)) deallocate(wr2cmt) allocate(wr2cmt(nrcmtmax,nspecies)) if (allocated(wprcmt)) deallocate(wprcmt) allocate(wprcmt(4,nrcmtmax,nspecies)) if (allocated(wcrcmt)) deallocate(wcrcmt) allocate(wcrcmt(12,nrcmtmax,nspecies)) do is=1,nspecies t1=fracinr*rmt(is) nrmti(is)=1 nrcmti(is)=1 do ir=1,nrmt(is),lradstp irc=(ir-1)/lradstp+1 rcmt(irc,is)=rsp(ir,is) if (rsp(ir,is) < t1) then nrmti(is)=ir nrcmti(is)=irc end if end do ! store rˡ on the coarse radial mesh do l=-lmaxo-1,lmaxo+2 do ir=1,nrmt(is),lradstp irc=(ir-1)/lradstp+1 rlcmt(irc,l,is)=rlmt(ir,l,is) end do end do ! determine the weights for spline integration on the coarse radial mesh nrc=nrcmt(is) call wsplint(nrc,rcmt(:,is),wr2cmt(:,is)) ! multiply by r² wr2cmt(1:nrc,is)=wr2cmt(1:nrc,is)*rlcmt(1:nrc,2,is) ! determine the weights for partial integration on coarse radial mesh call wsplintp(nrc,rcmt(:,is),wprcmt(:,:,is)) ! determine the weights for the spline coefficients call wspline(nrc,rcmt(:,is),wcrcmt(:,:,is)) end do ! write to VARIABLES.OUT if (wrtvars) then call writevars('nrsp',nv=nspecies,iva=nrsp) call writevars('nrmt',nv=nspecies,iva=nrmt) call writevars('nrmti',nv=nspecies,iva=nrmti) call writevars('lradstp',iv=lradstp) call writevars('nrcmt',nv=nspecies,iva=nrcmt) call writevars('nrcmti',nv=nspecies,iva=nrcmti) do is=1,nspecies call writevars('rsp',nv=nrmt(is),rva=rsp(:,is)) end do end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/splint.f900000644000000000000000000000013214762655564014102 xustar0030 mtime=1741380468.603009165 30 atime=1741380466.712999285 30 ctime=1741380468.603009165 elk-10.4.9/src/splint.f900000644002504400250440000000340514762655564016626 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function splint(n,x,f) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x(n),f(n) ! local variables integer i real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) t0,t1,t2,t3,t4,t5,t6,t7 ! external functions real(8), external :: polynm if (n <= 4) then splint=polynm(-1,n,x,f,x(n)) return end if ! fit piecewise cubic spline to data and integrate x0=x(1) x1=x(2)-x0; x2=x(3)-x0; x3=x(4)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3 y0=f(1) y1=f(2)-y0; y2=f(3)-y0; y3=f(4)-y0 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=0.5d0/(t3*t4*t5*t6) t3=t3*y2 t7=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 y1=t3*t6-t1*t5; y3=t2*t5-t3*t4; y2=t1*t4-t2*t6 t1=x1*y1+x2*y2+x3*y3 t2=y1+y2+y3 splint=x2*(y0+t0*(t1+x2*(0.5d0*t7*x2-0.6666666666666666667d0*t2))) do i=3,n-3 x0=x(i) x1=x(i-1)-x0; x2=x(i+1)-x0; x3=x(i+2)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3; t3=x1*x3 y0=f(i) y1=f(i-1)-y0; y2=f(i+1)-y0; y3=f(i+2)-y0 t1=x1*x2*y3; t2=x2*x3*y1 t0=0.5d0/(t3*t4*t5*t6) t3=t3*y2 t7=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 y1=t3*t6-t1*t5; y2=t1*t4-t2*t6; y3=t2*t5-t3*t4 t1=x1*y1+x2*y2+x3*y3 t2=y1+y2+y3 splint=splint+x2*(y0+t0*(t1+x2*(0.5d0*t7*x2-0.6666666666666666667d0*t2))) end do x0=x(n-2) x1=x(n-3)-x0; x2=x(n-1)-x0; x3=x(n)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3 y0=f(n-2) y1=f(n-3)-y0; y2=f(n-1)-y0; y3=f(n)-y0 t1=x1*x2; t2=x2*x3*y1; t3=x1*x3*y2 t0=0.5d0/(t1*t4*t5*t6) t1=t1*y3 t7=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 y1=t3*t6-t1*t5; y2=t1*t4-t2*t6; y3=t2*t5-t3*t4 t1=x1*y1+x2*y2+x3*y3 t2=y1+y2+y3 splint=splint+x3*(y0+t0*(t1+x3*(0.5d0*t7*x3-0.6666666666666666667d0*t2))) end function elk-10.4.9/src/PaxHeaders/wavefcr.f900000644000000000000000000000013014762655564014224 xustar0030 mtime=1741380468.605009176 28 atime=1741380466.7159993 30 ctime=1741380468.605009176 elk-10.4.9/src/wavefcr.f900000644002504400250440000000441014762655564016747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2011 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine wavefcr(tsh,lrstp,is,ia,ist,m,ld,wfcr) use modmain implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: lrstp,is,ia,ist ! pass in m-1/2 integer, intent(in) :: m integer, intent(in) :: ld complex(4), intent(out) :: wfcr(ld,2) ! local variables integer ias,nr,nri,ir integer k,l,lm1,lm2 integer i,i1,i2 real(8) c1,c2,t0,t1,t2 l=lsp(ist,is) k=ksp(ist,is) if (l > lmaxo) then wfcr(:,:)=0.e0 return end if ias=idxas(ia,is) ! calculate the Clebsch-Gordon coefficients t1=sqrt(dble(l+m+1)/dble(2*l+1)) t2=sqrt(dble(l-m)/dble(2*l+1)) if (k == l+1) then c1=t1 c2=t2 else c1=t2 c2=-t1 end if if (abs(m) <= l) then lm1=l*(l+1)+m+1 else lm1=0 end if if (abs(m+1) <= l) then lm2=l*(l+1)+m+2 else lm2=0 end if nr=nrmt(is) nri=nrmti(is) ! zero the wavefunction if (lrstp == 1) then wfcr(1:npmt(is),1:2)=0.e0 else wfcr(1:npcmt(is),1:2)=0.e0 end if !----------------------------------! ! inner part of muffin-tin ! !----------------------------------! if (l > lmaxi) goto 10 if (tsh) then i1=lm1 i2=lm2 else i=0 end if do ir=1,nri,lrstp ! major component of radial wavefunction t0=rwfcr(ir,1,ist,ias)*rlmt(ir,-1,is) if (tsh) then if (lm1 > 0) wfcr(i1,1)=t0*c1 if (lm2 > 0) wfcr(i2,2)=t0*c2 i1=i1+lmmaxi i2=i2+lmmaxi else t1=t0*c1 t2=t0*c2 if (lm1 > 0) wfcr(i+1:i+lmmaxi,1)=t1*zbshti(1:lmmaxi,lm1) if (lm2 > 0) wfcr(i+1:i+lmmaxi,2)=t2*zbshti(1:lmmaxi,lm2) i=i+lmmaxi end if end do !----------------------------------! ! outer part of muffin-tin ! !----------------------------------! 10 continue if (lrstp == 1) then i=lmmaxi*nrmti(is) else i=lmmaxi*nrcmti(is) end if if (tsh) then i1=i+lm1 i2=i+lm2 end if do ir=nri+lrstp,nr,lrstp t0=rwfcr(ir,1,ist,ias)*rlmt(ir,-1,is) if (tsh) then if (lm1 > 0) wfcr(i1,1)=t0*c1 if (lm2 > 0) wfcr(i2,2)=t0*c2 i1=i1+lmmaxo i2=i2+lmmaxo else t1=t0*c1 t2=t0*c2 if (lm1 > 0) wfcr(i+1:i+lmmaxo,1)=t1*zbshto(1:lmmaxo,lm1) if (lm2 > 0) wfcr(i+1:i+lmmaxo,2)=t2*zbshto(1:lmmaxo,lm2) i=i+lmmaxo end if end do end subroutine elk-10.4.9/src/PaxHeaders/lopzflm.f900000644000000000000000000000013214762655564014254 xustar0030 mtime=1741380468.606009181 30 atime=1741380466.717999311 30 ctime=1741380468.606009181 elk-10.4.9/src/lopzflm.f900000644002504400250440000000360514762655564017002 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: lopzflm ! !INTERFACE: pure subroutine lopzflm(lmax,zflm,ld,zlflm) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum angular momentum (in,integer) ! zflm : coefficients of input spherical harmonic expansion ! (in,complex((lmax+1)**2)) ! ld : leading dimension (in,integer) ! zlflm : coefficients of output spherical harmonic expansion ! (out,complex(ld,3)) ! !DESCRIPTION: ! Applies the angular momentum operator $\hat{\bf L}$ to a function expanded ! in terms of complex spherical harmonics. This makes use of the identities ! \begin{align*} ! (L_x+iL_y)Y_{lm}(\theta,\phi)&=\sqrt{(l-m)(l+m+1)}Y_{lm+1}(\theta,\phi)\\ ! (L_x-iL_y)Y_{lm}(\theta,\phi)&=\sqrt{(l+m)(l-m+1)}Y_{lm-1}(\theta,\phi)\\ ! L_zY_{lm}(\theta,\phi)&=mY_{lm}(\theta,\phi). ! \end{align*} ! ! !REVISION HISTORY: ! Created March 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax complex(8), intent(in) :: zflm(*) integer, intent(in) :: ld complex(8), intent(out) :: zlflm(ld,3) ! local variables integer l,m,lm real(8) t1 complex(8), parameter :: zi=(0.d0,1.d0),zmi=(0.d0,-1.d0) complex(8) z1 lm=0 do l=0,lmax do m=-l,l lm=lm+1 if (m == -l) then zlflm(lm,1)=0.d0 zlflm(lm,2)=0.d0 end if if (m < l) then t1=0.5d0*sqrt(dble((l-m)*(l+m+1))) z1=t1*zflm(lm) zlflm(lm+1,1)=z1 zlflm(lm+1,2)=zmi*z1 end if if (m > -l) then t1=0.5d0*sqrt(dble((l+m)*(l-m+1))) z1=t1*zflm(lm) zlflm(lm-1,1)=zlflm(lm-1,1)+z1 zlflm(lm-1,2)=zlflm(lm-1,2)+zi*z1 end if if (m /= 0) then zlflm(lm,3)=dble(m)*zflm(lm) else zlflm(lm,3)=0.d0 end if end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/brzint.f900000644000000000000000000000013214762655564014101 xustar0030 mtime=1741380468.607009186 30 atime=1741380466.720999327 30 ctime=1741380468.607009186 elk-10.4.9/src/brzint.f900000644002504400250440000001170214762655564016624 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: brzint ! !INTERFACE: subroutine brzint(nsm,ngridk,nsk,ivkik,nw,wint,n,ld,e,f,g) ! !USES: use modomp ! !INPUT/OUTPUT PARAMETERS: ! nsm : level of smoothing for output function (in,integer) ! ngridk : k-point grid size (in,integer(3)) ! nsk : k-point subdivision grid size (in,integer(3)) ! ivkik : map from (i1,i2,i3) to k-point index ! (in,integer(0:ngridk(1)-1,0:ngridk(2)-1,0:ngridk(3)-1)) ! nw : number of energy divisions (in,integer) ! wint : energy interval (in,real(2)) ! n : number of functions to integrate (in,integer) ! ld : leading dimension (in,integer) ! e : array of energies as a function of k-points (in,real(ld,*)) ! f : array of weights as a function of k-points (in,real(ld,*)) ! g : output function (out,real(nw)) ! !DESCRIPTION: ! Given energy and weight functions, $e$ and $f$, on the Brillouin zone and a ! set of equidistant energies $\omega_i$, this routine computes the integrals ! $$ g(\omega_i)=\frac{\Omega}{(2\pi)^3}\int_{\rm BZ} f({\bf k}) ! \delta(\omega_i-e({\bf k}))d{\bf k}, $$ ! where $\Omega$ is the unit cell volume. This is done by first interpolating ! $e$ and $f$ on a finer $k$-point grid using the trilinear method. Then for ! each $e({\bf k})$ on the finer grid the nearest $\omega_i$ is found and ! $f({\bf k})$ is accumulated in $g(\omega_i)$. If the output function is ! noisy then either {\tt nsk} should be increased or {\tt nw} decreased. ! Alternatively, the output function can be artificially smoothed up to a ! level given by {\tt nsm}. See routine {\tt fsmooth}. ! ! !REVISION HISTORY: ! Created October 2003 (JKD) ! Improved efficiency, May 2007 (Sebastian Lebegue) ! Added parallelism, March 2020 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nsm,ngridk(3),nsk(3) integer, intent(in) :: ivkik(0:ngridk(1)-1,0:ngridk(2)-1,0:ngridk(3)-1) integer, intent(in) :: nw real(8), intent(in) :: wint(2) integer, intent(in) :: n,ld real(8), intent(in) :: e(ld,*),f(ld,*) real(8), intent(out) :: g(nw) ! local variables integer nk,i1,i2,i3,j1,j2,j3,k1,k2,k3,i,iw,nthd integer i000,i001,i010,i011,i100,i101,i110,i111 real(8) wd,dw,dwi,w1,t1,t2 ! automatic arrays real(8) f0(n),f1(n),e0(n),e1(n) real(8) f00(n),f01(n),f10(n),f11(n) real(8) e00(n),e01(n),e10(n),e11(n) if ((ngridk(1) < 1).or.(ngridk(2) < 1).or.(ngridk(3) < 1)) then write(*,*) write(*,'("Error(brzint): ngridk < 1 : ",3I8)') ngridk write(*,*) stop end if if ((nsk(1) < 1).or.(nsk(2) < 1).or.(nsk(3) < 1)) then write(*,*) write(*,'("Error(brzint): nsk < 1 : ",3I8)') nsk write(*,*) stop end if ! total number of k-points nk=ngridk(1)*ngridk(2)*ngridk(3) ! length of interval wd=wint(2)-wint(1) ! energy step size dw=wd/dble(nw) dwi=1.d0/dw w1=wint(1)*dwi g(1:nw)=0.d0 call holdthd(nk,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(f0,f1,e0,e1) & !$OMP PRIVATE(f00,f01,f10,f11) & !$OMP PRIVATE(e00,e01,e10,e11) & !$OMP PRIVATE(k1,k2,k3,i1,i2,i3) & !$OMP PRIVATE(i000,i001,i010,i011) & !$OMP PRIVATE(i100,i101,i110,i111) & !$OMP PRIVATE(t1,t2,i,iw) & !$OMP REDUCTION(+:g) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) & !$OMP COLLAPSE(3) do j1=0,ngridk(1)-1 do j2=0,ngridk(2)-1 do j3=0,ngridk(3)-1 k1=mod(j1+1,ngridk(1)) k2=mod(j2+1,ngridk(2)) k3=mod(j3+1,ngridk(3)) i000=ivkik(j1,j2,j3); i001=ivkik(j1,j2,k3) i010=ivkik(j1,k2,j3); i011=ivkik(j1,k2,k3) i100=ivkik(k1,j2,j3); i101=ivkik(k1,j2,k3) i110=ivkik(k1,k2,j3); i111=ivkik(k1,k2,k3) do i1=0,nsk(1)-1 t2=dble(i1)/dble(nsk(1)) t1=1.d0-t2 f00(1:n)=f(1:n,i000)*t1+f(1:n,i100)*t2 f01(1:n)=f(1:n,i001)*t1+f(1:n,i101)*t2 f10(1:n)=f(1:n,i010)*t1+f(1:n,i110)*t2 f11(1:n)=f(1:n,i011)*t1+f(1:n,i111)*t2 t1=t1*dwi t2=t2*dwi e00(1:n)=e(1:n,i000)*t1+e(1:n,i100)*t2-w1 e01(1:n)=e(1:n,i001)*t1+e(1:n,i101)*t2-w1 e10(1:n)=e(1:n,i010)*t1+e(1:n,i110)*t2-w1 e11(1:n)=e(1:n,i011)*t1+e(1:n,i111)*t2-w1 do i2=0,nsk(2)-1 t2=dble(i2)/dble(nsk(2)) t1=1.d0-t2 f0(1:n)=f00(1:n)*t1+f10(1:n)*t2 f1(1:n)=f01(1:n)*t1+f11(1:n)*t2 e0(1:n)=e00(1:n)*t1+e10(1:n)*t2 e1(1:n)=e01(1:n)*t1+e11(1:n)*t2 do i3=0,nsk(3)-1 t2=dble(i3)/dble(nsk(3)) t1=1.d0-t2 do i=1,n iw=nint(e0(i)*t1+e1(i)*t2)+1 if ((iw >= 1).and.(iw <= nw)) g(iw)=g(iw)+f0(i)*t1+f1(i)*t2 end do end do end do end do end do end do end do !$OMP END PARALLEL DO call freethd(nthd) ! normalise function t1=dw*dble(nk)*dble(nsk(1)*nsk(2)*nsk(3)) t1=1.d0/t1 g(1:nw)=t1*g(1:nw) ! smooth output function if required if (nsm > 0) call fsmooth(nsm,nw,g) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rotdmat.f900000644000000000000000000000013214762655564014243 xustar0030 mtime=1741380468.609009197 30 atime=1741380466.722999337 30 ctime=1741380468.609009197 elk-10.4.9/src/rotdmat.f900000644002504400250440000000462414762655564016773 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rotdmat(rspl,rspn,lmax,nspinor,ld,dmat1,dmat2) implicit none ! arguments real(8), intent(in) :: rspl(3,3),rspn(3,3) integer, intent(in) :: lmax,nspinor,ld complex(8), intent(in) :: dmat1(ld,nspinor,ld,nspinor) complex(8), intent(inout) :: dmat2(ld,nspinor,ld,nspinor) ! local variables integer lds,ispn,jspn,p integer lmmax,l,lm1,lm2,nm real(8), parameter :: eps=1.d-8 real(8) det,ang(3),angi(3) real(8) v(3),th complex(8), parameter :: zzero=(0.d0,0.d0),zone=(1.d0,0.d0) complex(8) su2(2,2),a(2,2),b(2,2) ! allocatable arrays complex(8), allocatable :: dm(:,:,:,:),c(:,:),d(:,:) ! external functions real(8), external :: r3mdet lmmax=(lmax+1)**2 allocate(dm(ld,nspinor,ld,nspinor)) allocate(c(lmmax,lmmax),d(lmmax,lmmax)) ! find the determinant of the spatial rotation matrix det=r3mdet(rspl) ! calculate the Euler angles of the proper rotation if (det > 0.d0) then p=1 call roteuler(rspl,ang) else p=-1 call roteuler(-rspl(:,:),ang) end if ! inverse rotation: the matrix is to be rotated, not the spherical harmonics angi(1)=-ang(3) angi(2)=-ang(2) angi(3)=-ang(1) ! determine the rotation matrix for complex spherical harmonics call ylmrot(p,angi,lmax,lmmax,d) ! apply (l,m) rotation matrix as U*D*conjg(U') lds=ld*nspinor do ispn=1,nspinor do jspn=1,nspinor lm1=1 do l=0,lmax nm=2*l+1 call zgemm('N','N',nm,lmmax,nm,zone,d(lm1,lm1),lmmax, & dmat1(lm1,ispn,1,jspn),lds,zzero,c(lm1,1),lmmax) lm1=lm1+nm end do lm1=1 do l=0,lmax nm=2*l+1 call zgemm('N','C',lmmax,nm,nm,zone,c(1,lm1),lmmax,d(lm1,lm1),lmmax, & zzero,dm(1,ispn,lm1,jspn),lds) lm1=lm1+nm end do end do end do ! spin rotation if required if (nspinor == 2) then ! convert spin rotation matrix to axis-angle form call rotaxang(eps,rspn,det,v,th) ! find the SU(2) representation of the rotation matrix call axangsu2(v,th,su2) ! apply SU(2) symmetry matrix as U*D*U† and add to dmat2 do lm1=1,lmmax do lm2=1,lmmax a(:,:)=dm(lm1,:,lm2,:) call z2mm(su2,a,b) call z2mmct(b,su2,a) dmat2(lm1,:,lm2,:)=dmat2(lm1,:,lm2,:)+a(:,:) end do end do else dmat2(1:lmmax,1,1:lmmax,1)=dmat2(1:lmmax,1,1:lmmax,1)+dm(1:lmmax,1,1:lmmax,1) end if deallocate(dm,c,d) end subroutine elk-10.4.9/src/PaxHeaders/genylmg.f900000644000000000000000000000013214762655564014233 xustar0030 mtime=1741380468.610009202 30 atime=1741380466.725999353 30 ctime=1741380468.610009202 elk-10.4.9/src/genylmg.f900000644002504400250440000000143714762655564016762 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genylmg ! !INTERFACE: subroutine genylmg ! !USES: use modmain ! !DESCRIPTION: ! Generates a set of spherical harmonics, $4\pi(-i)^l Y_{lm}(\hat{\bf G})$, ! with angular momenta up to {\tt lmaxo} for the set of ${\bf G}$-vectors. ! See the routine {\tt genylmv}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! local variables integer ig ! allocate global G-vector spherical harmonic array if (allocated(ylmg)) deallocate(ylmg) allocate(ylmg(lmmaxo,ngvec)) do ig=1,ngvec call genylmv(.true.,lmaxo,vgc(:,ig),ylmg(:,ig)) end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/gentaucr.f900000644000000000000000000000013214762655564014401 xustar0030 mtime=1741380468.612009212 30 atime=1741380466.727999363 30 ctime=1741380468.612009212 elk-10.4.9/src/gentaucr.f900000644002504400250440000000352414762655564017127 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gentaucr use modmain use modomp implicit none ! local variables integer ist,ispn,jspn integer is,ia,ias,nthd integer nr,nri,np,i,m ! allocatable arrays complex(4), allocatable :: wfcr(:,:) complex(8), allocatable :: zfmt(:),gzfmt(:,:) taucr(1:npmtmax,1:natmtot,1:nspinor)=0.d0 call holdthd(natmtot,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfcr,zfmt,gzfmt) & !$OMP PRIVATE(is,ia,nr,nri,np) & !$OMP PRIVATE(ist,m,ispn,jspn,i) & !$OMP NUM_THREADS(nthd) allocate(wfcr(npmtmax,2),zfmt(npmtmax),gzfmt(npmtmax,3)) !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) ia=idxia(ias) nr=nrmt(is) nri=nrmti(is) np=npmt(is) do ist=1,nstsp(is) if (spcore(ist,is)) then do m=-ksp(ist,is),ksp(ist,is)-1 ! generate the core wavefunction in spherical harmonics (pass in m-1/2) call wavefcr(.true.,1,is,ia,ist,m,npmtmax,wfcr) do ispn=1,2 if (spinpol) then jspn=ispn else jspn=1 end if ! compute the gradient of the wavefunction zfmt(1:np)=wfcr(1:np,ispn) call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),zfmt,npmtmax,gzfmt) do i=1,3 ! convert gradient to spherical coordinates call zbsht(nr,nri,gzfmt(:,i),zfmt) ! add to total in muffin-tin taucr(1:np,ias,jspn)=taucr(1:np,ias,jspn) & +0.5d0*(dble(zfmt(1:np))**2+aimag(zfmt(1:np))**2) end do end do end do end if end do ! convert core tau to spherical harmonics do ispn=1,nspinor call rfshtip(nr,nri,taucr(:,ias,ispn)) end do end do !$OMP END DO deallocate(wfcr,zfmt,gzfmt) !$OMP END PARALLEL call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/readinput.f900000644000000000000000000000013214762655564014564 xustar0030 mtime=1741380468.614009223 30 atime=1741380466.730999379 30 ctime=1741380468.614009223 elk-10.4.9/src/readinput.f900000644002504400250440000015102114762655564017306 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: readinput ! !INTERFACE: subroutine readinput ! !USES: use modmain use moddftu use modrdm use modphonon use modtest use modrandom use modpw use modtddft use modulr use modvars use modgw use modbog use modw90 use modtdhfc use modmpi use modomp use modramdisk ! !DESCRIPTION: ! Reads in the input parameters from the file {\tt elk.in}. Also sets default ! values for the input parameters. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) !EOP !BOC implicit none ! local variables logical lv integer is,ia,ias,ios integer i,j,k,l real(8) sc,sc1,sc2,sc3 real(8) scx,scy,scz real(8) scu,scu1,scu2,scu3 real(8) solscf,zn real(8) axang(4),rot(3,3) real(8) rndavec,v(3),t1 character(256) block,symb,str !------------------------! ! default values ! !------------------------! ntasks=0 avec(:,:)=0.d0 avec(1,1)=1.d0 avec(2,2)=1.d0 avec(3,3)=1.d0 davec(:,:)=0.d0 sc=1.d0 sc1=1.d0 sc2=1.d0 sc3=1.d0 scx=1.d0 scy=1.d0 scz=1.d0 epslat=1.d-6 primcell=.false. tshift=.true. ngridk(:)=1 dngridk(:)=0 vkloff(:)=0.d0 autokpt=.false. radkpt=40.d0 reducek=1 ngridq(:)=-1 reduceq=1 rgkmax=7.d0 drgkmax=0.d0 gmaxvr=12.d0 dgmaxvr=0.d0 lmaxapw=8 dlmaxapw=0 lmaxo=6 dlmaxo=0 lmaxi=1 fracinr=0.01d0 trhonorm=.true. xctype(1)=3 xctype(2:3)=0 xctsp(1)=3 xctsp(2:3)=0 ktype(1)=52 ktype(2:3)=0 stype=3 swidth=0.001d0 autoswidth=.false. mstar=10.d0 epsocc=1.d-10 epschg=1.d-3 nempty0=4.d0 dnempty0=0.d0 maxscl=200 mixtype=3 mixsave=.false. amixpm(1)=0.05d0 amixpm(2)=1.d0 ! Broyden parameters recommended by M. Meinert mixsdb=5 broydpm(1)=0.4d0 broydpm(2)=0.15d0 epspot=1.d-6 epsengy=1.d-4 epsforce=5.d-3 epsstress=2.d-3 molecule=.false. nspecies=0 natoms(:)=0 atposl(:,:,:)=0.d0 datposl(:,:,:)=0.d0 atposc(:,:,:)=0.d0 bfcmt0(:,:,:)=0.d0 sppath='' scrpath='' nvp1d=2 if (allocated(vvlp1d)) deallocate(vvlp1d) allocate(vvlp1d(3,nvp1d)) vvlp1d(:,1)=0.d0 vvlp1d(:,2)=1.d0 npp1d=200 ip01d=1 vclp2d(:,:)=0.d0 vclp2d(1,1)=1.d0 vclp2d(2,2)=1.d0 np2d(:)=40 vclp3d(:,:)=0.d0 vclp3d(1,1)=1.d0 vclp3d(2,2)=1.d0 vclp3d(3,3)=1.d0 np3d(:)=20 nwplot=500 ngrkf=100 nswplot=1 wplot(1)=-0.5d0 wplot(2)=0.5d0 dosocc=.false. tpdos=.true. dosmsum=.false. dosssum=.false. lmirep=.true. spinpol=.false. spinorb=.false. socscf=1.d0 atpopt=1 maxatpstp=200 tau0atp=0.2d0 deltast=0.005d0 avecref(:,:)=0.d0 latvopt=0 maxlatvstp=30 tau0latv=0.2d0 lradstp=4 chgexs=0.d0 dchgexs=0.d0 scissor=0.d0 noptcomp=1 ! list of all optical tensor components do k=1,3; do j=1,3; do i=1,3 l=(k-1)*9+(j-1)*3+i optcomp(:,l)=[i,j,k] end do; end do; end do optcomp(:,1)=1 intraband=.false. evaltol=-1.d0 epsband=1.d-12 demaxbnd=2.5d0 autolinengy=.false. deapw=0.2d0 delorb=0.05d0 dlefe=-0.1d0 bfieldc0(:)=0.d0 dbfieldc0(:)=0.d0 efieldc(:)=0.d0 dmaxefc=1.d6 afieldc(:)=0.d0 dafieldc(:)=0.d0 afspc(:,:)=0.d0 dafspc(:,:)=0.d0 fsmtype=0 momfix(:)=0.d0 dmomfix(:)=0.d0 mommtfix(:,:,:)=1.d6 taufsm=0.01d0 rmtdelta=0.05d0 isgkmax=-1 symtype=1 deltaph=0.01d0 nphwrt=1 if (allocated(vqlwrt)) deallocate(vqlwrt) allocate(vqlwrt(3,nphwrt)) vqlwrt(:,:)=0.d0 notelns=0 tforce=.false. maxitoep=400 tau0oep=0.1d0 nkstlist=1 kstlist(:,1)=1 vklem(:)=0.d0 deltaem=0.025d0 ndspem=1 nosource=.false. spinsprl=.false. ssdph=.true. vqlss(:)=0.d0 dvqlss(:)=0.d0 nwrite=0 dftu=0 inpdftu=1 ndftu=0 ujdu(:,:)=0.d0 fdu(:,:)=0.d0 edu(:,:)=0.d0 lamdu(:)=0.d0 udufix(:)=0.d0 dudufix(:)=0.d0 tmwrite=.false. rdmxctype=2 rdmmaxscl=2 maxitn=200 maxitc=0 taurdmn=0.5d0 taurdmc=0.25d0 rdmalpha=0.656d0 rdmtemp=0.d0 reducebf=1.d0 ptnucl=.true. tefvr=.true. tefvit=.false. minitefv=6 maxitefv=4 befvit=0.25d0 epsefvit=1.d-5 vecql(:)=0.d0 mustar=0.15d0 sqados(1:2)=0.d0 sqados(3)=1.d0 test=.false. spincore=.false. solscf=1.d0 emaxelnes=-1.2d0 wsfac(1)=-1.1d6; wsfac(2)=1.1d6 vhmat(:,:)=0.d0 vhmat(1,1)=1.d0 vhmat(2,2)=1.d0 vhmat(3,3)=1.d0 reduceh=.true. hybrid0=.false. hybridc=1.d0 ecvcut=-3.5d0 esccut=-0.4d0 gmaxrf=3.d0 emaxrf=1.d6 ntemp=40 nvbse0=2 ncbse0=3 nvxbse=0 ncxbse=0 bsefull=.false. hxbse=.true. hdbse=.true. fxctype=-1 fxclrc(1)=0.d0 fxclrc(2)=0.d0 rndatposc=0.d0 rndbfcmt=0.d0 rndavec=0.d0 hmaxvr=20.d0 hkmax=12.d0 lorbcnd=.false. lorbordc=3 nrmtscf=1.d0 dnrmtscf=0.d0 lmaxdos=3 epsdev=0.0025d0 npmae0=-1 wrtvars=.false. ftmtype=0 ntmfix=0 tauftm=0.1d0 cmagz=.false. axang(:)=0.d0 dncgga=1.d-8 tstime=1000.d0 dtimes=0.1d0 npulse=0 nramp=0 nstep=0 ntswrite(1)=500 ntswrite(2)=1 nxoapwlo=0 nxlo=0 tdrho1d=.false. tdrho2d=.false. tdrho3d=.false. tdmag1d=.false. tdmag2d=.false. tdmag3d=.false. tdjr1d=.false. tdjr2d=.false. tdjr3d=.false. tddos=.false. tdlsj=.false. tdjtk=.false. tdxrmk=.false. rndevt0=0.d0 sxcscf=1.d0 dsxcscf=0.d0 avecu(:,:)=0.d0 avecu(1,1)=1.d0 avecu(2,2)=1.d0 avecu(3,3)=1.d0 scu=1.d0 scu1=1.d0 scu2=1.d0 scu3=1.d0 q0cut=0.d0 rndbfcu=0.d0 bfielduc(:)=0.d0 efielduc(:)=0.d0 tplotq0=.true. trdvclr=.false. wmaxgw=-10.d0 twdiag=.false. tsediag=.false. actype=10 npole=3 nspade=100 tfav0=.true. rmtscf=1.d0 mrmtav=0 rmtall=-1.d0 maxthd=0 maxthd1=0 maxthdmkl=0 maxlvl=4 tdphi=0.d0 thetamld=45.d0*pi/180.d0 ntsbackup=0 ! Wannier90 variables seedname='wannier' num_wann=0 num_bands=0 num_iter=500 dis_num_iter=500 trial_step=1.d-3 nxlwin=0 wrtunk=.false. tbdip=.false. tjr=.false. tauefm=0.01d0 epsefm=1.d-6 ehfb=1.d0 t0gclq0=.false. tafindt=.false. afindpm(:)=0.d0 afindpm(2)=1.d0 nkspolar=4 ntsforce=100 wphcut=1.d-6 ephscf(1)=8.d0 ephscf(2)=0.02d0 anomalous=.false. tephde=.false. bdiag=.false. ecutb=0.001d0 ediag=.false. pwxpsn=2 ramdisk=.true. wrtdsk=.true. epsdmat=1.d-8 tm3old=.false. batch=.false. tafspt=.false. tbaspat=.false. trdatdv=.false. atdfc=0.d0 maxforce=-1.d0 msmgmt=0 ntsorth=1000 deltabf=0.5d0 jtconst0=.false. trmt0=.true. ksgwrho=.false. npfftg=4 npfftgc=4 npfftq=4 npfftw=4 tphnat=.false. ecutthc=0.01d0 tbdipu=.false. bdipscf=1.d0 !--------------------------! ! read from elk.in ! !--------------------------! open(50,file='elk.in',status='OLD',form='FORMATTED',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error opening elk.in")') write(*,*) stop end if 10 continue read(50,*,end=30) block ! check for a comment if ((block(1:1) == '!').or.(block(1:1) == '#')) goto 10 select case(trim(block)) case('tasks') do i=1,maxtasks read(50,'(A)',err=20) str if (trim(str) == '') then if (i == 1) then write(*,*) write(*,'("Error(readinput): no tasks to perform")') write(*,*) stop end if ntasks=i-1 goto 10 end if read(str,*,iostat=ios) tasks(i) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading tasks")') write(*,'("(blank line required after tasks block)")') write(*,*) stop end if end do write(*,*) write(*,'("Error(readinput): too many tasks")') write(*,'("Adjust maxtasks in modmain and recompile code")') write(*,*) stop case('species') ! generate a species file call genspecies(50) case('fspecies') ! generate fractional species files do is=1,maxspecies read(50,'(A)',err=20) str if (trim(str) == '') goto 10 read(str,*,iostat=ios) zn,symb if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading fractional species")') write(*,'("(blank line required after fspecies block)")') write(*,*) stop end if if (zn > 0.d0) then write(*,*) write(*,'("Error(readinput): fractional nuclear Z > 0 : ",G18.10)') zn write(*,*) stop end if call genfspecies(zn,symb) end do write(*,*) write(*,'("Error(readinput): too many fractional nucleus species")') write(*,*) stop case('avec') do i=1,3 read(50,'(A)',err=20) str read(str,*,err=20) avec(:,i) read(str,*,iostat=ios) avec(:,i),davec(:,i) end do case('scale') read(50,*,err=20) sc case('scale1') read(50,*,err=20) sc1 case('scale2') read(50,*,err=20) sc2 case('scale3') read(50,*,err=20) sc3 case('scalex') read(50,*,err=20) scx case('scaley') read(50,*,err=20) scy case('scalez') read(50,*,err=20) scz case('epslat') read(50,*,err=20) epslat if (epslat <= 0.d0) then write(*,*) write(*,'("Error(readinput): epslat <= 0 : ",G18.10)') epslat write(*,*) stop end if case('primcell') read(50,*,err=20) primcell case('tshift') read(50,*,err=20) tshift case('autokpt') read(50,*,err=20) autokpt case('radkpt') read(50,*,err=20) radkpt if (radkpt <= 0.d0) then write(*,*) write(*,'("Error(readinput): radkpt <= 0 : ",G18.10)') radkpt write(*,*) stop end if case('ngridk') read(50,'(A)',err=20) str read(str,*,err=20) ngridk(:) read(str,*,iostat=ios) ngridk(:),dngridk(:) if (any(ngridk(:) < 1)) then write(*,*) write(*,'("Error(readinput): invalid ngridk : ",3I8)') ngridk write(*,*) stop end if autokpt=.false. case('vkloff') read(50,*,err=20) vkloff(:) if (any(vkloff(:) < 0.d0).or.any(vkloff(:) >= 1.d0)) then write(*,*) write(*,'("Error(readinput): vkloff components should be in [0,1) : ",& &3G18.10)') vkloff write(*,*) stop end if case('reducek') read(50,*,err=20) reducek case('ngridq') read(50,*,err=20) ngridq(:) if (any(ngridq(:) < 1)) then write(*,*) write(*,'("Error(readinput): invalid ngridq : ",3I8)') ngridq write(*,*) stop end if case('reduceq') read(50,*,err=20) reduceq case('rgkmax') read(50,'(A)',err=20) str read(str,*,err=20) rgkmax read(str,*,iostat=ios) rgkmax,drgkmax if (rgkmax <= 0.d0) then write(*,*) write(*,'("Error(readinput): rgkmax <= 0 : ",G18.10)') rgkmax write(*,*) stop end if case('gmaxvr') read(50,'(A)',err=20) str read(str,*,err=20) gmaxvr read(str,*,iostat=ios) gmaxvr,dgmaxvr case('lmaxapw') read(50,'(A)',err=20) str read(str,*,err=20) lmaxapw read(str,*,iostat=ios) lmaxapw,dlmaxapw if (lmaxapw < 0) then write(*,*) write(*,'("Error(readinput): lmaxapw < 0 : ",I8)') lmaxapw write(*,*) stop end if if (lmaxapw >= maxlapw) then write(*,*) write(*,'("Error(readinput): lmaxapw too large : ",I8)') lmaxapw write(*,'("Adjust maxlapw in modmain and recompile code")') write(*,*) stop end if case('lmaxo','lmaxvr') read(50,'(A)',err=20) str read(str,*,err=20) lmaxo read(str,*,iostat=ios) lmaxo,dlmaxo if (lmaxo < 3) then write(*,*) write(*,'("Error(readinput): lmaxo < 3 : ",I8)') lmaxo write(*,*) stop end if case('lmaxi','lmaxinr') read(50,*,err=20) lmaxi if (lmaxi < 1) then write(*,*) write(*,'("Error(readinput): lmaxi < 1 : ",I8)') lmaxi write(*,*) stop end if case('lmaxmat') read(50,*,err=20) write(*,'("Info(readinput): variable ''lmaxmat'' is no longer used")') case('fracinr') read(50,*,err=20) fracinr case('trhonorm') read(50,*,err=20) trhonorm case('spinpol') read(50,*,err=20) spinpol case('spinorb') read(50,*,err=20) spinorb case('socscf') read(50,*,err=20) socscf if (socscf < 0.d0) then write(*,*) write(*,'("Error(readinput): socscf < 0 : ",G18.10)') socscf write(*,*) stop end if case('xctype') read(50,'(A)',err=20) str str=trim(str)//' 0 0' read(str,*,err=20) xctype(:) case('xctsp') read(50,'(A)',err=20) str str=trim(str)//' 0 0' read(str,*,err=20) xctsp(:) case('ktype') read(50,'(A)',err=20) str str=trim(str)//' 0 0' read(str,*,err=20) ktype(:) if (ktype(3) /= 0) then write(*,*) write(*,'("Error(readinput): ktype(3) should be zero : ",I8)') ktype(3) write(*,*) stop end if case('stype') read(50,*,err=20) stype case('swidth') read(50,*,err=20) swidth if (swidth < 1.d-9) then write(*,*) write(*,'("Error(readinput): swidth too small or negative : ",G18.10)') & swidth write(*,*) stop end if case('autoswidth') read(50,*,err=20) autoswidth case('mstar') read(50,*,err=20) mstar if (mstar <= 0.d0) then write(*,*) write(*,'("Error(readinput): mstar <= 0 : ",G18.10)') mstar write(*,*) stop end if case('epsocc') read(50,*,err=20) epsocc if (epsocc <= 0.d0) then write(*,*) write(*,'("Error(readinput): epsocc <= 0 : ",G18.10)') epsocc write(*,*) stop end if case('epschg') read(50,*,err=20) epschg if (epschg <= 0.d0) then write(*,*) write(*,'("Error(readinput): epschg <= 0 : ",G18.10)') epschg write(*,*) stop end if case('nempty','nempty0') read(50,'(A)',err=20) str read(str,*,err=20) nempty0 read(str,*,iostat=ios) nempty0,dnempty0 if (nempty0 <= 0.d0) then write(*,*) write(*,'("Error(readinput): nempty <= 0 : ",G18.10)') nempty0 write(*,*) stop end if case('mixtype') read(50,*,err=20) mixtype case('mixsave') read(50,*,err=20) mixsave case('amixpm','beta0','betamax') if (trim(block) == 'amixpm') then read(50,*,err=20) amixpm(:) else if (trim(block) == 'beta0') then read(50,*,err=20) amixpm(1) else read(50,*,err=20) amixpm(2) end if if (amixpm(1) < 0.d0) then write(*,*) write(*,'("Error(readinput): beta0 [amixpm(1)] < 0 : ",G18.10)') amixpm(1) write(*,*) stop end if if ((amixpm(2) < 0.d0).or.(amixpm(2) > 1.d0)) then write(*,*) write(*,'("Error(readinput): betamax [amixpm(2)] not in [0,1] : ",G18.10)')& amixpm(2) write(*,*) stop end if case('mixsdb') read(50,*,err=20) mixsdb if (mixsdb < 2) then write(*,*) write(*,'("Error(readinput): mixsdb < 2 : ",I8)') mixsdb write(*,*) stop end if case('broydpm') read(50,*,err=20) broydpm(:) if ((broydpm(1) < 0.d0).or.(broydpm(1) > 1.d0).or. & (broydpm(2) < 0.d0).or.(broydpm(2) > 1.d0)) then write(*,*) write(*,'("Error(readinput): invalid Broyden mixing parameters : ",& &2G18.10)') broydpm write(*,*) stop end if case('maxscl') read(50,*,err=20) maxscl if (maxscl < 0) then write(*,*) write(*,'("Error(readinput): maxscl < 0 : ",I8)') maxscl write(*,*) stop end if case('epspot') read(50,*,err=20) epspot case('epsengy') read(50,*,err=20) epsengy case('epsforce') read(50,*,err=20) epsforce case('epsstress') read(50,*,err=20) epsstress case('sppath') read(50,*,err=20) sppath sppath=adjustl(sppath) case('scrpath') read(50,*,err=20) scrpath case('molecule') read(50,*,err=20) molecule case('atoms') read(50,*,err=20) nspecies if (nspecies < 1) then write(*,*) write(*,'("Error(readinput): nspecies < 1 : ",I8)') nspecies write(*,*) stop end if if (nspecies > maxspecies) then write(*,*) write(*,'("Error(readinput): nspecies too large : ",I8)') nspecies write(*,'("Adjust maxspecies in modmain and recompile code")') write(*,*) stop end if do is=1,nspecies read(50,*,err=20) spfname(is) spfname(is)=adjustl(spfname(is)) read(50,*,err=20) natoms(is) if (natoms(is) < 1) then write(*,*) write(*,'("Error(readinput): natoms < 1 : ",I8)') natoms(is) write(*,'(" for species ",I4)') is write(*,*) stop end if if (natoms(is) > maxatoms) then write(*,*) write(*,'("Error(readinput): natoms too large : ",I8)') natoms(is) write(*,'(" for species ",I4)') is write(*,'("Adjust maxatoms in modmain and recompile code")') write(*,*) stop end if do ia=1,natoms(is) read(50,'(A)',err=20) str read(str,*,err=20) atposl(:,ia,is) read(str,*,iostat=ios) atposl(:,ia,is),bfcmt0(:,ia,is),datposl(:,ia,is) end do end do case('plot1d') read(50,*,err=20) nvp1d,npp1d if (nvp1d < 1) then write(*,*) write(*,'("Error(readinput): nvp1d < 1 : ",I8)') nvp1d write(*,*) stop end if if (npp1d < nvp1d) then write(*,*) write(*,'("Error(readinput): npp1d < nvp1d : ",2I8)') npp1d,nvp1d write(*,*) stop end if if (allocated(vvlp1d)) deallocate(vvlp1d) allocate(vvlp1d(3,nvp1d)) do i=1,nvp1d read(50,*,err=20) vvlp1d(:,i) end do case('ip01d') read(50,*,err=20) ip01d if (ip01d < 1) then write(*,*) write(*,'("Error(readinput): ip01d < 1 : ",I8)') ip01d write(*,*) stop end if case('plot2d') read(50,*,err=20) vclp2d(:,0) read(50,*,err=20) vclp2d(:,1) read(50,*,err=20) vclp2d(:,2) read(50,*,err=20) np2d(:) if ((np2d(1) < 1).or.(np2d(2) < 1)) then write(*,*) write(*,'("Error(readinput): np2d < 1 : ",2I8)') np2d write(*,*) stop end if case('plot3d') read(50,*,err=20) vclp3d(:,0) read(50,*,err=20) vclp3d(:,1) read(50,*,err=20) vclp3d(:,2) read(50,*,err=20) vclp3d(:,3) read(50,*,err=20) np3d(:) if ((np3d(1) < 1).or.(np3d(2) < 1).or.(np3d(3) < 1)) then write(*,*) write(*,'("Error(readinput): np3d < 1 : ",3I8)') np3d write(*,*) stop end if case('wplot','dos') read(50,*,err=20) nwplot,ngrkf,nswplot if (nwplot < 2) then write(*,*) write(*,'("Error(readinput): nwplot < 2 : ",I8)') nwplot write(*,*) stop end if if (ngrkf < 1) then write(*,*) write(*,'("Error(readinput): ngrkf < 1 : ",I8)') ngrkf write(*,*) stop end if if (nswplot < 0) then write(*,*) write(*,'("Error(readinput): nswplot < 0 : ",I8)') nswplot write(*,*) stop end if read(50,*,err=20) wplot(:) if (wplot(1) > wplot(2)) then write(*,*) write(*,'("Error(readinput): wplot(1) > wplot(2) : ",2G18.10)') wplot write(*,*) stop end if case('dosocc') read(50,*,err=20) dosocc case('tpdos') read(50,*,err=20) tpdos case('dosmsum') read(50,*,err=20) dosmsum case('dosssum') read(50,*,err=20) dosssum case('lmirep') read(50,*,err=20) lmirep case('atpopt') read(50,*,err=20) atpopt case('maxatpstp','maxatmstp') read(50,*,err=20) maxatpstp if (maxatpstp < 1) then write(*,*) write(*,'("Error(readinput): maxatpstp < 1 : ",I8)') maxatpstp write(*,*) stop end if case('tau0atp','tau0atm') read(50,*,err=20) tau0atp case('deltast') read(50,*,err=20) deltast if (deltast <= 0.d0) then write(*,*) write(*,'("Error(readinput): deltast <= 0 : ",G18.10)') deltast write(*,*) stop end if case('avecref') read(50,*,err=20) avecref(:,1) read(50,*,err=20) avecref(:,2) read(50,*,err=20) avecref(:,3) case('latvopt') read(50,*,err=20) latvopt case('maxlatvstp') read(50,*,err=20) maxlatvstp if (maxlatvstp < 1) then write(*,*) write(*,'("Error(readinput): maxlatvstp < 1 : ",I8)') maxlatvstp write(*,*) stop end if case('tau0latv') read(50,*,err=20) tau0latv case('nstfsp') read(50,*,err=20) write(*,'("Info(readinput): variable ''nstfsp'' is no longer used")') case('lradstp') read(50,*,err=20) lradstp if (lradstp < 1) then write(*,*) write(*,'("Error(readinput): lradstp < 1 : ",I8)') lradstp write(*,*) stop end if case('chgexs') read(50,'(A)',err=20) str read(str,*,err=20) chgexs read(str,*,iostat=ios) chgexs,dchgexs case('nprad') read(50,*,err=20) write(*,'("Info(readinput): variable ''nprad'' is no longer used")') case('scissor') read(50,*,err=20) scissor case('noptcomp') read(50,*,err=20) noptcomp if ((noptcomp < 1).or.(noptcomp > 27)) then write(*,*) write(*,'("Error(readinput): noptcomp should be from 1 to 27 : ",I8)') & noptcomp write(*,*) stop end if case('optcomp') do i=1,27 read(50,'(A)',err=20) str if (trim(str) == '') then if (i == 1) then write(*,*) write(*,'("Error(readinput): empty optical component list")') write(*,*) stop end if noptcomp=i-1 goto 10 end if str=trim(str)//' 1 1' read(str,*,iostat=ios) optcomp(:,i) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading optical component list")') write(*,'("(blank line required after optcomp block)")') write(*,*) stop end if if (any(optcomp(:,i) < 1).or.any(optcomp(:,i) > 3)) then write(*,*) write(*,'("Error(readinput): invalid optcomp : ",3I8)') optcomp(:,i) write(*,*) stop end if end do write(*,*) write(*,'("Error(readinput): optical component list too long")') write(*,*) stop case('intraband') read(50,*,err=20) intraband case('evaltol') read(50,*,err=20) evaltol case('deband') read(50,*,err=20) write(*,'("Info(readinput): variable ''deband'' is no longer used")') case('epsband') read(50,*,err=20) epsband if (epsband <= 0.d0) then write(*,*) write(*,'("Error(readinput): epsband <= 0 : ",G18.10)') epsband write(*,*) stop end if case('demaxbnd') read(50,*,err=20) demaxbnd if (demaxbnd <= 0.d0) then write(*,*) write(*,'("Error(readinput): demaxbnd <= 0 : ",G18.10)') demaxbnd write(*,*) stop end if case('autolinengy') read(50,*,err=20) autolinengy case('deapw') read(50,*,err=20) deapw if (abs(deapw) < 1.d-8) then write(*,*) write(*,'("Error(readinput): invalid deapw : ",G18.10)') deapw write(*,*) stop end if case('delorb') read(50,*,err=20) delorb if (abs(delorb) < 1.d-8) then write(*,*) write(*,'("Error(readinput): invalid delorb : ",G18.10)') delorb write(*,*) stop end if case('dlefe') read(50,*,err=20) dlefe case('bfieldc') read(50,'(A)',err=20) str read(str,*,err=20) bfieldc0(:) read(str,*,iostat=ios) bfieldc0(:),dbfieldc0(:) case('efieldc') read(50,*,err=20) efieldc(:) case('dmaxefc') read(50,*,err=20) dmaxefc if (dmaxefc < 0) then write(*,*) write(*,'("Error(readinput): dmaxefc < 0 : ",G18.10)') dmaxefc write(*,*) stop end if case('afieldc') read(50,'(A)',err=20) str read(str,*,err=20) afieldc(:) read(str,*,iostat=ios) afieldc(:),dafieldc(:) case('afspc') do i=1,3 read(50,'(A)',err=20) str read(str,*,err=20) afspc(i,:) read(str,*,iostat=ios) afspc(i,:),dafspc(i,:) end do case('fsmtype','fixspin') read(50,*,err=20) fsmtype case('momfix') read(50,'(A)',err=20) str read(str,*,err=20) momfix(:) read(str,*,iostat=ios) momfix(:),dmomfix(:) case('mommtfix') do ias=1,maxspecies*maxatoms read(50,'(A)',err=20) str if (trim(str) == '') goto 10 read(str,*,iostat=ios) is,ia,mommtfix(:,ia,is) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading muffin-tin fixed spin & &moments")') write(*,'("(blank line required after mommtfix block")') write(*,*) stop end if end do case('taufsm') read(50,*,err=20) taufsm if (taufsm < 0.d0) then write(*,*) write(*,'("Error(readinput): taufsm < 0 : ",G18.10)') taufsm write(*,*) stop end if case('autormt') read(50,*,err=20) write(*,'("Info(readinput): variable ''autormt'' is no longer used")') case('rmtdelta') read(50,*,err=20) rmtdelta if (rmtdelta < 0.d0) then write(*,*) write(*,'("Warning(readinput): rmtdelta < 0 : ",G18.10)') rmtdelta end if case('isgkmax') read(50,*,err=20) isgkmax case('nosym') read(50,*,err=20) lv if (lv) symtype=0 case('symtype') read(50,*,err=20) symtype if ((symtype < 0).or.(symtype > 2)) then write(*,*) write(*,'("Error(readinput): symtype not defined : ",I8)') symtype write(*,*) stop end if case('deltaph') read(50,*,err=20) deltaph if (deltaph <= 0.d0) then write(*,*) write(*,'("Error(readinput): deltaph <= 0 : ",G18.10)') deltaph write(*,*) stop end if case('phwrite') read(50,*,err=20) nphwrt if (nphwrt < 1) then write(*,*) write(*,'("Error(readinput): nphwrt < 1 : ",I8)') nphwrt write(*,*) stop end if if (allocated(vqlwrt)) deallocate(vqlwrt) allocate(vqlwrt(3,nphwrt)) do i=1,nphwrt read(50,*,err=20) vqlwrt(:,i) end do case('notes') if (allocated(notes)) deallocate(notes) allocate(notes(0)) notelns=0 do read(50,'(A)') str if (trim(str) == '') goto 10 notes=[notes(1:notelns),str] notelns=notelns+1 end do case('tforce') read(50,*,err=20) tforce case('tfibs') read(50,*,err=20) write(*,'("Info(readinput): variable ''tfibs'' is no longer used")') case('maxitoep') read(50,*,err=20) maxitoep if (maxitoep < 1) then write(*,*) write(*,'("Error(readinput): maxitoep < 1 : ",I8)') maxitoep write(*,*) stop end if case('tauoep') read(50,*,err=20) write(*,'("Info(readinput): variable ''tauoep'' is no longer used")') case('tau0oep') read(50,*,err=20) tau0oep if (tau0oep < 0.d0) then write(*,*) write(*,'("Error(readinput): tau0oep < 0 : ",G18.10)') tau0oep write(*,*) stop end if case('kstlist') do i=1,maxkst read(50,'(A)',err=20) str if (trim(str) == '') then if (i == 1) then write(*,*) write(*,'("Error(readinput): empty k-point and state list")') write(*,*) stop end if nkstlist=i-1 goto 10 end if str=trim(str)//' 1' read(str,*,iostat=ios) kstlist(:,i) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading k-point and state list")') write(*,'("(blank line required after kstlist block)")') write(*,*) stop end if end do write(*,*) write(*,'("Error(readinput): k-point and state list too long")') write(*,*) stop case('vklem') read(50,*,err=20) vklem case('deltaem') read(50,*,err=20) deltaem if (deltaem <= 0.d0) then write(*,*) write(*,'("Error(readinput): deltaem <= 0 : ",G18.10)') deltaem write(*,*) stop end if case('ndspem') read(50,*,err=20) ndspem if ((ndspem < 1).or.(ndspem > 4)) then write(*,*) write(*,'("Error(readinput): ndspem out of range : ",I8)') ndspem write(*,*) stop end if case('nosource') read(50,*,err=20) nosource case('spinsprl') read(50,*,err=20) spinsprl case('ssdph') read(50,*,err=20) ssdph case('vqlss') read(50,'(A)',err=20) str read(str,*,err=20) vqlss read(str,*,iostat=ios) vqlss,dvqlss case('nwrite') read(50,*,err=20) nwrite case('DFT+U','dft+u','lda+u') read(50,*,err=20) dftu,inpdftu do i=1,maxdftu read(50,'(A)',err=20) str if (trim(str) == '') then ndftu=i-1 goto 10 end if select case(inpdftu) case(1) read(str,*,iostat=ios) is,l,ujdu(1:2,i) case(2) read(str,*,iostat=ios) is,l,(fdu(k,i),k=0,2*l,2) case(3) read(str,*,iostat=ios) is,l,(edu(k,i),k=0,l) case(4) read(str,*,iostat=ios) is,l,lamdu(i) case(5) read(str,*,iostat=ios) is,l,udufix(i),dudufix(i) read(str,*,iostat=ios) is,l,udufix(i) case default write(*,*) write(*,'("Error(readinput): invalid inpdftu : ",I8)') inpdftu write(*,*) stop end select if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading DFT+U parameters")') write(*,'("(blank line required after dft+u block)")') write(*,*) stop end if if ((is < 1).or.(is >= maxspecies)) then write(*,*) write(*,'("Error(readinput): invalid species number in dft+u block : ", & &I8)') is write(*,*) stop end if if (l < 0) then write(*,*) write(*,'("Error(readinput): l < 0 in dft+u block : ",I8)') l write(*,*) stop end if if (l > lmaxdm) then write(*,*) write(*,'("Error(readinput): l > lmaxdm in dft+u block : ",2I8)') l,lmaxdm write(*,*) stop end if ! check for repeated entries do j=1,i-1 if ((is == isldu(1,j)).and.(l == isldu(2,j))) then write(*,*) write(*,'("Error(readinput): repeated entry in DFT+U block")') write(*,*) stop end if end do isldu(1,i)=is isldu(2,i)=l end do write(*,*) write(*,'("Error(readinput): too many DFT+U entries")') write(*,'("Adjust maxdftu in modmain and recompile code")') write(*,*) stop case('tmwrite','tmomlu') read(50,*,err=20) tmwrite case('readadu','readalu') read(50,*,err=20) write(*,'("Info(readinput): variable ''readadu'' is no longer used")') case('rdmxctype') read(50,*,err=20) rdmxctype case('rdmmaxscl') read(50,*,err=20) rdmmaxscl if (rdmmaxscl < 0) then write(*,*) write(*,'("Error(readinput): rdmmaxscl < 0 : ",I8)') rdmmaxscl write(*,*) end if case('maxitn') read(50,*,err=20) maxitn case('maxitc') read(50,*,err=20) maxitc case('taurdmn') read(50,*,err=20) taurdmn if (taurdmn < 0.d0) then write(*,*) write(*,'("Error(readinput): taurdmn < 0 : ",G18.10)') taurdmn write(*,*) stop end if case('taurdmc') read(50,*,err=20) taurdmc if (taurdmc < 0.d0) then write(*,*) write(*,'("Error(readinput): taurdmc < 0 : ",G18.10)') taurdmc write(*,*) stop end if case('rdmalpha') read(50,*,err=20) rdmalpha if ((rdmalpha <= 0.d0).or.(rdmalpha >= 1.d0)) then write(*,*) write(*,'("Error(readinput): rdmalpha not in (0,1) : ",G18.10)') rdmalpha write(*,*) stop end if case('rdmtemp') read(50,*,err=20) rdmtemp if (rdmtemp < 0.d0) then write(*,*) write(*,'("Error(readinput): rdmtemp < 0 : ",G18.10)') rdmtemp write(*,*) stop end if case('reducebf') read(50,*,err=20) reducebf if ((reducebf < 0.49d0).or.(reducebf > 1.d0)) then write(*,*) write(*,'("Error(readinput): reducebf not in [0.5,1] : ",G18.10)') reducebf write(*,*) stop end if case('ptnucl') read(50,*,err=20) ptnucl case('tefvr','tseqr') read(50,*,err=20) tefvr case('tefvit','tseqit') read(50,*,err=20) tefvit case('minitefv','minseqit') read(50,*,err=20) minitefv if (minitefv < 1) then write(*,*) write(*,'("Error(readinput): minitefv < 1 : ",I8)') minitefv write(*,*) stop end if case('maxitefv','maxseqit') read(50,*,err=20) maxitefv if (maxitefv < 1) then write(*,*) write(*,'("Error(readinput): maxitefv < 1 : ",I8)') maxitefv write(*,*) stop end if case('befvit','bseqit') read(50,*,err=20) befvit if (befvit <= 0.d0) then write(*,*) write(*,'("Error(readinput): befvit <= 0 : ",G18.10)') befvit write(*,*) stop end if case('epsefvit','epsseqit') read(50,*,err=20) epsefvit if (epsefvit < 0.d0) then write(*,*) write(*,'("Error(readinput): epsefvit < 0 : ",G18.10)') epsefvit write(*,*) stop end if case('nseqit') read(50,*,err=20) write(*,'("Info(readinput): variable ''nseqit'' is no longer used")') case('tauseq') read(50,*,err=20) write(*,'("Info(readinput): variable ''tauseq'' is no longer used")') case('vecql') read(50,*,err=20) vecql(:) case('mustar') read(50,*,err=20) mustar case('sqados') read(50,*,err=20) sqados(:) case('test') read(50,*,err=20) test case('frozencr') read(50,*,err=20) write(*,'("Info(readinput): variable ''frozencr'' is no longer used")') case('spincore') read(50,*,err=20) spincore case('solscf') read(50,*,err=20) solscf if (solscf < 0.d0) then write(*,*) write(*,'("Error(readinput): solscf < 0 : ",G18.10)') solscf write(*,*) stop end if case('emaxelnes') read(50,*,err=20) emaxelnes case('wsfac') read(50,*,err=20) wsfac(:) case('vhmat') read(50,*,err=20) vhmat(1,:) read(50,*,err=20) vhmat(2,:) read(50,*,err=20) vhmat(3,:) case('reduceh') read(50,*,err=20) reduceh case('hybrid') read(50,*,err=20) hybrid0 case('hybridc','hybmix') read(50,*,err=20) hybridc if ((hybridc < 0.d0).or.(hybridc > 1.d0)) then write(*,*) write(*,'("Error(readinput): invalid hybridc : ",G18.10)') hybridc write(*,*) stop end if case('ecvcut') read(50,*,err=20) ecvcut case('esccut') read(50,*,err=20) esccut case('nvbse') read(50,*,err=20) nvbse0 if (nvbse0 < 0) then write(*,*) write(*,'("Error(readinput): nvbse < 0 : ",I8)') nvbse0 write(*,*) stop end if case('ncbse') read(50,*,err=20) ncbse0 if (ncbse0 < 0) then write(*,*) write(*,'("Error(readinput): ncbse < 0 : ",I8)') ncbse0 write(*,*) stop end if case('istxbse') do i=1,maxxbse read(50,'(A)',err=20) str if (trim(str) == '') then if (i == 1) then write(*,*) write(*,'("Error(readinput): empty BSE extra valence state list")') write(*,*) stop end if nvxbse=i-1 goto 10 end if read(str,*,iostat=ios) istxbse(i) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading BSE valence state list")') write(*,'("(blank line required after istxbse block)")') write(*,*) stop end if end do write(*,*) write(*,'("Error(readinput): BSE extra valence state list too long")') write(*,*) stop case('jstxbse') do i=1,maxxbse read(50,'(A)',err=20) str if (trim(str) == '') then if (i == 1) then write(*,*) write(*,'("Error(readinput): empty BSE extra conduction state list")') write(*,*) stop end if ncxbse=i-1 goto 10 end if read(str,*,iostat=ios) jstxbse(i) if (ios /= 0) then write(*,*) write(*,'("Error(readinput): error reading BSE conduction state list")') write(*,'("(blank line required after jstxbse block)")') write(*,*) stop end if end do write(*,*) write(*,'("Error(readinput): BSE extra conduction state list too long")') write(*,*) stop case('bsefull') read(50,*,err=20) bsefull case('hxbse') read(50,*,err=20) hxbse case('hdbse') read(50,*,err=20) hdbse case('gmaxrf','gmaxrpa') read(50,*,err=20) gmaxrf if (gmaxrf < 0.d0) then write(*,*) write(*,'("Error(readinput): gmaxrf < 0 : ",G18.10)') gmaxrf write(*,*) stop end if case('emaxrf') read(50,*,err=20) emaxrf if (emaxrf < 0.d0) then write(*,*) write(*,'("Error(readinput): emaxrf < 0 : ",G18.10)') emaxrf write(*,*) stop end if case('fxctype') read(50,'(A)',err=20) str str=trim(str)//' 0 0' read(str,*,err=20) fxctype case('fxclrc') read(50,'(A)',err=20) str str=trim(str)//' 0.0' read(str,*,err=20) fxclrc(:) case('ntemp') read(50,*,err=20) ntemp if (ntemp < 1) then write(*,*) write(*,'("Error(readinput): ntemp < 1 : ",I8)') ntemp write(*,*) stop end if case('trimvg') write(*,'("Info(readinput): variable ''trimvg'' is no longer used")') read(50,*,err=20) case('rndstate','rndseed') read(50,*,err=20) rndstate(0) rndstate(0)=abs(rndstate(0)) case('rndatposc') read(50,*,err=20) rndatposc case('rndbfcmt') read(50,*,err=20) rndbfcmt case('rndavec') read(50,*,err=20) rndavec case('c_tb09') read(50,*,err=20) write(*,'("Info(readinput): variable ''c_tb09'' is no longer used")') case('lowq','highq','vhighq','uhighq') read(50,*,err=20) lv if (lv) then if (trim(block) == 'lowq') then rgkmax=6.5d0 gmaxvr=10.d0 lmaxapw=7 lmaxo=5 nxlo=2 lorbcnd=.true. radkpt=25.d0 autokpt=.true. vkloff(:)=0.5d0 nempty0=4.d0 epspot=1.d-5 epsengy=5.d-4 epsforce=1.d-2 epsstress=3.d-3 autolinengy=.true. gmaxrf=2.5d0 lradstp=6 else if (trim(block) == 'highq') then ! parameter set for high-quality calculation rgkmax=max(rgkmax,8.d0) gmaxvr=max(gmaxvr,16.d0) lmaxapw=max(lmaxapw,9) lmaxo=max(lmaxo,7) nrmtscf=max(nrmtscf,1.5d0) nxlo=max(nxlo,2) lorbcnd=.true. radkpt=max(radkpt,50.d0) autokpt=.true. vkloff(:)=0.d0 nempty0=max(nempty0,10.d0) epspot=min(epspot,1.d-7) epsengy=min(epsengy,1.d-5) epsforce=min(epsforce,5.d-4) epsstress=min(epsstress,1.d-3) autolinengy=.true. gmaxrf=max(gmaxrf,4.d0) else if (trim(block) == 'vhighq') then ! parameter set for very high-quality calculation rgkmax=max(rgkmax,9.d0) gmaxvr=max(gmaxvr,18.d0) lmaxapw=max(lmaxapw,11) lmaxo=max(lmaxo,8) nrmtscf=max(nrmtscf,2.d0) nxlo=max(nxlo,3) lorbcnd=.true. radkpt=max(radkpt,90.d0) autokpt=.true. vkloff(:)=0.d0 nempty0=max(nempty0,20.d0) epspot=min(epspot,1.d-7) epsengy=min(epsengy,1.d-6) epsforce=min(epsforce,2.d-4) epsstress=min(epsstress,5.d-4) autolinengy=.true. gmaxrf=max(gmaxrf,5.d0) else ! parameter set for ultra high-quality calculation rgkmax=max(rgkmax,10.d0) gmaxvr=max(gmaxvr,20.d0) lmaxapw=max(lmaxapw,12) lmaxo=max(lmaxo,9) nrmtscf=max(nrmtscf,4.d0) nxlo=max(nxlo,3) lorbcnd=.true. radkpt=max(radkpt,120.d0) autokpt=.true. vkloff(:)=0.d0 nempty0=max(nempty0,40.d0) epspot=min(epspot,1.d-7) epsengy=min(epsengy,1.d-6) epsforce=min(epsforce,1.d-4) epsstress=min(epsstress,2.d-4) autolinengy=.true. gmaxrf=max(gmaxrf,6.d0) end if if (mp_mpi) then write(*,*) write(*,'("Info(readinput): parameters set by ",A," option")') trim(block) write(*,'(" rgkmax : ",G18.10)') rgkmax write(*,'(" gmaxvr : ",G18.10)') gmaxvr write(*,'(" lmaxapw : ",I4)') lmaxapw write(*,'(" lmaxo : ",I4)') lmaxo write(*,'(" nrmtscf : ",G18.10)') nrmtscf write(*,'(" nxlo : ",I4)') nxlo write(*,'(" lorbcnd : ",L1)') lorbcnd write(*,'(" radkpt : ",G18.10)') radkpt write(*,'(" autokpt : ",L1)') autokpt write(*,'(" vkloff : ",3G18.10)') vkloff write(*,'(" nempty0 : ",G18.10)') nempty0 write(*,'(" epspot : ",G18.10)') epspot write(*,'(" epsengy : ",G18.10)') epsengy write(*,'(" epsforce : ",G18.10)') epsforce write(*,'(" epsstress : ",G18.10)') epsstress write(*,'(" autolinengy : ",L1)') autolinengy write(*,'(" gmaxrf : ",G18.10)') gmaxrf if (trim(block) == 'lowq') then write(*,'(" lradstp : ",I4)') lradstp end if end if end if case('hmaxvr') read(50,*,err=20) hmaxvr if (hmaxvr < 0.d0) then write(*,*) write(*,'("Error(readinput): hmaxvr < 0 : ",G18.10)') hmaxvr write(*,*) stop end if case('hkmax') read(50,*,err=20) hkmax if (hkmax <= 0.d0) then write(*,*) write(*,'("Error(readinput): hkmax <= 0 : ",G18.10)') hkmax write(*,*) stop end if case('lorbcnd') read(50,*,err=20) lorbcnd case('lorbordc') read(50,*,err=20) lorbordc if (lorbordc < 2) then write(*,*) write(*,'("Error(readinput): lorbordc < 2 : ",I8)') lorbordc write(*,*) stop end if if (lorbordc > maxlorbord) then write(*,*) write(*,'("Error(readinput): lorbordc too large : ",I8)') lorbordc write(*,'("Adjust maxlorbord in modmain and recompile code")') write(*,*) stop end if case('nrmtscf') read(50,'(A)',err=20) str read(str,*,err=20) nrmtscf read(str,*,iostat=ios) nrmtscf,dnrmtscf if (nrmtscf < 0.5d0) then write(*,*) write(*,'("Error(readinput): nrmtscf < 0.5 : ",G18.10)') nrmtscf write(*,*) stop end if case('lmaxdos') read(50,*,err=20) lmaxdos if (lmaxdos < 0) then write(*,*) write(*,'("Error(readinput): lmaxdos < 0 : ",I8)') lmaxdos write(*,*) stop end if case('epsdev') read(50,*,err=20) epsdev if (epsdev <= 0.d0) then write(*,*) write(*,'("Error(readinput): epsdev <= 0 : ",G18.10)') epsdev write(*,*) stop end if case('msmooth') read(50,*,err=20) write(*,'("Info(readinput): variable ''msmooth'' is no longer used")') case('npmae') read(50,*,err=20) npmae0 case('wrtvars') read(50,*,err=20) wrtvars case('ftmtype') read(50,*,err=20) ftmtype case('tmomfix') write(*,*) write(*,'("Error(readinput): variable ''tmomfix'' is no longer used")') write(*,'(" use tm3fix instead")') write(*,*) stop case('tm3fix') read(50,*,err=20) ntmfix if (ntmfix < 1) then write(*,*) write(*,'("Error(readinput): ntmfix < 1 : ",I8)') ntmfix write(*,*) stop end if if (allocated(itmfix)) deallocate(itmfix) allocate(itmfix(7,ntmfix)) if (allocated(wkprfix)) deallocate(wkprfix) allocate(wkprfix(ntmfix)) do i=1,ntmfix read(50,*,err=20) is,ia,l if ((is < 1).or.(ia < 1).or.(l < 0)) then write(*,*) write(*,'("Error(readinput): invalid is, ia or l in tm3fix block : ",& &3I8)') is,ia,l write(*,*) stop end if itmfix(1,i)=is itmfix(2,i)=ia itmfix(3,i)=l ! read k, p, r, t for the 3-index tensor read(50,*,err=20) itmfix(4:7,i) ! read 3-index tensor component with conventional normalisation read(50,*,err=20) wkprfix(i) end do case('tauftm') read(50,*,err=20) tauftm if (tauftm < 0.d0) then write(*,*) write(*,'("Error(readinput): tauftm < 0 : ",G18.10)') tauftm write(*,*) stop end if case('ftmstep') read(50,*,err=20) write(*,'("Info(readinput): variable ''ftmstep'' is no longer used")') case('cmagz','forcecmag') read(50,*,err=20) cmagz case('rotavec') read(50,*,err=20) axang(:) case('tstime') read(50,*,err=20) tstime if (tstime <= 0.d0) then write(*,*) write(*,'("Error(readinput): tstime <= 0 : ",G18.10)') tstime write(*,*) stop end if case('dtimes') read(50,*,err=20) dtimes if (dtimes <= 0.d0) then write(*,*) write(*,'("Error(readinput): dtimes <= 0 : ",G18.10)') dtimes write(*,*) stop end if case('pulse') read(50,*,err=20) npulse if (npulse < 1) then write(*,*) write(*,'("Error(readinput): npulse < 1 : ",I8)') npulse write(*,*) stop end if if (allocated(pulse)) deallocate(pulse) allocate(pulse(12,npulse)) do i=1,npulse read(50,'(A)',err=20) str str=trim(str)//' 1.0 0.0 0.0 0.0' read(str,*,err=20) pulse(:,i) end do case('ramp') read(50,*,err=20) nramp if (nramp < 1) then write(*,*) write(*,'("Error(readinput): nramp < 1 : ",I8)') nramp write(*,*) stop end if if (allocated(ramp)) deallocate(ramp) allocate(ramp(12,nramp)) do i=1,nramp read(50,'(A)',err=20) str str=trim(str)//' 1.0 0.0 0.0 0.0' read(str,*,err=20) ramp(:,i) end do case('step') read(50,*,err=20) nstep if (nstep < 1) then write(*,*) write(*,'("Error(readinput): nstep < 1 : ",I8)') nstep write(*,*) stop end if if (allocated(step)) deallocate(step) allocate(step(9,nstep)) do i=1,nstep read(50,'(A)',err=20) str str=trim(str)//' 1.0 0.0 0.0 0.0' read(str,*,err=20) step(:,i) end do case('ncgga') read(50,*,err=20) write(*,'("Info(readinput): variable ''ncgga'' is no longer used")') case('dncgga') read(50,*,err=20) dncgga if (dncgga < 0.d0) then write(*,*) write(*,'("Error(readinput): dncgga < 0 : ",G18.10)') dncgga write(*,*) stop end if case('ntswrite') read(50,'(A)',err=20) str str=trim(str)//' 1' read(str,*,err=20) ntswrite(:) case('nxoapwlo','nxapwlo') read(50,*,err=20) nxoapwlo if (nxoapwlo < 0) then write(*,*) write(*,'("Error(readinput): nxoapwlo < 0 : ",I8)') nxoapwlo write(*,*) stop end if case('nxlo') read(50,*,err=20) nxlo if (nxlo < 0) then write(*,*) write(*,'("Error(readinput): nxlo < 0 : ",I8)') nxlo write(*,*) stop end if case('tdrho1d') read(50,*,err=20) tdrho1d case('tdrho2d') read(50,*,err=20) tdrho2d case('tdrho3d') read(50,*,err=20) tdrho3d case('tdmag1d') read(50,*,err=20) tdmag1d case('tdmag2d') read(50,*,err=20) tdmag2d case('tdmag3d') read(50,*,err=20) tdmag3d case('tdjr1d','tdcd1d') read(50,*,err=20) tdjr1d case('tdjr2d','tdcd2d') read(50,*,err=20) tdjr2d case('tdjr3d','tdcd3d') read(50,*,err=20) tdjr3d case('tddos') read(50,*,err=20) tddos case('tdlsj') read(50,*,err=20) tdlsj case('tdjtk') read(50,*,err=20) tdjtk case('tdxrmk') read(50,*,err=20) tdxrmk case('epseph') read(50,*,err=20) write(*,'("Info(readinput): variable ''epseph'' is no longer used")') case('rndevt0') read(50,*,err=20) rndevt0 case('sxcscf','ssxc','rstsf') read(50,'(A)',err=20) str read(str,*,err=20) sxcscf read(str,*,iostat=ios) sxcscf,dsxcscf case('tempk') read(50,*,err=20) tempk if (tempk <= 0.d0) then write(*,*) write(*,'("Error(readinput): tempk <= 0 : ",G18.10)') tempk write(*,*) stop end if ! set Fermi-Dirac smearing stype=3 ! set the smearing width swidth=kboltz*tempk case('avecu') read(50,*,err=20) avecu(:,1) read(50,*,err=20) avecu(:,2) read(50,*,err=20) avecu(:,3) case('scaleu') read(50,*,err=20) scu case('scaleu1') read(50,*,err=20) scu1 case('scaleu2') read(50,*,err=20) scu2 case('scaleu3') read(50,*,err=20) scu3 case('q0cut') read(50,*,err=20) q0cut if (q0cut < 0.d0) then write(*,*) write(*,'("Error(readinput): q0cut < 0 : ",G18.10)') q0cut write(*,*) stop end if case('rndbfcu') read(50,*,err=20) rndbfcu case('bfielduc') read(50,*,err=20) bfielduc case('efielduc') read(50,*,err=20) efielduc case('tplotq0') read(50,*,err=20) tplotq0 case('trdvclr') read(50,*,err=20) trdvclr case('evtype') read(50,*,err=20) write(*,'("Info(readinput): variable ''evtype'' is no longer used")') case('wmaxgw') read(50,*,err=20) wmaxgw case('twdiag') read(50,*,err=20) twdiag case('tsediag') read(50,*,err=20) tsediag case('actype') read(50,*,err=20) actype case('npole') read(50,*,err=20) npole if (npole < 1) then write(*,*) write(*,'("Error(readinput): npole < 1 : ",I8)') npole write(*,*) stop end if case('nspade') read(50,*,err=20) nspade if (nspade < 1) then write(*,*) write(*,'("Error(readinput): nspade < 1 : ",I8)') nspade write(*,*) stop end if case('tfav0') read(50,*,err=20) tfav0 case('rmtscf') read(50,*,err=20) rmtscf if (rmtscf <= 0.d0) then write(*,*) write(*,'("Error(readinput): rmtscf <= 0 : ",G18.10)') rmtscf write(*,*) stop end if case('mrmtav') read(50,*,err=20) mrmtav case('rmtall') read(50,*,err=20) rmtall case('maxthd','omp_num_threads','OMP_NUM_THREADS') read(50,*,err=20) maxthd case('maxthd1') read(50,*,err=20) maxthd1 case('maxthdmkl') read(50,*,err=20) maxthdmkl case('maxlvl','omp_max_active_levels','OMP_MAX_ACTIVE_LEVELS') read(50,*,err=20) maxlvl if (maxlvl < 1) then write(*,*) write(*,'("Error(readinput): maxlvl < 1 : ",I8)') maxlvl write(*,*) stop end if case('stable') read(50,*,err=20) lv if (lv) then autolinengy=.true. mrmtav=1 lmaxapw=max(lmaxapw,10) gmaxvr=max(gmaxvr,24.d0) msmgmt=max(msmgmt,4) if (mp_mpi) then write(*,*) write(*,'("Info(readinput): parameters set by stable option")') write(*,'(" autolinengy : ",L1)') autolinengy write(*,'(" mrmtav : ",I4)') mrmtav write(*,'(" lmaxapw : ",I4)') lmaxapw write(*,'(" gmaxvr : ",G18.10)') gmaxvr write(*,'(" msmgmt : ",I4)') msmgmt end if end if case('metagga') read(50,*,err=20) lv if (lv) then lmaxi=max(lmaxi,2) gmaxvr=max(gmaxvr,16.d0) nrmtscf=max(nrmtscf,3.d0) msmgmt=max(msmgmt,4) epspot=1.d6 epsengy=min(epsengy,1.d-6) if (mp_mpi) then write(*,*) write(*,'("Info(readinput): parameters set by metagga option")') write(*,'(" lmaxi : ",I4)') lmaxi write(*,'(" gmaxvr : ",G18.10)') gmaxvr write(*,'(" nrmtscf : ",G18.10)') nrmtscf write(*,'(" msmgmt : ",I4)') msmgmt write(*,'(" epspot : ",G18.10)') epspot write(*,'(" epsengy : ",G18.10)') epsengy end if end if case('t0tdlr') read(50,*,err=20) write(*,'("Info(readinput): variable ''t0tdlr'' is no longer used")') case('tdphi') read(50,*,err=20) tdphi ! convert phase from degrees to radians tdphi=tdphi*pi/180.d0 case('thetamld') read(50,*,err=20) thetamld ! convert MLD angle from degrees to radians thetamld=thetamld*pi/180.d0 case('ntsbackup') read(50,*,err=20) ntsbackup case('seedname') read(50,*,err=20) seedname seedname=adjustl(seedname) case('num_wann') read(50,*,err=20) num_wann case('idxw90','wann_bands') read(50,'(A)',err=20) str num_bands=1024 if (allocated(idxw90)) deallocate(idxw90) allocate(idxw90(num_bands)) call numlist(str,num_bands,idxw90) case('num_iter') read(50,*,err=20) num_iter case('dis_num_iter') read(50,*,err=20) dis_num_iter case('trial_step') read(50,*,err=20) trial_step case('xlwin','wannierExtra') if (allocated(xlwin)) deallocate(xlwin) allocate(xlwin(0)) nxlwin=0 do read(50,'(A)',err=20) str if (trim(str) == '') goto 10 xlwin=[xlwin(1:nxlwin),str] nxlwin=nxlwin+1 end do case('wrtunk') read(50,*,err=20) wrtunk case('tbdip') read(50,*,err=20) tbdip case('tjr','tcden') read(50,*,err=20) tjr case('tauefm') read(50,*,err=20) tauefm case('epsefm') read(50,*,err=20) epsefm case('ehfb') read(50,*,err=20) ehfb case('t0gclq0') read(50,*,err=20) t0gclq0 case('tafindt') read(50,*,err=20) tafindt case('afindscf') read(50,*,err=20) write(*,'("Info(readinput): variable ''afindscf'' is no longer used")') case('afindpm') read(50,*,err=20) afindpm(:) if (afindpm(2) == 0.d0) then write(*,*) write(*,'("Error(readinput): afindpm(2) = 0")') write(*,*) stop end if case('nkspolar') read(50,*,err=20) nkspolar if (nkspolar < 1) then write(*,*) write(*,'("Error(readinput): nkspolar < 1 : ",I8)') nkspolar write(*,*) stop end if case('ntsforce') read(50,*,err=20) ntsforce if (ntsforce < 1) then write(*,*) write(*,'("Error(readinput): ntsforce < 1 : ",I8)') ntsforce write(*,*) stop end if case('wphcut') read(50,*,err=20) wphcut if (wphcut <= 0.d0) then write(*,*) write(*,'("Error(readinput): wphcut <= 0 : ",G18.10)') wphcut write(*,*) stop end if case('ephscf') read(50,*,err=20) ephscf(:) case('anomalous') read(50,*,err=20) anomalous case('tephde') read(50,*,err=20) tephde case('bdiag') read(50,*,err=20) bdiag case('ecutb') read(50,*,err=20) ecutb if (ecutb <= 0.d0) then write(*,*) write(*,'("Error(readinput): ecutb <= 0 : ",G18.10)') ecutb write(*,*) stop end if case('ediag') read(50,*,err=20) ediag case('pwxpsn') read(50,*,err=20) pwxpsn if (pwxpsn < 1) then write(*,*) write(*,'("Error(readinput): pwxpsn < 1 : ",I8)') pwxpsn write(*,*) stop end if case('ramdisk') read(50,*,err=20) ramdisk case('wrtdsk') read(50,*,err=20) wrtdsk case('epsdmat') read(50,*,err=20) epsdmat case('tm3old') read(50,*,err=20) tm3old case('batch') read(50,*,err=20) batch case('tafspt') read(50,*,err=20) tafspt case('tbaspat') read(50,*,err=20) tbaspat case('trdatdv') read(50,*,err=20) trdatdv case('atdfc') read(50,*,err=20) atdfc if (atdfc < 0.d0) then write(*,*) write(*,'("Error(readinput): atdfc < 0 : ",G18.10)') atdfc write(*,*) stop end if case('maxforce') read(50,*,err=20) maxforce case('msmgmt','msmg2mt') read(50,*,err=20) msmgmt case('ntsorth') read(50,*,err=20) ntsorth case('deltabf') read(50,*,err=20) deltabf if (deltabf <= 0.d0) then write(*,*) write(*,'("Error(readinput): deltabf <= 0 : ",G18.10)') deltabf write(*,*) stop end if case('jtconst0') read(50,*,err=20) jtconst0 case('trmt0') read(50,*,err=20) trmt0 case('ksgwrho') read(50,*,err=20) ksgwrho case('npfftg') read(50,*,err=20) npfftg case('npfftgc') read(50,*,err=20) npfftgc case('npfftq') read(50,*,err=20) npfftq case('npfftw') read(50,*,err=20) npfftw case('tphnat') read(50,*,err=20) tphnat case('ecutthc') read(50,*,err=20) ecutthc if (ecutthc <= 0.d0) then write(*,*) write(*,'("Error(readinput): ecutthc <= 0 : ",G18.10)') ecutthc write(*,*) stop end if case('tbdipu') read(50,*,err=20) tbdipu case('bdipscf') read(50,*,err=20) bdipscf case('') goto 10 case default write(*,*) write(*,'("Error(readinput): invalid block name : ",A)') trim(block) write(*,*) stop end select goto 10 20 continue write(*,*) write(*,'("Error(readinput): error reading from elk.in")') write(*,'("Problem occurred in ''",A,"'' block")') trim(block) write(*,'("Check input convention in manual")') write(*,*) stop 30 continue close(50) ! scale the speed of light solsc=sol*solscf ! scale and rotate the lattice vectors (not referenced again in code) avec(:,:)=sc*avec(:,:) avec(:,1)=sc1*avec(:,1) avec(:,2)=sc2*avec(:,2) avec(:,3)=sc3*avec(:,3) avec(1,:)=scx*avec(1,:) avec(2,:)=scy*avec(2,:) avec(3,:)=scz*avec(3,:) t1=axang(4) if (t1 /= 0.d0) then t1=t1*pi/180.d0 call axangrot(axang(:),t1,rot) do i=1,3 v(:)=avec(:,i) call r3mv(rot,v,avec(:,i)) end do end if ! randomise lattice vectors if required if (rndavec > 0.d0) then do i=1,3 do j=1,3 t1=rndavec*(randomu()-0.5d0) avec(i,j)=avec(i,j)+t1 end do end do end if ! check if reference lattice vectors should be used tavref=(any(abs(avecref(:,:)) > epslat)) ! case of isolated molecule if (molecule) then ! convert atomic positions from Cartesian to lattice coordinates call r3minv(avec,ainv) do is=1,nspecies do ia=1,natoms(is) call r3mv(ainv,atposl(:,ia,is),v) atposl(:,ia,is)=v(:) end do end do end if ! randomise atomic positions if required if (rndatposc > 0.d0) then call r3minv(avec,ainv) do is=1,nspecies do ia=1,natoms(is) call r3mv(avec,atposl(:,ia,is),v) do i=1,3 t1=rndatposc*(randomu()-0.5d0) v(i)=v(i)+t1 end do call r3mv(ainv,v,atposl(:,ia,is)) end do end do end if ! randomise the muffin-tin magnetic fields if required if (rndbfcmt > 0.d0) then do is=1,nspecies do ia=1,natoms(is) do i=1,3 t1=rndbfcmt*(randomu()-0.5d0) bfcmt0(i,ia,is)=bfcmt0(i,ia,is)+t1 end do end do end do end if ! set fxctype to fxctype if required if (fxctype(1) == -1) fxctype(:)=xctype(:) ! find primitive cell if required if (primcell) call findprimcell ! scale the ultracell vectors if required avecu(:,1)=scu1*avecu(:,1) avecu(:,2)=scu2*avecu(:,2) avecu(:,3)=scu3*avecu(:,3) avecu(:,:)=scu*avecu(:,:) ! read in atomic species data call readspecies return end subroutine !EOC elk-10.4.9/src/PaxHeaders/numlist.f900000644000000000000000000000013214762655564014264 xustar0030 mtime=1741380468.615009228 30 atime=1741380466.733999394 30 ctime=1741380468.615009228 elk-10.4.9/src/numlist.f900000644002504400250440000000273214762655564017012 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin, ! Lars Nordstrom and J. K. Dewhurst. This file is distributed under the terms of ! the GNU General Public License. See the file COPYING for license details. !BOP ! !ROUTINE: numlist ! !INTERFACE: subroutine numlist(str,n,list) ! !INPUT/OUTPUT PARAMETERS: ! str : string to be converted to list of numbers (in,character(*)) ! n : on entry, the maximum allowed number of elements; on exit, the number ! of elements in the list (inout,integer) ! list : list of elements (out,integer(n)) ! !DESCRIPTION: ! Converts a space- or comma-separated string of integers, including ranges, ! to a list. For example, the string `{\tt 1,2,10-13 5 6}' would be converted ! to the list {\tt 1,2,10,11,12,13,5,6}. ! ! !REVISION HISTORY: ! Created May 2015 (Manh Duc Le) !EOP !BOC implicit none ! arguments character(*), intent(in) :: str integer, intent(inout) :: n integer, intent(out) :: list(n) ! local variables integer i0,i1,i,j,m,ios ! automatic arrays integer l(n) i=0 i0=1 do m=index(str(i0:),'-') if (m == 0) then i1=256 else i1=i0+m-2 end if l(:)=0 read(str(i0:i1),*,iostat=ios) l if (i > 0) then do j=list(i)+1,l(1)-1 if (i == n) return i=i+1 list(i)=j end do end if do j=1,n if (l(j) == 0) exit if (i == n) return i=i+1 list(i)=l(j) end do if (m == 0) then n=i return end if i0=i0+m end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/hermite.f900000644000000000000000000000013114762655564014225 xustar0030 mtime=1741380468.616009233 29 atime=1741380466.73699941 30 ctime=1741380468.616009233 elk-10.4.9/src/hermite.f900000644002504400250440000000266114762655564016755 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: hermite ! !INTERFACE: real(8) function hermite(n,x) ! !INPUT/OUTPUT PARAMETERS: ! n : order of Hermite polynomial (in,integer) ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the $n$th Hermite polynomial. The recurrence relation ! $$ H_i(x)=2xH_{i-1}(x)-2nH_{i-2}(x), $$ ! with $H_0=1$ and $H_1=2x$, is used. This procedure is numerically stable ! and accurate to near machine precision for $n\le 20$. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x ! local variables integer i real(8) h1,h2,ht ! fast return if possible if (n == 0) then hermite=1.d0 return else if (n == 1) then hermite=2.d0*x return else if (n == 2) then hermite=4.d0*x**2-2.d0 return end if if (n < 0) then write(*,*) write(*,'("Error(hermite): n < 0 : ",I8)') n write(*,*) stop end if if (n > 20) then write(*,*) write(*,'("Error(hermite): n out of range : ",I8)') n write(*,*) stop end if if (abs(x) > 1.d15) then write(*,*) write(*,'("Error(hermite): x out of range : ",G18.10)') x write(*,*) stop end if h1=2.d0*x h2=1.d0 do i=2,n ht=2.d0*(x*h1-dble(i-1)*h2) h2=h1 h1=ht end do hermite=h1 end function !EOC elk-10.4.9/src/PaxHeaders/rvfcross.f900000644000000000000000000000013214762655564014440 xustar0030 mtime=1741380468.618009244 30 atime=1741380466.738999421 30 ctime=1741380468.618009244 elk-10.4.9/src/rvfcross.f900000644002504400250440000000420614762655564017164 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rvfcross ! !INTERFACE: subroutine rvfcross(rvfmt1,rvfir1,rvfmt2,rvfir2,rvfmt3,rvfir3) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! rvfmt1 : first input muffin-tin field (in,real(npmtmax,natmtot,3)) ! rvfir1 : first input interstitial field (in,real(ngtot,3)) ! rvfmt2 : second input muffin-tin field (in,real(npmtmax,natmtot,3)) ! rvfir2 : second input interstitial field (in,real(ngtot,3)) ! rvfmt3 : output muffin-tin field (out,real(npmtmax,natmtot,3)) ! rvfir3 : output interstitial field (out,real(ngtot,3)) ! !DESCRIPTION: ! Given two real vector fields, ${\bf f}_1$ and ${\bf f}_2$, defined over the ! entire unit cell, this routine computes the local cross product ! $$ {\bf f}_3({\bf r})\equiv{\bf f}_1({\bf r})\times{\bf f}_2({\bf r}). $$ ! ! !REVISION HISTORY: ! Created February 2007 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rvfmt1(npmtmax,natmtot,3),rvfir1(ngtot,3) real(8), intent(in) :: rvfmt2(npmtmax,natmtot,3),rvfir2(ngtot,3) real(8), intent(out) :: rvfmt3(npmtmax,natmtot,3),rvfir3(ngtot,3) ! local variables integer is,ias,nr,nri,ir,i real(8) v1(3),v2(3),v3(3) ! allocatable arrays real(8), allocatable :: rvfmt4(:,:),rvfmt5(:,:) !---------------------------! ! muffin-tin region ! !---------------------------! allocate(rvfmt4(npmtmax,3),rvfmt5(npmtmax,3)) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) do i=1,3 call rbsht(nr,nri,rvfmt1(:,ias,i),rvfmt4(:,i)) call rbsht(nr,nri,rvfmt2(:,ias,i),rvfmt5(:,i)) end do do i=1,npmt(is) v1(:)=rvfmt4(i,:) v2(:)=rvfmt5(i,:) call r3cross(v1,v2,v3) rvfmt4(i,:)=v3(:) end do do i=1,3 call rfsht(nr,nri,rvfmt4(:,i),rvfmt3(:,ias,i)) end do end do deallocate(rvfmt4,rvfmt5) !-----------------------------! ! interstitial region ! !-----------------------------! do ir=1,ngtot v1(:)=rvfir1(ir,:) v2(:)=rvfir2(ir,:) call r3cross(v1,v2,v3) rvfir3(ir,:)=v3(:) end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/genfspecies.f900000644000000000000000000000013214762655564015064 xustar0030 mtime=1741380468.619009249 30 atime=1741380466.741999436 30 ctime=1741380468.619009249 elk-10.4.9/src/genfspecies.f900000644002504400250440000000644214762655564017614 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genfspecies(zn,symb) use modmain use modmpi implicit none ! arguments real(8), intent(in) :: zn character(*), intent(in) :: symb ! local variables integer, parameter :: nit=4 integer nst,ist,jst integer nmax,in,il,ik integer nrm,nr,ir,it integer n(maxstsp),l(maxstsp),k(maxstsp) integer idx(maxstsp),iv(maxstsp) real(8) rm,rmin,rmax real(8) mass,t1,t2,t3 real(8) occ(maxstsp),eval(maxstsp),rv(maxstsp) character(64) name ! allocatable arrays real(8), allocatable :: r(:),rho(:),vr(:),rwf(:,:,:) ! external functions real(8), external :: massnucl name='Fractional species' ! set up the initial occupation numbers occ(:)=0.d0 t1=abs(zn) nmax=1 ist=0 do in=1,maxstsp do il=0,in-1 do ik=max(il,1),il+1 t2=dble(2*ik) t2=min(t2,t1) ist=ist+1 n(ist)=in l(ist)=il k(ist)=ik occ(ist)=t2 if (t2 > epsocc) nmax=in t1=t1-t2 if (ist == maxstsp) then if (t1 > epsocc) then write(*,*) write(*,'("Error(genfspecies): too many states for fractional & &species ",A)') trim(symb) write(*,*) stop else goto 10 end if end if end do end do end do 10 continue ! minimum radius rmin=2.d-6/sqrt(abs(zn)) ! initial maximum radius rmax=100.d0 ! initial muffin-tin radius rm=2.d0 ! number of points to muffin-tin radius nrm=100*(nmax+1) ! iterate the solution but not to self-consistency do it=1,nit ! number of points to effective infinity t1=log(rm/rmin) t2=log(rmax/rmin) t3=dble(nrm)*t2/t1 nr=int(t3) allocate(r(nr),rho(nr),vr(nr),rwf(nr,2,maxstsp)) ! generate logarithmic radial mesh t2=t1/dble(nrm-1) do ir=1,nr r(ir)=rmin*exp(dble(ir-1)*t2) end do ! solve the Kohn-Sham-Dirac equation for the atom call atom(sol,.true.,zn,maxstsp,n,l,k,occ,3,0,nr,r,eval,rho,vr,rwf) ! check for spurious eigenvalues do ist=2,maxstsp if (eval(ist) < eval(1)) eval(ist)=1.d6 end do ! recompute the effective infinity do ir=nr,1,-1 if (rho(ir) > 1.d-20) then rmax=1.75d0*r(ir) exit end if end do ! estimate the muffin-tin radius do ir=nr,1,-1 if (rho(ir) > 2.d-2) then rm=r(ir) exit end if end do if (rm < 1.d0) rm=1.d0 if (rm > 3.2d0) rm=3.2d0 ! sort the eigenvalues call sortidx(maxstsp,eval,idx) ! recompute the occupation numbers occ(:)=0.d0 t1=abs(zn) do ist=1,maxstsp jst=idx(ist) ik=k(jst) t2=dble(2*ik) t2=min(t2,t1) occ(jst)=t2 t1=t1-t2 end do deallocate(r,rho,vr,rwf) end do ! rearrange the arrays iv(:)=n(:) n(:)=iv(idx(:)) iv(:)=l(:) l(:)=iv(idx(:)) iv(:)=k(:) k(:)=iv(idx(:)) rv(:)=occ(:) occ(:)=rv(idx(:)) rv(:)=eval(:) eval(:)=rv(idx(:)) ! find the number of occupied states nst=0 do ist=1,maxstsp if (occ(ist) < epsocc) then nst=ist exit end if end do ! estimate the nuclear mass mass=massnucl(zn) ! convert from 'atomic mass units' to atomic units mass=mass*amu ! write the species file call writespecies(symb,name,zn,mass,rmin,rm,rmax,nrm,nst,n,l,k,occ,eval) if (mp_mpi) then write(*,'("Info(genfspecies): wrote fractional species file ",A,".in")') & trim(symb) end if end subroutine elk-10.4.9/src/PaxHeaders/atpstep.f900000644000000000000000000000013014762655564014247 xustar0029 mtime=1741380468.62100926 30 atime=1741380466.744999452 29 ctime=1741380468.62100926 elk-10.4.9/src/atpstep.f900000644002504400250440000000352314762655564016776 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: atpstep ! !INTERFACE: subroutine atpstep ! !USES: use modmain use modmpi ! !DESCRIPTION: ! Makes a geometry optimisation step and updates the current atomic positions ! according to the force on each atom. If ${\bf r}_{ij}^m$ is the position and ! ${\bf F}_{ij}^m$ is the force acting on it for atom $j$ of species $i$ and ! after time step $m$, then the new position is calculated by ! $$ {\bf r}_{ij}^{m+1}={\bf r}_{ij}^m+\tau_{ij}^m\left({\bf F}_{ij}^m ! +{\bf F}_{ij}^{m-1}\right), $$ ! where $\tau_{ij}^m$ is a parameter governing the size of the displacement. ! If ${\bf F}_{ij}^m\cdot{\bf F}_{ij}^{m-1}>0$ then $\tau_{ij}^m$ is ! increased, otherwise it is decreased. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ias,n real(8) t1 do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! compute the dot-product between the current and previous total force t1=dot_product(forcetot(1:3,ias),forcetotp(1:3,ias)) ! if the force is in the same direction then increase step size parameter if (t1 > 0.d0) then tauatp(ias)=tauatp(ias)+tau0atp else tauatp(ias)=tau0atp end if ! make atomic position step atposc(1:3,ia,is)=atposc(1:3,ia,is)+tauatp(ias)*(forcetot(1:3,ias) & +forcetotp(1:3,ias)) end do end do ! each MPI process should have identical atomic positions n=3*maxatoms*maxspecies call mpi_bcast(atposc,n,mpi_double_precision,0,mpicom,ierror) do is=1,nspecies do ia=1,natoms(is) ! compute the lattice coordinates of the atomic positions call r3mv(ainv,atposc(:,ia,is),atposl(:,ia,is)) end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/dmatls.f900000644000000000000000000000013214762655564014055 xustar0030 mtime=1741380468.622009265 30 atime=1741380466.746999463 30 ctime=1741380468.622009265 elk-10.4.9/src/dmatls.f900000644002504400250440000000162114762655564016577 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dmatls(dmat,xl,xs) use modmain implicit none ! arguments complex(8), intent(in) :: dmat(lmmaxo,nspinor,lmmaxo,nspinor) real(8), intent(out) :: xl(3),xs(3) ! local variables integer ispn,lm ! automatic arrays complex(8) zlflm(lmmaxo,3) ! compute tr(LD) xl(:)=0.d0 do ispn=1,nspinor do lm=1,lmmaxo call lopzflm(lmaxo,dmat(:,ispn,lm,ispn),lmmaxo,zlflm) xl(:)=xl(:)+dble(zlflm(lm,:)) end do end do ! compute tr(sigma D) xs(:)=0.d0 if (spinpol) then do lm=1,lmmaxo xs(1)=xs(1)+dble(dmat(lm,2,lm,1)+dmat(lm,1,lm,2)) xs(2)=xs(2)+dble(-zi*dmat(lm,2,lm,1)+zi*dmat(lm,1,lm,2)) xs(3)=xs(3)+dble(dmat(lm,1,lm,1)-dmat(lm,2,lm,2)) end do ! S = 1/2 sigma xs(:)=0.5d0*xs(:) end if end subroutine elk-10.4.9/src/PaxHeaders/writeengy.f900000644000000000000000000000013014762655564014604 xustar0029 mtime=1741380468.62300927 30 atime=1741380466.749999478 29 ctime=1741380468.62300927 elk-10.4.9/src/writeengy.f900000644002504400250440000000305014762655564017326 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine writeengy(fnum) use modmain use moddftu implicit none ! arguments integer, intent(in) :: fnum write(fnum,*) write(fnum,'("Energies :")') write(fnum,'(" Fermi",T30,": ",G22.12)') efermi write(fnum,'(" sum of eigenvalues",T30,": ",G22.12)') evalsum write(fnum,'(" electron kinetic",T30,": ",G22.12)') engykn write(fnum,'(" core electron kinetic",T30,": ",G22.12)') engykncr write(fnum,'(" Coulomb",T30,": ",G22.12)') engycl write(fnum,'(" Coulomb potential",T30,": ",G22.12)') engyvcl write(fnum,'(" nuclear-nuclear",T30,": ",G22.12)') engynn write(fnum,'(" electron-nuclear",T30,": ",G22.12)') engyen write(fnum,'(" Hartree",T30,": ",G22.12)') engyhar write(fnum,'(" Madelung",T30,": ",G22.12)') engymad write(fnum,'(" xc potential",T30,": ",G22.12)') engyvxc if (spinpol) then write(fnum,'(" xc effective B-field",T30,": ",G22.12)') engybxc write(fnum,'(" external B-field",T30,": ",G22.12)') engybext end if write(fnum,'(" exchange",T30,": ",G22.12)') engyx write(fnum,'(" correlation",T30,": ",G22.12)') engyc if (dftu /= 0) then write(fnum,'(" DFT+U",T30,": ",G22.12)') engydu end if if (stype == 3) then write(fnum,'(" electron entropic",T30,": ",G22.12)') engyts end if write(fnum,'(" total energy",T30,": ",G22.12)') engytot if (spinpol) then write(fnum,'(" (external B-field energy excluded from total)")') end if flush(fnum) end subroutine elk-10.4.9/src/PaxHeaders/writechg.f900000644000000000000000000000013214762655564014405 xustar0030 mtime=1741380468.625009281 30 atime=1741380466.752999494 30 ctime=1741380468.625009281 elk-10.4.9/src/writechg.f900000644002504400250440000000225114762655564017127 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine writechg(fnum) use modmain implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,ia,ias ! write charges write(fnum,*) write(fnum,'("Charges :")') write(fnum,'(" core",T30,": ",G18.10)') chgcrtot write(fnum,'(" valence",T30,": ",G18.10)') chgval write(fnum,'(" interstitial",T30,": ",G18.10)') chgir write(fnum,'(" muffin-tins (core leakage)")') do is=1,nspecies write(fnum,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(fnum,'(" atom ",I4,T30,": ",G18.10," (",G18.10,")")') ia, & chgmt(ias),chgcrlk(ias) end do end do write(fnum,'(" total in muffin-tins",T30,": ",G18.10)') chgmttot if (chgexs /= 0.d0) then write(fnum,'(" excess",T30,": ",G18.10)') chgexs end if write(fnum,'(" total calculated charge",T30,": ",G18.10)') chgcalc write(fnum,'(" total charge",T30,": ",G18.10)') chgtot write(fnum,'(" error",T30,": ",G18.10)') abs(chgtot-chgcalc) flush(fnum) end subroutine elk-10.4.9/src/PaxHeaders/genlofr.f900000644000000000000000000000013214762655564014225 xustar0030 mtime=1741380468.626009286 30 atime=1741380466.754999504 30 ctime=1741380468.626009286 elk-10.4.9/src/genlofr.f900000644002504400250440000001126514762655564016754 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genlofr ! !INTERFACE: subroutine genlofr ! !USES: use modmain ! !DESCRIPTION: ! Generates the local-orbital radial functions. This is done by integrating ! the scalar relativistic Schr\"{o}dinger equation (or its energy deriatives) ! at the current linearisation energies using the spherical part of the ! Kohn-Sham potential. For each local-orbital, a linear combination of ! {\tt lorbord} radial functions is constructed such that its radial ! derivatives up to order ${\tt lorbord}-1$ are zero at the muffin-tin radius. ! This function is normalised and the radial Hamiltonian applied to it. The ! results are stored in the global array {\tt lofr}. ! ! !REVISION HISTORY: ! Created March 2003 (JKD) ! Copied to equivalent atoms, February 2010 (A. Kozhevnikov and JKD) !EOP !BOC implicit none ! local variables integer is,ia,ja,ias,jas integer nr,nri,iro,ir,i integer i0,i1,nn,l,info integer ilo,jlo,io,jo real(8) e,t1 ! automatic arrays integer ipiv(nplorb) real(8) vr(nrmtmax),fr(nrmtmax) real(8) p0(nrmtmax,lorbordmax),p1(nrmtmax) real(8) q0(nrmtmax),q1(nrmtmax),ep0(nrmtmax,lorbordmax) real(8) p0c(nrmtmax,nlomax),ep0c(nrmtmax,nlomax) real(8) ya(nplorb),a(nplorb,nplorb),b(nplorb) ! external functions real(8), external :: polynm do is=1,nspecies nr=nrmt(is) nri=nrmti(is) iro=nri+1 do ia=1,natoms(is) ! perform calculation for only the first equivalent atom if (.not.tfeqat(ia,is)) cycle ias=idxas(ia,is) ! use spherical part of potential i1=lmmaxi*(nri-1)+1 vr(1:nri)=vsmt(1:i1:lmmaxi,ias)*y00 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 vr(iro:nr)=vsmt(i0:i1:lmmaxo,ias)*y00 do ilo=1,nlorb(is) l=lorbl(ilo,is) do jo=1,lorbord(ilo,is) ! linearisation energy accounting for energy derivative e=lorbe(jo,ilo,ias)+dble(lorbdm(jo,ilo,is))*delorb ! integrate the radial Schrodinger equation call rschrodint(solsc,l,e,nr,rlmt(:,1,is),vr,nn,p0(:,jo),p1,q0,q1) ep0(1:nr,jo)=e*p0(1:nr,jo) ! normalise radial functions fr(1:nr)=p0(1:nr,jo)**2 t1=dot_product(wrmt(1:nr,is),fr(1:nr)) t1=1.d0/sqrt(abs(t1)) p0(1:nr,jo)=t1*p0(1:nr,jo) ep0(1:nr,jo)=t1*ep0(1:nr,jo) ! set up the matrix of radial derivatives do i=1,nplorb ir=nr-nplorb+i ya(i)=p0(ir,jo)*rlmt(ir,-1,is) end do a(1,jo)=ya(nplorb) ir=nr-nplorb+1 do io=2,lorbord(ilo,is) a(io,jo)=polynm(io-1,nplorb,rlmt(ir,1,is),ya,rmt(is)) end do end do ! set up the target vector b(1:nplorb)=0.d0 b(lorbord(ilo,is))=1.d0 ! solve the linear system call dgesv(lorbord(ilo,is),1,a,nplorb,ipiv,b,nplorb,info) if (info /= 0) goto 10 ! generate linear combination of radial functions p0c(1:nr,ilo)=0.d0 ep0c(1:nr,ilo)=0.d0 do io=1,lorbord(ilo,is) t1=b(io) p0c(1:nr,ilo)=p0c(1:nr,ilo)+t1*p0(1:nr,io) ep0c(1:nr,ilo)=ep0c(1:nr,ilo)+t1*ep0(1:nr,io) end do ! normalise radial functions fr(1:nr)=p0c(1:nr,ilo)**2 t1=dot_product(wrmt(1:nr,is),fr(1:nr)) t1=1.d0/sqrt(abs(t1)) p0c(1:nr,ilo)=t1*p0c(1:nr,ilo) ep0c(1:nr,ilo)=t1*ep0c(1:nr,ilo) ! subtract linear combination of previous local-orbitals with same l do jlo=1,ilo-1 if (lorbl(jlo,is) == l) then fr(1:nr)=p0c(1:nr,ilo)*p0c(1:nr,jlo) t1=-dot_product(wrmt(1:nr,is),fr(1:nr)) p0c(1:nr,ilo)=p0c(1:nr,ilo)+t1*p0c(1:nr,jlo) ep0c(1:nr,ilo)=ep0c(1:nr,ilo)+t1*ep0c(1:nr,jlo) end if end do ! normalise radial functions again if (ilo > 1) then fr(1:nr)=p0c(1:nr,ilo)**2 t1=abs(dot_product(wrmt(1:nr,is),fr(1:nr))) if (t1 < 1.d-25) goto 10 t1=1.d0/sqrt(t1) p0c(1:nr,ilo)=t1*p0c(1:nr,ilo) ep0c(1:nr,ilo)=t1*ep0c(1:nr,ilo) end if ! divide by r and store in global array do ir=1,nr t1=rlmt(ir,-1,is) lofr(ir,1,ilo,ias)=t1*p0c(ir,ilo) lofr(ir,2,ilo,ias)=t1*ep0c(ir,ilo) end do end do ! copy to equivalent atoms do ja=1,natoms(is) if (eqatoms(ia,ja,is).and.(ia /= ja)) then jas=idxas(ja,is) do ilo=1,nlorb(is) lofr(1:nr,1:2,ilo,jas)=lofr(1:nr,1:2,ilo,ias) end do end if end do ! end loop over atoms and species end do end do return 10 continue write(*,*) write(*,'("Error(genlofr): degenerate local-orbital radial functions")') write(*,'(" for species ",I4)') is write(*,'(" atom ",I4)') ia write(*,'(" and local-orbital ",I4)') ilo write(*,*) stop end subroutine !EOC elk-10.4.9/src/PaxHeaders/rotrfmt.f900000644000000000000000000000013114762655564014265 xustar0030 mtime=1741380468.627009291 29 atime=1741380466.75799952 30 ctime=1741380468.627009291 elk-10.4.9/src/rotrfmt.f900000644002504400250440000001403414762655564017012 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rotrfmt(rot,nr,nri,rfmt1,rfmt2) use modmain implicit none ! arguments real(8), intent(in) :: rot(3,3) integer, intent(in) :: nr,nri real(8), intent(in) :: rfmt1(*) real(8), intent(out) :: rfmt2(*) ! local variables integer i ! inner part of muffin-tin call rotrflm(rot,lmaxi,nri,lmmaxi,rfmt1,rfmt2) ! outer part of muffin-tin i=lmmaxi*nri+1 call rotrflm(rot,lmaxo,nr-nri,lmmaxo,rfmt1(i),rfmt2(i)) return contains !BOP ! !ROUTINE: rotrflm ! !INTERFACE: subroutine rotrflm(rot,lmax,n,ld,rflm1,rflm2) ! !INPUT/OUTPUT PARAMETERS: ! rot : rotation matrix (in,real(3,3)) ! lmax : maximum angular momentum (in,integer) ! n : number of functions to rotate (in,integer) ! ld : leading dimension (in,integer) ! rflm1 : coefficients of the real spherical harmonic expansion for each ! function (in,real(ld,n)) ! rflm2 : coefficients of rotated functions (out,complex(ld,n)) ! !DESCRIPTION: ! Rotates a set of real functions ! $$ f_i({\bf r})=\sum_{lm}f_{lm}^iR_{lm}(\hat{\bf r}) $$ ! for all $i$, given the coefficients $f_{lm}^i$ and a rotation matrix $R$. ! This is done by first the computing the Euler angles $(\alpha,\beta,\gamma)$ ! of $R^{-1}$ (see routine {\tt roteuler}) and then applying the spherical ! harmonic rotation matrix generated by the routine {\tt rlmrot}. ! ! !REVISION HISTORY: ! Created December 2008 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rot(3,3) integer, intent(in) :: lmax,n,ld real(8), intent(in) :: rflm1(ld,*) real(8), intent(out) :: rflm2(ld,*) ! local variables integer l,lm,nm,p real(8) det,ang(3),angi(3) ! automatic arrays real(8) d(ld,ld) if (n == 0) return ! find the determinant det=rot(1,1)*(rot(2,2)*rot(3,3)-rot(3,2)*rot(2,3)) & +rot(2,1)*(rot(3,2)*rot(1,3)-rot(1,2)*rot(3,3)) & +rot(3,1)*(rot(1,2)*rot(2,3)-rot(2,2)*rot(1,3)) ! calculate the Euler angles of the proper rotation if (det > 0.d0) then p=1 call roteuler(rot,ang) else p=-1 call roteuler(-rot(:,:),ang) end if ! inverse rotation: the function is to be rotated, not the spherical harmonics angi(1)=-ang(3) angi(2)=-ang(2) angi(3)=-ang(1) ! determine the rotation matrix for real spherical harmonics call rlmrot(p,angi,lmax,ld,d) ! apply rotation matrix do l=0,lmax nm=2*l+1 lm=l**2+1 call dgemm('N','N',nm,n,nm,1.d0,d(lm,lm),ld,rflm1(lm,1),ld,0.d0,rflm2(lm,1), & ld) end do end subroutine !EOC !BOP ! !ROUTINE: rlmrot ! !INTERFACE: subroutine rlmrot(p,ang,lmax,ld,d) ! !INPUT/OUTPUT PARAMETERS: ! p : if p=-1 then the rotation matrix is improper (in,integer) ! ang : Euler angles; alpha, beta, gamma (in,real(3)) ! lmax : maximum angular momentum (in,integer) ! ld : leading dimension (in,integer) ! d : real spherical harmonic rotation matrix (out,real(ld,*)) ! !DESCRIPTION: ! Returns the rotation matrix in the basis of real spherical harmonics given ! the three Euler angles, $(\alpha,\beta,\gamma)$, and the parity, $p$, of the ! rotation. The matrix is determined using the formula of V. V. Nechaev, ! [{\it J. Struct. Chem.} {\bf 35}, 115 (1994)], suitably modified for our ! definition of the real spherical harmonics ($m_1>0$, $m_2>0$): ! \begin{align*} ! &\Delta^l_{00}=d^l_{00}, \\ ! &\Delta^l_{m_10}=\sqrt{2}\,(-1)^{m_1}d^l_{0m_1}\cos(m_1\alpha), \\ ! &\Delta^l_{0m_2}=\sqrt{2}\,(-1)^{m_2}d^l_{m_20}\cos(m_2\gamma), \\ ! &\Delta^l_{-m_10}=-\sqrt{2}\,d^l_{0m_1}\sin(m_1\alpha), \\ ! &\Delta^l_{0-m_2}=\sqrt{2}\,d^l_{m_20}\sin(m_2\gamma), \\ ! &\Delta^l_{m_1m_2}=(-1)^{m_1}(-1)^{m_2}\{\cos(m_1\alpha)\cos(m_2\gamma) ! [d_A+d_B]-\sin(m_1\alpha)\sin(m_2\gamma)[d_A-d_B]\}, \\ ! &\Delta^l_{m_1-m_2}=(-1)^{m_1}\{\sin(m_1\alpha)\cos(m_2\gamma) ! [d_A-d_B]+\cos(m_1\alpha)\sin(m_2\gamma)[d_A+d_B]\}, \\ ! &\Delta^l_{-m_1m_2}=-(-1)^{m_2}\{\sin(m_1\alpha)\cos(m_2\gamma) ! [d_A+d_B]+\cos(m_1\alpha)\sin(m_2\gamma)[d_A-d_B]\}, \\ ! &\Delta^l_{-m_1-m_2}=\cos(m_1\alpha)\cos(m_2\gamma) ! [d_A-d_B]-\sin(m_1\alpha)\sin(m_2\gamma)[d_A+d_B], ! \end{align*} ! where $d_A\equiv d^l_{-m_1-m_2}$, $d_B\equiv(-1)^{m_1}d^l_{m_1-m_2}$ and ! $d$ is the rotation matrix about the $y$-axis for complex spherical ! harmonics. See the routines {\tt genrlm}, {\tt roteuler} and {\tt ylmroty}. ! ! !REVISION HISTORY: ! Created December 2008 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: p real(8), intent(in) :: ang(3) integer, intent(in) :: lmax,ld real(8), intent(out) :: d(ld,*) ! local variables integer l,m1,m2,lm0,lm1,lm2 real(8), parameter :: sqtwo=1.4142135623730950488d0 real(8) s1,s2,t1,t2,t3,t4,t5,t6,t7,t8 ! automatic arrays integer lmi(-lmax:lmax) real(8) ca(lmax),sa(lmax),cg(lmax),sg(lmax),dy(ld,ld) ! generate the complex spherical harmonic rotation matrix about the y-axis call ylmroty(ang(2),lmax,ld,dy) do m1=1,lmax ca(m1)=cos(m1*ang(1)); sa(m1)=sin(m1*ang(1)) cg(m1)=cos(m1*ang(3)); sg(m1)=sin(m1*ang(3)) end do lm1=0 do l=0,lmax do m1=-l,l lm1=lm1+1 lmi(m1)=lm1 end do lm0=lmi(0) d(lm0,lm0)=dy(lm0,lm0) do m1=1,l if (mod(m1,2) == 0) then s1=1.d0 else s1=-1.d0 end if t1=sqtwo*dy(lm0,lmi(m1)) t2=sqtwo*dy(lmi(m1),lm0) d(lmi(m1),lm0)=s1*t1*ca(m1) d(lm0,lmi(m1))=s1*t2*cg(m1) d(lmi(-m1),lm0)=-t1*sa(m1) d(lm0,lmi(-m1))=t2*sg(m1) do m2=1,l if (mod(m2,2) == 0) then s2=1.d0 else s2=-1.d0 end if t1=ca(m1)*cg(m2) t2=sa(m1)*sg(m2) t3=sa(m1)*cg(m2) t4=ca(m1)*sg(m2) t5=dy(lmi(-m1),lmi(-m2)) t6=s1*dy(lmi(m1),lmi(-m2)) t7=t5+t6 t8=t5-t6 d(lmi(m1),lmi(m2))=s1*s2*(t1*t7-t2*t8) d(lmi(m1),lmi(-m2))=s1*(t3*t8+t4*t7) d(lmi(-m1),lmi(m2))=-s2*(t3*t7+t4*t8) d(lmi(-m1),lmi(-m2))=t1*t8-t2*t7 end do end do end do ! apply inversion if required if (p == -1) then do l=1,lmax,2 lm1=l**2+1 lm2=lm1+2*l d(lm1:lm2,lm1:lm2)=-d(lm1:lm2,lm1:lm2) end do end if end subroutine !EOC end subroutine elk-10.4.9/src/PaxHeaders/genpmatk.f900000644000000000000000000000013114762655564014376 xustar0030 mtime=1741380468.629009301 29 atime=1741380466.75999953 30 ctime=1741380468.629009301 elk-10.4.9/src/genpmatk.f900000644002504400250440000001304314762655564017122 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genpmatk ! !INTERFACE: subroutine genpmatk(ngp,igpig,vgpc,wfmt,wfgp,pmat) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer(nspnfv)) ! igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax,nspnfv)) ! vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax,nspnfv)) ! wfmt : muffin-tin wavefunction in spherical harmonics ! (in,complex(npcmtmax,natmtot,nspinor,nstsv)) ! wfgp : interstitial wavefunction in plane wave basis ! (in,complex(ngkmax,nspinor,nstsv)) ! pmat : momentum matrix elements (out,complex(nstsv,nstsv,3)) ! !DESCRIPTION: ! Calculates the momentum matrix elements ! $$ P_{ij}=\int d^3r\,\Psi_{i{\bf k}}^*({\bf r})\left(-i\nabla ! +\frac{1}{4c^2}\left[\vec{\sigma}\times\nabla V_s({\bf r})\right]\right) ! \Psi_{j{\bf k}}({\bf r}), $$ ! where $V_s$ is the Kohn-Sham effective potential. The second term in the ! brackets is only calculated if spin-orbit coupling is enabled. See Rathgen ! and Katsnelson, {\it Physica Scripta} {\bf T109}, 170 (2004). ! ! !REVISION HISTORY: ! Created November 2003 (Sharma) ! Fixed bug found by Juergen Spitaler, September 2006 (JKD) ! Added spin-orbit correction, July 2010 (JKD) ! Fixed bug found by Koichi Kitahara, January 2014 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) real(8), intent(in) :: vgpc(3,ngkmax,nspnfv) complex(8), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nstsv) complex(8), intent(in) :: wfgp(ngkmax,nspinor,nstsv) complex(8), intent(out) :: pmat(nstsv,nstsv,3) ! local variables integer ist,jst,ispn,jspn integer is,ia,ias integer nrc,nrci,npc integer igp,ifg,i real(8) cso complex(8) z1,z2,z11,z12,z21,z22,z31,z32 ! automatic arrays real(8) rfmt(npcmtmax) complex(8) gwfmt(npcmtmax,3,nspinor),gvmt(npcmtmax,3) complex(8) zfmt1(npcmtmax,nspinor),zfmt2(npcmtmax,3,nspinor) complex(8) gwfir(ngtc,3),z(ngkmax) ! external functions complex(8), external :: zdotc ! coefficient of spin-orbit coupling cso=1.d0/(4.d0*solsc**2) ! zero the momentum matrix elements array pmat(1:nstsv,1:nstsv,1:3)=0.d0 !---------------------------------! ! muffin-tin contribution ! !---------------------------------! do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) ! compute gradient of potential for spin-orbit correction if required if (spinorb) then call rfmtftoc(nrc,nrci,vsmt(:,ias),rfmt) call rtozfmt(nrc,nrci,rfmt,zfmt1) call gradzfmt(nrc,nrci,rlcmt(:,-1,is),wcrcmt(:,:,is),zfmt1,npcmtmax,gvmt) ! convert to spherical coordinates do i=1,3 call zbshtip(nrc,nrci,gvmt(:,i)) end do end if do jst=1,nstsv do ispn=1,nspinor ! compute the gradient of the wavefunction call gradzfmt(nrc,nrci,rlcmt(:,-1,is),wcrcmt(:,:,is), & wfmt(:,ias,ispn,jst),npcmtmax,gwfmt(:,:,ispn)) end do ! add spin-orbit correction if required if (spinorb) then do ispn=1,nspinor ! convert wavefunction to spherical coordinates call zbsht(nrc,nrci,wfmt(:,ias,ispn,jst),zfmt1(:,ispn)) end do ! compute i σ ⨯ (∇ V(r)) φ(r) do i=1,npc z1=zi*zfmt1(i,1) z2=zi*zfmt1(i,2) z11=gvmt(i,1)*z1; z12=gvmt(i,1)*z2 z21=gvmt(i,2)*z1; z22=gvmt(i,2)*z2 z31=gvmt(i,3)*z1; z32=gvmt(i,3)*z2 zfmt2(i,1,1)=zmi*z32-z21 zfmt2(i,1,2)=zi*z31+z22 zfmt2(i,2,1)=z11-z32 zfmt2(i,2,2)=-z12-z31 zfmt2(i,3,1)=zi*z12+z22 zfmt2(i,3,2)=zmi*z11+z21 end do ! convert to spherical harmonics and add to wavefunction gradient do ispn=1,nspinor do i=1,3 call zfsht(nrc,nrci,zfmt2(:,i,ispn),zfmt1) gwfmt(1:npc,i,ispn)=gwfmt(1:npc,i,ispn)+cso*zfmt1(1:npc,1) end do end do end if do i=1,3 do ispn=1,nspinor ! apply the radial integral weights call zfmtwr(nrc,nrci,wr2cmt(:,is),gwfmt(:,i,ispn)) ! compute the overlaps do ist=1,jst pmat(ist,jst,i)=pmat(ist,jst,i)+zdotc(npc,wfmt(:,ias,ispn,ist),1, & gwfmt(:,i,ispn),1) end do end do end do end do end do end do !-----------------------------------! ! interstitial contribution ! !-----------------------------------! do jst=1,nstsv do ispn=1,nspinor jspn=jspnfv(ispn) ! compute the gradient gwfir(1:ngtc,1:3)=0.d0 do igp=1,ngp(jspn) ifg=igfc(igpig(igp,jspn)) z1=wfgp(igp,ispn,jst) gwfir(ifg,1:3)=vgpc(1:3,igp,jspn)*zi*z1 end do do i=1,3 ! Fourier transform to real-space call zfftifc(3,ngdgc,1,gwfir(:,i)) ! multiply by coarse characteristic function gwfir(1:ngtc,i)=gwfir(1:ngtc,i)*cfrc(1:ngtc) ! Fourier transform back to G-space call zfftifc(3,ngdgc,-1,gwfir(:,i)) end do ! find the overlaps do i=1,3 do igp=1,ngp(jspn) ifg=igfc(igpig(igp,jspn)) z(igp)=gwfir(ifg,i) end do do ist=1,jst pmat(ist,jst,i)=pmat(ist,jst,i)+zdotc(ngp(jspn),wfgp(:,ispn,ist),1,z,1) end do end do end do end do ! multiply by -i and set lower triangular part do i=1,3 do jst=1,nstsv do ist=1,jst-1 z1=zmi*pmat(ist,jst,i) pmat(ist,jst,i)=z1 pmat(jst,ist,i)=conjg(z1) end do pmat(jst,jst,i)=aimag(pmat(jst,jst,i)) end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/writeinfo.f900000644000000000000000000000013214762655564014577 xustar0030 mtime=1741380468.630009307 30 atime=1741380466.762999546 30 ctime=1741380468.630009307 elk-10.4.9/src/writeinfo.f900000644002504400250440000003365214762655564017332 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2009 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writeinfo ! !INTERFACE: subroutine writeinfo(fnum) ! !USES: use modmain use moddftu use modrdm use modgw use modxcifc use modmpi ! !INPUT/OUTPUT PARAMETERS: ! fnum : unit specifier for INFO.OUT file (in,integer) ! !DESCRIPTION: ! Outputs basic information about the run to the file {\tt INFO.OUT}. Does not ! close the file afterwards. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) ! Updated with DFT+U quantities July 2009 (FC) !EOP !BOC implicit none ! arguments integer fnum ! local variables integer is,ia,k,l,i real(8) t1 character(10) dat,tim character(64) str write(str,'("Elk code version ",I0,".",I0,".",I0)') version call writebox(fnum,trim(str)) call date_and_time(date=dat,time=tim) write(fnum,*) write(fnum,'("Date (YYYY-MM-DD) : ",A4,"-",A2,"-",A2)') dat(1:4),dat(5:6), & dat(7:8) write(fnum,'("Time (hh:mm:ss) : ",A2,":",A2,":",A2)') tim(1:2),tim(3:4), & tim(5:6) if (np_mpi > 1) then write(fnum,*) write(fnum,'("Using MPI, number of processes : ",I8)') np_mpi end if if (notelns > 0) then write(fnum,*) write(fnum,'("Notes :")') do i=1,notelns write(fnum,'(A)') trim(notes(i)) end do end if write(fnum,*) write(fnum,'("All units are atomic (Hartree, Bohr, etc.)")') select case(task) case(2,3) if (trdstate) then call writebox(fnum,"Geometry optimisation run resuming from STATE.OUT") else call writebox(fnum,"Geometry optimisation starting from atomic densities") end if case(5) call writebox(fnum,"Ground-state Hartree-Fock run") case(300) call writebox(fnum,"Reduced density matrix functional theory run") case default if (trdstate) then call writebox(fnum,"Ground-state run resuming from STATE.OUT") else call writebox(fnum,"Ground-state run starting from atomic densities") end if end select write(fnum,*) write(fnum,'("Lattice vectors :")') write(fnum,'(3G18.10)') avec(1,1),avec(2,1),avec(3,1) write(fnum,'(3G18.10)') avec(1,2),avec(2,2),avec(3,2) write(fnum,'(3G18.10)') avec(1,3),avec(2,3),avec(3,3) write(fnum,*) write(fnum,'("Reciprocal lattice vectors :")') write(fnum,'(3G18.10)') bvec(1,1),bvec(2,1),bvec(3,1) write(fnum,'(3G18.10)') bvec(1,2),bvec(2,2),bvec(3,2) write(fnum,'(3G18.10)') bvec(1,3),bvec(2,3),bvec(3,3) write(fnum,*) write(fnum,'("Unit cell volume : ",G18.10)') omega write(fnum,'("Brillouin zone volume : ",G18.10)') omegabz write(fnum,*) write(fnum,'("Muffin-tin inner radius fraction : ",G18.10)') fracinr write(fnum,*) if (ptnucl) then write(fnum,'("Nuclei treated as point charges")') else write(fnum,'("Nuclei treated as charged spheres")') end if do is=1,nspecies write(fnum,*) write(fnum,'("Species : ",I4," (",A,")")') is,trim(spsymb(is)) write(fnum,'(" parameters loaded from : ",A)') trim(spfname(is)) write(fnum,'(" name : ",A)') trim(spname(is)) write(fnum,'(" nuclear charge : ",G18.10)') spzn(is) write(fnum,'(" electronic charge : ",G18.10)') spze(is) write(fnum,'(" atomic mass : ",G18.10)') spmass(is) write(fnum,'(" muffin-tin radius : ",G18.10)') rmt(is) write(fnum,'(" number of radial points in muffin-tin : ",I6)') nrmt(is) write(fnum,'(" number on inner part of muffin-tin : ",I6)') nrmti(is) write(fnum,'(" approximate nuclear radius : ",G18.10)') rnucl(is) write(fnum,'(" number of mesh points to nuclear radius : ",I6)') nrnucl(is) write(fnum,'(" atomic positions (lattice), magnetic fields (Cartesian) :")') do ia=1,natoms(is) write(fnum,'(I4," : ",3F12.8," ",3F12.8)') ia,atposl(:,ia,is), & bfcmt(:,ia,is) end do end do write(fnum,*) write(fnum,'("Total number of atoms per unit cell : ",I4)') natmtot write(fnum,'("Total muffin-tin volume : ",G18.10)') omegamt write(fnum,'(" ratio of muffin-tin to unit cell volume : ",G18.10)') & omegamt/omega write(fnum,*) write(fnum,'("Spin treatment :")') if (spinpol) then write(fnum,'(" spin-polarised")') else write(fnum,'(" spin-unpolarised")') end if if (spinorb) then write(fnum,'(" spin-orbit coupling")') end if if (spincore) then write(fnum,'(" spin-polarised core states")') end if if (spinpol) then write(fnum,'(" global magnetic field (Cartesian) : ",3G18.10)') bfieldc if (ncmag) then write(fnum,'(" non-collinear magnetisation")') else write(fnum,'(" collinear magnetisation in z-direction")') end if end if if (tbdip) then write(fnum,'(" magnetic dipole field included")') if (tjr) then write(fnum,'(" spin and current contribution")') else write(fnum,'(" only spin contribution")') end if end if if (spinsprl) then write(fnum,'(" spin-spiral state assumed")') write(fnum,'(" q-vector (lattice) : ",3G18.10)') vqlss write(fnum,'(" q-vector (Cartesian) : ",3G18.10)') vqcss write(fnum,'(" q-vector length : ",G18.10)') sqrt(vqcss(1)**2 & +vqcss(2)**2+vqcss(3)**2) end if if (fsmtype /= 0) then write(fnum,'(" fixed spin moment (FSM) calculation, type : ",I4)') fsmtype if (fsmtype < 0) then write(fnum,'(" only moment direction is fixed")') end if end if if ((abs(fsmtype) == 1).or.(abs(fsmtype) == 3)) then write(fnum,'(" fixing total moment to (Cartesian) :")') write(fnum,'(" ",3G18.10)') momfix end if if ((abs(fsmtype) == 2).or.(abs(fsmtype) == 3)) then write(fnum,'(" fixing local muffin-tin moments to (Cartesian) :")') do is=1,nspecies write(fnum,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) write(fnum,'(" ",I4,3G18.10)') ia,mommtfix(:,ia,is) end do end do end if if (tssxc) then write(fnum,'(" scaled spin exchange-correlation enabled")') write(fnum,'(" scaling factor : ",G18.10)') sxcscf end if if (ftmtype /= 0) then write(fnum,*) write(fnum,'(" fixed tensor moment (FTM) calculation, type : ",I4)') ftmtype end if if (tefield) then write(fnum,*) write(fnum,'("Constant electric field applied across unit cell")') write(fnum,'(" field strength : ",3G18.10)') efieldc t1=norm2(efieldc(:)) write(fnum,'(" magnitude : ",G18.10)') t1 write(fnum,'(" volts/nanometer : ",G18.10)') t1*ef_si/1.d9 write(fnum,'(" maximum distance from center over which E-field is & &applied : ",G18.10)') dmaxefc write(fnum,'(" potential at maximum distance : ",G18.10)') vmaxefc end if if (tafield) then write(fnum,*) write(fnum,'("Constant A-field applied across unit cell")') write(fnum,'(" field strength : ",3G18.10)') afieldc end if write(fnum,*) write(fnum,'("Number of Bravais lattice symmetries : ",I4)') nsymlat write(fnum,'("Number of crystal symmetries : ",I4)') nsymcrys if (tsyminv) then write(fnum,'("Crystal has inversion symmetry")') else write(fnum,'("Crystal has no inversion symmetry")') end if if (tefvr) then write(fnum,'("Real symmetric eigensolver will be used")') else write(fnum,'("Complex Hermitian eigensolver will be used")') end if write(fnum,*) if (autokpt) then write(fnum,'("Radius of sphere used to determine k-point grid density : ",& &G18.10)') radkpt end if write(fnum,'("k-point grid : ",3I6)') ngridk write(fnum,'("k-point offset : ",3G18.10)') vkloff if (reducek == 0) then write(fnum,'("k-point set is not reduced")') else if (reducek == 1) then write(fnum,'("k-point set is reduced with full crystal symmetry group")') else if (reducek == 2) then write(fnum,'("k-point set is reduced with symmorphic symmetries only")') else write(*,*) write(*,'("Error(writeinfo): undefined k-point reduction type : ",I8)') & reducek write(*,*) stop end if write(fnum,'("Total number of k-points : ",I8)') nkpt write(fnum,*) write(fnum,'("Muffin-tin radius times maximum |G+k| : ",G18.10)') rgkmax select case(isgkmax) case(:-4) write(fnum,'(" using largest radius")') case(-3) write(fnum,'(" using smallest radius")') case(-2) write(fnum,'(" using gkmax = rgkmax / 2")') case(-1) write(fnum,'(" using average radius")') case(1:) if (isgkmax <= nspecies) then write(fnum,'(" using radius of species ",I4," (",A,")")') isgkmax, & trim(spsymb(isgkmax)) else write(*,*) write(*,'("Error(writeinfo): isgkmax > nspecies : ",2I8)') isgkmax,nspecies write(*,*) stop end if end select write(fnum,'("Maximum |G+k| for APW functions : ",G18.10)') gkmax write(fnum,'("Maximum (1/2)|G+k|² : ",G18.10)') 0.5d0*gkmax**2 write(fnum,'("Maximum |G| for potential and density : ",G18.10)') gmaxvr write(fnum,'("Constant for pseudocharge density : ",I4)') npsd write(fnum,'("Radial integration step length : ",I4)') lradstp write(fnum,*) write(fnum,'("G-vector grid sizes : ",3I6)') ngridg(:) write(fnum,'("Number of G-vectors : ",I8)') ngvec write(fnum,*) write(fnum,'("Maximum angular momentum used for")') write(fnum,'(" APW functions : ",I4)') lmaxapw write(fnum,'(" outer part of muffin-tin : ",I4)') lmaxo write(fnum,'(" inner part of muffin-tin : ",I4)') lmaxi write(fnum,*) write(fnum,'("Total nuclear charge : ",G18.10)') chgzn write(fnum,'("Total core charge : ",G18.10)') chgcrtot write(fnum,'("Total valence charge : ",G18.10)') chgval write(fnum,'("Total excess charge : ",G18.10)') chgexs write(fnum,'("Total electronic charge : ",G18.10)') chgtot write(fnum,*) write(fnum,'("Effective Wigner radius, rₛ : ",G18.10)') rwigner write(fnum,*) write(fnum,'("Number of empty states : ",I4)') nempty write(fnum,'("Total number of valence states : ",I4)') nstsv write(fnum,'("Total number of core states : ",I4)') nstcr write(fnum,*) if (lorbcnd) then write(fnum,'("Conduction state local-orbitals added automatically")') end if write(fnum,'("Total number of local-orbitals : ",I4)') nlotot if (tefvit) then write(fnum,*) write(fnum,'("Using iterative diagonalisation for the first-variational & &eigenvalue equation")') end if write(fnum,*) if (task == 5) then write(fnum,'("Hartree-Fock calculation using Kohn-Sham states")') if (hybrid) then write(fnum,'(" hybrid functional, coefficient : ",G18.10)') hybridc end if end if if (xctype(1) == 100) then write(fnum,'("Using Libxc version ",I0,".",I0,".",I0)') libxcv(:) end if if (xctype(1) < 0) then write(fnum,'("Optimised effective potential (OEP) and exact exchange (EXX)")') write(fnum,'(" Phys. Rev. B 53, 7024 (1996)")') write(fnum,'("Correlation functional : ",3I6)') abs(xctype(1)),xctype(2:3) write(fnum,'(" ",A)') trim(xcdescr) else write(fnum,'("Exchange-correlation functional : ",3I6)') xctype(:) write(fnum,'(" ",A)') trim(xcdescr) write(fnum,'(" gradient requirement : ",I4)') xcgrad end if if (xcgrad == 0) then write(fnum,'(" local density approximation (LDA)")') else if ((xcgrad == 1).or.(xcgrad == 2)) then write(fnum,'(" generalised gradient approximation (GGA)")') else if (any(xcgrad == [3,4,5])) then write(fnum,'(" meta-GGA")') if (xcgrad /= 3) then write(fnum,'(" partially deorbitalised functional")') write(fnum,'(" using Kohn-Sham orbital kinetic energy density τ(r)")') write(fnum,'(" kinetic energy functional used for δτ(r'')/δρ(r) : ",3I6)') & ktype(:) write(fnum,'(" ",A)') trim(kdescr) write(fnum,'(" gradient requirement : ",I4)') kgrad else write(fnum,'(" fully deorbitalised functional")') end if end if if (ksgwrho) then write(fnum,*) write(fnum,'("Kohn-Sham density determined via the GW Green''s function")') end if if (dftu /= 0) then write(fnum,*) write(fnum,'("DFT+U calculation")') if (dftu == 1) then write(fnum,'(" fully localised limit (FLL)")') write(fnum,'(" see Phys. Rev. B 52, R5467 (1995)")') else if (dftu == 2) then write(fnum,'(" around mean field (AMF)")') write(fnum,'(" see Phys. Rev. B 49, 14211 (1994)")') else write(*,*) write(*,'("Error(writeinfo): dftu not defined : ",I8)') dftu write(*,*) stop end if do i=1,ndftu is=isldu(1,i) l=isldu(2,i) if (inpdftu == 1) then write(fnum,'(" species : ",I4," (",A,")",", l = ",I2,", U = ",F12.8, & &", J = ",F12.8)') is,trim(spsymb(is)),l,ujdu(1,i),ujdu(2,i) else if (inpdftu == 2) then write(fnum,'(" species : ",I4," (",A,")",", l = ",I2)') is, & trim(spsymb(is)),l write(fnum,'(" Slater integrals are provided as input")') do k=0,2*l,2 write(fnum,'(" F^(",I1,") = ",F12.8)') k,fdu(k,i) end do else if (inpdftu == 3) then write(fnum,'(" species : ",I4," (",A,")",", l = ",I2)') is, & trim(spsymb(is)),l write(fnum,'(" Racah parameters are provided as input")') do k=0,l write(fnum,'(" E^(",I1,") = ",F12.8)') k,edu(k,i) end do else if (inpdftu == 4) then write(fnum,'(" species : ",I4," (",A,")",", l = ",I2)') is, & trim(spsymb(is)),l write(fnum,'(" Slater integrals are calculated by means of Yukawa & &potential")') write(fnum,'(" Yukawa potential screening length (a.u.⁻¹) : ",F12.8)') & lamdu(i) else if(inpdftu == 5) then write(fnum,'(" species : ",I4," (",A,")",", l = ",I2)') is, & trim(spsymb(is)),l write(fnum,'(" Slater integrals are calculated by means of Yukawa & &potential")') write(fnum,'(" Yukawa potential screening length corresponds to U = ",& &F12.8)') udufix(i) end if end do end if if (task == 300) then write(fnum,*) write(fnum,'("RDMFT calculation")') write(fnum,'(" see Phys. Rev. B 78, 201103 (2008)")') write(fnum,'(" RDMFT exchange-correlation type : ",I4)') rdmxctype if (rdmxctype == 1) then write(fnum,'(" Hartree-Fock functional")') else if (rdmxctype == 2) then write(fnum,'(" Power functional, exponent : ",G18.10)') rdmalpha end if end if write(fnum,*) write(fnum,'("Smearing type : ",I4)') stype write(fnum,'(" ",A)') trim(sdescr) if (autoswidth) then write(fnum,'("Automatic determination of smearing width")') else write(fnum,'("Smearing width : ",G18.10)') swidth write(fnum,'("Effective electronic temperature (K) : ",G18.10)') tempk end if write(fnum,*) write(fnum,'("Mixing type : ",I4)') mixtype write(fnum,'(" ",A)') trim(mixdescr) flush(fnum) end subroutine !EOC elk-10.4.9/src/PaxHeaders/mossbauer.f900000644000000000000000000000013214762655564014571 xustar0030 mtime=1741380468.632009317 30 atime=1741380466.765999562 30 ctime=1741380468.632009317 elk-10.4.9/src/mossbauer.f900000644002504400250440000001100514762655564017310 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: mossbauer ! !INTERFACE: subroutine mossbauer ! !USES: use modmain use modmpi use modtest ! !DESCRIPTION: ! Computes the contact charge density and magnetic hyperfine field for each ! atom and outputs the data to the file {\tt MOSSBAUER.OUT}. ! See S. Bl\"{u}gel, H. Akai, R. Zeller, and P. H. Dederichs, ! {\it Phys. Rev. B} {\bf 35}, 3271 (1987). ! ! !REVISION HISTORY: ! Created May 2004 (JKD) ! Contact hyperfine field evaluated at the nuclear radius rather than averaged ! over the Thomson sphere, June 2019 (JKD) ! Added spin and orbital dipole terms, July 2019 (JKD) !EOP !BOC implicit none ! local variables integer idm,is,ia,ias integer nr,nri,nrn real(8) mc(3),bc(3),bd(3) real(8) rho0,rhon,rhoa real(8) cb,t1 ! allocatable arrays real(8), allocatable :: fr(:) ! spin dipole field prefactor cb=gfacte/(4.d0*solsc) ! initialise universal variables call init0 call init1 ! read density and potentials from file call readstate ! generate the core wavefunctions and densities call gencore ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! read the eigenvalues and occupation numbers from file call readevalsv call readoccsv ! calculate the density call rhomag ! calculate the dipole magnetic field if required if (tbdip) call bdipole ! allocate local arrays allocate(fr(nrmtmax)) if (mp_mpi) then open(50,file='MOSSBAUER.OUT',form='FORMATTED') end if ! loop over species do is=1,nspecies nr=nrmt(is) nri=nrmti(is) nrn=nrnucl(is) ! loop over atoms do ia=1,natoms(is) ias=idxas(ia,is) if (mp_mpi) then write(50,*) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),& ia write(50,*) write(50,'(" approximate nuclear radius : ",G18.10)') rnucl(is) write(50,'(" number of mesh points to nuclear radius : ",I6)') nrn end if !--------------------------------! ! contact charge density ! !--------------------------------! ! extract the l = m = 0 component of the muffin-tin density call rfmtlm(1,nr,nri,rhomt(:,ias),fr) rho0=fr(1)*y00 rhon=fr(nrn)*y00 t1=dot_product(wr2mt(1:nrn,is),fr(1:nrn)) rhoa=fourpi*y00*t1/volnucl(is) if (mp_mpi) then write(50,*) write(50,'(" density at nuclear center : ",G18.10)') rho0 write(50,'(" density at nuclear surface : ",G18.10)') rhon write(50,'(" average contact charge density : ",G18.10)') rhoa end if !----------------------------------! ! magnetic hyperfine field ! !----------------------------------! if (spinpol) then ! contact term do idm=1,ndmag ! extract the l = m = 0 component of the muffin-tin magnetisation call rfmtlm(1,nr,nri,magmt(:,ias,idm),fr) t1=dot_product(wr2mt(1:nrn,is),fr(1:nrn)) mc(idm)=fourpi*y00*t1/volnucl(is) end do t1=8.d0*pi*cb/(3.d0*solsc) bc(1:ndmag)=t1*mc(1:ndmag) if (mp_mpi) then write(50,*) write(50,'(" contact magnetic moment (mu_B) : ",3G18.10)') mc(1:ndmag) write(50,'(" contact field : ",3G18.10)') bc(1:ndmag) write(50,'(" tesla : ",3G18.10)') b_si*bc(1:ndmag) end if ! spin and orbital dipole term if (tbdip) then ! extract the l = m = 0 component of the dipole field do idm=1,3 call rfmtlm(1,nr,nri,bdmt(:,ias,idm),fr) t1=dot_product(wr2mt(1:nrn,is),fr(1:nrn)) bd(idm)=fourpi*y00*t1/(volnucl(is)*solsc) end do if (mp_mpi) then write(50,*) if (tjr) then write(50,'(" spin and orbital dipole field : ",3G18.10)') bd else write(50,'(" spin dipole field : ",3G18.10)') bd end if write(50,'(" tesla : ",3G18.10)') b_si*bd end if ! write to test file if required call writetest(110,'hyperfine field',nv=3,tol=1.d-4,rva=bd) end if end if end do end do if (mp_mpi) then if (spinpol.and.tbdip) then write(50,*) write(50,'("Note that the contact term is implicitly included in the & &spin dipole field")') write(50,'(" but may not match exactly with the directly & &calculated value.")') end if close(50) write(*,*) write(*,'("Info(mossbauer):")') write(*,'(" Mossbauer parameters written to MOSSBAUER.OUT")') end if deallocate(fr) end subroutine !EOC elk-10.4.9/src/PaxHeaders/initoep.f900000644000000000000000000000013214762655564014240 xustar0030 mtime=1741380468.633009322 30 atime=1741380466.768999578 30 ctime=1741380468.633009322 elk-10.4.9/src/initoep.f900000644002504400250440000000204514762655564016763 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine initoep use modmain implicit none ! local variables integer is,ist,nc ! find maximum core states over all species ncrmax=0 do is=1,nspecies nc=0 do ist=1,nstsp(is) if (spcore(ist,is)) nc=nc+2*ksp(ist,is) end do ncrmax=max(ncrmax,nc) end do ! allocate the exchange potential and magnetic field if (allocated(vxmt)) deallocate(vxmt) allocate(vxmt(npcmtmax,natmtot)) if (allocated(vxir)) deallocate(vxir) allocate(vxir(ngtot)) if (spinpol) then if (allocated(bxmt)) deallocate(bxmt) allocate(bxmt(npcmtmax,natmtot,ndmag)) if (allocated(bxir)) deallocate(bxir) allocate(bxir(ngtot,ndmag)) end if ! allocate the OEP residual functions allocate(dvxmt(npcmtmax,natmtot),dvxir(ngtot)) if (spinpol) then allocate(dbxmt(npcmtmax,natmtot,ndmag),dbxir(ngtot,ndmag)) end if ! set initial step size for iterative method tauoep=tau0oep end subroutine elk-10.4.9/src/PaxHeaders/i3minv.f900000644000000000000000000000013214762655564013776 xustar0030 mtime=1741380468.635009333 30 atime=1741380466.771999593 30 ctime=1741380468.635009333 elk-10.4.9/src/i3minv.f900000644002504400250440000000242114762655564016517 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2003-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: i3minv ! !INTERFACE: subroutine i3minv(a,b) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,integer(3,3)) ! b : output matrix (in,integer(3,3)) ! !DESCRIPTION: ! Computes the inverse of a integer $3\times 3$ matrix: $B=A^{-1}$. ! ! !REVISION HISTORY: ! Created November 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: a(3,3) integer, intent(out) :: b(3,3) ! local variables integer m m=a(1,1)*(a(2,2)*a(3,3)-a(3,2)*a(2,3)) & +a(2,1)*(a(3,2)*a(1,3)-a(1,2)*a(3,3)) & +a(3,1)*(a(1,2)*a(2,3)-a(2,2)*a(1,3)) if ((m /= 1).and.(m /= -1)) then write(*,*) write(*,'("Error(i3minv): cannot invert matrix")') write(*,'(" Determinant : ",I8)') m write(*,*) stop end if b(1,1)=m*(a(2,2)*a(3,3)-a(2,3)*a(3,2)) b(2,1)=m*(a(2,3)*a(3,1)-a(2,1)*a(3,3)) b(3,1)=m*(a(2,1)*a(3,2)-a(2,2)*a(3,1)) b(1,2)=m*(a(1,3)*a(3,2)-a(1,2)*a(3,3)) b(2,2)=m*(a(1,1)*a(3,3)-a(1,3)*a(3,1)) b(3,2)=m*(a(1,2)*a(3,1)-a(1,1)*a(3,2)) b(1,3)=m*(a(1,2)*a(2,3)-a(1,3)*a(2,2)) b(2,3)=m*(a(1,3)*a(2,1)-a(1,1)*a(2,3)) b(3,3)=m*(a(1,1)*a(2,2)-a(1,2)*a(2,1)) end subroutine !EOC elk-10.4.9/src/PaxHeaders/r3mv.f900000644000000000000000000000013214762655564013460 xustar0030 mtime=1741380468.636009338 30 atime=1741380466.773999604 30 ctime=1741380468.636009338 elk-10.4.9/src/r3mv.f900000644002504400250440000000140614762655564016203 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mv ! !INTERFACE: pure subroutine r3mv(a,x,y) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,real(3,3)) ! x : input vector (in,real(3)) ! y : output vector (out,real(3)) ! !DESCRIPTION: ! Multiplies a real $3\times 3$ matrix with a vector. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3),x(3) real(8), intent(out) :: y(3) y(1)=a(1,1)*x(1)+a(1,2)*x(2)+a(1,3)*x(3) y(2)=a(2,1)*x(1)+a(2,2)*x(2)+a(2,3)*x(3) y(3)=a(3,1)*x(1)+a(3,2)*x(2)+a(3,3)*x(3) end subroutine !EOC elk-10.4.9/src/PaxHeaders/genidxlo.f900000644000000000000000000000013214762655564014402 xustar0030 mtime=1741380468.638009348 30 atime=1741380466.776999619 30 ctime=1741380468.638009348 elk-10.4.9/src/genidxlo.f900000644002504400250440000000164114762655564017126 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genidxlo ! !INTERFACE: subroutine genidxlo ! !USES: use modmain ! !DESCRIPTION: ! Generates an index array which maps the local-orbitals in each atom to their ! locations in the overlap or Hamiltonian matrices. Also finds the total ! number of local-orbitals. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! local variables integer is,ias,i,ilo,l,m,lm ! allocate global local-orbital index if (allocated(idxlo)) deallocate(idxlo) allocate(idxlo(lolmmax,nlomax,natmtot)) i=0 do ias=1,natmtot is=idxis(ias) do ilo=1,nlorb(is) l=lorbl(ilo,is) do m=-l,l i=i+1 lm=l*(l+1)+m+1 idxlo(lm,ilo,ias)=i end do end do end do nlotot=i end subroutine !EOC elk-10.4.9/src/PaxHeaders/nuclei.f900000644000000000000000000000013114762655564014047 xustar0030 mtime=1741380468.639009354 29 atime=1741380466.77899963 30 ctime=1741380468.639009354 elk-10.4.9/src/nuclei.f900000644002504400250440000000141314762655564016571 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine nuclei use modmain implicit none ! local variables integer is,ir ! external functions real(8), external :: radnucl do is=1,nspecies ! approximate nuclear radius rnucl(is)=radnucl(spzn(is)) ! number of radial mesh points to nuclear radius nrnucl(is)=1 do ir=1,nrmt(is) if (rsp(ir,is) > rnucl(is)) then nrnucl(is)=ir exit end if end do ! nuclear volume determined from integrating to nuclear radius; this is to ! ensure integrals over the nuclear volume are correctly normalised volnucl(is)=fourpi*sum(wr2mt(1:nrnucl(is),is)) end do end subroutine elk-10.4.9/src/PaxHeaders/writeefg.f900000644000000000000000000000013214762655564014405 xustar0030 mtime=1741380468.640009359 30 atime=1741380466.781999645 30 ctime=1741380468.640009359 elk-10.4.9/src/writeefg.f900000644002504400250440000000623514762655564017135 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writeefg ! !INTERFACE: subroutine writeefg ! !USES: use modmain use modtest ! !DESCRIPTION: ! Computes the electric field gradient (EFG) tensor for each atom, $\alpha$, ! and writes it to the file {\tt EFG.OUT} along with its eigenvalues. The EFG ! is defined by ! $$ V^{\alpha}_{ij}\equiv\left.\frac{\partial^2 V'_{\rm C}({\bf r})} ! {\partial{\bf r}_i\partial{\bf r}_j}\right|_{{\bf r}={\bf r}_{\alpha}}, $$ ! where $V'_{\rm C}$ is the Coulomb potential with the $l=m=0$ component ! removed in each muffin-tin. The derivatives are computed explicitly using ! the routine {\tt gradrfmt}. ! ! !REVISION HISTORY: ! Created May 2004 (JKD) ! Fixed serious problem, November 2006 (JKD) !EOP !BOC implicit none ! local variables integer, parameter :: lwork=10 integer is,ia,ias integer nr,nri,ir integer np,i,j,info real(8) efg(3,3),a(3,3) real(8) w(3),work(lwork) ! allocatable arrays real(8), allocatable :: rfmt(:),grfmt1(:,:),grfmt2(:,:) if (lmaxi < 2) then write(*,*) write(*,'("Error(writeefg): lmaxi too small for calculating the EFG : ",& &I4)') lmaxi write(*,'(" Run the ground-state calculation again with lmaxi >= 2")') write(*,*) stop end if ! initialise universal variables call init0 ! read density and potentials from file call readstate ! allocate local arrays allocate(rfmt(npmtmax),grfmt1(npmtmax,3),grfmt2(npmtmax,3)) open(50,file='EFG.OUT',form='FORMATTED') write(50,*) write(50,'("(electric field gradient tensor is in Cartesian coordinates)")') do is=1,nspecies nr=nrmt(is) nri=nrmti(is) np=npmt(is) do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),ia ! remove the l = m = 0 part of the potential rfmt(1:np)=vclmt(1:np,ias) i=1 do ir=1,nri rfmt(i)=0.d0 i=i+lmmaxi end do do ir=nri+1,nr rfmt(i)=0.d0 i=i+lmmaxo end do ! compute the gradient of the Coulomb potential call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt,npmtmax,grfmt1) do i=1,3 ! compute the gradient of the gradient call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),grfmt1(:,i),npmtmax, & grfmt2) do j=1,3 efg(i,j)=grfmt2(1,j)*y00 end do end do ! symmetrise the EFG do i=1,3 do j=i+1,3 efg(i,j)=0.5d0*(efg(i,j)+efg(j,i)) efg(j,i)=efg(i,j) end do end do write(50,*) write(50,'(" EFG tensor :")') do i=1,3 write(50,'(3G18.10)') (efg(i,j),j=1,3) end do write(50,'(" trace : ",G18.10)') efg(1,1)+efg(2,2)+efg(3,3) ! diagonalise the EFG a(:,:)=efg(:,:) call dsyev('N','U',3,a,3,w,work,lwork,info) write(50,'(" eigenvalues :")') write(50,'(3G18.10)') w end do end do close(50) write(*,*) write(*,'("Info(writeefg): electric field gradient written to EFG.OUT")') deallocate(rfmt,grfmt1,grfmt2) ! write EFG of last atom to test file call writetest(115,'electric field gradient',nv=9,tol=1.d-3,rva=efg) end subroutine !EOC elk-10.4.9/src/PaxHeaders/writeevsp.f900000644000000000000000000000013214762655564014621 xustar0030 mtime=1741380468.642009369 30 atime=1741380466.783999656 30 ctime=1741380468.642009369 elk-10.4.9/src/writeevsp.f900000644002504400250440000000177114762655564017351 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeevsp use modmain implicit none ! local variables integer is,ist ! solve the atomic Dirac-Kohn-Sham ground-state for all species call init0 ! write out the atomic eigenvalues for each species open(50,file='EVALSP.OUT',form='FORMATTED') write(50,*) write(50,'("Kohn-Sham-Dirac eigenvalues for all atomic species")') write(50,*) write(50,'("Exchange-correlation functional : ",3I6)') xctsp(:) do is=1,nspecies write(50,*) write(50,'("Species : ",I4," (",A,")",I4)') is,trim(spsymb(is)) do ist=1,nstsp(is) write(50,'(" n = ",I2,", l = ",I2,", k = ",I2," : ",G18.10)') nsp(ist,is), & lsp(ist,is),ksp(ist,is),evalsp(ist,is) end do end do close(50) write(*,*) write(*,'("Info(writeevsp)")') write(*,'(" Kohn-Sham-Dirac eigenvalues written to EVALSP.OUT for all atomic & &species")') end subroutine elk-10.4.9/src/PaxHeaders/gencore.f900000644000000000000000000000013214762655564014213 xustar0030 mtime=1741380468.643009375 30 atime=1741380466.786999672 30 ctime=1741380468.643009375 elk-10.4.9/src/gencore.f900000644002504400250440000001070614762655564016741 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gencore ! !INTERFACE: subroutine gencore ! !USES: use modmain use modomp ! !DESCRIPTION: ! Computes the core radial wavefunctions, eigenvalues and densities. The ! radial Dirac equation is solved in the spherical part of the Kohn-Sham ! potential to which the atomic potential has been appended for ! $r>R_{\rm MT}$. In the case of spin-polarised calculations, and when ! {\tt spincore} is set to {\tt .true.}, the Dirac equation is solved in the ! spin-up and -down potentials created from the Kohn-Sham scalar potential and ! magnetic field magnitude, with the occupancy divided equally between up and ! down. The up and down densities determined in this way are added to both the ! scalar density and the magnetisation in the routine {\tt rhocore}. Note ! that this procedure is a simple, but inexact, approach to solving the radial ! Dirac equation in a magnetic field. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Added polarised cores, November 2009 (JKD) ! Fixed race condition, February 2025 (JKD) !EOP !BOC implicit none ! local variables integer ist,ispn,idm integer is,ia,ja,ias,jas integer nr,nri,nrs,nthd real(8) v(3),t1 ! automatic arrays real(8) vr(nrspmax),br(nrmtmax),fr(nrmtmax),eval(nstspmax) ! external functions real(8), external :: rfmtint ! loop over species and atoms call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(vr,br,fr,eval) & !$OMP PRIVATE(is,ia,nr,nri,nrs,idm) & !$OMP PRIVATE(v,t1,ispn,ist,ja,jas) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) ia=idxia(ias) ! perform calculation for only the first equivalent atom if (.not.tfeqat(ia,is)) cycle nr=nrmt(is) nri=nrmti(is) nrs=nrsp(is) ! Kohn-Sham magnetic field for spin-polarised core if (spincore) then ! compute the averaged direction of the exchange-correlation magnetic field do idm=1,ndmag v(idm)=rfmtint(nr,nri,wr2mt(:,is),bxcmt(:,ias,idm)) end do ! normalise if (ncmag) then t1=sqrt(v(1)**2+v(2)**2+v(3)**2) else t1=abs(v(1)) end if if (t1 > 1.d-10) v(1:ndmag)=v(1:ndmag)/t1 ! determine the component of the field along the averaged direction br(1:nr)=0.d0 do idm=1,ndmag ! extract the spherical (l = m = 0) component of B_xc call rfmtlm(1,nr,nri,bxcmt(:,ias,idm),fr) t1=v(idm)*y00 br(1:nr)=br(1:nr)+t1*fr(1:nr) end do end if ! loop over spin channels do ispn=1,nspncr ! use the spherical part of the crystal Kohn-Sham potential call rfmtlm(1,nr,nri,vsmt(:,ias),vr) vr(1:nr)=vr(1:nr)*y00 ! spin-up and -down potentials for polarised core if (spincore) then if (ispn == 1) then vr(1:nr)=vr(1:nr)-br(1:nr) else vr(1:nr)=vr(1:nr)+br(1:nr) end if end if ! append the Kohn-Sham potential from the atomic calculation for r > R_MT t1=vr(nr)-vrsp(nr,is) vr(nr+1:nrs)=vrsp(nr+1:nrs,is)+t1 rhocr(1:nr,ias,ispn)=0.d0 do ist=1,nstsp(is) if (spcore(ist,is)) then ! solve the Dirac equation eval(ist)=evalcr(ist,ias) call rdirac(solsc,nsp(ist,is),lsp(ist,is),ksp(ist,is),nrs,rsp(:,is),vr,& eval(ist),rwfcr(:,1,ist,ias),rwfcr(:,2,ist,ias)) if (spincore) then ! use the spin-averaged eigenvalue for the polarised core if (ispn == 1) then evalcr(ist,ias)=eval(ist) else evalcr(ist,ias)=0.5d0*(evalcr(ist,ias)+eval(ist)) end if t1=0.5d0*occcr(ist,ias) else evalcr(ist,ias)=eval(ist) t1=occcr(ist,ias) end if ! add to the core density rhocr(1:nr,ias,ispn)=rhocr(1:nr,ias,ispn) & +t1*(rwfcr(1:nr,1,ist,ias)**2+rwfcr(1:nr,2,ist,ias)**2) end if end do rhocr(1:nr,ias,ispn)=rhocr(1:nr,ias,ispn)*rlmt(1:nr,-2,is)*y00 ! end loop over spin channels end do ! copy to equivalent atoms do ja=1,natoms(is) if (eqatoms(ia,ja,is).and.(ia /= ja)) then jas=idxas(ja,is) do ist=1,nstsp(is) if (spcore(ist,is)) then evalcr(ist,jas)=evalcr(ist,ias) rwfcr(1:nrs,1:2,ist,jas)=rwfcr(1:nrs,1:2,ist,ias) end if end do rhocr(1:nr,jas,1:nspncr)=rhocr(1:nr,ias,1:nspncr) end if end do ! end loop over species and atoms end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine !EOC elk-10.4.9/src/PaxHeaders/r3mtv.f900000644000000000000000000000013214762655564013644 xustar0030 mtime=1741380468.645009385 30 atime=1741380466.788999682 30 ctime=1741380468.645009385 elk-10.4.9/src/r3mtv.f900000644002504400250440000000143114762655564016365 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mtv ! !INTERFACE: pure subroutine r3mtv(a,x,y) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,real(3,3)) ! x : input vector (in,real(3)) ! y : output vector (out,real(3)) ! !DESCRIPTION: ! Multiplies the transpose of a real $3\times 3$ matrix with a vector. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3),x(3) real(8), intent(out) :: y(3) y(1)=a(1,1)*x(1)+a(2,1)*x(2)+a(3,1)*x(3) y(2)=a(1,2)*x(1)+a(2,2)*x(2)+a(3,2)*x(3) y(3)=a(1,3)*x(1)+a(2,3)*x(2)+a(3,3)*x(3) end subroutine !EOC elk-10.4.9/src/PaxHeaders/r3minv.f900000644000000000000000000000013014762655564014005 xustar0029 mtime=1741380468.64600939 30 atime=1741380466.791999698 29 ctime=1741380468.64600939 elk-10.4.9/src/r3minv.f900000644002504400250440000000235314762655564016534 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3minv ! !INTERFACE: subroutine r3minv(a,b) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,real(3,3)) ! b : output matrix (out,real(3,3)) ! !DESCRIPTION: ! Computes the inverse of a real $3\times 3$ matrix. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3) real(8), intent(out) :: b(3,3) ! local variables real(8) t1 t1=a(1,2)*a(2,3)*a(3,1)-a(1,3)*a(2,2)*a(3,1)+a(1,3)*a(2,1)*a(3,2) & -a(1,1)*a(2,3)*a(3,2)+a(1,1)*a(2,2)*a(3,3)-a(1,2)*a(2,1)*a(3,3) if (abs(t1) < 1.d-40) then write(*,*) write(*,'("Error(r3minv): singular matrix")') write(*,*) stop end if t1=1.d0/t1 b(1,1)=t1*(a(2,2)*a(3,3)-a(2,3)*a(3,2)) b(2,1)=t1*(a(2,3)*a(3,1)-a(2,1)*a(3,3)) b(3,1)=t1*(a(2,1)*a(3,2)-a(2,2)*a(3,1)) b(1,2)=t1*(a(1,3)*a(3,2)-a(1,2)*a(3,3)) b(2,2)=t1*(a(1,1)*a(3,3)-a(1,3)*a(3,1)) b(3,2)=t1*(a(1,2)*a(3,1)-a(1,1)*a(3,2)) b(1,3)=t1*(a(1,2)*a(2,3)-a(1,3)*a(2,2)) b(2,3)=t1*(a(1,3)*a(2,1)-a(1,1)*a(2,3)) b(3,3)=t1*(a(1,1)*a(2,2)-a(1,2)*a(2,1)) end subroutine !EOC elk-10.4.9/src/PaxHeaders/r3frac.f900000644000000000000000000000013214762655564013751 xustar0030 mtime=1741380468.647009396 30 atime=1741380466.793999708 30 ctime=1741380468.647009396 elk-10.4.9/src/r3frac.f900000644002504400250440000000221614762655564016474 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3frac ! !INTERFACE: pure subroutine r3frac(eps,v) ! !INPUT/OUTPUT PARAMETERS: ! eps : zero component tolerance (in,real) ! v : input vector (inout,real(3)) ! !DESCRIPTION: ! Finds the fractional part of each component of a real 3-vector using the ! function ${\rm frac}\,(x)=x-\lfloor x\rfloor$. A component is taken to be ! zero if it lies within the intervals $[0,\epsilon)$ or $(1-\epsilon,1]$. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) ! Removed iv, September 2011 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: eps real(8), intent(inout) :: v(3) ! local variables real(8) t1 t1=1.d0-eps v(1)=v(1)-int(v(1)) if (v(1) < 0.d0) v(1)=v(1)+1.d0 if ((v(1) < eps).or.(v(1) > t1)) v(1)=0.d0 v(2)=v(2)-int(v(2)) if (v(2) < 0.d0) v(2)=v(2)+1.d0 if ((v(2) < eps).or.(v(2) > t1)) v(2)=0.d0 v(3)=v(3)-int(v(3)) if (v(3) < 0.d0) v(3)=v(3)+1.d0 if ((v(3) < eps).or.(v(3) > t1)) v(3)=0.d0 end subroutine !EOC elk-10.4.9/src/PaxHeaders/genapwlofr.f900000644000000000000000000000013214762655564014735 xustar0030 mtime=1741380468.649009406 30 atime=1741380466.796999724 30 ctime=1741380468.649009406 elk-10.4.9/src/genapwlofr.f900000644002504400250440000000134414762655564017461 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genapwlofr use modomp implicit none ! local variables integer nthd call holdthd(2,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP SECTIONS !$OMP SECTION ! generate the APW radial functions call genapwfr !$OMP SECTION ! generate the local-orbital radial functions call genlofr !$OMP END SECTIONS !$OMP SECTIONS !$OMP SECTION ! compute the overlap radial integrals call olprad !$OMP SECTION ! compute the Hamiltonian radial integrals call hmlrad !$OMP END SECTIONS !$OMP END PARALLEL call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/gridsize.f900000644000000000000000000000013214762655564014411 xustar0030 mtime=1741380468.650009411 30 atime=1741380466.798999734 30 ctime=1741380468.650009411 elk-10.4.9/src/gridsize.f900000644002504400250440000000323214762655564017133 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gridsize ! !INTERFACE: subroutine gridsize(avec,gmaxvr,npfft,ngridg,ngtot,intgv) ! !INPUT/OUTPUT PARAMETERS: ! avec : lattice vectors (in,real(3,3)) ! gmaxvr : G-vector cut-off (in,real) ! npfft : number of prime factors to use for the FFT (in,integer) ! ngridg : G-vector grid sizes (out,integer(3)) ! ngtot : total number of G-vectors (out,integer) ! intgv : integer grid intervals for each direction (out,integer(2,3)) ! !DESCRIPTION: ! Finds the ${\bf G}$-vector grid which completely contains the vectors with ! $G ngvec_) cycle ! multiply the transpose of the inverse symmetry matrix with the G-vector if (lspl == 1) then jg=ig else i1=ivg(1,ig); i2=ivg(2,ig); i3=ivg(3,ig) j1=sym(1,1)*i1+sym(2,1)*i2+sym(3,1)*i3 j2=sym(1,2)*i1+sym(2,2)*i2+sym(3,2)*i3 j3=sym(1,3)*i1+sym(2,3)*i2+sym(3,3)*i3 jg=ivgig(j1,j2,j3) end if jfg=igfft_(jg) ! translation and spatial rotation if (tv0) then ! zero translation vector zfft2(ifg)=zfft2(ifg)+zfft1(jfg) else ! complex phase factor for translation t1=vgc(1,jg)*v1+vgc(2,jg)*v2+vgc(3,jg)*v3 zfft2(ifg)=zfft2(ifg)+zfft1(jfg)*cmplx(cos(t1),-sin(t1),8) end if end do end do ! Fourier transform to real-space and normalise call rzfftifc(3,ngridg_,1,rfir,zfft2) t1=1.d0/dble(nsymcrys) rfir(1:ngtot_)=t1*rfir(1:ngtot_) deallocate(zfft1,zfft2) end subroutine !EOC elk-10.4.9/src/PaxHeaders/erf.f900000644000000000000000000000013114762655564013344 xustar0030 mtime=1741380468.653009427 29 atime=1741380466.80399976 30 ctime=1741380468.653009427 elk-10.4.9/src/erf.f900000644002504400250440000000431714762655564016074 0ustar00dewhurstdewhurst00000000000000 ! This code is based on a routine from the NSWC Library of Mathematics ! Subroutines and is in the public domain. !BOP ! !ROUTINE: erf ! !INTERFACE: elemental real(8) function erf(x) ! !INPUT/OUTPUT PARAMETERS: ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the error function ${\rm erf}(x)$ using a rational function ! approximation. This procedure is numerically stable and accurate to near ! machine precision. ! ! !REVISION HISTORY: ! Modified version of a NSWC routine, April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x ! local variables real(8) ax,x2,t,bot,top real(8), parameter :: c=0.564189583547756d0 real(8), parameter :: & a(5)=[ 0.771058495001320d-04,-0.133733772997339d-02, 0.323076579225834d-01, & 0.479137145607681d-01, 0.128379167095513d+00], & b(3)=[ 0.301048631703895d-02, 0.538971687740286d-01, 0.375795757275549d+00], & p(8)=[-1.36864857382717d-07, 5.64195517478974d-01, 7.21175825088309d+00, & 4.31622272220567d+01, 1.52989285046940d+02, 3.39320816734344d+02, & 4.51918953711873d+02, 3.00459261020162d+02], & q(8)=[ 1.00000000000000d+00, 1.27827273196294d+01, 7.70001529352295d+01, & 2.77585444743988d+02, 6.38980264465631d+02, 9.31354094850610d+02, & 7.90950925327898d+02, 3.00459260956983d+02], & r(5)=[ 2.10144126479064d+00, 2.62370141675169d+01, 2.13688200555087d+01, & 4.65807828718470d+00, 2.82094791773523d-01], & s(4)=[ 9.41537750555460d+01, 1.87114811799590d+02, 9.90191814623914d+01, & 1.80124575948747d+01] ax=abs(x) if (ax < 0.5d0) then t=x**2 top=((((a(1)*t+a(2))*t+a(3))*t+a(4))*t+a(5))+1.d0 bot=((b(1)*t+b(2))*t+b(3))*t+1.d0 erf=x*(top/bot) return end if if (ax < 4.d0) then top=((((((p(1)*ax+p(2))*ax+p(3))*ax+p(4))*ax+p(5))*ax+p(6))*ax+p(7))*ax+p(8) bot=((((((q(1)*ax+q(2))*ax+q(3))*ax+q(4))*ax+q(5))*ax+q(6))*ax+q(7))*ax+q(8) erf=0.5d0+(0.5d0-exp(-x**2)*top/bot) if (x < 0.d0) erf=-erf return end if if (ax < 5.8d0) then x2=x**2 t=1.d0/x2 top=(((r(1)*t+r(2))*t+r(3))*t+r(4))*t+r(5) bot=(((s(1)*t+s(2))*t+s(3))*t+s(4))*t+1.d0 erf=(c-top/(x2*bot))/ax erf=0.5d0+(0.5d0-exp(-x2)*erf) if (x < 0.d0) erf=-erf return end if erf=sign(1.d0,x) end function !EOC elk-10.4.9/src/PaxHeaders/geomplot.f900000644000000000000000000000013214762655564014417 xustar0030 mtime=1741380468.655009437 30 atime=1741380466.805999771 30 ctime=1741380468.655009437 elk-10.4.9/src/geomplot.f900000644002504400250440000000426714762655564017152 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine geomplot use modmain implicit none ! local variables integer is,ia real(8) v1(3),v2(3),v3(3),v4(3),t1 real(8) dxx,dyx,dyy,dzx,dzy,dzz ! initialise universal variables call init0 !------------------------------------------------! ! write the XCrysden file to crystal.xsf ! !------------------------------------------------! open(50,file='crystal.xsf',form='FORMATTED') write(50,*) write(50,'("CRYSTAL")') write(50,*) write(50,'("PRIMVEC")') write(50,'(3G18.10)') avec(:,1)*br_ang write(50,'(3G18.10)') avec(:,2)*br_ang write(50,'(3G18.10)') avec(:,3)*br_ang write(50,*) write(50,'("PRIMCOORD")') write(50,'(2I8)') natmtot,1 do is=1,nspecies do ia=1,natoms(is) write(50,'(A,3G18.10)') trim(spsymb(is)),atposc(:,ia,is)*br_ang end do end do close(50) write(*,*) write(*,'("Info(geomplot):")') write(*,'(" XCrysDen file written to crystal.xsf")') !-----------------------------------------------! ! write the V_Sim file to crystal.ascii ! !-----------------------------------------------! ! determine coordinate system vectors t1=sqrt(avec(1,1)**2+avec(2,1)**2+avec(3,1)**2) v1(:)=avec(:,1)/t1 t1=sqrt(avec(1,2)**2+avec(2,2)**2+avec(3,2)**2) v2(:)=avec(:,2)/t1 call r3cross(v1,v2,v3) t1=sqrt(v3(1)**2+v3(2)**2+v3(3)**2) v3(:)=v3(:)/t1 call r3cross(v3,v1,v2) t1=sqrt(v2(1)**2+v2(2)**2+v2(3)**2) v2(:)=v2(:)/t1 dxx=dot_product(avec(:,1),v1(:)) dyx=dot_product(avec(:,2),v1(:)) dyy=dot_product(avec(:,2),v2(:)) dzx=dot_product(avec(:,3),v1(:)) dzy=dot_product(avec(:,3),v2(:)) dzz=dot_product(avec(:,3),v3(:)) open(50,file='crystal.ascii',form='FORMATTED') write(50,*) write(50,'(3G18.10)') dxx,dyx,dyy write(50,'(3G18.10)') dzx,dzy,dzz write(50,*) do is=1,nspecies do ia=1,natoms(is) v4(1)=dot_product(atposc(:,ia,is),v1(:)) v4(2)=dot_product(atposc(:,ia,is),v2(:)) v4(3)=dot_product(atposc(:,ia,is),v3(:)) write(50,'(3G18.10," ",A)') v4,trim(spsymb(is)) end do end do close(50) write(*,*) write(*,'("Info(geomplot):")') write(*,'(" V_Sim file written to crystal.ascii")') end subroutine elk-10.4.9/src/PaxHeaders/ylmroty.f900000644000000000000000000000013214762655564014310 xustar0030 mtime=1741380468.657009448 30 atime=1741380466.808999787 30 ctime=1741380468.657009448 elk-10.4.9/src/ylmroty.f900000644002504400250440000000413714762655564017037 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: ylmroty ! !INTERFACE: subroutine ylmroty(beta,lmax,ld,dy) ! !INPUT/OUTPUT PARAMETERS: ! beta : rotation angle about y-axis (in,real) ! lmax : maximum angular momentum (in,integer) ! ld : leading dimension (in,integer) ! dy : rotation matrix for complex spherical harmonics (out,real(ld,*)) ! !DESCRIPTION: ! Returns the rotation matrix in the basis of complex spherical harmonics for ! a rotation of angle $\beta$ about the $y$-axis. This matrix is real and is ! given by the formula ! \begin{align*} ! d^l_{m_1m_2}(\beta)=&[(l+m_1)!(l-m_1)!(l+m_2)!(l-m_2)!]^{1/2}\\ ! &\times\sum_k(-1)^k\frac{\left(\cos\frac{\beta}{2}\right)^{2(l-k)-m_2+m_1} ! \left(\sin\frac{\beta}{2}\right)^{2k+m_2-m_1}} ! {k!(l+m_1-k)!(l-m_2-k)!(m_2-m_1+k)!}, ! \end{align*} ! where $k$ runs through all integer values for which the factorials exist. ! ! !REVISION HISTORY: ! Created December 2008 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: beta integer, intent(in) :: lmax,ld real(8), intent(out) :: dy(ld,*) ! local variables integer j,k,l,m1,m2,lm1,lm2 real(8) cb,sb,sm,t1,t2 ! external functions real(8), external :: factn t1=0.5d0*beta cb=cos(t1) sb=sin(t1) lm1=0 do l=0,lmax ! generate rotation operator for m-components of current l do m1=-l,l lm1=lm1+1 t1=factn(l+m1)*factn(l-m1) lm2=l**2 do m2=-l,l lm2=lm2+1 sm=0.d0 do k=0,min(l+m1,l-m2) if (((l+m1-k) >= 0).and.((l-m2-k) >= 0).and.((m2-m1+k) >= 0)) then j=2*(l-k)+m1-m2 if (j == 0) then t2=1.d0 else t2=cb**j end if j=2*k+m2-m1 if (j /= 0) t2=t2*sb**j t2=t2/(factn(k)*factn(l+m1-k)*factn(l-m2-k)*factn(m2-m1+k)) if (mod(k,2) /= 0) t2=-t2 sm=sm+t2 end if end do dy(lm1,lm2)=sqrt(t1*factn(l+m2)*factn(l-m2))*sm end do end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/ssfext.f900000644000000000000000000000013214762655564014105 xustar0030 mtime=1741380468.659009458 30 atime=1741380466.810999797 30 ctime=1741380468.659009458 elk-10.4.9/src/ssfext.f900000644002504400250440000000122414762655564016626 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ssfext(iq,fext) use modmain implicit none ! arguments integer, intent(in) :: iq character(*), intent(out) :: fext ! local variables integer i,j,m(3),n(3) ! external functions integer, external :: gcd do i=1,3 if (ivq(i,iq) /= 0) then j=gcd(ivq(i,iq),ngridq(i)) m(i)=ivq(i,iq)/j n(i)=ngridq(i)/j else m(i)=0 n(i)=0 end if end do write(fext,'("_Q",2I2.2,"_",2I2.2,"_",2I2.2,".OUT")') m(1),n(1),m(2),n(2), & m(3),n(3) end subroutine elk-10.4.9/src/PaxHeaders/writestate.f900000644000000000000000000000013214762655564014764 xustar0030 mtime=1741380468.660009463 30 atime=1741380466.813999813 30 ctime=1741380468.660009463 elk-10.4.9/src/writestate.f900000644002504400250440000000665114762655564017516 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writestate ! !INTERFACE: subroutine writestate ! !USES: use modmain use moddftu ! !DESCRIPTION: ! Writes the charge density, potentials and other relevant variables to the ! file {\tt STATE.OUT}. Note to developers: changes to the way the variables ! are written should be mirrored in {\tt readstate}. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) !EOP !BOC implicit none ! local variables integer idm,is,ias ! allocatable arrays real(8), allocatable :: rfmt(:,:,:),rvfmt(:,:,:,:),rvfcmt(:,:,:,:) open(100,file='STATE'//trim(filext),form='UNFORMATTED',action='WRITE') write(100) version write(100) spinpol write(100) nspecies write(100) lmmaxo write(100) nrmtmax write(100) nrcmtmax do is=1,nspecies write(100) natoms(is) write(100) nrmt(is) write(100) rsp(1:nrmt(is),is) write(100) nrcmt(is) write(100) rcmt(1:nrcmt(is),is) end do write(100) ngridg write(100) ngvec write(100) ndmag write(100) nspinor write(100) fsmtype write(100) ftmtype write(100) dftu write(100) lmmaxdm write(100) xcgrad write(100) efermi ! muffin-tin functions are unpacked to maintain backward compatibility allocate(rfmt(lmmaxo,nrmtmax,natmtot)) if (spinpol) then allocate(rvfmt(lmmaxo,nrmtmax,natmtot,ndmag)) allocate(rvfcmt(lmmaxo,nrcmtmax,natmtot,ndmag)) end if ! write the density do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),rhomt(:,ias),rfmt(:,:,ias)) end do write(100) rfmt,rhoir ! write the Coulomb potential do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),vclmt(:,ias),rfmt(:,:,ias)) end do write(100) rfmt,vclir ! write the exchange-correlation potential do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),vxcmt(:,ias),rfmt(:,:,ias)) end do write(100) rfmt,vxcir ! write the Kohn-Sham effective potential do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),vsmt(:,ias),rfmt(:,:,ias)) end do write(100) rfmt,vsir if (spinpol) then ! write the magnetisation, exchange-correlation and effective magnetic fields do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),magmt(:,ias,idm), & rvfmt(:,:,ias,idm)) end do end do write(100) rvfmt,magir do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),bxcmt(:,ias,idm), & rvfmt(:,:,ias,idm)) end do end do write(100) rvfmt,bxcir do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrcmt(is),nrcmti(is),bsmt(:,ias,idm), & rvfcmt(:,:,ias,idm)) end do end do write(100) rvfcmt,bsir ! write fixed spin moment magnetic fields if (fsmtype /= 0) then write(100) bfsmc write(100) bfsmcmt end if end if ! write the meta-GGA exchange-correlation potential if (any(xcgrad == [3,4,5])) then do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),wxcmt(:,ias),rfmt(:,:,ias)) end do write(100) rfmt,wxcir end if ! write the potential matrix in each muffin-tin if ((dftu /= 0).or.(ftmtype /= 0)) then write(100) vmatmt end if ! write the fixed tensor moment potential matrix if (ftmtype /= 0) then write(100) vmftm end if close(100) deallocate(rfmt) if (spinpol) deallocate(rvfmt,rvfcmt) end subroutine !EOC elk-10.4.9/src/PaxHeaders/sdelta_sq.f900000644000000000000000000000013214762655564014550 xustar0030 mtime=1741380468.661009469 30 atime=1741380466.815999823 30 ctime=1741380468.661009469 elk-10.4.9/src/sdelta_sq.f900000644002504400250440000000136714762655564017301 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sdelta_sq ! !INTERFACE: elemental real(8) function sdelta_sq(x) ! !INPUT/OUTPUT PARAMETERS: ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the square-wave pulse approximation to the Dirac delta function ! $$ \tilde\delta(x)=\left\{\begin{array}{ll} ! 1 & \quad |x|\le 1/2 \\ ! 0 & \quad |x|>1/2 \end{array}\right. $$ ! ! !REVISION HISTORY: ! Created July 2008 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x if (abs(x) <= 0.5d0) then sdelta_sq=1.d0 else sdelta_sq=0.d0 end if end function !EOC elk-10.4.9/src/PaxHeaders/potxcir.f900000644000000000000000000000013214762655564014261 xustar0030 mtime=1741380468.663009479 30 atime=1741380466.818999839 30 ctime=1741380468.663009479 elk-10.4.9/src/potxcir.f900000644002504400250440000002212714762655564017007 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potxcir(xctype_,rhoir_,magir_,tauir_,exir_,ecir_,vxcir_,bxcir_, & wxcir_) use modmain use modxcifc implicit none ! arguments integer, intent(in) :: xctype_(3) real(8), intent(in) :: rhoir_(ngtot),magir_(ngtot,ndmag),tauir_(ngtot,nspinor) real(8), intent(out) :: exir_(ngtot),ecir_(ngtot) real(8), intent(out) :: vxcir_(ngtot),bxcir_(ngtot,ndmag),wxcir_(ngtot) ! local variables integer n,i real(8) t0,t1,t2,t3,t4 ! allocatable arrays real(8), allocatable :: rhoup(:),rhodn(:) real(8), allocatable :: gvrho(:,:),gvup(:,:),gvdn(:,:) real(8), allocatable :: grho(:),gup(:),gdn(:) real(8), allocatable :: g2rho(:),g2up(:),g2dn(:) real(8), allocatable :: g3rho(:),g3up(:),g3dn(:) real(8), allocatable :: grho2(:),gup2(:),gdn2(:),gupdn(:) real(8), allocatable :: vx(:),vxup(:),vxdn(:) real(8), allocatable :: vc(:),vcup(:),vcdn(:) real(8), allocatable :: dxdgr2(:),dxdgu2(:),dxdgd2(:),dxdgud(:) real(8), allocatable :: dcdgr2(:),dcdgu2(:),dcdgd2(:),dcdgud(:) real(8), allocatable :: dxdg2r(:),dxdg2u(:),dxdg2d(:) real(8), allocatable :: dcdg2r(:),dcdg2u(:),dcdg2d(:) real(8), allocatable :: dtdr(:),dtdru(:),dtdrd(:) real(8), allocatable :: wx(:),wxup(:),wxdn(:) real(8), allocatable :: wc(:),wcup(:),wcdn(:) n=ngtot if (spinpol) then allocate(rhoup(n),rhodn(n)) allocate(vxup(n),vxdn(n),vcup(n),vcdn(n)) if (xcgrad == 1) then allocate(grho(n),gup(n),gdn(n)) allocate(g2up(n),g2dn(n)) allocate(g3rho(n),g3up(n),g3dn(n)) else if (xcgrad == 2) then allocate(g2up(n),g2dn(n)) allocate(gvup(n,3),gvdn(n,3)) allocate(gup2(n),gdn2(n),gupdn(n)) allocate(dxdgu2(n),dxdgd2(n),dxdgud(n)) allocate(dcdgu2(n),dcdgd2(n),dcdgud(n)) else if (any(xcgrad == [3,4,5])) then allocate(g2up(n),g2dn(n)) allocate(gvup(n,3),gvdn(n,3)) allocate(gup2(n),gdn2(n),gupdn(n)) allocate(dxdgu2(n),dxdgd2(n),dxdgud(n)) allocate(dcdgu2(n),dcdgd2(n),dcdgud(n)) allocate(dxdg2u(n),dxdg2d(n)) allocate(dcdg2u(n),dcdg2d(n)) allocate(dtdru(n),dtdrd(n)) allocate(wxup(n),wxdn(n),wcup(n),wcdn(n)) end if else allocate(vx(n),vc(n)) if (xcgrad == 1) then allocate(grho(n),g2rho(n),g3rho(n)) else if (xcgrad == 2) then allocate(g2rho(n),gvrho(n,3),grho2(n)) allocate(dxdgr2(n),dcdgr2(n)) else if (any(xcgrad == [3,4,5])) then allocate(g2rho(n),gvrho(n,3),grho2(n)) allocate(dxdgr2(n),dcdgr2(n)) allocate(dxdg2r(n),dcdg2r(n)) allocate(dtdr(n),wx(n),wc(n)) end if end if if (spinpol) then !------------------------! ! spin-polarised ! !------------------------! if (ncmag) then ! non-collinear if (xcgrad == 0) then ! LSDA do i=1,n t0=rhoir_(i) t1=sqrt(magir_(i,1)**2+magir_(i,2)**2+magir_(i,3)**2)*sxcscf rhoup(i)=0.5d0*(t0+t1) rhodn(i)=0.5d0*(t0-t1) end do else ! functionals which require gradients do i=1,n t0=rhoir_(i) t1=sqrt(magir_(i,1)**2+magir_(i,2)**2+magir_(i,3)**2+dncgga)*sxcscf rhoup(i)=0.5d0*(t0+t1) rhodn(i)=0.5d0*(t0-t1) end do end if else ! collinear do i=1,n t0=rhoir_(i) t1=magir_(i,1)*sxcscf rhoup(i)=0.5d0*(t0+t1) rhodn(i)=0.5d0*(t0-t1) end do end if if (xcgrad < 1) then call xcifc(xctype_,n,tempa=swidth,rhoup=rhoup,rhodn=rhodn,ex=exir_, & ec=ecir_,vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn) else if (xcgrad == 1) then call ggair_sp_1(rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn) call xcifc(xctype_,n,rhoup=rhoup,rhodn=rhodn,grho=grho,gup=gup,gdn=gdn, & g2up=g2up,g2dn=g2dn,g3rho=g3rho,g3up=g3up,g3dn=g3dn,ex=exir_,ec=ecir_, & vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn) else if (xcgrad == 2) then call ggair_sp_2a(rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn) call xcifc(xctype_,n,rhoup=rhoup,rhodn=rhodn,gup2=gup2,gdn2=gdn2, & gupdn=gupdn,ex=exir_,ec=ecir_,vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn, & dxdgu2=dxdgu2,dxdgd2=dxdgd2,dxdgud=dxdgud,dcdgu2=dcdgu2,dcdgd2=dcdgd2, & dcdgud=dcdgud) call ggair_sp_2b(g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2,dxdgd2, & dxdgud,dcdgu2,dcdgd2,dcdgud) else if (any(xcgrad == [3,4,5])) then call ggair_sp_2a(rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn) ! enforce the von Weizsacker lower bound call k_vwlb(n,rhoup,gup2,tauir_(:,1)) call k_vwlb(n,rhodn,gdn2,tauir_(:,2)) call xcifc(xctype_,n,rhoup=rhoup,rhodn=rhodn,g2up=g2up,g2dn=g2dn, & gup2=gup2,gdn2=gdn2,gupdn=gupdn,tauup=tauir_(:,1),taudn=tauir_(:,2), & ex=exir_,ec=ecir_,vxup=vxup,vxdn=vxdn,vcup=vcup,vcdn=vcdn,dxdgu2=dxdgu2, & dxdgd2=dxdgd2,dxdgud=dxdgud,dcdgu2=dcdgu2,dcdgd2=dcdgd2,dcdgud=dcdgud, & dxdg2u=dxdg2u,dxdg2d=dxdg2d,dcdg2u=dcdg2u,dcdg2d=dcdg2d,wxup=wxup, & wxdn=wxdn,wcup=wcup,wcdn=wcdn) call ggair_sp_2b(g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2,dxdgd2, & dxdgud,dcdgu2,dcdgd2,dcdgud) ! determine δτ(r')/δρ(r) using an approximate kinetic energy density functional if (xcgrad /= 3) then call xcifc(ktype,n,rhoup=rhoup,rhodn=rhodn,g2up=g2up,g2dn=g2dn,gup2=gup2,& gdn2=gdn2,tauup=tauir_(:,1),taudn=tauir_(:,2),dtdru=dtdru,dtdrd=dtdrd, & dtdgu2=dxdgu2,dtdgd2=dxdgd2,dtdg2u=dxdg2u,dtdg2d=dxdg2d,wxup=dcdgu2, & wxdn=dcdgd2) call ggair_4(gvup,vxup,vcup,wxup,wcup,dtdru,dxdgu2) call ggair_4(gvdn,vxdn,vcdn,wxdn,wcdn,dtdrd,dxdgd2) if (kgrad == 3) then call ggair_3(vxup,vcup,wxup,wcup,dxdg2u) call ggair_3(vxdn,vcdn,wxdn,wcdn,dxdg2d) end if wxcir_(1:n)=0.5d0*(wxup(1:n)+wxdn(1:n)+wcup(1:n)+wcdn(1:n)) end if end if ! hybrid functionals if (hybrid) then t1=1.d0-hybridc ! scale exchange part of energy exir_(1:n)=t1*exir_(1:n) ! scale exchange part of potential vxup(1:n)=t1*vxup(1:n) vxdn(1:n)=t1*vxdn(1:n) end if if (ncmag) then ! non-collinear: spin rotate the local exchange potential do i=1,n t1=vxup(i)+vcup(i) t2=vxdn(i)+vcdn(i) vxcir_(i)=0.5d0*(t1+t2) ! determine the exchange-correlation magnetic field t3=0.5d0*(t1-t2) t4=rhoup(i)-rhodn(i) if (abs(t4) > 1.d-8) t4=t3/t4 bxcir_(i,1:ndmag)=magir_(i,1:ndmag)*t4 end do else ! collinear do i=1,n t1=vxup(i)+vcup(i) t2=vxdn(i)+vcdn(i) vxcir_(i)=0.5d0*(t1+t2) bxcir_(i,1)=0.5d0*(t1-t2) end do end if ! scale field if required if (tssxc) bxcir_(1:n,1:ndmag)=bxcir_(1:n,1:ndmag)*sxcscf else !--------------------------! ! spin-unpolarised ! !--------------------------! if (xcgrad < 1) then call xcifc(xctype_,n,tempa=swidth,rho=rhoir_,ex=exir_,ec=ecir_,vx=vx,vc=vc) else if (xcgrad == 1) then call ggair_1(rhoir_,grho,g2rho,g3rho) call xcifc(xctype_,n,rho=rhoir_,grho=grho,g2rho=g2rho,g3rho=g3rho,ex=exir_,& ec=ecir_,vx=vx,vc=vc) else if (xcgrad == 2) then call ggair_2a(rhoir_,g2rho,gvrho,grho2) call xcifc(xctype_,n,rho=rhoir_,grho2=grho2,ex=exir_,ec=ecir_,vx=vx,vc=vc, & dxdgr2=dxdgr2,dcdgr2=dcdgr2) call ggair_2b(g2rho,gvrho,vx,vc,dxdgr2,dcdgr2) else if (any(xcgrad == [3,4,5])) then call ggair_2a(rhoir_,g2rho,gvrho,grho2) ! enforce the von Weizsacker lower bound call k_vwlb(n,rhoir_,grho2,tauir_) call xcifc(xctype_,n,rho=rhoir_,g2rho=g2rho,grho2=grho2,tau=tauir_, & ex=exir_,ec=ecir_,vx=vx,vc=vc,dxdgr2=dxdgr2,dcdgr2=dcdgr2,dxdg2r=dxdg2r, & dcdg2r=dcdg2r,wx=wx,wc=wc) call ggair_2b(g2rho,gvrho,vx,vc,dxdgr2,dcdgr2) ! determine δτ(r')/δρ(r) using an approximate kinetic energy density functional if (xcgrad /= 3) then call xcifc(ktype,n,rho=rhoir_,g2rho=g2rho,grho2=grho2,tau=tauir_, & dtdr=dtdr,dtdgr2=dxdgr2,dtdg2r=dxdg2r,wx=dcdgr2) call ggair_4(gvrho,vx,vc,wx,wc,dtdr,dxdgr2) if (kgrad == 3) then call ggair_3(vx,vc,wx,wc,dxdg2r) end if end if wxcir_(1:n)=wx(1:n)+wc(1:n) end if ! hybrid functionals if (hybrid) then t1=1.d0-hybridc ! scale exchange part of energy exir_(1:n)=t1*exir_(1:n) ! scale exchange part of potential vxcir_(1:n)=t1*vx(1:n)+vc(1:n) else vxcir_(1:n)=vx(1:n)+vc(1:n) end if end if if (spinpol) then deallocate(rhoup,rhodn,vxup,vxdn,vcup,vcdn) if (xcgrad == 1) then deallocate(grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn) else if (xcgrad == 2) then deallocate(g2up,g2dn) deallocate(gvup,gvdn) deallocate(gup2,gdn2,gupdn) deallocate(dxdgu2,dxdgd2,dxdgud) deallocate(dcdgu2,dcdgd2,dcdgud) else if (any(xcgrad == [3,4,5])) then deallocate(g2up,g2dn) deallocate(gvup,gvdn) deallocate(gup2,gdn2,gupdn) deallocate(dxdgu2,dxdgd2,dxdgud) deallocate(dcdgu2,dcdgd2,dcdgud) deallocate(dxdg2u,dxdg2d) deallocate(dcdg2u,dcdg2d) deallocate(dtdru,dtdrd) deallocate(wxup,wxdn,wcup,wcdn) end if else deallocate(vx,vc) if (xcgrad == 1) then deallocate(grho,g2rho,g3rho) else if (xcgrad == 2) then deallocate(g2rho,gvrho,grho2) deallocate(dxdgr2,dcdgr2) else if (any(xcgrad == [3,4,5])) then deallocate(g2rho,gvrho,grho2) deallocate(dxdgr2,dcdgr2,dxdg2r,dcdg2r) deallocate(dtdr,wx,wc) end if end if end subroutine elk-10.4.9/src/PaxHeaders/potxc.f900000644000000000000000000000013214762655564013726 xustar0030 mtime=1741380468.664009484 30 atime=1741380466.821999855 30 ctime=1741380468.664009484 elk-10.4.9/src/potxc.f900000644002504400250440000000447714762655564016464 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: potxc ! !INTERFACE: subroutine potxc(tsh,xctype_,rhomt_,rhoir_,magmt_,magir_,taumt_,tauir_,exmt_, & exir_,ecmt_,ecir_,vxcmt_,vxcir_,bxcmt_,bxcir_,wxcmt_,wxcir_) ! !USES: use modmain use modomp ! !DESCRIPTION: ! Computes the exchange-correlation potential and energy density. In the ! muffin-tin, the density is transformed from spherical harmonic coefficients ! $\rho_{lm}$ to spherical coordinates $(\theta,\phi)$ with a backward ! spherical harmonic transformation (SHT). Once calculated, the ! exchange-correlation potential and energy density are transformed with a ! forward SHT. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: xctype_(3) real(8), intent(in) :: rhomt_(npmtmax,natmtot),rhoir_(ngtot) real(8), intent(in) :: magmt_(npmtmax,natmtot,ndmag),magir_(ngtot,ndmag) real(8), intent(in) :: taumt_(npmtmax,natmtot,nspinor),tauir_(ngtot,nspinor) real(8), intent(out) :: exmt_(npmtmax,natmtot),exir_(ngtot) real(8), intent(out) :: ecmt_(npmtmax,natmtot),ecir_(ngtot) real(8), intent(out) :: vxcmt_(npmtmax,natmtot),vxcir_(ngtot) real(8), intent(out) :: bxcmt_(npmtmax,natmtot,ndmag),bxcir_(ngtot,ndmag) real(8), intent(out) :: wxcmt_(npmtmax,natmtot),wxcir_(ngtot) ! local variables integer ias,nthd call holdthd(natmtot+1,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) ! muffin-tin exchange-correlation potential, field and energy density !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot call potxcmt(tsh,ias,xctype_,rhomt_,magmt_,taumt_,exmt_,ecmt_,vxcmt_,bxcmt_, & wxcmt_) end do !$OMP END DO NOWAIT ! interstitial exchange-correlation potential, field and energy density !$OMP SINGLE call potxcir(xctype_,rhoir_,magir_,tauir_,exir_,ecir_,vxcir_,bxcir_,wxcir_) !$OMP END SINGLE ! symmetrise the muffin-tin exchange-correlation potentials and magnetic fields if (tsh) then !$OMP SECTIONS !$OMP SECTION call symrfmt(nrmt,nrmti,npmt,npmtmax,vxcmt_) !$OMP SECTION if (spinpol) call symrvfmt(.true.,ncmag,nrmt,nrmti,npmt,npmtmax,bxcmt_) !$OMP END SECTIONS end if !$OMP END PARALLEL call freethd(nthd) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rcfmtinp.f900000644000000000000000000000013214762655564014413 xustar0030 mtime=1741380468.666009495 30 atime=1741380466.823999865 30 ctime=1741380468.666009495 elk-10.4.9/src/rcfmtinp.f900000644002504400250440000000202014762655564017127 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure complex(8) function rcfmtinp(nr,nri,wr,rfmt,cfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) real(8), intent(in) :: rfmt(*) complex(4), intent(in) :: cfmt(*) ! local variables integer n,ir,i complex(8) z1,z2 ! compute the dot-products for each radial point and integrate over r z1=0.d0 i=1 if (lmaxi == 1) then do ir=1,nri z1=z1+wr(ir) & *(rfmt(i)*cfmt(i) & +rfmt(i+1)*cfmt(i+1) & +rfmt(i+2)*cfmt(i+2) & +rfmt(i+3)*cfmt(i+3)) i=i+4 end do z1=pi*z1 else n=lmmaxi-1 do ir=1,nri z1=z1+wr(ir)*dot_product(rfmt(i:i+n),cfmt(i:i+n)) i=i+lmmaxi end do z1=(fourpi/dble(lmmaxi))*z1 end if z2=0.d0 n=lmmaxo-1 do ir=nri+1,nr z2=z2+wr(ir)*dot_product(rfmt(i:i+n),cfmt(i:i+n)) i=i+lmmaxo end do rcfmtinp=z1+(fourpi/dble(lmmaxo))*z2 end function elk-10.4.9/src/PaxHeaders/rhoplot.f900000644000000000000000000000012614762655564014263 xustar0028 mtime=1741380468.6670095 30 atime=1741380466.826999881 28 ctime=1741380468.6670095 elk-10.4.9/src/rhoplot.f900000644002504400250440000000254614762655564017011 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rhoplot ! !INTERFACE: subroutine rhoplot ! !USES: use modmain ! !DESCRIPTION: ! Outputs the charge density, read in from {\tt STATE.OUT}, for 1D, 2D or 3D ! plotting. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! initialise universal variables call init0 ! read density from file call readstate ! write the density plot to file select case(task) case(31) open(50,file='RHO1D.OUT',form='FORMATTED',action='WRITE') open(51,file='RHOLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,1,rhomt,rhoir) close(50) close(51) write(*,*) write(*,'("Info(rhoplot):")') write(*,'(" 1D density plot written to RHO1D.OUT")') write(*,'(" vertex location lines written to RHOLINES.OUT")') case(32) open(50,file='RHO2D.OUT',form='FORMATTED',action='WRITE') call plot2d(.false.,50,1,rhomt,rhoir) close(50) write(*,*) write(*,'("Info(rhoplot): 2D density plot written to RHO2D.OUT")') case(33) open(50,file='RHO3D.OUT',form='FORMATTED',action='WRITE') call plot3d(50,1,rhomt,rhoir) close(50) write(*,*) write(*,'("Info(rhoplot): 3D density plot written to RHO3D.OUT")') end select end subroutine !EOC elk-10.4.9/src/PaxHeaders/occupy.f900000644000000000000000000000013214762655564014073 xustar0030 mtime=1741380468.669009511 30 atime=1741380466.828999891 30 ctime=1741380468.669009511 elk-10.4.9/src/occupy.f900000644002504400250440000000612214762655564016616 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: occupy ! !INTERFACE: subroutine occupy ! !USES: use modmain use modtest ! !DESCRIPTION: ! Finds the Fermi energy and sets the occupation numbers for the ! second-variational states using the routine {\tt fermi}. ! ! !REVISION HISTORY: ! Created February 2004 (JKD) ! Added gap estimation, November 2009 (F. Cricchio) ! Added adaptive smearing width, April 2010 (T. Bjorkman) !EOP !BOC implicit none ! local variables integer, parameter :: maxit=1000 integer ik,ist,it real(8) e0,e1,e,de real(8) ei0,ei1,ed0,ed1 real(8) chg,w,x,t0 ! external functions real(8), external :: sdelta,stheta ! determine the smearing width automatically if required if ((autoswidth).and.(iscl > 1)) call findswidth ! find minimum and maximum eigenvalues e0=evalsv(1,1) e1=e0 do ik=1,nkpt do ist=1,nstsv e=evalsv(ist,ik) if (e < e0) e0=e if (e > e1) e1=e end do end do if (e0 < e0min) then write(*,*) write(*,'("Warning(occupy): minimum eigenvalue less than minimum & &linearisation energy : ",2G18.10)') e0,e0min write(*,'(" for s.c. loop ",I5)') iscl end if t0=1.d0/swidth ! determine the Fermi energy using the bisection method do it=1,maxit efermi=0.5d0*(e0+e1) chg=0.d0 do ik=1,nkpt w=wkpt(ik) do ist=1,nstsv e=evalsv(ist,ik) if (e < e0min) then occsv(ist,ik)=0.d0 else x=(efermi-e)*t0 occsv(ist,ik)=occmax*stheta(stype,x) chg=chg+w*occsv(ist,ik) end if end do end do if (chg < chgval) then e0=efermi else e1=efermi end if if ((e1-e0) < 1.d-12) goto 10 end do write(*,*) write(*,'("Warning(occupy): could not find Fermi energy")') 10 continue ! find the density of states at the Fermi surface in units of ! states/Hartree/unit cell fermidos=0.d0 do ik=1,nkpt w=wkpt(ik) do ist=1,nstsv x=(evalsv(ist,ik)-efermi)*t0 fermidos=fermidos+w*sdelta(stype,x) end do if (abs(occsv(nstsv,ik)) > epsocc) then write(*,*) write(*,'("Warning(occupy): not enough empty states for k-point ",I6)') ik write(*,'(" and s.c. loop ",I5)') iscl end if end do fermidos=fermidos*occmax*t0 ! write Fermi density of states to test file call writetest(500,'DOS at Fermi energy',tol=5.d-3,rv=fermidos) ! estimate the indirect and direct band gaps (FC) ei0=-1.d8; ei1=1.d8 de=1.d8 ikgap(1:3)=1 do ik=1,nkpt ed0=-1.d8; ed1=1.d8 do ist=1,nstsv e=evalsv(ist,ik) if (e <= efermi) then if (e > ed0) ed0=e if (e > ei0) then ! transfer is a workaround for a bug in Intel Fortran versions 17 and 18 ikgap(1)=transfer(ik,ik) ei0=e end if else if (e < ed1) ed1=e if (e < ei1) then ikgap(2)=ik ei1=e end if end if end do e=ed1-ed0 if (e < de) then ikgap(3)=ik de=e end if end do bandgap(1)=ei1-ei0 bandgap(2)=de ! write band gap to test file call writetest(510,'estimated indirect band gap',tol=2.d-2,rv=bandgap(1)) end subroutine !EOC elk-10.4.9/src/PaxHeaders/symveca.f900000644000000000000000000000013214762655564014240 xustar0030 mtime=1741380468.670009516 30 atime=1741380466.831999907 30 ctime=1741380468.670009516 elk-10.4.9/src/symveca.f900000644002504400250440000000230514762655564016762 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: symveca ! !INTERFACE: subroutine symveca(vca) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! vca : vectors in Cartesian coordinates for all atoms (in,real(3,natmtot)) ! !DESCRIPTION: ! Symmetrises a 3-vector at each atomic site by rotating and averaging over ! equivalent atoms. Only the spatial part of each crystal symmetry is used. ! ! !REVISION HISTORY: ! Created June 2004 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(inout) :: vca(3,natmtot) ! local variables integer is,ia,ja,ias,jas integer isym,lspl real(8) v(3),t1 ! automatic arrays real(8) vs(3,natmtot) ! make symmetric average vs(1:3,1:natmtot)=0.d0 do isym=1,nsymcrys lspl=lsplsymc(isym) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ja=ieqatom(ia,is,isym) jas=idxas(ja,is) call r3mv(symlatc(:,:,lspl),vca(:,jas),v) vs(1:3,ias)=vs(1:3,ias)+v(1:3) end do end do end do ! normalise t1=1.d0/dble(nsymcrys) vca(1:3,1:natmtot)=t1*vs(1:3,1:natmtot) end subroutine !EOC elk-10.4.9/src/PaxHeaders/jprplot.f900000644000000000000000000000013214762655564014263 xustar0030 mtime=1741380468.671009521 30 atime=1741380466.833999918 30 ctime=1741380468.671009521 elk-10.4.9/src/jprplot.f900000644002504400250440000000315314762655564017007 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine jprplot use modmain use modmpi implicit none ! initialise universal variables call init0 call init1 ! read density and potentials from file call readstate ! generate the core wavefunctions and densities call gencore ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the occupation numbers from file call readoccsv ! compute the paramagnetic current density call genjpr ! plot the current density (master process only) if (mp_mpi) then write(*,*) write(*,'("Info(jprplot):")') select case(task) case(371) open(50,file='JPR1D.OUT',form='FORMATTED') open(51,file='JPRLINES.OUT',form='FORMATTED') call plot1d(50,51,3,jrmt,jrir) close(50) write(*,'(" 1D paramagnetic current density written to JPR1D.OUT")') write(*,'(" vertex location lines written to JPRLINES.OUT")') case(372) open(50,file='JPR2D.OUT',form='FORMATTED') call plot2d(.true.,50,3,jrmt,jrir) close(50) write(*,'(" 2D paramagnetic current density written to JPR2D.OUT")') write(*,'(" Note that the 3D vector field has been locally projected")') write(*,'(" onto the 2D plotting plane axes")') case(373) open(50,file='JPR3D.OUT',form='FORMATTED') call plot3d(50,3,jrmt,jrir) close(50) write(*,'(" 3D paramagnetic current density written to JPR3D.OUT")') end select end if end subroutine elk-10.4.9/src/PaxHeaders/geomopt.f900000644000000000000000000000013214762655564014243 xustar0030 mtime=1741380468.672009526 30 atime=1741380466.836999933 30 ctime=1741380468.672009526 elk-10.4.9/src/geomopt.f900000644002504400250440000001400214762655564016762 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine geomopt use modmain use modmpi use moddelf use modvars implicit none ! local variables integer istp,jstp,is,i real(8) ds ! initialise global variables call init0 call init1 ! store orginal volume omega0=omega ! atomic forces are required tforce=.true. trdstate=(task == 3) ! initial atomic step sizes if (allocated(tauatp)) deallocate(tauatp) allocate(tauatp(natmtot)) tauatp(:)=tau0atp ! initialise the previous total force on each atom if (allocated(forcetotp)) deallocate(forcetotp) allocate(forcetotp(3,natmtot)) forcetotp(:,:)=0.d0 ! initial lattice optimisation step size taulatv(:)=tau0latv ! initialise previous stress tensor stressp(:)=0.d0 ! open formatted files for writing if (mp_mpi) then open(71,file='TOTENERGY_OPT.OUT',form='FORMATTED') open(72,file='FORCEMAX.OUT',form='FORMATTED') open(73,file='GEOMETRY_OPT.OUT',form='FORMATTED') open(74,file='IADIST_OPT.OUT',form='FORMATTED') open(75,file='FORCES_OPT.OUT',form='FORMATTED') if (spinpol) then open(78,file='MOMENTM_OPT.OUT',form='FORMATTED') end if if (latvopt /= 0) then open(86,file='STRESSMAX.OUT',form='FORMATTED') open(87,file='STRESS_OPT.OUT',form='FORMATTED') open(88,file='OMEGA_OPT.OUT',form='FORMATTED') end if end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) do istp=1,maxlatvstp do jstp=1,maxatpstp if (atpopt == 0) exit if (mp_mpi) then write(*,'("Info(geomopt): atomic position optimisation step : ",I6)') jstp end if ! ground-state and forces calculation call gndstate ! check for stop signal if (tstop) goto 10 ! subsequent calculations will read in the potential from STATE.OUT trdstate=.true. ! update the atomic positions call atpstep ! write total energy, forces, atomic positions, interatomic distances to file if (mp_mpi) then write(71,'(G22.12)') engytot flush(71) write(72,'(G18.10)') forcemax flush(72) write(73,*); write(73,*) write(73,'("! Atomic position optimisation step : ",I6)') jstp call writegeom(73) flush(73) write(74,*); write(74,*) write(74,'("Atomic position optimisation step : ",I6)') jstp call writeiad(74) flush(74) write(75,*); write(75,*) write(75,'("Atomic position optimisation step : ",I6)') jstp call writeforces(75) write(75,*) write(75,'("Maximum force magnitude over all atoms (target) : ",G18.10,& &" (",G18.10,")")') forcemax,epsforce flush(75) if (spinpol) then write(78,'(G22.12)') momtotm flush(78) end if end if ! broadcast forcemax from master process to all other processes call mpi_bcast(forcemax,1,mpi_double_precision,0,mpicom,ierror) ! check force convergence if (forcemax <= epsforce) then if (mp_mpi) then write(75,*) write(75,'("Force convergence target achieved")') end if exit end if if (mp_mpi.and.(jstp == maxatpstp)) then write(*,*) write(*,'("Warning(geomopt): atomic position optimisation failed to & &converge in ",I6," steps")') maxatpstp end if ! store the current forces array forcetotp(:,:)=forcetot(:,:) ! end loop over atomic position optimisation end do ! exit lattice optimisation loop if required if (latvopt == 0) exit if (mp_mpi) then write(*,'("Info(geomopt): lattice optimisation step : ",I6)') istp end if ! generate the stress tensor call genstress ! take average of current and previous stress tensors stress(:)=0.5d0*(stress(:)+stressp(:)) ! check for stop signal if (tstop) goto 10 ! update the lattice vectors call latvstep ! write stress tensor components and maximum magnitude to file if (mp_mpi) then write(71,'(G22.12)') engytot flush(71) write(73,*); write(73,*) write(73,'("! Lattice optimisation step : ",I6)') istp call writegeom(73) flush(73) write(74,*); write(74,*) write(74,'("Lattice optimisation step : ",I6)') istp call writeiad(74) flush(74) if (spinpol) then write(78,'(G22.12)') momtotm flush(78) end if write(86,'(G18.10)') stressmax flush(86) write(87,*) write(87,'("Lattice optimisation step : ",I6)') istp write(87,'("Derivative of total energy w.r.t. strain tensors :")') do i=1,nstrain write(87,'(G18.10)') stress(i) end do flush(87) write(88,'(G18.10)') omega flush(88) end if ! check for stress convergence if (latvopt == 1) then ds=sum(abs(stress(:))) else ! stress may be non-zero because of volume constraint; check change in stress ! tensor instead ds=sum(abs(stress(:)-stressp(:))) end if ! broadcast ds from master process to all other processes call mpi_bcast(ds,1,mpi_double_precision,0,mpicom,ierror) if ((istp >= 3).and.(ds <= epsstress*tau0latv)) then if (mp_mpi) then write(87,*) write(87,'("Stress convergence target achieved")') end if exit end if if (mp_mpi.and.(istp == maxlatvstp)) then write(*,*) write(*,'("Warning(geomopt): lattice optimisation failed to converge in ",& &I6," steps")') maxlatvstp end if stressp(1:nstrain)=stress(1:nstrain) ! delete the eigenvector files call delfiles(evec=.true.) ! end loop over lattice optimisation end do 10 continue if (mp_mpi) then close(71); close(72); close(73); close(74); close(75) if (spinpol) close(78) if (latvopt /= 0) then close(86); close(87); close(88) end if end if ! ground-state should be run again after lattice optimisation if (latvopt /= 0) call gndstate ! write optimised variables if (wrtvars) then call writevars('avec_opt',nv=9,rva=avec) call writevars('omega_opt',rv=omega) do is=1,nspecies call writevars('atposl_opt',n1=is,nv=3*natoms(is),rva=atposl(:,:,is)) end do do is=1,nspecies call writevars('atposc_opt',n1=is,nv=3*natoms(is),rva=atposc(:,:,is)) end do call writevars('engytot_opt',rv=engytot) end if end subroutine elk-10.4.9/src/PaxHeaders/eveqnss.f900000644000000000000000000000013214762655564014255 xustar0030 mtime=1741380468.674009537 30 atime=1741380466.838999943 30 ctime=1741380468.674009537 elk-10.4.9/src/eveqnss.f900000644002504400250440000001635614762655564017012 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnss(ngp,igpig,apwalm,evalfv,evecfv,evalsvp,evecsv) use modmain use moddftu use modomp implicit none ! arguments integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) real(8), intent(in) :: evalfv(nstfv,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv) real(8), intent(out) :: evalsvp(nstsv) complex(8), intent(out) :: evecsv(nstsv,nstsv) ! local variables integer ld,ist,jst,ispn,is,ias integer nrc,nrci,nrco,i,j integer l,lm,nm,npc,npc2,npci integer n1,n12,n2,n22,igp,nthd real(8) ts0,ts1 complex(8) zq ! automatic arrays complex(8) wfmt2(npcmtmax,nspnfv),wfmt4(npcmtmax) complex(8) wfmt31(npcmtmax),wfmt32(npcmtmax),wfmt33(npcmtmax) complex(4) wfmt5(npcmtmax),wfgp1(ngkmax),wfgp2(ngkmax),wfgp3(ngkmax) complex(4) wfir1(ngtc,nspnfv),wfir2(ngtc) ! allocatable arrays complex(4), allocatable :: wfmt0(:,:,:),wfgp0(:,:,:) complex(8), allocatable :: wfmt1(:,:,:) ! external functions real(4), external :: sdot complex(4), external :: cdotc if (.not.spinpol) then write(*,*) write(*,'("Error(eveqnss): spin-unpolarised calculation")') write(*,*) stop end if call timesec(ts0) ld=lmmaxdm*nspinor call holdthd(nstfv,nthd) ! zero the second-variational Hamiltonian (stored in the eigenvector array) evecsv(:,:)=0.d0 ! set the diagonal elements equal to the first-variational eigenvalues do ispn=1,nspinor do ist=1,nstfv i=nstfv*(ispn-1)+ist evecsv(i,i)=evalfv(ist,ispn) end do end do !-------------------------! ! muffin-tin part ! !-------------------------! allocate(wfmt0(npcmtmax,nstfv,nspnfv),wfmt1(npcmtmax,nstfv,nspnfv)) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfmt2,wfmt31,wfmt32,wfmt33,wfmt4,wfmt5) & !$OMP PRIVATE(ias,is,nrc,nrci,nrco) & !$OMP PRIVATE(npc,npc2,npci,zq,ispn) & !$OMP PRIVATE(ist,jst,l,nm,lm,i,j) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci npc=npcmt(is) npc2=npc*2 npci=npcmti(is) ! de-phasing factor (FC, FB & LN) if (ssdph) zq=zqss(ias) ! compute the first-variational wavefunctions do ispn=1,nspnfv if (ssdph.and.(ispn == 2)) zq=conjg(zq) !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv call wfmtfv(ias,ngp(ispn),apwalm(:,:,:,ias,ispn),evecfv(:,ist,ispn), & wfmt1(:,ist,ispn)) ! de-phase if required if (ssdph) wfmt1(1:npc,ist,ispn)=zq*wfmt1(1:npc,ist,ispn) ! multiply wavefunction by integration weights and store as single-precision call zcfmtwr(nrc,nrci,wr2cmt(:,is),wfmt1(:,ist,ispn),wfmt0(:,ist,ispn)) end do !$OMP END DO end do !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstfv ! convert wavefunction to spherical coordinates do ispn=1,nspnfv call zbsht(nrc,nrci,wfmt1(:,jst,ispn),wfmt2(:,ispn)) end do ! apply effective magnetic field and convert to spherical harmonics wfmt4(1:npc)=bsmt(1:npc,ias,3)*wfmt2(1:npc,1) call zfsht(nrc,nrci,wfmt4,wfmt31) wfmt4(1:npc)=-bsmt(1:npc,ias,3)*wfmt2(1:npc,2) call zfsht(nrc,nrci,wfmt4,wfmt32) wfmt4(1:npc)=cmplx(bsmt(1:npc,ias,1),-bsmt(1:npc,ias,2),8)*wfmt2(1:npc,2) call zfsht(nrc,nrci,wfmt4,wfmt33) ! apply muffin-tin DFT+U potential matrix if required if (tvmatmt) then do l=0,lmaxdm if (tvmmt(l,ias)) then nm=2*l+1 lm=l**2+1 i=npci+lm if (l <= lmaxi) then call zgemm('N','N',nm,nrci,nm,zone,vmatmt(lm,1,lm,1,ias),ld, & wfmt1(lm,jst,1),lmmaxi,zone,wfmt31(lm),lmmaxi) end if call zgemm('N','N',nm,nrco,nm,zone,vmatmt(lm,1,lm,1,ias),ld, & wfmt1(i,jst,1),lmmaxo,zone,wfmt31(i),lmmaxo) if (l <= lmaxi) then call zgemm('N','N',nm,nrci,nm,zone,vmatmt(lm,2,lm,2,ias),ld, & wfmt1(lm,jst,2),lmmaxi,zone,wfmt32(lm),lmmaxi) end if call zgemm('N','N',nm,nrco,nm,zone,vmatmt(lm,2,lm,2,ias),ld, & wfmt1(i,jst,2),lmmaxo,zone,wfmt32(i),lmmaxo) if (l <= lmaxi) then call zgemm('N','N',nm,nrci,nm,zone,vmatmt(lm,1,lm,2,ias),ld, & wfmt1(lm,jst,2),lmmaxi,zone,wfmt33(lm),lmmaxi) end if call zgemm('N','N',nm,nrco,nm,zone,vmatmt(lm,1,lm,2,ias),ld, & wfmt1(i,jst,2),lmmaxo,zone,wfmt33(i),lmmaxo) end if end do end if ! add to second-variational Hamiltonian matrix ! upper diagonal block wfmt5(1:npc)=wfmt31(1:npc) do ist=1,jst-1 evecsv(ist,jst)=evecsv(ist,jst)+cdotc(npc,wfmt0(:,ist,1),1,wfmt5,1) end do evecsv(jst,jst)=evecsv(jst,jst)+sdot(npc2,wfmt0(:,jst,1),1,wfmt5,1) j=jst+nstfv ! lower diagonal block wfmt5(1:npc)=wfmt32(1:npc) do ist=1,jst-1 i=ist+nstfv evecsv(i,j)=evecsv(i,j)+cdotc(npc,wfmt0(:,ist,2),1,wfmt5,1) end do evecsv(j,j)=evecsv(j,j)+sdot(npc2,wfmt0(:,jst,2),1,wfmt5,1) ! off-diagonal block wfmt5(1:npc)=wfmt33(1:npc) do ist=1,nstfv evecsv(ist,j)=evecsv(ist,j)+cdotc(npc,wfmt0(:,ist,1),1,wfmt5,1) end do end do !$OMP END DO ! end loop over atoms end do !$OMP END PARALLEL deallocate(wfmt0,wfmt1) !---------------------------! ! interstitial part ! !---------------------------! allocate(wfgp0(ngkmax,nstfv,nspnfv)) n1=ngp(1); n12=n1*2 n2=ngp(2); n22=n2*2 !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfir1,wfir2,wfgp1,wfgp2,wfgp3) & !$OMP PRIVATE(ist,jst,ispn,igp,i,j) & !$OMP NUM_THREADS(nthd) ! make single-precision copy of wavefunction !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv do ispn=1,nspnfv wfgp0(1:ngp(ispn),ist,ispn)=evecfv(1:ngp(ispn),ist,ispn) end do end do !$OMP END DO ! begin loop over states !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstfv do ispn=1,nspnfv wfir1(:,ispn)=0.e0 do igp=1,ngp(ispn) wfir1(igfc(igpig(igp,ispn)),ispn)=wfgp0(igp,jst,ispn) end do ! Fourier transform wavefunction to real-space call cfftifc(3,ngdgc,1,wfir1(:,ispn)) end do ! multiply with magnetic field and transform to G-space wfir2(1:ngtc)=bsirc(1:ngtc,3)*wfir1(1:ngtc,1) call cfftifc(3,ngdgc,-1,wfir2) do igp=1,n1 wfgp1(igp)=wfir2(igfc(igpig(igp,1))) end do wfir2(1:ngtc)=-bsirc(1:ngtc,3)*wfir1(1:ngtc,2) call cfftifc(3,ngdgc,-1,wfir2) do igp=1,n2 wfgp2(igp)=wfir2(igfc(igpig(igp,2))) end do wfir2(1:ngtc)=cmplx(bsirc(1:ngtc,1),-bsirc(1:ngtc,2),8)*wfir1(1:ngtc,2) call cfftifc(3,ngdgc,-1,wfir2) do igp=1,n1 wfgp3(igp)=wfir2(igfc(igpig(igp,1))) end do ! add to second-variational Hamiltonian matrix ! upper diagonal block do ist=1,jst-1 evecsv(ist,jst)=evecsv(ist,jst)+cdotc(n1,wfgp0(:,ist,1),1,wfgp1,1) end do evecsv(jst,jst)=evecsv(jst,jst)+sdot(n12,wfgp0(:,jst,1),1,wfgp1,1) ! lower diagonal block j=jst+nstfv do ist=1,jst-1 i=ist+nstfv evecsv(i,j)=evecsv(i,j)+cdotc(n2,wfgp0(:,ist,2),1,wfgp2,1) end do evecsv(j,j)=evecsv(j,j)+sdot(n22,wfgp0(:,jst,2),1,wfgp2,1) ! off-diagonal block do ist=1,nstfv evecsv(ist,j)=evecsv(ist,j)+cdotc(n1,wfgp0(:,ist,1),1,wfgp3,1) end do end do !$OMP END DO !$OMP END PARALLEL deallocate(wfgp0) call freethd(nthd) ! diagonalise the second-variational Hamiltonian call eveqnzh(nstsv,nstsv,evecsv,evalsvp) call timesec(ts1) !$OMP ATOMIC timesv=timesv+ts1-ts0 end subroutine elk-10.4.9/src/PaxHeaders/hartfock.f900000644000000000000000000000013214762655564014372 xustar0030 mtime=1741380468.675009542 30 atime=1741380466.841999959 30 ctime=1741380468.675009542 elk-10.4.9/src/hartfock.f900000644002504400250440000001474114762655564017123 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hartfock use modmain use modmpi use modomp implicit none ! local variables integer ik,lp,nthd real(8) etp,de character(64) str ! allocatable arrays real(8), allocatable :: vmt(:,:),vir(:) real(8), allocatable :: bmt(:,:,:),bir(:,:) complex(8), allocatable :: evecsv(:,:) ! initialise universal variables call init0 call init1 call init2 ! read the charge density from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! generate the core wavefunctions and densities call gencore ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! generate the first- and second-variational eigenvectors and eigenvalues call genevfsv ! find the occupation numbers and Fermi energy call occupy ! generate the kinetic matrix elements in the first-variational basis call genkmat(.true.,.true.) ! allocate local arrays allocate(vmt(npcmtmax,natmtot),vir(ngtc)) if (hybrid.and.spinpol) then allocate(bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag)) end if ! only the MPI master process should write files if (mp_mpi) then ! open HF_INFO.OUT file open(60,file='HF_INFO'//trim(filext),form='FORMATTED') ! open TOTENERGY.OUT open(61,file='TOTENERGY'//trim(filext),form='FORMATTED') ! open FERMIDOS.OUT open(62,file='FERMIDOS'//trim(filext),form='FORMATTED') ! open MOMENT.OUT if required if (spinpol) open(63,file='MOMENT'//trim(filext),form='FORMATTED') ! open GAP.OUT open(64,file='GAP'//trim(filext),form='FORMATTED') ! open DTOTENERGY.OUT open(66,file='DTOTENERGY'//trim(filext),form='FORMATTED') ! open MOMENTM.OUT if (spinpol) open(68,file='MOMENTM'//trim(filext),form='FORMATTED') ! write out general information to HF_INFO.OUT call writeinfo(60) end if ! set last self-consistent loop flag tlast=.false. etp=0.d0 ! begin the self-consistent loop if (mp_mpi) then call writebox(60,"Self-consistent loop started") end if do iscl=1,maxscl if (mp_mpi) then write(str,'("Loop number : ",I0)') iscl call writebox(60,trim(str)) flush(60) write(*,'("Info(hartfock): self-consistent loop number : ",I4)') iscl end if if (iscl >= maxscl) then if (mp_mpi) then write(60,*) write(60,'("Reached self-consistent loops maximum")') end if tlast=.true. end if ! reset the OpenMP thread variables call omp_reset ! compute the Hartree-Fock local potentials call hflocal(vmt,vir,bmt,bir) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call getevecsv(filext,ik,vkl(:,ik),evecsv) ! solve the Hartree-Fock eigenvalue equation call eveqnhf(ik,vmt,vir,bmt,bir,evecsv) ! write the eigenvalues/vectors to file call putevalsv(filext,ik,evalsv(:,ik)) call putevecsv(filext,ik,evecsv) end do !$OMP END DO deallocate(evecsv) !$OMP END PARALLEL call freethd(nthd) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! broadcast eigenvalue array to every process do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(evalsv(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) end do ! find the occupation numbers and Fermi energy call occupy if (mp_mpi) then ! write the occupation numbers to file do ik=1,nkpt call putoccsv(filext,ik,occsv(:,ik)) end do ! write out the eigenvalues and occupation numbers call writeeval ! write the Fermi energy to file call writefermi end if ! generate the density and magnetisation call rhomag ! compute the energy components call energy if (mp_mpi) then ! output energy components call writeengy(60) write(60,*) write(60,'("Density of states at Fermi energy : ",G18.10)') fermidos write(60,'(" (states/Hartree/unit cell)")') write(60,*) write(60,'("Estimated indirect band gap : ",G18.10)') bandgap(1) write(60,'(" from k-point ",I6," to k-point ",I6)') ikgap(1),ikgap(2) write(60,'("Estimated direct band gap : ",G18.10)') bandgap(2) write(60,'(" at k-point ",I6)') ikgap(3) ! write total energy to TOTENERGY.OUT write(61,'(G22.12)') engytot flush(61) ! write DOS at Fermi energy to FERMIDOS.OUT write(62,'(G18.10)') fermidos flush(62) ! output charges and moments call writechg(60) if (spinpol) then call writemom(60) ! write total moment to MOMENT.OUT write(63,'(3G18.10)') momtot(1:ndmag) flush(63) ! write total moment magnitude to MOMENTM.OUT write(68,'(G18.10)') momtotm flush(68) end if ! write estimated Hartree-Fock indirect band gap write(64,'(G22.12)') bandgap(1) flush(64) end if if (tlast) goto 10 ! compute the change in total energy and check for convergence if (iscl >= 2) then de=abs(engytot-etp) if (mp_mpi) then write(60,*) write(60,'("Absolute change in total energy (target) : ",G18.10," (",& &G18.10,")")') de,epsengy end if if (de < epsengy) then if (mp_mpi) then write(60,*) write(60,'("Energy convergence target achieved")') end if tlast=.true. end if if (mp_mpi) then write(66,'(G18.10)') de flush(66) end if end if etp=engytot ! check for STOP file call checkstop if (tstop) tlast=.true. ! broadcast tlast from master process to all other processes call mpi_bcast(tlast,1,mpi_logical,0,mpicom,ierror) end do 10 continue if (mp_mpi) then call writebox(60,"Self-consistent loop stopped") if (maxscl > 1) then call writestate write(60,*) write(60,'("Wrote STATE.OUT")') end if end if !-----------------------! ! compute forces ! !-----------------------! if (tforce) then call force ! output forces to HF_INFO.OUT if (mp_mpi) call writeforces(60) end if if (mp_mpi) then ! close the HF_INFO.OUT file close(60) ! close the TOTENERGY.OUT file close(61) ! close the FERMIDOS.OUT file close(62) ! close the MOMENT.OUT and MOMENTM.OUT files if (spinpol) then close(63); close(68) end if ! close the GAP.OUT file close(64) ! close the DTOTENERGY.OUT file close(66) end if deallocate(vmt,vir) if (hybrid.and.spinpol) deallocate(bmt,bir) end subroutine elk-10.4.9/src/PaxHeaders/potplot.f900000644000000000000000000000013114762655564014271 xustar0030 mtime=1741380468.676009547 29 atime=1741380466.84399997 30 ctime=1741380468.676009547 elk-10.4.9/src/potplot.f900000644002504400250440000000411614762655564017016 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: potplot ! !INTERFACE: subroutine potplot ! !USES: use modmain ! !DESCRIPTION: ! Outputs the exchange, correlation and Coulomb potentials, read in from ! {\tt STATE.OUT}, for 1D, 2D or 3D plotting. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! initialise universal variables call init0 ! read the density and potentials from file call readstate ! write the potential plots to file select case(task) case(41) open(50,file='VCL1D.OUT',form='FORMATTED',action='WRITE') open(51,file='VLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,1,vclmt,vclir) close(50) close(51) open(50,file='VXC1D.OUT',form='FORMATTED',action='WRITE') open(51,file='VLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,1,vxcmt,vxcir) close(50) close(51) write(*,*) write(*,'("Info(potplot):")') write(*,'(" 1D Coulomb potential plot written to VCL1D.OUT")') write(*,'(" 1D exchange-correlation potential plot written to VXC1D.OUT")') write(*,'(" vertex location lines written to VLINES.OUT")') case(42) open(50,file='VCL2D.OUT',form='FORMATTED',action='WRITE') call plot2d(.false.,50,1,vclmt,vclir) close(50) open(50,file='VXC2D.OUT',form='FORMATTED',action='WRITE') call plot2d(.false.,50,1,vxcmt,vxcir) close(50) write(*,*) write(*,'("Info(potplot):")') write(*,'(" 2D Coulomb potential plot written to VCL2D.OUT")') write(*,'(" 2D exchange-correlation potential plot written to VXC2D.OUT")') case(43) open(50,file='VCL3D.OUT',form='FORMATTED',action='WRITE') call plot3d(50,1,vclmt,vclir) close(50) open(50,file='VXC3D.OUT',form='FORMATTED',action='WRITE') call plot3d(50,1,vxcmt,vxcir) close(50) write(*,*) write(*,'("Info(potplot):")') write(*,'(" 3D Coulomb potential plot written to VCL3D.OUT")') write(*,'(" 3D exchange-correlation potential plot written to VXC3D.OUT")') end select end subroutine !EOC elk-10.4.9/src/PaxHeaders/genwfpw.f900000644000000000000000000000013214762655564014246 xustar0030 mtime=1741380468.678009558 30 atime=1741380466.846999985 30 ctime=1741380468.678009558 elk-10.4.9/src/genwfpw.f900000644002504400250440000001347714762655564017004 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genwfpw(vpl,ngp,igpig,vgpl,vgpc,gpc,sfacgp,nhp,vhpc,hpc,sfachp,wfpw) use modmain use modpw implicit none ! arguments real(8), intent(in) :: vpl(3) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) real(8), intent(in) :: vgpl(3,ngkmax,nspnfv),vgpc(3,ngkmax,nspnfv) real(8), intent(in) :: gpc(ngkmax,nspnfv) complex(8), intent(in) :: sfacgp(ngkmax,natmtot,nspnfv) integer, intent(in) :: nhp(nspnfv) real(8), intent(in) :: vhpc(3,nhkmax,nspnfv),hpc(nhkmax,nspnfv) complex(8), intent(in) :: sfachp(nhkmax,natmtot,nspnfv) complex(8), intent(out) :: wfpw(nhkmax,nspinor,nstsv) ! local variables integer ispn0,ispn1,ispn,jspn integer ist,is,ia,ias,igp,ihp integer nrc,nrci,irco,irc integer l,lm,n,i real(8) v1,v2,v3,t0,t1 complex(8) zsm,z1,z2,z3 ! automatic arrays real(8) jl(0:lmaxo,nrcmtmax) complex(8) ylm(lmmaxo) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfgp(:,:,:) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv)) allocate(wfgp(ngkmax,nspinor,nstsv)) ! get the eigenvectors from file call getevecfv(filext,0,vpl,vgpl,evecfv) call getevecsv(filext,0,vpl,evecsv) ! find the matching coefficients do ispn=1,nspnfv call match(ngp(ispn),vgpc(:,:,ispn),gpc(:,ispn),sfacgp(:,:,ispn), & apwalm(:,:,:,:,ispn)) end do ! calculate the second-variational wavefunctions for all states call genwfsv(.true.,.true.,nstsv,[0],ngridg,igfft,ngp,igpig,apwalm,evecfv, & evecsv,wfmt,ngkmax,wfgp) deallocate(apwalm,evecfv,evecsv) ! zero the plane wave coefficients wfpw(:,:,:)=0.d0 !---------------------------! ! interstitial part ! !---------------------------! do jspn=1,nspnfv if (spinsprl) then ispn0=jspn; ispn1=jspn else ispn0=1; ispn1=nspinor end if i=1 do ihp=1,nhp(jspn) v1=vhpc(1,ihp,jspn); v2=vhpc(2,ihp,jspn); v3=vhpc(3,ihp,jspn) do igp=i,ngp(jspn) t1=abs(v1-vgpc(1,igp,jspn)) & +abs(v2-vgpc(2,igp,jspn)) & +abs(v3-vgpc(3,igp,jspn)) if (t1 < epslat) then wfpw(ihp,ispn0:ispn1,:)=wfgp(igp,ispn0:ispn1,:) if (igp == i) i=i+1 exit end if end do end do end do !-------------------------! ! muffin-tin part ! !-------------------------! t0=1.d0/sqrt(omega) ! remove continuation of interstitial function into muffin-tin do jspn=1,nspnfv if (spinsprl) then ispn0=jspn; ispn1=jspn else ispn0=1; ispn1=nspinor end if ! loop over G+p-vectors do igp=1,ngp(jspn) ! generate the conjugate spherical harmonics 4π iˡ Yₗₘ(G+p)* call genylmv(.true.,lmaxo,vgpc(:,igp,jspn),ylm) ylm(:)=conjg(ylm(:)) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) irco=nrci+1 ! generate spherical Bessel functions do irc=1,nrci t1=gpc(igp,jspn)*rcmt(irc,is) call sbessel(lmaxi,t1,jl(:,irc)) end do do irc=irco,nrc t1=gpc(igp,jspn)*rcmt(irc,is) call sbessel(lmaxo,t1,jl(:,irc)) end do ! loop over atoms do ia=1,natoms(is) ias=idxas(ia,is) z1=t0*sfacgp(igp,ias,jspn) do ist=1,nstsv do ispn=ispn0,ispn1 z2=z1*wfgp(igp,ispn,ist) i=1 do irc=1,nrci do l=0,lmaxi n=2*l lm=l**2+1 z3=jl(l,irc)*z2 wfmt(i:i+n,ias,ispn,ist)=wfmt(i:i+n,ias,ispn,ist) & -z3*ylm(lm:lm+n) i=i+n+1 end do end do do irc=irco,nrc do l=0,lmaxo n=2*l lm=l**2+1 z3=jl(l,irc)*z2 wfmt(i:i+n,ias,ispn,ist)=wfmt(i:i+n,ias,ispn,ist) & -z3*ylm(lm:lm+n) i=i+n+1 end do end do end do end do end do end do end do end do ! Fourier transform the muffin-tin wavefunctions do jspn=1,nspnfv if (spinsprl) then ispn0=jspn; ispn1=jspn else ispn0=1; ispn1=nspinor end if ! loop over H+p-vectors do ihp=1,nhp(jspn) ! generate the spherical harmonics 4π (-i)ˡ Yₗₘ(H+p) call genylmv(.true.,lmaxo,vhpc(:,ihp,jspn),ylm) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) irco=nrci+1 ! generate spherical Bessel functions do irc=1,nrci t1=hpc(ihp,jspn)*rcmt(irc,is) call sbessel(lmaxi,t1,jl(:,irc)) end do do irc=irco,nrc t1=hpc(ihp,jspn)*rcmt(irc,is) call sbessel(lmaxo,t1,jl(:,irc)) end do do ia=1,natoms(is) ias=idxas(ia,is) ! conjugate structure factor z1=t0*conjg(sfachp(ihp,ias,jspn)) ! loop over states do ist=1,nstsv do ispn=ispn0,ispn1 zsm=0.d0 i=1 do irc=1,nrci z2=jl(0,irc)*wfmt(i,ias,ispn,ist)*ylm(1) i=i+1 do l=1,lmaxi n=2*l lm=l**2+1 z2=z2+jl(l,irc)*sum(wfmt(i:i+n,ias,ispn,ist)*ylm(lm:lm+n)) i=i+n+1 end do zsm=zsm+wr2cmt(irc,is)*z2 end do do irc=irco,nrc z2=jl(0,irc)*wfmt(i,ias,ispn,ist)*ylm(1) i=i+1 do l=1,lmaxo n=2*l lm=l**2+1 z2=z2+jl(l,irc)*sum(wfmt(i:i+n,ias,ispn,ist)*ylm(lm:lm+n)) i=i+n+1 end do zsm=zsm+wr2cmt(irc,is)*z2 end do ! add to the H+p wavefunction wfpw(ihp,ispn,ist)=wfpw(ihp,ispn,ist)+z1*zsm end do end do end do end do end do end do deallocate(wfmt,wfgp) end subroutine elk-10.4.9/src/PaxHeaders/hmlxbse.f900000644000000000000000000000013214762655564014233 xustar0030 mtime=1741380468.679009563 30 atime=1741380466.848999996 30 ctime=1741380468.679009563 elk-10.4.9/src/hmlxbse.f900000644002504400250440000000130614762655564016755 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmlxbse use modmain use modmpi use modomp implicit none ! local variables integer ik2,nthd call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik2=1,nkptnr ! distribute among MPI processes if (mod(ik2-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(hmlxbse_) write(*,'("Info(hmlxbse): ",I6," of ",I6," k-points")') ik2,nkptnr !$OMP END CRITICAL(hmlxbse_) call hmlxbsek(ik2) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/hmlxbsek.f900000644000000000000000000000013214762655564014406 xustar0030 mtime=1741380468.680009568 30 atime=1741380466.852000011 30 ctime=1741380468.680009568 elk-10.4.9/src/hmlxbsek.f900000644002504400250440000000650514762655564017136 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmlxbsek(ik2) use modmain implicit none ! arguments integer, intent(in) :: ik2 ! local variables integer ik1,ist1,ist2,jst1,jst2 integer i1,i2,j1,j2,a1,a2,b1,b2 integer is,ias,l real(8) t0 complex(8) z1 ! automatic arrays integer ngp(nspnfv) ! allocatable arrays integer, allocatable :: igpig(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:),crhoir(:) complex(4), allocatable :: cvclmt(:,:,:),cvclir(:,:) ! external functions complex(8), external :: zcfinp ! allocate local arrays allocate(igpig(ngkmax,nspnfv)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) allocate(cvclmt(npcmtmax,natmtot,nvcbse),cvclir(ngtc,nvcbse)) ! calculate the wavefunctions for all states of k-point ik2 call genwfsvp_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,vkl(:,ik2),ngp,igpig, & wfmt2,ngtc,wfir2) l=0 do i2=1,nvbse ist2=istbse(i2,ik2) do j2=1,ncbse jst2=jstbse(j2,ik2) a2=ijkbse(i2,j2,ik2) l=l+1 ! calculate the complex overlap density call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist2),wfir2(:,:,ist2), & wfmt2(:,:,:,jst2),wfir2(:,:,jst2),crhomt,crhoir) ! compute the Coulomb potential call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax,crhomt, & cvclmt(:,:,l)) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gc,gclg, & ngvec,jlgrmt,ylmg,sfacg,crhoir,npcmtmax,cvclmt(:,:,l),cvclir(:,l)) cvclir(:,l)=cvclir(:,l)*cfrc(:) end do end do t0=occmax*wkptnr ! start loop over ik1 do ik1=1,nkptnr if (ik1 == ik2) then wfmt1(:,:,:,:)=wfmt2(:,:,:,:) wfir1(:,:,:)=wfir2(:,:,:) else call genwfsvp_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,vkl(:,ik1),ngp,igpig,& wfmt1,ngtc,wfir1) end if do i1=1,nvbse ist1=istbse(i1,ik1) do j1=1,ncbse jst1=jstbse(j1,ik1) a1=ijkbse(i1,j1,ik1) ! calculate the complex overlap density call gencrho(.true.,.true.,ngtc,wfmt1(:,:,:,ist1),wfir1(:,:,ist1), & wfmt1(:,:,:,jst1),wfir1(:,:,jst1),crhomt,crhoir) l=0 do i2=1,nvbse ist2=istbse(i2,ik2) do j2=1,ncbse jst2=jstbse(j2,ik2) a2=ijkbse(i2,j2,ik2) l=l+1 ! compute the matrix element z1=t0*zcfinp(crhomt,crhoir,cvclmt(:,:,l),cvclir(:,l)) hmlbse(a1,a2)=hmlbse(a1,a2)+z1 ! compute off-diagonal blocks if required if (bsefull) then b1=a1+nbbse b2=a2+nbbse hmlbse(b1,b2)=hmlbse(b1,b2)-conjg(z1) ! conjugate the potential do ias=1,natmtot is=idxis(ias) call cfmtconj(nrcmt(is),nrcmti(is),npcmt(is),cvclmt(:,ias,l)) end do cvclir(:,l)=conjg(cvclir(:,l)) z1=t0*zcfinp(crhomt,crhoir,cvclmt(:,:,l),cvclir(:,l)) hmlbse(a1,b2)=hmlbse(a1,b2)+z1 hmlbse(b1,a2)=hmlbse(b1,a2)-conjg(z1) end if end do end do end do end do end do deallocate(igpig,wfmt1,wfmt2,wfir1,wfir2) deallocate(crhomt,crhoir,cvclmt,cvclir) end subroutine elk-10.4.9/src/PaxHeaders/hmldbse.f900000644000000000000000000000013214762655564014207 xustar0030 mtime=1741380468.682009578 30 atime=1741380466.855000027 30 ctime=1741380468.682009578 elk-10.4.9/src/hmldbse.f900000644002504400250440000000130614762655564016731 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmldbse use modmain use modmpi use modomp implicit none ! local variables integer ik2,nthd call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik2=1,nkptnr ! distribute among MPI processes if (mod(ik2-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(hmldbse_) write(*,'("Info(hmldbse): ",I6," of ",I6," k-points")') ik2,nkptnr !$OMP END CRITICAL(hmldbse_) call hmldbsek(ik2) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/hmldbsek.f900000644000000000000000000000013214762655564014362 xustar0030 mtime=1741380468.683009584 30 atime=1741380466.857000038 30 ctime=1741380468.683009584 elk-10.4.9/src/hmldbsek.f900000644002504400250440000001447514762655564017117 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmldbsek(ik2) use modmain use modomp implicit none ! arguments integer, intent(in) :: ik2 ! local variables integer ik1,ist1,ist2,jst1,jst2 integer i1,i2,j1,j2,a1,a2,b1,b2 integer iv(3),iq,ig,jg,nthd real(8) vl(3),vc(3),t0,t1,t2 complex(8) z1 ! automatic arrays integer ngp(nspnfv) ! allocatable arrays integer, allocatable :: igpig(:,:) real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqr(:,:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:),crhoir(:) complex(8), allocatable :: zvv(:,:,:),zcc(:,:,:) complex(8), allocatable :: zvc(:,:,:),zcv(:,:,:) complex(8), allocatable :: epsi(:,:,:) allocate(igpig(ngkmax,nspnfv)) allocate(vgqc(3,ngrf),gqc(ngrf),gclgq(ngrf)) allocate(jlgqr(njcmax,nspecies,ngrf)) allocate(ylmgq(lmmaxo,ngrf),sfacgq(ngrf,natmtot)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(zvv(ngrf,nvbse,nvbse),zcc(ngrf,ncbse,ncbse)) allocate(epsi(ngrf,ngrf,nwrf)) if (bsefull) then allocate(zvc(ngrf,nvbse,ncbse)) allocate(zcv(ngrf,ncbse,nvbse)) end if ! generate the wavefunctions for all states of k-point ik2 call genwfsvp_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,vkl(:,ik2),ngp,igpig, & wfmt2,ngtc,wfir2) ! begin loop over ik1 do ik1=1,nkptnr ! generate the wavefunctions for all states of k-point ik1 call genwfsvp_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,vkl(:,ik1),ngp,igpig, & wfmt1,ngtc,wfir1) ! determine equivalent q-vector in first Brillouin zone iv(:)=ivk(:,ik1)-ivk(:,ik2) iv(:)=modulo(iv(:),ngridk(:)) iq=ivqiq(iv(1),iv(2),iv(3)) ! q-vector in lattice and Cartesian coordinates vl(:)=vkl(:,ik1)-vkl(:,ik2) vc(:)=vkc(:,ik1)-vkc(:,ik2) ! generate the G+q-vectors and related functions call gengqf(ngrf,vc,vgqc,gqc,jlgqr,ylmgq,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngrf,gqc,gclgq) ! symmetrise the Coulomb Green's function gclgq(:)=sqrt(gclgq(:)) ! compute the matrix elements call holdthd(nvbse,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(crhomt,crhoir,ist1,ist2,i2) & !$OMP NUM_THREADS(nthd) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) !$OMP DO SCHEDULE(DYNAMIC) do i1=1,nvbse ist1=istbse(i1,ik1) do i2=1,nvbse ist2=istbse(i2,ik2) call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist2),wfir2(:,:,ist2), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt,crhoir) call zftcf(ngrf,jlgqr,ylmgq,ngrf,sfacgq,crhomt,crhoir,zvv(:,i1,i2)) end do end do !$OMP END DO deallocate(crhomt,crhoir) !$OMP END PARALLEL call freethd(nthd) ! compute the matrix elements call holdthd(ncbse,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(crhomt,crhoir,jst1,jst2,j2) & !$OMP NUM_THREADS(nthd) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) !$OMP DO SCHEDULE(DYNAMIC) do j1=1,ncbse jst1=jstbse(j1,ik1) do j2=1,ncbse jst2=jstbse(j2,ik2) call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,jst2),wfir2(:,:,jst2), & wfmt1(:,:,:,jst1),wfir1(:,:,jst1),crhomt,crhoir) call zftcf(ngrf,jlgqr,ylmgq,ngrf,sfacgq,crhomt,crhoir,zcc(:,j1,j2)) end do end do !$OMP END DO deallocate(crhomt,crhoir) !$OMP END PARALLEL call freethd(nthd) ! matrix elements for full BSE kernel if required if (bsefull) then ! compute the matrix elements call holdthd(nvbse,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(crhomt,crhoir,ist1,jst2,j2) & !$OMP NUM_THREADS(nthd) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) !$OMP DO SCHEDULE(DYNAMIC) do i1=1,nvbse ist1=istbse(i1,ik1) do j2=1,ncbse jst2=jstbse(j2,ik2) call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,jst2),wfir2(:,:,jst2), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt,crhoir) call zftcf(ngrf,jlgqr,ylmgq,ngrf,sfacgq,crhomt,crhoir,zvc(:,i1,j2)) end do end do !$OMP END DO deallocate(crhomt,crhoir) !$OMP END PARALLEL call freethd(nthd) ! compute the matrix elements call holdthd(ncbse,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(crhomt,crhoir,jst1,ist2,i2) & !$OMP NUM_THREADS(nthd) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) !$OMP DO SCHEDULE(DYNAMIC) do j1=1,ncbse jst1=jstbse(j1,ik1) do i2=1,nvbse ist2=istbse(i2,ik2) call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist2),wfir2(:,:,ist2), & wfmt1(:,:,:,jst1),wfir1(:,:,jst1),crhomt,crhoir) call zftcf(ngrf,jlgqr,ylmgq,ngrf,sfacgq,crhomt,crhoir,zcv(:,j1,i2)) end do end do !$OMP END DO deallocate(crhomt,crhoir) !$OMP END PARALLEL call freethd(nthd) end if ! get RPA inverse dielectric function from file ! this is the symmetric version: ϵ⁻¹ = 1 - v¹⸍² χ₀ v¹⸍² call getcfgq('EPSINV.OUT',vl,ngrf,nwrf,epsi) t0=wkptnr*omega do i1=1,nvbse do j1=1,ncbse a1=ijkbse(i1,j1,ik1) do i2=1,nvbse do j2=1,ncbse a2=ijkbse(i2,j2,ik2) z1=0.d0 do ig=1,ngrf t1=t0*gclgq(ig) do jg=1,ngrf t2=t1*gclgq(jg) z1=z1+t2*epsi(ig,jg,1)*conjg(zcc(ig,j1,j2))*zvv(jg,i1,i2) end do end do hmlbse(a1,a2)=hmlbse(a1,a2)-z1 ! compute off-diagonal blocks if required if (bsefull) then b1=a1+nbbse b2=a2+nbbse hmlbse(b1,b2)=hmlbse(b1,b2)+conjg(z1) z1=0.d0 do ig=1,ngrf t1=t0*gclgq(ig) do jg=1,ngrf t2=t1*gclgq(jg) z1=z1+t2*epsi(ig,jg,1)*conjg(zcv(ig,j1,i2))*zvc(jg,i1,j2) end do end do hmlbse(a1,b2)=hmlbse(a1,b2)-z1 hmlbse(b1,a2)=hmlbse(b1,a2)+conjg(z1) end if ! end loop over i2 and j2 end do end do ! end loop over i1 and j1 end do end do ! end loop over ik1 end do deallocate(igpig,vgqc,gqc,gclgq,jlgqr) deallocate(ylmgq,sfacgq) deallocate(wfmt1,wfmt2,wfir1,wfir2) deallocate(zvv,zcc,epsi) if (bsefull) deallocate(zvc,zcv) end subroutine elk-10.4.9/src/PaxHeaders/gradwfcr2.f900000644000000000000000000000013214762655564014452 xustar0030 mtime=1741380468.684009589 30 atime=1741380466.860000053 30 ctime=1741380468.684009589 elk-10.4.9/src/gradwfcr2.f900000644002504400250440000000255014762655564017176 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gradwfcr2(gwf2mt) use modmain implicit none ! arguments real(8), intent(inout) :: gwf2mt(npmtmax,natmtot) ! local variables integer ist,is,ias integer nr,nri,iro,ir integer np,l,lm,i ! allocatable arrays complex(8), allocatable :: wfmt(:),gwfmt(:,:),zfmt(:) allocate(wfmt(npmtmax),gwfmt(npmtmax,3),zfmt(npmtmax)) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 np=npmt(is) do ist=1,nstsp(is) if (spcore(ist,is).and.(ksp(ist,is) == lsp(ist,is)+1)) then l=lsp(ist,is) do lm=l**2+1,(l+1)**2 wfmt(1:np)=0.d0 i=lm do ir=1,nri wfmt(i)=rwfcr(ir,1,ist,ias)/rsp(ir,is) i=i+lmmaxi end do do ir=iro,nr wfmt(i)=rwfcr(ir,1,ist,ias)/rsp(ir,is) i=i+lmmaxo end do call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),wfmt,npmtmax,gwfmt) do i=1,3 call zbsht(nr,nri,gwfmt(:,i),zfmt) ! factor of 2 from spin gwf2mt(1:np,ias)=gwf2mt(1:np,ias) & +2.d0*(dble(zfmt(1:np))**2+aimag(zfmt(1:np))**2) end do end do end if end do ! end loops over atoms end do deallocate(wfmt,gwfmt,zfmt) end subroutine elk-10.4.9/src/PaxHeaders/oepresk.f900000644000000000000000000000013214762655564014241 xustar0030 mtime=1741380468.685009594 30 atime=1741380466.862000064 30 ctime=1741380468.685009594 elk-10.4.9/src/oepresk.f900000644002504400250440000001372514762655564016773 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine oepresk(ik,vclcv,vclvv) use modmain use modomp implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: vclcv(ncrmax,natmtot,nstsv,nkpt) complex(8), intent(in) :: vclvv(nstsv,nstsv,nkpt) ! local variables integer ist,jst,idm integer is,ia,ias,ic,m integer nrc,nrci,npc,nthd real(8) de complex(8) z1,z2 ! automatic arrays complex(4) wfcr(npcmtmax,2),cfmt1(npcmtmax),cvfmt1(npcmtmax,ndmag) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(4), allocatable :: cfmt2(:,:),cfir2(:) complex(4), allocatable :: cvfmt2(:,:,:),cvfir2(:,:) ! external functions complex(8), external :: rcfinp,rcfmtinp ! get the eigenvalues/vectors from file for input k-point allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! calculate the wavefunctions for all states allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfir(ngtot,nspinor,nstsv)) call genwfsv_sp(.false.,.false.,nstsv,[0],ngridg,igfft,ngk(1,ik),igkig(:,1,ik),& apwalm,evecfv,evecsv,wfmt,ngtot,wfir) deallocate(apwalm,evecfv,evecsv) call holdthd(nstsv,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(cfmt1,cvfmt1,cfmt2,cfir2,cvfmt2,cvfir2) & !$OMP PRIVATE(is,ia,ias,nrc,nrci,npc) & !$OMP PRIVATE(ic,ist,jst,m,z1,z2,idm,de) & !$OMP NUM_THREADS(nthd) !-----------------------------------------------------------! ! core-conduction overlap density and magnetisation ! !-----------------------------------------------------------! do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) ic=0 do ist=1,nstsp(is) if (.not.spcore(ist,is)) cycle do m=-ksp(ist,is),ksp(ist,is)-1 ic=ic+1 ! pass in m-1/2 to wavefcr !$OMP SINGLE call wavefcr(.false.,lradstp,is,ia,ist,m,npcmtmax,wfcr) !$OMP END SINGLE !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv if (evalsv(jst,ik) < efermi) cycle if (spinpol) then ! compute the complex density and magnetisation call gencrm(npc,wfcr,wfcr(:,2),wfmt(:,ias,1,jst),wfmt(:,ias,2,jst),& cfmt1,npcmtmax,cvfmt1) else ! compute the complex density cfmt1(1:npc)=conjg(wfcr(1:npc,1))*wfmt(1:npc,ias,1,jst) end if z1=conjg(vclcv(ic,ias,jst,ik)) z2=rcfmtinp(nrc,nrci,wr2cmt(:,is),vxmt(:,ias),cfmt1) z1=z1-conjg(z2) do idm=1,ndmag z2=rcfmtinp(nrc,nrci,wr2cmt(:,is),bxmt(:,ias,idm),cvfmt1(:,idm)) z1=z1-conjg(z2) end do de=evalcr(ist,ias)-evalsv(jst,ik) z1=z1*occmax*wkpt(ik)/(de+zi*swidth) ! residuals for exchange potential and field !$OMP CRITICAL(oepresk_) call rcadd(npc,z1,cfmt1,dvxmt(:,ias)) do idm=1,ndmag call rcadd(npc,z1,cvfmt1(:,idm),dbxmt(:,ias,idm)) end do !$OMP END CRITICAL(oepresk_) ! end loop over jst end do !$OMP END DO end do ! end loop over ist end do ! end loops over atoms and species end do end do !--------------------------------------------------------------! ! valence-conduction overlap density and magnetisation ! !--------------------------------------------------------------! allocate(cfmt2(npcmtmax,natmtot),cfir2(ngtot)) if (spinpol) then allocate(cvfmt2(npcmtmax,natmtot,ndmag),cvfir2(ngtot,ndmag)) end if !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstsv if (evalsv(ist,ik) > efermi) cycle do jst=1,nstsv if (evalsv(jst,ik) < efermi) cycle if (spinpol) then ! compute the complex density and magnetisation call gencfrm(wfmt(:,:,1,ist),wfmt(:,:,2,ist),wfir(:,1,ist),wfir(:,2,ist),& wfmt(:,:,1,jst),wfmt(:,:,2,jst),wfir(:,1,jst),wfir(:,2,jst),cfmt2,cfir2,& cvfmt2,cvfir2) else ! compute the complex density call gencrho(.false.,.true.,ngtot,wfmt(:,:,:,ist),wfir(:,:,ist), & wfmt(:,:,:,jst),wfir(:,:,jst),cfmt2,cfir2) end if z1=conjg(vclvv(ist,jst,ik)) z2=rcfinp(vxmt,vxir,cfmt2,cfir2) z1=z1-conjg(z2) do idm=1,ndmag z2=rcfinp(bxmt(:,:,idm),bxir(:,idm),cvfmt2(:,:,idm),cvfir2(:,idm)) z1=z1-conjg(z2) end do de=evalsv(ist,ik)-evalsv(jst,ik) z1=z1*occmax*wkpt(ik)/(de+zi*swidth) ! add to residuals for exchange potential and field !$OMP CRITICAL(oepresk_) call rcfadd(z1,cfmt2,cfir2,dvxmt,dvxir) do idm=1,ndmag call rcfadd(z1,cvfmt2(:,:,idm),cvfir2(:,idm),dbxmt(:,:,idm),dbxir(:,idm)) end do !$OMP END CRITICAL(oepresk_) ! end loop over jst end do ! end loop over ist end do !$OMP END DO deallocate(cfmt2,cfir2) if (spinpol) deallocate(cvfmt2,cvfir2) !$OMP END PARALLEL call freethd(nthd) deallocate(wfmt,wfir) contains pure subroutine rcfadd(z,cfmt,cfir,rfmt,rfir) implicit none ! arguments complex(8), intent(in) :: z complex(4), intent(in) :: cfmt(npcmtmax,natmtot),cfir(ngtot) real(8), intent(inout) :: rfmt(npcmtmax,natmtot),rfir(ngtot) ! local variables integer is,ias do ias=1,natmtot is=idxis(ias) call rcadd(npcmt(is),z,cfmt(:,ias),rfmt(:,ias)) end do call rcadd(ngtot,z,cfir,rfir) end subroutine pure subroutine rcadd(n,z,cv,rv) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: z complex(4), intent(in) :: cv(n) real(8), intent(out) :: rv(n) ! local variables integer i real(8) a,b a=dble(z) b=-aimag(z) if (abs(a) > 1.d-12) then if (abs(b) > 1.d-12) then do i=1,n rv(i)=rv(i)+a*real(cv(i))+b*aimag(cv(i)) end do else rv(1:n)=rv(1:n)+a*real(cv(1:n)) end if else if (abs(b) > 1.d-12) rv(1:n)=rv(1:n)+b*aimag(cv(1:n)) end if end subroutine end subroutine elk-10.4.9/src/PaxHeaders/addlorbcnd.f900000644000000000000000000000013214762655564014665 xustar0030 mtime=1741380468.687009605 30 atime=1741380466.865000079 30 ctime=1741380468.687009605 elk-10.4.9/src/addlorbcnd.f900000644002504400250440000000154014762655564017407 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine addlorbcnd use modmain implicit none ! local variables integer is,nlo,l,io ! add conduction local-orbitals to each species do is=1,nspecies nlo=nlorb(is) do l=0,lmaxo nlo=nlo+1 if (nlo > maxlorb) then write(*,*) write(*,'("Error(addlorbcnd): nlorb too large : ",I8)') nlo write(*,'(" for species ",I4)') is write(*,'("Adjust maxlorb in modmain and recompile code")') write(*,*) stop end if lorbl(nlo,is)=l lorbord(nlo,is)=lorbordc do io=1,lorbordc lorbe0(io,nlo,is)=0.15d0 lorbdm(io,nlo,is)=io-1 lorbve(io,nlo,is)=.true. end do end do nlorb(is)=nlo end do end subroutine elk-10.4.9/src/PaxHeaders/energy.f900000644000000000000000000000012714762655564014066 xustar0029 mtime=1741380468.68800961 29 atime=1741380466.86700009 29 ctime=1741380468.68800961 elk-10.4.9/src/energy.f900000644002504400250440000002075414762655564016614 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: energy ! !INTERFACE: subroutine energy ! !USES: use modmain use moddftu use modtest ! !DESCRIPTION: ! Computes the total energy and its individual contributions. The kinetic ! energy is given by ! $$ T_s=\sum_i n_i\epsilon_i-\int\rho({\bf r})[v_{\rm C}({\bf r}) ! +v_{\rm xc}({\bf r})]d{\bf r}-\int {\bf m}({\bf r})\cdot ! ({\bf B}_{\rm xc}({\bf r})+{\bf B}_{\rm ext}({\bf r}))d{\bf r}, $$ ! where $n_i$ are the occupation numbers and $\epsilon_i$ are the eigenvalues ! of both the core and valence states; $\rho$ is the density; ${\bf m}$ is the ! magnetisation density; $v_{\rm C}$ is the Coulomb potential; $v_{\rm xc}$ ! and ${\bf B}_{\rm xc}$ are the exchange-correlation potential and magnetic ! field, respectively; and ${\bf B}_{\rm ext}$ is the external magnetic field. ! The Hartree, electron-nuclear and nuclear-nuclear electrostatic energies are ! combined into the Coulomb energy: ! \begin{align*} ! E_{\rm C}&=E_{\rm H}+E_{\rm en}+E_{\rm nn} \\ ! &=\frac{1}{2}V_{\rm C}+E_{\rm Mad}, ! \end{align*} ! where ! $$ V_{\rm C}=\int\rho({\bf r})v_{\rm C}({\bf r})d{\bf r} $$ ! is the Coulomb potential energy. The Madelung energy is given by ! $$ E_{\rm Mad}=\frac{1}{2}\sum_{\alpha}z_{\alpha}R_{\alpha}, $$ ! where ! $$ R_{\alpha}=\lim_{r\rightarrow 0}\left(v^{\rm C}_{\alpha;00}(r)Y_{00} ! +\frac{z_{\alpha}}{r}\right) $$ ! for atom $\alpha$, with $v^{\rm C}_{\alpha;00}$ being the $l=0$ component of ! the spherical harmonic expansion of $v_{\rm C}$ in the muffin-tin, and ! $z_{\alpha}$ is the nuclear charge. Using the nuclear-nuclear energy ! determined at the start of the calculation, the electron-nuclear and Hartree ! energies can be isolated with ! $$ E_{\rm en}=2\left(E_{\rm Mad}-E_{\rm nn}\right) $$ ! and ! $$ E_{\rm H}=\frac{1}{2}(E_{\rm C}-E_{\rm en}). $$ ! Finally, the total energy is ! $$ E=T_s+E_{\rm C}+E_{\rm xc}, $$ ! where $E_{\rm xc}$ is obtained either by integrating the ! exchange-correlation energy density, or in the case of exact exchange, the ! explicit calculation of the Fock exchange integral. The energy from the ! external magnetic fields in the muffin-tins, {\tt bfcmt}, is always removed ! from the total since these fields are non-physical: their field lines do not ! close. The energy of the physical external field, {\tt bfieldc}, is also not ! included in the total because this field, like those in the muffin-tins, is ! used for breaking spin symmetry and taken to be infintesimal. If this field ! is intended to be finite, then the associated energy, {\tt engybext}, should ! be added to the total by hand. See {\tt potxc}, {\tt exxengy} and related ! subroutines. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) !EOP !BOC implicit none ! local variables integer ik,ist,idm,jdm integer is,ia,ias,n2,idu real(8) cb,sm,w,f complex(8) z1 ! allocatable arrays real(8), allocatable :: rfmt(:,:) complex(8), allocatable :: evecsv(:,:),kmat(:,:),c(:,:) ! external functions real(8), external :: rfinp complex(8), external :: zdotc ! coupling constant of the external field (g_e/4c) cb=gfacte/(4.d0*solsc) !-----------------------------------------------! ! exchange-correlation potential energy ! !-----------------------------------------------! engyvxc=rfinp(rhomt,rhoir,vxcmt,vxcir) !-----------------------------------------------------! ! exchange-correlation effective field energy ! !-----------------------------------------------------! engybxc=0.d0 do idm=1,ndmag engybxc=engybxc+rfinp(magmt(:,:,idm),magir(:,idm),bxcmt(:,:,idm),bxcir(:,idm)) end do !------------------------------------------! ! external magnetic field energies ! !------------------------------------------! engybext=0.d0 do idm=1,ndmag if (ncmag) then jdm=idm else jdm=3 end if ! energy of physical global field engybext=engybext+cb*momtot(idm)*bfieldc(jdm) end do !----------------------------------! ! Coulomb potential energy ! !----------------------------------! engyvcl=rfinp(rhomt,rhoir,vclmt,vclir) !-------------------------! ! Madelung energy ! !-------------------------! engymad=0.d0 do ias=1,natmtot is=idxis(ias) engymad=engymad+0.5d0*spzn(is)*(vclmt(1,ias)-vcln(1,is))*y00 end do !---------------------------------------------! ! electron-nuclear interaction energy ! !---------------------------------------------! engyen=2.d0*(engymad-engynn) !------------------------! ! Hartree energy ! !------------------------! engyhar=0.5d0*(engyvcl-engyen) !------------------------! ! Coulomb energy ! !------------------------! engycl=engynn+engyen+engyhar !-------------------------! ! exchange energy ! !-------------------------! if ((xctype(1) < 0).or.(task == 5)) then ! exact exchange for OEP-EXX or Hartree-Fock on last self-consistent loop if (tlast) then call exxengy ! mix exact and DFT exchange energies for hybrid functionals if (hybrid) then engyx=engyx*hybridc engyx=engyx+rfinp(rhomt,rhoir,exmt,exir) end if else engyx=0.d0 end if else ! exchange energy from the density engyx=rfinp(rhomt,rhoir,exmt,exir) end if !----------------------------! ! correlation energy ! !----------------------------! if ((task == 5).and.(.not.hybrid)) then ! zero correlation energy for pure Hartree-Fock engyc=0.d0 else ! correlation energy from the density engyc=rfinp(rhomt,rhoir,ecmt,ecir) end if !----------------------! ! DFT+U energy ! !----------------------! engydu=0.d0 if (dftu /= 0) then do idu=1,ndftu is=isldu(1,idu) do ia=1,natoms(is) engydu=engydu+engyadu(ia,idu) end do end do end if !----------------------------! ! sum of eigenvalues ! !----------------------------! ! core eigenvalues evalsum=0.d0 do ias=1,natmtot is=idxis(ias) do ist=1,nstsp(is) if (spcore(ist,is)) evalsum=evalsum+occcr(ist,ias)*evalcr(ist,ias) end do end do ! valence eigenvalues do ik=1,nkpt evalsum=evalsum+wkpt(ik)*sum(occsv(1:nstsv,ik)*evalsv(1:nstsv,ik)) end do !------------------------! ! kinetic energy ! !------------------------! ! core electron kinetic energy call energykncr ! total electron kinetic energy if (task == 5) then ! Hartree-Fock case engykn=engykncr ! kinetic energy from valence states allocate(evecsv(nstsv,nstsv),kmat(nstsv,nstsv),c(nstsv,nstsv)) do ik=1,nkpt w=wkpt(ik) call getevecsv(filext,ik,vkl(:,ik),evecsv) call getkmat(ik,kmat) call zgemm('N','N',nstsv,nstsv,nstsv,zone,kmat,nstsv,evecsv,nstsv,zzero,c, & nstsv) do ist=1,nstsv z1=zdotc(nstsv,evecsv(:,ist),1,c(:,ist),1) engykn=engykn+w*occsv(ist,ik)*dble(z1) end do end do deallocate(evecsv,kmat,c) else ! Kohn-Sham case allocate(rfmt(npmtmax,natmtot)) ! remove magnetic field contribution sm=0.d0 do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call rfsht(nrcmt(is),nrcmti(is),bsmt(:,ias,idm),rfmt(:,ias)) end do call rfmtctof(rfmt) sm=sm+rfinp(magmt(:,:,idm),magir(:,idm),rfmt,bsir(:,idm)) end do ! remove fixed tensor moment potential matrix contribution if (ftmtype /= 0) then n2=(lmmaxdm*nspinor)**2 do ias=1,natmtot z1=zdotc(n2,dmatmt(:,:,:,:,ias),1,vmftm(:,:,:,:,ias),1) sm=sm+dble(z1) end do end if engykn=evalsum-engyvcl-engyvxc-sm deallocate(rfmt) end if ! remove vector potential energy term if required if (tafield) then engykn=engykn+(0.5d0/solsc)*dot_product(afieldc(:),jtot(:)) end if ! remove spin-dependent vector potential energy term if required if (tafsp.and.tlast) call energyafsp !-------------------------------! ! entropic contribution ! !-------------------------------! entrpy=0.d0 engyts=0.d0 ! non-zero only for the Fermi-Dirac smearing function if (stype == 3) then sm=0.d0 do ik=1,nkpt w=wkpt(ik) do ist=1,nstsv f=occsv(ist,ik)/occmax if ((f > 0.d0).and.(f < 1.d0)) then sm=sm+w*(f*log(f)+(1.d0-f)*log(1.d0-f)) end if end do end do ! entropy entrpy=-occmax*kboltz*sm ! contribution to free energy engyts=-swidth*entrpy/kboltz end if !----------------------! ! total energy ! !----------------------! engytot=engykn+0.5d0*engyvcl+engymad+engyx+engyc+engyts ! add the DFT+U correction if required if (dftu /= 0) engytot=engytot+engydu ! write total energy to test file call writetest(0,'total energy',tol=1.d-5,rv=engytot) end subroutine !EOC elk-10.4.9/src/PaxHeaders/wfplot.f900000644000000000000000000000013014762655564014102 xustar0030 mtime=1741380468.689009615 28 atime=1741380466.8690001 30 ctime=1741380468.689009615 elk-10.4.9/src/wfplot.f900000644002504400250440000000560214762655564016631 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wfplot use modmain use modmpi use modomp implicit none ! local variables integer ik,ist real(8) x,t1 ! external functions real(8), external :: sdelta ! initialise universal variables call init0 call init1 ! read the density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! set the occupation numbers if ((task == 61).or.(task == 62).or.(task == 63)) then ! plot of wavefunction modulus squared ik=kstlist(1,1) ist=kstlist(2,1) if ((ik < 1).or.(ik > nkpt)) then write(*,*) write(*,'("Error(wfplot): k-point out of range : ",I8)') ik write(*,*) stop end if if ((ist < 1).or.(ist > nstsv)) then write(*,*) write(*,'("Error(wfplot): state out of range : ",I8)') ist write(*,*) stop end if ! select a particular wavefunction using its occupancy occsv(:,:)=0.d0 occsv(ist,ik)=1.d0/wkpt(ik) ! no symmetrisation required nsymcrys=1 else ! plotting an STM image by setting occupation numbers to be a delta function at ! the Fermi energy t1=1.d0/swidth do ik=1,nkpt ! get the eigenvalues from file call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) do ist=1,nstsv x=(efermi-evalsv(ist,ik))*t1 occsv(ist,ik)=occmax*wkpt(ik)*sdelta(stype,x)*t1 end do end do end if ! compute the valence charge density with the new occupation numbers call rhomagv ! write the wavefunction modulus squared plot to file if (mp_mpi) then select case(task) case(61) open(50,file='WF1D.OUT',form='FORMATTED') open(51,file='WFLINES.OUT',form='FORMATTED') call plot1d(50,51,1,rhomt,rhoir) close(50) close(51) write(*,*) write(*,'("Info(wfplot):")') write(*,'(" 1D wavefunction modulus squared written to WF1D.OUT")') write(*,'(" vertex location lines written to WFLINES.OUT")') case(62) open(50,file='WF2D.OUT',form='FORMATTED') call plot2d(.false.,50,1,rhomt,rhoir) close(50) write(*,*) write(*,'("Info(wfplot):")') write(*,'(" 2D wavefunction modulus squared written to WF2D.OUT")') case(162) open(50,file='STM2D.OUT',form='FORMATTED') call plot2d(.false.,50,1,rhomt,rhoir) close(50) write(*,*) write(*,'("Info(wfplot):")') write(*,'(" 2D STM image written to STM2D.OUT")') case(63) open(50,file='WF3D.OUT',form='FORMATTED') call plot3d(50,1,rhomt,rhoir) close(50) write(*,*) write(*,'("Info(wfplot):")') write(*,'(" 3D wavefunction modulus squared written to WF3D.OUT")') end select if (task /= 162) then write(*,'(" for k-point ",I8," and state ",I6)') kstlist(1,1),kstlist(2,1) end if end if end subroutine elk-10.4.9/src/PaxHeaders/oepvcl.f900000644000000000000000000000013014762655564014057 xustar0029 mtime=1741380468.69000962 30 atime=1741380466.872000116 29 ctime=1741380468.69000962 elk-10.4.9/src/oepvcl.f900000644002504400250440000000221714762655564016605 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine oepvcl(vclcv,vclvv) use modmain use modmpi use modomp implicit none ! arguments complex(8), intent(out) :: vclcv(ncrmax,natmtot,nstsv,nkpt) complex(8), intent(out) :: vclvv(nstsv,nstsv,nkpt) ! local variables integer ik,ncv,nvv integer lp,nthd call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(oepvcl_) write(*,'("Info(oepvcl): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(oepvcl_) call oepvclk(ik,vclcv(:,:,:,ik),vclvv(:,:,ik)) end do !$OMP END PARALLEL DO call freethd(nthd) ! broadcast matrix elements to all other processes ncv=ncrmax*natmtot*nstsv nvv=nstsv*nstsv do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(vclcv(:,:,:,ik),ncv,mpi_double_complex,lp,mpicom,ierror) call mpi_bcast(vclvv(:,:,ik),nvv,mpi_double_complex,lp,mpicom,ierror) end do end subroutine elk-10.4.9/src/PaxHeaders/oepvclk.f900000644000000000000000000000013214762655564014234 xustar0030 mtime=1741380468.692009631 30 atime=1741380466.874000127 30 ctime=1741380468.692009631 elk-10.4.9/src/oepvclk.f900000644002504400250440000002335614762655564016767 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine oepvclk(ikp,vclcv,vclvv) use modmain implicit none ! arguments integer, intent(in) :: ikp complex(8), intent(out) :: vclcv(ncrmax,natmtot,nstsv) complex(8), intent(out) :: vclvv(nstsv,nstsv) ! local variables integer ik,jk,nst,ist1,ist2,ist3 integer is,ia,ias,nrc,nrci,npc integer iv(3),ig,iq,ic,jc,m1,m2 real(8) vc(3) complex(8) z1 ! automatic arrays integer idx(nstsv) ! allocatable arrays real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqrmt(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: wfcr1(:,:),wfcr2(:,:) complex(4), allocatable :: crhomt1(:,:,:),crhomt2(:,:),crhoir1(:,:) complex(4), allocatable :: cvclmt(:,:),cvclir(:) ! external functions complex(8), external :: zcfinp,zcfmtinp ! allocate local arrays allocate(vgqc(3,ngvc),gqc(ngvc),gclgq(ngvc)) allocate(jlgqrmt(0:lnpsd,ngvc,nspecies)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(ylmgq(lmmaxo,ngvc),sfacgq(ngvc,natmtot)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(wfcr1(npcmtmax,2),wfcr2(npcmtmax,2)) allocate(crhomt1(npcmtmax,natmtot,nstsv),crhoir1(ngtc,nstsv)) allocate(crhomt2(npcmtmax,nstcr)) allocate(cvclmt(npcmtmax,natmtot),cvclir(ngtc)) ! zero the Coulomb matrix elements vclcv(:,:,:)=0.d0 vclvv(:,:)=0.d0 ! get the eigenvectors from file for input reduced k-point call getevecfv(filext,ikp,vkl(:,ikp),vgkl(:,:,:,ikp),evecfv) call getevecsv(filext,ikp,vkl(:,ikp),evecsv) ! find the matching coefficients call match(ngk(1,ikp),vgkc(:,:,1,ikp),gkc(:,1,ikp),sfacgk(:,:,1,ikp),apwalm) ! calculate the wavefunctions for all states of the input k-point call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ikp),igkig(:,1,ikp),& apwalm,evecfv,evecsv,wfmt1,ngtc,wfir1) ! loop over non-reduced k-point set do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! determine the q-vector iv(:)=ivk(:,ikp)-ivk(:,ik) iv(:)=modulo(iv(:),ngridk(:)) ! check if the q-point is in user-defined set iv(:)=iv(:)*ngridq(:) if (any(mod(iv(:),ngridk(:)) /= 0)) cycle iv(:)=iv(:)/ngridk(:) iq=ivqiq(iv(1),iv(2),iv(3)) vc(:)=vkc(:,ikp)-vkc(:,ik) do ig=1,ngvc ! determine the G+q-vectors vgqc(1:3,ig)=vgc(1:3,ig)+vc(1:3) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(.true.,lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! structure factors for G+q call gensfacgp(ngvc,vgqc,ngvc,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngvc,gqc,gclgq) ! compute the required spherical Bessel functions call genjlgprmt(lnpsd,ngvc,gqc,ngvc,jlgqrmt) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! get the eigenvectors from file for non-reduced k-points call getevecfv(filext,0,vkl(:,ik),vgkl(:,:,1,ik),evecfv) call getevecsv(filext,0,vkl(:,ik),evecsv) ! count and index occupied states nst=0 do ist3=1,nstsv if (evalsv(ist3,jk) > efermi) cycle nst=nst+1 idx(nst)=ist3 end do ! calculate the wavefunctions for occupied states call genwfsv_sp(.false.,.false.,nst,idx,ngdgc,igfc,ngk(1,ik),igkig(:,1,ik), & apwalm,evecfv,evecsv,wfmt2,ngtc,wfir2) do ist3=1,nst ! compute the complex overlap densities for all valence-valence states do ist1=1,nstsv call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist3),wfir2(:,:,ist3), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt1(:,:,ist1),crhoir1(:,ist1)) end do ! compute the complex overlap densities for all valence-core states jc=0 do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do ist1=1,nstsp(is) if (spcore(ist1,is)) then do m1=-ksp(ist1,is),ksp(ist1,is)-1 jc=jc+1 ! generate the core wavefunction in spherical coordinates (pass in m-1/2) call wavefcr(.false.,lradstp,is,ia,ist1,m1,npcmtmax,wfcr1) if (spinpol) then call crho2(npc,wfmt2(:,ias,1,ist3),wfmt2(:,ias,2,ist3),wfcr1, & wfcr1(:,2),crhomt2(:,jc)) else call crho1(npc,wfmt2(:,ias,1,ist3),wfcr1,crhomt2(:,jc)) end if ! convert to spherical harmonics call cfshtip(nrc,nrci,crhomt2(:,jc)) end do end if end do end do end do do ist2=1,nstsv if (evalsv(ist2,ikp) > efermi) then ! calculate the Coulomb potential call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax, & crhomt1(:,:,ist2),cvclmt) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gqc, & gclgq,ngvc,jlgqrmt,ylmgq,sfacgq,crhoir1(:,ist2),npcmtmax,cvclmt,cvclir) cvclir(:)=cvclir(:)*cfrc(:) !----------------------------------------------! ! valence-valence-valence contribution ! !----------------------------------------------! do ist1=1,nstsv if (evalsv(ist1,ikp) < efermi) then z1=zcfinp(crhomt1(:,:,ist1),crhoir1(:,ist1),cvclmt,cvclir) vclvv(ist1,ist2)=vclvv(ist1,ist2)-wqptnr*z1 end if end do !-------------------------------------------! ! core-valence-valence contribution ! !-------------------------------------------! jc=0 do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) do ia=1,natoms(is) ias=idxas(ia,is) ic=0 do ist1=1,nstsp(is) if (spcore(ist1,is)) then do m1=-ksp(ist1,is),ksp(ist1,is)-1 ic=ic+1 jc=jc+1 z1=zcfmtinp(nrc,nrci,wr2cmt(:,is),crhomt2(:,jc),cvclmt(:,ias)) vclcv(ic,ias,ist2)=vclcv(ic,ias,ist2)-wqptnr*z1 end do ! end loop over ist1 end if end do ! end loops over atoms and species end do end do ! end loop over ist2 end if end do ! end loop over ist3 end do ! end loop over non-reduced k-point set end do ! begin loops over atoms and species do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do ist3=1,nstsp(is) if (spcore(ist3,is)) then do m1=-ksp(ist3,is),ksp(ist3,is)-1 ! generate the core wavefunction in spherical coordinates (pass in m-1/2) call wavefcr(.false.,lradstp,is,ia,ist3,m1,npcmtmax,wfcr1) ! compute the complex overlap densities for the core-valence states do ist1=1,nstsv if (spinpol) then call crho2(npc,wfcr1,wfcr1(:,2),wfmt1(:,ias,1,ist1), & wfmt1(:,ias,2,ist1),crhomt1(:,ias,ist1)) else call crho1(npc,wfcr1,wfmt1(:,ias,1,ist1),crhomt1(:,ias,ist1)) end if call cfshtip(nrc,nrci,crhomt1(:,ias,ist1)) end do ! compute the complex overlap densities for the core-core states ic=0 do ist1=1,nstsp(is) if (spcore(ist1,is)) then do m2=-ksp(ist1,is),ksp(ist1,is)-1 ic=ic+1 call wavefcr(.false.,lradstp,is,ia,ist1,m2,npcmtmax,wfcr2) call crho2(npc,wfcr1,wfcr1(:,2),wfcr2,wfcr2(:,2),crhomt2(:,ic)) call cfshtip(nrc,nrci,crhomt2(:,ic)) end do end if end do do ist2=1,nstsv if (evalsv(ist2,ikp) > efermi) then ! calculate the Coulomb potential call cpotclmt(nrc,nrci,nrcmtmax,rlcmt(:,:,is),wprcmt(:,:,is), & crhomt1(:,ias,ist2),cvclmt) !-------------------------------------------! ! valence-core-valence contribution ! !-------------------------------------------! do ist1=1,nstsv if (evalsv(ist1,ikp) < efermi) then z1=zcfmtinp(nrc,nrci,wr2cmt(:,is),crhomt1(:,ias,ist1),cvclmt) vclvv(ist1,ist2)=vclvv(ist1,ist2)-z1 end if end do !----------------------------------------! ! core-core-valence contribution ! !----------------------------------------! ic=0 do ist1=1,nstsp(is) if (spcore(ist1,is)) then do m2=-ksp(ist1,is),ksp(ist1,is)-1 ic=ic+1 z1=zcfmtinp(nrc,nrci,wr2cmt(:,is),crhomt2(:,ic),cvclmt) vclcv(ic,ias,ist2)=vclcv(ic,ias,ist2)-z1 end do ! end loop over ist1 end if end do ! end loop over ist2 end if end do ! end loops over ist3 and m1 end do end if end do ! end loops over atoms and species end do end do deallocate(vgqc,gqc,gclgq,jlgqrmt) deallocate(apwalm,evecfv,evecsv,ylmgq,sfacgq) deallocate(wfmt1,wfir1,wfmt2,wfir2,wfcr1,wfcr2) deallocate(crhomt1,crhomt2,crhoir1) deallocate(cvclmt,cvclir) return contains pure subroutine crho1(n,wf1,wf2,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf1(n),wf2(n) complex(4), intent(out) :: crho(n) crho(1:n)=conjg(wf1(1:n))*wf2(1:n) end subroutine pure subroutine crho2(n,wf11,wf12,wf21,wf22,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf11(n),wf12(n),wf21(n),wf22(n) complex(4), intent(out) :: crho(n) crho(1:n)=conjg(wf11(1:n))*wf21(1:n)+conjg(wf12(1:n))*wf22(1:n) end subroutine end subroutine !EOC elk-10.4.9/src/PaxHeaders/polar.f900000644000000000000000000000013214762655564013706 xustar0030 mtime=1741380468.693009636 30 atime=1741380466.877000142 30 ctime=1741380468.693009636 elk-10.4.9/src/polar.f900000644002504400250440000000502414762655564016431 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: polar ! !INTERFACE: subroutine polar(pvl) ! !USES: use modmain use modmpi use modomp ! !INPUT/OUTPUT PARAMETERS: ! pvl : polarisation vector modulo $2\pi$ (out,real(8)) ! !DESCRIPTION: ! Calculates the polarisation vector modulo $2\pi$ in lattice coordinates ! using the formula of R. D. King-Smith and David Vanderbilt [Phys. Rev. B ! {\bf 47}, 1651(R) (1993)], namely ! $$ P_l=\sum_{\bf k}{\rm Im}\ln\det\left(\langle ! u_{i{\bf k}+\Delta{\bf k}_l}|u_{j{\bf k}}\rangle\right),$$ ! where $\Delta{\bf k}_l=(1/n_l){\bf B}_l$ and ${\bf B}_l$ is a reciprocal ! lattice vector. The number of points $n_l$ is equal to that of the original ! $k$-point grid in direction of ${\bf B}_l$, multiplied by {\tt nskpolar}. ! See also the routines {\tt polark} and {\tt bornechg}. ! ! !REVISION HISTORY: ! Created May 2020 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(out) :: pvl(3) ! local variables integer ik,l,nthd real(8) vc(3),vgqc(3),gqc,pl ! allocatable arrays real(8), allocatable :: jlgqr(:,:) complex(8), allocatable :: ylmgq(:),sfacgq(:),expqmt(:,:) ! allocate local arrays allocate(jlgqr(njcmax,nspecies)) allocate(ylmgq(lmmaxo),sfacgq(natmtot)) allocate(expqmt(npcmtmax,natmtot)) maxscl=1 ! loop over reciprocal lattice vectors do l=1,3 ! create fine k-point grid in direction l ngridk(:)=ngridk0(:) ngridk(l)=nkspolar*ngridk(l) ! run one loop of the ground-state calculation call gndstate ! difference between adjacent k-vectors in this reciprocal lattice direction vc(:)=bvec(:,l)/dble(ngridk(l)) ! calculate the phase factor function exp(iq.r) call gengqf(1,vc,vgqc,gqc,jlgqr,ylmgq,sfacgq) call genexpmt(1,jlgqr,ylmgq,1,sfacgq,expqmt) pl=0.d0 ! parallel loop over non-reduced k-points call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP REDUCTION(+:pl) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call polark(ik,l,expqmt,pl) end do !$OMP END PARALLEL DO call freethd(nthd) ! add polarisation from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,pl,1,mpi_double_precision,mpi_sum,mpicom, & ierror) end if pvl(l)=pl end do ! restore original input parameters ngridk(:)=ngridk0(:) maxscl=maxscl0 deallocate(jlgqr,ylmgq,sfacgq,expqmt) end subroutine !EOC elk-10.4.9/src/PaxHeaders/dbxcplot.f900000644000000000000000000000013214762655564014410 xustar0030 mtime=1741380468.695009646 30 atime=1741380466.880000158 30 ctime=1741380468.695009646 elk-10.4.9/src/dbxcplot.f900000644002504400250440000000416114762655564017134 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dbxcplot use modmain implicit none ! local variables integer idm,is,ias,np ! allocatable arrays real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) real(8), allocatable :: rfmt(:,:),rfir(:) real(8), allocatable :: grfmt(:,:,:),grfir(:,:) ! initialise universal variables call init0 if (.not.spinpol) then write(*,*) write(*,'("Error(dbxcplot): spin-unpolarised magnetic field is zero")') write(*,*) stop end if ! read magnetisation from file call readstate allocate(rvfmt(npmtmax,natmtot,3),rvfir(ngtot,3)) allocate(rfmt(npmtmax,natmtot),rfir(ngtot)) allocate(grfmt(npmtmax,natmtot,3),grfir(ngtot,3)) if (ncmag) then ! non-collinear rvfmt(:,:,:)=bxcmt(:,:,:) rvfir(:,:)=bxcir(:,:) else ! collinear rvfmt(:,:,1:2)=0.d0 rvfir(:,1:2)=0.d0 rvfmt(:,:,3)=bxcmt(:,:,1) rvfir(:,3)=bxcir(:,1) end if rfmt(:,:)=0.d0 rfir(:)=0.d0 do idm=1,3 call gradrf(rvfmt(:,:,idm),rvfir(:,idm),grfmt,grfir) do ias=1,natmtot is=idxis(ias) np=npmt(is) rfmt(1:np,ias)=rfmt(1:np,ias)+grfmt(1:np,ias,idm) end do rfir(:)=rfir(:)+grfir(:,idm) end do select case(task) case(91) open(50,file='DBXC1D.OUT',form='FORMATTED') open(51,file='DBXCLINES.OUT',form='FORMATTED') call plot1d(50,51,1,rfmt,rfir) close(50) close(51) write(*,*) write(*,'("Info(dbxcplot):")') write(*,'(" 1D divergence of exchange-correlation field written to & &DBXC1D.OUT")') write(*,'(" vertex location lines written to DBXCLINES.OUT")') case(92) open(50,file='DBXC2D.OUT',form='FORMATTED') call plot2d(.false.,50,1,rfmt,rfir) close(50) write(*,'("Info(dbxcplot):")') write(*,'(" 2D divergence of exchange-correlation field written to & &DBXC2D.OUT")') case(93) open(50,file='DBXC3D.OUT',form='FORMATTED') call plot3d(50,1,rfmt,rfir) close(50) write(*,'("Info(dbxcplot):")') write(*,'(" 3D divergence of exchange-correlation field written to & &DBXC3D.OUT")') end select deallocate(rvfmt,rvfir,rfmt,rfir,grfmt,grfir) end subroutine elk-10.4.9/src/PaxHeaders/sbesseldm.f900000644000000000000000000000013214762655564014552 xustar0030 mtime=1741380468.696009652 30 atime=1741380466.882000168 30 ctime=1741380468.696009652 elk-10.4.9/src/sbesseldm.f900000644002504400250440000000603014762655564017273 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sbesseldm ! !INTERFACE: subroutine sbesseldm(m,lmax,x,djl) ! !INPUT/OUTPUT PARAMETERS: ! m : order of derivatve (in,integer) ! lmax : maximum order of Bessel function (in,integer) ! x : real argument (in,real) ! djl : array of returned values (out,real(0:lmax)) ! !DESCRIPTION: ! Computes the $m$th derivative of the spherical Bessel function of the first ! kind, $j_l(x)$, for argument $x$ and $l=0,1,\ldots,l_{\rm max}$. For ! $x\ge 1$ this is done by repeatedly using the relations ! \begin{align*} ! \frac{d}{dx}j_l(x)&=\frac{l}{x}j_l(x)-j_{l+1}(x) \\ ! j_{l+1}(x)&=\frac{2l+1}{x}j_l(x)-j_{l-1}(x). ! \end{align*} ! While for $x<1$ the series expansion of the Bessel function is used ! $$ \frac{d^m}{dx^m}j_l(x)=\sum_{i=0}^{\infty} ! \frac{(2i+l)!}{(-2)^ii!(2i+l-m)!(2i+2l+1)!!}x^{2i+l-m}. $$ ! This procedure is numerically stable and accurate to near machine precision ! for $l\le 30$ and $m\le 6$. ! ! !REVISION HISTORY: ! Created March 2003 (JKD) ! Modified to return an array of values, October 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: m,lmax real(8), intent(in) :: x real(8), intent(out) :: djl(0:lmax) ! local variables integer, parameter :: maxm=6,maxns=20 integer i,j,l,i0 real(8) t1,sm,x2 ! automatic arrays integer a(0:maxm+1),a1(0:maxm+1) integer b(0:maxm+1),b1(0:maxm+1) real(8) jl(0:lmax+1) ! external functions real(8), external :: factn,factn2,factr if (m == 0) then call sbessel(lmax,x,djl) return end if if ((m < 0).or.(m > maxm)) then write(*,*) write(*,'("Error(sbesseldm): m out of range : ",I8)') m write(*,*) stop end if if ((lmax < 0).or.(lmax > 30)) then write(*,*) write(*,'("Error(sbesseldm): lmax out of range : ",I8)') lmax write(*,*) stop end if if ((x < 0.d0).or.(x > 1.d5)) then write(*,*) write(*,'("Error(sbesseldm): x out of range : ",G18.10)') x write(*,*) stop end if if (x > 1.d0) then call sbessel(lmax+1,x,jl) do l=0,lmax a(1:m+1)=0 a(0)=1 a1(0:m+1)=0 do i=1,m b(0)=0 b1(0)=0 do j=0,i b(j+1)=a(j)*(l-j) b1(j+1)=-a1(j)*(j+l+2) end do do j=0,i b1(j)=b1(j)-a(j) b(j)=b(j)+a1(j) end do a(0:i+1)=b(0:i+1) a1(0:i+1)=b1(0:i+1) end do t1=1.d0 sm=dble(a(0))*jl(l)+dble(a1(0))*jl(l+1) do i=1,m+1 t1=t1*x sm=sm+(dble(a(i))*jl(l)+dble(a1(i))*jl(l+1))/t1 end do djl(l)=sm end do else x2=x**2 do l=0,lmax i0=max((m-l+1)/2,0) j=2*i0+l-m if (j == 0) then t1=1.d0 else t1=x**j end if t1=factr(j+m,j)*t1/(factn(i0)*factn2(j+l+m+1)*dble((-2)**i0)) sm=t1 do i=i0+1,maxns j=2*i+l t1=-t1*dble((j-1)*j)*x2/dble((j-l)*(j-m-1)*(j-m)*(j+l+1)) if (abs(t1) <= 1.d-40) exit sm=sm+t1 end do djl(l)=sm end do end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/writehmlbse.f900000644000000000000000000000013214762655564015116 xustar0030 mtime=1741380468.697009657 30 atime=1741380466.885000184 30 ctime=1741380468.697009657 elk-10.4.9/src/writehmlbse.f900000644002504400250440000000524514762655564017646 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writehmlbse use modmain use modmpi ! sets up the BSE matrix and writes it to file implicit none ! local variables integer ik,jk,ist,jst integer a,b,i,j,m,n real(8) t1 ! initialise global variables call init0 call init1 call init2 call init3 ! read density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! check if system is metallic t1=minval(abs(0.5d0-occsv(:,:)/occmax)) if (abs(t1-0.5d0) > 0.01d0) then write(*,*) write(*,'("Warning(writehmlbse): system is metallic, the BSE may fail")') write(*,'("Try using a different vkloff or reducing swidth")') end if ! generate the BSE state index arrays call genidxbse if (allocated(hmlbse)) deallocate(hmlbse) allocate(hmlbse(nmbse,nmbse)) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) then write(*,*) write(*,'("Info(writehmlbse): setting up BSE Hamiltonian matrix")') end if ! zero the BSE Hamiltonian hmlbse(:,:)=0.d0 ! compute diagonal matrix elements do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) do i=1,nvbse ist=istbse(i,ik) do j=1,ncbse jst=jstbse(j,ik) a=ijkbse(i,j,ik) hmlbse(a,a)=evalsv(jst,jk)-evalsv(ist,jk) if (bsefull) then b=a+nbbse hmlbse(b,b)=-hmlbse(a,a) end if end do end do end do ! add the exchange matrix elements if (hxbse) call hmlxbse ! add the direct matrix elements if (hdbse) call hmldbse ! add matrices from all processes and redistribute if (np_mpi > 1) then ! ensure that the number of elements transmitted by MPI is not larger than the ! maximum packet size (assumed to be 1024³ bytes) m=67108864/nmbse do b=1,nmbse,m n=min(nmbse-b+1,m) n=nmbse*n call mpi_allreduce(mpi_in_place,hmlbse(1,b),n,mpi_double_complex,mpi_sum, & mpicom,ierror) end do end if ! write the BSE matrix to HMLBSE.OUT if (mp_mpi) then open(140,file='HMLBSE.OUT',form='UNFORMATTED',action='WRITE') write(140) nmbse write(140) hmlbse close(140) write(*,*) write(*,'("Info(writehmlbse): BSE Hamiltonian matrix written to HMLBSE.OUT")') end if ! deallocate global BSE arrays deallocate(istbse,jstbse,ijkbse,hmlbse) end subroutine elk-10.4.9/src/PaxHeaders/dielectric_bse.f900000644000000000000000000000013214762655564015531 xustar0030 mtime=1741380468.699009667 30 atime=1741380466.887000194 30 ctime=1741380468.699009667 elk-10.4.9/src/dielectric_bse.f900000644002504400250440000000740614762655564020262 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dielectric_bse use modmain use modomp use modtest implicit none ! local variables integer a1,a2,ik1,jk1 integer i1,j1,ist1,jst1 integer iw,ioc,i,j,nthd integer ios,nmbse_ real(8) e,eji,t1,t2 complex(8) eta,z1 character(256) fname ! allocatable arrays real(8), allocatable :: w(:) complex(8), allocatable :: pmat(:,:,:),sigma(:,:,:),zv(:,:) ! initialise global variables call init0 call init1 ! read Fermi energy from a file call readfermi ! get the eigenvalues from file do ik1=1,nkpt call getevalsv(filext,ik1,vkl(:,ik1),evalsv(:,ik1)) end do ! generate the BSE state index arrays call genidxbse ! allocate global BSE arrays if (allocated(evalbse)) deallocate(evalbse) allocate(evalbse(nmbse)) if (allocated(hmlbse)) deallocate(hmlbse) allocate(hmlbse(nmbse,nmbse)) ! read in the BSE eigenvectors and eigenvalues open(140,file='EVBSE.OUT',form='UNFORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(dielectric_bse): error opening EVBSE.OUT")') write(*,*) stop end if read(140) nmbse_ if (nmbse /= nmbse_) then write(*,*) write(*,'("Error(dielectric_bse): differing nmbse")') write(*,'(" current : ",I6)') nmbse write(*,'(" EVBSE.OUT : ",I6)') nmbse_ stop end if read(140) evalbse read(140) hmlbse close(140) ! set up the frequency grid (starting from zero) allocate(w(nwplot)) t1=wplot(2)/dble(nwplot) do iw=1,nwplot w(iw)=t1*dble(iw-1) end do ! i divided by the complex relaxation time eta=cmplx(0.d0,swidth,8) allocate(pmat(nstsv,nstsv,3)) allocate(sigma(3,3,nwplot)) allocate(zv(3,nmbse)) sigma(:,:,:)=0.d0 zv(:,:)=0.d0 call holdthd(nmbse,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(ik1,jk1,a1,a2,e,i1,j1) & !$OMP PRIVATE(ist1,jst1,eji,z1,i,j) & !$OMP REDUCTION(+:sigma) & !$OMP NUM_THREADS(nthd) ! loop over non-reduced k-points do ik1=1,nkptnr ! equivalent reduced k-point jk1=ivkik(ivk(1,ik1),ivk(2,ik1),ivk(3,ik1)) ! read the momentum matrix elements from file !$OMP SINGLE call getpmat(vkl(:,ik1),pmat) !$OMP END SINGLE !$OMP DO SCHEDULE(DYNAMIC) do a2=1,nmbse e=evalbse(a2) do i1=1,nvbse ist1=istbse(i1,ik1) do j1=1,ncbse jst1=jstbse(j1,ik1) a1=ijkbse(i1,j1,ik1) eji=evalsv(jst1,jk1)-evalsv(ist1,jk1) z1=(e/eji)*hmlbse(a1,a2) zv(1:3,a2)=zv(1:3,a2)+z1*pmat(ist1,jst1,1:3) end do end do end do !$OMP END DO end do !$OMP DO SCHEDULE(DYNAMIC) do a2=1,nmbse e=evalbse(a2) if (abs(e) > 1.d-8) then do i=1,3 do j=1,3 z1=zv(i,a2)*conjg(zv(j,a2))/e sigma(i,j,:)=sigma(i,j,:)+z1/(w(:)-e+eta)+conjg(z1)/(w(:)+e+eta) end do end do end if end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) z1=zi*occmax*wkptnr/omega sigma(:,:,:)=z1*sigma(:,:,:) ! loop over tensor components do ioc=1,noptcomp i=optcomp(1,ioc) j=optcomp(2,ioc) t1=0.d0 if (i == j) t1=1.d0 write(fname,'("EPSILON_BSE_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') do iw=1,nwplot t2=t1-fourpi*aimag(sigma(i,j,iw)/(w(iw)+eta)) write(50,'(2G18.10)') w(iw),t2 end do write(50,*) do iw=1,nwplot t2=fourpi*dble(sigma(i,j,iw)/(w(iw)+eta)) write(50,'(2G18.10)') w(iw),t2 end do close(50) end do write(*,*) write(*,'("Info(dielectric_bse):")') write(*,'(" dielectric tensor written to EPSILON_BSE_ij.OUT")') write(*,'(" for components")') do ioc=1,noptcomp write(*,'(" i = ",I1,", j = ",I1)') optcomp(1:2,ioc) end do ! write sigma to test file call writetest(187,'BSE optical conductivity',nv=nwplot,tol=1.d-3,zva=sigma) deallocate(w,pmat,sigma,zv) ! deallocate global BSE arrays deallocate(evalbse,hmlbse) end subroutine elk-10.4.9/src/PaxHeaders/vecplot.f900000644000000000000000000000013114762655564014244 xustar0030 mtime=1741380468.700009673 29 atime=1741380466.89000021 30 ctime=1741380468.700009673 elk-10.4.9/src/vecplot.f900000644002504400250440000001241514762655564016772 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: vecplot ! !INTERFACE: subroutine vecplot ! !DESCRIPTION: ! Outputs a 2D or 3D vector field for plotting. The vector field can be the ! magnetisation vector field, ${\bf m}$; the exchange-correlation magnetic ! field, ${\bf B}_{\rm xc}$; or the electric field ! ${\bf E}\equiv-\nabla V_{\rm C}$. The magnetisation is obtained from the ! spin density matrix, $\rho_{\alpha\beta}$, by solving ! $$ \rho_{\alpha\beta}({\bf r})=\frac{1}{2}\left(n({\bf r}) ! \delta_{\alpha\beta}+\sigma\cdot {\bf m}({\bf r})\right), $$ ! where $n\equiv\tr\rho_{\alpha\beta}$ is the total density. In the case of 2D ! plots, the magnetisation vectors are still 3D, but are in the coordinate ! system of the plane. ! ! !REVISION HISTORY: ! Created August 2004 (JKD) ! Included electric field plots, August 2006 (JKD) !EOP !BOC use modmain implicit none ! allocatable arrays real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) ! initialise universal variables call init0 if ((task == 72).or.(task == 73).or.(task == 82).or.(task == 83)) then if (.not.spinpol) then write(*,*) write(*,'("Error(vecplot): spin-unpolarised magnetisation/field is zero")') write(*,*) stop end if end if ! read magnetisation and exchange-correlation magnetic field from file call readstate allocate(rvfmt(npmtmax,natmtot,3),rvfir(ngtot,3)) select case(task) case(71,72,73) ! magnetisation if (ncmag) then ! non-collinear rvfmt(:,:,:)=magmt(:,:,:) rvfir(:,:)=magir(:,:) else ! collinear rvfmt(:,:,1:2)=0.d0 rvfir(:,1:2)=0.d0 rvfmt(:,:,3)=magmt(:,:,1) rvfir(:,3)=magir(:,1) end if case(81,82,83) ! exchange-correlation magnetic field if (ncmag) then ! non-collinear rvfmt(:,:,:)=bxcmt(:,:,:) rvfir(:,:)=bxcir(:,:) else ! collinear rvfmt(:,:,1:2)=0.d0 rvfir(:,1:2)=0.d0 rvfmt(:,:,3)=bxcmt(:,:,1) rvfir(:,3)=bxcir(:,1) end if case(141,142,143) ! electric field call gradrf(vclmt,vclir,rvfmt,rvfir) ! use the negative of the gradient rvfmt(:,:,:)=-rvfmt(:,:,:) rvfir(:,:)=-rvfir(:,:) case(151,152,153) if (.not.ncmag) then write(*,*) write(*,'("Error(vecplot): collinear m(r) x B_xc(r) is zero")') write(*,*) stop end if call rvfcross(magmt,magir,bxcmt,bxcir,rvfmt,rvfir) end select select case(task) case(71,81,141,151) if (task == 71) then open(50,file='MAG1D.OUT',form='FORMATTED') open(51,file='MAGLINES.OUT',form='FORMATTED') else if (task == 81) then open(50,file='BXC1D.OUT',form='FORMATTED') open(51,file='BXCLINES.OUT',form='FORMATTED') else if (task == 141) then open(50,file='EF1D.OUT',form='FORMATTED') open(51,file='EFLINES.OUT',form='FORMATTED') else open(50,file='MCBXC1D.OUT',form='FORMATTED') open(51,file='MCBXCLINES.OUT',form='FORMATTED') end if call plot1d(50,51,3,rvfmt,rvfir) close(50) write(*,*) write(*,'("Info(vecplot):")') if (task == 71) then write(*,'(" 1D magnetisation density written to MAG1D.OUT")') write(*,'(" vertex location lines written to MAGLINES.OUT")') else if (task == 81) then write(*,'(" 1D exchange-correlation field written to BXC1D.OUT")') write(*,'(" vertex location lines written to BXCLINES.OUT")') else if (task == 141) then write(*,'(" 1D electric field written to EF1D.OUT")') write(*,'(" vertex location lines written to EFLINES.OUT")') else write(*,'(" 1D m(r) x B_xc(r) written to MCBXC1D.OUT")') write(*,'(" vertex location lines written to MCBXCLINES.OUT")') end if case(72,82,142,152) if (task == 72) then open(50,file='MAG2D.OUT',form='FORMATTED') else if (task == 82) then open(50,file='BXC2D.OUT',form='FORMATTED') else if (task == 142) then open(50,file='EF2D.OUT',form='FORMATTED') else open(50,file='MCBXC2D.OUT',form='FORMATTED') end if call plot2d(.true.,50,3,rvfmt,rvfir) close(50) write(*,*) write(*,'("Info(vecplot):")') if (task == 72) then write(*,'(" 2D magnetisation density written to MAG2D.OUT")') else if (task == 82) then write(*,'(" 2D exchange-correlation field written to BXC2D.OUT")') else if (task == 142) then write(*,'(" 2D electric field written to EF2D.OUT")') else write(*,'(" 2D m(r) x B_xc(r) written to MCBXC2D.OUT")') end if write(*,'(" Note that the 3D vector field has been locally projected")') write(*,'(" onto the 2D plotting plane axes")') case(73,83,143,153) if (task == 73) then open(50,file='MAG3D.OUT',form='FORMATTED') else if (task == 83) then open(50,file='BXC3D.OUT',form='FORMATTED') else if (task == 143) then open(50,file='EF3D.OUT',form='FORMATTED') else open(50,file='MCBXC3D.OUT',form='FORMATTED') end if call plot3d(50,3,rvfmt,rvfir) close(50) write(*,*) write(*,'("Info(vecplot):")') if (task == 73) then write(*,'(" 3D magnetisation density written to MAG3D.OUT")') else if (task == 83) then write(*,'(" 3D exchange-correlation field written to BXC3D.OUT")') else if (task == 143) then write(*,'(" 3D electric field written to EF3D.OUT")') else write(*,'(" 3D m(r) x B_xc(r) written to MCBXC3D.OUT")') end if end select deallocate(rvfmt,rvfir) end subroutine !EOC elk-10.4.9/src/PaxHeaders/nesting.f900000644000000000000000000000013214762655564014240 xustar0030 mtime=1741380468.701009678 30 atime=1741380466.893000226 30 ctime=1741380468.701009678 elk-10.4.9/src/nesting.f900000644002504400250440000000445114762655564016766 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine nesting use modmain use modomp implicit none ! local variables integer iq,ik,jk,jkq,ivkq(3) integer ist,i1,i2,i3,nthd real(8) sm0,sm1,sm2,sm3 real(8) vl(3),vc(3),x,t1 ! allocatable arrays real(8), allocatable :: nq(:) ! external functions real(8), external :: sdelta ! initialise universal variables call init0 call init1 call init2 ! read Fermi energy from file call readfermi ! get the eigenvalues from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do allocate(nq(nqpt)) t1=1.d0/swidth sm0=0.d0 call holdthd(nqpt,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(sm1,sm2,sm3,ik,jk) & !$OMP PRIVATE(ivkq,jkq,ist,x) & !$OMP REDUCTION(+:sm0) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do iq=1,nqpt !$OMP CRITICAL(nesting_) write(*,'("Info(nesting): ",I6," of ",I6," q-points")') iq,nqpt !$OMP END CRITICAL(nesting_) sm1=0.d0 do ik=1,nkptnr jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ivkq(:)=ivk(:,ik)+ivq(:,iq) ivkq(:)=mod(ivkq(:),ngridk(:)) jkq=ivkik(ivkq(1),ivkq(2),ivkq(3)) sm2=0.d0 do ist=1,nstsv x=(efermi-evalsv(ist,jk))*t1 sm2=sm2+sdelta(stype,x)*t1 end do sm3=0.d0 do ist=1,nstsv x=(efermi-evalsv(ist,jkq))*t1 sm3=sm3+sdelta(stype,x)*t1 end do sm1=sm1+sm2*sm3 end do nq(iq)=occmax*omegabz*wkptnr*sm1 sm0=sm0+omegabz*wqpt(iq)*nq(iq) end do !$OMP END PARALLEL DO call freethd(nthd) open(50,file='NEST3D.OUT',form='FORMATTED') write(50,'(3I6," : grid size")') ngridq(:) do i3=0,ngridq(3)-1 vl(3)=dble(i3)/dble(ngridq(3)) do i2=0,ngridq(2)-1 vl(2)=dble(i2)/dble(ngridq(2)) do i1=0,ngridq(1)-1 vl(1)=dble(i1)/dble(ngridq(1)) vc(:)=bvec(:,1)*vl(1)+bvec(:,2)*vl(2)+bvec(:,3)*vl(3) iq=ivqiq(i1,i2,i3) write(50,'(4G18.10)') vc(:),nq(iq) end do end do end do close(50) open(50,file='NESTING.OUT',form='FORMATTED') write(50,'(G18.10)') sm0 close(50) write(*,*) write(*,'("Info(nesting):")') write(*,'(" Nesting function N(q) written to NEST3D.OUT for plotting")') write(*,*) write(*,'(" Total integrated nesting per unit volume written to NESTING.OUT")') deallocate(nq) end subroutine elk-10.4.9/src/PaxHeaders/writeevbse.f900000644000000000000000000000013214762655564014750 xustar0030 mtime=1741380468.703009688 30 atime=1741380466.895000236 30 ctime=1741380468.703009688 elk-10.4.9/src/writeevbse.f900000644002504400250440000000436414762655564017501 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeevbse use modmain implicit none ! local variables integer ik,a integer ios,nmbse_ ! allocatable arrays complex(8), allocatable :: w(:) ! initialise global variables call init0 call init1 ! read Fermi energy from a file call readfermi ! get the eigenvalues from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do ! generate the BSE state index arrays call genidxbse ! allocate global BSE arrays if (allocated(evalbse)) deallocate(evalbse) allocate(evalbse(nmbse)) if (allocated(hmlbse)) deallocate(hmlbse) allocate(hmlbse(nmbse,nmbse)) ! read in BSE Hamiltonian matrix open(140,file='HMLBSE.OUT',form='UNFORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(writeevbse): error opening HMLBSE.OUT")') write(*,*) stop end if read(140) nmbse_ if (nmbse /= nmbse_) then write(*,*) write(*,'("Error(writeevbse): differing nmbse")') write(*,'(" current : ",I6)') nmbse write(*,'(" HMLBSE.OUT : ",I6)') nmbse_ write(*,*) stop end if read(140) hmlbse close(140) write(*,'("Info(writeevbse): diagonalising the BSE Hamiltonian matrix")') if (bsefull) then ! full non-Hermitian matrix allocate(w(nmbse)) call eveqnzg(nmbse,nmbse,hmlbse,w) evalbse(:)=dble(w(:)) else ! Hermitian block only call eveqnzh(nmbse,nmbse,hmlbse,evalbse) end if ! write the BSE eigenvectors and eigenvalues to file open(140,file='EVBSE.OUT',form='UNFORMATTED',action='WRITE') write(140) nmbse write(140) evalbse write(140) hmlbse close(140) ! write the BSE eigenvalues to file open(50,file='EIGVAL_BSE.OUT',form='FORMATTED',action='WRITE') write(50,'(I6," : nmbse")') nmbse if (bsefull) then do a=1,nmbse write(50,'(I6,2G18.10)') a,dble(w(a)),aimag(w(a)) end do deallocate(w) else do a=1,nmbse write(50,'(I6,G18.10)') a,evalbse(a) end do end if close(50) write(*,*) write(*,'("Info(writeevbse):")') write(*,'(" BSE eigenvectors and eigenvalues written to EVBSE.OUT")') write(*,'(" BSE eigenvalues written to EIGVAL_BSE.OUT")') ! deallocate global BSE arrays deallocate(evalbse,hmlbse) end subroutine elk-10.4.9/src/PaxHeaders/emdplot3d.f900000644000000000000000000000013214762655564014464 xustar0030 mtime=1741380468.704009693 30 atime=1741380466.898000252 30 ctime=1741380468.704009693 elk-10.4.9/src/emdplot3d.f900000644002504400250440000000202514762655564017205 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 D. Ernsting, S. Dugdale and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine emdplot3d(emds) use modmain use modpw use modomp implicit none ! arguments real(4), intent(in) :: emds(nhkmax,nkpt) ! local variables integer np,ip,nthd real(8) v1(3),t1 ! allocatable arrays real(8), allocatable :: vpl(:,:) ! external functions real(8), external :: rfhkintp ! total number of plot points np=np3d(1)*np3d(2)*np3d(3) ! generate the 3D plotting points allocate(vpl(3,np)) call plotpt3d(vpl) open(50,file='EMD3D.OUT',form='FORMATTED') write(50,'(3I6," : grid size")') np3d(:) call holdthd(np,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(t1,v1) & !$OMP NUM_THREADS(nthd) !$OMP DO ORDERED do ip=1,np t1=rfhkintp(vpl(:,ip),emds) call r3mv(bvec,vpl(:,ip),v1) !$OMP ORDERED write(50,'(4G18.10)') v1(:),t1 !$OMP END ORDERED end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) close(50) deallocate(vpl) end subroutine elk-10.4.9/src/PaxHeaders/emdplot2d.f900000644000000000000000000000013214762655564014463 xustar0030 mtime=1741380468.705009699 30 atime=1741380466.901000268 30 ctime=1741380468.705009699 elk-10.4.9/src/emdplot2d.f900000644002504400250440000000311314762655564017203 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 D. Ernsting, S. Dugdale and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine emdplot2d(emds) use modmain use modpw use modomp implicit none ! arguments real(4), intent(in) :: emds(nhkmax,nkpt) ! local variables integer nh(3),np,ip,n,i,nthd real(8) vpnl(3),v1(3),t1 ! allocatable arrays real(8), allocatable :: vpl(:,:),vppc(:,:) real(8), allocatable :: x(:),wx(:),f(:) ! external functions real(8), external :: rfhkintp ! allocate local arrays np=np2d(1)*np2d(2) allocate(vpl(3,np),vppc(2,np)) ! generate the 2D plotting points call plotpt2d(bvec,binv,vpnl,vpl,vppc) ! determine the number of integration points nh(:)=int(hkmax*sqrt(avec(1,:)**2+avec(2,:)**2+avec(3,:)**2)/pi)+1 n=2*maxval(nh(:)*ngridk(:)) allocate(x(n),wx(n)) do i=1,n t1=2.d0*dble(i-1)/dble(n-1)-1.d0 x(i)=t1*hkmax end do ! determine the weights for spline integration call wsplint(n,x,wx) open(50,file='EMD2D.OUT',form='FORMATTED') write(50,'(2I6," : grid size")') np2d(:) ! loop over plotting points in the 2D plane call holdthd(np,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(f,i,v1,t1) & !$OMP NUM_THREADS(nthd) allocate(f(n)) !$OMP DO ORDERED do ip=1,np ! integrate along normal to plane do i=1,n v1(:)=vpl(:,ip)+x(i)*vpnl(:) f(i)=rfhkintp(v1,emds) end do t1=dot_product(wx(:),f(:)) !$OMP ORDERED write(50,'(3G18.10)') vppc(1,ip),vppc(2,ip),t1 !$OMP END ORDERED end do !$OMP END DO deallocate(f) !$OMP END PARALLEL call freethd(nthd) close(50) deallocate(vpl,vppc,x,wx) end subroutine elk-10.4.9/src/PaxHeaders/emdplot1d.f900000644000000000000000000000013214762655564014462 xustar0030 mtime=1741380468.707009709 30 atime=1741380466.904000283 30 ctime=1741380468.707009709 elk-10.4.9/src/emdplot1d.f900000644002504400250440000000470614762655564017213 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 D. Ernsting, S. Dugdale and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine emdplot1d(emds) use modmain use modpw use modomp use modtest implicit none ! arguments real(4), intent(in) :: emds(nhkmax,nkpt) ! local variables integer nh(3),ip,n,i,j,nthd real(8) vl1(3),vl2(3),vl3(3) real(8) vc1(3),vc2(3),vc3(3),t1 ! allocatable arrays real(8), allocatable :: x(:),wx(:),f1(:),f2(:) ! external functions real(8), external :: rfhkintp ! generate the 1D plotting points: use only the first segment call plotpt1d(bvec,2,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) ! compute two vectors orthogonal to each other and the plotting vector; these ! are the directions to be used for integration vl1(:)=vvlp1d(:,2)-vvlp1d(:,1) call r3mv(bvec,vl1,vc1) t1=sqrt(vc1(1)**2+vc1(2)**2+vc1(3)**2) if (t1 < epslat) then write(*,*) write(*,'("Error(emdplot1d): zero length plotting vector")') write(*,*) stop end if vc1(:)=vc1(:)/t1 i=1 do j=2,3 if (abs(vc1(j)) < abs(vc1(i))) i=j end do vc2(:)=0.d0 vc2(i)=1.d0 t1=dot_product(vc1,vc2) vc2(:)=vc2(:)-t1*vc1(:) t1=sqrt(vc2(1)**2+vc2(2)**2+vc2(3)**2) vc2(:)=vc2(:)/t1 call r3cross(vc1,vc2,vc3) ! integration directions in lattice coordinates call r3mv(binv,vc2,vl2) call r3mv(binv,vc3,vl3) ! determine the number of integration points nh(:)=int(hkmax*sqrt(avec(1,:)**2+avec(2,:)**2+avec(3,:)**2)/pi)+1 n=2*maxval(nh(:)*ngridk(:)) allocate(x(n),wx(n)) do i=1,n t1=2.d0*dble(i-1)/dble(n-1)-1.d0 x(i)=t1*hkmax end do ! determine the weights for spline integration call wsplint(n,x,wx) open(50,file='EMD1D.OUT',form='FORMATTED') write(*,*) ! loop over plotting points along 1D line call holdthd(npp1d,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(f1,f2,i,j,vl1,t1) & !$OMP NUM_THREADS(nthd) allocate(f1(n),f2(n)) !$OMP DO ORDERED do ip=ip01d,npp1d do i=1,n do j=1,n vl1(:)=vplp1d(:,ip)+x(i)*vl2(:)+x(j)*vl3(:) f1(j)=rfhkintp(vl1,emds) end do f2(i)=dot_product(wx(:),f1(:)) end do t1=dot_product(wx(:),f2(:)) !$OMP ORDERED write(*,'("Info(emdplot1d): done ",I6," of ",I6," points")') ip,npp1d write(50,'(2G18.10)') dpp1d(ip),t1 flush(50) !$OMP END ORDERED ! write to test file if required if (test.and.(ip == 1)) then call writetest(171,'integrated EMD',nv=n,tol=1.d-4,rva=f2) end if end do !$OMP END DO deallocate(f1,f2) !$OMP END PARALLEL call freethd(nthd) close(50) deallocate(x,wx) end subroutine elk-10.4.9/src/PaxHeaders/rfhkintp.f900000644000000000000000000000013214762655564014416 xustar0030 mtime=1741380468.708009714 30 atime=1741380466.906000294 30 ctime=1741380468.708009714 elk-10.4.9/src/rfhkintp.f900000644002504400250440000000461114762655564017142 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 D. Ernsting, S. Dugdale and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function rfhkintp(vhpl,rfhk) use modmain use modpw implicit none ! arguments real(8), intent(in) :: vhpl(3) real(4), intent(in) :: rfhk(nhkmax,nkpt) ! local variables integer ivh0(3),ivk0(3),ihk integer ivhb(3,0:1,0:1,0:1) integer ivkb(3,0:1,0:1,0:1) integer isym,lspl,ik,jk,i,j,k real(8) vpl(3),fb(0:1,0:1,0:1) real(8) f00,f01,f10,f11,f0,f1 real(8) v0(3),v1(3),v2(3),t1,t2 ! find the H-vector and k-vector corresponding to the input H+p-vector ivh0(:)=floor(vhpl(:)) vpl(:)=vhpl(:)-dble(ivh0(:)) v1(:)=vpl(:)*dble(ngridk(:)) ivk0(:)=floor(v1(:)) ! determine the corners of the box containing the input point do i=0,1; do j=0,1; do k=0,1 ivkb(1,i,j,k)=ivk0(1)+i ivkb(2,i,j,k)=ivk0(2)+j ivkb(3,i,j,k)=ivk0(3)+k ivhb(:,i,j,k)=ivh0(:)+ivkb(:,i,j,k)/ngridk(:) ivkb(:,i,j,k)=modulo(ivkb(:,i,j,k),ngridk(:)) end do; end do; end do ! determine the function at each corner of the box do i=0,1; do j=0,1; do k=0,1 fb(i,j,k)=0.d0 ! non-reduced k-point index jk=ivkiknr(ivkb(1,i,j,k),ivkb(2,i,j,k),ivkb(3,i,j,k)) ! H+k-vector at corner of box v1(:)=dble(ivhb(:,i,j,k))+vkl(:,jk) ! store the origin of the box if ((i == 0).and.(j == 0).and.(k == 0)) v0(:)=v1(:) ! vector in Cartesian coordinates v2(:)=bvec(:,1)*v1(1)+bvec(:,2)*v1(2)+bvec(:,3)*v1(3) ! check length is within range t1=sqrt(v2(1)**2+v2(2)**2+v2(3)**2) if (t1 > hkmax) cycle ! find the lattice symmetry which maps the non-reduced to reduced k-point call findkpt(vkl(:,jk),isym,ik) ! index to spatial rotation in lattice point group lspl=lsplsymc(isym) v2(:)=symlat(1,:,lspl)*v1(1)+symlat(2,:,lspl)*v1(2)+symlat(3,:,lspl)*v1(3) ! find the H+k-vector for the reduced k-point do ihk=1,nhk(1,ik) t1=abs(v2(1)-vhkl(1,ihk,1,ik)) & +abs(v2(2)-vhkl(2,ihk,1,ik)) & +abs(v2(3)-vhkl(3,ihk,1,ik)) if (t1 < epslat) then fb(i,j,k)=rfhk(ihk,ik) exit end if end do end do; end do; end do ! interpolate function t2=(vhpl(1)-v0(1))*dble(ngridk(1)) t1=1.d0-t2 f00=fb(0,0,0)*t1+fb(1,0,0)*t2 f01=fb(0,0,1)*t1+fb(1,0,1)*t2 f10=fb(0,1,0)*t1+fb(1,1,0)*t2 f11=fb(0,1,1)*t1+fb(1,1,1)*t2 t2=(vhpl(2)-v0(2))*dble(ngridk(2)) t1=1.d0-t2 f0=f00*t1+f10*t2 f1=f01*t1+f11*t2 t2=(vhpl(3)-v0(3))*dble(ngridk(3)) t1=1.d0-t2 rfhkintp=f0*t1+f1*t2 end function elk-10.4.9/src/PaxHeaders/writewfpw.f900000644000000000000000000000013014762655564014625 xustar0029 mtime=1741380468.70900972 30 atime=1741380466.909000309 29 ctime=1741380468.70900972 elk-10.4.9/src/writewfpw.f900000644002504400250440000000405614762655564017356 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writewfpw use modmain use modpw use modmpi use modomp use moddelf implicit none ! local variables integer ik,recl,nthd ! allocatable arrays complex(8), allocatable :: wfpw(:,:,:) ! initialise global variables call init0 call init1 call init4 ! read density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! delete existing WFPW.OUT if (mp_mpi) call delfile('WFPW.OUT') ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! determine the record length and open WFPW.OUT allocate(wfpw(nhkmax,nspinor,nstsv)) inquire(iolength=recl) vkl(:,1),nhkmax,nspinor,nstsv,wfpw deallocate(wfpw) open(270,file='WFPW.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) ! begin parallel loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfpw) & !$OMP NUM_THREADS(nthd) allocate(wfpw(nhkmax,nspinor,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(writewfpw_) write(*,'("Info(writewfpw): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(writewfpw_) ! generate the plane wave wavefunctions call genwfpw(vkl(:,ik),ngk(:,ik),igkig(:,:,ik),vgkl(:,:,:,ik), & vgkc(:,:,:,ik),gkc(:,:,ik),sfacgk(:,:,:,ik),nhk(:,ik),vhkc(:,:,:,ik), & hkc(:,:,ik),sfachk(:,:,:,ik),wfpw) !$OMP CRITICAL(u270) write(270,rec=ik) vkl(:,ik),nhkmax,nspinor,nstsv,wfpw !$OMP END CRITICAL(u270) end do !$OMP END DO deallocate(wfpw) !$OMP END PARALLEL call freethd(nthd) close(270) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) then write(*,*) write(*,'("Info(writewfpw): plane wave wavefunctions written to WFPW.OUT")') write(*,'(" for all H+k-vectors up to |H+k| < hkmax")') end if end subroutine elk-10.4.9/src/PaxHeaders/vblocal.f900000644000000000000000000000013214762655564014213 xustar0030 mtime=1741380468.710009725 30 atime=1741380466.912000325 30 ctime=1741380468.710009725 elk-10.4.9/src/vblocal.f900000644002504400250440000000325014762655564016735 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vblocal(vmt,vir,bmt,bir) use modmain use modomp implicit none ! arguments real(8), intent(out) :: vmt(npcmtmax,natmtot),vir(ngtc) real(8), intent(out) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag) ! local variables integer idm,is,ias,nthd integer nrc,nrci,npc call holdthd(natmtot+1,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(ias,is) & !$OMP PRIVATE(nrc,nrci,npc,idm) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) ! convert muffin-tin Kohn-Sham potential to coarse radial mesh call rfmtftoc(nrc,nrci,vsmt(:,ias),vmt(:,ias)) ! convert to spherical coordinates call rbshtip(nrc,nrci,vmt(:,ias)) ! multiply by radial integration weights call rfcmtwr(nrc,nrci,wr2cmt(:,is),vmt(:,ias)) end do !$OMP END DO NOWAIT ! multiply interstitial Kohn-Sham potential by characteristic function and ! convert to coarse grid !$OMP SINGLE call rfirftoc(vsir,vir) !$OMP END SINGLE NOWAIT ! repeat for the Kohn-Sham magnetic field if (spinpol) then do idm=1,ndmag !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) bmt(1:npc,ias,idm)=bsmt(1:npc,ias,idm) call rfcmtwr(nrc,nrci,wr2cmt(:,is),bmt(:,ias,idm)) end do !$OMP END DO NOWAIT end do ! convert Kohn-Sham magnetic field to coarse grid !$OMP SINGLE do idm=1,ndmag call rfirftoc(bsir(:,idm),bir(:,idm)) end do !$OMP END SINGLE end if !$OMP END PARALLEL call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/writefsm.f900000644000000000000000000000013214762655564014431 xustar0030 mtime=1741380468.712009735 30 atime=1741380466.914000336 30 ctime=1741380468.712009735 elk-10.4.9/src/writefsm.f900000644002504400250440000000151014762655564017150 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writefsm(fnum) use modmain implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,ia,ias write(fnum,*) if ((abs(fsmtype) == 1).or.(abs(fsmtype) == 3)) then write(fnum,'("FSM global effective field",T30,": ",3G18.10)') bfsmc(1:ndmag) end if if ((abs(fsmtype) == 2).or.(abs(fsmtype) == 3)) then write(fnum,'("FSM local muffin-tin effective fields :")') do is=1,nspecies write(fnum,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(fnum,'(" atom ",I4,T30,": ",3G18.10)') ia,bfsmcmt(1:ndmag,ias) end do end do end if end subroutine elk-10.4.9/src/PaxHeaders/getwfpw.f900000644000000000000000000000013014762655564014252 xustar0029 mtime=1741380468.71300974 30 atime=1741380466.917000351 29 ctime=1741380468.71300974 elk-10.4.9/src/getwfpw.f900000644002504400250440000001177514762655564017011 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getwfpw(vpl,vhpl,wfpw) use modmain use modpw implicit none ! arguments real(8), intent(in) :: vpl(3) real(8), intent(in) :: vhpl(3,nhkmax,nspnfv) complex(8), intent(out) :: wfpw(nhkmax,nspinor,nstsv) ! local variables integer isym,lspl,ilspl,lspn integer ik,ist,ihk,ihp,jhp,ig integer ispn0,ispn1,jspn,i integer recl,nhkmax_,nspinor_,nstsv_ real(8) vkl_(3),si(3,3) real(8) v(3),det,th,t1 complex(8) su2(2,2),z1,z2 ! automatic arrays logical done(nhkmax) ! allocatable arrays complex(8), allocatable :: wfpw_(:,:,:) ! find the equivalent k-point number and symmetry which rotates vkl to vpl call findkpt(vpl,isym,ik) ! index to spatial rotation in lattice point group lspl=lsplsymc(isym) ! find the record length inquire(iolength=recl) vkl_,nhkmax_,nspinor_,nstsv_,wfpw !$OMP CRITICAL(u270) open(270,file='WFPW.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(270,rec=ik) vkl_,nhkmax_,nspinor_,nstsv_,wfpw close(270) !$OMP END CRITICAL(u270) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getwfpw): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" WFPW.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nhkmax /= nhkmax_) then write(*,*) write(*,'("Error(getwfpw): differing nhkmax for k-point ",I8)') ik write(*,'(" current : ",I8)') nhkmax write(*,'(" WFPW.OUT : ",I8)') nhkmax_ write(*,*) stop end if if (nspinor /= nspinor_) then write(*,*) write(*,'("Error(getwfpw): differing nspinor for k-point ",I8)') ik write(*,'(" current : ",I8)') nspinor write(*,'(" WFPW.OUT : ",I8)') nspinor_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getwfpw): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" WFPW.OUT : ",I8)') nstsv_ write(*,*) stop end if ! if p = k then return t1=abs(vpl(1)-vkl(1,ik))+abs(vpl(2)-vkl(2,ik))+abs(vpl(3)-vkl(3,ik)) if (t1 < epslat) return !--------------------------------------------------------! ! translate and rotate wavefunction coefficients ! !--------------------------------------------------------! ! allocate temporary copy of wavefunction allocate(wfpw_(nhkmax,nspinor,nstsv)) ! the inverse of the spatial symmetry ilspl=isymlat(lspl) si(:,:)=dble(symlat(:,:,ilspl)) ! loop over first-variational spins do jspn=1,nspnfv if (spinsprl) then ispn0=jspn; ispn1=jspn else ispn0=1; ispn1=nspinor end if ! apply translation operation if required if (tv0symc(isym)) then ! translation vector is zero do ihk=1,nhk(jspn,ik) wfpw_(ihk,ispn0:ispn1,:)=wfpw(ihk,ispn0:ispn1,:) end do else ! non-zero translation vector gives a phase factor v(:)=vtcsymc(:,isym) do ihk=1,nhk(jspn,ik) ig=ihkig(ihk,jspn,ik) t1=vgc(1,ig)*v(1)+vgc(2,ig)*v(2)+vgc(3,ig)*v(3) z1=cmplx(cos(t1),-sin(t1),8) wfpw_(ihk,ispn0:ispn1,:)=z1*wfpw(ihk,ispn0:ispn1,:) end do end if ! apply spatial rotation operation (passive transformation) done(1:nhk(jspn,ik))=.false. i=1 do ihk=1,nhk(jspn,ik) call r3mtv(si,vhkl(:,ihk,jspn,ik),v) do ihp=i,nhk(jspn,ik) if (done(ihp)) cycle t1=abs(v(1)-vhpl(1,ihp,jspn)) & +abs(v(2)-vhpl(2,ihp,jspn)) & +abs(v(3)-vhpl(3,ihp,jspn)) if (t1 < epslat) then wfpw(ihp,ispn0:ispn1,:)=wfpw_(ihk,ispn0:ispn1,:) done(ihp)=.true. exit end if end do do ihp=i,nhk(jspn,ik) if (.not.done(ihp)) then i=ihp exit end if end do end do end do ! apply spin rotation if required if (spinpol) then ! index to global spin rotation in lattice point group lspn=lspnsymc(isym) ! if symmetry element is the identity return if (lspn == 1) return ! find the SU(2) representation of the spin rotation matrix call rotaxang(epslat,symlatc(:,:,lspn),det,v,th) call axangsu2(v,th,su2) ! apply SU(2) matrix to spinor wavefunctions (active transformation) if (spinsprl) then ! spin-spiral case wfpw(:,2,:)=0.d0 i=1 do ihp=1,nhk(1,ik) v(:)=vhpl(:,ihp,1)-vqlss(:) do jhp=i,nhk(2,ik) t1=abs(v(1)-vhpl(1,jhp,2)) & +abs(v(2)-vhpl(2,jhp,2)) & +abs(v(3)-vhpl(3,jhp,2)) if (t1 < epslat) then do ist=1,nstsv z1=wfpw(ihp,1,ist) z2=wfpw(jhp,2,ist) wfpw(ihp,1,ist)=su2(1,1)*z1+su2(1,2)*z2 wfpw(jhp,2,ist)=su2(2,1)*z1+su2(2,2)*z2 end do if (jhp == i) i=i+1 goto 10 end if end do wfpw(ihp,1,:)=0.d0 10 continue end do else ! normal spin case do ist=1,nstsv do ihp=1,nhk(1,ik) z1=wfpw(ihp,1,ist) z2=wfpw(ihp,2,ist) wfpw(ihp,1,ist)=su2(1,1)*z1+su2(1,2)*z2 wfpw(ihp,2,ist)=su2(2,1)*z1+su2(2,2)*z2 end do end do end if end if deallocate(wfpw_) end subroutine elk-10.4.9/src/PaxHeaders/plotpt1d.f900000644000000000000000000000013214762655564014340 xustar0030 mtime=1741380468.714009746 30 atime=1741380466.919000362 30 ctime=1741380468.714009746 elk-10.4.9/src/plotpt1d.f900000644002504400250440000000523114762655564017063 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: plotpt1d ! !INTERFACE: subroutine plotpt1d(cvec,nv,np,vvl,vpl,dv,dp) ! !INPUT/OUTPUT PARAMETERS: ! cvec : matrix of (reciprocal) lattice vectors stored column-wise ! (in,real(3,3)) ! nv : number of vertices (in,integer) ! np : number of connecting points (in,integer) ! vvl : vertex vectors in lattice coordinates (in,real(3,nv)) ! vpl : connecting point vectors in lattice coordinates (out,real(3,np)) ! dv : cummulative distance to each vertex (out,real(nv)) ! dp : cummulative distance to each connecting point (out,real(np)) ! !DESCRIPTION: ! Generates a set of points which interpolate between a given set of vertices. ! Vertex points are supplied in lattice coordinates in the array {\tt vvl} and ! converted to Cartesian coordinates with the matrix {\tt cvec}. Interpolating ! points are stored in the array {\tt vpl}. The cummulative distances to the ! vertices and points along the path are stored in arrays {\tt dv} and ! {\tt dp}, respectively. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) ! Improved September 2007 (JKD) ! Improved again, July 2010 (T. McQueen and JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: cvec(3,3) integer, intent(in) :: nv,np real(8), intent(in) :: vvl(3,nv) real(8), intent(out) :: vpl(3,np),dv(nv),dp(np) ! local variables integer i,j,k,m,n real(8) vl(3),vc(3) real(8) dt,f,t1 ! alloctable arrays real(8), allocatable :: seg(:) if (nv < 1) then write(*,*) write(*,'("Error(plotpt1d): nv < 1 : ",I8)') nv write(*,*) stop end if if (np < nv) then write(*,*) write(*,'("Error(plotpt1d): np < nv : ",2I8)') np,nv write(*,*) stop end if ! special case of 1 vertex if (nv == 1) then dv(1)=0.d0 dp(:)=0.d0 do i=1,np vpl(:,i)=vvl(:,1) end do return end if allocate(seg(nv)) ! find the length of each segment and total distance dt=0.d0 do i=1,nv-1 dv(i)=dt vl(:)=vvl(:,i+1)-vvl(:,i) call r3mv(cvec,vl,vc) seg(i)=sqrt(vc(1)**2+vc(2)**2+vc(3)**2) dt=dt+seg(i) end do dv(nv)=dt ! add small amount to total distance to avoid 0/0 condition dt=dt+1.d-8 ! number of points to use between vertices n=np-nv ! construct the interpolating path k=0 do i=1,nv-1 t1=dble(n)*seg(i)/dt m=nint(t1) if ((m > n).or.(i == (nv-1))) m=n do j=1,m+1 k=k+1 f=dble(j-1)/dble(m+1) dp(k)=dv(i)+f*seg(i) vpl(:,k)=vvl(:,i)*(1.d0-f)+vvl(:,i+1)*f end do dt=dt-seg(i) n=n-m end do dp(np)=dv(nv) vpl(:,np)=vvl(:,nv) deallocate(seg) end subroutine !EOC elk-10.4.9/src/PaxHeaders/init1.f900000644000000000000000000000013214762655564013615 xustar0030 mtime=1741380468.716009756 30 atime=1741380466.922000377 30 ctime=1741380468.716009756 elk-10.4.9/src/init1.f900000644002504400250440000002550714762655564016350 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: init1 ! !INTERFACE: subroutine init1 ! !USES: use modmain use moddftu use modulr use modtddft use modgw use modtest use modvars ! !DESCRIPTION: ! Generates the $k$-point set and then allocates and initialises global ! variables which depend on the $k$-point set. ! ! !REVISION HISTORY: ! Created January 2004 (JKD) !EOP !BOC implicit none ! local variables logical lsym(48) integer is,ias,nppt integer io,ilo,i1,i2,i3 integer ik,isym,jspn integer l1,l2,l3,m1,m2,m3 integer lm1,lm2,lm3,n real(8) vl(3),vc(3),t1 real(8) boxl(3,0:3) real(8) ts0,ts1 ! external functions complex(8), external :: gauntyry call timesec(ts0) !---------------------! ! k-point set ! !---------------------! ! check if the system is an isolated molecule if (molecule) then ngridk(:)=1 vkloff(:)=0.d0 autokpt=.false. end if ! store the point group symmetries for reducing the k-point set if (reducek == 0) then nsymkpt=1 symkpt(:,:,1)=symlat(:,:,1) else lsym(:)=.false. do isym=1,nsymcrys if (reducek == 2) then ! check symmetry is symmorphic if (.not.tv0symc(isym)) goto 10 ! check also that the spin rotation is the same as the spatial rotation if (spinpol) then if (lspnsymc(isym) /= lsplsymc(isym)) goto 10 end if end if lsym(lsplsymc(isym))=.true. 10 continue end do nsymkpt=0 do isym=1,nsymlat if (lsym(isym)) then nsymkpt=nsymkpt+1 symkpt(:,:,nsymkpt)=symlat(:,:,isym) end if end do end if if (any(task == [20,21,22,23,720])) then ! generate k-points along a path for band structure plots call plotpt1d(bvec,nvp1d,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) nkpt=npp1d if (allocated(vkl)) deallocate(vkl) allocate(vkl(3,nkpt)) if (allocated(vkc)) deallocate(vkc) allocate(vkc(3,nkpt)) do ik=1,nkpt vkl(1:3,ik)=vplp1d(1:3,ik) call r3mv(bvec,vkl(:,ik),vkc(:,ik)) end do nkptnr=nkpt else if (task == 25) then ! effective mass calculation nkpt=(2*ndspem+1)**3 if (allocated(ivk)) deallocate(ivk) allocate(ivk(3,nkpt)) if (allocated(vkl)) deallocate(vkl) allocate(vkl(3,nkpt)) if (allocated(vkc)) deallocate(vkc) allocate(vkc(3,nkpt)) ! map vector to [0,1) call r3frac(epslat,vklem) ik=0 do i3=-ndspem,ndspem do i2=-ndspem,ndspem do i1=-ndspem,ndspem ik=ik+1 ivk(1,ik)=i1; ivk(2,ik)=i2; ivk(3,ik)=i3 vc(1)=dble(i1); vc(2)=dble(i2); vc(3)=dble(i3) vc(:)=vc(:)*deltaem call r3mv(binv,vc,vl) vkl(:,ik)=vklem(:)+vl(:) call r3mv(bvec,vkl(:,ik),vkc(:,ik)) end do end do end do nkptnr=nkpt else ! determine the k-point grid automatically from radkpt if required if (autokpt) then t1=radkpt/twopi ngridk(:)=int(t1*sqrt(bvec(1,:)**2+bvec(2,:)**2+bvec(3,:)**2))+1 end if ! set up the default k-point box boxl(:,0)=vkloff(:)/dble(ngridk(:)) if (task == 102) boxl(:,0)=0.d0 boxl(:,1)=boxl(:,0) boxl(:,2)=boxl(:,0) boxl(:,3)=boxl(:,0) boxl(1,1)=boxl(1,1)+1.d0 boxl(2,2)=boxl(2,2)+1.d0 boxl(3,3)=boxl(3,3)+1.d0 ! k-point set and box for Fermi surface plots if (any(task == [100,101,102,103,104])) then ngridk(:)=np3d(:) if (task /= 102) boxl(:,:)=vclp3d(:,:) end if ! allocate the k-point set arrays if (allocated(ivkik)) deallocate(ivkik) allocate(ivkik(0:ngridk(1)-1,0:ngridk(2)-1,0:ngridk(3)-1)) if (allocated(ivkiknr)) deallocate(ivkiknr) allocate(ivkiknr(0:ngridk(1)-1,0:ngridk(2)-1,0:ngridk(3)-1)) nkptnr=ngridk(1)*ngridk(2)*ngridk(3) if (allocated(ivk)) deallocate(ivk) allocate(ivk(3,nkptnr)) if (allocated(vkl)) deallocate(vkl) allocate(vkl(3,nkptnr)) if (allocated(vkc)) deallocate(vkc) allocate(vkc(3,nkptnr)) if (allocated(wkpt)) deallocate(wkpt) allocate(wkpt(nkptnr)) ! generate the k-point set call genppts(.false.,nsymkpt,symkpt,ngridk,nkptnr,epslat,bvec,boxl,nkpt, & ivkik,ivkiknr,ivk,vkl,vkc,wkpt,wkptnr) ! write to VARIABLES.OUT if (wrtvars) then call writevars('nsymkpt',iv=nsymkpt) call writevars('symkpt',nv=9*nsymkpt,iva=symkpt) call writevars('ngridk',nv=3,iva=ngridk) call writevars('vkloff',nv=3,rva=vkloff) call writevars('nkpt',iv=nkpt) call writevars('ivkik',nv=nkptnr,iva=ivkik) call writevars('ivk',nv=3*nkptnr,iva=ivk) call writevars('vkl',nv=3*nkptnr,rva=vkl) call writevars('wkpt',nv=nkpt,rva=wkpt) end if end if if (any(task == [700,701,710,720,731,732,733,741,742,743,771,772,773])) then ! generate ultracell reciprocal lattice vectors if required call reciplat(avecu,bvecu,omegau,omegabzu) ! generate the kappa, k+kappa and Q-points if required call genkpakq end if ! write the k-points to test file call writetest(910,'k-points (Cartesian)',nv=3*nkpt,tol=1.d-8,rva=vkc) !---------------------! ! G+k-vectors ! !---------------------! if ((xctype(1) < 0).or.tddos.or.any(task == [5,10,205,300,600,620]).or. & ksgwrho) then nppt=nkptnr else nppt=nkpt end if ! find the maximum number of G+k-vectors call findngkmax(nkpt,vkc,nspnfv,vqcss,ngvc,vgc,gkmax,ngkmax) ! allocate the G+k-vector arrays if (allocated(ngk)) deallocate(ngk) allocate(ngk(nspnfv,nppt)) if (allocated(igkig)) deallocate(igkig) allocate(igkig(ngkmax,nspnfv,nppt)) if (allocated(vgkl)) deallocate(vgkl) allocate(vgkl(3,ngkmax,nspnfv,nppt)) if (allocated(vgkc)) deallocate(vgkc) allocate(vgkc(3,ngkmax,nspnfv,nppt)) if (allocated(gkc)) deallocate(gkc) allocate(gkc(ngkmax,nspnfv,nppt)) if (allocated(sfacgk)) deallocate(sfacgk) allocate(sfacgk(ngkmax,natmtot,nspnfv,nppt)) do ik=1,nppt do jspn=1,nspnfv vl(1:3)=vkl(1:3,ik) vc(1:3)=vkc(1:3,ik) ! spin-spiral case if (spinsprl) then if (jspn == 1) then vl(1:3)=vl(1:3)+0.5d0*vqlss(1:3) vc(1:3)=vc(1:3)+0.5d0*vqcss(1:3) else vl(1:3)=vl(1:3)-0.5d0*vqlss(1:3) vc(1:3)=vc(1:3)-0.5d0*vqcss(1:3) end if end if ! generate the G+k-vectors call gengkvec(ngvc,ivg,vgc,vl,vc,gkmax,ngkmax,ngk(jspn,ik), & igkig(:,jspn,ik),vgkl(:,:,jspn,ik),vgkc(:,:,jspn,ik),gkc(:,jspn,ik)) ! generate structure factors for G+k-vectors call gensfacgp(ngk(jspn,ik),vgkc(:,:,jspn,ik),ngkmax,sfacgk(:,:,jspn,ik)) end do end do ! write to VARIABLES.OUT if (wrtvars) then call writevars('nspnfv',iv=nspnfv) call writevars('gkmax',rv=gkmax) call writevars('ngk',nv=nspnfv*nkpt,iva=ngk) do ik=1,nkpt do jspn=1,nspnfv call writevars('igkig',n1=jspn,n2=ik,nv=ngk(jspn,ik),iva=igkig(:,jspn,ik)) end do end do end if !---------------------------------! ! APWs and local-orbitals ! !---------------------------------! apwordmax=0 lorbordmax=0 nlomax=0 lolmax=0 do is=1,nspecies lmoapw(is)=0 do l1=0,lmaxapw ! find the maximum APW order apwordmax=max(apwordmax,apword(l1,is)) ! find total number of APW coefficients (l, m and order) lmoapw(is)=lmoapw(is)+(2*l1+1)*apword(l1,is) if (l1 == lmaxo) nlmwf(is)=lmoapw(is) end do ! find the maximum number of local-orbitals nlomax=max(nlomax,nlorb(is)) ! find the maximum local-orbital order and angular momentum n=0 do ilo=1,nlorb(is) l1=lorbl(ilo,is) lolmax=max(lolmax,l1) lorbordmax=max(lorbordmax,lorbord(ilo,is)) n=n+2*l1+1 end do ! number of (l,m) components used for generating the muffin-tin wavefunctions nlmwf(is)=max(nlmwf(is),n) end do lolmmax=(lolmax+1)**2 ! set the APW and local-orbital linearisation energies to the default if (allocated(apwe)) deallocate(apwe) allocate(apwe(apwordmax,0:lmaxapw,natmtot)) if (allocated(lorbe)) deallocate(lorbe) allocate(lorbe(lorbordmax,maxlorb,natmtot)) do ias=1,natmtot is=idxis(ias) do l1=0,lmaxapw do io=1,apword(l1,is) apwe(io,l1,ias)=apwe0(io,l1,is) end do end do do ilo=1,nlorb(is) do io=1,lorbord(ilo,is) lorbe(io,ilo,ias)=lorbe0(io,ilo,is) end do end do end do ! generate the local-orbital index call genidxlo ! allocate radial function arrays if (allocated(apwfr)) deallocate(apwfr) allocate(apwfr(nrmtmax,2,apwordmax,0:lmaxapw,natmtot)) if (allocated(apwdfr)) deallocate(apwdfr) allocate(apwdfr(apwordmax,0:lmaxapw,natmtot)) if (allocated(lofr)) deallocate(lofr) allocate(lofr(nrmtmax,2,nlomax,natmtot)) !-------------------------! ! DFT+U variables ! !-------------------------! if (dftu /= 0) then ! allocate energy arrays to calculate Slater integrals with Yukawa potential if (allocated(efdu)) deallocate(efdu) allocate(efdu(0:lmaxdm,natmtot)) ! allocate radial functions to calculate Slater integrals with Yukawa potential if (allocated(fdufr)) deallocate(fdufr) allocate(fdufr(nrmtmax,0:lmaxdm,natmtot)) end if !---------------------------------------! ! eigenvalue equation variables ! !---------------------------------------! ! total number of empty states (M. Meinert) nempty=nint(nempty0*max(natmtot,1)) if (nempty < 1) nempty=1 ! number of first-variational states nstfv=nint(chgval/2.d0)+nempty+1 ! overlap and Hamiltonian matrix sizes if (allocated(nmat)) deallocate(nmat) allocate(nmat(nspnfv,nkpt)) nmatmax=0 do ik=1,nkpt do jspn=1,nspnfv n=ngk(jspn,ik)+nlotot if (nstfv > n) then write(*,*) write(*,'("Error(init1): number of first-variational states larger than & &matrix size")') write(*,'("Increase rgkmax or decrease nempty")') write(*,*) stop end if nmat(jspn,ik)=n nmatmax=max(nmatmax,n) end do end do ! number of second-variational states nstsv=nstfv*nspinor ! allocate second-variational arrays if (allocated(evalsv)) deallocate(evalsv) allocate(evalsv(nstsv,nkpt)) if (allocated(occsv)) deallocate(occsv) allocate(occsv(nstsv,nkpt)) ! allocate overlap and Hamiltonian integral arrays if (allocated(oalo)) deallocate(oalo) allocate(oalo(apwordmax,nlomax,natmtot)) if (allocated(ololo)) deallocate(ololo) allocate(ololo(nlomax,nlomax,natmtot)) if (allocated(haa)) deallocate(haa) allocate(haa(lmmaxo,apwordmax,0:lmaxapw,apwordmax,0:lmaxapw,natmtot)) if (allocated(hloa)) deallocate(hloa) allocate(hloa(lmmaxo,apwordmax,0:lmaxapw,nlomax,natmtot)) if (allocated(hlolo)) deallocate(hlolo) allocate(hlolo(lmmaxo,nlomax,nlomax,natmtot)) ! allocate and generate complex Gaunt coefficient array if (allocated(gntyry)) deallocate(gntyry) allocate(gntyry(lmmaxo,lmmaxapw,lmmaxapw)) do l1=0,lmaxapw do m1=-l1,l1 lm1=l1*(l1+1)+m1+1 do l3=0,lmaxapw do m3=-l3,l3 lm3=l3*(l3+1)+m3+1 do l2=0,lmaxo do m2=-l2,l2 lm2=l2*(l2+1)+m2+1 gntyry(lm2,lm3,lm1)=gauntyry(l1,l2,l3,m1,m2,m3) end do end do end do end do end do end do ! check if the scissor correction is non-zero tscissor=(abs(scissor) > 1.d-8) ! write to VARIABLES.OUT if (wrtvars) then call writevars('nempty',iv=nempty) call writevars('nstfv',iv=nstfv) call writevars('nlotot',iv=nlotot) call writevars('nstsv',iv=nstsv) end if call timesec(ts1) timeinit=timeinit+ts1-ts0 end subroutine !EOC elk-10.4.9/src/PaxHeaders/init2.f900000644000000000000000000000013214762655564013616 xustar0030 mtime=1741380468.717009761 30 atime=1741380466.925000393 30 ctime=1741380468.717009761 elk-10.4.9/src/init2.f900000644002504400250440000000733314762655564016346 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine init2 use modmain use modrdm use modphonon use modgw use modvars use modmpi implicit none ! local variables logical lsym(48) integer isym,iv(3) real(8) boxl(3,0:3) real(8) ts0,ts1 call timesec(ts0) !---------------------! ! q-point set ! !---------------------! ! check if the system is an isolated molecule if (molecule) ngridq(:)=1 ! store the point group symmetries for reducing the q-point set if (reduceq == 0) then nsymqpt=1 symqpt(:,:,1)=symlat(:,:,1) else lsym(:)=.false. do isym=1,nsymcrys lsym(lsplsymc(isym))=.true. end do nsymqpt=0 do isym=1,nsymlat if (lsym(isym)) then nsymqpt=nsymqpt+1 symqpt(:,:,nsymqpt)=symlat(:,:,isym) end if end do end if if (any(task == [105,180,185,320,330,331])) then ! equal k- and q-point grids for nesting function, BSE and linear-reposnse TDDFT ngridq(:)=ngridk(:) else if (any(task == [5,300,600,620]).or.(xctype(1) < 0).or.ksgwrho) then ! allow the q-point grid to be smaller than the k-point grid for OEP, ! Hartree-Fock, RDMFT and GW if (any(ngridq(:) < 1)) ngridq(:)=ngridk(:) else ngridq(:)=abs(ngridq(:)) end if ! check that the q-point and k-point grids are commensurate for some tasks if (any(task == [5,205,240,241,300,600,620]).or.(xctype(1) < 0).or.ksgwrho) then iv(:)=mod(ngridk(:),ngridq(:)) if (any(iv(:) /= 0)) then write(*,*) write(*,'("Error(init2): k-point grid incommensurate with q-point grid")') write(*,'(" ngridk : ",3I6)') ngridk write(*,'(" ngridq : ",3I6)') ngridq write(*,*) stop end if end if ! allocate the q-point arrays if (allocated(ivqiq)) deallocate(ivqiq) allocate(ivqiq(0:ngridq(1)-1,0:ngridq(2)-1,0:ngridq(3)-1)) if (allocated(ivqiqnr)) deallocate(ivqiqnr) allocate(ivqiqnr(0:ngridq(1)-1,0:ngridq(2)-1,0:ngridq(3)-1)) nqptnr=ngridq(1)*ngridq(2)*ngridq(3) if (allocated(ivq)) deallocate(ivq) allocate(ivq(3,nqptnr)) if (allocated(vql)) deallocate(vql) allocate(vql(3,nqptnr)) if (allocated(vqc)) deallocate(vqc) allocate(vqc(3,nqptnr)) if (allocated(wqpt)) deallocate(wqpt) allocate(wqpt(nqptnr)) ! set up the q-point box (offset should always be zero) boxl(:,:)=0.d0 boxl(1,1)=1.d0; boxl(2,2)=1.d0; boxl(3,3)=1.d0 ! generate the q-point set ! (note that the vectors vql and vqc are in the first Brillouin zone) call genppts(.true.,nsymqpt,symqpt,ngridq,nqptnr,epslat,bvec,boxl,nqpt,ivqiq, & ivqiqnr,ivq,vql,vqc,wqpt,wqptnr) ! write the q-points to QPOINTS.OUT if (mp_mpi) call writeqpts ! write to VARIABLES.OUT if (wrtvars) then call writevars('nsymqpt',iv=nsymqpt) call writevars('symqpt',nv=9*nsymqpt,iva=symqpt) call writevars('ngridq',nv=3,iva=ngridq) call writevars('nqpt',iv=nqpt) call writevars('ivqiq',nv=nqptnr,iva=ivqiq) call writevars('ivq',nv=3*nqptnr,iva=ivq) call writevars('vql',nv=3*nqptnr,rva=vql) call writevars('wqpt',nv=nqpt,rva=wqpt) end if !--------------------------------------------------------! ! OEP, Hartree-Fock, RDMFT, BSE and GW variables ! !--------------------------------------------------------! if (any(task == [5,180,185,300,320,330,331,600,620]).or. & (xctype(1) < 0).or.ksgwrho) then ! determine the regularised Coulomb Green's function for small q call gengclq ! output the Coulomb Green's function to GCLQ.OUT if (mp_mpi) call writegclq ! initialise OEP variables if (xctype(1) < 0) call initoep end if if (task == 300) then if (allocated(vclmat)) deallocate(vclmat) allocate(vclmat(nstsv,nstsv,nkpt)) if (allocated(dkdc)) deallocate(dkdc) allocate(dkdc(nstsv,nstsv,nkpt)) end if call timesec(ts1) timeinit=timeinit+ts1-ts0 end subroutine elk-10.4.9/src/PaxHeaders/findsymcrys.f900000644000000000000000000000013214762655564015143 xustar0030 mtime=1741380468.719009772 30 atime=1741380466.927000404 30 ctime=1741380468.719009772 elk-10.4.9/src/findsymcrys.f900000644002504400250440000001523314762655564017671 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: findsymcrys ! !INTERFACE: subroutine findsymcrys ! !USES: use modmain use modmpi use modtest ! !DESCRIPTION: ! Finds the complete set of symmetries which leave the crystal structure ! (including the magnetic fields) invariant. A crystal symmetry is of the form ! $\{\alpha_S|\alpha_R|{\bf t}\}$, where ${\bf t}$ is a translation vector, ! $\alpha_R$ is a spatial rotation operation and $\alpha_S$ is a global spin ! rotation. Note that the order of operations is important and defined to be ! from right to left, i.e. translation followed by spatial rotation followed ! by spin rotation. In the case of spin-orbit coupling $\alpha_S=\alpha_R$. In ! order to determine the translation vectors, the entire atomic basis is ! shifted so that the first atom in the smallest set of atoms of the same ! species is at the origin. Then all displacement vectors between atoms in ! this set are checked as possible symmetry translations. If the global ! variable {\tt tshift} is set to {\tt .false.} then the shift is not ! performed. See L. M. Sandratskii and P. G. Guletskii, {\it J. Phys. F: Met. ! Phys.} {\bf 16}, L43 (1986) and the routine {\tt findsym}. ! ! !REVISION HISTORY: ! Created April 2007 (JKD) !EOP !BOC implicit none ! local variables integer ia,ja,is,is0 integer isym,nsym,i,n integer lspl(48),lspn(48),ilspl real(8) v0(3),v1(3),v2(3),t1 real(8) apl1(3,maxatoms,maxspecies) real(8) apl2(3,maxatoms,maxspecies) ! automatic arrays integer iea(natmmax,nspecies,48) real(8) vtl(3,natmmax**2+1) ! allocate global equivalent atom arrays if (allocated(ieqatom)) deallocate(ieqatom) allocate(ieqatom(natmmax,nspecies,maxsymcrys)) if (allocated(eqatoms)) deallocate(eqatoms) allocate(eqatoms(natmmax,natmmax,nspecies)) if (allocated(tfeqat)) deallocate(tfeqat) allocate(tfeqat(natmmax,nspecies)) ! find the smallest set of atoms is0=1 do is=1,nspecies if (natoms(is) < natoms(is0)) is0=is end do if (natmtot > 0) then ! position of first atom in the smallest atom set v0(:)=atposl(:,1,is0) ! shift basis so that the first atom in the smallest atom set is at the origin do is=1,nspecies do ia=1,natoms(is) ! shift atom apl1(:,ia,is)=atposl(:,ia,is)-v0(:) ! map lattice coordinates back to [0,1) call r3frac(epslat,apl1(:,ia,is)) end do end do else v0(:)=0.d0 end if ! determine possible translation vectors from smallest set of atoms n=1 vtl(:,1)=0.d0 do ia=1,natoms(is0) do ja=2,natoms(is0) ! compute difference between two atom vectors v1(:)=apl1(:,ia,is0)-apl1(:,ja,is0) ! map lattice coordinates to [0,1) call r3frac(epslat,v1) ! check if vector has any component along electric field if (tefield) then call r3mv(avec,v1,v2) t1=efieldc(1)*v2(1)+efieldc(2)*v2(2)+efieldc(3)*v2(3) if (abs(t1) > epslat) goto 10 end if do i=1,n t1=abs(vtl(1,i)-v1(1))+abs(vtl(2,i)-v1(2))+abs(vtl(3,i)-v1(3)) if (t1 < epslat) goto 10 end do n=n+1 vtl(:,n)=v1(:) 10 continue end do end do ! no translations required when symtype=0,2 (F. Cricchio) if (symtype /= 1) n=1 eqatoms(:,:,:)=.false. nsymcrys=0 ! loop over all possible translations do i=1,n ! construct new array with translated positions do is=1,nspecies do ia=1,natoms(is) apl2(:,ia,is)=apl1(:,ia,is)+vtl(:,i) end do end do ! find the symmetries for current translation call findsym(apl1,apl2,nsym,lspl,lspn,iea) do isym=1,nsym nsymcrys=nsymcrys+1 if (nsymcrys > maxsymcrys) then write(*,*) write(*,'("Error(findsymcrys): too many crystal symmetries")') write(*,'(" Adjust maxsymcrys in modmain and recompile code")') write(*,*) stop end if vtlsymc(:,nsymcrys)=vtl(:,i) lsplsymc(nsymcrys)=lspl(isym) lspnsymc(nsymcrys)=lspn(isym) do is=1,nspecies do ia=1,natoms(is) ja=iea(ia,is,isym) ieqatom(ia,is,nsymcrys)=ja eqatoms(ia,ja,is)=.true. eqatoms(ja,ia,is)=.true. end do end do end do end do tsyminv=.false. do isym=1,nsymcrys ! check if inversion symmetry is present i=lsplsymc(isym) if (all(symlat(:,:,i) == -symlat(:,:,1))) then tsyminv=.true. ! make inversion the second symmetry element (the identity is the first) v1(:)=vtlsymc(:,isym); vtlsymc(:,isym)=vtlsymc(:,2); vtlsymc(:,2)=v1(:) i=lsplsymc(isym); lsplsymc(isym)=lsplsymc(2); lsplsymc(2)=i i=lspnsymc(isym); lspnsymc(isym)=lspnsymc(2); lspnsymc(2)=i do is=1,nspecies do ia=1,natoms(is) i=ieqatom(ia,is,isym) ieqatom(ia,is,isym)=ieqatom(ia,is,2) ieqatom(ia,is,2)=i end do end do exit end if end do ! flag the first equivalent atom for each species do is=1,nspecies do ia=1,natoms(is) ja=findloc(eqatoms(1:ia,ia,is),.true.,1) tfeqat(ia,is)=(ia == ja) end do end do if (tshift) then if (tsyminv) then ! if inversion exists then shift basis so that inversion center is at origin v1(:)=v1(:)/2.d0 else v1(:)=0.d0 end if else v1(:)=v0(:) end if do is=1,nspecies do ia=1,natoms(is) ! shift atom atposl(:,ia,is)=apl1(:,ia,is)+v1(:) ! map lattice coordinates back to [0,1) call r3frac(epslat,atposl(:,ia,is)) ! map lattice coordinates to [-0.5,0.5) if inversion exists if (tsyminv) then do i=1,3 if (atposl(i,ia,is) > 0.5d0) atposl(i,ia,is)=atposl(i,ia,is)-1.d0 end do end if ! determine the new Cartesian coordinates call r3mv(avec,atposl(:,ia,is),atposc(:,ia,is)) end do end do do isym=1,nsymcrys ! recalculate crystal symmetry translation vectors ilspl=isymlat(lsplsymc(isym)) v2(:)=symlat(:,1,ilspl)*v1(1) & +symlat(:,2,ilspl)*v1(2) & +symlat(:,3,ilspl)*v1(3) vtlsymc(:,isym)=vtlsymc(:,isym)-v1(:)+v2(:) call r3frac(epslat,vtlsymc(:,isym)) ! translation vector in Cartesian coordinates call r3mv(avec,vtlsymc(:,isym),vtcsymc(:,isym)) ! set flag for zero translation vector t1=abs(vtlsymc(1,isym))+abs(vtlsymc(2,isym))+abs(vtlsymc(3,isym)) tv0symc(isym)=(t1 < epslat) end do ! check inversion does not include a translation if (tsyminv) then if (.not.tv0symc(2)) tsyminv=.false. end if if (tshift.and.(natmtot > 0)) then v1(:)=atposl(:,1,is0)-v0(:) call r3frac(epslat,v1) t1=abs(v1(1))+abs(v1(2))+abs(v1(3)) if (mp_mpi.and.(t1 > epslat)) then write(*,*) write(*,'("Info(findsymcrys): atomic basis shift (lattice) :")') write(*,'(3G18.10)') v1(:) write(*,'("See GEOMETRY.OUT for new atomic positions")') end if end if ! write number of crystal symmetries to test file call writetest(705,'number of crystal symmetries',iv=nsymcrys) end subroutine !EOC elk-10.4.9/src/PaxHeaders/plotpt3d.f900000644000000000000000000000013214762655564014342 xustar0030 mtime=1741380468.720009777 30 atime=1741380466.930000419 30 ctime=1741380468.720009777 elk-10.4.9/src/plotpt3d.f900000644002504400250440000000142714762655564017070 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine plotpt3d(vpl) use modmain implicit none ! arguments real(8), intent(out) :: vpl(3,np3d(1)*np3d(2)*np3d(3)) ! local variables integer ip,i1,i2,i3 real(8) v1(3),v2(3),v3(3) real(8) t1,t2,t3 ! generate 3D grid from corner vectors v1(:)=vclp3d(:,1)-vclp3d(:,0) v2(:)=vclp3d(:,2)-vclp3d(:,0) v3(:)=vclp3d(:,3)-vclp3d(:,0) ip=0 do i3=0,np3d(3)-1 t3=dble(i3)/dble(np3d(3)) do i2=0,np3d(2)-1 t2=dble(i2)/dble(np3d(2)) do i1=0,np3d(1)-1 t1=dble(i1)/dble(np3d(1)) ip=ip+1 vpl(:,ip)=t1*v1(:)+t2*v2(:)+t3*v3(:)+vclp3d(:,0) end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/genspecies.f900000644000000000000000000000013114762655564014715 xustar0030 mtime=1741380468.721009782 29 atime=1741380466.93200043 30 ctime=1741380468.721009782 elk-10.4.9/src/genspecies.f900000644002504400250440000000465014762655564017445 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genspecies(fnum) use modmain use modmpi implicit none ! arguments integer, intent(in) :: fnum ! local variables integer nz,nmax,nst,ist integer ne,nrm,nr,ir,it,i integer n(maxstsp),l(maxstsp),k(maxstsp) real(8) mass,zn,t1,t2,t3 real(8) rm,rmin,rmax real(8) occ(maxstsp),eval(maxstsp) character(64) symb,name ! allocatable arrays real(8), allocatable :: r(:),rho(:),vr(:),rwf(:,:,:) read(fnum,*,err=20) nz if (nz < 1) then write(*,*) write(*,'("Error(genspecies): nz < 1 : ",I8)') nz write(*,*) stop end if read(fnum,*,err=20) symb,name read(fnum,*,err=20) mass ! convert from 'atomic mass units' to atomic units mass=mass*amu read(fnum,*,err=20) rm read(fnum,*,err=20) nst if ((nst < 1).or.(nst > maxstsp)) then write(*,*) write(*,'("Error(genspecies): nst out of range : ",I8)') nst write(*,'(" for species ",A)') trim(name) write(*,*) stop end if ne=0 nmax=1 do ist=1,nst read(fnum,*,err=20) n(ist),l(ist),k(ist),i ne=ne+i occ(ist)=i nmax=max(nmax,n(ist)) end do if (mp_mpi) then write(*,'("Info(genspecies): running Z = ",I4,", (",A,")")') nz,trim(name) if (ne /= nz) then write(*,*) write(*,'("Warning(genspecies): atom not neutral, electron number : ",& &I4)') ne end if end if ! nuclear charge in units of e zn=-dble(nz) ! minimum radial mesh point proportional to 1/sqrt(Z) rmin=2.d-6/sqrt(dble(nz)) ! default effective infinity rmax=100.d0 ! set the number of radial mesh points proportional to number of nodes nrm=100*(nmax+1) do it=1,2 ! number of points to effective infinity t1=log(rm/rmin) t2=log(rmax/rmin) t3=dble(nrm)*t2/t1 nr=int(t3) allocate(r(nr),rho(nr),vr(nr),rwf(nr,2,nst)) ! generate logarithmic radial mesh t2=t1/dble(nrm-1) do ir=1,nr r(ir)=rmin*exp(dble(ir-1)*t2) end do ! solve the Kohn-Sham-Dirac equation for the atom call atom(sol,.true.,zn,nst,n,l,k,occ,3,0,nr,r,eval,rho,vr,rwf) ! recompute the effective infinity do ir=nr,1,-1 if (rho(ir) > 1.d-20) then rmax=1.75d0*r(ir) exit end if end do deallocate(r,rho,vr,rwf) end do ! write the species file call writespecies(symb,name,zn,mass,rmin,rm,rmax,nrm,nst,n,l,k,occ,eval) return 20 continue write(*,*) write(*,'("Error(genspecies): error reading species data")') write(*,*) stop end subroutine elk-10.4.9/src/PaxHeaders/fermisurfbxsf.f900000644000000000000000000000013214762655564015456 xustar0030 mtime=1741380468.723009793 30 atime=1741380466.935000446 30 ctime=1741380468.723009793 elk-10.4.9/src/fermisurfbxsf.f900000644002504400250440000001001714762655564020177 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 F. Cricchio, F. Bultmark and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine fermisurfbxsf use modmain use modomp implicit none ! local variables integer ik,nst,ist integer ist0,ist1,jst0,jst1 integer i1,i2,i3,j1,j2,j3 integer nf,f,i,nthd real(8) e0,e1 ! allocatable arrays real(8), allocatable :: evalfv(:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) ! initialise universal variables call init0 ! no k-point reduction for the collinear case reducek0=reducek if (ndmag == 1) reducek=0 call init1 ! read density and potentials from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! begin parallel loop over reduced k-points set call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evalfv,evecfv,evecsv) & !$OMP NUM_THREADS(nthd) allocate(evalfv(nstfv,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv)) allocate(evecsv(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt !$OMP CRITICAL(fermisurfbxsf_) write(*,'("Info(fermisurfbxsf): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(fermisurfbxsf_) ! solve the first- and second-variational eigenvalue equations call eveqn(ik,evalfv,evecfv,evecsv) ! end loop over reduced k-points set end do !$OMP END DO deallocate(evalfv,evecfv,evecsv) !$OMP END PARALLEL call freethd(nthd) ! if iterative diagonalisation is used the eigenvalues must be reordered if (tefvit.and.(.not.spinpol)) then ! allocate(idx(nstsv),e(nstsv)) do ik=1,nkpt call sort(nstsv,evalsv(:,ik)) end do end if ! number of files to plot (2 for collinear magnetism, 1 otherwise) if (ndmag == 1) then nf=2 else nf=1 end if do f=1,nf if (nf == 2) then if (f == 1) then open(50,file='FERMISURF_UP.bxsf',form='FORMATTED') jst0=1; jst1=nstfv else open(50,file='FERMISURF_DN.bxsf',form='FORMATTED') jst0=nstfv+1; jst1=2*nstfv end if else open(50,file='FERMISURF.bxsf',form='FORMATTED') jst0=1; jst1=nstsv end if ! find the range of eigenvalues which contribute to the Fermi surface (Lars) ist0=jst1; ist1=jst0 do ist=jst0,jst1 e0=minval(evalsv(ist,:)); e1=maxval(evalsv(ist,:)) ! determine if the band crosses the Fermi energy if ((e0 < efermi).and.(e1 > efermi)) then ist0=min(ist0,ist); ist1=max(ist1,ist) end if end do nst=ist1-ist0+1 write(50,'(" BEGIN_INFO")') write(50,'(" # Band-XCRYSDEN-Structure-File for Fermi surface plotting")') write(50,'(" # created by Elk version ",I0,".",I0,".",I0)') version write(50,'(" # Launch as: xcrysden --bxsf FERMISURF(_UP/_DN).bxsf")') write(50,'(" Fermi Energy: ",G18.10)') 0.d0 write(50,'(" END_INFO")') write(50,'(" BEGIN_BLOCK_BANDGRID_3D")') write(50, '(" band_energies")') write(50,'(" BANDGRID_3D_BANDS")') write(50,'(I4)') nst write(50,'(3I6)') ngridk(:)+1 write(50,'(3G18.10)') 0.d0,0.d0,0.d0 do i=1,3 write(50,'(3G18.10)') bvec(:,i) end do do ist=ist0,ist1 write(50,'(" BAND: ",I4)') ist do i1=0,ngridk(1) j1=mod(i1,ngridk(1)) do i2=0,ngridk(2) j2=mod(i2,ngridk(2)) do i3=0,ngridk(3) j3=mod(i3,ngridk(3)) ik=ivkik(j1,j2,j3) write(50,'(G18.10)') evalsv(ist,ik)-efermi end do end do end do end do write(50,'(" END_BANDGRID_3D")') write(50,'(" END_BLOCK_BANDGRID_3D")') close(50) end do write(*,*) write(*,'("Info(fermisurfbxsf):")') if (ndmag == 1) then write(*,'(" 3D Fermi surface data written to FERMISURF_UP.bxsf and & &FERMISURF_DN.bxsf")') else write(*,'(" 3D Fermi surface data written to FERMISURF.bxsf")') end if write(*,'(" for plotting with XCrysDen (Fermi energy set to zero)")') write(*,*) write(*,'(" Launch as: xcrysden --bxsf FERMISURF(_UP/_DN).bxsf")') ! restore original parameters reducek=reducek0 end subroutine elk-10.4.9/src/PaxHeaders/writeexpmat.f900000644000000000000000000000013214762655564015142 xustar0030 mtime=1741380468.725009803 30 atime=1741380466.937000456 30 ctime=1741380468.725009803 elk-10.4.9/src/writeexpmat.f900000644002504400250440000000473014762655564017670 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeexpmat use modmain implicit none ! local variables integer nk,ik,jk,i,j real(8) vgqc(3),gqc real(8) a,b ! allocatable arrays real(8), allocatable :: jlgqr(:,:) complex(8), allocatable :: ylmgq(:),sfacgq(:) complex(8), allocatable :: expmt(:,:),emat(:,:) ! initialise universal variables call init0 call init1 call init2 ! read in the density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! generate the phase factor function exp(iq.r) in the muffin-tins allocate(jlgqr(njcmax,nspecies)) allocate(ylmgq(lmmaxo),sfacgq(natmtot)) allocate(expmt(npcmtmax,natmtot)) call gengqf(1,vecqc,vgqc,gqc,jlgqr,ylmgq,sfacgq) call genexpmt(1,jlgqr,ylmgq,1,sfacgq,expmt) expmt(:,:)=omega*expmt(:,:) deallocate(jlgqr,ylmgq,sfacgq) ! number of k-points to write out if (kstlist(1,1) < 1) then nk=nkpt else nk=nkstlist end if open(50,file='EXPIQR.OUT',form='FORMATTED') write(50,*) write(50,'("q-vector (lattice coordinates) :")') write(50,'(3G18.10)') vecql write(50,'("q-vector (Cartesian coordinates) :")') write(50,'(3G18.10)') vecqc write(50,*) write(50,'(I8," : number of k-points")') nk write(50,'(I6," : number of states per k-point")') nstsv allocate(emat(nstsv,nstsv)) do jk=1,nk if (kstlist(1,1) < 1) then ik=jk else ik=kstlist(1,jk) end if if ((ik < 1).or.(ik > nkpt)) then write(*,*) write(*,'("Error(writeexpiqr): k-point out of range : ",I8)') ik write(*,*) stop end if write(50,*) write(50,'(" k-point (lattice coordinates) :")') write(50,'(3G18.10)') vkl(:,ik) write(50,*) write(50,'(" k-point (Cartesian coordinates) :")') write(50,'(3G18.10)') vkc(:,ik) call genexpmat(vkl(:,ik),expmt,emat) do i=1,nstsv write(50,*) write(50,'(I6," : state i; state j, <...>, |<...>|² below")') i do j=1,nstsv a=dble(emat(i,j)) b=aimag(emat(i,j)) write(50,'(I6,3G18.10)') j,a,b,a**2+b**2 end do end do ! end loop over k-points end do close(50) write(*,*) write(*,'("Info(writeexpmat)")') write(*,'(" < i,k+q | exp(iq.r) | j,k > matrix elements written to & &EXPIQR.OUT")') write(*,'(" for the q-vector in vecql and all k-points in kstlist")') deallocate(expmt,emat) end subroutine elk-10.4.9/src/PaxHeaders/writekpts.f900000644000000000000000000000013214762655564014625 xustar0030 mtime=1741380468.727009814 30 atime=1741380466.940000471 30 ctime=1741380468.727009814 elk-10.4.9/src/writekpts.f900000644002504400250440000000137314762655564017353 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writekpts ! !INTERFACE: subroutine writekpts ! !USES: use modmain ! !DESCRIPTION: ! Writes the $k$-points in lattice coordinates, weights and number of ! ${\bf G+k}$-vectors to the file {\tt KPOINTS.OUT}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! local variables integer ik open(50,file='KPOINTS'//trim(filext),form='FORMATTED') write(50,'(I6," : nkpt; k-point, vkl, wkpt, nmat below")') nkpt do ik=1,nkpt write(50,'(I6,4G18.10,2I8)') ik,vkl(:,ik),wkpt(ik),nmat(:,ik) end do close(50) end subroutine !EOC elk-10.4.9/src/PaxHeaders/wfcrplot.f900000644000000000000000000000013214762655564014431 xustar0030 mtime=1741380468.728009819 30 atime=1741380466.942000482 30 ctime=1741380468.728009819 elk-10.4.9/src/wfcrplot.f900000644002504400250440000000177114762655564017161 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wfcrplot use modmain implicit none ! local variables integer ist,is,ia,ias,ir character(256) fname ! initialise universal variables call init0 ! read density and potentials from file call readstate ! generate the core wavefunctions call gencore do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(fname,'("WFCORE_S",I2.2,"_A",I4.4,".OUT")') is,ia open(50,file=trim(fname),form='FORMATTED') do ist=1,nstsp(is) if (spcore(ist,is)) then do ir=1,nrsp(is) write(50,'(2G18.10)') rsp(ir,is),rwfcr(ir,1,ist,ias) end do write(50,*) end if end do close(50) end do end do write(*,*) write(*,'("Info(wfcrplot):")') write(*,'(" Core state wavefunctions written to WFCORE_Sss_Aaaaa.OUT")') write(*,'(" for all species and atoms")') end subroutine elk-10.4.9/src/PaxHeaders/writedos.f900000644000000000000000000000013214762655564014431 xustar0030 mtime=1741380468.729009824 30 atime=1741380466.945000498 30 ctime=1741380468.729009824 elk-10.4.9/src/writedos.f900000644002504400250440000000331314762655564017153 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writedos use modmain implicit none ! initialise universal variables call init0 call init1 ! read density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the eigenvalues and occupation numbers from file call readevalsv if (dosocc) call readoccsv ! generate the partial and total DOS and write to file call dos('.OUT',dosocc,occsv) write(*,*) write(*,'("Info(writedos):")') write(*,'(" Total density of states written to TDOS.OUT")') if (tpdos) then write(*,*) write(*,'(" Partial density of states written to PDOS_Sss_Aaaaa.OUT")') write(*,'(" for all species and atoms")') if (dosmsum) then write(*,'(" PDOS summed over m")') end if if (dosssum) then write(*,'(" PDOS summed over spin")') end if write(*,*) write(*,'(" Spin-quantisation axis : ",3G18.10)') sqados(:) if (lmirep) then write(*,*) write(*,'(" Eigenvalues of a random matrix in the Yₗₘ basis symmetrised")') write(*,'(" with the site symmetries written to ELMIREP.OUT for all")') write(*,'(" species and atoms. Degenerate eigenvalues correspond to")') write(*,'(" irreducible representations of each site symmetry group")') end if write(*,*) write(*,'(" Interstitial density of states written to IDOS.OUT")') end if write(*,*) write(*,'(" Fermi energy is at zero in plots")') write(*,*) write(*,'(" DOS units are states/Hartree/unit cell")') end subroutine elk-10.4.9/src/PaxHeaders/energykncr.f900000644000000000000000000000013214762655564014740 xustar0030 mtime=1741380468.731009835 30 atime=1741380466.947000508 30 ctime=1741380468.731009835 elk-10.4.9/src/energykncr.f900000644002504400250440000000224014762655564017460 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine energykncr use modmain implicit none integer ist,is,ias integer nr,nri,ir,i ! automatic arrays real(8) rfmt(npmtmax) ! external functions real(8), external :: rfmtinp ! calculate the kinetic energy for core states engykncr=0.d0 do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) ! sum of core eigenvalues do ist=1,nstsp(is) if (spcore(ist,is)) engykncr=engykncr+occcr(ist,ias)*evalcr(ist,ias) end do ! core density rfmt(1:npmt(is))=0.d0 i=1 if (spincore) then ! spin-polarised core do ir=1,nri rfmt(i)=rhocr(ir,ias,1)+rhocr(ir,ias,2) i=i+lmmaxi end do do ir=nri+1,nr rfmt(i)=rhocr(ir,ias,1)+rhocr(ir,ias,2) i=i+lmmaxo end do else ! spin-unpolarised core do ir=1,nri rfmt(i)=rhocr(ir,ias,1) i=i+lmmaxi end do do ir=nri+1,nr rfmt(i)=rhocr(ir,ias,1) i=i+lmmaxo end do end if engykncr=engykncr-rfmtinp(nr,nri,wr2mt(:,is),rfmt,vsmt(:,ias)) end do end subroutine elk-10.4.9/src/PaxHeaders/ggamt_1.f900000644000000000000000000000013014762655564014106 xustar0029 mtime=1741380468.73200984 30 atime=1741380466.950000524 29 ctime=1741380468.73200984 elk-10.4.9/src/ggamt_1.f900000644002504400250440000000305714762655564016637 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggamt_1 ! !INTERFACE: subroutine ggamt_1(tsh,is,np,rho,grho,g2rho,g3rho) ! !USES: use modmain ! !DESCRIPTION: ! Spin-unpolarised version of {\tt ggamt\_sp\_1}. ! ! !REVISION HISTORY: ! Created November 2009 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: is,np real(8), intent(in) :: rho(np) real(8), intent(out) :: grho(np),g2rho(np),g3rho(np) ! local variables integer nr,nri,i ! automatic arrays real(8) grfmt(np,3),gvrho(np,3),rfmt1(np),rfmt2(np) nr=nrmt(is) nri=nrmti(is) ! |grad rho| if (tsh) then call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rho,np,grfmt) else call rfsht(nr,nri,rho,rfmt1) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) end if do i=1,3 call rbsht(nr,nri,grfmt(:,i),gvrho(:,i)) end do grho(1:np)=sqrt(gvrho(1:np,1)**2+gvrho(1:np,2)**2+gvrho(1:np,3)**2) ! grad^2 rho in spherical coordinates if (tsh) then call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rho,rfmt2) else call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) end if call rbsht(nr,nri,rfmt2,g2rho) ! (grad rho).(grad |grad rho|) call rfsht(nr,nri,grho,rfmt2) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt2,np,grfmt) g3rho(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) g3rho(1:np)=g3rho(1:np)+gvrho(1:np,i)*rfmt2(1:np) end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/ggair_1.f900000644000000000000000000000013214762655564014102 xustar0030 mtime=1741380468.733009845 30 atime=1741380466.952000534 30 ctime=1741380468.733009845 elk-10.4.9/src/ggair_1.f900000644002504400250440000000306214762655564016625 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggair_1 ! !INTERFACE: subroutine ggair_1(rho,grho,g2rho,g3rho) ! !USES: use modmain ! !DESCRIPTION: ! Spin-unpolarised version of {\tt ggair\_sp\_1}. ! ! !REVISION HISTORY: ! Created November 2009 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rho(ngtot) real(8), intent(out) :: grho(ngtot),g2rho(ngtot),g3rho(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays real(8), allocatable :: gvrho(:,:),rfir(:) complex(8), allocatable :: zfft1(:),zfft2(:) allocate(gvrho(ngtot,3),rfir(ngtot)) allocate(zfft1(nfgrz),zfft2(nfgrz)) call rzfftifc(3,ngridg,-1,rho,zfft1) ! |grad rho| do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,gvrho(:,i),zfft2) end do grho(:)=sqrt(gvrho(:,1)**2+gvrho(:,2)**2+gvrho(:,3)**2) ! grad^2 rho do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=-(gc(ig)**2)*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,g2rho,zfft2) ! (grad rho).(grad |grad rho|) call rzfftifc(3,ngridg,-1,grho,zfft1) g3rho(:)=0.d0 do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) end do call rzfftifc(3,ngridg,1,rfir,zfft2) g3rho(:)=g3rho(:)+gvrho(:,i)*rfir(:) end do deallocate(gvrho,rfir,zfft1,zfft2) end subroutine !EOC elk-10.4.9/src/PaxHeaders/ggamt_sp_1.f900000644000000000000000000000013114762655564014611 xustar0030 mtime=1741380468.735009855 29 atime=1741380466.95500055 30 ctime=1741380468.735009855 elk-10.4.9/src/ggamt_sp_1.f900000644002504400250440000000775314762655564017350 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggamt_sp_1 ! !INTERFACE: subroutine ggamt_sp_1(is,np,rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! is : species number (in,integer) ! np : number of muffin-tin points (in,integer) ! rhoup : spin-up density in spherical coordinates (in,real(np)) ! rhodn : spin-down density (in,real(np)) ! grho : |grad rho| (out,real(np)) ! gup : |grad rhoup| (out,real(np)) ! gdn : |grad rhodn| (out,real(np)) ! g2up : grad^2 rhoup (out,real(np)) ! g2dn : grad^2 rhodn (out,real(np)) ! g3rho : (grad rho).(grad |grad rho|) (out,real(np)) ! g3up : (grad rhoup).(grad |grad rhoup|) (out,real(np)) ! g3dn : (grad rhodn).(grad |grad rhodn|) (out,real(np)) ! !DESCRIPTION: ! Computes $|\nabla\rho|$, $|\nabla\rho^{\uparrow}|$, ! $|\nabla\rho^{\downarrow}|$, $\nabla^2\rho^{\uparrow}$, ! $\nabla^2\rho^{\downarrow}$, $\nabla\rho\cdot(\nabla|\nabla\rho|)$, ! $\nabla\rho^{\uparrow}\cdot(\nabla|\nabla\rho^{\uparrow}|)$ and ! $\nabla\rho^{\downarrow}\cdot(\nabla|\nabla\rho^{\downarrow}|)$ ! for a muffin-tin charge density, as required by the generalised gradient ! approximation functionals of type 1 for spin-polarised densities. The input ! densities and output gradients are in terms of spherical coordinates. See ! routines {\tt potxc} and {\tt modxcifc}. ! ! !REVISION HISTORY: ! Created April 2004 (JKD) ! Simplified and improved, October 2009 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,np real(8), intent(in) :: rhoup(np),rhodn(np) real(8), intent(out) :: grho(np),gup(np),gdn(np) real(8), intent(out) :: g2up(np),g2dn(np) real(8), intent(out) :: g3rho(np),g3up(np),g3dn(np) ! local variables integer nr,nri,i ! automatic arrays real(8) grfmt(np,3),gvup(np,3),gvdn(np,3) real(8) rfmt1(np),rfmt2(np) nr=nrmt(is) nri=nrmti(is) !----------------! ! rho up ! !----------------! ! convert rhoup to spherical harmonics call rfsht(nr,nri,rhoup,rfmt1) ! grad rhoup in spherical coordinates call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) do i=1,3 call rbsht(nr,nri,grfmt(:,i),gvup(:,i)) end do ! |grad rhoup| gup(1:np)=sqrt(gvup(1:np,1)**2+gvup(1:np,2)**2+gvup(1:np,3)**2) ! grad^2 rhoup in spherical coordinates call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) call rbsht(nr,nri,rfmt2,g2up) ! (grad rhoup).(grad |grad rhoup|) call rfsht(nr,nri,gup,rfmt1) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) g3up(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt1) g3up(1:np)=g3up(1:np)+gvup(1:np,i)*rfmt1(1:np) end do !------------------! ! rho down ! !------------------! ! convert rhodn to spherical harmonics call rfsht(nr,nri,rhodn,rfmt1) ! grad rhodn in spherical coordinates call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) do i=1,3 call rbsht(nr,nri,grfmt(:,i),gvdn(:,i)) end do gdn(1:np)=sqrt(gvdn(1:np,1)**2+gvdn(1:np,2)**2+gvdn(1:np,3)**2) ! grad^2 rhodn in spherical coordinates call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) call rbsht(nr,nri,rfmt2,g2dn) ! (grad rhodn).(grad |grad rhodn|) call rfsht(nr,nri,gdn,rfmt1) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) g3dn(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt1) g3dn(1:np)=g3dn(1:np)+gvdn(1:np,i)*rfmt1(1:np) end do !-------------! ! rho ! !-------------! ! |grad rho| grho(1:np)=sqrt((gvup(1:np,1)+gvdn(1:np,1))**2 & +(gvup(1:np,2)+gvdn(1:np,2))**2 & +(gvup(1:np,3)+gvdn(1:np,3))**2) ! (grad rho).(grad |grad rho|) call rfsht(nr,nri,grho,rfmt1) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) g3rho(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt1) g3rho(1:np)=g3rho(1:np)+(gvup(1:np,i)+gvdn(1:np,i))*rfmt1(1:np) end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/ggair_sp_1.f900000644000000000000000000000013114762655564014603 xustar0030 mtime=1741380468.736009861 29 atime=1741380466.95700056 30 ctime=1741380468.736009861 elk-10.4.9/src/ggair_sp_1.f900000644002504400250440000001005314762655564017325 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggair_sp_1 ! !INTERFACE: subroutine ggair_sp_1(rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho,g3up,g3dn) ! !INPUT/OUTPUT PARAMETERS: ! rhoup : spin-up density (in,real(ngtot)) ! rhodn : spin-down density (in,real(ngtot)) ! grho : |grad rho| (out,real(ngtot)) ! gup : |grad rhoup| (out,real(ngtot)) ! gdn : |grad rhodn| (out,real(ngtot)) ! g2up : grad^2 rhoup (out,real(ngtot)) ! g2dn : grad^2 rhodn (out,real(ngtot)) ! g3rho : (grad rho).(grad |grad rho|) (out,real(ngtot)) ! g3up : (grad rhoup).(grad |grad rhoup|) (out,real(ngtot)) ! g3dn : (grad rhodn).(grad |grad rhodn|) (out,real(ngtot)) ! !DESCRIPTION: ! Computes $|\nabla\rho|$, $|\nabla\rho^{\uparrow}|$, ! $|\nabla\rho^{\downarrow}|$, $\nabla^2\rho^{\uparrow}$, ! $\nabla^2\rho^{\downarrow}$, $\nabla\rho\cdot(\nabla|\nabla\rho|)$, ! $\nabla\rho^{\uparrow}\cdot(\nabla|\nabla\rho^{\uparrow}|)$ and ! $\nabla\rho^{\downarrow}\cdot(\nabla|\nabla\rho^{\downarrow}|)$ for the ! interstitial charge density, as required by the generalised gradient ! approximation functionals of type 1 for spin-polarised densities. See ! routines {\tt potxc} and {\tt modxcifc}. ! ! !REVISION HISTORY: ! Created October 2004 (JKD) ! Simplified and improved, October 2009 (JKD) !EOP !BOC use modmain implicit none ! arguments real(8), intent(in) :: rhoup(ngtot),rhodn(ngtot) real(8), intent(out) :: grho(ngtot),gup(ngtot),gdn(ngtot) real(8), intent(out) :: g2up(ngtot),g2dn(ngtot) real(8), intent(out) :: g3rho(ngtot),g3up(ngtot),g3dn(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays real(8), allocatable :: gvup(:,:),gvdn(:,:),rfir(:) complex(8), allocatable :: zfft1(:),zfft2(:) allocate(gvup(ngtot,3),gvdn(ngtot,3),rfir(ngtot)) allocate(zfft1(nfgrz),zfft2(nfgrz)) !----------------! ! rho up ! !----------------! call rzfftifc(3,ngridg,-1,rhoup,zfft1) ! |grad rhoup| do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,gvup(:,i),zfft2) end do gup(:)=sqrt(gvup(:,1)**2+gvup(:,2)**2+gvup(:,3)**2) ! grad^2 rhoup do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=-(gc(ig)**2)*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,g2up,zfft2) ! (grad rhoup).(grad |grad rhoup|) call rzfftifc(3,ngridg,-1,gup,zfft1) g3up(:)=0.d0 do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) end do call rzfftifc(3,ngridg,1,rfir,zfft2) g3up(:)=g3up(:)+gvup(:,i)*rfir(:) end do !------------------! ! rho down ! !------------------! call rzfftifc(3,ngridg,-1,rhodn,zfft1) ! |grad rhodn| do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,gvdn(:,i),zfft2) end do gdn(:)=sqrt(gvdn(:,1)**2+gvdn(:,2)**2+gvdn(:,3)**2) ! grad^2 rhodn do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=-(gc(ig)**2)*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,g2dn,zfft2) ! (grad rhodn).(grad |grad rhodn|) call rzfftifc(3,ngridg,-1,gdn,zfft1) g3dn(:)=0.d0 do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) end do call rzfftifc(3,ngridg,1,rfir,zfft2) g3dn(:)=g3dn(:)+gvdn(:,i)*rfir(:) end do !-------------! ! rho ! !-------------! ! |grad rho| grho(:)=sqrt((gvup(:,1)+gvdn(:,1))**2 & +(gvup(:,2)+gvdn(:,2))**2 & +(gvup(:,3)+gvdn(:,3))**2) ! (grad rho).(grad |grad rho|) call rzfftifc(3,ngridg,-1,grho,zfft1) g3rho(:)=0.d0 do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) end do call rzfftifc(3,ngridg,1,rfir,zfft2) g3rho(:)=g3rho(:)+(gvup(:,i)+gvdn(:,i))*rfir(:) end do deallocate(gvup,gvdn,rfir,zfft1,zfft2) end subroutine !EOC elk-10.4.9/src/PaxHeaders/ggamt_2a.f900000644000000000000000000000013214762655564014252 xustar0030 mtime=1741380468.738009871 30 atime=1741380466.960000576 30 ctime=1741380468.738009871 elk-10.4.9/src/ggamt_2a.f900000644002504400250440000000253414762655564017000 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggamt_2a ! !INTERFACE: subroutine ggamt_2a(tsh,is,np,rho,g2rho,gvrho,grho2) ! !USES: use modmain ! !DESCRIPTION: ! Spin-unpolarised version of {\tt ggamt\_sp\_2a}. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments logical, intent(in) :: tsh integer, intent(in) :: is,np real(8), intent(in) :: rho(np) real(8), intent(out) :: g2rho(np),gvrho(np,3),grho2(np) ! local variables integer nr,nri,i ! automatic arrays real(8) grfmt(np,3),rfmt1(np),rfmt2(np) nr=nrmt(is) nri=nrmti(is) ! compute grad^2 rho in spherical coordinates if (tsh) then call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rho,rfmt2) else call rfsht(nr,nri,rho,rfmt1) call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) end if call rbsht(nr,nri,rfmt2,g2rho) ! compute grad rho in spherical coordinates if (tsh) then call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rho,np,grfmt) else call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) end if do i=1,3 call rbsht(nr,nri,grfmt(:,i),gvrho(:,i)) end do ! (grad rho)^2 grho2(1:np)=gvrho(1:np,1)**2+gvrho(1:np,2)**2+gvrho(1:np,3)**2 end subroutine !EOC elk-10.4.9/src/PaxHeaders/ggair_2a.f900000644000000000000000000000013214762655564014244 xustar0030 mtime=1741380468.739009876 30 atime=1741380466.962000586 30 ctime=1741380468.739009876 elk-10.4.9/src/ggair_2a.f900000644002504400250440000000240314762655564016765 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggair_2a ! !INTERFACE: subroutine ggair_2a(rho,g2rho,gvrho,grho2) ! !USES: use modmain ! !DESCRIPTION: ! Spin-unpolarised version of {\tt ggair\_sp\_2a}. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rho(ngtot) real(8), intent(out) :: g2rho(ngtot),gvrho(ngtot,3),grho2(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays complex(8), allocatable :: zfft1(:),zfft2(:) allocate(zfft1(nfgrz),zfft2(nfgrz)) ! Fourier transform density to G-space call rzfftifc(3,ngridg,-1,rho,zfft1) ! grad^2 rho do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=-(gc(ig)**2)*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,g2rho,zfft2) ! grad rho do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,gvrho(:,i),zfft2) end do ! (grad rho)^2 grho2(:)=gvrho(:,1)**2+gvrho(:,2)**2+gvrho(:,3)**2 deallocate(zfft1,zfft2) end subroutine !EOC elk-10.4.9/src/PaxHeaders/ggamt_2b.f900000644000000000000000000000013214762655564014253 xustar0030 mtime=1741380468.740009882 30 atime=1741380466.964000597 30 ctime=1741380468.740009882 elk-10.4.9/src/ggamt_2b.f900000644002504400250440000000323414762655564016777 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggamt_2b ! !INTERFACE: subroutine ggamt_2b(is,np,g2rho,gvrho,vx,vc,dxdgr2,dcdgr2) ! !USES: use modmain ! !DESCRIPTION: ! Spin-unpolarised version of {\tt ggamt\_sp\_2b}. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,np real(8), intent(in) :: g2rho(np),gvrho(np,3) real(8), intent(inout) :: vx(np),vc(np) real(8), intent(in) :: dxdgr2(np),dcdgr2(np) ! local variables integer nr,nri,i ! automatic arrays real(8) rfmt1(np),rfmt2(np),grfmt(np,3) nr=nrmt(is) nri=nrmti(is) !------------------! ! exchange ! !------------------! ! convert dxdgr2 to spherical harmonics call rfsht(nr,nri,dxdgr2,rfmt1) ! compute grad dxdgr2 call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dxdgr2).(grad rho) in spherical coordinates rfmt1(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) rfmt1(1:np)=rfmt1(1:np)+rfmt2(1:np)*gvrho(1:np,i) end do vx(1:np)=vx(1:np)-2.d0*(rfmt1(1:np)+dxdgr2(1:np)*g2rho(1:np)) !---------------------! ! correlation ! !---------------------! ! convert dcdgr2 to spherical harmonics call rfsht(nr,nri,dcdgr2,rfmt1) ! compute grad dcdgr2 call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dcdgr2).(grad rho) in spherical coordinates rfmt1(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) rfmt1(1:np)=rfmt1(1:np)+rfmt2(1:np)*gvrho(1:np,i) end do vc(1:np)=vc(1:np)-2.d0*(rfmt1(1:np)+dcdgr2(1:np)*g2rho(1:np)) end subroutine !EOC elk-10.4.9/src/PaxHeaders/ggair_2b.f900000644000000000000000000000013214762655564014245 xustar0030 mtime=1741380468.742009892 30 atime=1741380466.967000613 30 ctime=1741380468.742009892 elk-10.4.9/src/ggair_2b.f900000644002504400250440000000321014762655564016763 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggair_2b ! !INTERFACE: subroutine ggair_2b(g2rho,gvrho,vx,vc,dxdgr2,dcdgr2) ! !USES: use modmain ! !DESCRIPTION: ! Spin-unpolarised version of {\tt ggair\_sp\_2b}. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments real(8), intent(in) :: g2rho(ngtot),gvrho(ngtot,3) real(8), intent(inout) :: vx(ngtot),vc(ngtot) real(8), intent(in) :: dxdgr2(ngtot),dcdgr2(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays real(8), allocatable :: rfir1(:),rfir2(:) complex(8), allocatable :: zfft1(:),zfft2(:) allocate(rfir1(ngtot),rfir2(ngtot)) allocate(zfft1(nfgrz),zfft2(nfgrz)) !------------------! ! exchange ! !------------------! ! compute grad dxdgr2 call rzfftifc(3,ngridg,-1,dxdgr2,zfft1) ! (grad dxdgr2).(grad rho) rfir1(:)=0.d0 do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) end do call rzfftifc(3,ngridg,1,rfir2,zfft2) rfir1(:)=rfir1(:)+rfir2(:)*gvrho(:,i) end do vx(:)=vx(:)-2.d0*(rfir1(:)+dxdgr2(:)*g2rho(:)) !---------------------! ! correlation ! !---------------------! ! compute grad dcdgr2 call rzfftifc(3,ngridg,-1,dcdgr2,zfft1) ! (grad dcdgr2).(grad rho) rfir1(:)=0.d0 do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) end do call rzfftifc(3,ngridg,1,rfir2,zfft2) rfir1(:)=rfir1(:)+rfir2(:)*gvrho(:,i) end do vc(:)=vc(:)-2.d0*(rfir1(:)+dcdgr2(:)*g2rho(:)) deallocate(rfir1,rfir2,zfft1,zfft2) end subroutine !EOC elk-10.4.9/src/PaxHeaders/ggamt_sp_2a.f900000644000000000000000000000013214762655564014754 xustar0030 mtime=1741380468.743009897 30 atime=1741380466.969000623 30 ctime=1741380468.743009897 elk-10.4.9/src/ggamt_sp_2a.f900000644002504400250440000001017314762655564017500 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggamt_sp_2a ! !INTERFACE: subroutine ggamt_sp_2a(is,np,rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn) ! !USES: use modmain ! !DESCRIPTION: ! Computes the muffin-tin gradients $\nabla^2\rho^{\uparrow}$, ! $\nabla^2\rho^{\downarrow}$, $\nabla\rho^{\uparrow}$, ! $\nabla\rho^{\downarrow}$, $(\nabla\rho^{\uparrow})^2$, ! $(\nabla\rho^{\downarrow})^2$ and ! $\nabla\rho^{\uparrow}\cdot\nabla\rho^{\downarrow}$, which are passed in to ! GGA functional subroutines of type 2. The exchange-correlation energy in ! these routines has the functional form ! $$ E_{xc}[\rho^{\uparrow},\rho^{\downarrow}]=\int d^3r\,\hat{\epsilon}_{xc} ! \bigl(\rho^{\uparrow}({\bf r}),\rho^{\downarrow}({\bf r}), ! (\nabla\rho^{\uparrow}({\bf r}))^2,(\nabla\rho^{\downarrow}({\bf r}))^2, ! \nabla\rho^{\uparrow}({\bf r}) ! \cdot\nabla\rho^{\downarrow}({\bf r})\bigr), $$ ! where $\hat{\epsilon}_{xc}({\bf r})=\epsilon_{xc}({\bf r})\rho({\bf r})$ is ! the xc energy per unit volume, with $\epsilon_{xc}$ being the xc energy per ! electron, and $\rho=\rho^{\uparrow}+\rho^{\downarrow}$. From the gradients ! above, type 2 GGA routines return $\epsilon_{xc}$, but not directly the xc ! potentials. Instead they generate the derivatives ! $\partial\hat{\epsilon}_{xc}/\partial\rho^{\uparrow}({\bf r})$, ! $\partial\hat{\epsilon}_{xc}/\partial(\nabla\rho^{\uparrow}({\bf r}))^2$, ! and the same for down spin, as well as ! $\partial\hat{\epsilon}_{xc}/\partial(\nabla\rho^{\uparrow}({\bf r}) ! \cdot\nabla\rho^{\downarrow}({\bf r}))$. In a post-processing step invoked ! by {\tt ggamt\_sp\_2b}, integration by parts is used to obtain the xc ! potential explicitly with ! \begin{align*} ! V_{xc}^{\uparrow}({\bf r})=&\frac{\partial\hat{\epsilon}_{xc}}{\partial ! \rho^{\uparrow}({\bf r})}-2\left(\nabla\frac{\partial\hat{\epsilon}_{xc}} ! {\partial(\nabla\rho^{\uparrow})^2}\right)\cdot\nabla\rho^{\uparrow} ! -2\frac{\hat{\epsilon}_{xc}}{\partial(\nabla\rho^{\uparrow})^2}\nabla^2 ! \rho^{\uparrow}\\ ! &-\left(\nabla\frac{\hat{\epsilon}_{xc}}{\partial(\nabla\rho^{\uparrow} ! \cdot\nabla\rho^{\downarrow})}\right)\cdot\nabla\rho^{\downarrow} ! -\frac{\partial\hat{\epsilon}_{xc}}{\partial(\nabla\rho^{\uparrow}\cdot ! \nabla\rho^{\downarrow})}\nabla^2\rho^{\downarrow}, ! \end{align*} ! and similarly for $V_{xc}^{\downarrow}$. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,np real(8), intent(in) :: rhoup(np),rhodn(np) real(8), intent(out) :: g2up(np),g2dn(np) real(8), intent(out) :: gvup(np,3),gvdn(np,3) real(8), intent(out) :: gup2(np),gdn2(np),gupdn(np) ! local variables integer nr,nri,i ! automatic arrays real(8) rfmt1(np),rfmt2(np),grfmt(np,3) nr=nrmt(is) nri=nrmti(is) !----------------! ! rho up ! !----------------! ! convert rhoup to spherical harmonics call rfsht(nr,nri,rhoup,rfmt1) ! compute grad^2 rhoup in spherical coordinates call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) call rbsht(nr,nri,rfmt2,g2up) ! grad rhoup in spherical coordinates call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) do i=1,3 call rbsht(nr,nri,grfmt(:,i),gvup(:,i)) end do ! (grad rhoup)^2 gup2(1:np)=gvup(1:np,1)**2+gvup(1:np,2)**2+gvup(1:np,3)**2 !------------------! ! rho down ! !------------------! ! convert rhodn to spherical harmonics call rfsht(nr,nri,rhodn,rfmt1) ! compute grad^2 rhodn in spherical coordinates call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt1,rfmt2) call rbsht(nr,nri,rfmt2,g2dn) ! grad rhodn in spherical coordinates call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) do i=1,3 call rbsht(nr,nri,grfmt(:,i),gvdn(:,i)) end do ! (grad rhodn)^2 gdn2(1:np)=gvdn(1:np,1)**2+gvdn(1:np,2)**2+gvdn(1:np,3)**2 ! (grad rhoup).(grad rhodn) gupdn(1:np)=gvup(1:np,1)*gvdn(1:np,1) & +gvup(1:np,2)*gvdn(1:np,2) & +gvup(1:np,3)*gvdn(1:np,3) end subroutine !EOC elk-10.4.9/src/PaxHeaders/ggair_sp_2a.f900000644000000000000000000000013214762655564014746 xustar0030 mtime=1741380468.744009903 30 atime=1741380466.972000639 30 ctime=1741380468.744009903 elk-10.4.9/src/ggair_sp_2a.f900000644002504400250440000000464114762655564017475 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggair_sp_2a ! !INTERFACE: subroutine ggair_sp_2a(rhoup,rhodn,g2up,g2dn,gvup,gvdn,gup2,gdn2,gupdn) ! !USES: use modmain ! !DESCRIPTION: ! Computes the interstitial gradients $\nabla^2\rho^{\uparrow}$, ! $\nabla^2\rho^{\downarrow}$, $\nabla\rho^{\uparrow}$, ! $\nabla\rho^{\downarrow}$, $(\nabla\rho^{\uparrow})^2$, ! $(\nabla\rho^{\downarrow})^2$ and ! $\nabla\rho^{\uparrow}\cdot\nabla\rho^{\downarrow}$. These are used for GGA ! functionals of type 2 and meta-GGA. See {\tt ggamt\_sp\_2a} for details. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rhoup(ngtot),rhodn(ngtot) real(8), intent(out) :: g2up(ngtot),g2dn(ngtot) real(8), intent(out) :: gvup(ngtot,3),gvdn(ngtot,3) real(8), intent(out) :: gup2(ngtot),gdn2(ngtot),gupdn(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays complex(8), allocatable :: zfft1(:),zfft2(:) allocate(zfft1(nfgrz),zfft2(nfgrz)) !----------------! ! rho up ! !----------------! call rzfftifc(3,ngridg,-1,rhoup,zfft1) ! compute grad^2 rhoup do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=-(gc(ig)**2)*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,g2up,zfft2) ! grad rhoup do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,gvup(:,i),zfft2) end do ! (grad rhoup)^2 gup2(:)=gvup(:,1)**2+gvup(:,2)**2+gvup(:,3)**2 !------------------! ! rho down ! !------------------! call rzfftifc(3,ngridg,-1,rhodn,zfft1) ! compute grad^2 rhodn do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=-(gc(ig)**2)*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,g2dn,zfft2) ! grad rhodn do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do call rzfftifc(3,ngridg,1,gvdn(:,i),zfft2) end do ! (grad rhodn)^2 gdn2(:)=gvdn(:,1)**2+gvdn(:,2)**2+gvdn(:,3)**2 ! (grad rhoup).(grad rhodn) gupdn(:)=gvup(:,1)*gvdn(:,1)+gvup(:,2)*gvdn(:,2)+gvup(:,3)*gvdn(:,3) deallocate(zfft1,zfft2) end subroutine !EOC elk-10.4.9/src/PaxHeaders/ggamt_sp_2b.f900000644000000000000000000000013214762655564014755 xustar0030 mtime=1741380468.746009913 30 atime=1741380466.974000649 30 ctime=1741380468.746009913 elk-10.4.9/src/ggamt_sp_2b.f900000644002504400250440000000706414762655564017506 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggamt_sp_2b ! !INTERFACE: subroutine ggamt_sp_2b(is,np,g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2, & dxdgd2,dxdgud,dcdgu2,dcdgd2,dcdgud) ! !USES: use modmain ! !DESCRIPTION: ! Post processing step of muffin-tin gradients for GGA type 2. See routine ! {\tt ggamt\_sp\_2a} for full details. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,np real(8), intent(in) :: g2up(np),g2dn(np) real(8), intent(in) :: gvup(np,3),gvdn(np,3) real(8), intent(inout) :: vxup(np),vxdn(np) real(8), intent(inout) :: vcup(np),vcdn(np) real(8), intent(in) :: dxdgu2(np),dxdgd2(np),dxdgud(np) real(8), intent(in) :: dcdgu2(np),dcdgd2(np),dcdgud(np) ! local variables integer nr,nri,i ! automatic arrays real(8) rfmt1(np),rfmt2(np),grfmt(np,3) nr=nrmt(is) nri=nrmti(is) !------------------! ! exchange ! !------------------! ! convert dxdgu2 to spherical harmonics call rfsht(nr,nri,dxdgu2,rfmt1) ! compute grad dxdgu2 call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dxdgu2).(grad rhoup) in spherical coordinates rfmt1(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) rfmt1(1:np)=rfmt1(1:np)+rfmt2(1:np)*gvup(1:np,i) end do vxup(1:np)=vxup(1:np)-2.d0*(rfmt1(1:np)+dxdgu2(1:np)*g2up(1:np)) & -dxdgud(1:np)*g2dn(1:np) ! convert dxdgd2 to spherical harmonics call rfsht(nr,nri,dxdgd2,rfmt1) ! compute grad dxdgd2 call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dxdgd2).(grad rhodn) in spherical coordinates rfmt1(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) rfmt1(1:np)=rfmt1(1:np)+rfmt2(1:np)*gvdn(1:np,i) end do vxdn(1:np)=vxdn(1:np)-2.d0*(rfmt1(1:np)+dxdgd2(1:np)*g2dn(1:np)) & -dxdgud(1:np)*g2up(1:np) ! convert dxdgud to spherical harmonics call rfsht(nr,nri,dxdgud,rfmt1) ! compute grad dxdgud call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dxdgud).(grad rhodn) and (grad dxdgud).(grad rhoup) do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt1) vxup(1:np)=vxup(1:np)-rfmt1(1:np)*gvdn(1:np,i) vxdn(1:np)=vxdn(1:np)-rfmt1(1:np)*gvup(1:np,i) end do !---------------------! ! correlation ! !---------------------! ! convert dcdgu2 to spherical harmonics call rfsht(nr,nri,dcdgu2,rfmt1) ! compute grad dcdgu2 call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dcdgu2).(grad rhoup) in spherical coordinates rfmt1(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) rfmt1(1:np)=rfmt1(1:np)+rfmt2(1:np)*gvup(1:np,i) end do vcup(1:np)=vcup(1:np)-2.d0*(rfmt1(1:np)+dcdgu2(1:np)*g2up(1:np)) & -dcdgud(1:np)*g2dn(1:np) ! convert dcdgd2 to spherical harmonics call rfsht(nr,nri,dcdgd2,rfmt1) ! compute grad dcdgd2 call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dcdgd2).(grad rhodn) in spherical coordinates rfmt1(1:np)=0.d0 do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt2) rfmt1(1:np)=rfmt1(1:np)+rfmt2(1:np)*gvdn(1:np,i) end do vcdn(1:np)=vcdn(1:np)-2.d0*(rfmt1(1:np)+dcdgd2(1:np)*g2dn(1:np)) & -dcdgud(1:np)*g2up(1:np) ! convert dcdgud to spherical harmonics call rfsht(nr,nri,dcdgud,rfmt1) ! compute grad dcdgud call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt1,np,grfmt) ! (grad dcdgud).(grad rhodn) and (grad dcdgud).(grad rhoup) do i=1,3 call rbsht(nr,nri,grfmt(:,i),rfmt1) vcup(1:np)=vcup(1:np)-rfmt1(1:np)*gvdn(1:np,i) vcdn(1:np)=vcdn(1:np)-rfmt1(1:np)*gvup(1:np,i) end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/ggair_sp_2b.f900000644000000000000000000000013214762655564014747 xustar0030 mtime=1741380468.747009918 30 atime=1741380466.977000665 30 ctime=1741380468.747009918 elk-10.4.9/src/ggair_sp_2b.f900000644002504400250440000000647014762655564017500 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: ggair_sp_2b ! !INTERFACE: subroutine ggair_sp_2b(g2up,g2dn,gvup,gvdn,vxup,vxdn,vcup,vcdn,dxdgu2,dxdgd2, & dxdgud,dcdgu2,dcdgd2,dcdgud) ! !USES: use modmain ! !DESCRIPTION: ! Post processing step of interstitial gradients for GGA type 2. See routine ! {\tt ggamt\_sp\_2a} for full details. ! ! !REVISION HISTORY: ! Created November 2009 (JKD and TMcQ) !EOP !BOC implicit none real(8), intent(in) :: g2up(ngtot),g2dn(ngtot) real(8), intent(in) :: gvup(ngtot,3),gvdn(ngtot,3) real(8), intent(inout) :: vxup(ngtot),vxdn(ngtot) real(8), intent(inout) :: vcup(ngtot),vcdn(ngtot) real(8), intent(in) :: dxdgu2(ngtot),dxdgd2(ngtot),dxdgud(ngtot) real(8), intent(in) :: dcdgu2(ngtot),dcdgd2(ngtot),dcdgud(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays real(8), allocatable :: rfir1(:),rfir2(:) complex(8), allocatable :: zfft1(:),zfft2(:) allocate(rfir1(ngtot),rfir2(ngtot)) allocate(zfft1(nfgrz),zfft2(nfgrz)) !------------------! ! exchange ! !------------------! ! compute grad dxdgu2 call rzfftifc(3,ngridg,-1,dxdgu2,zfft1) ! (grad dxdgu2).(grad rhoup) rfir1(:)=0.d0 do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) end do call rzfftifc(3,ngridg,1,rfir2,zfft2) rfir1(:)=rfir1(:)+rfir2(:)*gvup(:,i) end do vxup(:)=vxup(:)-2.d0*(rfir1(:)+dxdgu2(:)*g2up(:))-dxdgud(:)*g2dn(:) ! compute grad dxdgd2 call rzfftifc(3,ngridg,-1,dxdgd2,zfft1) ! (grad dxdgd2).(grad rhodn) rfir1(:)=0.d0 do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) end do call rzfftifc(3,ngridg,1,rfir2,zfft2) rfir1(:)=rfir1(:)+rfir2(:)*gvdn(:,i) end do vxdn(:)=vxdn(:)-2.d0*(rfir1(:)+dxdgd2(:)*g2dn(:))-dxdgud(:)*g2up(:) ! compute grad dxdgud call rzfftifc(3,ngridg,-1,dxdgud,zfft1) ! (grad dxdgud).(grad rhodn) and (grad dxdgud).(grad rhoup) do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) end do call rzfftifc(3,ngridg,1,rfir2,zfft2) vxup(:)=vxup(:)-rfir2(:)*gvdn(:,i) vxdn(:)=vxdn(:)-rfir2(:)*gvup(:,i) end do !---------------------! ! correlation ! !---------------------! ! compute grad dcdgu2 call rzfftifc(3,ngridg,-1,dcdgu2,zfft1) ! (grad dcdgu2).(grad rhoup) rfir1(:)=0.d0 do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) end do call rzfftifc(3,ngridg,1,rfir2,zfft2) rfir1(:)=rfir1(:)+rfir2(:)*gvup(:,i) end do vcup(:)=vcup(:)-2.d0*(rfir1(:)+dcdgu2(:)*g2up(:))-dcdgud(:)*g2dn(:) ! compute grad dcdgd2 call rzfftifc(3,ngridg,-1,dcdgd2,zfft1) ! (grad dcdgd2).(grad rhodn) rfir1(:)=0.d0 do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) end do call rzfftifc(3,ngridg,1,rfir2,zfft2) rfir1(:)=rfir1(:)+rfir2(:)*gvdn(:,i) end do vcdn(:)=vcdn(:)-2.d0*(rfir1(:)+dcdgd2(:)*g2dn(:))-dcdgud(:)*g2up(:) ! compute grad dcdgud call rzfftifc(3,ngridg,-1,dcdgud,zfft1) ! (grad dcdgud).(grad rhodn) and (grad dcdgud).(grad rhoup) do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) end do call rzfftifc(3,ngridg,1,rfir2,zfft2) vcup(:)=vcup(:)-rfir2(:)*gvdn(:,i) vcdn(:)=vcdn(:)-rfir2(:)*gvup(:,i) end do deallocate(rfir1,rfir2,zfft1,zfft2) end subroutine !EOC elk-10.4.9/src/PaxHeaders/writeemd.f900000644000000000000000000000013214762655564014411 xustar0030 mtime=1741380468.749009929 30 atime=1741380466.980000681 30 ctime=1741380468.749009929 elk-10.4.9/src/writeemd.f900000644002504400250440000000515514762655564017141 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 S. Dugdale, D. Ernsting and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeemd use modmain use modpw use modmpi use modomp use moddelf implicit none ! local variables integer ik,ihk,recl integer ist,ispn,nthd real(8) sm,t1 complex(8) z1 ! allocatable arrays real(8), allocatable :: emd(:) complex(8), allocatable :: wfpw(:,:,:) if (spinsprl) then write(*,*) write(*,'("Error(writeemd): electron momentum density not available for & &spin-spirals")') write(*,*) stop end if ! initialise universal variables call init0 call init1 call init4 ! read density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the occupation numbers from file do ik=1,nkpt call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! delete existing EMD.OUT if (mp_mpi) call delfile('EMD.OUT') ! synchronise MPI processes call mpi_barrier(mpicom,ierror) allocate(emd(nhkmax)) inquire(iolength=recl) vkl(:,1),nhkmax,emd deallocate(emd) open(250,file='EMD.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) ! loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(emd,wfpw,ihk,sm) & !$OMP PRIVATE(ist,ispn,z1,t1) & !$OMP NUM_THREADS(nthd) allocate(emd(nhkmax),wfpw(nhkmax,nspinor,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(writeemd_) write(*,'("Info(writeemd): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(writeemd_) ! Fourier transform the wavefunctions call genwfpw(vkl(:,ik),ngk(1,ik),igkig(:,1,ik),vgkl(:,:,1,ik), & vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),nhk(1,ik),vhkc(:,:,1,ik), & hkc(:,1,ik),sfachk(:,:,1,ik),wfpw) ! loop over all H+k-vectors do ihk=1,nhk(1,ik) ! sum over occupied states and spins sm=0.d0 do ist=1,nstsv do ispn=1,nspinor z1=wfpw(ihk,ispn,ist) t1=dble(z1)**2+aimag(z1)**2 sm=sm+occsv(ist,ik)*t1 end do end do emd(ihk)=sm end do !$OMP CRITICAL(u250) write(250,rec=ik) vkl(:,ik),nhk(1,ik),emd !$OMP END CRITICAL(u250) end do !$OMP END DO deallocate(emd,wfpw) !$OMP END PARALLEL call freethd(nthd) close(250) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) then write(*,*) write(*,'("Info(writeemd): electron momentum density written to EMD.OUT")') write(*,'(" for all H+k-vectors up to |H+k| < hkmax")') end if end subroutine elk-10.4.9/src/PaxHeaders/reademd.f900000644000000000000000000000013214762655564014172 xustar0030 mtime=1741380468.750009934 30 atime=1741380466.982000691 30 ctime=1741380468.750009934 elk-10.4.9/src/reademd.f900000644002504400250440000000262614762655564016722 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 D. Ernsting, S. Dugdale and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine reademd(emds) use modmain use modpw use modtest implicit none ! arguments real(4), intent(out) :: emds(nhkmax,nkpt) ! local variables integer ik,recl,nhk_ real(8) vkl_(3),t1 ! allocatable arrays real(8), allocatable :: emd(:) allocate(emd(nhkmax)) ! find the record length inquire(iolength=recl) vkl_,nhk_,emd open(250,file='EMD.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) do ik=1,nkpt read(250,rec=ik) vkl_,nhk_,emd t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(reademd): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EMD.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nhk(1,ik) /= nhk_) then write(*,*) write(*,'("Error(reademd): differing nhk for k-point ",I8)') ik write(*,'(" current : ",I8)') nhk(1,ik) write(*,'(" EMD.OUT : ",I8)') nhk_ write(*,*) stop end if ! store momentum density in single-precision array emds(:,ik)=real(emd(:)) end do close(250) ! write the EMD of the last k-point to test file if required call writetest(170,'electron momentum density',nv=nhkmax,tol=1.d-4,rva=emd) deallocate(emd) end subroutine elk-10.4.9/src/PaxHeaders/emdplot.f900000644000000000000000000000013214762655564014235 xustar0030 mtime=1741380468.751009939 30 atime=1741380466.985000707 30 ctime=1741380468.751009939 elk-10.4.9/src/emdplot.f900000644002504400250440000000216014762655564016756 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 D. Ernsting, S. Dugdale and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine emdplot use modmain use modpw implicit none ! local variables real(8) t1 ! allocatable arrays real(4), allocatable :: emds(:,:) t1=sum(abs(vkloff(:))) if (t1 > epslat) then write(*,*) write(*,'("Error(emdplot): use vkloff = 0 for the ground-state run")') write(*,*) stop end if ! initialise universal variables call init0 call init1 call init4 ! read in the electron momentum density allocate(emds(nhkmax,nkpt)) call reademd(emds) ! write the density plot to file select case(task) case(171) call emdplot1d(emds) write(*,*) write(*,'("Info(emdplot): 1D electron momentum density written to & &EMD1D.OUT")') case(172) call emdplot2d(emds) write(*,*) write(*,'("Info(emdplot): 2D electron momentum density written to & &EMD2D.OUT")') case(173) call emdplot3d(emds) write(*,*) write(*,'("Info(emdplot): 3D electron momentum density written to & &EMD3D.OUT")') end select deallocate(emds) end subroutine elk-10.4.9/src/PaxHeaders/init3.f900000644000000000000000000000013214762655564013617 xustar0030 mtime=1741380468.752009944 30 atime=1741380466.987000717 30 ctime=1741380468.752009944 elk-10.4.9/src/init3.f900000644002504400250440000000303214762655564016337 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine init3 use modmain use modgw use modtddft use modvars use modmpi implicit none ! local variables integer ig,iw real(8) w1,w2,t1,t2 !-------------------------------------------------------------! ! response function and perturbation theory variables ! !-------------------------------------------------------------! ! G-vectors for response functions ngrf=1 do ig=2,ngvec if (gc(ig) > gmaxrf) then ngrf=ig-1 exit end if end do ngrf=min(ngrf,ngvc) ! write the G-vectors to file if (mp_mpi) call writegvecrf ! frequencies for reponse functions nwrf=1 if (allocated(wrf)) deallocate(wrf) if (any(task == [320,330,331])) then nwrf=nwplot allocate(wrf(nwrf)) w1=wplot(1) w2=max(wplot(2),w1) t1=(w2-w1)/dble(nwplot) do iw=1,nwplot t2=w1+t1*dble(iw-1) wrf(iw)=cmplx(t2,swidth,8) end do ! set the first frequency to zero for the bootstrap functional if ((fxctype(1) == 210).or.(fxctype(1) == 211)) then wrf(1)=cmplx(0.d0,swidth,8) end if else if (any(task == [600,610,620,640]).or.ksgwrho) then ! GW Matsubara frequencies call genwgw else nwrf=1 allocate(wrf(nwrf)) wrf(1)=cmplx(0.d0,swidth,8) end if ! write to VARIABLES.OUT if (wrtvars) then call writevars('gmaxrf',rv=gmaxrf) call writevars('ngrf',iv=ngrf) call writevars('nwrf',iv=nwrf) call writevars('wrf',nv=nwrf,zva=wrf) end if end subroutine elk-10.4.9/src/PaxHeaders/init4.f900000644000000000000000000000013214762655564013620 xustar0030 mtime=1741380468.754009955 30 atime=1741380466.990000733 30 ctime=1741380468.754009955 elk-10.4.9/src/init4.f900000644002504400250440000001423614762655564016350 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine init4 use modmain use modphonon use modpw use modvars implicit none ! local variables integer ik,jspn,n,i integer l1,l2,l3,m1,m2,m3 integer lm1,lm2,lm3 real(8) vl(3),vc(3) ! external functions real(8), external :: gaunt !---------------------------! ! H+k-vector arrays ! !---------------------------! if (any(task == [135,170,171,172,173])) then if (task == 135) hkmax=0.5d0*gmaxvr-epslat call findngkmax(nkpt,vkc,nspnfv,vqcss,ngvec,vgc,hkmax,nhkmax) ! allocate the H+k-vector arrays if (allocated(nhk)) deallocate(nhk) allocate(nhk(nspnfv,nkpt)) if (allocated(ihkig)) deallocate(ihkig) allocate(ihkig(nhkmax,nspnfv,nkpt)) if (allocated(vhkl)) deallocate(vhkl) allocate(vhkl(3,nhkmax,nspnfv,nkpt)) if (allocated(vhkc)) deallocate(vhkc) allocate(vhkc(3,nhkmax,nspnfv,nkpt)) if (allocated(hkc)) deallocate(hkc) allocate(hkc(nhkmax,nspnfv,nkpt)) if (allocated(sfachk)) deallocate(sfachk) allocate(sfachk(nhkmax,natmtot,nspnfv,nkpt)) ! initialise H+k-vectors arrays do ik=1,nkpt do jspn=1,nspnfv vl(:)=vkl(:,ik) vc(:)=vkc(:,ik) ! spin-spiral case if (spinsprl) then if (jspn == 1) then vl(:)=vl(:)+0.5d0*vqlss(:) vc(:)=vc(:)+0.5d0*vqcss(:) else vl(:)=vl(:)-0.5d0*vqlss(:) vc(:)=vc(:)-0.5d0*vqcss(:) end if end if ! generate the H+k-vectors call gengkvec(ngvec,ivg,vgc,vl,vc,hkmax,nhkmax,nhk(jspn,ik), & ihkig(:,jspn,ik),vhkl(:,:,jspn,ik),vhkc(:,:,jspn,ik),hkc(:,jspn,ik)) ! generate structure factors for H+k-vectors call gensfacgp(nhk(jspn,ik),vhkc(:,:,jspn,ik),nhkmax,sfachk(:,:,jspn,ik)) end do end do ! write to VARIABLES.OUT if (wrtvars) then call writevars('hkmax',rv=hkmax) call writevars('nhk',nv=nspnfv*nkpt,iva=nhk) do ik=1,nkpt do jspn=1,nspnfv call writevars('ihkig',n1=jspn,n2=ik,nv=nhk(jspn,ik), & iva=ihkig(:,jspn,ik)) end do end do end if end if !-----------------------------! ! G+k+q-vector arrays ! !-----------------------------! if (task == 205) then if (allocated(vkql)) deallocate(vkql) allocate(vkql(3,nkptnr)) if (allocated(vkqc)) deallocate(vkqc) allocate(vkqc(3,nkptnr)) if (allocated(ngkq)) deallocate(ngkq) allocate(ngkq(nspnfv,nkptnr)) if (allocated(igkqig)) deallocate(igkqig) allocate(igkqig(ngkmax,nspnfv,nkptnr)) if (allocated(vgkql)) deallocate(vgkql) allocate(vgkql(3,ngkmax,nspnfv,nkptnr)) if (allocated(vgkqc)) deallocate(vgkqc) allocate(vgkqc(3,ngkmax,nspnfv,nkptnr)) if (allocated(gkqc)) deallocate(gkqc) allocate(gkqc(ngkmax,nspnfv,nkptnr)) if (allocated(sfacgkq)) deallocate(sfacgkq) allocate(sfacgkq(ngkmax,natmtot,nspnfv,nkptnr)) end if !---------------------------! ! G+q-vector arrays ! !---------------------------! if (task == 205) then if (allocated(vgqc)) deallocate(vgqc) allocate(vgqc(3,ngvec)) if (allocated(gqc)) deallocate(gqc) allocate(gqc(ngvec)) if (allocated(gclgq)) deallocate(gclgq) allocate(gclgq(ngvec)) if (allocated(jlgqrmt)) deallocate(jlgqrmt) allocate(jlgqrmt(0:lnpsd,ngvec,nspecies)) if (allocated(ylmgq)) deallocate(ylmgq) allocate(ylmgq(lmmaxo,ngvec)) if (allocated(sfacgq)) deallocate(sfacgq) allocate(sfacgq(ngvec,natmtot)) if (allocated(ffacgq)) deallocate(ffacgq) allocate(ffacgq(ngvec,nspecies)) if (allocated(dcfunig)) deallocate(dcfunig) allocate(dcfunig(ngvec)) if (allocated(dcfunir)) deallocate(dcfunir) allocate(dcfunir(ngtot)) end if !-----------------------------------------------------------------! ! phonon density functional perturbation theory variables ! !-----------------------------------------------------------------! if (task == 205) then if (allocated(drhomt)) deallocate(drhomt) allocate(drhomt(npmtmax,natmtot+1)) if (allocated(drhoir)) deallocate(drhoir) allocate(drhoir(ngtot)) if (allocated(dmagmt)) deallocate(dmagmt) if (allocated(dmagir)) deallocate(dmagir) if (spinpol) then allocate(dmagmt(npmtmax,natmtot,ndmag)) allocate(dmagir(ngtot,ndmag)) end if if (allocated(dvclmt)) deallocate(dvclmt) allocate(dvclmt(npmtmax,natmtot)) if (allocated(dvclir)) deallocate(dvclir) allocate(dvclir(ngtot)) if (allocated(gvsmt)) deallocate(gvsmt) allocate(gvsmt(npmtmax)) ! combined target array for Kohn-Sham potential and magnetic field derivative if (allocated(dvsbs)) deallocate(dvsbs) n=npmtmax*natmtot+ngvc if (spinpol) n=n+(npcmtmax*natmtot+ngtot)*ndmag allocate(dvsbs(n)) ! zero the array dvsbs(:)=0.d0 ! associate pointer arrays with target dvsmt(1:npmtmax,1:natmtot) => dvsbs(1:) i=npmtmax*natmtot+1 dvsig(1:ngvc) => dvsbs(i:) if (spinpol) then i=i+ngvc dbsmt(1:npcmtmax,1:natmtot,1:ndmag) => dvsbs(i:) i=i+npcmtmax*natmtot*ndmag dbsir(1:ngtot,1:ndmag) => dvsbs(i:) end if if (allocated(dvsir)) deallocate(dvsir) allocate(dvsir(ngtot)) if (allocated(dsocfr)) deallocate(dsocfr) if (spinorb) then allocate(dsocfr(nrcmtmax,natmtot)) end if if (allocated(dhaa)) deallocate(dhaa) allocate(dhaa(lmmaxo,apwordmax,0:lmaxapw,apwordmax,0:lmaxapw,natmtot)) if (allocated(dhloa)) deallocate(dhloa) allocate(dhloa(lmmaxo,apwordmax,0:lmaxapw,nlomax,natmtot)) if (allocated(dhlolo)) deallocate(dhlolo) allocate(dhlolo(lmmaxo,nlomax,nlomax,natmtot)) ! allocate and generate real Gaunt coefficient array if (allocated(gntyyy)) deallocate(gntyyy) allocate(gntyyy(lmmaxo,lmmaxapw,lmmaxapw)) do l1=0,lmaxapw do m1=-l1,l1 lm1=l1*(l1+1)+m1+1 do l3=0,lmaxapw do m3=-l3,l3 lm3=l3*(l3+1)+m3+1 do l2=0,lmaxo do m2=-l2,l2 lm2=l2*(l2+1)+m2+1 gntyyy(lm2,lm3,lm1)=gaunt(l1,l2,l3,m1,m2,m3) end do end do end do end do end do end do if (allocated(devalfv)) deallocate(devalfv) allocate(devalfv(nstfv,nspnfv,nkptnr)) if (allocated(devalsv)) deallocate(devalsv) allocate(devalsv(nstsv,nkptnr)) if (allocated(doccsv)) deallocate(doccsv) allocate(doccsv(nstsv,nkptnr)) end if end subroutine elk-10.4.9/src/PaxHeaders/bfieldfsm.f900000644000000000000000000000013014762655564014522 xustar0029 mtime=1741380468.75500996 30 atime=1741380466.992000743 29 ctime=1741380468.75500996 elk-10.4.9/src/bfieldfsm.f900000644002504400250440000000436214762655564017253 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: bfieldfsm ! !INTERFACE: subroutine bfieldfsm ! !USES: use modmain ! !DESCRIPTION: ! Updates the effective magnetic field, ${\bf B}_{\rm FSM}$, required for ! fixing the spin moment to a given value, ${\bf M}_{\rm FSM}$. This is done ! by adding a vector to the field which is proportional to the difference ! between the moment calculated in the $i$th self-consistent loop and the ! required moment: ! $$ {\bf B}_{\rm FSM}^{i+1}={\bf B}_{\rm FSM}^i+\lambda\left({\bf M}^i ! -{\bf M}_{\rm FSM}\right), $$ ! where $\lambda$ is a scaling factor. ! ! !REVISION HISTORY: ! Created March 2005 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ias real(8) v1(3),v2(3),t1 if ((.not.spinpol).or.(fsmtype == 0)) return ! fixed spin direction not valid for collinear magnetism if ((.not.ncmag).and.(fsmtype < 0)) return ! determine the global effective field if ((abs(fsmtype) == 1).or.(abs(fsmtype) == 3)) then if (ncmag) then v1(:)=momtot(:) else v1(:)=0.d0 v1(3)=momtot(1) end if v2(:)=v1(:)-momfix(:) if (ncmag) then bfsmc(:)=bfsmc(:)+taufsm*v2(:) else bfsmc(1)=bfsmc(1)+taufsm*v2(3) end if ! make sure that the constraining field is perpendicular to the fixed moment ! for fixed direction calculations (Y. Kvashnin and LN) if (fsmtype < 0) call r3vo(momfix,bfsmc) end if if ((abs(fsmtype) == 2).or.(abs(fsmtype) == 3)) then ! determine the muffin-tin fields for fixed local moments do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! if any component is >= 1000 then do not fix the moment t1=sum(abs(mommtfix(:,ia,is))) if (t1 >= 1000.d0) cycle if (ncmag) then v1(:)=mommt(:,ias) else v1(:)=0.d0 v1(3)=mommt(1,ias) end if v2(:)=v1(:)-mommtfix(:,ia,is) if (ncmag) then bfsmcmt(:,ias)=bfsmcmt(:,ias)+taufsm*v2(:) else bfsmcmt(1,ias)=bfsmcmt(1,ias)+taufsm*v2(3) end if ! fixed spin direction if (fsmtype < 0) call r3vo(mommtfix(:,ia,is),bfsmcmt(:,ias)) end do end do end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/testcheck.f900000644000000000000000000000013214762655564014546 xustar0030 mtime=1741380468.757009971 30 atime=1741380466.995000759 30 ctime=1741380468.757009971 elk-10.4.9/src/testcheck.f900000644002504400250440000001127114762655564017272 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine testcheck implicit none ! local variables logical exist integer i,j,k,n integer nv_,nv,vt_,vt,iv_,iv real(8) rv_,rv,a,b real(8) tol,t1,t2 complex(8) zv_,zv character(256) fname_,fname,descr n=0 do i=0,999 write(fname_,'("TEST_",I3.3,".OUT_")') i inquire(file=trim(fname_),exist=exist) if (exist) then write(fname,'("TEST_",I3.3,".OUT")') i inquire(file=trim(fname),exist=exist) if (.not.exist) then write(*,*) write(*,'("Error(testcheck): file ",A," does not exist")') trim(fname) write(*,*) error stop end if open(91,file=trim(fname_),form='FORMATTED') open(92,file=trim(fname),form='FORMATTED') read(91,*,err=10) descr read(92,*,err=20) descr read(91,*,err=10) vt_,nv_ read(92,*,err=20) vt,nv if (vt_ /= vt) then write(*,*) write(*,'("Error(testcheck): differing variable type")') write(*,'(" for quantity ''",A,"''")') trim(descr) write(*,'(" ",A," : ",I8)') trim(fname_),vt_ write(*,'(" ",A," : ",I8)') trim(fname),vt write(*,*) error stop end if if (nv_ /= nv) then write(*,*) write(*,'("Error(testcheck): differing number of variables")') write(*,'(" for quantity ''",A,"''")') trim(descr) write(*,'(" ",A," : ",I8)') trim(fname_),nv_ write(*,'(" ",A," : ",I8)') trim(fname),nv write(*,*) error stop end if if (nv < 1) then write(*,*) write(*,'("Error(testcheck): nv < 1 : ",I8)') nv write(*,*) error stop end if if (vt == 1) then ! integer variables do j=1,nv read(91,*,err=10) k,iv_ if (j /= k) goto 10 read(92,*,err=20) k,iv if (j /= k) goto 20 if (iv /= iv_) then write(*,*) write(*,'("Error(testcheck): variable ",I8," is different")') j write(*,'(" for quantity ''",A,"''")') trim(descr) write(*,'(" ",A," : ",I8)') trim(fname_),iv_ write(*,'(" ",A," : ",I8)') trim(fname),iv write(*,*) error stop end if end do else if (vt == 2) then ! real variables read(91,*,err=10) tol read(92,*,err=20) tol do j=1,nv read(91,*,err=10) k,rv_ if (j /= k) goto 10 read(92,*,err=20) k,rv if (j /= k) goto 20 t1=abs(rv_-rv) t2=abs(rv_)*tol if ((t1 > t2).and.(abs(rv_) > 1.d-4)) then write(*,*) write(*,'("Error(testcheck): variable ",I8," outside tolerance")') j write(*,'(" for quantity ''",A,"''")') trim(descr) write(*,'(" ",A," (correct value)",T40," : ",G22.12)') trim(fname_), & rv_ write(*,'(" ",A,T40," : ",G22.12)') trim(fname),rv write(*,'(" absolute difference",T40," : ",G22.12)') t1 write(*,'(" required relative tolerance",T40," : ",G22.12)') tol write(*,'(" required absolute tolerance",T40," : ",G22.12)') t2 write(*,*) error stop end if end do else if (vt == 3) then ! complex variables read(91,*,err=10) tol read(92,*,err=20) tol do j=1,nv read(91,*,err=10) k,a,b zv_=cmplx(a,b,8) if (j /= k) goto 10 read(92,*,err=20) k,a,b zv=cmplx(a,b,8) if (j /= k) goto 20 t1=abs(zv_-zv) t2=abs(zv_)*tol if ((t1 > t2).and.(abs(zv_) > 1.d-4)) then write(*,*) write(*,'("Error(testcheck): variable ",I8," outside tolerance")') j write(*,'(" for quantity ''",A,"''")') trim(descr) write(*,'(" ",A," (correct value)",T40," : ",2G22.12)') & trim(fname_),zv_ write(*,'(" ",A,T40," : ",2G22.12)') trim(fname),zv write(*,'(" difference",T40," : ",G22.12)') t1 write(*,'(" required relative tolerance",T40," : ",G22.12)') tol write(*,'(" required absolute tolerance",T40," : ",G22.12)') t2 write(*,*) error stop end if end do else write(*,*) write(*,'("Error(testcheck): variable type not defined : ",I8)') vt write(*,*) error stop end if close(91) close(92) n=n+1 end if end do if (n == 0) then write(*,*) write(*,'("Warning(testcheck): no tests found")') else write(*,*) write(*,'("Info(testcheck): passed all tests")') end if return 10 continue write(*,*) write(*,'("Error(testcheck): error reading from ",A)') trim(fname_) write(*,*) error stop 20 continue write(*,*) write(*,'("Error(testcheck): error reading from ",A)') trim(fname) write(*,*) error stop end subroutine elk-10.4.9/src/PaxHeaders/pade.f900000644000000000000000000000013214762655564013502 xustar0030 mtime=1741380468.758009976 30 atime=1741380466.998000775 30 ctime=1741380468.758009976 elk-10.4.9/src/pade.f900000644002504400250440000000444414762655564016232 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) A. Sanna and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: pade ! !INTERFACE: pure subroutine pade(ni,zi,ui,no,zo,uo) ! !INPUT/OUTPUT PARAMETERS: ! ni : number of input points (in,integer) ! zi : input points (in,complex(ni)) ! ui : input function values (in,complex(ni)) ! no : number of output points (in,integer) ! zo : output points (in,complex(no)) ! uo : output function values (out,complex(no)) ! !DESCRIPTION: ! Calculates a Pad\'{e} approximant of a function, given the function ! evaluated on a set of points in the complex plane. The function is returned ! for a set of complex output points. The algorithm from H. J. Vidberg and ! J. W. Serene {\it J. Low Temp. Phys.} {\bf 29}, 179 (1977) is used. ! ! !REVISION HISTORY: ! Created December 2010 (Antonio Sanna) !EOP !BOC implicit none ! arguments integer, intent(in) :: ni complex(8), intent(in) :: zi(ni),ui(ni) integer, intent(in) :: no complex(8), intent(in) :: zo(no) complex(8), intent(out) :: uo(no) ! local variables integer i,i0,i1,j real(8) t1 complex(8) a0,a1,b0,b1,z1,z2 ! automatic arrays complex(8) g(0:1,ni),gd(ni) ! define the g functions using Eq. (A2) g(0,1:ni)=ui(1:ni) gd(1)=ui(1) do i=2,ni i0=mod(i-2,2) i1=mod(i-1,2) do j=i,ni z1=(zi(j)-zi(i-1))*g(i0,j) t1=abs(dble(z1))+abs(aimag(z1)) if (t1 > 1.d-14) then g(i1,j)=(g(i0,i-1)-g(i0,j))/z1 else g(i1,j)=0.d0 end if end do ! store diagonal elements gd(i)=g(i1,i) end do ! loop over output points do i=1,no ! use recursive algorithm in Eq. (A3) to evaluate function a0=0.d0 a1=gd(1) b0=1.d0 b1=1.d0 do j=2,ni z1=(zo(i)-zi(j-1))*gd(j) z2=a1+z1*a0 a0=a1 a1=z2 z2=b1+z1*b0 b0=b1 b1=z2 ! check for overflow and rescale if ((abs(dble(a1)) > 1.d100).or.(abs(aimag(a1)) > 1.d100)) then t1=1.d0/abs(a1) a0=a0*t1 b0=b0*t1 a1=a1*t1 b1=b1*t1 end if if ((abs(dble(b1)) > 1.d100).or.(abs(aimag(b1)) > 1.d100)) then t1=1.d0/abs(b1) a0=a0*t1 b0=b0*t1 a1=a1*t1 b1=b1*t1 end if end do t1=abs(dble(b1))+abs(aimag(b1)) if (t1 >= 1.d-14) then uo(i)=a1/b1 else uo(i)=0.d0 end if end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/wsplint.f900000644000000000000000000000013214762655564014271 xustar0030 mtime=1741380468.759009981 30 atime=1741380467.000000785 30 ctime=1741380468.759009981 elk-10.4.9/src/wsplint.f900000644002504400250440000000135714762655564017021 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wsplint(n,x,w) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x(n) real(8), intent(out) :: w(n) ! local variables integer i ! automatic arrays real(8) f(9) ! external functions real(8), external :: splint if (n <= 9) then do i=1,n f(:)=0.d0 f(i)=1.d0 w(i)=splint(n,x,f) end do return end if do i=1,4 f(:)=0.d0 f(i)=1.d0 w(i)=splint(9,x,f) end do f(:)=0.d0 f(5)=1.d0 do i=5,n-4 w(i)=splint(9,x(i-4),f) end do do i=1,4 f(:)=0.d0 f(i+5)=1.d0 w(n-4+i)=splint(9,x(n-8),f) end do end subroutine elk-10.4.9/src/PaxHeaders/gensocfr.f900000644000000000000000000000013214762655564014377 xustar0030 mtime=1741380468.760009986 30 atime=1741380467.002000796 30 ctime=1741380468.760009986 elk-10.4.9/src/gensocfr.f900000644002504400250440000000204014762655564017115 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine gensocfr use modmain use modomp implicit none ! local variables integer is,ias,nthd integer nr,nri,ir,irc real(8) cso,rm ! automatic arrays real(8) vr(nrmtmax),dvr(nrmtmax) if (.not.spinorb) return ! coefficient of spin-orbit coupling cso=y00*socscf/(4.d0*solsc**2) call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(vr,dvr,is,nr,nri) & !$OMP PRIVATE(ir,irc,rm) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) ! radial derivative of the spherical part of the Kohn-Sham potential call rfmtlm(1,nr,nri,vsmt(:,ias),vr) call splined(nr,wcrmt(:,:,is),vr,dvr) do ir=1,nr,lradstp irc=(ir-1)/lradstp+1 rm=1.d0-2.d0*cso*vr(ir) socfr(irc,ias)=cso*dvr(ir)/(rsp(ir,is)*rm**2) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/pades.f900000644000000000000000000000013214762655564013665 xustar0030 mtime=1741380468.762009997 30 atime=1741380467.005000811 30 ctime=1741380468.762009997 elk-10.4.9/src/pades.f900000644002504400250440000000201014762655564016400 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine pades(ns,r,ni,zi,ui,no,zo,uo) implicit none ! arguments integer, intent(in) :: ns real(8), intent(in) :: r integer, intent(in) :: ni complex(8), intent(in) :: zi(ni),ui(ni) integer, intent(in) :: no complex(8), intent(in) :: zo(no) complex(8), intent(out) :: uo(no) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8) t1,t2 complex(8) z1 ! automatic arrays complex(8) u1(ni),u2(no) if (ns < 1) then write(*,*) write(*,'("Error(pades): ns < 1 : ",I8)') ns write(*,*) stop end if if (ns == 1) then call pade(ni,zi,ui,no,zo,uo) return end if uo(1:no)=0.d0 do i=1,ns t1=dble(i-1)/dble(ns) t2=6.d0*pi*t1 z1=r*t1*cmplx(cos(t2),sin(t2),8) u1(1:ni)=ui(1:ni)+z1 call pade(ni,zi,u1,no,zo,u2) uo(1:no)=uo(1:no)+u2(1:no)-z1 end do t1=1.d0/dble(ns) uo(1:no)=t1*uo(1:no) end subroutine elk-10.4.9/src/PaxHeaders/genscss.f900000644000000000000000000000013214762655564014236 xustar0030 mtime=1741380468.763010002 30 atime=1741380467.007000822 30 ctime=1741380468.763010002 elk-10.4.9/src/genscss.f900000644002504400250440000000273414762655564016766 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genscss use modmain implicit none ! local variables integer is,ia,na,i real(8) vc(3),cs,sn,t1 ! automatic arrays real(8) vsc(3,nqptnr) ! find the smallest supercell which contains q-vector call findscq(iqss,nscss,vsc) ! construct supercell atomic positions and magnetic fields do is=1,nspecies na=0 do ia=1,natoms0(is) do i=1,nscss na=na+1 if (na > maxatoms) then write(*,*) write(*,'("Error(genscss): too many atoms in supercell : ",I8)') na write(*,'(" for species ",I4)') is write(*,'("Adjust maxatoms in modmain and recompile code")') write(*,*) stop end if vc(:)=vsc(:,i)+atposc0(:,ia,is) ! new atomic position in lattice coordinates call r3mv(ainv,vc,atposl(:,na,is)) ! rotate external B-field and fixed spin moment vector by angle q.r t1=dot_product(vqc(:,iqss),vc(:)) cs=cos(t1); sn=sin(t1) bfcmt0(1,na,is)=cs*bfcmt00(1,ia,is)-sn*bfcmt00(2,ia,is) bfcmt0(2,na,is)=sn*bfcmt00(1,ia,is)+cs*bfcmt00(2,ia,is) bfcmt0(3,na,is)=bfcmt00(3,ia,is) mommtfix(1,na,is)=cs*mommtfix0(1,ia,is)-sn*mommtfix0(2,ia,is) mommtfix(2,na,is)=sn*mommtfix0(1,ia,is)+cs*mommtfix0(2,ia,is) mommtfix(3,na,is)=mommtfix0(3,ia,is) end do end do natoms(is)=na end do end subroutine elk-10.4.9/src/PaxHeaders/rfcmtwr.f900000644000000000000000000000013214762655564014255 xustar0030 mtime=1741380468.764010007 30 atime=1741380467.010000837 30 ctime=1741380468.764010007 elk-10.4.9/src/rfcmtwr.f900000644002504400250440000000134414762655564017001 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine rfcmtwr(nr,nri,wr,rfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) real(8), intent(inout) :: rfmt(*) ! local variables integer n,ir,i real(8) t1 i=1 if (lmaxi == 1) then do ir=1,nri rfmt(i:i+3)=(pi*wr(ir))*rfmt(i:i+3) i=i+4 end do else t1=fourpi/dble(lmmaxi) n=lmmaxi-1 do ir=1,nri rfmt(i:i+n)=(t1*wr(ir))*rfmt(i:i+n) i=i+lmmaxi end do end if t1=fourpi/dble(lmmaxo) n=lmmaxo-1 do ir=nri+1,nr rfmt(i:i+n)=(t1*wr(ir))*rfmt(i:i+n) i=i+lmmaxo end do end subroutine elk-10.4.9/src/PaxHeaders/nonlinopt.f900000644000000000000000000000013214762655564014611 xustar0030 mtime=1741380468.766010018 30 atime=1741380467.012000848 30 ctime=1741380468.766010018 elk-10.4.9/src/nonlinopt.f900000644002504400250440000002213714762655564017340 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: nonlinopt ! !INTERFACE: subroutine nonlinopt ! !USES: use modmain use modmpi use modomp use modtest ! !DESCRIPTION: ! Calculates the second-order response tensor ! $\chi^{abc}(-2\omega;\omega,\omega)$, where $a$, $b$ and $c$ label Cartesian ! directions. This tensor is used for determining the optical second-harmonic ! generation of materials. We follow the convention of Sipe and Ghahramani in ! {\it Phys. Rev. B} {\bf 48}, 11705 (1993); and Hughes and Sipe in ! {\it Phys. Rev. B} {\bf 53}, 10751 (1996). The individual contributions ! $\chi_{II}^{abc}(-2\omega;\omega,\omega)$, ! $\eta_{II}^{abc}(-2\omega;\omega,\omega)$ and ! $\frac{i}{2\omega}\sigma_{II}^{abc}(-2\omega;\omega,\omega)$ are also ! written separately to file. ! ! !REVISION HISTORY: ! Rewrote earlier version, June 2010 (Sharma) ! Improved parallelism, January 2020 (R. Cohen) ! Rewrote, thanks to corrections from X. Gonze, March 2022 (JKD) !EOP !BOC implicit none ! local variables integer ik,jk,l,m,n,i integer iw,ioc,a,b,c integer nthd real(8) t0,t1 complex(8) eta,z1,z2 character(64) fname ! allocatable arrays real(8), allocatable :: w(:),e(:,:),f(:,:),d(:,:,:) complex(8), allocatable :: r(:,:,:),zv(:) complex(8), allocatable :: cc1(:,:),cc2(:,:) complex(8), allocatable :: ce1(:,:),ce2(:,:),cs1(:,:) complex(8), allocatable :: chi2w(:),eta2w(:),sigma2w(:) ! initialise universal variables call init0 call init1 ! read Fermi energy from file call readfermi ! read the eigenvalues and occupation numbers from file call readevalsv call readoccsv ! i divided by the relaxation time eta=cmplx(0.d0,swidth,8) ! generate energy grid (starting from zero) allocate(w(nwplot)) t1=wplot(2)/dble(nwplot) do iw=1,nwplot w(iw)=t1*dble(iw-1) end do allocate(chi2w(nwplot),eta2w(nwplot),sigma2w(nwplot)) t0=wkptnr/omega ! begin loop over components do ioc=1,noptcomp a=optcomp(1,ioc) b=optcomp(2,ioc) c=optcomp(3,ioc) chi2w(:)=0.d0 eta2w(:)=0.d0 sigma2w(:)=0.d0 ! parallel loop over non-reduced k-points call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(e,f,d,r,zv) & !$OMP PRIVATE(cc1,cc2,ce1,ce2,cs1) & !$OMP PRIVATE(jk,n,m,i,t1,z1,z2,l) & !$OMP REDUCTION(+:chi2w,eta2w,sigma2w) & !$OMP NUM_THREADS(nthd) allocate(e(nstsv,nstsv),f(nstsv,nstsv),d(nstsv,nstsv,3)) allocate(r(nstsv,nstsv,3),zv(nwplot)) allocate(cc1(nstsv,nstsv),cc2(nstsv,nstsv)) allocate(ce1(nstsv,nstsv),ce2(nstsv,nstsv)) allocate(cs1(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(nonlinopt_) write(*,'("Info(nonlinopt): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(nonlinopt_) ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! calculate differences in eigenvalues and occupation numbers do n=1,nstsv do m=1,nstsv e(m,n)=evalsv(m,jk)-evalsv(n,jk) f(m,n)=occsv(m,jk)-occsv(n,jk) end do end do ! read momentum matrix elements from file call getpmat(vkl(:,ik),r) ! compute the Delta matrix elements do i=1,3 do n=1,nstsv do m=1,nstsv d(m,n,i)=dble(r(m,m,i))-dble(r(n,n,i)) end do end do end do ! compute the matrix elements of the position operator do i=1,3 do n=1,nstsv do m=1,nstsv t1=e(m,n) if (abs(t1) > swidth) then z1=r(m,n,i)/t1 r(m,n,i)=zmi*z1 else r(m,n,i)=0.d0 end if end do end do end do ! zero the coefficients for χ_II, η_II and i/2ω σ_II cc1(:,:)=0.d0; cc2(:,:)=0.d0 ce1(:,:)=0.d0; ce2(:,:)=0.d0 cs1(:,:)=0.d0 ! sum over states do n=1,nstsv do m=1,nstsv do l=1,nstsv ! terms involving a triple summation z1=0.5d0*r(n,m,a)*(r(m,l,b)*r(l,n,c)+r(m,l,c)*r(l,n,b)) ! χ_II(-2ω;ω,ω) terms t1=e(l,n)-e(m,l) if (abs(t1) > swidth) then ! Eq. (B4) z2=z1/t1 if (abs(f(n,m)) > epsocc) then cc2(m,n)=cc2(m,n)+2.d0*f(n,m)*z2 end if if (abs(f(m,l)) > epsocc) then cc1(m,l)=cc1(m,l)+f(m,l)*z2 end if if (abs(f(l,n)) > epsocc) then cc1(l,n)=cc1(l,n)+f(l,n)*z2 end if end if ! η_II(-2ω;ω,ω) terms z2=z1*e(m,n) ! Eq. (B13b) if (abs(f(n,l)) > epsocc) then t1=e(l,n) if (abs(t1) > swidth) then ce1(l,n)=ce1(l,n)+f(n,l)*z2/t1**2 end if end if if (abs(f(l,m)) > epsocc) then t1=e(m,l) if (abs(t1) > swidth) then ce1(m,l)=ce1(m,l)-f(l,m)*z2/t1**2 end if end if if (abs(f(n,m)) > epsocc) then ! Eq. (B13a) t1=e(m,n) if (abs(t1) > swidth) then t1=1.d0/t1**2 z1=2.d0*f(n,m)*(e(m,l)-e(l,n))*t1*z1 ce2(m,n)=ce2(m,n)+z1 ! i/2ω σ_II(-2ω;ω,ω) term ! Eq. (B17) z1=e(n,l)*r(l,m,a)*(r(m,n,b)*r(n,l,c)+r(m,n,c)*r(n,l,b)) & -e(l,m)*r(n,l,a)*(r(l,m,b)*r(m,n,c)+r(l,m,c)*r(m,n,b)) z1=0.25d0*f(n,m)*t1*z1 cs1(m,n)=cs1(m,n)+z1 end if end if end do ! terms involving a double summation if (abs(f(n,m)) > epsocc) then ! Eq. (B12a) t1=e(m,n) if (abs(t1) > swidth) then t1=1.d0/t1**2 z1=r(n,m,a)*(d(m,n,b)*r(m,n,c)+d(m,n,c)*r(m,n,b)) z1=zmi*z1 z1=4.d0*f(n,m)*t1*z1 ce2(m,n)=ce2(m,n)+z1 ! Eq. (B16b) z1=r(n,m,a)*(r(m,n,b)*d(m,n,c)+r(m,n,c)*d(m,n,b)) z1=zi*z1 z1=0.25d0*f(n,m)*t1*z1 cs1(m,n)=cs1(m,n)+z1 end if end if end do end do do n=1,nstsv do m=1,nstsv zv(:)=1.d0/(e(m,n)-w(:)+eta) chi2w(:)=chi2w(:)+cc1(m,n)*zv(:) eta2w(:)=eta2w(:)+ce1(m,n)*zv(:) sigma2w(:)=sigma2w(:)+cs1(m,n)*zv(:) zv(:)=1.d0/(e(m,n)-2.d0*(w(:)-eta)) chi2w(:)=chi2w(:)+cc2(m,n)*zv(:) eta2w(:)=eta2w(:)+ce2(m,n)*zv(:) end do end do end do !$OMP END DO deallocate(e,f,d,r,zv) deallocate(cc1,cc2,ce1,ce2,cs1) !$OMP END PARALLEL call freethd(nthd) ! multiply response functions by prefactor chi2w(:)=t0*chi2w(:) eta2w(:)=t0*eta2w(:) sigma2w(:)=t0*sigma2w(:) ! add response functions from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,chi2w,nwplot,mpi_double_complex,mpi_sum, & mpicom,ierror) call mpi_allreduce(mpi_in_place,eta2w,nwplot,mpi_double_complex,mpi_sum, & mpicom,ierror) call mpi_allreduce(mpi_in_place,sigma2w,nwplot,mpi_double_complex,mpi_sum, & mpicom,ierror) end if ! write χ_II(-2ω;ω,ω), η_II(-2ω;ω,ω) and i/2ω σ_II(-2ω;ω,ω) to file if (mp_mpi) then write(fname,'("CHI_II_2WWW_",3I1,".OUT")') a,b,c open(50,file=trim(fname),form='FORMATTED') write(fname,'("ETA_II_2WWW_",3I1,".OUT")') a,b,c open(51,file=trim(fname),form='FORMATTED') write(fname,'("SIGMA_II_2WWW_",3I1,".OUT")') a,b,c open(52,file=trim(fname),form='FORMATTED') do iw=1,nwplot t1=dble(w(iw)) write(50,'(2G18.10)') t1,dble(chi2w(iw)) write(51,'(2G18.10)') t1,dble(eta2w(iw)) write(52,'(2G18.10)') t1,dble(sigma2w(iw)) end do write(50,*) write(51,*) write(52,*) do iw=1,nwplot t1=dble(w(iw)) write(50,'(2G18.10)') t1,aimag(chi2w(iw)) write(51,'(2G18.10)') t1,aimag(eta2w(iw)) write(52,'(2G18.10)') t1,aimag(sigma2w(iw)) end do close(50) close(51) close(52) ! write χ(-2ω;ω,ω) to file chi2w(:)=chi2w(:)+eta2w(:)+sigma2w(:) write(fname,'("CHI_2WWW_",3I1,".OUT")') a,b,c open(50,file=trim(fname),form='FORMATTED') do iw=1,nwplot t1=dble(w(iw)) write(50,'(2G18.10)') t1,dble(chi2w(iw)) end do write(50,*) do iw=1,nwplot t1=dble(w(iw)) write(50,'(2G18.10)') t1,aimag(chi2w(iw)) end do close(50) end if ! end loop over components end do if (mp_mpi) then write(*,*) write(*,'("Info(nonlinopt):")') write(*,'(" Following the convention in Phys. Rev. B 48, 11705 (1993) and")') write(*,'(" Phys. Rev. B 53, 10751 (1996), the second-order response")') write(*,'(" functions χ_II(-2ω;ω,ω), η_II(-2ω;ω,ω) and i/2ω σ_II(-2ω;ω,ω)")') write(*,'(" were written to the files CHI_II_2WWW_abc.OUT,")') write(*,'(" ETA_II_2WWW_abc.OUT and SIGMA_II_2WWW_abc.OUT, respectively")') write(*,*) write(*,'(" The total second-order response function χ(-2ω;ω,ω) was")') write(*,'(" written to the file CHI_2WWW_abc.OUT")') write(*,*) write(*,'(" This was done for Cartesian components :")') do ioc=1,noptcomp write(*,'(" a = ",I1,", b = ",I1,", c = ",I1)') optcomp(1:3,ioc) end do end if ! write chi2w to test file if required call writetest(125,'non-linear susceptibility',nv=nwplot,tol=1.d-2,zva=chi2w) deallocate(w,chi2w,eta2w,sigma2w) end subroutine !EOC elk-10.4.9/src/PaxHeaders/writelat.f900000644000000000000000000000013214762655564014424 xustar0030 mtime=1741380468.767010023 30 atime=1741380467.015000864 30 ctime=1741380468.767010023 elk-10.4.9/src/writelat.f900000644002504400250440000000271514762655564017153 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writelat use modmain implicit none open(50,file='LATTICE'//trim(filext),form='FORMATTED',action='WRITE') call writebox(50,"Real-space lattice vectors") write(50,*) write(50,'("vector a1 : ",3G18.10)') avec(:,1) write(50,'("vector a2 : ",3G18.10)') avec(:,2) write(50,'("vector a3 : ",3G18.10)') avec(:,3) write(50,*) write(50,'("Stored column-wise as a matrix :")') write(50,'(3G18.10)') avec(1,:) write(50,'(3G18.10)') avec(2,:) write(50,'(3G18.10)') avec(3,:) write(50,*) write(50,'("Inverse of matrix :")') write(50,'(3G18.10)') ainv(1,:) write(50,'(3G18.10)') ainv(2,:) write(50,'(3G18.10)') ainv(3,:) write(50,*) write(50,'("Unit cell volume : ",G18.10)') omega write(50,*) call writebox(50,"Reciprocal-space lattice vectors") write(50,*) write(50,'("vector b1 : ",3G18.10)') bvec(:,1) write(50,'("vector b2 : ",3G18.10)') bvec(:,2) write(50,'("vector b3 : ",3G18.10)') bvec(:,3) write(50,*) write(50,'("Stored column-wise as a matrix :")') write(50,'(3G18.10)') bvec(1,:) write(50,'(3G18.10)') bvec(2,:) write(50,'(3G18.10)') bvec(3,:) write(50,*) write(50,'("Inverse of matrix :")') write(50,'(3G18.10)') binv(1,:) write(50,'(3G18.10)') binv(2,:) write(50,'(3G18.10)') binv(3,:) write(50,*) write(50,'("Brillouin zone volume : ",G18.10)') omegabz close(50) end subroutine elk-10.4.9/src/PaxHeaders/rhocore.f900000644000000000000000000000013214762655564014232 xustar0030 mtime=1741380468.769010033 30 atime=1741380467.018000879 30 ctime=1741380468.769010033 elk-10.4.9/src/rhocore.f900000644002504400250440000000404014762655564016752 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rhocore ! !INTERFACE: subroutine rhocore ! !USES: use modmain ! !DESCRIPTION: ! Adds the core density and magnetisation to the muffin-tin functions. Also ! computes the amount of leakage of core charge from the muffin-tin spheres ! into the interstitial. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Fixed core moment direction, October 2012 (M. Meinert) !EOP !BOC implicit none ! local variables integer ispn,idm,is,ias integer nr,nri,iro,ir,i,i0,i1 real(8) v(ndmag),sm,t1 ! external functions real(8), external :: rfmtint do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 sm=0.d0 ! loop over spin channels do ispn=1,nspncr ! add the core density to the muffin-tin density i1=lmmaxi*(nri-1)+1 rhomt(1:i1:lmmaxi,ias)=rhomt(1:i1:lmmaxi,ias)+rhocr(1:nri,ias,ispn) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 rhomt(i0:i1:lmmaxo,ias)=rhomt(i0:i1:lmmaxo,ias)+rhocr(iro:nr,ias,ispn) ! compute the core charge inside the muffin-tins t1=sum(wr2mt(1:nr,is)*rhocr(1:nr,ias,ispn)) sm=sm+fourpi*y00*t1 end do ! core leakage charge chgcrlk(ias)=chgcr(is)-sm ! add to the magnetisation in the case of a spin-polarised core if (spincore) then ! compute the moment in the muffin-tin do idm=1,ndmag v(idm)=rfmtint(nr,nri,wr2mt(:,is),magmt(:,ias,idm)) end do ! normalise if (ncmag) then t1=sqrt(v(1)**2+v(2)**2+v(3)**2) else t1=abs(v(1)) end if if (t1 > 1.d-10) v(1:ndmag)=v(1:ndmag)/t1 ! add the core magnetisation to the total i=1 do ir=1,nri t1=rhocr(ir,ias,1)-rhocr(ir,ias,2) magmt(i,ias,1:ndmag)=magmt(i,ias,1:ndmag)+t1*v(1:ndmag) i=i+lmmaxi end do do ir=iro,nr t1=rhocr(ir,ias,1)-rhocr(ir,ias,2) magmt(i,ias,1:ndmag)=magmt(i,ias,1:ndmag)+t1*v(1:ndmag) i=i+lmmaxo end do end if end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/rcfinp.f900000644000000000000000000000013214762655564014052 xustar0030 mtime=1741380468.770010039 30 atime=1741380467.021000895 30 ctime=1741380468.770010039 elk-10.4.9/src/rcfinp.f900000644002504400250440000000172714762655564016603 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. complex(8) function rcfinp(rfmt,rfir,cfmt,cfir) use modmain use modomp implicit none ! arguments real(8), intent(in) :: rfmt(npcmtmax,natmtot),rfir(ngtot) complex(4), intent(in) :: cfmt(npcmtmax,natmtot),cfir(ngtot) ! local variables integer is,ias,nthd ! external functions complex(8), external :: rcfmtinp ! interstitial contribution rcfinp=sum((cfunir(1:ngtot)*rfir(1:ngtot))*cfir(1:ngtot)) rcfinp=rcfinp*(omega/dble(ngtot)) ! muffin-tin contribution call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) REDUCTION(+:rcfinp) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) rcfinp=rcfinp+rcfmtinp(nrcmt(is),nrcmti(is),wr2cmt(:,is),rfmt(:,ias), & cfmt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) end function elk-10.4.9/src/PaxHeaders/readspecies.f900000644000000000000000000000013214762655564015060 xustar0030 mtime=1741380468.771010044 30 atime=1741380467.024000911 30 ctime=1741380468.771010044 elk-10.4.9/src/readspecies.f900000644002504400250440000002366714762655564017620 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readspecies use modmain implicit none ! local variables integer is,ist,ios integer nlx,ilx,lx,ilo integer io,jo,ko,l,i,j e0min=0.d0 do is=1,nspecies open(50,file=trim(sppath)//trim(spfname(is)),status='OLD',form='FORMATTED', & action='READ',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readspecies): error opening species file ",A)') & trim(sppath)//trim(spfname(is)) write(*,*) stop end if read(50,*) spsymb(is) read(50,*) spname(is) read(50,*) spzn(is) read(50,*) spmass(is) read(50,*) rminsp(is),rmt(is),rmaxsp(is),nrmt(is) if (rminsp(is) <= 0.d0) then write(*,*) write(*,'("Error(readspecies): rminsp <= 0 : ",G18.10)') rminsp(is) write(*,'(" for species ",I4)') is write(*,*) stop end if if (rmt(is) <= rminsp(is)) then write(*,*) write(*,'("Error(readspecies): rmt <= rminsp : ",2G18.10)') rmt(is), & rminsp(is) write(*,'(" for species ",I4)') is write(*,*) stop end if if (rmaxsp(is) < rmt(is)) then write(*,*) write(*,'("Error(readspecies): rmaxsp < rmt : ",2G18.10)') rmaxsp(is), & rmt(is) write(*,*) stop end if if (nrmt(is) < 20) then write(*,*) write(*,'("Error(readspecies): nrmt too small : ",I8)') nrmt(is) write(*,'(" for species ",I4)') is write(*,*) stop end if ! multiply nrmt by the scale factor nrmt(is)=nint(dble(nrmt(is))*nrmtscf) ! reduce the minimum radial mesh point by the same factor rminsp(is)=rminsp(is)/nrmtscf read(50,*) nstsp(is) if ((nstsp(is) < 1).or.(nstsp(is) > maxstsp)) then write(*,*) write(*,'("Error(readspecies): nstsp out of range : ",I8)') nstsp(is) write(*,'(" for species ",I4)') is write(*,*) stop end if do ist=1,nstsp(is) read(50,*) nsp(ist,is),lsp(ist,is),ksp(ist,is),occsp(ist,is),spcore(ist,is) if (nsp(ist,is) < 1) then write(*,*) write(*,'("Error(readspecies): nsp < 1 : ",I8)') nsp(ist,is) write(*,'(" for species ",I4)') is write(*,'(" and state ",I4)') ist write(*,*) stop end if if (lsp(ist,is) < 0) then write(*,*) write(*,'("Error(readspecies): lsp < 0 : ",I8)') lsp(ist,is) write(*,'(" for species ",I4)') is write(*,'(" and state ",I4)') ist write(*,*) stop end if if (ksp(ist,is) < 1) then write(*,*) write(*,'("Error(readspecies): ksp < 1 : ",I8)') ksp(ist,is) write(*,'(" for species ",I4)') is write(*,'(" and state ",I4)') ist write(*,*) stop end if if (occsp(ist,is) < 0.d0) then write(*,*) write(*,'("Error(readspecies): occsp < 0 : ",G18.10)') occsp(ist,is) write(*,'(" for species ",I4)') is write(*,'(" and state ",I4)') ist write(*,*) stop end if end do read(50,*) apword(0,is) if (apword(0,is) < 1) then write(*,*) write(*,'("Error(readspecies): apword < 1 : ",I8)') apword(0,is) write(*,'(" for species ",I4)') is write(*,*) stop end if if (apword(0,is) > maxapword) then write(*,*) write(*,'("Error(readspecies): apword too large : ",I8)') apword(0,is) write(*,'(" for species ",I4)') is write(*,'("Adjust maxapword in modmain and recompile code")') write(*,*) stop end if ! set the APW orders for l>0 apword(1:lmaxapw,is)=apword(0,is) do io=1,apword(0,is) read(50,*) apwe0(io,0,is),apwdm(io,0,is),apwve(io,0,is) if (apwdm(io,0,is) < 0) then write(*,*) write(*,'("Error(readspecies): apwdm < 0 : ",I8)') apwdm(io,0,is) write(*,'(" for species ",I4)') is write(*,'(" and order ",I4)') io write(*,*) stop end if ! set the APW linearisation energies, derivative orders and variability for l>0 apwe0(io,1:lmaxapw,is)=apwe0(io,0,is) apwdm(io,1:lmaxapw,is)=apwdm(io,0,is) apwve(io,1:lmaxapw,is)=apwve(io,0,is) e0min=min(e0min,apwe0(io,0,is)) end do read(50,*) nlx if (nlx < 0) then write(*,*) write(*,'("Error(readspecies): nlx < 0 : ",I8)') nlx write(*,'(" for species ",I4)') is write(*,*) stop end if do ilx=1,nlx read(50,*) lx,io if (lx < 0) then write(*,*) write(*,'("Error(readspecies): lx < 0 : ",I8)') lx write(*,'(" for species ",I4)') is write(*,'(" and exception number ",I4)') ilx write(*,*) stop end if if (lx > lmaxapw) then write(*,*) write(*,'("Error(readspecies): lx > lmaxapw : ",I8)') lx write(*,'(" for species ",I4)') is write(*,'(" and exception number ",I4)') ilx write(*,*) stop end if apword(lx,is)=io if (apword(lx,is) < 1) then write(*,*) write(*,'("Error(readspecies): apword < 1 : ",I8)') apword(lx,is) write(*,'(" for species ",I4)') is write(*,'(" and exception number ",I4)') ilx write(*,*) stop end if if (apword(lx,is) > maxapword) then write(*,*) write(*,'("Error(readspecies): apword too large : ",I8)') apword(lx,is) write(*,'(" for species ",I4)') is write(*,'(" and exception number ",I4)') ilx write(*,'("Adjust maxapword in modmain and recompile code")') write(*,*) stop end if do io=1,apword(lx,is) read(50,*) apwe0(io,lx,is),apwdm(io,lx,is),apwve(io,lx,is) if (apwdm(io,lx,is) < 0) then write(*,*) write(*,'("Error(readspecies): apwdm < 0 : ",I8)') apwdm(io,lx,is) write(*,'(" for species ",I4)') is write(*,'(" exception number ",I4)') ilx write(*,'(" and order ",I4)') io write(*,*) stop end if e0min=min(e0min,apwe0(io,lx,is)) end do end do ! add excess order to APW functions if required if (nxoapwlo > 0) then do l=0,lmaxapw jo=apword(l,is) ko=jo+nxoapwlo if (ko > maxapword) ko=maxapword i=0 do io=jo+1,ko i=i+1 apwe0(io,l,is)=apwe0(jo,l,is) apwdm(io,l,is)=apwdm(jo,l,is)+i apwve(io,l,is)=apwve(jo,l,is) end do apword(l,is)=ko end do end if read(50,*) nlorb(is) if (nlorb(is) < 0) then write(*,*) write(*,'("Error(readspecies): nlorb < 0 : ",I8)') nlorb(is) write(*,'(" for species ",I4)') is write(*,*) stop end if if (nlorb(is) > maxlorb) then write(*,*) write(*,'("Error(readspecies): nlorb too large : ",I8)') nlorb(is) write(*,'(" for species ",I4)') is write(*,'("Adjust maxlorb in modmain and recompile code")') write(*,*) stop end if do ilo=1,nlorb(is) read(50,*) lorbl(ilo,is),lorbord(ilo,is) if (lorbl(ilo,is) < 0) then write(*,*) write(*,'("Error(readspecies): lorbl < 0 : ",I8)') lorbl(ilo,is) write(*,'(" for species ",I4)') is write(*,'(" and local-orbital ",I4)') ilo write(*,*) stop end if if (lorbl(ilo,is) > lmaxo) then write(*,*) write(*,'("Error(readspecies): lorbl > lmaxo : ",2I8)') lorbl(ilo,is), & lmaxo write(*,'(" for species ",I4)') is write(*,'(" and local-orbital ",I4)') ilo write(*,*) stop end if if (lorbord(ilo,is) < 2) then write(*,*) write(*,'("Error(readspecies): lorbord < 2 : ",I8)') lorbord(ilo,is) write(*,'(" for species ",I4)') is write(*,'(" and local-orbital ",I4)') ilo write(*,*) stop end if if (lorbord(ilo,is) > maxlorbord) then write(*,*) write(*,'("Error(readspecies): lorbord too large : ",I8)') lorbord(ilo,is) write(*,'(" for species ",I4)') is write(*,'(" and local-orbital ",I4)') ilo write(*,'("Adjust maxlorbord in modmain and recompile code")') write(*,*) stop end if do io=1,lorbord(ilo,is) read(50,*) lorbe0(io,ilo,is),lorbdm(io,ilo,is),lorbve(io,ilo,is) if (lorbdm(io,ilo,is) < 0) then write(*,*) write(*,'("Error(readspecies): lorbdm < 0 : ",I8)') lorbdm(io,ilo,is) write(*,'(" for species ",I4)') is write(*,'(" local-orbital ",I4)') ilo write(*,'(" and order ",I4)') io write(*,*) stop end if e0min=min(e0min,lorbe0(io,ilo,is)) end do end do ! add excess local-orbitals if required if (nxlo > 0) then lx=-1 do ilo=1,nlorb(is) do io=1,lorbord(ilo,is) if (lorbe0(io,ilo,is) < 0.d0) goto 10 end do if (lorbl(ilo,is) > lx) lx=lorbl(ilo,is) 10 continue end do ilo=nlorb(is) do i=1,nxlo if (ilo == maxlorb) exit l=lx+i if (l > lmaxo) exit ilo=ilo+1 lorbl(ilo,is)=l lorbord(ilo,is)=apword(l,is)+1 do io=1,lorbord(ilo,is) lorbe0(io,ilo,is)=apwe0(1,l,is) lorbdm(io,ilo,is)=io-1 lorbve(io,ilo,is)=apwve(1,l,is) end do end do nlorb(is)=ilo end if ! add excess order to local-orbitals if required if (nxoapwlo > 0) then do ilo=1,nlorb(is) ! find the maximum energy derivative jo=1 j=lorbdm(jo,ilo,is) do io=1,lorbord(ilo,is) i=lorbdm(io,ilo,is) if (i > j) then jo=io j=i end if end do ko=lorbord(ilo,is)+nxoapwlo if (ko > maxlorbord) ko=maxlorbord i=0 do io=lorbord(ilo,is)+1,ko i=i+1 lorbe0(io,ilo,is)=lorbe0(jo,ilo,is) lorbdm(io,ilo,is)=lorbdm(jo,ilo,is)+i lorbve(io,ilo,is)=lorbve(jo,ilo,is) end do lorbord(ilo,is)=ko end do end if close(50) end do if (rmtall > 0.d0) then ! set all muffin-tin radii to single value if required rmt(1:nspecies)=rmtall else ! scale the muffin-tin radii if required if (rmtscf /= 1.d0) rmt(1:nspecies)=rmtscf*rmt(1:nspecies) ! apply averaging scheme to the muffin-tin radii if (mrmtav > 0) call rmtavrg end if ! make a copy of the muffin-tin radii rmt0(1:nspecies)=rmt(1:nspecies) ! add conduction state local-orbitals if required if (lorbcnd) call addlorbcnd ! subtract 2 Hartree from the minimum energy e0min=e0min-2.d0 end subroutine elk-10.4.9/src/PaxHeaders/findband.f900000644000000000000000000000013214762655564014336 xustar0030 mtime=1741380468.773010054 30 atime=1741380467.027000926 30 ctime=1741380468.773010054 elk-10.4.9/src/findband.f900000644002504400250440000000626114762655564017065 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: findband ! !INTERFACE: subroutine findband(sol,l,nr,r,vr,eps,demax,e,fnd) ! !INPUT/OUTPUT PARAMETERS: ! sol : speed of light in atomic units (in,real) ! l : angular momentum quantum number (in,integer) ! nr : number of radial mesh points (in,integer) ! r : radial mesh (in,real(nr)) ! vr : potential on radial mesh (in,real(nr)) ! eps : energy search tolerance (in,real) ! demax : maximum allowed change from the input energy; enforced only if e < 0 ! (in,real) ! e : input energy and returned band energy (inout,real) ! fnd : set to .true. if the band energy is found (out,logical) ! !DESCRIPTION: ! Finds the band energies for a given radial potential and angular momentum. ! This is done by first searching upwards in energy, starting from the input ! energy plus the offset energy, until the radial wavefunction at the ! muffin-tin radius is zero. This is the energy at the top of the band, ! denoted $E_{\rm t}$. A downward search is now performed from $E_{\rm t}$ ! until the slope of the radial wavefunction at the muffin-tin radius is zero. ! This energy, $E_{\rm b}$, is at the bottom of the band. The band energy is ! taken as $(E_{\rm t}+E_{\rm b})/2$. If either $E_{\rm t}$ or $E_{\rm b}$ ! cannot be found then the band energy is set to the input value. ! ! !REVISION HISTORY: ! Created September 2004 (JKD) ! Added two-pass loop, October 2013 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: sol integer, intent(in) :: l,nr real(8), intent(in) :: r(nr),vr(nr),eps,demax real(8), intent(inout) :: e logical, intent(out) :: fnd ! local variables logical ft,fb ! maximum number of steps integer, parameter :: maxstp=250 integer ip,ie,nn ! initial step size real(8), parameter :: de0=0.001d0 real(8) de,et,eb,t,tp ! automatic arrays real(8) p0(nr),p1(nr),q0(nr),q1(nr) ft=.false. fb=.false. fnd=.false. et=e eb=e ! two-pass loop do ip=1,2 ! find the top of the band tp=0.d0 de=de0 do ie=1,maxstp et=et+de if (e < 0.d0) then if (et > e+demax) exit end if call rschrodint(sol,l,et,nr,r,vr,nn,p0,p1,q0,q1) t=p0(nr) if (ie > 1) then if (t*tp <= 0.d0) then if (abs(de) < eps) then if (fb) goto 10 ft=.true. eb=et+5.d0*abs(de0) exit end if de=-0.5d0*de else de=1.5d0*de end if end if tp=t end do if (fb) return ! find the bottom of the band tp=0.d0 de=-de0 do ie=1,maxstp eb=eb+de if (eb < e-demax) return call rschrodint(sol,l,eb,nr,r,vr,nn,p0,p1,q0,q1) t=p1(nr) if (ie > 1) then if (t*tp <= 0.d0) then if (abs(de) < eps) then if (ft) goto 10 fb=.true. et=eb-5.d0*abs(de0) exit end if de=-0.5d0*de else de=1.5d0*de end if end if tp=t end do end do return 10 continue ! set the band energy halfway between top and bottom e=(et+eb)/2.d0 fnd=.true. end subroutine !EOC elk-10.4.9/src/PaxHeaders/exxengy.f900000644000000000000000000000013214762655564014260 xustar0030 mtime=1741380468.775010065 30 atime=1741380467.030000942 30 ctime=1741380468.775010065 elk-10.4.9/src/exxengy.f900000644002504400250440000000540514762655564017006 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine exxengy use modmain use modmpi use modomp implicit none ! local variables integer ik,ist,jst,is,ia integer nrc,nrci,npc integer m1,m2,nthd complex(8) z1 ! automatic arrays complex(4) wfcr1(npcmtmax,2),wfcr2(npcmtmax,2) complex(4) crhomt(npcmtmax),cvclmt(npcmtmax) ! external functions complex(8), external :: zcfmtinp ! zero the exchange energy engyx=0.d0 !--------------------------------------------------! ! val-val-val and val-cr-val contributions ! !--------------------------------------------------! call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(exxengy_) write(*,'("Info(exxengy): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(exxengy_) call exxengyk(ik) end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) ! add energies from each process and redistribute call mpi_allreduce(mpi_in_place,engyx,1,mpi_double_precision,mpi_sum,mpicom, & ierror) !-----------------------------------! ! core-core-core contribution ! !-----------------------------------! ! begin loops over atoms and species do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) do jst=1,nstsp(is) if (spcore(jst,is)) then do m2=-ksp(jst,is),ksp(jst,is)-1 ! generate the core wavefunction in spherical coordinates (pass in m-1/2) call wavefcr(.false.,lradstp,is,ia,jst,m2,npcmtmax,wfcr2) do ist=1,nstsp(is) if (spcore(ist,is)) then do m1=-ksp(ist,is),ksp(ist,is)-1 call wavefcr(.false.,lradstp,is,ia,ist,m1,npcmtmax,wfcr1) ! calculate the complex overlap density call crho2(npc,wfcr1,wfcr1(:,2),wfcr2,wfcr2(:,2),crhomt) call cfshtip(nrc,nrci,crhomt) ! calculate the Coulomb potential call cpotclmt(nrc,nrci,nrcmtmax,rlcmt(:,:,is),wprcmt(:,:,is), & crhomt,cvclmt) z1=zcfmtinp(nrc,nrci,wr2cmt(:,is),crhomt,cvclmt) engyx=engyx-0.5d0*dble(z1) end do ! end loop over ist end if end do end do ! end loop over jst end if end do ! end loops over atoms and species end do end do return contains pure subroutine crho2(n,wf11,wf12,wf21,wf22,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf11(n),wf12(n),wf21(n),wf22(n) complex(4), intent(out) :: crho(n) crho(1:n)=conjg(wf11(1:n))*wf21(1:n)+conjg(wf12(1:n))*wf22(1:n) end subroutine end subroutine elk-10.4.9/src/PaxHeaders/gentauk.f900000644000000000000000000000013014762655564014225 xustar0029 mtime=1741380468.77601007 30 atime=1741380467.033000958 29 ctime=1741380468.77601007 elk-10.4.9/src/gentauk.f900000644002504400250440000000562114762655564016755 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gentauk(ik,lock) use modmain use modomp implicit none ! arguments integer, intent(in) :: ik integer(omp_lock_kind), intent(inout) :: lock(natmtot) ! local variables integer ispn,jspn,nst,ist,jst integer is,ias,nrc,nrci integer npc,igk,ifg,i real(8) wo ! automatic arrays integer idx(nstsv) ! automatic arrays complex(8) gzfmt(npcmtmax,3),zfmt(npcmtmax),zfft(ngtc) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfgp(:,:,:) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) ! find the matching coefficients do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! count and index the occupied states nst=0 do ist=1,nstsv if (abs(occsv(ist,ik)) < epsocc) cycle nst=nst+1 idx(nst)=ist end do ! calculate the second-variational wavefunctions for occupied states allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfgp(ngkmax,nspinor,nst)) call genwfsv(.true.,.true.,nst,idx,ngdgc,igfc,ngk(:,ik),igkig(:,:,ik),apwalm, & evecfv,evecsv,wfmt,ngkmax,wfgp) deallocate(apwalm,evecfv,evecsv) !-------------------------! ! muffin-tin part ! !-------------------------! do ist=1,nst jst=idx(ist) wo=0.5d0*wkpt(ik)*occsv(jst,ik) do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! compute the gradient of the wavefunction call gradzfmt(nrc,nrci,rlcmt(:,-1,is),wcrcmt(:,:,is), & wfmt(:,ias,ispn,ist),npcmtmax,gzfmt) do i=1,3 ! convert gradient to spherical coordinates call zbsht(nrc,nrci,gzfmt(:,i),zfmt) ! add to total in muffin-tin call omp_set_lock(lock(ias)) taumt(1:npc,ias,ispn)=taumt(1:npc,ias,ispn) & +wo*(dble(zfmt(1:npc))**2+aimag(zfmt(1:npc))**2) call omp_unset_lock(lock(ias)) end do end do end do end do deallocate(wfmt) !---------------------------! ! interstitial part ! !---------------------------! do ist=1,nst jst=idx(ist) wo=0.5d0*wkpt(ik)*occsv(jst,ik)/omega do ispn=1,nspinor jspn=jspnfv(ispn) do i=1,3 zfft(1:ngtc)=0.d0 do igk=1,ngk(jspn,ik) ifg=igfc(igkig(igk,jspn,ik)) zfft(ifg)=vgkc(i,igk,jspn,ik)*zi*wfgp(igk,ispn,ist) end do call zfftifc(3,ngdgc,1,zfft) !$OMP CRITICAL(gentauk_) tauir(1:ngtc,ispn)=tauir(1:ngtc,ispn) & +wo*(dble(zfft(1:ngtc))**2+aimag(zfft(1:ngtc))**2) !$OMP END CRITICAL(gentauk_) end do end do end do deallocate(wfgp) end subroutine elk-10.4.9/src/PaxHeaders/gradrfmt.f900000644000000000000000000000013214762655564014377 xustar0030 mtime=1741380468.777010075 30 atime=1741380467.035000968 30 ctime=1741380468.777010075 elk-10.4.9/src/gradrfmt.f900000644002504400250440000000374114762655564017126 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gradrfmt ! !INTERFACE: subroutine gradrfmt(nr,nri,ri,wcr,rfmt,ld,grfmt) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on inner part of muffin-tin (in,integer) ! ri : 1/r on the radial mesh (in,real(nr)) ! wcr : weights for spline coefficients on radial mesh (in,real(12,nr)) ! rfmt : real muffin-tin function (in,real(*)) ! ld : leading dimension (in,integer) ! grfmt : gradient of rfmt (out,real(ld,3)) ! !DESCRIPTION: ! Calculates the gradient of a real muffin-tin function. In other words, given ! the real spherical harmonic expansion coefficients $f_{lm}(r)$ of a function ! $f({\bf r})$, the routine returns ${\bf F}_{lm}$ where ! $$ \sum_{lm}{\bf F}_{lm}(r)R_{lm}(\hat{\bf r})=\nabla f({\bf r}), $$ ! and $R_{lm}$ is a real spherical harmonic function. This is done by first ! converting the function to a complex spherical harmonic expansion and then ! using the routine {\tt gradzfmt}. See routine {\tt genrlm}. ! ! !REVISION HISTORY: ! Created August 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: ri(nr),wcr(12,nr),rfmt(*) integer, intent(in) :: ld real(8), intent(out) :: grfmt(ld,3) ! local variables integer i ! allocatable arrays complex(8), allocatable :: zfmt(:),gzfmt(:,:) allocate(zfmt(ld),gzfmt(ld,3)) ! convert real to complex spherical harmonic expansion call rtozfmt(nr,nri,rfmt,zfmt) ! compute the gradient call gradzfmt(nr,nri,ri,wcr,zfmt,ld,gzfmt) ! convert complex to real spherical harmonic expansion do i=1,3 call ztorfmt(nr,nri,gzfmt(:,i),grfmt(:,i)) ! improve stability by smoothing the gradient call rfmtsm(msmgmt,nr,nri,grfmt(:,i)) end do deallocate(zfmt,gzfmt) end subroutine !EOC elk-10.4.9/src/PaxHeaders/checkfsm.f900000644000000000000000000000013014762655564014352 xustar0029 mtime=1741380468.77801008 30 atime=1741380467.038000984 29 ctime=1741380468.77801008 elk-10.4.9/src/checkfsm.f900000644002504400250440000000303614762655564017100 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine checkfsm use modmain implicit none ! local variables integer isym,lspn integer is,ia,ja real(8) sc(3,3),v(3),t1 if (fsmtype == 0) return do isym=1,nsymcrys lspn=lspnsymc(isym) ! proper rotation matrix in Cartesian coordinates sc(:,:)=dble(symlatd(lspn))*symlatc(:,:,lspn) ! check invariance of global moment if ((abs(fsmtype) == 1).or.(abs(fsmtype) == 3)) then call r3mv(sc,momfix,v) t1=sum(abs(momfix(:)-v(:))) if (t1 > epslat) then write(*,*) write(*,'("Error(checkfsm): momfix not invariant under symmetry group")') write(*,*) stop end if end if ! check invariance of muffin-tin moments if ((abs(fsmtype) == 2).or.(abs(fsmtype) == 3)) then do is=1,nspecies do ia=1,natoms(is) ! if any component is >= 1000 then do not fix the moment t1=sum(abs(mommtfix(:,ia,is))) if (t1 >= 1000.d0) cycle ! equivalent atom ja=ieqatom(ia,is,isym) call r3mv(sc,mommtfix(:,ja,is),v) t1=sum(abs(mommtfix(:,ia,is)-v(:))) if (t1 > epslat) then write(*,*) write(*,'("Error(checkfsm): mommtfix not invariant under symmetry & &group")') write(*,'(" for species ",I4)') is write(*,'(" and equivalent atoms ",2I4)') ia,ja write(*,*) stop end if end do end do end if end do end subroutine elk-10.4.9/src/PaxHeaders/genrlmv.f900000644000000000000000000000013214762655564014243 xustar0030 mtime=1741380468.780010091 30 atime=1741380467.041000999 30 ctime=1741380468.780010091 elk-10.4.9/src/genrlmv.f900000644002504400250440000000371314762655564016771 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: genrlmv ! !INTERFACE: subroutine genrlmv(lmax,v,rlm) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum angular momentum (in,integer) ! v : input vector (in,real(3)) ! rlm : array of real spherical harmonics (out,real((lmax+1)**2)) ! !DESCRIPTION: ! Generates a sequence of real spherical harmonics evaluated at angles ! $(\theta,\phi)$ for $00 \\ ! \sqrt{2}\,{\rm Im}\{Y_{lm}(\theta,\phi)\} & m<0 \\ ! {\rm Re}\{Y_{lm}(\theta,\phi)\} & m=0 ! \end{cases} $$ ! where $Y_{lm}$ are the complex spherical harmonics. These functions are ! orthonormal and complete and may be used for expanding real-valued functions ! on the sphere. This routine is numerically stable and accurate to near ! machine precision for $l\le 50$. See routine {\tt genylmv}. ! ! !REVISION HISTORY: ! Created March 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax real(8), intent(in) :: v(3) real(8), intent(out) :: rlm(*) ! local variables integer l,lm,n real(8), parameter :: sqtwo=1.4142135623730950488d0 ! automatic arrays complex(8) ylm((lmax+1)**2) if ((lmax < 0).or.(lmax > 50)) then write(*,*) write(*,'("Error(genrlmv): lmax out of range : ",I8)') lmax write(*,*) stop end if ! generate complex spherical harmonics call genylmv(.false.,lmax,v,ylm) ! convert to real spherical harmonics rlm(1)=dble(ylm(1)) do l=1,lmax n=l-1 lm=l**2+1 rlm(lm:lm+n)=sqtwo*aimag(ylm(lm:lm+n)) lm=lm+l rlm(lm)=dble(ylm(lm)) lm=lm+1 rlm(lm:lm+n)=sqtwo*dble(ylm(lm:lm+n)) end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/mae.f900000644000000000000000000000013214762655564013333 xustar0030 mtime=1741380468.781010096 30 atime=1741380467.044001015 30 ctime=1741380468.781010096 elk-10.4.9/src/mae.f900000644002504400250440000001010114762655564016046 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine mae use modmain use modmpi use moddelf use modtest implicit none ! local variables integer i,j,i0,i1 real(8) e0,e1,de real(8) v1(3),v2(3),th real(8) a(3,3),b(3,3) ! initialise global variables call init0 ! store original parameters avec0(:,:)=avec(:,:) spinpol0=spinpol spinorb0=spinorb cmagz0=cmagz bfieldc00(:)=bfieldc0(:) reducebf0=reducebf fsmtype0=fsmtype vkloff0(:)=vkloff(:) ! enable spin-orbit coupling spinorb=.true. ! enforce collinear magnetism in the z-direction cmagz=.true. ! no fixed spin moment calculation: the crystal is rotated instead fsmtype=0 ! if task=28 then start from atomic densities; if task=29 read STATE.OUT trdstate=(task == 29) ! zero k-point offset vkloff(:)=0.d0 ! start with large magnetic field bfieldc0(1:2)=0.d0 bfieldc0(3)=-2.d0 ! reduce the external magnetic field after each s.c. loop reducebf=0.75d0 ! generate the spin moment directions in (theta,phi) coordinates call gentpmae ! open MAE_INFO.OUT if (mp_mpi) then open(71,file='MAE_INFO.OUT',form='FORMATTED') write(71,*) write(71,'("Scale factor of spin-orbit coupling term : ",G18.10)') socscf end if i0=1; i1=1 e0=1.d8; e1=-1.d8 ! loop over points on sphere do i=1,npmae if (mp_mpi) then write(*,'("Info(mae): fixed spin moment direction ",I6," of ",I6)') i,npmae end if ! rotate lattice vectors instead of moment (thanks to J. Glasbrenner, ! K. Bussmann and I. Mazin) ! first by -phi around the z-axis v1(:)=0.d0 v1(3)=1.d0 th=-tpmae(2,i) call axangrot(v1,th,a) ! then by -theta around the y-axis v1(:)=0.d0 v1(2)=1.d0 th=-tpmae(1,i) call axangrot(v1,th,b) call r3mm(b,a,rotsht) call r3mm(rotsht,avec0,avec) ! find the corresponding moment direction vector call r3minv(rotsht,a) v1(:)=0.d0 v1(3)=1.d0 call r3mv(a,v1,v2) do j=1,3 if (abs(v2(j)) < epslat) v2(j)=0.d0 end do ! rotate the spherical cover used for the spherical harmonic transform trotsht=.true. ! run the ground-state calculation call gndstate ! subsequent calculations should read the previous density trdstate=.true. ! make external magnetic field small bfieldc0(3)=-0.01d0 if (mp_mpi) then write(71,*) write(71,'("Fixed spin moment direction point ",I6," of ",I6)') i,npmae write(71,'("Spherical coordinates of direction : ",2G18.10)') tpmae(:,i) write(71,'("Direction vector (Cartesian coordinates) : ",3G18.10)') v2 write(71,'("Calculated total moment magnitude : ",G18.10)') momtotm write(71,'("Total energy : ",G22.12)') engytot flush(71) end if ! check for minimum and maximum total energy if (engytot < e0) then e0=engytot i0=i end if if (engytot > e1) then e1=engytot i1=i end if ! delete the eigenvector files call delfiles(evec=.true.) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end do ! magnetic anisotropy energy de=e1-e0 if (mp_mpi) then write(71,*) write(71,'("Minimum energy point : ",I6)') i0 write(71,'("Maximum energy point : ",I6)') i1 write(71,*) write(71,'("Estimated magnetic anisotropy energy (MAE) : ",G18.10)') de write(71,*) write(71,'("MAE per unit volume : ",G18.10)') de/omega close(71) open(50,file='MAE.OUT',form='FORMATTED') write(50,'(G18.10)') de close(50) open(50,file='MAEPUV.OUT',form='FORMATTED') write(50,'(G18.10)') de/omega close(50) write(*,*) write(*,'("Info(mae):")') write(*,'(" Estimated magnetic anisotropy energy written to MAE.OUT")') write(*,'(" MAE per unit volume written to MAEPUV.OUT")') write(*,*) write(*,'(" Number of fixed spin moment directions used : ",I6)') npmae write(*,*) write(*,'(" Additional information written to MAE_INFO.OUT")') end if ! write the MAE to test file call writetest(28,'magnetic anisotropy energy',tol=1.d-5,rv=de) ! restore original input parameters avec(:,:)=avec0(:,:) spinpol=spinpol0 spinorb=spinorb0 cmagz=cmagz0 fsmtype=fsmtype0 bfieldc0(:)=bfieldc00(:) reducebf=reducebf0 vkloff(:)=vkloff0(:) trotsht=.false. end subroutine elk-10.4.9/src/PaxHeaders/writegvecrf.f900000644000000000000000000000013214762655564015120 xustar0030 mtime=1741380468.782010101 30 atime=1741380467.047001031 30 ctime=1741380468.782010101 elk-10.4.9/src/writegvecrf.f900000644002504400250440000000077714762655564017655 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writegvecrf use modmain implicit none ! local variables integer ig open(50,file='GVECRF.OUT',form='FORMATTED',action='WRITE') write(50,'(G18.10," : gmaxrf")') gmaxrf write(50,'(I8," : ngrf; G-vector index, ivg below")') ngrf do ig=1,ngrf write(50,'(I8,3I6)') ig,ivg(1:3,ig) end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/zcfmtwr.f900000644000000000000000000000013214762655564014265 xustar0030 mtime=1741380468.783010106 30 atime=1741380467.049001041 30 ctime=1741380468.783010106 elk-10.4.9/src/zcfmtwr.f900000644002504400250440000000132214762655564017005 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine zcfmtwr(nr,nri,wr,zfmt,cfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(8), intent(in) :: zfmt(*) complex(4), intent(out) :: cfmt(*) ! local variables integer n,ir,i i=1 if (lmaxi == 1) then do ir=1,nri cfmt(i:i+3)=wr(ir)*zfmt(i:i+3) i=i+4 end do else n=lmmaxi-1 do ir=1,nri cfmt(i:i+n)=wr(ir)*zfmt(i:i+n) i=i+lmmaxi end do end if n=lmmaxo-1 do ir=nri+1,nr cfmt(i:i+n)=wr(ir)*zfmt(i:i+n) i=i+lmmaxo end do end subroutine elk-10.4.9/src/PaxHeaders/olpistl.f900000644000000000000000000000013214762655564014257 xustar0030 mtime=1741380468.785010117 30 atime=1741380467.052001057 30 ctime=1741380468.785010117 elk-10.4.9/src/olpistl.f900000644002504400250440000000233514762655564017004 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: olpistl ! !INTERFACE: pure subroutine olpistl(ngp,igpig,ld,o) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer) ! igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax)) ! ld : leading dimension of o (in,integer) ! o : overlap matrix (inout,complex(*)) ! !DESCRIPTION: ! Computes the interstitial contribution to the overlap matrix for the APW ! basis functions. The overlap is given by ! $$ O^{\rm I}({\bf G+k,G'+k})=\tilde{\Theta}({\bf G-G'}), $$ ! where $\tilde{\Theta}$ is the characteristic function. See routine ! {\tt gencfun}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp,igpig(ngkmax),ld complex(8), intent(out) :: o(ld,*) ! local variables integer ig,j1,j2,j3,i,j do j=1,ngp ig=igpig(j) j1=ivg(1,ig); j2=ivg(2,ig); j3=ivg(3,ig) do i=1,j ig=igpig(i) ig=ivgig(ivg(1,ig)-j1,ivg(2,ig)-j2,ivg(3,ig)-j3) o(i,j)=cfunig(ig) end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/hmlistl.f900000644000000000000000000000013214762655564014245 xustar0030 mtime=1741380468.786010122 30 atime=1741380467.055001073 30 ctime=1741380468.786010122 elk-10.4.9/src/hmlistl.f900000644002504400250440000000315214762655564016770 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: hmlistl ! !INTERFACE: pure subroutine hmlistl(ngp,igpig,vgpc,ld,h) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer) ! igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax)) ! vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax)) ! ld : leading dimension of h (in,integer) ! h : Hamiltonian matrix (inout,complex(*)) ! !DESCRIPTION: ! Computes the interstitial contribution to the Hamiltonian matrix for the APW ! basis functions. The Hamiltonian is given by ! $$ H^{\rm I}({\bf G+k,G'+k})=\frac{1}{2}({\bf G+k})\cdot({\bf G'+k}) ! \tilde{\Theta}({\bf G-G'})+V_s({\bf G-G'}), $$ ! where $V_s$ is the interstitial Kohn-Sham potential and $\tilde{\Theta}$ is ! the characteristic function. See routine {\tt gencfun}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp,igpig(ngkmax) real(8), intent(in) :: vgpc(3,ngkmax) integer, intent(in) :: ld complex(8), intent(out) :: h(ld,*) ! local variables integer j1,j2,j3,ig,i,j real(8) v1,v2,v3,t1 do j=1,ngp ig=igpig(j) j1=ivg(1,ig); j2=ivg(2,ig); j3=ivg(3,ig) v1=0.5d0*vgpc(1,j); v2=0.5d0*vgpc(2,j); v3=0.5d0*vgpc(3,j) do i=1,j ig=igpig(i) ig=ivgig(ivg(1,ig)-j1,ivg(2,ig)-j2,ivg(3,ig)-j3) t1=vgpc(1,i)*v1+vgpc(2,i)*v2+vgpc(3,i)*v3 h(i,j)=vsig(ig)+t1*cfunig(ig) end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/olpalo.f900000644000000000000000000000013214762655564014057 xustar0030 mtime=1741380468.787010127 30 atime=1741380467.057001083 30 ctime=1741380468.787010127 elk-10.4.9/src/olpalo.f900000644002504400250440000000133514762655564016603 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine olpalo(is,ias,ngp,apwalm,ld,o) use modmain implicit none ! arguments integer, intent(in) :: is,ias,ngp complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: o(ld,*) ! local variables integer ilo,io,l,lm,j real(8) t1 do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 j=ngp+idxlo(lm,ilo,ias) do io=1,apword(l,is) t1=oalo(io,ilo,ias) o(1:ngp,j)=o(1:ngp,j)+t1*conjg(apwalm(1:ngp,io,lm)) end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/hmlalo.f900000644000000000000000000000013214762655564014045 xustar0030 mtime=1741380468.789010138 30 atime=1741380467.060001099 30 ctime=1741380468.789010138 elk-10.4.9/src/hmlalo.f900000644002504400250440000000232214762655564016566 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine hmlalo(is,ias,ngp,apwalm,ld,h) use modmain implicit none ! arguments integer, intent(in) :: is,ias,ngp complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: h(ld,*) ! local variables integer io,ilo,j integer l0,l1,l2,l3 integer lm1,lm3,lma,lmb complex(8) z1 do ilo=1,nlorb(is) l1=lorbl(ilo,is) do lm1=l1**2+1,(l1+1)**2 j=ngp+idxlo(lm1,ilo,ias) do l3=0,lmaxapw if (mod(l1+l3,2) == 0) then; l0=0; else; l0=1; end if do lm3=l3**2+1,(l3+1)**2 do io=1,apword(l3,is) z1=0.d0 do l2=l0,lmaxo,2 lma=l2**2+1; lmb=lma+2*l2 z1=z1+sum(gntyry(lma:lmb,lm3,lm1)*hloa(lma:lmb,io,l3,ilo,ias)) end do ! note that what is actually computed is the Hermitian conjugate of if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then h(1:ngp,j)=h(1:ngp,j)+conjg(z1*apwalm(1:ngp,io,lm3)) end if end do end do end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/olplolo.f900000644000000000000000000000013214762655564014251 xustar0030 mtime=1741380468.790010143 30 atime=1741380467.063001114 30 ctime=1741380468.790010143 elk-10.4.9/src/olplolo.f900000644002504400250440000000124614762655564016776 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine olplolo(is,ias,ngp,ld,o) use modmain implicit none ! arguments integer, intent(in) :: is,ias,ngp,ld complex(8), intent(out) :: o(ld,*) ! local variables integer ilo,jlo,l,lm,i,j do ilo=1,nlorb(is) l=lorbl(ilo,is) do jlo=1,nlorb(is) if (lorbl(jlo,is) == l) then do lm=l**2+1,(l+1)**2 i=ngp+idxlo(lm,ilo,ias) j=ngp+idxlo(lm,jlo,ias) if (i <= j) o(i,j)=ololo(ilo,jlo,ias) end do end if end do end do end subroutine elk-10.4.9/src/PaxHeaders/hmllolo.f900000644000000000000000000000013214762655564014237 xustar0030 mtime=1741380468.791010148 30 atime=1741380467.065001125 30 ctime=1741380468.791010148 elk-10.4.9/src/hmllolo.f900000644002504400250440000000171614762655564016766 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine hmllolo(is,ias,ngp,ld,h) use modmain implicit none ! arguments integer, intent(in) :: is,ias,ngp,ld complex(8), intent(out) :: h(ld,*) ! local variables integer ilo,jlo,i,j integer l0,l1,l2,l3 integer lm1,lm3,lma,lmb complex(8) z1 do jlo=1,nlorb(is) l3=lorbl(jlo,is) do lm3=l3**2+1,(l3+1)**2 j=ngp+idxlo(lm3,jlo,ias) do ilo=1,nlorb(is) l1=lorbl(ilo,is) if (mod(l1+l3,2) == 0) then; l0=0; else; l0=1; end if do lm1=l1**2+1,(l1+1)**2 i=ngp+idxlo(lm1,ilo,ias) if (i > j) cycle z1=0.d0 do l2=l0,lmaxo,2 lma=l2**2+1; lmb=(l2+1)**2 z1=z1+sum(gntyry(lma:lmb,lm3,lm1)*hlolo(lma:lmb,jlo,ilo,ias)) end do h(i,j)=z1 end do end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/olpaa.f900000644000000000000000000000013214762655564013665 xustar0030 mtime=1741380468.792010153 30 atime=1741380467.068001141 30 ctime=1741380468.792010153 elk-10.4.9/src/olpaa.f900000644002504400250440000000151114762655564016405 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine olpaa(tor,is,ngp,apwalm,ld,o) use modmain implicit none ! arguments logical, intent(in) :: tor integer, intent(in) :: is,ngp complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: o(*) ! local variables integer io,l,lm,i ! automatic arrays complex(8) a(lmoapw(is),ngp) i=0 do l=0,lmaxapw do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) i=i+1 a(i,1:ngp)=apwalm(1:ngp,io,lm) end do end do end do if (tor) then ! matrix O is real call rzmmaau(lmoapw(is),ngp,a,ld,o) else ! matrix O is complex call zmmaau(lmoapw(is),ngp,a,ld,o) end if end subroutine elk-10.4.9/src/PaxHeaders/hmlaa.f900000644000000000000000000000013214762655564013653 xustar0030 mtime=1741380468.794010164 30 atime=1741380467.071001156 30 ctime=1741380468.794010164 elk-10.4.9/src/hmlaa.f900000644002504400250440000000415014762655564016375 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: hmlaa ! !INTERFACE: subroutine hmlaa(thr,is,ias,ngp,apwalm,ld,h) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! thr : .true. if the matrix h is real valued (in,logical) ! is : species number (in,integer) ! ias : joint atom and species number (in,integer) ! ngp : number of G+p-vectors (in,integer) ! apwalm : APW matching coefficients (in,complex(ngkmax,apwordmax,lmmaxapw)) ! ld : leading dimension of h (in,integer) ! h : Hamiltonian matrix (inout,complex(*)) ! !DESCRIPTION: ! Calculates the APW-APW contribution to the Hamiltonian matrix. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: thr integer, intent(in) :: is,ias,ngp complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: h(*) ! local variables integer io,jo,i integer l0,l1,l2,l3 integer lm1,lm3,lma,lmb complex(8) z1 ! automatic arrays complex(8) y(ngp),a(lmoapw(is),ngp),b(lmoapw(is),ngp) i=0 do l1=0,lmaxapw do lm1=l1**2+1,(l1+1)**2 do io=1,apword(l1,is) i=i+1 y(1:ngp)=0.d0 do l3=0,lmaxapw if (mod(l1+l3,2) == 0) then; l0=0; else; l0=1; end if do lm3=l3**2+1,(l3+1)**2 do jo=1,apword(l3,is) z1=0.d0 ! kinetic and potential contribution do l2=l0,lmaxo,2 lma=l2**2+1; lmb=lma+2*l2 z1=z1+sum(gntyry(lma:lmb,lm3,lm1)*haa(lma:lmb,jo,l3,io,l1,ias)) end do if (abs(dble(z1))+abs(aimag(z1)) > 1.d-12) then call zaxpy(ngp,z1,apwalm(:,jo,lm3),1,y,1) end if end do end do end do a(i,1:ngp)=apwalm(1:ngp,io,lm1) b(i,1:ngp)=y(1:ngp) end do end do end do if (thr) then ! matrix H is real call rzmmabu(lmoapw(is),ngp,a,b,ld,h) else ! matrix H is complex call zmmabu(lmoapw(is),ngp,a,b,ld,h) end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/gengclg.f900000644000000000000000000000013214762655564014177 xustar0030 mtime=1741380468.795010169 30 atime=1741380467.074001172 30 ctime=1741380468.795010169 elk-10.4.9/src/gengclg.f900000644002504400250440000000057314762655564016726 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengclg use modmain implicit none ! local variables if (allocated(gclg)) deallocate(gclg) allocate(gclg(ngvec)) gclg(1)=0.d0 gclg(2:ngvec)=fourpi/gc(2:ngvec)**2 end subroutine elk-10.4.9/src/PaxHeaders/rhomagsh.f900000644000000000000000000000013214762655564014401 xustar0030 mtime=1741380468.796010174 30 atime=1741380467.076001183 30 ctime=1741380468.796010174 elk-10.4.9/src/rhomagsh.f900000644002504400250440000000215214762655564017123 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rhomagsh ! !INTERFACE: subroutine rhomagsh ! !USES: use modmain use modomp ! !DESCRIPTION: ! Converts the muffin-tin density and magnetisation from spherical coordinates ! to a spherical harmonic expansion. See {\tt rhomagk}. ! ! !REVISION HISTORY: ! Created January 2009 (JKD) !EOP !BOC implicit none ! local variables integer idm,is,ias,nthd call holdthd(2*natmtot,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(is,idm) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) ! convert the density to spherical harmonics call rfshtip(nrcmt(is),nrcmti(is),rhomt(:,ias)) end do !$OMP END DO NOWAIT do idm=1,ndmag !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) ! convert the magnetisation to spherical harmonics call rfshtip(nrcmt(is),nrcmti(is),magmt(:,ias,idm)) end do !$OMP END DO end do !$OMP END PARALLEL call freethd(nthd) end subroutine !EOC elk-10.4.9/src/PaxHeaders/charge.f900000644000000000000000000000013014762655564014020 xustar0029 mtime=1741380468.79701018 30 atime=1741380467.079001198 29 ctime=1741380468.79701018 elk-10.4.9/src/charge.f900000644002504400250440000000201214762655564016537 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: charge ! !INTERFACE: subroutine charge ! !USES: use modmain use modtest ! !DESCRIPTION: ! Computes the muffin-tin, interstitial and total charges by integrating the ! density. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! local variables integer is,ias real(8) t1 ! external functions real(8), external :: rfmtint ! find the muffin-tin charges chgmttot=0.d0 do ias=1,natmtot is=idxis(ias) chgmt(ias)=rfmtint(nrmt(is),nrmti(is),wr2mt(:,is),rhomt(:,ias)) chgmttot=chgmttot+chgmt(ias) end do ! find the interstitial charge t1=dot_product(rhoir(1:ngtot),cfunir(1:ngtot)) chgir=t1*omega/dble(ngtot) ! total calculated charge chgcalc=chgmttot+chgir ! write total calculated charge to test file call writetest(400,'calculated total charge',tol=1.d-6,rv=chgcalc) end subroutine !EOC elk-10.4.9/src/PaxHeaders/moment.f900000644000000000000000000000013214762655564014070 xustar0030 mtime=1741380468.798010185 30 atime=1741380467.082001214 30 ctime=1741380468.798010185 elk-10.4.9/src/moment.f900000644002504400250440000000256214762655564016617 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: moment ! !INTERFACE: subroutine moment ! !USES: use modmain use modtest ! !DESCRIPTION: ! Computes the muffin-tin, interstitial and total moments by integrating the ! magnetisation. ! ! !REVISION HISTORY: ! Created January 2005 (JKD) !EOP !BOC implicit none ! local variables integer idm,is,ias real(8) t1 ! external functions real(8), external :: rfmtint if (.not.spinpol) then mommt(:,:)=0.d0 mommttot(:)=0.d0 momir(:)=0.d0 momtot(:)=0.d0 momtotm=0.d0 return end if ! find the muffin-tin moments mommttot(:)=0.d0 do idm=1,ndmag do ias=1,natmtot is=idxis(ias) mommt(idm,ias)=rfmtint(nrmt(is),nrmti(is),wr2mt(:,is),magmt(:,ias,idm)) mommttot(idm)=mommttot(idm)+mommt(idm,ias) end do end do ! find the interstitial and total moments do idm=1,ndmag t1=dot_product(magir(1:ngtot,idm),cfunir(1:ngtot)) momir(idm)=t1*omega/dble(ngtot) momtot(idm)=mommttot(idm)+momir(idm) end do ! total moment magnitude if (ncmag) then momtotm=sqrt(momtot(1)**2+momtot(2)**2+momtot(3)**2) else momtotm=abs(momtot(1)) end if ! write total moment magnitude to test file call writetest(450,'total moment magnitude',tol=1.d-3,rv=momtotm) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rfint0.f900000644000000000000000000000013214762655564013773 xustar0030 mtime=1741380468.800010195 30 atime=1741380467.084001224 30 ctime=1741380468.800010195 elk-10.4.9/src/rfint0.f900000644002504400250440000000144314762655564016517 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfint0(rf0,rfmt,rfir) use modmain implicit none ! arguments real(8), intent(in) :: rf0 real(8), intent(inout) :: rfmt(npmtmax,natmtot),rfir(ngtot) ! local variables integer is,ias,nr,nri integer iro,i0,i1 real(8) t1 ! external functions real(8), external :: rfint t1=rfint(rfmt,rfir) t1=rf0-t1/omega rfir(1:ngtot)=rfir(1:ngtot)+t1 t1=t1*y00i do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 i1=lmmaxi*(nri-1)+1 rfmt(1:i1:lmmaxi,ias)=rfmt(1:i1:lmmaxi,ias)+t1 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 rfmt(i0:i1:lmmaxo,ias)=rfmt(i0:i1:lmmaxo,ias)+t1 end do end subroutine elk-10.4.9/src/PaxHeaders/r3mdet.f900000644000000000000000000000013114762655564013766 xustar0030 mtime=1741380468.801010201 29 atime=1741380467.08700124 30 ctime=1741380468.801010201 elk-10.4.9/src/r3mdet.f900000644002504400250440000000126114762655564016511 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mdet ! !INTERFACE: pure real(8) function r3mdet(a) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,real(3,3)) ! !DESCRIPTION: ! Returns the determinant of a real $3\times 3$ matrix $A$. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3) r3mdet=a(1,1)*(a(2,2)*a(3,3)-a(3,2)*a(2,3)) & +a(2,1)*(a(3,2)*a(1,3)-a(1,2)*a(3,3)) & +a(3,1)*(a(1,2)*a(2,3)-a(2,2)*a(1,3)) end function !EOC elk-10.4.9/src/PaxHeaders/gencfrc.f900000644000000000000000000000013214762655564014200 xustar0030 mtime=1741380468.802010206 30 atime=1741380467.090001256 30 ctime=1741380468.802010206 elk-10.4.9/src/gencfrc.f900000644002504400250440000000114714762655564016725 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gencfrc use modmain implicit none ! local variables integer ig,ifg ! automatic arrays complex(8) zfft(nfgrzc) do ifg=1,nfgrzc ig=igrzfc(ifg) if (ig <= ngvc) then zfft(ifg)=cfunig(ig) else zfft(ifg)=0.d0 end if end do ! allocate global array if (allocated(cfrc)) deallocate(cfrc) allocate(cfrc(ngtc)) ! Fourier transform to real-space coarse grid call rzfftifc(3,ngdgc,1,cfrc,zfft) end subroutine elk-10.4.9/src/PaxHeaders/checkstop.f900000644000000000000000000000013214762655564014554 xustar0030 mtime=1741380468.803010211 30 atime=1741380467.092001266 30 ctime=1741380468.803010211 elk-10.4.9/src/checkstop.f900000644002504400250440000000114114762655564017273 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine checkstop use modmain use modmpi use moddelf implicit none ! check for STOP file (only MPI master process) if (mp_mpi) then inquire(file='STOP',exist=tstop) if (tstop) then write(*,'("Info(checkstop): STOP file exists")') ! delete the STOP file call delfile('STOP') end if end if ! broadcast tstop from master process to all other processes call mpi_bcast(tstop,1,mpi_logical,0,mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/genbs.f900000644000000000000000000000013214762655564013667 xustar0030 mtime=1741380468.805010222 30 atime=1741380467.095001282 30 ctime=1741380468.805010222 elk-10.4.9/src/genbs.f900000644002504400250440000000356714762655564016424 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine genbs use modmain use modomp implicit none ! local variables integer idm,is,ia,ias integer nrc,nrci,npc,nthd real(8) cb,t1 if (.not.spinpol) return ! coupling constant of the external field (g_e/4c) cb=gfacte/(4.d0*solsc) !------------------------------------! ! muffin-tin Kohn-Sham field ! !------------------------------------! call holdthd(natmtot+ndmag,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(ias,is,ia,nrc) & !$OMP PRIVATE(nrci,npc,idm,t1) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) ia=idxia(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! exchange-correlation magnetic field in spherical coordinates do idm=1,ndmag call rfmtftoc(nrc,nrci,bxcmt(:,ias,idm),bsmt(:,ias,idm)) call rbshtip(nrc,nrci,bsmt(:,ias,idm)) end do ! add the external magnetic field t1=cb*(bfcmt(3,ia,is)+bfieldc(3)) bsmt(1:npc,ias,ndmag)=bsmt(1:npc,ias,ndmag)+t1 if (ncmag) then do idm=1,2 t1=cb*(bfcmt(idm,ia,is)+bfieldc(idm)) bsmt(1:npc,ias,idm)=bsmt(1:npc,ias,idm)+t1 end do end if end do !$OMP END DO NOWAIT !-----------------------------------------------! ! interstitial Kohn-Sham magnetic field ! !-----------------------------------------------! !$OMP DO SCHEDULE(DYNAMIC) do idm=1,ndmag if (ncmag) then t1=cb*bfieldc(idm) else t1=cb*bfieldc(3) end if bsir(1:ngtot,idm)=bxcir(1:ngtot,idm)+t1 end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) ! add the magnetic dipole field if required if (tbdip) call bdipole ! multiply interstitial part by characteristic function and store on coarse grid do idm=1,ndmag call rfirftoc(bsir(:,idm),bsirc(:,idm)) end do end subroutine elk-10.4.9/src/PaxHeaders/gradwf2.f900000644000000000000000000000013214762655564014125 xustar0030 mtime=1741380468.806010227 30 atime=1741380467.098001297 30 ctime=1741380468.806010227 elk-10.4.9/src/gradwf2.f900000644002504400250440000000563014762655564016653 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gradwf2(ik,gwf2mt,gwf2ir) use modmain implicit none ! arguments integer, intent(in) :: ik real(8), intent(inout) :: gwf2mt(npmtmax,natmtot),gwf2ir(ngtot) ! local variables integer ispn,jspn,nst,ist,jst integer is,ia,ias,nrc,nrci,npc integer igk,ifg,i real(8) wo complex(8) z1 ! automatic arrays integer idx(nstsv) complex(8) gwfmt(npcmtmax,3),zfmt(npcmtmax) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:) complex(8), allocatable :: zfft(:) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik),sfacgk(:,:,ispn,ik),& apwalm(:,:,:,:,ispn)) end do ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! count and index the occupied states nst=0 do ist=1,nstsv if (abs(occsv(ist,ik)) < epsocc) cycle nst=nst+1 idx(nst)=ist end do ! calculate the second-variational wavefunctions for occupied states allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfgk(ngkmax,nspinor,nst)) call genwfsv(.true.,.true.,nst,idx,ngdgc,igfc,ngk(:,ik),igkig(:,:,ik),apwalm, & evecfv,evecsv,wfmt,ngkmax,wfgk) deallocate(apwalm) !-------------------------! ! muffin-tin part ! !-------------------------! do ist=1,nst jst=idx(ist) wo=wkpt(ik)*occsv(jst,ik) do ispn=1,nspinor do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) ! compute the gradient of the wavefunction call gradzfmt(nrc,nrci,rlcmt(:,-1,is),wcrcmt(:,:,is), & wfmt(:,ias,ispn,ist),npcmtmax,gwfmt) do i=1,3 ! convert gradient from spherical harmonics to spherical coordinates call zbsht(nrc,nrci,gwfmt(:,i),zfmt) ! add to total gwf2mt(1:npc,ias)=gwf2mt(1:npc,ias) & +wo*(dble(zfmt(1:npc))**2+aimag(zfmt(1:npc))**2) end do end do end do end do end do deallocate(wfmt) !---------------------------! ! interstitial part ! !---------------------------! allocate(zfft(ngtc)) do ist=1,nst jst=idx(ist) wo=wkpt(ik)*occsv(jst,ik)/omega do ispn=1,nspinor jspn=jspnfv(ispn) ! compute gradient of wavefunction do i=1,3 zfft(1:ngtc)=0.d0 do igk=1,ngk(jspn,ik) ifg=igfc(igkig(igk,jspn,ik)) z1=wfgk(igk,ispn,ist) zfft(ifg)=vgkc(i,igk,jspn,ik)*zi*z1 end do call zfftifc(3,ngdgc,1,zfft) gwf2ir(1:ngtc)=gwf2ir(1:ngtc) & +wo*(dble(zfft(1:ngtc))**2+aimag(zfft(1:ngtc))**2) end do end do end do deallocate(wfgk,zfft) end subroutine elk-10.4.9/src/PaxHeaders/writelinen.f900000644000000000000000000000013214762655564014751 xustar0030 mtime=1741380468.807010232 30 atime=1741380467.101001313 30 ctime=1741380468.807010232 elk-10.4.9/src/writelinen.f900000644002504400250440000000242414762655564017475 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writelinen ! !INTERFACE: subroutine writelinen ! !USES: use modmain ! !DESCRIPTION: ! Writes the linearisation energies for all APW and local-orbital functions to ! the file {\tt LINENGY.OUT}. ! ! !REVISION HISTORY: ! Created February 2004 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ias,l,io,ilo open(50,file='LINENGY'//trim(filext),form='FORMATTED') do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),ia write(50,'(" APW functions :")') do l=0,lmaxapw do io=1,apword(l,is) write(50,'(" l = ",I2,", energy derivative = ",I2," : ",G18.10)') l, & apwdm(io,l,is),apwe(io,l,ias) end do end do write(50,'(" local-orbital functions :")') do ilo=1,nlorb(is) do io=1,lorbord(ilo,is) write(50,'(" l.o. = ",I2,", l = ",I2,", energy derivative = ",I2,& &" : ",G18.10)') ilo,lorbl(ilo,is),lorbdm(io,ilo,is),lorbe(io,ilo,ias) end do end do end do end do close(50) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rfmtlm.f900000644000000000000000000000013214762655564014072 xustar0030 mtime=1741380468.809010242 30 atime=1741380467.103001324 30 ctime=1741380468.809010242 elk-10.4.9/src/rfmtlm.f900000644002504400250440000000123714762655564016617 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine rfmtlm(lm,nr,nri,rfmt,fr) use modmain implicit none ! arguments integer, intent(in) :: lm,nr,nri real(8), intent(in) :: rfmt(npmtmax) real(8), intent(out) :: fr(nrmtmax) ! local variables integer iro,i0,i1 if (lm > lmmaxi) then fr(1:nri)=0.d0 else i1=lmmaxi*(nri-1)+lm fr(1:nri)=rfmt(lm:i1:lmmaxi) end if iro=nri+1 if (lm > lmmaxo) then fr(iro:nr)=0.d0 else i0=lmmaxi*nri+lm i1=lmmaxo*(nr-iro)+i0 fr(iro:nr)=rfmt(i0:i1:lmmaxo) end if end subroutine elk-10.4.9/src/PaxHeaders/putpmat.f900000644000000000000000000000013214762655564014263 xustar0030 mtime=1741380468.810010248 30 atime=1741380467.106001339 30 ctime=1741380468.810010248 elk-10.4.9/src/putpmat.f900000644002504400250440000000352514762655564017012 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putpmat(ik) use modmain use modmpi use modramdisk implicit none ! arguments integer, intent(in) :: ik ! local variables integer ispn,recl ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:),pmat(:,:,:) ! get the eigenvectors from file allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! calculate the wavefunctions for all states allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfgk(ngkmax,nspinor,nstsv)) call genwfsv(.true.,.true.,nstsv,[0],ngridg,igfft,ngk(:,ik),igkig(:,:,ik), & apwalm,evecfv,evecsv,wfmt,ngkmax,wfgk) deallocate(evecfv,evecsv,apwalm) ! calculate the momentum matrix elements allocate(pmat(nstsv,nstsv,3)) call genpmatk(ngk(:,ik),igkig(:,:,ik),vgkc(:,:,:,ik),wfmt,wfgk,pmat) deallocate(wfmt,wfgk) ! write the matrix elements in the second-variational basis !$OMP CRITICAL(u230) ! write to RAM disk if required if (ramdisk) then call putrd('PMAT.OUT',ik,v1=vkl(1:3,ik),n1=nstsv,nzv=nstsv*nstsv*3,zva=pmat) end if ! write to disk if required if (wrtdsk) then ! determine the record length inquire(iolength=recl) vkl(1:3,1),nstsv,pmat open(230,file='PMAT.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(230,rec=ik) vkl(1:3,ik),nstsv,pmat close(230) end if !$OMP END CRITICAL(u230) deallocate(pmat) end subroutine elk-10.4.9/src/PaxHeaders/getpmat.f900000644000000000000000000000013114762655564014231 xustar0030 mtime=1741380468.811010253 29 atime=1741380467.10800135 30 ctime=1741380468.811010253 elk-10.4.9/src/getpmat.f900000644002504400250440000000514214762655564016756 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getpmat(vpl,pmat) use modmain use modramdisk implicit none ! arguments real(8), intent(in) :: vpl(3) complex(8), intent(out) :: pmat(nstsv,nstsv,3) ! local variables logical tgs integer isym,ik,ist,jst integer recl,nstsv_ real(8) vkl_(3),sc(3,3) real(8) ei,ej,eij,t1 complex(8) v1(3),v2(3) ! find the equivalent k-point number and symmetry which rotates vkl to vpl call findkpt(vpl,isym,ik) !$OMP CRITICAL(u230) ! read from RAM disk if required if (ramdisk) then call getrd('PMAT.OUT',ik,tgs,v1=vkl_,n1=nstsv_,nzv=nstsv*nstsv*3,zva=pmat) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,pmat open(230,file='PMAT.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(230,rec=ik) vkl_,nstsv_,pmat close(230) 10 continue !$OMP END CRITICAL(u230) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getpmat): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" PMAT.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getpmat): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" PMAT.OUT : ",I8)') nstsv_ write(*,*) stop end if ! apply scissor correction if required if (tscissor) then do jst=1,nstsv ej=evalsv(jst,ik) do ist=1,nstsv ei=evalsv(ist,ik) eij=ei-ej ! note that the eigenvalues have *already* been scissor corrected if ((ei > efermi).and.(ej <= efermi)) then t1=eij/(eij-scissor) else if ((ei <= efermi).and.(ej > efermi)) then t1=eij/(eij+scissor) else cycle end if pmat(ist,jst,1:3)=pmat(ist,jst,1:3)*t1 end do end do end if ! if p = k then return t1=abs(vpl(1)-vkl(1,ik))+abs(vpl(2)-vkl(2,ik))+abs(vpl(3)-vkl(3,ik)) if (t1 < epslat) return ! rotate the matrix elements from the reduced to non-reduced k-point sc(1:3,1:3)=symlatc(1:3,1:3,lsplsymc(isym)) do jst=1,nstsv do ist=1,nstsv v1(1:3)=pmat(ist,jst,1:3) call rz3mv(sc,v1,v2) pmat(ist,jst,1:3)=v2(1:3) end do end do return contains pure subroutine rz3mv(a,x,y) implicit none real(8), intent(in) :: a(3,3) complex(8), intent(in) :: x(3) complex(8), intent(out) :: y(3) y(1)=a(1,1)*x(1)+a(1,2)*x(2)+a(1,3)*x(3) y(2)=a(2,1)*x(1)+a(2,2)*x(2)+a(2,3)*x(3) y(3)=a(3,1)*x(1)+a(3,2)*x(2)+a(3,3)*x(3) end subroutine end subroutine elk-10.4.9/src/PaxHeaders/rfmtpack.f900000644000000000000000000000013214762655564014400 xustar0030 mtime=1741380468.813010263 30 atime=1741380467.111001365 30 ctime=1741380468.813010263 elk-10.4.9/src/rfmtpack.f900000644002504400250440000000136114762655564017123 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine rfmtpack(tpack,nr,nri,rfmt1,rfmt2) use modmain implicit none ! arguments logical, intent(in) :: tpack integer, intent(in) :: nr,nri real(8), intent(in) :: rfmt1(*) real(8), intent(out) :: rfmt2(*) ! local variables integer ir,i,j,k,n n=lmmaxi-1 i=1 j=1 if (tpack) then do ir=1,nri rfmt2(j:j+n)=rfmt1(i:i+n) i=i+lmmaxo j=j+lmmaxi end do else do ir=1,nri rfmt2(j:j+n)=rfmt1(i:i+n) i=i+lmmaxi k=j+lmmaxi j=j+lmmaxo rfmt2(k:j-1)=0.d0 end do end if n=lmmaxo*(nr-nri)-1 rfmt2(j:j+n)=rfmt1(i:i+n) end subroutine elk-10.4.9/src/PaxHeaders/zfmtpack.f900000644000000000000000000000013214762655564014410 xustar0030 mtime=1741380468.814010268 30 atime=1741380467.114001381 30 ctime=1741380468.814010268 elk-10.4.9/src/zfmtpack.f900000644002504400250440000000136714762655564017141 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine zfmtpack(tpack,nr,nri,zfmt1,zfmt2) use modmain implicit none ! arguments logical, intent(in) :: tpack integer, intent(in) :: nr,nri complex(8), intent(in) :: zfmt1(*) complex(8), intent(out) :: zfmt2(*) ! local variables integer ir,i,j,k,n n=lmmaxi-1 i=1 j=1 if (tpack) then do ir=1,nri zfmt2(j:j+n)=zfmt1(i:i+n) i=i+lmmaxo j=j+lmmaxi end do else do ir=1,nri zfmt2(j:j+n)=zfmt1(i:i+n) i=i+lmmaxi k=j+lmmaxi j=j+lmmaxo zfmt2(k:j-1)=0.d0 end do end if n=lmmaxo*(nr-nri)-1 zfmt2(j:j+n)=zfmt1(i:i+n) end subroutine elk-10.4.9/src/PaxHeaders/putevalfv.f900000644000000000000000000000013214762655564014605 xustar0030 mtime=1741380468.815010274 30 atime=1741380467.116001392 30 ctime=1741380468.815010274 elk-10.4.9/src/putevalfv.f900000644002504400250440000000171014762655564017326 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevalfv(fext,ik,evalfv) use modmain use modramdisk implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ik real(8), intent(in) :: evalfv(nstfv,nspnfv) ! local variables integer recl character(256) fname ! construct the filename fname='EVALFV'//trim(fext) !$OMP CRITICAL(u200) ! write to RAM disk if required if (ramdisk) then call putrd(fname,ik,v1=vkl(1:3,ik),n1=nstfv,n2=nspnfv,nrv=nstfv*nspnfv, & rva=evalfv) end if ! write to disk if required if (wrtdsk) then ! find the record length inquire(iolength=recl) vkl(1:3,ik),nstfv,nspnfv,evalfv open(200,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) write(200,rec=ik) vkl(1:3,ik),nstfv,nspnfv,evalfv close(200) end if !$OMP END CRITICAL(u200) end subroutine elk-10.4.9/src/PaxHeaders/getevalfv.f900000644000000000000000000000013214762655564014554 xustar0030 mtime=1741380468.816010279 30 atime=1741380467.119001407 30 ctime=1741380468.816010279 elk-10.4.9/src/getevalfv.f900000644002504400250440000000351014762655564017275 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getevalfv(fext,ikp,vpl,evalfv) use modmain use modramdisk implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ikp real(8), intent(in) :: vpl(3) real(8), intent(out) :: evalfv(nstfv,nspnfv) ! local variables logical tgs integer isym,ik integer recl,nstfv_,nspnfv_ real(8) vkl_(3),t1 character(256) fname if (ikp > 0) then ik=ikp else ! find the k-point number call findkpt(vpl,isym,ik) end if ! construct the filename fname='EVALFV'//trim(fext) !$OMP CRITICAL(u200) ! read from RAM disk if required if (ramdisk) then call getrd(fname,ik,tgs,v1=vkl_,n1=nstfv_,n2=nspnfv_,nrv=nstfv*nspnfv, & rva=evalfv) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstfv_,nspnfv_,evalfv open(200,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) read(200,rec=ik) vkl_,nstfv_,nspnfv_,evalfv close(200) 10 continue !$OMP END CRITICAL(u200) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevalfv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVALFV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstfv /= nstfv_) then write(*,*) write(*,'("Error(getevalfv): differing nstfv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstfv write(*,'(" EVALFV.OUT : ",I8)') nstfv_ write(*,*) stop end if if (nspnfv /= nspnfv_) then write(*,*) write(*,'("Error(getevalfv): differing nspnfv for k-point ",I8)') ik write(*,'(" current : ",I8)') nspnfv write(*,'(" EVALFV.OUT : ",I8)') nspnfv_ write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/wfmtfv.f900000644000000000000000000000013214762655564014102 xustar0030 mtime=1741380468.818010289 30 atime=1741380467.122001423 30 ctime=1741380468.818010289 elk-10.4.9/src/wfmtfv.f900000644002504400250440000000701314762655564016625 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: wfmtfv ! !INTERFACE: subroutine wfmtfv(ias,ngp,apwalm,evecfv,wfmt) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ias : joint atom and species number (in,integer) ! ngp : number of G+p-vectors (in,integer) ! apwalm : APW matching coefficients (in,complex(ngkmax,apwordmax,lmmaxapw)) ! evecfv : first-variational eigenvector (in,complex(nmatmax)) ! wfmt : complex muffin-tin wavefunction passed in as real array ! (out,real(2,*)) ! !DESCRIPTION: ! Calculates the first-variational wavefunction in the muffin-tin in terms of ! a spherical harmonic expansion. For atom $\alpha$ and a particular $k$-point ! ${\bf p}$, the $r$-dependent $(l,m)$-coefficients of the wavefunction for ! the $i$th state are given by ! $$ \Phi^{i{\bf p}}_{\alpha lm}(r)=\sum_{\bf G}b^{i{\bf p}}_{\bf G} ! \sum_{j=1}^{M^{\alpha}_l}A^{\alpha}_{jlm}({\bf G+p})u^{\alpha}_{jl}(r) ! +\sum_{j=1}^{N^{\alpha}}b^{i{\bf p}}_{(\alpha,j,m)}v^{\alpha}_j(r) ! \delta_{l,l_j}, $$ ! where $b^{i{\bf p}}$ is the $i$th eigenvector returned from routine ! {\tt eveqn}; $A^{\alpha}_{jlm}({\bf G+p})$ is the matching coefficient; ! $M^{\alpha}_l$ is the order of the APW; $u^{\alpha}_{jl}$ is the APW radial ! function; $N^{\alpha}$ is the number of local-orbitals; $v^{\alpha}_j$ is ! the $j$th local-orbital radial function; and $(\alpha,j,m)$ is a compound ! index for the location of the local-orbital in the eigenvector. See routines ! {\tt genapwfr}, {\tt genlofr}, {\tt match} and {\tt eveqn}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Fixed description, October 2004 (C. Brouder) ! Removed argument ist, November 2006 (JKD) ! Changed arguments and optimised, December 2014 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ias,ngp complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw),evecfv(nmatmax) complex(8), intent(out) :: wfmt(*) ! local variables integer is,io,ilo integer nrci,nrco,iro integer l,lm,npci,i complex(8) z1 ! external functions complex(8), external :: zdotu is=idxis(ias) iro=nrmti(is)+lradstp nrci=nrcmti(is) nrco=nrcmt(is)-nrci npci=npcmti(is) ! zero the wavefunction wfmt(1:npcmt(is))=0.d0 !-----------------------! ! APW functions ! !-----------------------! do l=0,lmaxo do lm=l**2+1,(l+1)**2 i=npci+lm do io=1,apword(l,is) z1=zdotu(ngp,evecfv,1,apwalm(:,io,lm),1) if (abs(dble(z1))+abs(aimag(z1)) < 1.d-10) cycle if (l <= lmaxi) then call zfzrf(nrci,z1,apwfr(1,1,io,l,ias),lmmaxi,wfmt(lm)) end if call zfzrf(nrco,z1,apwfr(iro,1,io,l,ias),lmmaxo,wfmt(i)) end do end do end do !---------------------------------! ! local-orbital functions ! !---------------------------------! do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 i=npci+lm z1=evecfv(ngp+idxlo(lm,ilo,ias)) if (abs(dble(z1))+abs(aimag(z1)) < 1.d-10) cycle if (l <= lmaxi) then call zfzrf(nrci,z1,lofr(1,1,ilo,ias),lmmaxi,wfmt(lm)) end if call zfzrf(nrco,z1,lofr(iro,1,ilo,ias),lmmaxo,wfmt(i)) end do end do return contains pure subroutine zfzrf(n,z,rf,ld,zf) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: z real(8), intent(in) :: rf(lradstp,n) integer, intent(in) :: ld complex(8), intent(inout) :: zf(ld,n) zf(1,1:n)=zf(1,1:n)+z*rf(1,1:n) end subroutine end subroutine !EOC elk-10.4.9/src/PaxHeaders/putkmat.f900000644000000000000000000000013214762655564014256 xustar0030 mtime=1741380468.819010295 30 atime=1741380467.124001433 30 ctime=1741380468.819010295 elk-10.4.9/src/putkmat.f900000644002504400250440000000543714762655564017011 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putkmat(tfv,tvclcr,ik,vmt,vir,bmt,bir) use modmain use modmpi use modramdisk implicit none ! arguments logical, intent(in) :: tfv,tvclcr integer, intent(in) :: ik real(8), intent(in) :: vmt(npcmtmax,natmtot),vir(ngtc) real(8), intent(in) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag) ! local variables integer jst,ispn,recl ! automatic arrays complex(8) kmat(nstsv,nstsv),a(nstsv,nstsv) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:,:),evecsv(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:) ! get the eigenvalues/vectors from file for input reduced k-point allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! calculate the wavefunctions for all states of the input k-point allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfgk(ngkmax,nspinor,nstsv)) call genwfsv_sp(.false.,.true.,nstsv,[0],ngridg,igfft,ngk(:,ik),igkig(:,:,ik), & apwalm,evecfv,evecsv,wfmt,ngkmax,wfgk) deallocate(apwalm,evecfv) ! compute Kohn-Sham potential matrix elements if (spinpol) then call genvbmatk(vmt,vir,bmt,bir,ngk(:,ik),igkig(:,:,ik),wfmt,ngkmax,wfgk,kmat) else call genvmatk(vmt,vir,ngk(:,ik),igkig(:,:,ik),wfmt,ngkmax,wfgk,kmat) end if deallocate(wfgk) ! negate the potential matrix elements because we have to subtract them and add ! the second-variational eigenvalues along the diagonal do jst=1,nstsv kmat(1:nstsv,jst)=-kmat(1:nstsv,jst) kmat(jst,jst)=kmat(jst,jst)+evalsv(jst,ik) end do ! add the Coulomb core matrix elements if required if (tvclcr) call vclcore(wfmt,kmat) ! rotate kinetic matrix elements to first-variational basis if required if (tfv) then call zgemm('N','C',nstsv,nstsv,nstsv,zone,kmat,nstsv,evecsv,nstsv,zzero,a, & nstsv) call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,a,nstsv,zzero,kmat, & nstsv) end if deallocate(evecsv,wfmt) !$OMP CRITICAL(u220) ! write to RAM disk if required if (ramdisk) then call putrd('KMAT.OUT',ik,v1=vkl(1:3,ik),n1=nstsv,nzv=nstsv*nstsv,zva=kmat) end if ! write to disk if required if (wrtdsk) then ! determine the record length inquire(iolength=recl) vkl(1:3,1),nstsv,kmat open(220,file='KMAT.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(220,rec=ik) vkl(1:3,ik),nstsv,kmat close(220) end if !$OMP END CRITICAL(u220) end subroutine elk-10.4.9/src/PaxHeaders/getkmat.f900000644000000000000000000000012614762655564014230 xustar0028 mtime=1741380468.8200103 30 atime=1741380467.127001449 28 ctime=1741380468.8200103 elk-10.4.9/src/getkmat.f900000644002504400250440000000246414762655564016755 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getkmat(ik,kmat) use modmain use modramdisk implicit none ! arguments integer, intent(in) :: ik complex(8), intent(out) :: kmat(nstsv,nstsv) ! local variables logical tgs integer nstsv_,recl real(8) vkl_(3),t1 !$OMP CRITICAL(u220) ! read from RAM disk if required if (ramdisk) then call getrd('KMAT.OUT',ik,tgs,v1=vkl_,n1=nstsv_,nzv=nstsv*nstsv,zva=kmat) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,kmat open(220,file='KMAT.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(220,rec=ik) vkl_,nstsv_,kmat close(220) 10 continue !$OMP END CRITICAL(u220) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getkmat): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" KMAT.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getkmat): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" KMAT.OUT : ",I8)') nstsv_ write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/putepsinv.f900000644000000000000000000000013214762655564014626 xustar0030 mtime=1741380468.821010305 30 atime=1741380467.130001465 30 ctime=1741380468.821010305 elk-10.4.9/src/putepsinv.f900000644002504400250440000000121114762655564017343 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putepsinv(iq,epsi) use modmain implicit none ! arguments integer, intent(in) :: iq complex(8), intent(in) :: epsi(ngrf,ngrf,nwrf) ! local variables integer recl ! determine the record length for EPSINV.OUT inquire(iolength=recl) vql(1:3,iq),ngrf,nwrf,epsi !$OMP CRITICAL(u245) open(245,file='EPSINV.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(245,rec=iq) vql(1:3,iq),ngrf,nwrf,epsi close(245) !$OMP END CRITICAL(u245) end subroutine elk-10.4.9/src/PaxHeaders/getcfgq.f900000644000000000000000000000013214762655564014211 xustar0030 mtime=1741380468.823010316 30 atime=1741380467.132001475 30 ctime=1741380468.823010316 elk-10.4.9/src/getcfgq.f900000644002504400250440000000661114762655564016737 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getcfgq(fname,vpl,ng,m,cf) use modmain implicit none ! arguments character(*), intent(in) :: fname real(8), intent(in) :: vpl(3) integer, intent(in) :: ng,m complex(8), intent(out) :: cf(ng,ng,m) ! local variables integer isym,iq,lspl,ilspl integer igq,jgq,igp,jgp,i integer recl,ng_,m_ real(8) vql_(3),si(3,3) real(8) vgql(3),v(3),t1 complex(8) z1 ! automatic arrays logical done(ng) integer map(ng) ! allocatable arrays real(8), allocatable :: vgpl(:,:) complex(8), allocatable :: cf_(:,:,:),x(:) ! find the equivalent reduced q-point and symmetry which rotates vql to vpl call findqpt(vpl,isym,iq) ! find the record length inquire(iolength=recl) vql_,ng_,m_,cf !$OMP CRITICAL(u245) open(245,file=trim(fname),form='UNFORMATTED',access='DIRECT',recl=recl) read(245,rec=iq) vql_,ng_,m_,cf close(245) !$OMP END CRITICAL(u245) t1=abs(vql(1,iq)-vql_(1))+abs(vql(2,iq)-vql_(2))+abs(vql(3,iq)-vql_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getcfgq): differing vectors for q-point ",I8)') iq write(*,'(" current : ",3G18.10)') vql(:,iq) write(*,'(" file : ",3G18.10)') vql_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if if (ng /= ng_) then write(*,*) write(*,'("Error(getcfgq): differing ng for q-point ",I8)') iq write(*,'(" current : ",I8)') ng write(*,'(" file : ",I8)') ng_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if if (m /= m_) then write(*,*) write(*,'("Error(getcfgq): differing m for q-point ",I8)') iq write(*,'(" current : ",I8)') m write(*,'(" file : ",I8)') m_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if ! if p = q then return t1=abs(vpl(1)-vql(1,iq))+abs(vpl(2)-vql(2,iq))+abs(vpl(3)-vql(3,iq)) if (t1 < epslat) return ! allocate local arrays allocate(vgpl(3,ng),cf_(ng,ng,m),x(ng)) ! perform translation operation and store in temporary array if (tv0symc(isym)) then ! translation vector is zero cf_(1:ng,1:ng,1:m)=cf(1:ng,1:ng,1:m) else ! non-zero translation vector gives a phase factor v(1:3)=vtcsymc(1:3,isym) do igq=1,ng t1=vgc(1,igq)*v(1)+vgc(2,igq)*v(2)+vgc(3,igq)*v(3) x(igq)=cmplx(cos(t1),-sin(t1),8) end do do jgq=1,ng z1=conjg(x(jgq)) do igq=1,ng cf_(igq,jgq,1:m)=z1*x(igq)*cf(igq,jgq,1:m) end do end do end if ! index to spatial rotation in lattice point group lspl=lsplsymc(isym) ! the inverse of the spatial symmetry ilspl=isymlat(lspl) si(1:3,1:3)=dble(symlat(1:3,1:3,ilspl)) ! find the map from {G+q} to {G+p} map(1:ng)=0 do igp=1,ng vgpl(1:3,igp)=dble(ivg(1:3,igp))+vpl(1:3) end do done(1:ng)=.false. i=1 do igq=1,ng vgql(1:3)=dble(ivg(1:3,igq))+vql(1:3,iq) call r3mtv(si,vgql,v) do igp=i,ng if (done(igp)) cycle t1=abs(v(1)-vgpl(1,igp))+abs(v(2)-vgpl(2,igp))+abs(v(3)-vgpl(3,igp)) if (t1 < epslat) then map(igp)=igq done(igp)=.true. exit end if end do do igp=i,ng if (.not.done(igp)) then i=igp exit end if end do end do ! rotate correlation function (passive transformation) do jgp=1,ng jgq=map(jgp) do igp=1,ng igq=map(igp) if ((igq == 0).or.(jgq == 0)) then cf(igp,jgp,1:m)=0.d0 else cf(igp,jgp,1:m)=cf_(igq,jgq,1:m) end if end do end do deallocate(vgpl,cf_,x) end subroutine elk-10.4.9/src/PaxHeaders/putevalsv.f900000644000000000000000000000013214762655564014622 xustar0030 mtime=1741380468.824010321 30 atime=1741380467.135001491 30 ctime=1741380468.824010321 elk-10.4.9/src/putevalsv.f900000644002504400250440000000123614762655564017346 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevalsv(fext,ik,evalsvp) use modmain implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ik real(8), intent(in) :: evalsvp(nstsv) ! local variables integer recl ! find the record length inquire(iolength=recl) vkl(1:3,ik),nstsv,evalsvp !$OMP CRITICAL(u204) open(204,file='EVALSV'//trim(fext),form='UNFORMATTED',access='DIRECT',recl=recl) write(204,rec=ik) vkl(1:3,ik),nstsv,evalsvp close(204) !$OMP END CRITICAL(u204) end subroutine elk-10.4.9/src/PaxHeaders/getevalsv.f900000644000000000000000000000013214762655564014571 xustar0030 mtime=1741380468.825010326 30 atime=1741380467.137001501 30 ctime=1741380468.825010326 elk-10.4.9/src/getevalsv.f900000644002504400250440000000274514762655564017323 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getevalsv(fext,ikp,vpl,evalsvp) use modmain implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ikp real(8), intent(in) :: vpl(3) real(8), intent(out) :: evalsvp(nstsv) ! local variables integer isym,ik,ist integer recl,nstsv_ real(8) vkl_(3),t1 if (ikp > 0) then ik=ikp else ! find the k-point number call findkpt(vpl,isym,ik) end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,evalsvp !$OMP CRITICAL(u204) open(204,file='EVALSV'//trim(fext),form='UNFORMATTED',access='DIRECT',recl=recl) read(204,rec=ik) vkl_,nstsv_,evalsvp close(204) !$OMP END CRITICAL(u204) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevalsv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVALSV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getevalsv): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" EVALSV.OUT : ",I8)') nstsv_ write(*,*) stop end if ! apply scissor correction if required if (tscissor) then do ist=1,nstsv if (evalsvp(ist) > efermi) evalsvp(ist)=evalsvp(ist)+scissor end do end if end subroutine elk-10.4.9/src/PaxHeaders/getevecsv.f900000644000000000000000000000013214762655564014564 xustar0030 mtime=1741380468.826010331 30 atime=1741380467.140001517 30 ctime=1741380468.826010331 elk-10.4.9/src/getevecsv.f900000644002504400250440000000451414762655564017312 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getevecsv(fext,ikp,vpl,evecsv) use modmain use modramdisk implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ikp real(8), intent(in) :: vpl(3) complex(8), intent(out) :: evecsv(nstsv,nstsv) ! local variables logical tgs integer isym,lspn integer ik,ist,jst integer recl,nstsv_ real(8) vkl_(3),det,v(3),th,t1 complex(8) su2(2,2),z1,z2 character(256) fname if (ikp > 0) then ik=ikp else ! find the equivalent k-point number and symmetry which rotates vkl to vpl call findkpt(vpl,isym,ik) end if ! construct the filename fname=trim(scrpath)//'EVECSV'//trim(fext) !$OMP CRITICAL(u206) ! read from RAM disk if required if (ramdisk) then call getrd(fname,ik,tgs,v1=vkl_,n1=nstsv_,nzv=nstsv*nstsv,zva=evecsv) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,evecsv open(206,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) read(206,rec=ik) vkl_,nstsv_,evecsv close(206) 10 continue !$OMP END CRITICAL(u206) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevecsv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVECSV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getevecsv): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" EVECSV.OUT : ",I8)') nstsv_ write(*,*) stop end if ! if eigenvectors are spin-unpolarised return if (.not.spinpol) return ! if p = k then return if (ikp > 0) return ! index to global spin rotation in lattice point group lspn=lspnsymc(isym) ! if symmetry element is the identity return if (lspn == 1) return ! find the SU(2) representation of the spin rotation matrix call rotaxang(epslat,symlatc(:,:,lspn),det,v,th) call axangsu2(v,th,su2) ! apply SU(2) matrix to second-variational states (active transformation) do jst=1,nstsv do ist=1,nstfv z1=evecsv(ist,jst) z2=evecsv(ist+nstfv,jst) evecsv(ist,jst)=su2(1,1)*z1+su2(1,2)*z2 evecsv(ist+nstfv,jst)=su2(2,1)*z1+su2(2,2)*z2 end do end do end subroutine elk-10.4.9/src/PaxHeaders/putevecsv.f900000644000000000000000000000013214762655564014615 xustar0030 mtime=1741380468.828010342 30 atime=1741380467.143001533 30 ctime=1741380468.828010342 elk-10.4.9/src/putevecsv.f900000644002504400250440000000167214762655564017345 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevecsv(fext,ik,evecsv) use modmain use modramdisk implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ik complex(8), intent(in) :: evecsv(nstsv,nstsv) ! local variables integer recl character(256) fname ! construct the filename fname=trim(scrpath)//'EVECSV'//trim(fext) !$OMP CRITICAL(u206) ! write to RAM disk if required if (ramdisk) then call putrd(fname,ik,v1=vkl(1:3,ik),n1=nstsv,nzv=nstsv*nstsv,zva=evecsv) end if ! write to disk if required if (wrtdsk) then ! find the record length inquire(iolength=recl) vkl(1:3,ik),nstsv,evecsv open(206,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) write(206,rec=ik) vkl(1:3,ik),nstsv,evecsv close(206) end if !$OMP END CRITICAL(u206) end subroutine elk-10.4.9/src/PaxHeaders/genshtmat.f900000644000000000000000000000013214762655564014563 xustar0030 mtime=1741380468.829010347 30 atime=1741380467.145001543 30 ctime=1741380468.829010347 elk-10.4.9/src/genshtmat.f900000644002504400250440000001037314762655564017311 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genshtmat ! !INTERFACE: subroutine genshtmat ! !USES: use modmain ! !DESCRIPTION: ! Generates the forward and backward spherical harmonic transformation (SHT) ! matrices using the spherical covering set produced by the routine ! {\tt sphcover}. These matrices are used to transform a function between its ! $(l,m)$-expansion coefficients and its values at the $(\theta,\phi)$ points ! on the sphere. Both real and complex SHT matrices are calculated and stored ! in global arrays. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! local variables integer itp real(8) v(3) ! automatic arrays real(8) tp(2,lmmaxo),vtp(3,lmmaxo),rlm(lmmaxo) complex(8) ylm(lmmaxo) !--------------------------------! ! SHT matrices for lmaxi ! !--------------------------------! ! allocate real SHT matrices if (allocated(rbshti)) deallocate(rbshti) allocate(rbshti(lmmaxi,lmmaxi)) if (allocated(rfshti)) deallocate(rfshti) allocate(rfshti(lmmaxi,lmmaxi)) ! allocate complex SHT matrices if (allocated(zbshti)) deallocate(zbshti) allocate(zbshti(lmmaxi,lmmaxi)) if (allocated(zfshti)) deallocate(zfshti) allocate(zfshti(lmmaxi,lmmaxi)) ! allocate single-precision complex copies if (allocated(cbshti)) deallocate(cbshti) allocate(cbshti(lmmaxi,lmmaxi)) if (allocated(cfshti)) deallocate(cfshti) allocate(cfshti(lmmaxi,lmmaxi)) ! generate spherical covering set for lmaxi call sphcover(lmmaxi,tp) ! convert (theta, phi) angles to vectors do itp=1,lmmaxi call sctovec(tp(:,itp),vtp(:,itp)) end do ! rotate the spherical covering set if required if (trotsht) then do itp=1,lmmaxi v(1:3)=vtp(1:3,itp) call r3mv(rotsht,v,vtp(:,itp)) end do end if ! generate real and complex spherical harmonics and set the backward SHT arrays do itp=1,lmmaxi call genrlmv(lmaxi,vtp(:,itp),rlm) rbshti(itp,1:lmmaxi)=rlm(1:lmmaxi) call genylmv(.false.,lmaxi,vtp(:,itp),ylm) zbshti(itp,1:lmmaxi)=ylm(1:lmmaxi) end do ! find the forward SHT arrays ! real rfshti(1:lmmaxi,1:lmmaxi)=rbshti(1:lmmaxi,1:lmmaxi) call rminv(lmmaxi,rfshti) ! complex zfshti(1:lmmaxi,1:lmmaxi)=zbshti(1:lmmaxi,1:lmmaxi) call zminv(lmmaxi,zfshti) ! make single-precision complex copies cbshti(1:lmmaxi,1:lmmaxi)=zbshti(1:lmmaxi,1:lmmaxi) cfshti(1:lmmaxi,1:lmmaxi)=zfshti(1:lmmaxi,1:lmmaxi) !--------------------------------! ! SHT matrices for lmaxo ! !--------------------------------! ! allocate real SHT matrices if (allocated(rbshto)) deallocate(rbshto) allocate(rbshto(lmmaxo,lmmaxo)) if (allocated(rfshto)) deallocate(rfshto) allocate(rfshto(lmmaxo,lmmaxo)) ! allocate complex SHT matrices if (allocated(zbshto)) deallocate(zbshto) allocate(zbshto(lmmaxo,lmmaxo)) if (allocated(zfshto)) deallocate(zfshto) allocate(zfshto(lmmaxo,lmmaxo)) ! allocate single-precision complex copies if (allocated(cbshto)) deallocate(cbshto) allocate(cbshto(lmmaxo,lmmaxo)) if (allocated(cfshto)) deallocate(cfshto) allocate(cfshto(lmmaxo,lmmaxo)) ! generate spherical covering set call sphcover(lmmaxo,tp) ! convert (theta, phi) angles to vectors do itp=1,lmmaxo call sctovec(tp(:,itp),vtp(:,itp)) end do ! rotate the spherical covering set if required if (trotsht) then do itp=1,lmmaxo v(1:3)=vtp(1:3,itp) call r3mv(rotsht,v,vtp(:,itp)) end do end if ! generate real and complex spherical harmonics and set the backward SHT arrays do itp=1,lmmaxo call genrlmv(lmaxo,vtp(:,itp),rlm) rbshto(itp,1:lmmaxo)=rlm(1:lmmaxo) call genylmv(.false.,lmaxo,vtp(:,itp),ylm) zbshto(itp,1:lmmaxo)=ylm(1:lmmaxo) end do ! find the forward SHT arrays ! real rfshto(1:lmmaxo,1:lmmaxo)=rbshto(1:lmmaxo,1:lmmaxo) call rminv(lmmaxo,rfshto) ! complex zfshto(1:lmmaxo,1:lmmaxo)=zbshto(1:lmmaxo,1:lmmaxo) call zminv(lmmaxo,zfshto) ! make single-precision complex copies cbshto(1:lmmaxo,1:lmmaxo)=zbshto(1:lmmaxo,1:lmmaxo) cfshto(1:lmmaxo,1:lmmaxo)=zfshto(1:lmmaxo,1:lmmaxo) return contains pure subroutine sctovec(tp,v) implicit none ! arguments real(8), intent(in) :: tp(2) real(8), intent(out) :: v(3) ! local variables real(8) t1 t1=sin(tp(1)) v(1)=t1*cos(tp(2)) v(2)=t1*sin(tp(2)) v(3)=cos(tp(1)) end subroutine end subroutine !EOC elk-10.4.9/src/PaxHeaders/allatoms.f900000644000000000000000000000013214762655564014405 xustar0030 mtime=1741380468.830010352 30 atime=1741380467.148001559 30 ctime=1741380468.830010352 elk-10.4.9/src/allatoms.f900000644002504400250440000000360414762655564017132 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: allatoms ! !INTERFACE: subroutine allatoms ! !USES: use modmain use modxcifc use modomp ! !DESCRIPTION: ! Solves the Kohn-Sham-Dirac equations for each atom type in the solid and ! finds the self-consistent radial wavefunctions, eigenvalues, charge ! densities and potentials. The atomic densities can then be used to ! initialise the crystal densities, and the atomic self-consistent potentials ! can be appended to the muffin-tin potentials to solve for the core states. ! Note that, irrespective of the value of {\tt xctype}, exchange-correlation ! functional type 3 is used. See also {\tt atoms}, {\tt rhoinit}, ! {\tt gencore} and {\tt modxcifc}. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) ! Modified for GGA, June 2007 (JKD) !EOP !BOC implicit none logical hybrid_ integer xcspin_,xcgrad_ integer is,nthd real(8) hybridc_ character(264) xcdescr_ ! allocatable arrays real(8), allocatable :: rwf(:,:,:) ! allocate global species charge density and potential arrays if (allocated(rhosp)) deallocate(rhosp) allocate(rhosp(nrspmax,nspecies)) if (allocated(vrsp)) deallocate(vrsp) allocate(vrsp(nrspmax,nspecies)) ! get the exchange-correlation functional data call getxcdata(xctsp,xcdescr_,xcspin_,xcgrad_,hybrid_,hybridc_) call holdthd(nspecies,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(rwf) & !$OMP NUM_THREADS(nthd) allocate(rwf(nrspmax,2,nstspmax)) !$OMP DO SCHEDULE(DYNAMIC) do is=1,nspecies call atom(solsc,ptnucl,spzn(is),nstsp(is),nsp(:,is),lsp(:,is),ksp(:,is), & occsp(:,is),xctsp,xcgrad_,nrsp(is),rsp(:,is),evalsp(:,is),rhosp(:,is), & vrsp(:,is),rwf) end do !$OMP END DO deallocate(rwf) !$OMP END PARALLEL call freethd(nthd) end subroutine !EOC elk-10.4.9/src/PaxHeaders/putevecfv.f900000644000000000000000000000013214762655564014600 xustar0030 mtime=1741380468.832010363 30 atime=1741380467.151001575 30 ctime=1741380468.832010363 elk-10.4.9/src/putevecfv.f900000644002504400250440000000200514762655564017317 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevecfv(fext,ik,evecfv) use modmain use modramdisk implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ik complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv) ! local variables integer recl character(256) fname ! construct the filename fname=trim(scrpath)//'EVECFV'//trim(fext) !$OMP CRITICAL(u202) ! write to RAM disk if required if (ramdisk) then call putrd(fname,ik,v1=vkl(1:3,ik),n1=nmatmax,n2=nstfv,n3=nspnfv, & nzv=nmatmax*nstfv*nspnfv,zva=evecfv) end if ! write to disk if required if (wrtdsk) then ! find the record length inquire(iolength=recl) vkl(1:3,ik),nmatmax,nstfv,nspnfv,evecfv open(202,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) write(202,rec=ik) vkl(1:3,ik),nmatmax,nstfv,nspnfv,evecfv close(202) end if !$OMP END CRITICAL(u202) end subroutine elk-10.4.9/src/PaxHeaders/getevecfv.f900000644000000000000000000000013214762655564014547 xustar0030 mtime=1741380468.833010368 30 atime=1741380467.153001585 30 ctime=1741380468.833010368 elk-10.4.9/src/getevecfv.f900000644002504400250440000001423414762655564017275 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: getevecfv ! !INTERFACE: subroutine getevecfv(fext,ikp,vpl,vgpl,evecfv) ! !USES: use modmain use modramdisk ! !INPUT/OUTPUT PARAMETERS: ! fext : filename extension (in,character(*)) ! ikp : p-point vector index (in,integer) ! vpl : p-point vector in lattice coordinates (in,real(3)) ! vgpl : G+p-vectors in lattice coordinates (out,real(3,ngkmax,nspnfv)) ! evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv,nspnfv)) ! !DESCRIPTION: ! Reads in a first-variational eigenvector from file. If the input $k$-point, ! ${\bf p}$, is not in the reduced set, then the eigenvector of the equivalent ! point is read in and the required rotation/translation operations applied. ! ! !REVISION HISTORY: ! Created Feburary 2007 (JKD) ! Fixed transformation error, October 2007 (JKD, Anton Kozhevnikov) ! Fixed l.o. rotation, June 2010 (A. Kozhevnikov) !EOP !BOC implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ikp real(8), intent(in) :: vpl(3),vgpl(3,ngkmax,nspnfv) complex(8), intent(out) :: evecfv(nmatmax,nstfv,nspnfv) ! local variables logical tgs integer isym,lspl,ilspl integer jspn,ilo,l,lm,i,j integer ik,ist,igp,igk,ig integer is,ia,ja,ias,jas integer recl,nmatmax_,nstfv_,nspnfv_ real(8) vkl_(3),v(3) real(8) si(3,3),t1 complex(8) z1 character(256) fname ! automatic arrays logical done(ngkmax) ! allocatable arrays complex(8), allocatable :: evecfv_(:,:) if (ikp > 0) then ik=ikp else ! find the equivalent k-point number and crystal symmetry element call findkpt(vpl,isym,ik) end if ! construct the filename fname=trim(scrpath)//'EVECFV'//trim(fext) !$OMP CRITICAL(u202) ! read from RAM disk if required if (ramdisk) then call getrd(fname,ik,tgs,v1=vkl_,n1=nmatmax_,n2=nstfv_,n3=nspnfv_, & nzv=nmatmax*nstfv*nspnfv,zva=evecfv) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nmatmax_,nstfv_,nspnfv_,evecfv open(202,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) read(202,rec=ik) vkl_,nmatmax_,nstfv_,nspnfv_,evecfv close(202) 10 continue !$OMP END CRITICAL(u202) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevecfv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVECFV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nmatmax /= nmatmax_) then write(*,*) write(*,'("Error(getevecfv): differing nmatmax for k-point ",I8)') ik write(*,'(" current : ",I8)') nmatmax write(*,'(" EVECFV.OUT : ",I8)') nmatmax_ write(*,*) stop end if if (nstfv /= nstfv_) then write(*,*) write(*,'("Error(getevecfv): differing nstfv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstfv write(*,'(" EVECFV.OUT : ",I8)') nstfv_ write(*,*) stop end if if (nspnfv /= nspnfv_) then write(*,*) write(*,'("Error(getevecfv): differing nspnfv for k-point ",I8)') ik write(*,'(" current : ",I8)') nspnfv write(*,'(" EVECFV.OUT : ",I8)') nspnfv_ write(*,*) stop end if ! if p = k then return if (ikp > 0) return t1=abs(vpl(1)-vkl(1,ik))+abs(vpl(2)-vkl(2,ik))+abs(vpl(3)-vkl(3,ik)) if (t1 < epslat) return ! allocate temporary eigenvector array allocate(evecfv_(nmatmax,nstfv)) ! index to spatial rotation in lattice point group lspl=lsplsymc(isym) ! the inverse of the spatial symmetry rotates k into p ilspl=isymlat(lspl) si(1:3,1:3)=dble(symlat(1:3,1:3,ilspl)) !-----------------------------------------------! ! translate and rotate APW coefficients ! !-----------------------------------------------! ! loop over the first-variational spins do jspn=1,nspnfv if (tv0symc(isym)) then ! translation vector is zero do ist=1,nstfv do igk=1,ngk(jspn,ik) evecfv_(igk,ist)=evecfv(igk,ist,jspn) end do end do else ! non-zero translation vector gives a phase factor v(:)=vtcsymc(:,isym) do igk=1,ngk(jspn,ik) ig=igkig(igk,jspn,ik) t1=vgc(1,ig)*v(1)+vgc(2,ig)*v(2)+vgc(3,ig)*v(3) z1=cmplx(cos(t1),-sin(t1),8) evecfv_(igk,1:nstfv)=z1*evecfv(igk,1:nstfv,jspn) end do end if ! apply spatial rotation operation (passive transformation) done(1:ngk(jspn,ik))=.false. i=1 do igk=1,ngk(jspn,ik) call r3mtv(si,vgkl(:,igk,jspn,ik),v) do igp=i,ngk(jspn,ik) if (done(igp)) cycle t1=abs(v(1)-vgpl(1,igp,jspn)) & +abs(v(2)-vgpl(2,igp,jspn)) & +abs(v(3)-vgpl(3,igp,jspn)) if (t1 < epslat) then evecfv(igp,1:nstfv,jspn)=evecfv_(igk,1:nstfv) done(igp)=.true. exit end if end do do igp=i,ngk(jspn,ik) if (.not.done(igp)) then i=igp exit end if end do end do end do !---------------------------------------------------------! ! translate and rotate local-orbital coefficients ! !---------------------------------------------------------! if (nlotot > 0) then ! rotate k-point by inverse symmetry matrix call r3mtv(si,vkl(:,ik),v) ! loop over the first-variational spins do jspn=1,nspnfv ! make a copy of the local-orbital coefficients do i=ngk(jspn,ik)+1,nmat(jspn,ik) evecfv_(i,1:nstfv)=evecfv(i,1:nstfv,jspn) end do do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! equivalent atom for this symmetry ja=ieqatom(ia,is,isym) jas=idxas(ja,is) ! phase factor from translation t1=-twopi*dot_product(vkl(1:3,ik),atposl(1:3,ja,is)) z1=cmplx(cos(t1),sin(t1),8) t1=twopi*dot_product(v(1:3),atposl(1:3,ia,is)) z1=z1*cmplx(cos(t1),sin(t1),8) ! rotate local-orbitals (active transformation) do ilo=1,nlorb(is) l=lorbl(ilo,is) lm=l**2+1 i=ngk(jspn,ik)+idxlo(lm,ilo,ias) j=ngk(jspn,ik)+idxlo(lm,ilo,jas) call rotzflm(symlatc(:,:,lspl),l,l,lolmmax,nstfv,nmatmax, & evecfv_(j,1),evecfv(i,1,jspn)) evecfv(i:i+2*l,1:nstfv,jspn)=z1*evecfv(i:i+2*l,1:nstfv,jspn) end do end do end do end do end if deallocate(evecfv_) end subroutine !EOC elk-10.4.9/src/PaxHeaders/writesym.f900000644000000000000000000000013214762655564014454 xustar0030 mtime=1741380468.834010373 30 atime=1741380467.156001601 30 ctime=1741380468.834010373 elk-10.4.9/src/writesym.f900000644002504400250440000000570214762655564017202 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writesym ! !INTERFACE: subroutine writesym ! !USES: use modmain ! !DESCRIPTION: ! Outputs the Bravais, crystal and site symmetry matrices to files ! {\tt SYMLAT.OUT}, {\tt SYMCRYS.OUT} and {\tt SYMSITE.OUT}, respectively. ! Also writes out equivalent atoms and related crystal symmetries to ! {\tt EQATOMS.OUT}. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ja,ias,i integer isym,lspl,lspn ! output the Bravais lattice symmetries open(50,file='SYMLAT'//trim(filext),form='FORMATTED',action='WRITE') write(50,'(I4," : nsymlat")') nsymlat do isym=1,nsymlat write(50,*) write(50,'(I4)') isym do i=1,3 write(50,'(3I4)') symlat(i,:,isym) end do end do close(50) ! output the crystal symmetries open(50,file='SYMCRYS'//trim(filext),form='FORMATTED',action='WRITE') write(50,*) write(50,'("(translation vectors and rotation matrices are in lattice & &coordinates)")') write(50,*) write(50,'(I4," : nsymcrys")') nsymcrys do isym=1,nsymcrys write(50,*) write(50,'("Crystal symmetry : ",I4)') isym write(50,'(" spatial translation :")') write(50,'(3G18.10)') vtlsymc(:,isym) write(50,'(" spatial rotation :")') lspl=lsplsymc(isym) do i=1,3 write(50,'(3I4)') symlat(i,:,lspl) end do write(50,'(" global spin rotation :")') lspn=lspnsymc(isym) do i=1,3 write(50,'(3I4)') symlat(i,:,lspn) end do end do close(50) ! output the site symmetries open(50,file='SYMSITE'//trim(filext),form='FORMATTED',action='WRITE') write(50,*) write(50,'("(rotation matrices are in lattice coordinates)")') do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),ia write(50,'(I4," : nsymsite")') nsymsite(ias) do isym=1,nsymsite(ias) write(50,*) write(50,'(" Site symmetry : ",I4)') isym write(50,'(" spatial rotation :")') lspl=lsplsyms(isym,ias) do i=1,3 write(50,'(3I4)') symlat(i,:,lspl) end do write(50,'(" global spin rotation :")') lspn=lspnsyms(isym,ias) do i=1,3 write(50,'(3I4)') symlat(i,:,lspn) end do end do end do end do close(50) ! output the equivalent atoms and related symmetries open(50,file='EQATOMS'//trim(filext),form='FORMATTED',action='WRITE') do is=1,nspecies write(50,*) write(50,'("Species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) write(50,'(" atom ",I4," is equivalent to atom(s)")') ia i=0 do ja=1,natoms(is) if (eqatoms(ia,ja,is)) then if ((i > 0).and.(mod(i,20) == 0)) write(50,*) write(50,'(I4)',advance='NO') ja i=i+1 end if end do write(50,*) end do end do close(50) end subroutine !EOC elk-10.4.9/src/PaxHeaders/putoccsv.f900000644000000000000000000000013214762655564014437 xustar0030 mtime=1741380468.835010378 30 atime=1741380467.159001616 30 ctime=1741380468.835010378 elk-10.4.9/src/putoccsv.f900000644002504400250440000000123014762655564017155 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putoccsv(fext,ik,occsvp) use modmain implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ik real(8), intent(in) :: occsvp(nstsv) ! local variables integer recl ! find the record length inquire(iolength=recl) vkl(1:3,ik),nstsv,occsvp !$OMP CRITICAL(u208) open(208,file='OCCSV'//trim(fext),form='UNFORMATTED',access='DIRECT',recl=recl) write(208,rec=ik) vkl(1:3,ik),nstsv,occsvp close(208) !$OMP END CRITICAL(u208) end subroutine elk-10.4.9/src/PaxHeaders/getoccsv.f900000644000000000000000000000013214762655564014406 xustar0030 mtime=1741380468.837010389 30 atime=1741380467.162001632 30 ctime=1741380468.837010389 elk-10.4.9/src/getoccsv.f900000644002504400250440000000247114762655564017134 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getoccsv(fext,ikp,vpl,occsvp) use modmain implicit none ! arguments character(*), intent(in) :: fext integer, intent(in) :: ikp real(8), intent(in) :: vpl(3) real(8), intent(out) :: occsvp(nstsv) ! local variables integer isym,ik integer recl,nstsv_ real(8) vkl_(3),t1 if (ikp > 0) then ik=ikp else ! find the k-point number call findkpt(vpl,isym,ik) end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,occsvp !$OMP CRITICAL(u208) open(208,file='OCCSV'//trim(fext),form='UNFORMATTED',access='DIRECT',recl=recl) read(208,rec=ik) vkl_,nstsv_,occsvp close(208) !$OMP END CRITICAL(u208) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getoccsv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" OCCSV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getoccsv): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" OCCSV.OUT : ",I8)') nstsv_ write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/torque.f900000644000000000000000000000013214762655564014110 xustar0030 mtime=1741380468.838010394 30 atime=1741380467.164001642 30 ctime=1741380468.838010394 elk-10.4.9/src/torque.f900000644002504400250440000000171714762655564016640 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine torque use modmain implicit none ! local variables integer idm real(8) torq(3) ! allocatable arrays real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) ! external functions real(8), external :: rfint ! initialise universal variables call init0 if (.not.ncmag) then torq(:)=0.d0 goto 10 end if ! read magnetisation and exchange-correlation magnetic field from file call readstate ! compute m(r) x B_xc(r) allocate(rvfmt(npmtmax,natmtot,3),rvfir(ngtot,3)) call rvfcross(magmt,magir,bxcmt,bxcir,rvfmt,rvfir) ! integrate to find the total torque do idm=1,ndmag torq(idm)=rfint(rvfmt(:,:,idm),rvfir(:,idm)) end do 10 continue write(*,*) write(*,'("Info(torque):")') write(*,'(" Total torque exerted by B_xc on the magnetisation :")') write(*,'(3G18.10)') torq end subroutine elk-10.4.9/src/PaxHeaders/findqpt.f900000644000000000000000000000013214762655564014236 xustar0030 mtime=1741380468.839010399 30 atime=1741380467.167001658 30 ctime=1741380468.839010399 elk-10.4.9/src/findqpt.f900000644002504400250440000000213714762655564016763 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine findqpt(vpl,isym,iq) use modmain implicit none ! arguments real(8), intent(in) :: vpl(3) integer, intent(out) :: isym,iq ! local variables integer i1,i2,i3,lspl real(8) v1(3),v2(3),t1 i1=modulo(nint(vpl(1)*ngridq(1)),ngridq(1)) i2=modulo(nint(vpl(2)*ngridq(2)),ngridq(2)) i3=modulo(nint(vpl(3)*ngridq(3)),ngridq(3)) iq=ivqiq(i1,i2,i3) v1(1:3)=vql(1:3,iq) call r3frac(epslat,v1) ! find the symmetry which rotates vql to vpl do isym=1,nsymcrys lspl=lsplsymc(isym) ! multiply vpl by the transpose of the symmetry matrix (i.e. the inverse) v2(1:3)=symlat(1,1:3,lspl)*vpl(1) & +symlat(2,1:3,lspl)*vpl(2) & +symlat(3,1:3,lspl)*vpl(3) call r3frac(epslat,v2) t1=abs(v1(1)-v2(1))+abs(v1(2)-v2(2))+abs(v1(3)-v2(3)) if (t1 < epslat) return end do write(*,*) write(*,'("Error(findqpt): equivalent q-point not in set")') write(*,'(" Requested q-point : ",3G18.10)') vpl write(*,*) stop end subroutine elk-10.4.9/src/PaxHeaders/findkpt.f900000644000000000000000000000013214762655564014230 xustar0030 mtime=1741380468.840010404 30 atime=1741380467.169001669 30 ctime=1741380468.840010404 elk-10.4.9/src/findkpt.f900000644002504400250440000000216714762655564016760 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine findkpt(vpl,isym,ik) use modmain implicit none ! arguments real(8), intent(in) :: vpl(3) integer, intent(out) :: isym,ik ! local variables integer i1,i2,i3,lspl real(8) v1(3),v2(3),t1 v1(1:3)=vpl(1:3)-vkloff(1:3)/dble(ngridk(1:3)) i1=modulo(nint(v1(1)*ngridk(1)),ngridk(1)) i2=modulo(nint(v1(2)*ngridk(2)),ngridk(2)) i3=modulo(nint(v1(3)*ngridk(3)),ngridk(3)) ik=ivkik(i1,i2,i3) v1(1:3)=vkl(1:3,ik) ! find the symmetry which rotates vkl to vpl do isym=1,nsymcrys lspl=lsplsymc(isym) ! multiply vpl by the transpose of the symmetry matrix (i.e. the inverse) v2(1:3)=symlat(1,1:3,lspl)*vpl(1) & +symlat(2,1:3,lspl)*vpl(2) & +symlat(3,1:3,lspl)*vpl(3) call r3frac(epslat,v2) t1=abs(v1(1)-v2(1))+abs(v1(2)-v2(2))+abs(v1(3)-v2(3)) if (t1 < epslat) return end do write(*,*) write(*,'("Error(findkpt): equivalent k-point not in set")') write(*,'(" Requested k-point : ",3G18.10)') vpl write(*,*) stop end subroutine elk-10.4.9/src/PaxHeaders/genevfsv.f900000644000000000000000000000013214762655564014414 xustar0030 mtime=1741380468.842010415 30 atime=1741380467.172001684 30 ctime=1741380468.842010415 elk-10.4.9/src/genevfsv.f900000644002504400250440000000247614762655564017147 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genevfsv use modmain use modmpi use modomp implicit none ! local variables integer ik,lp,nthd ! automatic arrays real(8) evalfv(nstfv,nspnfv) ! allocatable arrays complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) ! begin parallel loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evalfv,evecfv,evecsv) & !$OMP NUM_THREADS(nthd) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! solve the first- and second-variational eigenvalue equations call eveqn(ik,evalfv,evecfv,evecsv) ! write the eigenvalues/vectors to file call putevalfv(filext,ik,evalfv) call putevalsv(filext,ik,evalsv(:,ik)) call putevecfv(filext,ik,evecfv) call putevecsv(filext,ik,evecsv) end do !$OMP END DO deallocate(evecfv,evecsv) !$OMP END PARALLEL call freethd(nthd) ! broadcast eigenvalue array to every MPI process if (np_mpi > 1) then do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(evalsv(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) end do end if end subroutine elk-10.4.9/src/PaxHeaders/sdelta.f900000644000000000000000000000012614762655564014050 xustar0029 mtime=1741380468.84301042 28 atime=1741380467.1750017 29 ctime=1741380468.84301042 elk-10.4.9/src/sdelta.f900000644002504400250440000000501414762655564016567 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sdelta ! !INTERFACE: real(8) function sdelta(stype,x) ! !INPUT/OUTPUT PARAMETERS: ! stype : smearing type (in,integer) ! x : real argument (in,real) ! !DESCRIPTION: ! Returns a normalised smooth approximation to the Dirac delta function. These ! functions are defined such that ! $$ \int\tilde{\delta}(x)dx=1. $$ ! The effective width, $w$, of the delta function may be varied by using the ! normalising transformation ! $$ \tilde{\delta}_w(x)\equiv\frac{\tilde{\delta}(x/w)}{w}. $$ ! Currently implimented are: ! \begin{list}{}{\itemsep -2pt} ! \item[0.] Gaussian ! \item[1.] Methfessel-Paxton order 1 ! \item[2.] Methfessel-Paxton order 2 ! \item[3.] Fermi-Dirac ! \item[4.] Square-wave impulse ! \item[5.] Lorentzian ! \end{list} ! See routines {\tt stheta}, {\tt sdelta\_mp}, {\tt sdelta\_fd} and ! {\tt sdelta\_sq}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: stype real(8), intent(in) :: x ! external functions real(8), external :: sdelta_mp,sdelta_fd,sdelta_sq,sdelta_lr select case(stype) case(0) sdelta=sdelta_mp(0,x) case(1) sdelta=sdelta_mp(1,x) case(2) sdelta=sdelta_mp(2,x) case(3) sdelta=sdelta_fd(x) case(4) sdelta=sdelta_sq(x) case(5) sdelta=sdelta_lr(x) case default write(*,*) write(*,'("Error(sdelta): stype not defined : ",I8)') stype write(*,*) stop end select end function !EOC !BOP ! !ROUTINE: getsdata ! !INTERFACE: subroutine getsdata(stype,sdescr) ! !INPUT/OUTPUT PARAMETERS: ! stype : smearing type (in,integer) ! sdescr : smearing scheme description (out,character(*)) ! !DESCRIPTION: ! Returns a description of the smearing scheme as string {\tt sdescr} up to ! 256 characters long. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: stype character(*), intent(out) :: sdescr select case(stype) case(0) sdescr='Gaussian' case(1) sdescr='Methfessel-Paxton order 1, Phys. Rev. B 40, 3616 (1989)' case(2) sdescr='Methfessel-Paxton order 2, Phys. Rev. B 40, 3616 (1989)' case(3) sdescr='Fermi-Dirac' case(4) sdescr='Square-wave impulse' case(5) sdescr='Lorentzian' case default write(*,*) write(*,'("Error(getsdata): stype not defined : ",I8)') stype write(*,*) stop end select end subroutine !EOC elk-10.4.9/src/PaxHeaders/stheta.f900000644000000000000000000000013214762655564014061 xustar0030 mtime=1741380468.844010425 30 atime=1741380467.178001716 30 ctime=1741380468.844010425 elk-10.4.9/src/stheta.f900000644002504400250440000000224114762655564016602 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: stheta ! !INTERFACE: real(8) function stheta(stype,x) ! !INPUT/OUTPUT PARAMETERS: ! stype : smearing type (in,integer) ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the Heaviside step function corresponding to the smooth ! approximation to the Dirac delta function: ! $$ \tilde\Theta(x)=\int_{-\infty}^x dt\,\tilde\delta(t). $$ ! See function {\tt sdelta} for details. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: stype real(8), intent(in) :: x ! external functions real(8), external :: stheta_mp,stheta_fd,stheta_sq,stheta_lr select case(stype) case(0) stheta=stheta_mp(0,x) case(1) stheta=stheta_mp(1,x) case(2) stheta=stheta_mp(2,x) case(3) stheta=stheta_fd(x) case(4) stheta=stheta_sq(x) case(5) stheta=stheta_lr(x) case default write(*,*) write(*,'("Error(stheta): stype not defined : ",I8)') stype write(*,*) stop end select end function !EOC elk-10.4.9/src/PaxHeaders/sortidx.f900000644000000000000000000000013214762655564014265 xustar0030 mtime=1741380468.845010431 30 atime=1741380467.180001726 30 ctime=1741380468.845010431 elk-10.4.9/src/sortidx.f900000644002504400250440000000273014762655564017011 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sortidx ! !INTERFACE: pure subroutine sortidx(n,x,idx) ! !INPUT/OUTPUT PARAMETERS: ! n : number of elements in array (in,integer) ! x : real array (in,real(n)) ! idx : permutation index (out,integer(n)) ! !DESCRIPTION: ! Finds the permutation index {\tt idx} which sorts the real array {\tt x} ! into ascending order. No sorting of the array {\tt x} itself is performed. ! Uses the heapsort algorithm. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) ! Included tolerance eps, April 2006 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x(n) integer, intent(out) :: idx(n) ! local variables integer i,j,k,l,m ! tolerance for deciding if one number is smaller than another real(8), parameter :: eps=1.d-10 if (n < 1) return do i=1,n idx(i)=i end do if (n == 1) return l=n/2+1 k=n do if (l > 1) then l=l-1 m=idx(l) else m=idx(k) idx(k)=idx(1) k=k-1 if (k == 1) then idx(1)=m return end if end if i=l j=l+l do while (j <= k) if (j < k) then if (x(idx(j)) < x(idx(j+1))+eps) j=j+1 end if if (x(m) < x(idx(j))+eps) then idx(i)=idx(j) i=j j=j+j else j=k+1 end if end do idx(i)=m end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/symmat.f900000644000000000000000000000013214762655564014103 xustar0030 mtime=1741380468.846010436 30 atime=1741380467.183001742 30 ctime=1741380468.846010436 elk-10.4.9/src/symmat.f900000644002504400250440000000121614762655564016625 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine symmat(al) use modmain implicit none ! arguments real(8), intent(inout) :: al(3,3) ! local variables integer isym,lspl real(8) as(3,3),s(3,3) real(8) b(3,3),c(3,3),t1 ! make symmetric average as(1:3,1:3)=0.d0 do isym=1,nsymcrys lspl=lsplsymc(isym) s(1:3,1:3)=dble(symlat(1:3,1:3,lspl)) call r3mtm(s,al,b) call r3mm(b,s,c) as(1:3,1:3)=as(1:3,1:3)+c(1:3,1:3) end do ! normalise t1=1.d0/dble(nsymcrys) al(1:3,1:3)=t1*as(1:3,1:3) end subroutine elk-10.4.9/src/PaxHeaders/radnucl.f900000644000000000000000000000013214762655564014221 xustar0030 mtime=1741380468.848010446 30 atime=1741380467.186001758 30 ctime=1741380468.848010446 elk-10.4.9/src/radnucl.f900000644002504400250440000000312714762655564016746 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: radnucl ! !INTERFACE: elemental real(8) function radnucl(z) ! !INPUT/OUTPUT PARAMETERS: ! z : atomic number (in,real) ! !DESCRIPTION: ! Computes an approximate nuclear charge radius from the atomic number $Z$. ! The nuclear mass number, $A$, is estimated using ! $$ A=4.467\times 10^{-3}Z^2+2.163 Z-1.168, $$ ! [D. Andrae in {\it Relativistic Electronic Structure Theory - Fundamentals} ! {\bf 11}, 203 (2002)], and the nuclear charge radius can be determined from ! $$ r=\left(r_0+\frac{r_1}{A^{2/3}}+\frac{r_2}{A^{4/3}}\right)A^{1/3}, $$ ! where $r_0=0.9071$, $r_1=1.105$ and $r_2=-0.548$ [I. Angeli, {\it Atomic ! Data and Nuclear Data Tables} {\bf 87}, 185 (2004)]. ! ! !REVISION HISTORY: ! Created October 2011 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: z ! local variables ! coefficients for computing mass number real(8), parameter :: c2=4.467d-3, c1=2.163d0, c0=-1.168d0 ! coefficients for computing charge radius (fm) real(8), parameter :: r0=0.9071d0, r1=1.105d0, r2=-0.548d0 ! Bohr radius in SI units (CODATA 2018) real(8), parameter :: br_si=0.529177210903d-10 real(8) za,a,a13,a23,a43 za=abs(z) ! approximate nuclear mass number if (za <= 1.d0) then a=1.d0 else a=abs(c2*za**2+c1*za+c0) end if ! approximate nuclear charge radius a13=a**(1.d0/3.d0) a23=a13**2 a43=a13*a radnucl=(r0+r1/a23+r2/a43)*a13 radnucl=radnucl*1.d-15/br_si end function !EOC elk-10.4.9/src/PaxHeaders/symrvf.f900000644000000000000000000000013214762655564014117 xustar0030 mtime=1741380468.849010452 30 atime=1741380467.189001773 30 ctime=1741380468.849010452 elk-10.4.9/src/symrvf.f900000644002504400250440000000571514762655564016651 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: symrvf ! !INTERFACE: subroutine symrvf(tspin,tnc,nrmt_,nrmti_,npmt_,ngridg_,ngtot_,ngvec_,nfgrz_, & igfft_,igrzf_,ld1,rvfmt,ld2,rvfir) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! tspin : .true. if spin rotations should be used (in,logical) ! tnc : .true. if the vector field is non-collinear, otherwise it is ! collinear along the z-axis (in,logical) ! nrmt_ : number of radial points for each species (in,integer(nspecies)) ! nrmti_ : number of radial points on the inner part (in,integer(nspecies)) ! npmt_ : total number of points in each muffin-tin (in,integer(nspecies)) ! ngridg_ : G-vector grid sizes (in,integer(3)) ! ngtot_ : total number of G-vectors (in,integer) ! ngvec_ : number of G-vectors within cut-off (in,integer) ! nfgrz_ : number of FFT elements for real-complex transforms (in,integer) ! igfft_ : map from G-vector index to FFT array (in,integer(ngvec_)) ! igrzf_ : map from real-complex FFT index to G-point index ! (in,integer(nfgrz_) ! ld1 : leading dimension (in,integer) ! rvfmt : real muffin-tin vector field (in,real(ld1,natmtot,*)) ! ld2 : leading dimension (in,integer) ! rvfir : real interstitial vector field (in,real(ld2,*)) ! !DESCRIPTION: ! Symmetrises a vector field defined over the entire unit cell using the full ! set of crystal symmetries. If a particular symmetry involves rotating atom ! 1 into atom 2, then the spatial and spin rotations of that symmetry are ! applied to the vector field in atom 2 (expressed in spherical harmonic ! coefficients), which is then added to the field in atom 1. This is repeated ! for all symmetry operations. The fully symmetrised field in atom 1 is then ! rotated and copied to atom 2. Symmetrisation of the interstitial part of the ! field is performed by {\tt symrvfir}. See also {\tt symrfmt} and ! {\tt findsym}. ! ! !REVISION HISTORY: ! Created May 2007 (JKD) ! Fixed problem with improper rotations, February 2008 (L. Nordstrom, ! F. Bultmark and F. Cricchio) !EOP !BOC implicit none ! arguments logical, intent(in) :: tspin,tnc integer, intent(in) :: nrmt_(nspecies),nrmti_(nspecies),npmt_(nspecies) integer, intent(in) :: ngridg_(3),ngtot_,ngvec_,nfgrz_ integer, intent(in) :: igfft_(ngvec_),igrzf_(nfgrz_) integer, intent(in) :: ld1 real(8), intent(inout) :: rvfmt(ld1,natmtot,*) integer, intent(in) :: ld2 real(8), intent(inout) :: rvfir(ld2,*) ! local variables integer nthd call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP SECTION call symrvfmt(tspin,tnc,nrmt_,nrmti_,npmt_,ld1,rvfmt) !$OMP SECTION call symrvfir(tspin,tnc,ngridg_,ngtot_,ngvec_,nfgrz_,igfft_,igrzf_,ld2,rvfir) !$OMP END PARALLEL SECTIONS call freethd(nthd) end subroutine !EOC elk-10.4.9/src/PaxHeaders/writeqpts.f900000644000000000000000000000013214762655564014633 xustar0030 mtime=1741380468.850010457 30 atime=1741380467.191001784 30 ctime=1741380468.850010457 elk-10.4.9/src/writeqpts.f900000644002504400250440000000074014762655564017356 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeqpts use modmain implicit none ! local variables integer iq open(50,file='QPOINTS.OUT',form='FORMATTED',action='WRITE') write(50,'(I6," : nqpt; q-point, vql, wqpt below")') nqpt do iq=1,nqpt write(50,'(I6,4G18.10)') iq,vql(:,iq),wqpt(iq) end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/rndevsv.f900000644000000000000000000000013214762655564014260 xustar0030 mtime=1741380468.851010462 30 atime=1741380467.194001799 30 ctime=1741380468.851010462 elk-10.4.9/src/rndevsv.f900000644002504400250440000000130514762655564017001 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rndevsv(rndm,evecsv) use modmain use modrandom implicit none ! arguments real(8), intent(in) :: rndm complex(8), intent(inout) :: evecsv(nstsv,nstsv) ! local variables integer ist,jst real(8) a,b if (abs(rndm) < 1.d-8) return ! add complex random numbers to each eigenvector do ist=1,nstsv do jst=1,nstsv a=rndm*(randomu()-0.5d0) b=rndm*(randomu()-0.5d0) evecsv(ist,jst)=evecsv(ist,jst)+cmplx(a,b,8) end do end do ! orthonormalise the eigenvectors call unitary(nstsv,evecsv) end subroutine elk-10.4.9/src/PaxHeaders/gengkvec.f900000644000000000000000000000013214762655564014362 xustar0030 mtime=1741380468.853010472 30 atime=1741380467.197001815 30 ctime=1741380468.853010472 elk-10.4.9/src/gengkvec.f900000644002504400250440000000416514762655564017112 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2012 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gengkvec ! !INTERFACE: pure subroutine gengkvec(ngv,ivg,vgc,vkl,vkc,gkmax,ngkmax,ngk,igkig,vgkl,vgkc, & gkc) ! !INPUT/OUTPUT PARAMETERS: ! ngv : number of G-vectors (in,integer) ! ivg : G-vector integer coordinates (in,integer(3,ngv)) ! vgc : G-vectors in Cartesian coordinates (in,real(3,ngv)) ! vkl : k-point vector in lattice coordinates (in,real(3)) ! vkc : k-point vector in Cartesian coordinates (in,real(3)) ! gkmax : G+k-vector cut-off (in,real) ! ngkmax : maximum number of G+k-vectors (in,integer) ! ngk : number of G+k-vectors returned (out,integer) ! igkig : index from G+k-vectors to G-vectors (out,integer(ngkmax)) ! vgkl : G+k-vectors in lattice coordinates (out,real(3,ngkmax)) ! vgkc : G+k-vectors in Cartesian coordinates (out,real(3,ngkmax)) ! gkc : length of G+k-vectors (out,real(ngkmax)) ! !DESCRIPTION: ! Generates a set of ${\bf G+k}$-vectors for the input $k$-point with length ! less than {\tt gkmax}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Removed spherical coordinate generation, May 2010 (JKD) ! Removed modmain and added arguments, September 2012 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngv,ivg(3,ngv) real(8), intent(in) :: vgc(3,ngv),vkl(3),vkc(3),gkmax integer, intent(in) :: ngkmax integer, intent(out) :: ngk,igkig(ngkmax) real(8), intent(out) :: vgkl(3,ngkmax),vgkc(3,ngkmax),gkc(ngkmax) ! local variables integer ig real(8) v1,v2,v3,t0,t1 t0=gkmax**2 ngk=0 do ig=1,ngv v1=vgc(1,ig)+vkc(1) v2=vgc(2,ig)+vkc(2) v3=vgc(3,ig)+vkc(3) t1=v1**2+v2**2+v3**2 if (t1 < t0) then ngk=ngk+1 ! index to G-vector igkig(ngk)=ig ! G+k-vector in lattice coordinates vgkl(1:3,ngk)=dble(ivg(1:3,ig))+vkl(1:3) ! G+k-vector in Cartesian coordinates vgkc(1,ngk)=v1; vgkc(2,ngk)=v2; vgkc(3,ngk)=v3 ! length of G+k-vector gkc(ngk)=sqrt(t1) if (ngk == ngkmax) return end if end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/mixlinear.f900000644000000000000000000000013214762655564014561 xustar0030 mtime=1741380468.854010478 30 atime=1741380467.199001825 30 ctime=1741380468.854010478 elk-10.4.9/src/mixlinear.f900000644002504400250440000000126314762655564017305 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine mixlinear(iscl,beta,n,nu,mu,d) implicit none ! arguments integer, intent(in) :: iscl real(8), intent(in) :: beta integer, intent(in) :: n real(8), intent(inout) :: nu(n),mu(n) real(8), intent(out) :: d ! local variables integer i real(8) t0,t1 if (n < 1) return ! initialise mixer if (iscl < 1) then mu(1:n)=nu(1:n) d=1.d0 return end if t0=1.d0-beta d=0.d0 do i=1,n t1=nu(i)-mu(i) d=d+t1**2 nu(i)=beta*nu(i)+t0*mu(i) mu(i)=nu(i) end do d=sqrt(d/dble(n)) end subroutine elk-10.4.9/src/PaxHeaders/writesf.f900000644000000000000000000000013214762655564014254 xustar0030 mtime=1741380468.855010483 30 atime=1741380467.202001841 30 ctime=1741380468.855010483 elk-10.4.9/src/writesf.f900000644002504400250440000000162414762655564017001 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine writesf use modmain implicit none ! local variables integer iw ! width of plotting interval in units of swidth real(8), parameter :: swf=10.d0 real(8) dw,w,x ! external functions real(8), external :: sdelta,stheta open(50,file='SDELTA.OUT',form='FORMATTED',action='WRITE') open(51,file='STHETA.OUT',form='FORMATTED',action='WRITE') dw=(2.d0*swf*swidth)/dble(nwplot-1) do iw=1,nwplot w=-swf*swidth+dw*dble(iw-1) x=w/swidth write(50,'(2G18.10)') w,sdelta(stype,x)/swidth write(51,'(2G18.10)') w,stheta(stype,x) end do close(50) close(51) write(*,*) write(*,'("Info(writesf): smooth Dirac delta and Heaviside functions written")') write(*,'(" SDELTA.OUT and STHETA.OUT, respectively")') end subroutine elk-10.4.9/src/PaxHeaders/gengqf.f900000644000000000000000000000013214762655564014040 xustar0030 mtime=1741380468.856010488 30 atime=1741380467.205001857 30 ctime=1741380468.856010488 elk-10.4.9/src/gengqf.f900000644002504400250440000000162714762655564016570 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengqf(ng,vqpc,vgqc,gqc,jlgqr,ylmgq,sfacgq) use modmain implicit none ! arguments integer, intent(in) :: ng real(8), intent(in) :: vqpc(3) real(8), intent(out) :: vgqc(3,ng),gqc(ng),jlgqr(njcmax,nspecies,ng) complex(8), intent(out) :: ylmgq(lmmaxo,ng),sfacgq(ng,natmtot) ! local variables integer ig do ig=1,ng ! G+q-vector in Cartesian coordinates vgqc(1:3,ig)=vgc(1:3,ig)+vqpc(1:3) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(.true.,lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! generate the spherical Bessel functions call genjlgpr(ng,gqc,jlgqr) ! structure factors for G+q-vectors call gensfacgp(ng,vgqc,ng,sfacgq) end subroutine elk-10.4.9/src/PaxHeaders/genkmat.f900000644000000000000000000000013214762655564014217 xustar0030 mtime=1741380468.857010493 30 atime=1741380467.208001873 30 ctime=1741380468.857010493 elk-10.4.9/src/genkmat.f900000644002504400250440000000402014762655564016735 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genkmat ! !INTERFACE: subroutine genkmat(tfv,tvclcr) ! !USES: use modmain use modmpi use modomp ! !INPUT/OUTPUT PARAMETERS: ! tfv : .true. if the matrix elements are to be expressed in the ! first-variational basis; second-variational otherwise (in,logical) ! tvclvr : .true. if the non-local Coulomb potential from the core states is ! to be included in the kinetic matrix elements (in,logical) ! !DESCRIPTION: ! Computes the kinetic matrix elements in the first- or second-variational ! basis and stores them in the file {\tt KMAT.OUT}. See routine {\tt putkmat}. ! ! !REVISION HISTORY: ! Created January 2007 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tfv,tvclcr ! local variables integer ik,nthd ! allocatable arrays real(8), allocatable :: vmt(:,:),vir(:),bmt(:,:,:),bir(:,:) allocate(vmt(npcmtmax,natmtot),vir(ngtc)) if (spinpol) then allocate(bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag)) end if ! generate the Kohn-Sham potential and magnetic field in spherical coordinates ! and multiply by the radial integration weights; also multiply the interstitial ! potential with the characteristic function call vblocal(vmt,vir,bmt,bir) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) write(*,*) ! loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(genkmat_) write(*,'("Info(genkmat): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(genkmat_) call putkmat(tfv,tvclcr,ik,vmt,vir,bmt,bir) end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(vmt,vir) if (spinpol) deallocate(bmt,bir) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine !EOC elk-10.4.9/src/PaxHeaders/genolpq.f900000644000000000000000000000013214762655564014236 xustar0030 mtime=1741380468.859010504 30 atime=1741380467.210001883 30 ctime=1741380468.859010504 elk-10.4.9/src/genolpq.f900000644002504400250440000000467614762655564016775 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genolpq(nst,expqmt,ngpq,igpqig,wfmt,wfir,wfmtq,wfgpq,oq) use modmain use modomp implicit none ! arguments integer, intent(in) :: nst complex(8), intent(in) :: expqmt(npcmtmax,natmtot) integer, intent(in) :: ngpq(nspnfv),igpqig(ngkmax,nspnfv) complex(8), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nst) complex(8), intent(in) :: wfir(ngtc,nspinor,nst) complex(8), intent(in) :: wfmtq(npcmtmax,natmtot,nspinor,nst) complex(8), intent(in) :: wfgpq(ngkmax,nspinor,nst) complex(8), intent(out) :: oq(nst,nst) ! local variables integer ist,jst,ispn,jspn integer is,ias,nrc,nrci integer npc,igpq,nthd real(8) t1 ! automatic arrays complex(8) wfmt1(npcmtmax),wfir1(ngtc),z(ngkmax) ! external functions complex(8), external :: zdotc call holdthd(nst,nthd) ! zero the matrix elements oq(1:nst,1:nst)=0.d0 !-------------------------! ! muffin-tin part ! !-------------------------! !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(wfmt1,ispn,ias,is) & !$OMP PRIVATE(nrc,nrci,npc,ist) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do jst=1,nst do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! multiply by local phase factor function exp(iq.r) wfmt1(1:npc)=expqmt(1:npc,ias)*wfmt(1:npc,ias,ispn,jst) ! apply the radial integral weights call zfcmtwr(nrc,nrci,wr2cmt(:,is),wfmt1) ! compute the inner products do ist=1,nst oq(ist,jst)=oq(ist,jst)+zdotc(npc,wfmtq(:,ias,ispn,ist),1,wfmt1,1) end do end do end do end do !$OMP END PARALLEL DO !---------------------------! ! interstitial part ! !---------------------------! t1=sqrt(omega) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(wfir1,z,ispn,jspn) & !$OMP PRIVATE(igpq,ist) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do jst=1,nst do ispn=1,nspinor jspn=jspnfv(ispn) ! multiply wavefunction by characteristic function wfir1(1:ngtc)=wfir(1:ngtc,ispn,jst)*cfrc(1:ngtc) ! Fourier transform to G+p+q-space call zfftifc(3,ngdgc,-1,wfir1) do igpq=1,ngpq(jspn) z(igpq)=wfir1(igfc(igpqig(igpq,jspn))) end do do ist=1,nst oq(ist,jst)=oq(ist,jst)+t1*zdotc(ngpq(jspn),wfgpq(:,ispn,ist),1,z,1) end do end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/genjlgprmt.f900000644000000000000000000000013214762655564014742 xustar0030 mtime=1741380468.860010509 30 atime=1741380467.213001899 30 ctime=1741380468.860010509 elk-10.4.9/src/genjlgprmt.f900000644002504400250440000000234414762655564017467 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genjlgprmt ! !INTERFACE: subroutine genjlgprmt(lmax,ngp,gpc,ld,jlgprmt) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! lmax : angular momentum cut-off (in,integer) ! ngp : number of G+p-vectors (in,integer) ! gpc : length of G+p-vectors (in,real(ngkmax)) ! ld : leading dimension (in,integer) ! jlgprmt : spherical Bessel functions (out,real(0:lmax,ld,nspecies)) ! !DESCRIPTION: ! Calculates and stores the spherical Bessel functions ! $j_l(|{\bf G}+{\bf p}|{\bf R}_{\rm MT})$ for all input ${\bf G}+{\bf p}$ ! vectors and the muffin-tin radii ${\bf R}_{\rm MT}$ of every atomic species. ! ! !REVISION HISTORY: ! Created April 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax,ngp real(8), intent(in) :: gpc(ngp) integer, intent(in) :: ld real(8), intent(out) :: jlgprmt(0:lmax,ld,nspecies) ! local variables integer is,ig real(8) r,x do is=1,nspecies r=rmt(is) do ig=1,ngp x=gpc(ig)*r call sbessel(lmax,x,jlgprmt(:,ig,is)) end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/rfinterp.f900000644000000000000000000000013214762655564014422 xustar0030 mtime=1741380468.861010514 30 atime=1741380467.216001914 30 ctime=1741380468.861010514 elk-10.4.9/src/rfinterp.f900000644002504400250440000000334214762655564017146 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rfinterp ! !INTERFACE: subroutine rfinterp(ni,xi,wci,fi,no,xo,fo) ! !INPUT/OUTPUT PARAMETERS: ! ni : number of input points (in,integer) ! xi : input abscissa array (in,real(ni)) ! wci : input spline coefficient weights (in,real(12,ni)) ! fi : input data array (in,real(ni)) ! no : number of output points (in,integer) ! xo : output abscissa array (in,real(no)) ! fo : output interpolated function (out,real(no)) ! !DESCRIPTION: ! Given a function defined on a set of input points, this routine uses a ! clamped cubic spline to interpolate the function on a different set of ! points. See routine {\tt spline}. ! ! !REVISION HISTORY: ! Created January 2005 (JKD) ! Arguments changed, April 2016 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ni real(8), intent(in) :: xi(ni),wci(12,ni),fi(ni) integer, intent(in) :: no real(8), intent(in) :: xo(no) real(8), intent(out) :: fo(no) ! local variables integer i,j,k,l real(8) x,dx ! automatic arrays real(8) cf(3,ni) if (ni == 1) then fo(1:no)=fi(1) return end if ! compute the spline coefficients call splinew(ni,wci,fi,cf) ! evaluate spline at output points i=1 do l=1,no x=xo(l) if (i >= ni) i=1 if (x >= xi(i)) then if (x > xi(i+1)) then ! binary search i=1 j=ni do while (j > i+1) k=(i+j)/2 if (x < xi(k)) then j=k else i=k end if end do end if end if dx=x-xi(i) fo(l)=fi(i)+dx*(cf(1,i)+dx*(cf(2,i)+dx*cf(3,i))) end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/fsmooth.f900000644000000000000000000000013214762655564014250 xustar0030 mtime=1741380468.863010525 30 atime=1741380467.218001925 30 ctime=1741380468.863010525 elk-10.4.9/src/fsmooth.f900000644002504400250440000000165014762655564016774 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2005 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: fsmooth ! !INTERFACE: pure subroutine fsmooth(m,n,f) ! !INPUT/OUTPUT PARAMETERS: ! m : number of 3-point running averages to perform (in,integer) ! n : number of point (in,integer) ! f : function array (inout,real(n)) ! !DESCRIPTION: ! Removes numerical noise from a function by performing $m$ successive ! 3-point running averages on the data. The endpoints are kept fixed. ! ! !REVISION HISTORY: ! Created December 2005 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: m,n real(8), intent(inout) :: f(n) ! local variables integer i,j real(8) f1,f2,f3 do i=1,m f1=f(1); f2=f(2) do j=2,n-1 f3=f(j+1) f(j)=0.3333333333333333333d0*(f1+f2+f3) f1=f2; f2=f3 end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/axangrot.f900000644000000000000000000000012714762655564014420 xustar0029 mtime=1741380468.86401053 29 atime=1741380467.22100194 29 ctime=1741380468.86401053 elk-10.4.9/src/axangrot.f900000644002504400250440000000252314762655564017140 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: axangrot ! !INTERFACE: pure subroutine axangrot(v,th,rot) ! !INPUT/OUTPUT PARAMETERS: ! v : axis vector (in,real) ! th : rotation angle (in,real) ! rot : rotation matrix (out,real(3,3)) ! !DESCRIPTION: ! Determines the $3\times 3$ rotation matrix of a rotation specified by an ! axis-angle pair following the `right-hand rule'. The axis vector need not be ! normalised. See {\tt rotaxang} for details. ! ! !REVISION HISTORY: ! Created February 2014 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: v(3),th real(8), intent(out) :: rot(3,3) ! local variables real(8) x,y,z,x2,y2,z2 real(8) xy,xz,yz,cs,sn,t1 x=v(1); y=v(2); z=v(3) t1=sqrt(x**2+y**2+z**2) ! if the axis has zero length then assume the identity if (t1 < 1.d-14) then rot(:,:)=0.d0 rot(1,1)=1.d0 rot(2,2)=1.d0 rot(3,3)=1.d0 return end if t1=1.d0/t1 x=x*t1; y=y*t1; z=z*t1 x2=x**2; y2=y**2; z2=z**2 xy=x*y; xz=x*z; yz=y*z cs=cos(th); sn=sin(th) t1=1.d0-cs rot(1,1)=cs+x2*t1 rot(2,1)=xy*t1+z*sn rot(3,1)=xz*t1-y*sn rot(1,2)=xy*t1-z*sn rot(2,2)=cs+y2*t1 rot(3,2)=yz*t1+x*sn rot(1,3)=xz*t1+y*sn rot(2,3)=yz*t1-x*sn rot(3,3)=cs+z2*t1 end subroutine !EOC elk-10.4.9/src/PaxHeaders/rotaxang.f900000644000000000000000000000013214762655564014414 xustar0030 mtime=1741380468.865010535 30 atime=1741380467.224001956 30 ctime=1741380468.865010535 elk-10.4.9/src/rotaxang.f900000644002504400250440000000621214762655564017137 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rotaxang ! !INTERFACE: subroutine rotaxang(eps,rot,det,v,th) ! !INPUT/OUTPUT PARAMETERS: ! eps : zero vector tolerance (in,real) ! rot : rotation matrix (in,real(3,3)) ! det : matrix determinant (out,real) ! v : normalised axis vector (out,real(3)) ! th : rotation angle (out,real) ! !DESCRIPTION: ! Given a rotation matrix ! $$ R(\hat{\bf v},\theta)= ! \left(\begin{matrix} ! \cos\theta+x^2(1-\cos\theta) & ! xy(1-\cos\theta)+z\sin\theta & ! xz(1-\cos\theta)-y\sin\theta \\ ! xy(1-\cos\theta)-z\sin\theta & ! \cos\theta+y^2(1-\cos\theta) & ! yz(1-\cos\theta)+x\sin\theta \\ ! xz(1-\cos\theta)+y\sin\theta & ! yz(1-\cos\theta)-x\sin\theta & ! \cos\theta+z^2(1-\cos\theta) ! \end{matrix}\right), $$ ! this routine determines the axis of rotation $\hat{\bf v}$ and the angle of ! rotation $\theta$. If $R$ corresponds to an improper rotation then only the ! proper part is used and {\tt det} is set to $-1$. The rotation convention ! follows the `right-hand rule'. ! ! !REVISION HISTORY: ! Created December 2006 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: eps,rot(3,3) real(8), intent(out) :: det,v(3),th ! local variables real(8), parameter :: pi=3.1415926535897932385d0 real(8) rotp(3,3),t1,t2 ! find the determinant det=rot(1,1)*(rot(2,2)*rot(3,3)-rot(3,2)*rot(2,3)) & +rot(2,1)*(rot(3,2)*rot(1,3)-rot(1,2)*rot(3,3)) & +rot(3,1)*(rot(1,2)*rot(2,3)-rot(2,2)*rot(1,3)) if (abs(det-1.d0) < eps) then det=1.d0 else if (abs(det+1.d0) < eps) then det=-1.d0 else goto 10 end if ! proper rotation matrix rotp(1:3,1:3)=det*rot(1:3,1:3) v(1)=0.5d0*(rotp(2,3)-rotp(3,2)) v(2)=0.5d0*(rotp(3,1)-rotp(1,3)) v(3)=0.5d0*(rotp(1,2)-rotp(2,1)) t1=sqrt(v(1)**2+v(2)**2+v(3)**2) t2=0.5d0*(rotp(1,1)+rotp(2,2)+rotp(3,3)-1.d0) if (abs(abs(t2)-1.d0) > eps) then ! theta not equal to 0 or pi th=-atan2(t1,t2) v(1:3)=v(1:3)/t1 else ! special case of sin(th)=0 if (t2 > 0.d0) then ! zero angle: axis arbitrary th=0.d0 v(1:3)=1.d0/sqrt(3.d0) else ! rotation by pi th=pi if ((rotp(1,1) >= rotp(2,2)).and.(rotp(1,1) >= rotp(3,3))) then if (rotp(1,1) < (-1.d0+eps)) goto 10 v(1)=sqrt(0.5d0*abs(rotp(1,1)+1.d0)) v(2)=(rotp(2,1)+rotp(1,2))/(4.d0*v(1)) v(3)=(rotp(3,1)+rotp(1,3))/(4.d0*v(1)) else if ((rotp(2,2) >= rotp(1,1)).and.(rotp(2,2) >= rotp(3,3))) then if (rotp(2,2) < (-1.d0+eps)) goto 10 v(2)=sqrt(0.5d0*abs(rotp(2,2)+1.d0)) v(3)=(rotp(3,2)+rotp(2,3))/(4.d0*v(2)) v(1)=(rotp(1,2)+rotp(2,1))/(4.d0*v(2)) else if (rotp(3,3) < (-1.d0+eps)) goto 10 v(3)=sqrt(0.5d0*abs(rotp(3,3)+1.d0)) v(1)=(rotp(1,3)+rotp(3,1))/(4.d0*v(3)) v(2)=(rotp(2,3)+rotp(3,2))/(4.d0*v(3)) end if end if end if return 10 continue write(*,*) write(*,'("Error(rotaxang): invalid rotation matrix:")') write(*,'(3G18.10)') rot(1,1:3) write(*,'(3G18.10)') rot(2,1:3) write(*,'(3G18.10)') rot(3,1:3) write(*,*) stop end subroutine !EOC elk-10.4.9/src/PaxHeaders/wspline.f900000644000000000000000000000013214762655564014252 xustar0030 mtime=1741380468.867010546 30 atime=1741380467.226001967 30 ctime=1741380468.867010546 elk-10.4.9/src/wspline.f900000644002504400250440000000315314762655564016776 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wspline(n,x,wc) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x(n) real(8), intent(out) :: wc(4,3,n) ! local variables integer i,j real(8) f(4),cf(3,4) if (n < 4) then write(*,*) write(*,'("Error(wspline): n < 4 : ",I8)') n write(*,*) stop end if f(1)=1.d0 f(2:4)=0.d0 call spline(4,x,f,cf) wc(1,1:3,1)=cf(1:3,1) wc(1,1:3,2)=cf(1:3,2) f(1)=0.d0 f(2)=1.d0 call spline(4,x,f,cf) wc(2,1:3,1)=cf(1:3,1) wc(2,1:3,2)=cf(1:3,2) f(2)=0.d0 f(3)=1.d0 call spline(4,x,f,cf) wc(3,1:3,1)=cf(1:3,1) wc(3,1:3,2)=cf(1:3,2) f(3)=0.d0 f(4)=1.d0 call spline(4,x,f,cf) wc(4,1:3,1)=cf(1:3,1) wc(4,1:3,2)=cf(1:3,2) do i=3,n-3 j=i-1 f(1)=1.d0 f(2:4)=0.d0 call spline(4,x(j),f,cf) wc(1,1:3,i)=cf(1:3,2) f(1)=0.d0 f(2)=1.d0 call spline(4,x(j),f,cf) wc(2,1:3,i)=cf(1:3,2) f(2)=0.d0 f(3)=1.d0 call spline(4,x(j),f,cf) wc(3,1:3,i)=cf(1:3,2) f(3)=0.d0 f(4)=1.d0 call spline(4,x(j),f,cf) wc(4,1:3,i)=cf(1:3,2) end do j=n-3 f(1)=1.d0 f(2:4)=0.d0 call spline(4,x(j),f,cf) wc(1,1:3,n-2)=cf(1:3,2) wc(1,1:3,n-1)=cf(1:3,3) wc(1,1:3,n)=cf(1:3,4) f(1)=0.d0 f(2)=1.d0 call spline(4,x(j),f,cf) wc(2,1:3,n-2)=cf(1:3,2) wc(2,1:3,n-1)=cf(1:3,3) wc(2,1:3,n)=cf(1:3,4) f(2)=0.d0 f(3)=1.d0 call spline(4,x(j),f,cf) wc(3,1:3,n-2)=cf(1:3,2) wc(3,1:3,n-1)=cf(1:3,3) wc(3,1:3,n)=cf(1:3,4) f(3)=0.d0 f(4)=1.d0 call spline(4,x(j),f,cf) wc(4,1:3,n-2)=cf(1:3,2) wc(4,1:3,n-1)=cf(1:3,3) wc(4,1:3,n)=cf(1:3,4) end subroutine elk-10.4.9/src/PaxHeaders/splined.f900000644000000000000000000000013214762655564014227 xustar0030 mtime=1741380468.868010551 30 atime=1741380467.229001982 30 ctime=1741380468.868010551 elk-10.4.9/src/splined.f900000644002504400250440000000145114762655564016752 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine splined(n,wc,f,df) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wc(12,n),f(n) real(8), intent(out) :: df(n) ! local variables integer i real(8) f1,f2,f3,f4 f1=f(1); f2=f(2); f3=f(3); f4=f(4) df(1)=wc(1,1)*f1+wc(2,1)*f2+wc(3,1)*f3+wc(4,1)*f4 df(2)=wc(1,2)*f1+wc(2,2)*f2+wc(3,2)*f3+wc(4,2)*f4 !$OMP SIMD LASTPRIVATE(f1,f2,f3,f4) SIMDLEN(8) do i=3,n-2 f1=f(i-1); f2=f(i); f3=f(i+1); f4=f(i+2) df(i)=wc(1,i)*f1+wc(2,i)*f2+wc(3,i)*f3+wc(4,i)*f4 end do i=n-1 df(i)=wc(1,i)*f1+wc(2,i)*f2+wc(3,i)*f3+wc(4,i)*f4 df(n)=wc(1,n)*f1+wc(2,n)*f2+wc(3,n)*f3+wc(4,n)*f4 end subroutine elk-10.4.9/src/PaxHeaders/findswidth.f900000644000000000000000000000013214762655564014734 xustar0030 mtime=1741380468.869010556 30 atime=1741380467.232001998 30 ctime=1741380468.869010556 elk-10.4.9/src/findswidth.f900000644002504400250440000000333214762655564017457 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 T. Bjorkman and O. Granas. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: findswidth ! !INTERFACE: subroutine findswidth ! !USES: use modmain ! !DESCRIPTION: ! Calculates the smearing width from the $k$-point density, ! $V_{\rm BZ}/n_k$; the valence band width, $W$; and an effective mass ! parameter, $m^{*}$; according to ! $$ \sigma=\frac{\sqrt{2W}}{m^{*}}\left(\frac{3}{4\pi} ! \frac{V_{\rm BZ}}{n_k}\right)^{1/3}. $$ ! The valence bandwidth is determined by stepping down in energy from the ! Fermi level until a gap larger than a given tolerance is found. This method ! was presented in T. Bj\"{o}rkman and O. Gr\aa n\"{a}s, {\it Int. J. Quant. ! Chem.} DOI: 10.1002/qua.22476. ! ! !REVISION HISTORY: ! Created April 2010 (Torbjorn Bjorkman and JKD) !EOP !BOC implicit none ! local variables integer i,j,m,n,ik,ist real(8), parameter :: eps=0.05d0 real(8) e,vbw ! allocatable arrays integer, allocatable :: idx(:) n=nstsv*nkpt allocate(idx(n)) ! find the index which sorts the eigenvalues in ascending order call sortidx(n,evalsv,idx) ! find the highest eigenvalue < efermi m=n e=efermi do i=n,1,-1 j=idx(i) ik=(j-1)/nstsv+1 ist=mod(j-1,nstsv)+1 if (evalsv(ist,ik) < efermi) then m=i e=evalsv(ist,ik) exit end if end do ! search downwards until a gap larger than eps is found do i=m,1,-1 j=idx(i) ik=(j-1)/nstsv+1 ist=mod(j-1,nstsv)+1 if ((e-evalsv(ist,ik)) > eps) exit e=evalsv(ist,ik) end do ! valence band width vbw=efermi-e vbw=max(vbw,1.d-2) ! determine swidth swidth=(sqrt(2.d0*vbw)/mstar)*(6.d0*pi**2/(omega*dble(nkptnr)))**(1.d0/3.d0) deallocate(idx) end subroutine !EOC elk-10.4.9/src/PaxHeaders/findsymlat.f900000644000000000000000000000013214762655564014743 xustar0030 mtime=1741380468.871010567 30 atime=1741380467.235002014 30 ctime=1741380468.871010567 elk-10.4.9/src/findsymlat.f900000644002504400250440000001130214762655564017462 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: findsymlat ! !INTERFACE: subroutine findsymlat ! !USES: use modmain use modtddft ! !DESCRIPTION: ! Finds the point group symmetries which leave the Bravais lattice invariant. ! Let $A$ be the matrix consisting of the lattice vectors in columns, then ! $$ g=A^{\rm T}A $$ ! is the metric tensor. Any $3\times 3$ matrix $S$ with elements $-1$, 0 or 1 ! is a point group symmetry of the lattice if $\det(S)$ is $-1$ or 1, and ! $$ S^{\rm T}gS=g. $$ ! The first matrix in the set returned is the identity. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) ! Removed arguments and simplified, April 2007 (JKD) !EOP !BOC implicit none ! local variables integer md,sym(3,3),its,i,j integer i11,i12,i13,i21,i22,i23,i31,i32,i33 real(8) s(3,3),g(3,3),sgs(3,3),sc(3,3) real(8) c(3,3),v(3),t1 ! determine metric tensor call r3mtm(avec,avec,g) ! loop over all possible symmetry matrices nsymlat=0 do i11=-1,1; do i12=-1,1; do i13=-1,1 do i21=-1,1; do i22=-1,1; do i23=-1,1 do i31=-1,1; do i32=-1,1; do i33=-1,1 sym(1,1)=i11; sym(1,2)=i12; sym(1,3)=i13 sym(2,1)=i21; sym(2,2)=i22; sym(2,3)=i23 sym(3,1)=i31; sym(3,2)=i32; sym(3,3)=i33 ! determinant of matrix md=i3mdet(sym) ! matrix should be orthogonal if (abs(md) /= 1) goto 10 ! check invariance of metric tensor s(:,:)=dble(sym(:,:)) call r3mtm(s,g,c) call r3mm(c,s,sgs) do j=1,3 do i=1,3 if (abs(sgs(i,j)-g(i,j)) > epslat) goto 10 end do end do ! check invariance of spin-spiral q-vector if required if (spinsprl) then call r3mtv(s,vqlss,v) t1=abs(vqlss(1)-v(1))+abs(vqlss(2)-v(2))+abs(vqlss(3)-v(3)) if (t1 > epslat) goto 10 end if ! check invariance of electric field if required if (tefield) then call r3mv(s,efieldl,v) t1=abs(efieldl(1)-v(1))+abs(efieldl(2)-v(2))+abs(efieldl(3)-v(3)) if (t1 > epslat) goto 10 end if ! check invariance of static A-field if required if (tafield) then call r3mv(s,afieldl,v) t1=abs(afieldl(1)-v(1))+abs(afieldl(2)-v(2))+abs(afieldl(3)-v(3)) if (t1 > epslat) goto 10 end if ! check invariance of time-dependent A-field if required if (tafieldt) then ! symmetry matrix in Cartesian coordinates call r3mm(s,ainv,c) call r3mm(avec,c,sc) do its=1,ntimes call r3mv(sc,afieldt(:,its),v) t1=abs(afieldt(1,its)-v(1)) & +abs(afieldt(2,its)-v(2)) & +abs(afieldt(3,its)-v(3)) if (t1 > epslat) goto 10 end do end if nsymlat=nsymlat+1 if (nsymlat > 48) then write(*,*) write(*,'("Error(findsymlat): more than 48 symmetries found")') write(*,'(" (lattice vectors may be linearly dependent)")') write(*,*) stop end if ! store the symmetry and determinant in global arrays symlat(:,:,nsymlat)=sym(:,:) symlatd(nsymlat)=md 10 continue end do; end do; end do end do; end do; end do end do; end do; end do if (nsymlat == 0) then write(*,*) write(*,'("Error(findsymlat): no symmetries found")') write(*,*) stop end if ! make the first symmetry the identity do i=1,nsymlat if ((symlat(1,1,i) == 1).and.(symlat(1,2,i) == 0).and.(symlat(1,3,i) == 0) & .and.(symlat(2,1,i) == 0).and.(symlat(2,2,i) == 1).and.(symlat(2,3,i) == 0) & .and.(symlat(3,1,i) == 0).and.(symlat(3,2,i) == 0).and.(symlat(3,3,i) == 1)) & then sym(:,:)=symlat(:,:,1) symlat(:,:,1)=symlat(:,:,i) symlat(:,:,i)=sym(:,:) md=symlatd(1) symlatd(1)=symlatd(i) symlatd(i)=md exit end if end do ! index to the inverse of each operation do i=1,nsymlat call i3minv(symlat(:,:,i),sym) do j=1,nsymlat if ((symlat(1,1,j) == sym(1,1)).and.(symlat(1,2,j) == sym(1,2)).and. & (symlat(1,3,j) == sym(1,3)).and.(symlat(2,1,j) == sym(2,1)).and. & (symlat(2,2,j) == sym(2,2)).and.(symlat(2,3,j) == sym(2,3)).and. & (symlat(3,1,j) == sym(3,1)).and.(symlat(3,2,j) == sym(3,2)).and. & (symlat(3,3,j) == sym(3,3))) then isymlat(i)=j goto 30 end if end do write(*,*) write(*,'("Error(findsymlat): inverse operation not found")') write(*,'(" for lattice symmetry ",I2)') i write(*,*) stop 30 continue end do ! determine the lattice symmetries in Cartesian coordinates do i=1,nsymlat s(:,:)=dble(symlat(:,:,i)) call r3mm(s,ainv,c) call r3mm(avec,c,symlatc(:,:,i)) end do return contains pure integer function i3mdet(a) implicit none ! arguments integer, intent(in) :: a(3,3) ! determinant of integer matrix i3mdet=a(1,1)*(a(2,2)*a(3,3)-a(3,2)*a(2,3)) & +a(2,1)*(a(3,2)*a(1,3)-a(1,2)*a(3,3)) & +a(3,1)*(a(1,2)*a(2,3)-a(2,2)*a(1,3)) end function end subroutine !EOC elk-10.4.9/src/PaxHeaders/writepmat.f900000644000000000000000000000013214762655564014605 xustar0030 mtime=1741380468.872010572 30 atime=1741380467.237002024 30 ctime=1741380468.872010572 elk-10.4.9/src/writepmat.f900000644002504400250440000000221114762655564017323 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writepmat ! !INTERFACE: subroutine writepmat ! !USES: use modmain use modmpi use modramdisk ! !DESCRIPTION: ! Calculates the momentum matrix elements using routine {\tt genpmat} and ! writes them to direct access file {\tt PMAT.OUT}. ! ! !REVISION HISTORY: ! Created November 2003 (Sharma) !EOP !BOC implicit none ! ensure momentum matrix elements are written to disk wrtdsk0=wrtdsk wrtdsk=.true. ! initialise universal variables call init0 call init1 ! read in the density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! write the momentum matrix elements in the second-variational basis to file call genpmat wrtdsk=wrtdsk0 if (mp_mpi) then write(*,*) write(*,'("Info(writepmat):")') write(*,'(" momentum matrix elements written to file PMAT.OUT")') end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/genstrain.f900000644000000000000000000000013114762655564014562 xustar0030 mtime=1741380468.873010577 29 atime=1741380467.24000204 30 ctime=1741380468.873010577 elk-10.4.9/src/genstrain.f900000644002504400250440000000314414762655564017307 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genstrain use modmain implicit none ! local variables integer i,j,k real(8) a(3,3),b(3,3),t1 ! set first strain equal to isotropic scaling t1=norm2(avec(:,:)) strain(:,:,1)=avec(:,:)/t1 nstrain=1 do i=1,3 do j=1,3 ! set strain tensor in lattice coordinates to delta_ij a(:,:)=0.d0 a(i,j)=1.d0 ! symmetrise strain tensor call symmat(a) ! convert to mixed Cartesian-lattice coordinates call r3mtm(ainv,a,b) ! orthogonalise strain tensor to previous tensors do k=1,nstrain t1=sum(b(:,:)*strain(:,:,k)) b(:,:)=b(:,:)-t1*strain(:,:,k) end do ! compute the norm t1=norm2(b(:,:)) if (t1 < epslat) cycle ! normalise tensor and store in global array nstrain=nstrain+1 strain(:,:,nstrain)=b(:,:)/t1 end do end do ! zero small components do k=1,nstrain do i=1,3 do j=1,3 if (abs(strain(i,j,k)) < epslat) strain(i,j,k)=0.d0 end do end do end do ! lattice optimisation case if ((task == 2).or.(task == 3)) then if (latvopt == 2) then ! remove isotropic scaling when latvopt=2 strain(:,:,1)=strain(:,:,nstrain) nstrain=nstrain-1 else if (latvopt < 0) then ! optimise over particular strain when latvopt < 0 i=abs(latvopt) if (i > nstrain) then write(*,*) write(*,'("Error(genstrain): |latvopt| > nstrain : ",2I8)') i,nstrain write(*,*) stop end if strain(:,:,1)=strain(:,:,i) nstrain=1 end if end if end subroutine elk-10.4.9/src/PaxHeaders/symmetry.f900000644000000000000000000000013214762655564014462 xustar0030 mtime=1741380468.874010582 30 atime=1741380467.243002055 30 ctime=1741380468.874010582 elk-10.4.9/src/symmetry.f900000644002504400250440000000211214762655564017200 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine symmetry use modmain use modvars implicit none ! inverse of the lattice vector matrix call r3minv(avec,ainv) ! find Bravais lattice symmetries call findsymlat ! use only the identity if required if (symtype == 0) nsymlat=1 ! find the crystal symmetries and shift atomic positions if required call findsymcrys ! find the site symmetries call findsymsite ! check if fixed spin moments are invariant under the symmetry group call checkfsm ! check if real symmetric first-variational eigen solver can be used if (.not.tsyminv) tefvr=.false. ! write to VARIABLES.OUT if (wrtvars) then call writevars('nsymlat',iv=nsymlat) call writevars('symlat',nv=9*nsymlat,iva=symlat) call writevars('nsymcrys',iv=nsymcrys) call writevars('vtlsymc',nv=3*nsymcrys,rva=vtlsymc) call writevars('lsplsymc',nv=nsymcrys,iva=lsplsymc) call writevars('lspnsymc',nv=nsymcrys,iva=lspnsymc) end if end subroutine elk-10.4.9/src/PaxHeaders/linengy.f900000644000000000000000000000013214762655564014236 xustar0030 mtime=1741380468.876010593 30 atime=1741380467.245002066 30 ctime=1741380468.876010593 elk-10.4.9/src/linengy.f900000644002504400250440000000706014762655564016763 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: linengy ! !INTERFACE: subroutine linengy ! !USES: use modmain use modmpi use modomp ! !DESCRIPTION: ! Calculates the new linearisation energies for both the APW and local-orbital ! radial functions. See the routine {\tt findband}. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) !EOP !BOC implicit none ! local variables logical fnd integer is,ia,ja,ias,jas integer nr,nri,iro,i0,i1 integer l,io,jo,ilo,nnf,nthd ! automatic arrays real(8) vr(nrmtmax) nnf=0 ! begin loops over atoms and species call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(vr,is,ia,nr,nri,iro,i0,i1) & !$OMP PRIVATE(l,io,jo,fnd,ilo,ja,jas) & !$OMP REDUCTION(+:nnf) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) ia=idxia(ias) ! perform calculation for only the first equivalent atom if (.not.tfeqat(ia,is)) cycle nr=nrmt(is) nri=nrmti(is) iro=nri+1 i1=lmmaxi*(nri-1)+1 vr(1:nri)=vsmt(1:i1:lmmaxi,ias)*y00 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 vr(iro:nr)=vsmt(i0:i1:lmmaxo,ias)*y00 !-----------------------! ! APW functions ! !-----------------------! do l=0,lmaxapw do io=1,apword(l,is) if (apwve(io,l,is)) then ! check if previous radial functions have same default energies do jo=1,io-1 if (apwve(jo,l,is)) then if (abs(apwe0(io,l,is)-apwe0(jo,l,is)) < 1.d-4) then apwe(io,l,ias)=apwe(jo,l,ias) goto 10 end if end if end do ! find the band energy starting from default apwe(io,l,ias)=apwe0(io,l,is) call findband(solsc,l,nr,rlmt(:,1,is),vr,epsband,demaxbnd, & apwe(io,l,ias),fnd) if (.not.fnd) nnf=nnf+1 else ! set linearisation energy automatically if (autolinengy) apwe(io,l,ias)=efermi+dlefe end if 10 continue end do end do !---------------------------------! ! local-orbital functions ! !---------------------------------! do ilo=1,nlorb(is) do io=1,lorbord(ilo,is) if (lorbve(io,ilo,is)) then ! check if previous radial functions have same default energies do jo=1,io-1 if (lorbve(jo,ilo,is)) then if (abs(lorbe0(io,ilo,is)-lorbe0(jo,ilo,is)) < 1.d-4) then lorbe(io,ilo,ias)=lorbe(jo,ilo,ias) goto 20 end if end if end do l=lorbl(ilo,is) ! find the band energy starting from default lorbe(io,ilo,ias)=lorbe0(io,ilo,is) call findband(solsc,l,nr,rlmt(:,1,is),vr,epsband,demaxbnd, & lorbe(io,ilo,ias),fnd) if (.not.fnd) nnf=nnf+1 else ! set linearisation energy automatically if (autolinengy) lorbe(io,ilo,ias)=efermi+dlefe end if 20 continue end do end do ! copy to equivalent atoms do ja=1,natoms(is) if (eqatoms(ia,ja,is).and.(ia /= ja)) then jas=idxas(ja,is) do l=0,lmaxapw do io=1,apword(l,is) apwe(io,l,jas)=apwe(io,l,ias) end do end do do ilo=1,nlorb(is) do io=1,lorbord(ilo,is) lorbe(io,ilo,jas)=lorbe(io,ilo,ias) end do end do end if end do ! end loop over species and atoms end do !$OMP END PARALLEL DO call freethd(nthd) if (mp_mpi.and.(nnf > 0)) then write(*,*) write(*,'("Warning(linengy): could not find ",I3," linearisation energies & &in s.c. loop ",I5)') nnf,iscl end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/writestress.f900000644000000000000000000000013214762655564015167 xustar0030 mtime=1741380468.877010598 30 atime=1741380467.248002082 30 ctime=1741380468.877010598 elk-10.4.9/src/writestress.f900000644002504400250440000000245614762655564017720 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writestress use modmain use modmpi use modtest implicit none ! local variables integer i,j,k ! initialise universal variables call init0 ! start from the atomic densities trdstate=.false. ! generate the stress tensors call genstress ! write the stress tensors to file if (mp_mpi) then open(50,file='STRESS.OUT',form='FORMATTED',action='WRITE') write(50,*) write(50,'("Lattice vector matrix, A, changed by")') write(50,*) write(50,'(" A → A + eₖ dt,")') write(50,*) write(50,'("where dt is an infinitesimal scalar and eₖ is a strain tensor")') write(50,*) write(50,'("Stress is given by the derivative of the total energy dE/dt")') do k=1,nstrain write(50,*) write(50,'("Strain tensor k : ",I1)') k do j=1,3 write(50,'(3G18.10)') (strain(i,j,k),i=1,3) end do write(50,'("Stress : ",G18.10)') stress(k) end do close(50) write(*,*) write(*,'("Info(writestress):")') write(*,'(" Stress tensor components written to STRESS.OUT")') end if ! write test file if required call writetest(440,'Stress tensor components',nv=nstrain,tol=3.d-2,rva=stress) end subroutine elk-10.4.9/src/PaxHeaders/eulerrot.f900000644000000000000000000000013214762655564014432 xustar0030 mtime=1741380468.878010603 30 atime=1741380467.251002097 30 ctime=1741380468.878010603 elk-10.4.9/src/eulerrot.f900000644002504400250440000000215714762655564017161 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: eulerrot ! !INTERFACE: pure subroutine eulerrot(ang,rot) ! !INPUT/OUTPUT PARAMETERS: ! ang : Euler angles (alpha, beta, gamma) (in,real(3)) ! rot : rotation matrix (out,real(3,3)) ! !DESCRIPTION: ! Given a set of Euler angles, $(\alpha,\beta,\gamma)$, this routine ! determines the corresponding $3\times 3$ rotation matrix. The so-called ! `y-convention' is taken for the Euler angles. See the routine {\tt roteuler} ! for details. ! ! !REVISION HISTORY: ! Created January 2014 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: ang(3) real(8), intent(out) :: rot(3,3) ! local variables real(8) sa,sb,sg,ca,cb,cg sa=sin(ang(1)); ca=cos(ang(1)) sb=sin(ang(2)); cb=cos(ang(2)) sg=sin(ang(3)); cg=cos(ang(3)) rot(1,1)=cg*cb*ca-sg*sa rot(2,1)=-sg*cb*ca-cg*sa rot(3,1)=sb*ca rot(1,2)=cg*cb*sa+sg*ca rot(2,2)=-sg*cb*sa+cg*ca rot(3,2)=sb*sa rot(1,3)=-cg*sb rot(2,3)=sg*sb rot(3,3)=cb end subroutine !EOC elk-10.4.9/src/PaxHeaders/cftwfir.f900000644000000000000000000000013214762655564014235 xustar0030 mtime=1741380468.879010608 30 atime=1741380467.253002108 30 ctime=1741380468.879010608 elk-10.4.9/src/cftwfir.f900000644002504400250440000000174014762655564016761 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cftwfir(ngp,igpig,wfir) use modmain use modomp implicit none ! arguments integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(4), intent(inout) :: wfir(ngtc,nspinor,nstsv) ! local variables integer ist,ispn,jspn integer n,igp,nthd real(4) t0 ! automatic arrays complex(4) c(ngkmax) t0=1.e0/sqrt(omega) call holdthd(nstsv,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(c,ispn,jspn,n,igp) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ist=1,nstsv do ispn=1,nspinor jspn=jspnfv(ispn) n=ngp(jspn) c(1:n)=wfir(1:n,ispn,ist) wfir(1:ngtc,ispn,ist)=0.e0 do igp=1,n wfir(igfc(igpig(igp,jspn)),ispn,ist)=t0*c(igp) end do call cfftifc(3,ngdgc,1,wfir(:,ispn,ist)) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/rschrodint.f900000644000000000000000000000013214762655564014750 xustar0030 mtime=1741380468.881010619 30 atime=1741380467.256002124 30 ctime=1741380468.881010619 elk-10.4.9/src/rschrodint.f900000644002504400250440000001046014762655564017473 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2015 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rschrodint ! !INTERFACE: pure subroutine rschrodint(sol,l,e,nr,r,vr,nn,p0,p1,q0,q1) ! !INPUT/OUTPUT PARAMETERS: ! sol : speed of light in atomic units (in,real) ! l : angular momentum quantum number (in,integer) ! e : energy (in,real) ! nr : number of radial mesh points (in,integer) ! r : radial mesh (in,real(nr)) ! vr : potential on radial mesh (in,real(nr)) ! nn : number of nodes (out,integer) ! p0 : radial function P (out,real(nr)) ! p1 : radial derivative of P (out,real(nr)) ! q0 : radial function Q (out,real(nr)) ! q1 : radial derivative of Q (out,real(nr)) ! !DESCRIPTION: ! Integrates the scalar relativistic radial Schr\"{o}dinger equation from ! $r=0$ outwards. This involves using the predictor-corrector method to solve ! the coupled first-order equations (in atomic units) ! \begin{align*} ! \frac{d}{dr}P_l&=2MQ_l+\frac{1}{r}P_l\\ ! \frac{d}{dr}Q_l&=-\frac{1}{r}Q_l+\left[\frac{l(l+1)}{2Mr^2} ! +(V-E)\right]P_l, ! \end{align*} ! where $V$ is the external potential, $E$ is the eigen energy and ! $M=1+(E-V)/2c^2$. Following the convention of Koelling and Harmon, ! {\it J. Phys. C: Solid State Phys.} {\bf 10}, 3107 (1977), the functions ! $P_l$ and $Q_l$ are defined by ! \begin{align*} ! P_l&=rg_l\\ ! Q_l&=\frac{r}{2M}\frac{dg_l}{dr}, ! \end{align*} ! where $g_l$ is the major component of the Dirac equation (see the routine ! {\tt rdiracint}). ! ! !REVISION HISTORY: ! Created October 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: sol integer, intent(in) :: l real(8), intent(in) :: e integer, intent(in) :: nr real(8), intent(in) :: r(nr),vr(nr) integer, intent(out) :: nn real(8), intent(out) :: p0(nr),p1(nr) real(8), intent(out) :: q0(nr),q1(nr) ! local variables integer ir,ir0 real(8) ri,t1,t2,t3,t4 t1=1.d0/sol**2 t2=dble(l*(l+1)) ! determine the r -> 0 boundary values of P and Q ri=1.d0/r(1) t3=2.d0+t1*(e-vr(1)) t4=t2/(t3*r(1)**2)+vr(1)-e q0(1)=1.d0 q1(1)=0.d0 p0(1)=(q1(1)+q0(1)*ri)/t4 p1(1)=t3*q0(1)+p0(1)*ri ! extrapolate to the first four points p1(2:4)=p1(1) q1(2:4)=q1(1) nn=0 do ir=2,nr ri=1.d0/r(ir) t3=2.d0+t1*(e-vr(ir)) t4=t2/(t3*r(ir)**2)+vr(ir)-e ir0=ir-3 if (ir0 < 1) ir0=1 p1(ir)=poly3(r(ir0),p1(ir0),r(ir)) q1(ir)=poly3(r(ir0),q1(ir0),r(ir)) ! integrate to find wavefunction p0(ir)=poly4i(r(ir0),p1(ir0),r(ir))+p0(ir0) q0(ir)=poly4i(r(ir0),q1(ir0),r(ir))+q0(ir0) ! compute the derivatives p1(ir)=t3*q0(ir)+p0(ir)*ri q1(ir)=t4*p0(ir)-q0(ir)*ri ! integrate for correction p0(ir)=poly4i(r(ir0),p1(ir0),r(ir))+p0(ir0) q0(ir)=poly4i(r(ir0),q1(ir0),r(ir))+q0(ir0) ! compute the derivatives again p1(ir)=t3*q0(ir)+p0(ir)*ri q1(ir)=t4*p0(ir)-q0(ir)*ri ! check for overflow if ((abs(p0(ir)) > 1.d100).or.(abs(p1(ir)) > 1.d100).or. & (abs(q0(ir)) > 1.d100).or.(abs(q1(ir)) > 1.d100)) then p0(ir+1:nr)=p0(ir); p1(ir+1:nr)=p1(ir) q0(ir+1:nr)=q0(ir); q1(ir+1:nr)=q1(ir) return end if ! check for node if (p0(ir-1)*p0(ir) < 0.d0) nn=nn+1 end do return contains pure real(8) function poly3(xa,ya,x) implicit none ! arguments real(8), intent(in) :: xa(3),ya(3),x ! local variables real(8) x0,x1,x2,y0,y1,y2 real(8) c1,c2,t0,t1,t2 ! evaluate the polynomial coefficients x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0 t0=1.d0/(x1*x2*(x2-x1)) t1=x1*y2; t2=x2*y1 c1=x2*t2-x1*t1 c2=t1-t2 t1=x-x0 ! evaluate the polynomial poly3=y0+t0*t1*(c1+c2*t1) end function pure real(8) function poly4i(xa,ya,x) implicit none ! arguments real(8), intent(in) :: xa(4),ya(4),x ! local variables real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) c1,c2,c3,t0,t1,t2,t3,t4,t5,t6 ! evaluate the polynomial coefficients x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0; x3=xa(4)-x0 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0; y3=ya(4)-y0 t4=x1-x2; t5=x1-x3; t6=x2-x3 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 c3=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 c2=t1*(t5-t4)+t2*(t6-t5)+t3*(t4-t6) c1=t1*(x2*t4-x1*t5)+t2*(x3*t5-x2*t6)+t3*(x1*t6-x3*t4) t1=x-x0 ! integrate the polynomial poly4i=t1*(y0+t0*t1*(0.5d0*c1+t1*(0.3333333333333333333d0*c2+0.25d0*c3*t1))) end function end subroutine !EOC elk-10.4.9/src/PaxHeaders/writegclq.f900000644000000000000000000000013214762655564014572 xustar0030 mtime=1741380468.882010624 30 atime=1741380467.259002139 30 ctime=1741380468.882010624 elk-10.4.9/src/writegclq.f900000644002504400250440000000201214762655564017307 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writegclq ! !INTERFACE: subroutine writegclq ! !USES: use modmain ! !DESCRIPTION: ! Outputs the volume-averaged integral of $4\pi/q^2$ in the small ! parallelepiped around each discrete $q$-point to the file {\tt GCLQ.OUT}. ! These represent the regularised Coulomb Green's function in reciprocal ! space for small $q$. See the routine gengclq. ! ! !REVISION HISTORY: ! Created June 2005 (JKD) !EOP !BOC implicit none ! local variables integer iq real(8) t1 open(50,file='GCLQ'//trim(filext),form='FORMATTED',action='WRITE') write(50,'(I6," : nqpt; q-point, vql, gclq, 4π/q² below")') nqpt do iq=1,nqpt t1=vqc(1,iq)**2+vqc(2,iq)**2+vqc(3,iq)**2 if (t1 > 1.d-12) then t1=fourpi/t1 else t1=0.d0 end if write(50,'(I6,5G18.10)') iq,vql(:,iq),gclq(iq),t1 end do close(50) end subroutine !EOC elk-10.4.9/src/PaxHeaders/writegeom.f900000644000000000000000000000013214762655564014573 xustar0030 mtime=1741380468.883010629 30 atime=1741380467.262002155 30 ctime=1741380468.883010629 elk-10.4.9/src/writegeom.f900000644002504400250440000000346114762655564017321 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writegeom ! !INTERFACE: subroutine writegeom(fnum) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! fnum : file number for writing output (in,integer) ! !DESCRIPTION: ! Outputs the lattice vectors and atomic positions to file, in a format ! which may be then used directly in {\tt elk.in}. ! ! !REVISION HISTORY: ! Created January 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,ia,i real(8) v1(3),v2(3) write(fnum,*) write(fnum,'("scale")') write(fnum,'(" 1.0")') write(fnum,*) write(fnum,'("scale1")') write(fnum,'(" 1.0")') write(fnum,*) write(fnum,'("scale2")') write(fnum,'(" 1.0")') write(fnum,*) write(fnum,'("scale3")') write(fnum,'(" 1.0")') write(fnum,*) write(fnum,'("avec")') write(fnum,'(3G18.10)') avec(:,1) write(fnum,'(3G18.10)') avec(:,2) write(fnum,'(3G18.10)') avec(:,3) if (molecule) then write(fnum,*) write(fnum,'("molecule")') write(fnum,'(" ",L1)') molecule end if write(fnum,*) write(fnum,'("atoms")') write(fnum,'(I4,T40," : nspecies")') nspecies do is=1,nspecies write(fnum,'("''",A,"''",T40," : spfname")') trim(spfname(is)) write(fnum,'(I4,T40," : natoms; atpos, bfcmt below")') natoms(is) do ia=1,natoms(is) if (molecule) then ! map lattice coordinates to [-0.5,0.5) and write as Cartesian coordinates v1(:)=atposl(:,ia,is) do i=1,3 if (v1(i) > 0.5d0) v1(i)=v1(i)-1.d0 end do call r3mv(avec,v1,v2) else ! otherwise write lattice coordinates v2(:)=atposl(:,ia,is) end if write(fnum,'(3F14.8," ",3F12.8)') v2(:),bfcmt(:,ia,is) end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/writemom.f900000644000000000000000000000013214762655564014434 xustar0030 mtime=1741380468.884010635 30 atime=1741380467.264002165 30 ctime=1741380468.884010635 elk-10.4.9/src/writemom.f900000644002504400250440000000152614762655564017162 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine writemom(fnum) use modmain implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,ia,ias write(fnum,*) write(fnum,'("Moments :")') write(fnum,'(" interstitial",T30,": ",3G18.10)') momir(1:ndmag) write(fnum,'(" muffin-tins")') do is=1,nspecies write(fnum,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(fnum,'(" atom ",I4,T30,": ",3G18.10)') ia,mommt(1:ndmag,ias) end do end do write(fnum,'(" total in muffin-tins",T30,": ",3G18.10)') mommttot(1:ndmag) write(fnum,'(" total moment",T30,": ",3G18.10)') momtot(1:ndmag) flush(fnum) end subroutine elk-10.4.9/src/PaxHeaders/gendmat.f900000644000000000000000000000013214762655564014210 xustar0030 mtime=1741380468.886010645 30 atime=1741380467.267002181 30 ctime=1741380468.886010645 elk-10.4.9/src/gendmat.f900000644002504400250440000000465414762655564016743 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendmat(tspndg,tlmdg,lmin,lmax,ld,dmat) use modmain use modmpi use modomp implicit none ! arguments logical, intent(in) :: tspndg,tlmdg integer, intent(in) :: lmin,lmax,ld complex(8), intent(out) :: dmat(ld,nspinor,ld,nspinor,natmtot) ! local variables integer ik,ispn integer nst,ist,jst integer ias,n,nthd real(8) wo ! automatic arrays integer idx(nstsv) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:,:),evecsv(:,:) complex(8), allocatable :: dmatk(:,:,:,:,:) ! zero the density matrix dmat(:,:,:,:,:)=0.d0 ! begin parallel loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(idx,apwalm,evecfv,evecsv,dmatk) & !$OMP PRIVATE(ispn,nst,ist,jst,ias,wo) & !$OMP NUM_THREADS(nthd) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) allocate(dmatk(ld,nspinor,ld,nspinor,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! find the matching coefficients do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! index to occupied states nst=0 do ist=1,nstsv if (abs(occsv(ist,ik)) < epsocc) cycle nst=nst+1 idx(nst)=ist end do ! begin loop over atoms and species do ias=1,natmtot call gendmatk(tspndg,tlmdg,lmin,lmax,ias,nst,idx,ngk(:,ik),apwalm,evecfv, & evecsv,ld,dmatk) do ist=1,nst jst=idx(ist) wo=occsv(jst,ik)*wkpt(ik) !$OMP CRITICAL(gendmat_) dmat(:,:,:,:,ias)=dmat(:,:,:,:,ias)+wo*dmatk(:,:,:,:,ist) !$OMP END CRITICAL(gendmat_) end do end do end do !$OMP END DO deallocate(apwalm,evecfv,evecsv,dmatk) !$OMP END PARALLEL call freethd(nthd) ! add density matrices from each process and redistribute if (np_mpi > 1) then n=((ld*nspinor)**2)*natmtot call mpi_allreduce(mpi_in_place,dmat,n,mpi_double_complex,mpi_sum,mpicom, & ierror) end if ! symmetrise the density matrix call symdmat(lmax,ld,dmat) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/curlrvf.f900000644000000000000000000000013014762655564014252 xustar0029 mtime=1741380468.88701065 30 atime=1741380467.270002197 29 ctime=1741380468.88701065 elk-10.4.9/src/curlrvf.f900000644002504400250440000000264514762655564017005 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine curlrvf(rvfmt,rvfir,curlmt,curlir) use modmain use modomp implicit none ! arguments real(8), intent(in) :: rvfmt(npmtmax,natmtot,3),rvfir(ngtot,3) real(8), intent(out) :: curlmt(npmtmax,natmtot,3),curlir(ngtot,3) ! local variables integer is,ias,np,i,nthd ! allocatable arrays real(8), allocatable :: grfmt(:,:,:,:),grfir(:,:,:) allocate(grfmt(npmtmax,natmtot,3,3),grfir(ngtot,3,3)) ! compute the gradients call holdthd(3,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(i,ias,is,np) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do i=1,3 call gradrf(rvfmt(:,:,i),rvfir(:,i),grfmt(:,:,:,i),grfir(:,:,i)) end do !$OMP END DO ! determine the muffin-tin and interstitial curl !$OMP SECTIONS !$OMP SECTION do ias=1,natmtot is=idxis(ias) np=npmt(is) curlmt(1:np,ias,1)=grfmt(1:np,ias,2,3)-grfmt(1:np,ias,3,2) curlmt(1:np,ias,2)=grfmt(1:np,ias,3,1)-grfmt(1:np,ias,1,3) curlmt(1:np,ias,3)=grfmt(1:np,ias,1,2)-grfmt(1:np,ias,2,1) end do !$OMP SECTION curlir(1:ngtot,1)=grfir(1:ngtot,2,3)-grfir(1:ngtot,3,2) curlir(1:ngtot,2)=grfir(1:ngtot,3,1)-grfir(1:ngtot,1,3) curlir(1:ngtot,3)=grfir(1:ngtot,1,2)-grfir(1:ngtot,2,1) !$OMP END SECTIONS !$OMP END PARALLEL call freethd(nthd) deallocate(grfmt,grfir) end subroutine elk-10.4.9/src/PaxHeaders/genzvclmt.f900000644000000000000000000000013214762655564014602 xustar0030 mtime=1741380468.888010655 30 atime=1741380467.272002207 30 ctime=1741380468.888010655 elk-10.4.9/src/genzvclmt.f900000644002504400250440000000171614762655564017331 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genzvclmt(nrmt_,nrmti_,ld1,rl,wpr,ld2,zrhomt,zvclmt) use modmain use modomp implicit none ! arguments integer, intent(in) :: nrmt_(nspecies),nrmti_(nspecies) integer, intent(in) :: ld1 real(8), intent(in) :: rl(ld1,-lmaxo-1:lmaxo+2,nspecies) real(8), intent(in) :: wpr(4,ld1,nspecies) integer, intent(in) :: ld2 complex(8), intent(in) :: zrhomt(ld2,natmtot) complex(8), intent(out) :: zvclmt(ld2,natmtot) ! local variables integer is,ias,nthd call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call zpotclmt(nrmt_(is),nrmti_(is),ld1,rl(:,:,is),wpr(:,:,is),zrhomt(:,ias), & zvclmt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/genjtot.f900000644000000000000000000000013214762655564014243 xustar0030 mtime=1741380468.889010661 30 atime=1741380467.275002223 30 ctime=1741380468.889010661 elk-10.4.9/src/genjtot.f900000644002504400250440000000074214762655564016770 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genjtot use modmain implicit none ! local variables integer i ! external functions real(8), external :: rfint if (.not.tjr) return ! compute the total current in the unit cell do i=1,3 jtot(i)=rfint(jrmt(:,:,i),jrir(:,i)) end do ! total current magnitude jtotm=norm2(jtot(1:3)) end subroutine elk-10.4.9/src/PaxHeaders/symvec.f900000644000000000000000000000013214762655564014077 xustar0030 mtime=1741380468.891010671 30 atime=1741380467.278002239 30 ctime=1741380468.891010671 elk-10.4.9/src/symvec.f900000644002504400250440000000105614762655564016623 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine symvec(vc) use modmain implicit none ! arguments real(8), intent(inout) :: vc(3) ! local variables integer isym,lspl real(8) vs(3),v(3),t1 ! make symmetric average vs(1:3)=0.d0 do isym=1,nsymcrys lspl=lsplsymc(isym) call r3mv(symlatc(:,:,lspl),vc,v) vs(1:3)=vs(1:3)+v(1:3) end do ! normalise t1=1.d0/dble(nsymcrys) vc(1:3)=t1*vs(1:3) end subroutine elk-10.4.9/src/PaxHeaders/checkwrite.f900000644000000000000000000000013214762655564014721 xustar0030 mtime=1741380468.892010676 30 atime=1741380467.280002249 30 ctime=1741380468.892010676 elk-10.4.9/src/checkwrite.f900000644002504400250440000000074514762655564017451 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine checkwrite(twrite) use modmain use moddelf implicit none ! arguments logical, intent(out) :: twrite ! check for WRITE file inquire(file='WRITE',exist=twrite) if (twrite) then write(*,'("Info(checkwrite): WRITE file exists")') ! delete the WRITE file call delfile('WRITE') end if end subroutine elk-10.4.9/src/PaxHeaders/genjprk.f900000644000000000000000000000013214762655564014231 xustar0030 mtime=1741380468.893010681 30 atime=1741380467.283002265 30 ctime=1741380468.893010681 elk-10.4.9/src/genjprk.f900000644002504400250440000000720714762655564016761 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genjprk(ik,lock) use modmain use modomp implicit none ! arguments integer, intent(in) :: ik integer(omp_lock_kind), intent(inout) :: lock(natmtot) ! local variables integer ispn,jspn,nst,ist,jst integer is,ia,ias,nrc,nrci,npc integer igk,ifg,i real(8) wo ! automatic arrays integer idx(nstsv) real(8) rfmt(npcmtmax) complex(8) gwfmt(npcmtmax,3),zfmt1(npcmtmax),zfmt2(npcmtmax) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:) complex(8), allocatable :: zfft1(:),zfft2(:) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) ! find the matching coefficients do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! count and index the occupied states nst=0 do ist=1,nstsv if (abs(occsv(ist,ik)) < epsocc) cycle nst=nst+1 idx(nst)=ist end do ! calculate the second-variational wavefunctions for occupied states allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfgk(ngkmax,nspinor,nst)) call genwfsv(.true.,.true.,nst,idx,ngdgc,igfc,ngk(:,ik),igkig(:,:,ik),apwalm, & evecfv,evecsv,wfmt,ngkmax,wfgk) deallocate(apwalm,evecfv,evecsv) !-------------------------------------------------! ! muffin-tin paramagnetic current density ! !-------------------------------------------------! do ist=1,nst jst=idx(ist) wo=wkpt(ik)*occsv(jst,ik) do ispn=1,nspinor do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) ! compute the gradient of the wavefunction call gradzfmt(nrc,nrci,rlcmt(:,-1,is),wcrcmt(:,:,is), & wfmt(:,ias,ispn,ist),npcmtmax,gwfmt) ! convert wavefunction to spherical coordinates and conjugate call zbsht(nrc,nrci,wfmt(:,ias,ispn,ist),zfmt1) zfmt1(1:npc)=conjg(zfmt1(1:npc)) do i=1,3 ! convert wavefunction gradient to spherical coordinates call zbsht(nrc,nrci,gwfmt(:,i),zfmt2) ! compute the partial current density rfmt(1:npc)=aimag(zfmt1(1:npc)*zfmt2(1:npc)) call omp_set_lock(lock(ias)) jrmt(1:npc,ias,i)=jrmt(1:npc,ias,i)+wo*rfmt(1:npc) call omp_unset_lock(lock(ias)) end do end do end do end do end do deallocate(wfmt) !---------------------------------------------------! ! interstitial paramagnetic current density ! !---------------------------------------------------! allocate(zfft1(ngtc),zfft2(ngtc)) do ist=1,nst jst=idx(ist) wo=wkpt(ik)*occsv(jst,ik)/omega do ispn=1,nspinor jspn=jspnfv(ispn) ! Fourier transform to real-space and conjugate zfft1(1:ngtc)=0.d0 do igk=1,ngk(jspn,ik) ifg=igfc(igkig(igk,jspn,ik)) zfft1(ifg)=wfgk(igk,ispn,ist) end do call zfftifc(3,ngdgc,1,zfft1) zfft1(1:ngtc)=conjg(zfft1(1:ngtc)) do i=1,3 ! compute the gradient of the wavefunction zfft2(1:ngtc)=0.d0 do igk=1,ngk(jspn,ik) ifg=igfc(igkig(igk,jspn,ik)) zfft2(ifg)=vgkc(i,igk,jspn,ik)*zi*wfgk(igk,ispn,ist) end do call zfftifc(3,ngdgc,1,zfft2) !$OMP CRITICAL(currentk_) jrir(1:ngtc,i)=jrir(1:ngtc,i)+wo*aimag(zfft1(1:ngtc)*zfft2(1:ngtc)) !$OMP END CRITICAL(currentk_) end do end do end do deallocate(wfgk,zfft1,zfft2) end subroutine elk-10.4.9/src/PaxHeaders/proj2d.f900000644000000000000000000000013114762655564013770 xustar0030 mtime=1741380468.894010687 29 atime=1741380467.28600228 30 ctime=1741380468.894010687 elk-10.4.9/src/proj2d.f900000644002504400250440000000254214762655564016516 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine proj2d(np,fp) use modmain implicit none ! arguments integer, intent(in) :: np real(8), intent(inout) :: fp(np,3) ! local variables integer i real(8) vl1(3),vl2(3),t1,t2,t3 real(8) vc1(3),vc2(3),vc3(3),vc4(3) ! determine the 2D plotting plane vectors in Cartesian coordinates vl1(:)=vclp2d(:,1)-vclp2d(:,0) vl2(:)=vclp2d(:,2)-vclp2d(:,0) call r3mv(avec,vl1,vc1) call r3mv(avec,vl2,vc2) ! the z axis is orthogonal to the plotting plane vectors call r3cross(vc1,vc2,vc3) t1=sqrt(vc1(1)**2+vc1(2)**2+vc1(3)**2) t2=sqrt(vc2(1)**2+vc2(2)**2+vc2(3)**2) t3=sqrt(vc3(1)**2+vc3(2)**2+vc3(3)**2) if ((t1 < epslat).or.(t2 < epslat).or.(t3 < epslat)) then write(*,*) write(*,'("Error(proj2d): degenerate 2D plotting directions")') write(*,*) stop end if ! normalise the x and z axes vc1(:)=vc1(:)/t1 vc3(:)=vc3(:)/t3 ! create new y axis orthogonal to x and z axes call r3cross(vc3,vc1,vc2) t1=sqrt(vc2(1)**2+vc2(2)**2+vc2(3)**2) vc2(:)=vc2(:)/t1 ! project the vector function onto the orthogonalised plotting plane axes do i=1,np vc4(:)=fp(i,:) fp(i,1)=dot_product(vc4(:),vc1(:)) fp(i,2)=dot_product(vc4(:),vc2(:)) fp(i,3)=dot_product(vc4(:),vc3(:)) end do end subroutine elk-10.4.9/src/PaxHeaders/genidxbse.f900000644000000000000000000000013214762655564014541 xustar0030 mtime=1741380468.896010697 30 atime=1741380467.288002291 30 ctime=1741380468.896010697 elk-10.4.9/src/genidxbse.f900000644002504400250440000000755414762655564017276 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genidxbse use modmain implicit none integer ik,jk,a,ntop integer ist,jst,i,j,k ! automatic arrays integer idx(nstsv) ! check if the BSE extra valence or conduction states are in range do i=1,nvxbse ist=istxbse(i) if ((ist < 1).or.(ist > nstsv)) then write(*,*) write(*,'("Error(genidxbse): extra valence state out of range : ",I8)') ist write(*,*) stop end if end do do j=1,ncxbse jst=jstxbse(j) if ((jst < 1).or.(jst > nstsv)) then write(*,*) write(*,'("Error(genidxbse): extra conduction state out of range : ",I8)') & jst write(*,*) stop end if end do ! number of valence states for transitions nvbse=nvbse0+nvxbse ! number of conduction states for transitions ncbse=ncbse0+ncxbse if ((nvbse < 1).or.(ncbse < 1)) then write(*,*) write(*,'("Error(genidxbse): invalid number of valence or conduction & &transition states : ",2I8)') nvbse,ncbse write(*,*) stop end if ! total number of transitions nvcbse=nvbse*ncbse ! block size in BSE matrix nbbse=nvcbse*nkptnr ! BSE matrix size if (bsefull) then nmbse=2*nbbse else nmbse=nbbse end if ! allocate global BSE index arrays if (allocated(istbse)) deallocate(istbse) allocate(istbse(nvbse,nkptnr)) if (allocated(jstbse)) deallocate(jstbse) allocate(jstbse(ncbse,nkptnr)) if (allocated(ijkbse)) deallocate(ijkbse) allocate(ijkbse(nvbse,ncbse,nkptnr)) a=0 ! loop over non-reduced k-points do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! index for sorting the eigenvalues into ascending order call sortidx(nstsv,evalsv(:,jk),idx) ! find the topmost occupied band ntop=nstsv do ist=nstsv,1,-1 if (evalsv(idx(ist),jk) < efermi) then ntop=ist exit end if end do if ((ntop-nvbse0+1) < 1) then write(*,*) write(*,'("Error(genidxbse): not enough valence states, reduce nvbse")') write(*,*) stop end if if ((ntop+ncbse0) > nstsv) then write(*,*) write(*,'("Error(genidxbse): not enough conduction states")') write(*,'(" reduce ncbse or increase nempty")') write(*,*) stop end if ! index from BSE valence states to second-variational state numbers do i=1,nvbse0 istbse(i,ik)=idx(ntop-nvbse0+i) end do ! index from BSE conduction states to second-variational state numbers do j=1,ncbse0 jstbse(j,ik)=idx(ntop+j) end do ! add extra states to the list do i=1,nvxbse ist=istxbse(i) if (evalsv(ist,jk) > efermi) then write(*,*) write(*,'("Error(genidxbse): extra valence state above Fermi energy : ",& &I6)') ist write(*,'(" for k-point ",I8)') jk write(*,*) stop end if do k=1,nvbse0+i-1 if (ist == istbse(k,ik)) then write(*,*) write(*,'("Error(genidxbse): redundant extra valence state : ",I6)') ist write(*,'(" for k-point ",I8)') jk write(*,*) stop end if end do istbse(nvbse0+i,ik)=ist end do do j=1,ncxbse jst=jstxbse(j) if (evalsv(jst,jk) < efermi) then write(*,*) write(*,'("Error(genidxbse): extra conduction state below Fermi & &energy : ",I6)') jst write(*,'(" for k-point ",I8)') jk write(*,*) stop end if do k=1,ncbse0+j-1 if (jst == jstbse(k,ik)) then write(*,*) write(*,'("Error(genidxbse): redundant extra conduction state : ",& &I6)') jst write(*,'(" for k-point ",I8)') jk write(*,*) stop end if end do jstbse(ncbse0+j,ik)=jst end do ! index from BSE valence-conduction pair and k-point to location in BSE matrix do i=1,nvbse do j=1,ncbse a=a+1 ijkbse(i,j,ik)=a end do end do ! end loop over non-reduced k-points end do end subroutine elk-10.4.9/src/PaxHeaders/symrvfir.f900000644000000000000000000000013214762655564014452 xustar0030 mtime=1741380468.897010702 30 atime=1741380467.291002306 30 ctime=1741380468.897010702 elk-10.4.9/src/symrvfir.f900000644002504400250440000001075014762655564017177 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: symrvfir ! !INTERFACE: subroutine symrvfir(tspin,tnc,ngridg_,ngtot_,ngvec_,nfgrz_,igfft_,igrzf_,ld, & rvfir) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! tspin : .true. if spin rotations should be used (in,logical) ! tnc : .true. if the vector field is non-collinear, otherwise it is ! collinear along the z-axis (in,logical) ! ngridg_ : G-vector grid sizes (in,integer(3)) ! ngtot_ : total number of G-vectors (in,integer) ! ngvec_ : number of G-vectors within cut-off (in,integer) ! nfgrz_ : number of FFT elements for real-complex transforms (in,integer) ! igfft_ : map from G-vector index to FFT array (in,integer(ngvec_)) ! igrzf_ : map from real-complex FFT index to G-point index ! (in,integer(nfgrz_)) ! ld : leading dimension (in,integer) ! rvfir : real interstitial vector function (inout,real(ld,*)) ! !DESCRIPTION: ! Symmetrises a real interstitial vector function. See routines {\tt symrvf} ! and {\tt symrfir} for details. ! ! !REVISION HISTORY: ! Created July 2007 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tspin,tnc integer, intent(in) :: ngridg_(3),ngtot_,ngvec_,nfgrz_ integer, intent(in) :: igfft_(ngvec_),igrzf_(nfgrz_),ld real(8), intent(inout) :: rvfir(ld,*) ! local variables logical tv0 integer isym,lspl,lspn,sym(3,3) integer nd,ig,jg,ifg,jfg integer i1,i2,i3,j1,j2,j3,i real(8) sc(3,3),v1,v2,v3,t1 complex(8) z0,z1,z2,z3 ! allocatable arrays complex(8), allocatable :: zfft1(:,:),zfft2(:,:) ! dimension of the vector field if (tnc) then nd=3 else nd=1 end if allocate(zfft1(ngtot_,nd),zfft2(nfgrz_,nd)) ! Fourier transform vector function to G-space do i=1,nd zfft1(1:ngtot_,i)=rvfir(1:ngtot_,i) call zfftifc(3,ngridg_,-1,zfft1(:,i)) end do zfft2(1:nfgrz_,1:nd)=0.d0 ! loop over crystal symmetries do isym=1,nsymcrys ! zero translation vector flag tv0=tv0symc(isym) ! translation vector in Cartesian coordinates if (.not.tv0) then v1=vtcsymc(1,isym) v2=vtcsymc(2,isym) v3=vtcsymc(3,isym) end if ! index to spatial rotation lattice symmetry lspl=lsplsymc(isym) sym(1:3,1:3)=symlat(1:3,1:3,lspl) if (tspin) then ! global spin proper rotation in Cartesian coordinates lspn=lspnsymc(isym) sc(1:3,1:3)=symlatd(lspn)*symlatc(1:3,1:3,lspn) else ! set spin rotation equal to spatial rotation lspn=lspl sc(1:3,1:3)=symlatc(1:3,1:3,lspl) end if do ifg=1,nfgrz_ ig=igrzf_(ifg) if (ig > ngvec_) cycle ! multiply the transpose of the inverse symmetry matrix with the G-vector if (lspl == 1) then jg=ig else i1=ivg(1,ig); i2=ivg(2,ig); i3=ivg(3,ig) j1=sym(1,1)*i1+sym(2,1)*i2+sym(3,1)*i3 j2=sym(1,2)*i1+sym(2,2)*i2+sym(3,2)*i3 j3=sym(1,3)*i1+sym(2,3)*i2+sym(3,3)*i3 jg=ivgig(j1,j2,j3) end if jfg=igfft_(jg) ! translation, spatial rotation and global spin rotation if (tv0) then ! zero translation vector if (lspn == 1) then ! global spin symmetry is the identity zfft2(ifg,1:nd)=zfft2(ifg,1:nd)+zfft1(jfg,1:nd) else if (tnc) then ! non-collinear case z1=zfft1(jfg,1); z2=zfft1(jfg,2); z3=zfft1(jfg,3) zfft2(ifg,1)=zfft2(ifg,1)+sc(1,1)*z1+sc(1,2)*z2+sc(1,3)*z3 zfft2(ifg,2)=zfft2(ifg,2)+sc(2,1)*z1+sc(2,2)*z2+sc(2,3)*z3 zfft2(ifg,3)=zfft2(ifg,3)+sc(3,1)*z1+sc(3,2)*z2+sc(3,3)*z3 else ! collinear case zfft2(ifg,1)=zfft2(ifg,1)+sc(3,3)*zfft1(jfg,1) end if end if else ! complex phase factor for translation t1=vgc(1,jg)*v1+vgc(2,jg)*v2+vgc(3,jg)*v3 z0=cmplx(cos(t1),-sin(t1),8) if (lspn == 1) then zfft2(ifg,1:nd)=zfft2(ifg,1:nd)+z0*zfft1(jfg,1:nd) else if (tnc) then z1=zfft1(jfg,1); z2=zfft1(jfg,2); z3=zfft1(jfg,3) zfft2(ifg,1)=zfft2(ifg,1)+z0*(sc(1,1)*z1+sc(1,2)*z2+sc(1,3)*z3) zfft2(ifg,2)=zfft2(ifg,2)+z0*(sc(2,1)*z1+sc(2,2)*z2+sc(2,3)*z3) zfft2(ifg,3)=zfft2(ifg,3)+z0*(sc(3,1)*z1+sc(3,2)*z2+sc(3,3)*z3) else zfft2(ifg,1)=zfft2(ifg,1)+sc(3,3)*z0*zfft1(jfg,1) end if end if end if end do end do ! Fourier transform to real-space and normalise t1=1.d0/dble(nsymcrys) do i=1,nd call rzfftifc(3,ngridg_,1,rvfir(:,i),zfft2(:,i)) rvfir(1:ngtot_,i)=t1*rvfir(1:ngtot_,i) end do deallocate(zfft1,zfft2) end subroutine !EOC elk-10.4.9/src/PaxHeaders/genjpr.f900000644000000000000000000000013214762655564014056 xustar0030 mtime=1741380468.898010708 30 atime=1741380467.294002322 30 ctime=1741380468.898010708 elk-10.4.9/src/genjpr.f900000644002504400250440000000445014762655564016603 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genjpr use modmain use modmpi use modomp implicit none ! local variables integer ik,is,ias,n,i integer nrc,nrci,nthd ! automatic arrays integer(omp_lock_kind) lock(natmtot) ! set the current density to zero do i=1,3 do ias=1,natmtot is=idxis(ias) jrmt(1:npcmt(is),ias,i)=0.d0 end do end do jrir(1:ngtc,1:3)=0.d0 ! current density cannot be computed if wavefunctions do not exist if (iscl < 1) return ! initialise the OpenMP locks do ias=1,natmtot call omp_init_lock(lock(ias)) end do call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call genjprk(ik,lock) end do !$OMP END PARALLEL DO call freethd(nthd) ! destroy the OpenMP locks do ias=1,natmtot call omp_destroy_lock(lock(ias)) end do ! convert muffin-tin current density to spherical harmonics call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nrc,nrci,i) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) do i=1,3 call rfshtip(nrc,nrci,jrmt(:,ias,i)) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! symmetrise the current density call symrvf(.false.,.true.,nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,nfgrzc,igfc, & igrzfc,npmtmax,jrmt,ngtot,jrir) ! convert muffin-tin and interstitial current density from coarse to fine grids call holdthd(6,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do i=1,3 call rfmtctof(jrmt(:,:,i)) end do !$OMP END DO NOWAIT !$OMP DO SCHEDULE(DYNAMIC) do i=1,3 call rfirctof(jrir(:,i),jrir(:,i)) end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) ! add current densities from each process and redistribute if (np_mpi > 1) then n=npmtmax*natmtot*3 call mpi_allreduce(mpi_in_place,jrmt,n,mpi_double_precision,mpi_sum,mpicom, & ierror) n=ngtot*3 call mpi_allreduce(mpi_in_place,jrir,n,mpi_double_precision,mpi_sum,mpicom, & ierror) end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/eveqnfvr.f900000644000000000000000000000013214762655564014425 xustar0030 mtime=1741380468.900010718 30 atime=1741380467.297002338 30 ctime=1741380468.900010718 elk-10.4.9/src/eveqnfvr.f900000644002504400250440000002011614762655564017147 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: eveqnfvr ! !INTERFACE: subroutine eveqnfvr(nmatp,ngp,vpc,h_,o_,evalfv,evecfv) ! !USES: use modmain use modomp use, intrinsic :: iso_c_binding ! !INPUT/OUTPUT PARAMETERS: ! nmatp : order of overlap and Hamiltonian matrices (in,integer) ! ngp : number of G+p-vectors (in,integer) ! vpc : p-vector in Cartesian coordinates (in,real(3)) ! h,o : Hamiltonian and overlap matrices in upper triangular form ! (in,complex(*)) ! evalfv : first-variational eigenvalues (out,real(nstfv)) ! evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv)) ! !DESCRIPTION: ! This routine solves the first-variational eigenvalue equation for the ! special case when inversion symmetry is present. In this case the ! Hamiltonian and overlap matrices can be made real by using appropriate ! linear combinations of the local-orbitals for atoms related by inversion ! symmetry. These are derived from the effect of parity and complex ! conjugation on the spherical harmonics: $P Y_{lm}=(-1)^l Y_{lm}$ and ! $(Y_{lm})^*=(-1)^m Y_{l-m}$. ! ! !REVISION HISTORY: ! Created May 2011 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nmatp,ngp real(8), intent(in) :: vpc(3) real(8), target :: h_(*),o_(*) real(8), intent(out) :: evalfv(nstfv) complex(8), intent(out) :: evecfv(nmatmax,nstfv) ! local variables integer is,ia,ja,jas,ilo integer n2,i,j,k,l,m integer i1,i2,j1,j2 integer k1,k2,k3,k4 integer l1,l2,m1,m2 integer info,nthd,nts real(8) v(3),vl,vu real(8) s1,t1,t2,t3,t4 real(8) ts0,ts1 complex(8) z1 ! automatic arrays logical tr(nlotot),tp(nlotot) integer idx(nlotot),s(nlotot) integer iwork(5*nmatp),ifail(nmatp) real(8) w(nmatp) complex(8) zp(nlotot) ! allocatable arrays and pointers real(8), allocatable :: rh(:) real(8), pointer, contiguous :: ro(:),rv(:,:) complex(8), pointer, contiguous :: h(:),o(:) call timesec(ts0) ! reuse already allocated memory n2=nmatp**2 call c_f_pointer(c_loc(h_),h,shape=[n2]) call c_f_pointer(c_loc(o_),o,shape=[n2]) call c_f_pointer(c_loc(h_),ro,shape=[n2]) call c_f_pointer(c_loc(h_(n2+1)),rv,shape=[nmatp,nstfv]) tp(1:nlotot)=.false. i=0 do is=1,nspecies do ia=1,natoms(is) ! symmetry equivalent atom, mapped with inversion ja=ieqatom(ia,is,2) jas=idxas(ja,is) ! residual phase factor v(1:3)=atposc(1:3,ia,is)+atposc(1:3,ja,is) t1=0.5d0*(vpc(1)*v(1)+vpc(2)*v(2)+vpc(3)*v(3)) z1=cmplx(cos(t1),sin(t1),8) do ilo=1,nlorb(is) l=lorbl(ilo,is) do m=-l,l i=i+1 ! index to conjugate local-orbital in symmetry equivalent atom idx(i)=idxlo(l*(l+1)-m+1,ilo,jas) if (ia /= ja) then ! sign of parity and conjugation operators if (mod(l+m,2) == 0) then s(i)=1 else s(i)=-1 end if if (ia < ja) then ! if ia < ja use the real part of the sum of matrix elements tr(i)=.true. else if (ia > ja) then ! if ia > ja use the imaginary part of the difference of matrix elements s(i)=-s(i) tr(i)=.false. end if else ! if ia = ja then use real function when l even and imaginary when l is odd if (mod(m,2) == 0) then s(i)=1 else s(i)=-1 end if ! new function should be real if symmetric or imaginary if antisymmetric if (mod(l,2) == 0) then ! l even if (m >= 0) then tr(i)=.true. else s(i)=-s(i) tr(i)=.false. end if else ! l odd if (m >= 0) then tr(i)=.false. else s(i)=-s(i) tr(i)=.true. end if end if end if ! phase factors if required if (abs(t1) > 1.d-8) then zp(i)=z1 tp(i)=.true. end if end do end do end do end do !---------------------------------! ! real Hamiltonian matrix ! !---------------------------------! allocate(rh(n2)) ! ⟨APW|H|APW⟩ do j=1,ngp k=(j-1)*nmatp+1 rh(k:k+j-1)=dble(h(k:k+j-1)) end do ! ⟨APW|H|lo⟩ do m1=1,nlotot j1=(ngp+m1-1)*nmatp j2=(ngp+idx(m1)-1)*nmatp z1=zp(m1); s1=s(m1) if (tp(m1)) then if (tr(m1)) then rh(j1+1:j1+ngp)=dble(h(j1+1:j1+ngp)*z1)+s1*dble(h(j2+1:j2+ngp)*z1) else rh(j1+1:j1+ngp)=aimag(h(j1+1:j1+ngp)*z1)+s1*aimag(h(j2+1:j2+ngp)*z1) end if else if (tr(m1)) then rh(j1+1:j1+ngp)=dble(h(j1+1:j1+ngp))+s1*dble(h(j2+1:j2+ngp)) else rh(j1+1:j1+ngp)=aimag(h(j1+1:j1+ngp))+s1*aimag(h(j2+1:j2+ngp)) end if end if end do ! ⟨lo|H|lo⟩ do m1=1,nlotot m2=idx(m1) do l1=1,m1 l2=idx(l1) k1=map(l1,m1); k2=map(l1,m2); k3=map(l2,m1); k4=map(l2,m2) if ((tr(l1).and.tr(m1)).or.((.not.tr(l1)).and.(.not.tr(m1)))) then rh(k1)=dble(h(k1))+s(m1)*dble(h(k2))+s(l1)*(dble(h(k3))+s(m1)*dble(h(k4))) else t2=aimag(h(k2)) if (l1 > m2) t2=-t2 t3=aimag(h(k3)) if (l2 > m1) t3=-t3 t4=aimag(h(k4)) if (l2 > m2) t4=-t4 rh(k1)=aimag(h(k1))+s(m1)*t2+s(l1)*(t3+s(m1)*t4) if (.not.tr(l1)) rh(k1)=-rh(k1) end if end do end do !-----------------------------! ! real overlap matrix ! !-----------------------------! ! ⟨APW|O|APW⟩ do j=1,ngp k=(j-1)*nmatp+1 ro(k:k+j-1)=dble(o(k:k+j-1)) end do ! ⟨APW|O|lo⟩ do m1=1,nlotot j1=(ngp+m1-1)*nmatp j2=(ngp+idx(m1)-1)*nmatp z1=zp(m1); s1=s(m1) if (tp(m1)) then if (tr(m1)) then ro(j1+1:j1+ngp)=dble(o(j1+1:j1+ngp)*z1)+s1*dble(o(j2+1:j2+ngp)*z1) else ro(j1+1:j1+ngp)=aimag(o(j1+1:j1+ngp)*z1)+s1*aimag(o(j2+1:j2+ngp)*z1) end if else if (tr(m1)) then ro(j1+1:j1+ngp)=dble(o(j1+1:j1+ngp))+s1*dble(o(j2+1:j2+ngp)) else ro(j1+1:j1+ngp)=aimag(o(j1+1:j1+ngp))+s1*aimag(o(j2+1:j2+ngp)) end if end if end do ! ⟨lo|O|lo⟩ do m1=1,nlotot m2=idx(m1) do l1=1,m1 l2=idx(l1) k1=map(l1,m1); k2=map(l1,m2); k3=map(l2,m1); k4=map(l2,m2) if ((tr(l1).and.tr(m1)).or.((.not.tr(l1)).and.(.not.tr(m1)))) then ro(k1)=dble(o(k1))+s(m1)*dble(o(k2))+s(l1)*(dble(o(k3))+s(m1)*dble(o(k4))) else t2=aimag(o(k2)) if (l1 > m2) t2=-t2 t3=aimag(o(k3)) if (l2 > m1) t3=-t3 t4=aimag(o(k4)) if (l2 > m2) t4=-t4 ro(k1)=aimag(o(k1))+s(m1)*t2+s(l1)*(t3+s(m1)*t4) if (.not.tr(l1)) ro(k1)=-ro(k1) end if end do end do ! solve the generalised eigenvalue problem for real symmetric matrices ! enable MKL parallelism call holdthd(maxthdmkl,nthd) nts=mkl_set_num_threads_local(nthd) ! diagonalise the matrix (use o_ as the work array) call dsygvx(1,'V','I','U',nmatp,rh,nmatp,ro,nmatp,vl,vu,1,nstfv,evaltol,m,w, & rv,nmatp,o_,n2,iwork,ifail,info) nts=mkl_set_num_threads_local(0) call freethd(nthd) if (info /= 0) then write(*,*) write(*,'("Error(eveqnfvr): diagonalisation failed")') write(*,'(" DSYGVX returned INFO = ",I8)') info if (info > nmatp) then i=info-nmatp write(*,'(" The leading minor of the overlap matrix of order ",I8)') i write(*,'(" is not positive definite")') write(*,'(" Order of overlap matrix : ",I8)') nmatp end if write(*,*) stop end if evalfv(1:nstfv)=w(1:nstfv) ! reconstruct the complex eigenvectors do j=1,nstfv evecfv(1:ngp,j)=rv(1:ngp,j) evecfv(ngp+1:nmatp,j)=0.d0 do l1=1,nlotot i1=ngp+l1 i2=ngp+idx(l1) t1=rv(i1,j) if (tr(l1)) then evecfv(i1,j)=evecfv(i1,j)+t1 evecfv(i2,j)=evecfv(i2,j)+s(l1)*t1 else evecfv(i1,j)%im=evecfv(i1,j)%im-t1 evecfv(i2,j)%im=evecfv(i2,j)%im-s(l1)*t1 end if end do do l1=1,nlotot if (tp(l1)) then i1=ngp+l1 evecfv(i1,j)=evecfv(i1,j)*zp(l1) end if end do end do deallocate(rh) call timesec(ts1) !$OMP ATOMIC timefv=timefv+ts1-ts0 contains elemental integer function map(i,j) implicit none ! arguments integer, intent(in) :: i,j ! map from local-orbital indices to position in matrix if (i <= j) then map=ngp+i+(ngp+j-1)*nmatp else map=ngp+j+(ngp+i-1)*nmatp end if end function end subroutine !EOC elk-10.4.9/src/PaxHeaders/gentau.f900000644000000000000000000000013214762655564014054 xustar0030 mtime=1741380468.901010723 30 atime=1741380467.299002348 30 ctime=1741380468.901010723 elk-10.4.9/src/gentau.f900000644002504400250440000000712414762655564016602 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gentau use modmain use modmpi use modomp implicit none ! local variables integer ik,ispn,is,ias integer np,npi,npc,n,nthd ! automatic arrays integer(omp_lock_kind) lock(natmtot) ! allocatable arrays real(8), allocatable :: rfmt(:,:),rfir(:) real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) ! tau cannot be computed if wavefunctions do not exist if (iscl < 1) then taumt(:,:,:)=0.d0 tauir(:,:)=0.d0 return end if ! set the kinetic energy density to zero on the coarse grids do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) taumt(1:npcmt(is),ias,ispn)=0.d0 end do end do tauir(1:ngtc,1:nspinor)=0.d0 ! initialise the OpenMP locks do ias=1,natmtot call omp_init_lock(lock(ias)) end do call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call gentauk(ik,lock) end do !$OMP END PARALLEL DO call freethd(nthd) ! destroy the OpenMP locks do ias=1,natmtot call omp_destroy_lock(lock(ias)) end do ! convert taumt to spherical harmonics do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) call rfshtip(nrcmt(is),nrcmti(is),taumt(:,ias,ispn)) end do end do allocate(rfmt(npcmtmax,natmtot)) ! symmetrise tau if (spinpol) then ! spin-polarised case: convert to scalar-vector form allocate(rvfmt(npcmtmax,natmtot,ndmag)) allocate(rvfir(ngtc,ndmag),rfir(ngtc)) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) rfmt(1:npc,ias)=taumt(1:npc,ias,1)+taumt(1:npc,ias,2) rvfmt(1:npc,ias,1:ndmag-1)=0.d0 rvfmt(1:npc,ias,ndmag)=taumt(1:npc,ias,1)-taumt(1:npc,ias,2) end do rfir(1:ngtc)=tauir(1:ngtc,1)+tauir(1:ngtc,2) rvfir(1:ngtc,1:ndmag-1)=0.d0 rvfir(1:ngtc,ndmag)=tauir(1:ngtc,1)-tauir(1:ngtc,2) call symrf(nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,nfgrzc,igfc,igrzfc,npcmtmax, & rfmt,rfir) call symrvf(.true.,ncmag,nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,nfgrzc,igfc, & igrzfc,npcmtmax,rvfmt,ngtc,rvfir) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) taumt(1:npc,ias,1)=0.5d0*(rfmt(1:npc,ias)+rvfmt(1:npc,ias,ndmag)) taumt(1:npc,ias,2)=0.5d0*(rfmt(1:npc,ias)-rvfmt(1:npc,ias,ndmag)) end do tauir(1:ngtc,1)=0.5d0*(rfir(1:ngtc)+rvfir(1:ngtc,ndmag)) tauir(1:ngtc,2)=0.5d0*(rfir(1:ngtc)-rvfir(1:ngtc,ndmag)) deallocate(rvfmt,rvfir,rfir) else ! spin-unpolarised case call symrf(nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,nfgrzc,igfc,igrzfc,npmtmax, & taumt,tauir) end if ! convert muffin-tin tau from coarse to fine radial mesh do ispn=1,nspinor call rfmtctof(taumt(:,:,ispn)) end do ! convert interstitial tau from coarse to fine grid do ispn=1,nspinor call rfirctof(tauir(:,ispn),tauir(:,ispn)) end do ! add tau from each process and redistribute if (np_mpi > 1) then n=npmtmax*natmtot*nspinor call mpi_allreduce(mpi_in_place,taumt,n,mpi_double_precision,mpi_sum,mpicom, & ierror) n=ngtot*nspinor call mpi_allreduce(mpi_in_place,tauir,n,mpi_double_precision,mpi_sum,mpicom, & ierror) end if ! generate the core kinetic energy density call gentaucr do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) np=npmt(is) npi=npmti(is) ! add the core contribution taumt(1:np,ias,ispn)=taumt(1:np,ias,ispn)+taucr(1:np,ias,ispn) ! improve stability by smoothing tau call rfmtsm(msmgmt,nrmt(is),nrmti(is),taumt(:,ias,ispn)) end do end do deallocate(rfmt) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/genjlgpr.f900000644000000000000000000000013214762655564014401 xustar0030 mtime=1741380468.902010729 30 atime=1741380467.302002364 30 ctime=1741380468.902010729 elk-10.4.9/src/genjlgpr.f900000644002504400250440000000214614762655564017126 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genjlgpr(ngp,gpc,jlgpr) use modmain use modomp implicit none ! arguments integer, intent(in) :: ngp real(8), intent(in) :: gpc(ngp) real(8), intent(out) :: jlgpr(njcmax,nspecies,ngp) ! local variables integer ig,is,n,i,nthd integer nrc,nrci,irc real(8) t1,t2 ! generate spherical Bessel functions on the coarse radial mesh over all species call holdthd(ngp,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(t1,t2,is,nrc) & !$OMP PRIVATE(nrci,n,i,irc) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ig=1,ngp t1=gpc(ig) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) n=lmaxi+1 i=1 do irc=1,nrci t2=t1*rcmt(irc,is) call sbessel(lmaxi,t2,jlgpr(i,is,ig)) i=i+n end do n=lmaxo+1 do irc=nrci+1,nrc t2=t1*rcmt(irc,is) call sbessel(lmaxo,t2,jlgpr(i,is,ig)) i=i+n end do end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/writestrain.f900000644000000000000000000000013114762655564015143 xustar0030 mtime=1741380468.903010734 29 atime=1741380467.30500238 30 ctime=1741380468.903010734 elk-10.4.9/src/writestrain.f900000644002504400250440000000142314762655564017666 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writestrain use modmain implicit none ! local variables integer i,j,k ! initialise universal variables call init0 ! generate the strain tensors call genstrain ! write the strain tensors to file open(50,file='STRAIN.OUT',form='FORMATTED',action='WRITE') do k=1,nstrain write(50,*) write(50,'("Strain tensor : ",I1)') k do j=1,3 write(50,'(3G18.10)') (strain(i,j,k),i=1,3) end do end do close(50) write(*,*) write(*,'("Info(writestrain)")') write(*,'(" Strain tensors written to STRAIN.OUT")') write(*,'(" (the first strain tensor is isotropic expansion)")') end subroutine elk-10.4.9/src/PaxHeaders/writefermi.f900000644000000000000000000000013114762655564014745 xustar0030 mtime=1741380468.905010744 29 atime=1741380467.30700239 30 ctime=1741380468.905010744 elk-10.4.9/src/writefermi.f900000644002504400250440000000106214762655564017467 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writefermi ! !INTERFACE: subroutine writefermi ! !USES: use modmain ! !DESCRIPTION: ! Writes the Fermi energy to the file {\tt EFERMI.OUT}. ! ! !REVISION HISTORY: ! Created March 2005 (JKD) !EOP !BOC implicit none open(50,file='EFERMI'//trim(filext),form='FORMATTED',action='WRITE') write(50,'(G18.10)') efermi close(50) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rfmtctof.f900000644000000000000000000000013014762655564014413 xustar0029 mtime=1741380468.90601075 30 atime=1741380467.310002406 29 ctime=1741380468.90601075 elk-10.4.9/src/rfmtctof.f900000644002504400250440000000425214762655564017142 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rfmtctof ! !INTERFACE: subroutine rfmtctof(rfmt) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! rfmt : real muffin-tin function (in,real(npmtmax,natmtot)) ! !DESCRIPTION: ! Converts a real muffin-tin function from a coarse to a fine radial mesh by ! using cubic spline interpolation. See {\tt rfinterp} and {\tt spline}. ! ! !REVISION HISTORY: ! Created October 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(inout) :: rfmt(npmtmax,natmtot) ! local variables integer is,ias,lm integer nr,nri,nro,iro integer nrc,nrci,nrco,irco integer i0,i1,nthd ! automatic arrays real(8) rfmt1(npcmtmax),fi(nrcmtmax),fo(nrmtmax) if (lradstp == 1) return call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(rfmt1,fi,fo,is) & !$OMP PRIVATE(nr,nri,nro,iro) & !$OMP PRIVATE(nrc,nrci,nrco,irco) & !$OMP PRIVATE(lm,i0,i1) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) nro=nr-nri iro=nri+1 nrc=nrcmt(is) nrci=nrcmti(is) nrco=nrc-nrci irco=nrci+1 ! copy the input function rfmt1(1:npcmt(is))=rfmt(1:npcmt(is),ias) ! interpolate up to lmaxi over entire muffin-tin do lm=1,lmmaxi i1=lmmaxi*(nrci-1)+lm fi(1:nrci)=rfmt1(lm:i1:lmmaxi) i0=i1+lmmaxi i1=lmmaxo*(nrc-irco)+i0 fi(irco:nrc)=rfmt1(i0:i1:lmmaxo) call rfinterp(nrc,rcmt(:,is),wcrcmt(:,:,is),fi,nr,rlmt(:,1,is),fo) i1=lmmaxi*(nri-1)+lm rfmt(lm:i1:lmmaxi,ias)=fo(1:nri) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 rfmt(i0:i1:lmmaxo,ias)=fo(iro:nr) end do ! interpolate up to lmaxo on outer part of muffin-tin do lm=lmmaxi+1,lmmaxo i0=lmmaxi*nrci+lm i1=lmmaxo*(nrc-irco)+i0 fi(irco:nrc)=rfmt1(i0:i1:lmmaxo) call rfinterp(nrco,rcmt(irco,is),wcrcmt(:,irco,is),fi(irco),nro, & rsp(iro,is),fo(iro)) i0=lmmaxi*nri+lm i1=lmmaxo*(nr-iro)+i0 rfmt(i0:i1:lmmaxo,ias)=fo(iro:nr) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine !EOC elk-10.4.9/src/PaxHeaders/findsym.f900000644000000000000000000000013214762655564014242 xustar0030 mtime=1741380468.907010755 30 atime=1741380467.313002422 30 ctime=1741380468.907010755 elk-10.4.9/src/findsym.f900000644002504400250440000001405114762655564016765 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: findsym ! !INTERFACE: subroutine findsym(apl1,apl2,nsym,lspl,lspn,iea) ! !USES: use modmain use moddftu use modtddft ! !INPUT/OUTPUT PARAMETERS: ! apl1 : first set of atomic positions in lattice coordinates ! (in,real(3,maxatoms,maxspecies)) ! apl2 : second set of atomic positions in lattice coordinates ! (in,real(3,maxatoms,maxspecies)) ! nsym : number of symmetries (out,integer) ! lspl : spatial rotation element in lattice point group for each symmetry ! (out,integer(48)) ! lspn : spin rotation element in lattice point group for each symmetry ! (out,integer(48)) ! iea : equivalent atom index for each symmetry ! (out,integer(iea(natmmax,nspecies,48)) ! !DESCRIPTION: ! Finds the symmetries which rotate one set of atomic positions into another. ! Both sets of positions differ only by a translation vector and have the same ! muffin-tin magnetic fields (stored in the global array {\tt bfcmt}). Any ! symmetry element consists of a spatial rotation of the atomic position ! vectors followed by a global magnetic rotation: $\{\alpha_S|\alpha_R\}$. In ! the case of spin-orbit coupling $\alpha_S=\alpha_R$. The symmetries are ! returned as indices of elements in the Bravais lattice point group. An ! index to equivalent atoms is stored in the array {\tt iea}. ! ! !REVISION HISTORY: ! Created April 2007 (JKD) ! Fixed use of proper rotations for spin, February 2008 (L. Nordstrom) !EOP !BOC implicit none ! arguments real(8), intent(in) :: apl1(3,maxatoms,maxspecies) real(8), intent(in) :: apl2(3,maxatoms,maxspecies) integer, intent(out) :: nsym,lspl(48),lspn(48) integer, intent(out) :: iea(natmmax,nspecies,48) ! local variables integer isym,jsym,jsym0,jsym1 integer is,ia,ias,ja,jas,its,n real(8) sl(3,3),scp(3,3) real(8) c(3,3),d(3,3),v(3),t1 ! automatic arrays integer jea(natmmax,nspecies) real(8) apl3(3,natmmax) complex(8) dmat(lmmaxdm,nspinor,lmmaxdm,nspinor) ! external functions real(8), external :: dznrm2 nsym=0 ! loop over lattice symmetries (spatial rotations) do isym=1,nsymlat ! make real copy of lattice rotation symmetry sl(1:3,1:3)=dble(symlat(1:3,1:3,isym)) ! loop over species do is=1,nspecies ! map apl1 coordinates to [0,1) and store in apl3 do ia=1,natoms(is) apl3(1:3,ia)=apl1(1:3,ia,is) call r3frac(epslat,apl3(:,ia)) end do do ja=1,natoms(is) ! apply lattice symmetry to atomic positions v(1:3)=sl(1:3,1)*apl2(1,ja,is) & +sl(1:3,2)*apl2(2,ja,is) & +sl(1:3,3)*apl2(3,ja,is) ! map coordinates to [0,1) call r3frac(epslat,v) ! check if atomic positions are invariant do ia=1,natoms(is) t1=abs(apl3(1,ia)-v(1))+abs(apl3(2,ia)-v(2))+abs(apl3(3,ia)-v(3)) if (t1 < epslat) then ! equivalent atom index jea(ia,is)=ja goto 10 end if end do ! not invariant so try new spatial rotation goto 40 10 continue end do end do ! all atomic positions invariant at this point jsym=1 ! spin polarised case if (spinpol) then ! check invariance of magnetic fields under global spin rotation if (spinorb) then ! with spin-orbit coupling spin rotation equals spatial rotation jsym0=isym jsym1=isym else ! without spin-orbit coupling spin rotation independent of spatial rotation jsym0=1 jsym1=nsymlat end if do jsym=jsym0,jsym1 ! proper part of symmetry matrix scp(1:3,1:3)=dble(symlatd(jsym))*symlatc(1:3,1:3,jsym) ! rotate global field and check invariance using proper part of symmetry matrix v(1:3)=scp(1:3,1)*bfieldc0(1) & +scp(1:3,2)*bfieldc0(2) & +scp(1:3,3)*bfieldc0(3) t1=abs(bfieldc0(1)-v(1))+abs(bfieldc0(2)-v(2))+abs(bfieldc0(3)-v(3)) ! if not invariant try a different global spin rotation if (t1 > epslat) goto 20 ! rotate muffin-tin magnetic fields and check invariance do is=1,nspecies do ia=1,natoms(is) ! equivalent atom ja=jea(ia,is) v(1:3)=scp(1:3,1)*bfcmt0(1,ja,is) & +scp(1:3,2)*bfcmt0(2,ja,is) & +scp(1:3,3)*bfcmt0(3,ja,is) t1=abs(bfcmt0(1,ia,is)-v(1)) & +abs(bfcmt0(2,ia,is)-v(2)) & +abs(bfcmt0(3,ia,is)-v(3)) ! if not invariant try a different global spin rotation if (t1 > epslat) goto 20 end do end do ! all fields invariant goto 30 20 continue ! end loop over global spin rotations end do ! magnetic fields not invariant so try different spatial rotation goto 40 end if 30 continue ! check invariance of density matrices for fixed tensor moment calculations if (ftmtype /= 0) then n=(lmmaxdm*nspinor)**2 do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! equivalent atom ja=jea(ia,is) jas=idxas(ja,is) ! rotate the fixed tensor moment density matrix dmat(:,:,:,:)=0.d0 call rotdmat(symlatc(:,:,isym),symlatc(:,:,jsym),lmaxdm,nspinor, & lmmaxdm,dmftm(:,:,:,:,jas),dmat) ! check invariance dmat(:,:,:,:)=dmat(:,:,:,:)-dmftm(:,:,:,:,ias) t1=dznrm2(n,dmat,1)/dble(n) if (t1 > epsdmat) goto 40 end do end do end if ! check invariance of static spin-dependent vector potential if (tafsp) then call r3mm(symlatc(:,:,isym),afspc,c) call r3mmt(c,scp,d) t1=sum(abs(afspc(1:3,1:3)-d(1:3,1:3))) if (t1 > epslat) goto 40 end if ! check invariance of time- and spin-dependent vector potential if (tafspt) then do its=1,ntimes call r3mm(symlatc(:,:,isym),afspt(:,:,its),c) call r3mmt(c,scp,d) t1=sum(abs(afspt(1:3,1:3,its)-d(1:3,1:3))) if (t1 > epslat) goto 40 end do end if ! everything invariant so add symmetry to set nsym=nsym+1 lspl(nsym)=isym lspn(nsym)=jsym do is=1,nspecies do ia=1,natoms(is) iea(ia,is,nsym)=jea(ia,is) end do end do 40 continue ! end loop over spatial rotations end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/zfsht.f900000644000000000000000000000013214762655564013727 xustar0030 mtime=1741380468.909010765 30 atime=1741380467.316002437 30 ctime=1741380468.909010765 elk-10.4.9/src/zfsht.f900000644002504400250440000000261414762655564016454 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zfsht ! !INTERFACE: subroutine zfsht(nr,nri,zfmt1,zfmt2) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on the inner part of the muffin-tin (in,integer) ! zfmt1 : input complex muffin-tin function in spherical coordinates ! (in,complex(*)) ! zfmt2 : output complex muffin-tin function in spherical harmonics ! (out,complex(*)) ! !DESCRIPTION: ! Performs a forward spherical harmonic transform (SHT) on a complex ! muffin-tin function in spherical coordinates to obtain a function expressed ! in spherical harmonics. See also {\tt genshtmat} and {\tt zbsht}. ! !REVISION HISTORY: ! Created October 2013 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri complex(8), intent(in) :: zfmt1(*) complex(8), intent(out) :: zfmt2(*) ! local variables integer i ! transform the inner part of the muffin-tin call zgemm('N','N',lmmaxi,nri,lmmaxi,zone,zfshti,lmmaxi,zfmt1,lmmaxi,zzero, & zfmt2,lmmaxi) ! transform the outer part of the muffin-tin i=lmmaxi*nri+1 call zgemm('N','N',lmmaxo,nr-nri,lmmaxo,zone,zfshto,lmmaxo,zfmt1(i),lmmaxo, & zzero,zfmt2(i),lmmaxo) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rhonorm.f900000644000000000000000000000013014762655564014253 xustar0029 mtime=1741380468.91001077 30 atime=1741380467.318002448 29 ctime=1741380468.91001077 elk-10.4.9/src/rhonorm.f900000644002504400250440000000345514762655564017006 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rhonorm ! !INTERFACE: subroutine rhonorm ! !USES: use modmain ! !DESCRIPTION: ! Loss of precision of the calculated total charge can result because the ! muffin-tin density is computed on a set of $(\theta,\phi)$ points and then ! transformed to a spherical harmonic representation. This routine adds a ! constant to the density so that the total charge is correct. If the error in ! total charge exceeds a certain tolerance then a warning is issued. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Changed from rescaling to adding, September 2006 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ias integer nr,nri,iro,i0,i1 real(8) t1,t2 if (.not.trhonorm) return ! check error in total charge t1=chgcalc/chgtot-1.d0 if (abs(t1) > epschg) then write(*,*) write(*,'("Warning(rhonorm): total charge density incorrect for s.c. & &loop ",I5)') iscl write(*,'(" Calculated : ",G18.10)') chgcalc write(*,'(" Required : ",G18.10)') chgtot end if ! error in average density t1=(chgtot-chgcalc)/omega ! add the constant difference to the density t2=t1*y00i do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 i1=lmmaxi*(nri-1)+1 rhomt(1:i1:lmmaxi,ias)=rhomt(1:i1:lmmaxi,ias)+t2 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 rhomt(i0:i1:lmmaxo,ias)=rhomt(i0:i1:lmmaxo,ias)+t2 end do rhoir(1:ngtot)=rhoir(1:ngtot)+t1 ! add the difference to the charges t1=t1*(fourpi/3.d0) do is=1,nspecies t2=t1*rmt(is)**3 do ia=1,natoms(is) ias=idxas(ia,is) chgmt(ias)=chgmt(ias)+t2 chgmttot=chgmttot+t2 end do end do chgir=chgtot-chgmttot end subroutine !EOC elk-10.4.9/src/PaxHeaders/genvchi0.f900000644000000000000000000000013214762655564014274 xustar0030 mtime=1741380468.911010776 30 atime=1741380467.321002463 30 ctime=1741380468.911010776 elk-10.4.9/src/genvchi0.f900000644002504400250440000001225014762655564017016 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genvchi0(t3hw,ik,lock,vqpl,gclgq,jlgqr,ylmgq,sfacgq,nm,vchi0) use modmain use modomp implicit none ! local variables logical, intent(in) :: t3hw integer, intent(in) :: ik integer(omp_lock_kind), intent(inout) :: lock(nwrf) real(8), intent(in) :: vqpl(3),gclgq(ngrf) real(8), intent(in) :: jlgqr(njcmax,nspecies,ngrf) complex(8), intent(in) :: ylmgq(lmmaxo,ngrf) complex(8), intent(in) :: sfacgq(ngrf,natmtot) integer, intent(in) :: nm complex(8), intent(inout) :: vchi0(nm,nm,nwrf) ! local variables logical tq0 integer isym,jk,jkq,iw integer nst,nstq,ist,jst,kst,lst integer nm2,ig,jg,i,j,nthd real(8) vkql(3),ei,ej,eij,t1 complex(8) a(3,3),z1 ! automatic arrays integer idx(nstsv),idxq(nstsv) integer ngp(nspnfv),ngpq(nspnfv) ! allocatable arrays integer, allocatable :: igpig(:,:),igpqig(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(4), allocatable :: wfmtq(:,:,:,:),wfirq(:,:,:) complex(4), allocatable :: crhomt(:,:),crhoir(:) complex(8), allocatable :: zrhoig(:),pmat(:,:,:),zw(:),b(:,:) ! check if q = 0 tq0=.false. if (sum(abs(vqpl(:))) < epslat) tq0=.true. ! k+q-vector in lattice coordinates vkql(:)=vkl(:,ik)+vqpl(:) ! equivalent reduced k-points for k and k+q jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) call findkpt(vkql,isym,jkq) ! count and index states at k and k+q in energy window nst=0 do ist=1,nstsv if (abs(evalsv(ist,jk)-efermi) > emaxrf) cycle nst=nst+1 idx(nst)=ist end do nstq=0 do ist=1,nstsv if (abs(evalsv(ist,jkq)-efermi) > emaxrf) cycle nstq=nstq+1 idxq(nstq)=ist end do ! generate the wavefunctions for all states at k and k+q in energy window allocate(igpig(ngkmax,nspnfv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfir(ngtc,nspinor,nst)) call genwfsvp_sp(.false.,.false.,nst,idx,ngdgc,igfc,vkl(:,ik),ngp,igpig,wfmt, & ngtc,wfir) deallocate(igpig) allocate(igpqig(ngkmax,nspnfv)) allocate(wfmtq(npcmtmax,natmtot,nspinor,nstq),wfirq(ngtc,nspinor,nstq)) call genwfsvp_sp(.false.,.false.,nstq,idxq,ngdgc,igfc,vkql,ngpq,igpqig,wfmtq, & ngtc,wfirq) deallocate(igpqig) ! read the momentum matrix elements from file for q = 0 if (tq0) then allocate(pmat(nstsv,nstsv,3)) call getpmat(vkl(:,ik),pmat) ! divide by unit cell volume t1=1.d0/omega pmat(1:nstsv,1:nstsv,1:3)=t1*pmat(1:nstsv,1:nstsv,1:3) end if nm2=nm**2 call holdthd(nst,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(crhomt,crhoir,zrhoig,zw,b) & !$OMP PRIVATE(jst,kst,lst,ei,ej,eij,t1) & !$OMP PRIVATE(iw,ig,jg,z1,i,j,a) & !$OMP NUM_THREADS(nthd) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) allocate(zrhoig(ngrf),zw(nwrf)) if (tq0.and.t3hw) then allocate(b(-1:ngrf,-1:ngrf)) else allocate(b(ngrf,ngrf)) end if !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nst kst=idx(ist) ei=evalsv(kst,jk) do jst=1,nstq lst=idxq(jst) t1=wkptnr*omega*(occsv(kst,jk)-occsv(lst,jkq)) if (abs(t1) < 1.d-8) cycle ej=evalsv(lst,jkq) eij=ei-ej ! frequency-dependent part in response function formula for all frequencies do iw=1,nwrf zw(iw)=t1/(eij+wrf(iw)) end do ! compute the complex density in G+q-space call gencrho(.true.,.true.,ngtc,wfmt(:,:,:,ist),wfir(:,:,ist), & wfmtq(:,:,:,jst),wfirq(:,:,jst),crhomt,crhoir) call zftcf(ngrf,jlgqr,ylmgq,ngrf,sfacgq,crhomt,crhoir,zrhoig) ! Hermitian part of body do jg=1,ngrf do ig=1,jg-1 b(ig,jg)=conjg(b(jg,ig)) end do z1=gclgq(jg)*conjg(zrhoig(jg)) do ig=jg,ngrf b(ig,jg)=gclgq(ig)*zrhoig(ig)*z1 end do end do ! case of q = 0 if (tq0) then if (t3hw) then b(-1:1,-1:1)=0.d0 ! calculate 3 x ngrf wings of matrix t1=-sqrt(fourpi)/eij do i=-1,1 z1=t1*pmat(kst,lst,i+2) b(i,2:ngrf)=z1*conjg(zrhoig(2:ngrf))*gclgq(2:ngrf) do j=2,ngrf b(j,i)=conjg(b(i,j)) end do end do else ! use trace of 3 x 3 head of matrix t1=sum(dble(pmat(kst,lst,1:3))**2+aimag(pmat(kst,lst,1:3))**2)/3.d0 b(1,1)=(fourpi/eij**2)*t1 ! wings of matrix t1=-sqrt(fourpi)/eij z1=(t1/3.d0)*(pmat(kst,lst,1)+pmat(kst,lst,2)+pmat(kst,lst,3)) b(1,2:ngrf)=z1*conjg(zrhoig(2:ngrf))*gclgq(2:ngrf) b(2:ngrf,1)=conjg(b(1,2:ngrf)) end if end if ! add to body and wings of the response function do iw=1,nwrf call omp_set_lock(lock(iw)) call zaxpy(nm2,zw(iw),b,1,vchi0(1,1,iw),1) call omp_unset_lock(lock(iw)) end do ! calculate 3 x 3 head if (tq0.and.t3hw) then t1=-fourpi/eij zw(1:nwrf)=zw(1:nwrf)/wrf(1:nwrf) do j=1,3 do i=1,3 a(i,j)=t1*pmat(kst,lst,i)*conjg(pmat(kst,lst,j)) end do end do ! add to the head of the response function do iw=1,nwrf call omp_set_lock(lock(iw)) vchi0(1:3,1:3,iw)=vchi0(1:3,1:3,iw)+a(1:3,1:3)*zw(iw) call omp_unset_lock(lock(iw)) end do end if ! end loop over jst end do ! end loop over ist end do !$OMP END DO deallocate(crhomt,crhoir,zrhoig,zw,b) !$OMP END PARALLEL call freethd(nthd) deallocate(wfmt,wfir,wfmtq,wfirq) if (tq0) deallocate(pmat) end subroutine elk-10.4.9/src/PaxHeaders/cfmtconj.f900000644000000000000000000000013214762655564014374 xustar0030 mtime=1741380468.912010781 30 atime=1741380467.324002479 30 ctime=1741380468.912010781 elk-10.4.9/src/cfmtconj.f900000644002504400250440000000402114762655564017113 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine cfmtconj(nr,nri,np,cfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri,np complex(4), intent(inout) :: cfmt(np) ! local variables integer i ! automatic arrays complex(4) cfmt1(np) cfmt1(1:np)=cfmt(1:np) call cflmnconj(lmaxi,nri,lmmaxi,cfmt1,cfmt) i=lmmaxi*nri+1 call cflmnconj(lmaxo,nr-nri,lmmaxo,cfmt1(i),cfmt(i)) return contains !BOP ! !ROUTINE: cflmnconj ! !INTERFACE: pure subroutine cflmnconj(lmax,n,ld,cflm1,cflm2) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum angular momentum (in,integer) ! n : number of functions to conjugate (in,integer) ! ld : leading dimension (in,integer) ! cflm1 : coefficients of input complex spherical harmonic expansion ! (in,complex((lmax+1)**2))) ! cflm2 : coefficients of output complex spherical harmonic expansion ! (out,complex((lmax+1)**2))) ! !DESCRIPTION: ! Returns the complex conjugate of a function expanded in spherical harmonics. ! In other words, given the input function coefficients $c_{lm}$, the routine ! returns $c'_{lm}=(-1)^m c^*_{l-m}$ so that ! $$ \sum_{lm}c'_{lm}Y_{lm}(\theta,\phi)=\left(\sum_{lm}c_{lm}Y_{lm} ! (\theta,\phi)\right)^* $$ ! for all $(\theta,\phi)$. ! ! !REVISION HISTORY: ! Created April 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax,n,ld complex(4), intent(in) :: cflm1(ld,n) complex(4), intent(out) :: cflm2(ld,n) ! local variables integer l,m,lm1,lm2 do l=0,lmax lm1=l**2 lm2=(l+1)**2+1 do m=-l,-1 lm1=lm1+1 lm2=lm2-1 if (mod(m,2) == 0) then cflm2(lm1,1:n)=conjg(cflm1(lm2,1:n)) cflm2(lm2,1:n)=conjg(cflm1(lm1,1:n)) else cflm2(lm1,1:n)=-conjg(cflm1(lm2,1:n)) cflm2(lm2,1:n)=-conjg(cflm1(lm1,1:n)) end if end do ! m = 0 case lm1=lm1+1 cflm2(lm1,1:n)=conjg(cflm1(lm1,1:n)) end do end subroutine !EOC end subroutine elk-10.4.9/src/PaxHeaders/stheta_sq.f900000644000000000000000000000013214762655564014564 xustar0030 mtime=1741380468.914010791 30 atime=1741380467.327002495 30 ctime=1741380468.914010791 elk-10.4.9/src/stheta_sq.f900000644002504400250440000000160014762655564017303 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: stheta_sq ! !INTERFACE: elemental real(8) function stheta_sq(x) ! !INPUT/OUTPUT PARAMETERS: ! x : real argument (in,real) ! !DESCRIPTION: ! Returns the Heaviside step function corresponding to the square-wave pulse ! approximation to the Dirac delta function ! $$ \tilde\Theta(x)=\left\{\begin{array}{ll} ! 0 & \quad x \le -1/2 \\ ! x+1/2 & \quad -1/2 < x < 1/2 \\ ! 1 & \quad x\ge 1 \end{array}\right. $$ ! ! !REVISION HISTORY: ! Created July 2008 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: x if (x <= -0.5d0) then stheta_sq=0.d0 return end if if (x < 0.5d0) then stheta_sq=x+0.5d0 else stheta_sq=1.d0 end if end function !EOC elk-10.4.9/src/PaxHeaders/sdelta_lr.f900000644000000000000000000000013114762655564014541 xustar0030 mtime=1741380468.915010796 29 atime=1741380467.33000251 30 ctime=1741380468.915010796 elk-10.4.9/src/sdelta_lr.f900000644002504400250440000000063114762655564017264 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. elemental real(8) function sdelta_lr(x) implicit none ! arguments real(8), intent(in) :: x ! local variables real(8), parameter :: twopi=6.2831853071795864769d0 sdelta_lr=1.d0/(twopi*(x**2+0.25d0)) end function elk-10.4.9/src/PaxHeaders/stheta_lr.f900000644000000000000000000000013214762655564014556 xustar0030 mtime=1741380468.916010802 30 atime=1741380467.332002521 30 ctime=1741380468.916010802 elk-10.4.9/src/stheta_lr.f900000644002504400250440000000062114762655564017277 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. elemental real(8) function stheta_lr(x) implicit none ! arguments real(8), intent(in) :: x ! local variables real(8), parameter :: pi=3.1415926535897932385d0 stheta_lr=0.5d0+atan(2.d0*x)/pi end function elk-10.4.9/src/PaxHeaders/findsymsite.f900000644000000000000000000000013214762655564015127 xustar0030 mtime=1741380468.917010807 30 atime=1741380467.335002537 30 ctime=1741380468.917010807 elk-10.4.9/src/findsymsite.f900000644002504400250440000000164414762655564017656 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine findsymsite use modmain implicit none ! local variables integer is,js,ia,ja,ias real(8) apl(3,maxatoms,maxspecies) ! automatic arrays real(8) iea(natmmax,nspecies,48) ! allocate the site symmetry arrays if (allocated(nsymsite)) deallocate(nsymsite) allocate(nsymsite(natmtot)) if (allocated(lsplsyms)) deallocate(lsplsyms) allocate(lsplsyms(48,natmtot)) if (allocated(lspnsyms)) deallocate(lspnsyms) allocate(lspnsyms(48,natmtot)) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) do js=1,nspecies do ja=1,natoms(js) apl(1:3,ja,js)=atposl(1:3,ja,js)-atposl(1:3,ia,is) end do end do call findsym(apl,apl,nsymsite(ias),lsplsyms(:,ias),lspnsyms(:,ias),iea) end do end do end subroutine elk-10.4.9/src/PaxHeaders/genlmirep.f900000644000000000000000000000013214762655564014553 xustar0030 mtime=1741380468.918010812 30 atime=1741380467.338002552 30 ctime=1741380468.918010812 elk-10.4.9/src/genlmirep.f900000644002504400250440000000415114762655564017276 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genlmirep(lmax,ld,elm,ulm) use modmain implicit none ! arguments integer, intent(in) :: lmax integer, intent(in) :: ld real(8), intent(out) :: elm(ld,natmtot) complex(8), intent(out) :: ulm(ld,ld,natmtot) ! local variables integer isym,lspl,is,ia,ias integer lmmax,i,j,l,lm,n,p integer info,lwork ! allocatable arrays real(8), allocatable :: rwork(:) complex(8), allocatable :: ulat(:,:,:) complex(8), allocatable :: a(:,:),b(:,:) complex(8), allocatable :: h(:,:),work(:) lmmax=(lmax+1)**2 allocate(rwork(3*lmmax)) allocate(ulat(lmmax,lmmax,nsymlat)) allocate(a(lmmax,lmmax),b(lmmax,lmmax)) allocate(h(lmmax,lmmax)) lwork=2*lmmax allocate(work(lwork)) ! construct Yₗₘ rotation matrix for each lattice symmetry a(:,:)=0.d0 do i=1,lmmax a(i,i)=1.d0 end do do isym=1,nsymlat call rotzflm(symlatc(:,:,isym),0,lmax,lmmax,lmmax,lmmax,a,ulat(:,:,isym)) end do ! set up pseudorandom symmetric matrix H h(:,:)=0.d0 p=0 do l=0,lmax n=2*l lm=l**2+1 do i=lm,lm+n do j=i,lm+n p=p+1 h(i,j)=p h(j,i)=p end do end do end do ! loop over species and atoms do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! symmetrise H with site symmetries b(:,:)=0.d0 do isym=1,nsymsite(ias) ! spatial rotation element in lattice point group lspl=lsplsyms(isym,ias) ! apply lattice symmetry as U*H*conjg(U') call zgemm('N','N',lmmax,lmmax,lmmax,zone,ulat(:,:,lspl),lmmax,h,lmmax, & zzero,a,lmmax) call zgemm('N','C',lmmax,lmmax,lmmax,zone,a,lmmax,ulat(:,:,lspl),lmmax, & zone,b,lmmax) end do ! block diagonalise symmetrised H do l=0,lmax n=2*l+1 lm=l**2+1 call zheev('V','U',n,b(lm,lm),lmmax,elm(lm,ias),work,lwork,rwork,info) end do ! the unitary matrix U is the transpose of the eigenvector array do i=1,lmmax do j=1,lmmax ulm(i,j,ias)=b(j,i) end do end do end do end do deallocate(rwork,ulat,a,b,h,work) end subroutine elk-10.4.9/src/PaxHeaders/writespecies.f900000644000000000000000000000013214762655564015277 xustar0030 mtime=1741380468.920010823 30 atime=1741380467.340002563 30 ctime=1741380468.920010823 elk-10.4.9/src/writespecies.f900000644002504400250440000000514614762655564020027 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writespecies(symb,name,zn,mass,rmin,rm,rmax,nrm,nst,n,l,k,occ,eval) use modmain use modmpi implicit none ! arguments character(*), intent(in) :: symb,name real(8), intent(in) :: zn,mass real(8), intent(in) :: rmin,rm,rmax integer, intent(in) :: nrm,nst integer, intent(in) :: n(nst),l(nst),k(nst) real(8), intent(in) :: occ(nst) real(8), intent(in) :: eval(nst) ! local variables integer lmax,nlo integer ist,jst,i logical core(maxstsp),lorb(maxstsp) ! default APW band energy real(8), parameter :: e0=0.15d0 ! find which states belong to core core(1:nst)=(eval(1:nst) < ecvcut) ! check that the state for same n and l but different k is also core do ist=1,nst if (core(ist)) then do jst=1,nst if ((n(ist) == n(jst)).and.(l(ist) == l(jst))) core(jst)=.true. end do end if end do lmax=1 do ist=1,nst if (.not.core(ist)) lmax=max(lmax,l(ist)) end do ! determine the local orbitals nlo=lmax+1 lorb(:)=.false. do ist=1,nst if (.not.core(ist)) then if ((l(ist) == 0).or.(l(ist) < k(ist))) then if ((eval(ist) < esccut).or.(l(ist) >= 2)) then lorb(ist)=.true. nlo=nlo+1 end if end if end if end do if (mp_mpi) then open(55,file=trim(symb)//'.in',form='FORMATTED') write(55,'(" ''",A,"''",T45,": spsymb")') trim(symb) write(55,'(" ''",A,"''",T45,": spname")') trim(name) write(55,'(G14.6,T45,": spzn")') zn write(55,'(G18.10,T45,": spmass")') mass write(55,'(G14.6,2F10.4,I6,T45,": rminsp, rmt, rmaxsp, nrmt")') rmin,rm, & rmax,nrm write(55,'(I4,T45,": nstsp")') nst write(55,'(3I4,G14.6,L1,T45,": nsp, lsp, ksp, occsp, spcore")') n(1),l(1), & k(1),occ(1),core(1) do ist=2,nst write(55,'(3I4,G14.6,L1)') n(ist),l(ist),k(ist),occ(ist),core(ist) end do write(55,'(I4,T45,": apword")') 1 write(55,'(F10.4,I4," ",L1,T45,": apwe0, apwdm, apwve")') e0,0,.false. write(55,'(I4,T45,": nlx")') 0 write(55,'(I4,T45,": nlorb")') nlo do i=0,lmax write(55,'(2I4,T45,": lorbl, lorbord")') i,2 write(55,'(F10.4,I4," ",L1,T45,": lorbe0, lorbdm, lorbve")') e0,0,.false. write(55,'(F10.4,I4," ",L1)') e0,1,.false. end do do ist=1,nst if (lorb(ist)) then write(55,'(2I4,T45,": lorbl, lorbord")') l(ist),2 write(55,'(F10.4,I4," ",L1,T45,": lorbe0, lorbdm, lorbve")') e0,0,.false. write(55,'(F10.4,I4," ",L1)') eval(ist),0,.true. end if end do close(55) end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/rhomagk.f900000644000000000000000000000013214762655564014221 xustar0030 mtime=1741380468.921010828 30 atime=1741380467.343002578 30 ctime=1741380468.921010828 elk-10.4.9/src/rhomagk.f900000644002504400250440000001475614762655564016760 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2010 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rhomagk ! !INTERFACE: subroutine rhomagk(ngp,igpig,lock,wppt,occsvp,apwalm,evecfv,evecsv) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer(nspnfv)) ! igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax,nspnfv)) ! lock : OpenMP lock for each atom (in,integer(natmtot)) ! wppt : weight of input p-point (in,real) ! occsvp : occupation number for each state (in,real(nstsv)) ! apwalm : APW matching coefficients ! (in,complex(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) ! evecfv : first-variational eigenvectors (in,complex(nmatmax,nstfv,nspnfv)) ! evecsv : second-variational eigenvectors (in,complex(nstsv,nstsv)) ! !DESCRIPTION: ! Generates the partial valence charge density and magnetisation from the ! eigenvectors at a particular $k$-point. In the muffin-tin region, the ! wavefunction is obtained in terms of its $(l,m)$-components from both the ! APW and local-orbital functions. Using a backward spherical harmonic ! transform (SHT), the wavefunction is converted to real-space and the density ! obtained from its modulus squared. A similar process is used for the ! interstitial density in which the wavefunction in real-space is obtained ! from a Fourier transform of the APW functions. See routines {\tt wfmtsv}, ! {\tt genshtmat} and {\tt eveqn}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Removed conversion to spherical harmonics, January 2009 (JKD) ! Partially de-phased the muffin-tin magnetisation for spin-spirals, ! February 2009 (FC, FB & LN) ! Optimisations, July 2010 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) integer(omp_lock_kind), intent(inout) :: lock(natmtot) real(8), intent(in) :: wppt,occsvp(nstsv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) ! local variables integer ispn,jspn,nst,ist integer is,ias,npc,i,j,k integer n,igp,nthd real(8) wo,ts0,ts1 complex(8) z1 ! automatic arrays integer idx(nstsv) complex(8) wfir(ngtc,nspinor),wfgp(ngkmax) ! allocatable arrays complex(8), allocatable :: wfmt(:,:,:) call timesec(ts0) ! number of and index to occupied states nst=0 do ist=1,nstsv if (abs(occsvp(ist)) < epsocc) cycle nst=nst+1 idx(nst)=ist end do allocate(wfmt(npcmtmax,nspinor,nst)) call holdthd(nst,nthd) !----------------------------------------------! ! muffin-tin density and magnetisation ! !----------------------------------------------! !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfir,wfgp,ias,is) & !$OMP PRIVATE(npc,i,j,k,wo) & !$OMP PRIVATE(ispn,jspn,n,ist) & !$OMP PRIVATE(z1,igp) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) !$OMP SINGLE call wfmtsv(.false.,lradstp,is,ias,nst,idx,ngp,apwalm,evecfv,evecsv,npcmtmax,& wfmt) !$OMP END SINGLE !$OMP DO SCHEDULE(DYNAMIC) do j=1,nst k=idx(j) wo=occsvp(k)*wppt ! add to density and magnetisation call omp_set_lock(lock(ias)) if (spinpol) then ! spin-polarised if (ncmag) then ! non-collinear call rmk1(npc,wo,wfmt(:,1,j),wfmt(:,2,j),rhomt(:,ias),magmt(:,ias,1), & magmt(:,ias,2),magmt(:,ias,3)) else ! collinear call rmk2(npc,wo,wfmt(:,1,j),wfmt(:,2,j),rhomt(:,ias),magmt(:,ias,1)) end if else ! spin-unpolarised call rmk3(npc,wo,wfmt(:,1,j),rhomt(:,ias)) end if call omp_unset_lock(lock(ias)) end do !$OMP END DO end do !------------------------------------------------! ! interstitial density and magnetisation ! !------------------------------------------------! !$OMP DO SCHEDULE(DYNAMIC) do j=1,nst k=idx(j) wo=occsvp(k)*wppt/omega if (tevecsv) then ! generate spinor wavefunction from second-variational eigenvectors do ispn=1,nspinor jspn=jspnfv(ispn) n=ngp(jspn) wfgp(1:n)=0.d0 do ist=1,nstfv i=(ispn-1)*nstfv+ist z1=evecsv(i,k) if (abs(dble(z1))+abs(aimag(z1)) > 1.d-10) then wfgp(1:n)=wfgp(1:n)+z1*evecfv(1:n,ist,jspn) end if end do wfir(1:ngtc,ispn)=0.d0 do igp=1,n wfir(igfc(igpig(igp,jspn)),ispn)=wfgp(igp) end do ! Fourier transform wavefunction to real-space call zfftifc(3,ngdgc,1,wfir(:,ispn)) end do else ! spin-unpolarised wavefunction wfir(1:ngtc,1)=0.d0 do igp=1,ngp(1) wfir(igfc(igpig(igp,1)),1)=evecfv(igp,k,1) end do call zfftifc(3,ngdgc,1,wfir) end if ! add to density and magnetisation !$OMP CRITICAL(rhomagk_) if (spinpol) then ! spin-polarised if (ncmag) then ! non-collinear call rmk1(ngtc,wo,wfir,wfir(:,2),rhoir,magir,magir(:,2),magir(:,3)) else ! collinear call rmk2(ngtc,wo,wfir,wfir(:,2),rhoir,magir) end if else ! spin-unpolarised call rmk3(ngtc,wo,wfir,rhoir) end if !$OMP END CRITICAL(rhomagk_) end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) deallocate(wfmt) call timesec(ts1) !$OMP ATOMIC timerho=timerho+ts1-ts0 return contains pure subroutine rmk1(n,wo,wf1,wf2,rho,mag1,mag2,mag3) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wo complex(8), intent(in) :: wf1(n),wf2(n) real(8), intent(inout) :: rho(n),mag1(n),mag2(n),mag3(n) ! local variables integer i real(8) wo2,t1,t2 real(8) a1,b1,a2,b2 wo2=2.d0*wo !$OMP SIMD PRIVATE(a1,b1,a2,b2,t1,t2) SIMDLEN(8) do i=1,n a1=dble(wf1(i)); b1=aimag(wf1(i)) a2=dble(wf2(i)); b2=aimag(wf2(i)) t1=a1**2+b1**2; t2=a2**2+b2**2 mag1(i)=mag1(i)+wo2*(a1*a2+b1*b2) mag2(i)=mag2(i)+wo2*(a1*b2-b1*a2) mag3(i)=mag3(i)+wo*(t1-t2) rho(i)=rho(i)+wo*(t1+t2) end do end subroutine pure subroutine rmk2(n,wo,wf1,wf2,rho,mag) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wo complex(8), intent(in) :: wf1(n),wf2(n) real(8), intent(inout) :: rho(n),mag(n) ! local variables integer i real(8) t1,t2 !$OMP SIMD PRIVATE(t1,t2) SIMDLEN(8) do i=1,n t1=dble(wf1(i))**2+aimag(wf1(i))**2 t2=dble(wf2(i))**2+aimag(wf2(i))**2 mag(i)=mag(i)+wo*(t1-t2) rho(i)=rho(i)+wo*(t1+t2) end do end subroutine pure subroutine rmk3(n,wo,wf,rho) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wo complex(8), intent(in) :: wf(n) real(8), intent(inout) :: rho(n) rho(1:n)=rho(1:n)+wo*(dble(wf(1:n))**2+aimag(wf(1:n))**2) end subroutine end subroutine !EOC elk-10.4.9/src/PaxHeaders/symrvfmt.f900000644000000000000000000000013214762655564014460 xustar0030 mtime=1741380468.922010833 30 atime=1741380467.346002594 30 ctime=1741380468.922010833 elk-10.4.9/src/symrvfmt.f900000644002504400250440000000734314762655564017211 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine symrvfmt(tspin,tnc,nrmt_,nrmti_,npmt_,ld,rvfmt) use modmain implicit none ! arguments logical, intent(in) :: tspin,tnc integer, intent(in) :: nrmt_(nspecies),nrmti_(nspecies),npmt_(nspecies),ld real(8), intent(inout) :: rvfmt(ld,natmtot,*) ! local variables integer nd,isym,lspl,lspn integer is,ia,ja,ias,jas integer nr,nri,np,i real(8) sc(3,3),t0,t1 real(8) x1,x2,x3,y1,y2,y3 ! allocatable arrays real(8), allocatable :: rvfmt1(:,:,:),rvfmt2(:,:) ! dimension of the vector field if (tnc) then nd=3 else nd=1 end if allocate(rvfmt1(ld,natmmax,nd),rvfmt2(ld,nd)) t0=1.d0/dble(nsymcrys) do is=1,nspecies nr=nrmt_(is) nri=nrmti_(is) np=npmt_(is) ! make copy of vector field for all atoms of current species do i=1,nd do ia=1,natoms(is) ias=idxas(ia,is) rvfmt1(1:np,ia,i)=rvfmt(1:np,ias,i) end do end do do ia=1,natoms(is) ! only symmetrise first equivalent atom (rotate into others) if (.not.tfeqat(ia,is)) cycle ias=idxas(ia,is) rvfmt(1:np,ias,1:nd)=0.d0 ! begin loop over crystal symmetries do isym=1,nsymcrys ! equivalent atom ja=ieqatom(ia,is,isym) ! parallel transport of vector field lspl=lsplsymc(isym) do i=1,nd call rotrfmt(symlatc(:,:,lspl),nr,nri,rvfmt1(:,ja,i),rvfmt2(:,i)) end do if (tspin) then ! global spin proper rotation matrix in Cartesian coordinates lspn=lspnsymc(isym) sc(1:3,1:3)=symlatd(lspn)*symlatc(1:3,1:3,lspn) else ! set spin rotation equal to spatial rotation lspn=lspl sc(1:3,1:3)=symlatc(1:3,1:3,lspl) end if ! global spin rotation of vector field if (tnc) then ! non-collinear case do i=1,np x1=rvfmt2(i,1); x2=rvfmt2(i,2); x3=rvfmt2(i,3) y1=sc(1,1)*x1+sc(1,2)*x2+sc(1,3)*x3 y2=sc(2,1)*x1+sc(2,2)*x2+sc(2,3)*x3 y3=sc(3,1)*x1+sc(3,2)*x2+sc(3,3)*x3 rvfmt(i,ias,1)=rvfmt(i,ias,1)+y1 rvfmt(i,ias,2)=rvfmt(i,ias,2)+y2 rvfmt(i,ias,3)=rvfmt(i,ias,3)+y3 end do else ! collinear case t1=sc(3,3) rvfmt(1:np,ias,1)=rvfmt(1:np,ias,1)+t1*rvfmt2(1:np,1) end if ! end loop over crystal symmetries end do ! normalise do i=1,nd rvfmt(1:np,ias,i)=t0*rvfmt(1:np,ias,i) end do ! rotate into equivalent atoms do ja=1,natoms(is) if (eqatoms(ia,ja,is).and.(ia /= ja)) then isym=findloc(ieqatom(ia,is,1:nsymcrys),ja,1) jas=idxas(ja,is) ! parallel transport of vector field (using operation inverse) lspl=isymlat(lsplsymc(isym)) do i=1,nd call rotrfmt(symlatc(:,:,lspl),nr,nri,rvfmt(:,ias,i),rvfmt(:,jas,i)) end do if (tspin) then ! inverse of global proper rotation matrix in Cartesian coordinates lspn=isymlat(lspnsymc(isym)) sc(1:3,1:3)=symlatd(lspn)*symlatc(1:3,1:3,lspn) else ! set spin rotation equal to spatial rotation lspn=lspl sc(1:3,1:3)=symlatc(1:3,1:3,lspl) end if ! global spin rotation of vector field if (tnc) then ! non-collinear case do i=1,np x1=rvfmt(i,jas,1); x2=rvfmt(i,jas,2); x3=rvfmt(i,jas,3) y1=sc(1,1)*x1+sc(1,2)*x2+sc(1,3)*x3 y2=sc(2,1)*x1+sc(2,2)*x2+sc(2,3)*x3 y3=sc(3,1)*x1+sc(3,2)*x2+sc(3,3)*x3 rvfmt(i,jas,1)=y1; rvfmt(i,jas,2)=y2; rvfmt(i,jas,3)=y3 end do else ! collinear case t1=sc(3,3) rvfmt(1:np,jas,1)=t1*rvfmt(1:np,jas,1) end if end if end do ! end loop over atoms and species end do end do deallocate(rvfmt1,rvfmt2) end subroutine elk-10.4.9/src/PaxHeaders/wigner3jf.f900000644000000000000000000000013114762655564014466 xustar0030 mtime=1741380468.924010844 29 atime=1741380467.34900261 30 ctime=1741380468.924010844 elk-10.4.9/src/wigner3jf.f900000644002504400250440000000517414762655564017220 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: wigner3jf ! !INTERFACE: real(8) function wigner3jf(j12,j22,j32,m12,m22,m32) ! !INPUT/OUTPUT PARAMETERS: ! j12, j22, j32 : angular momentum quantum numbers times 2 (in,integer) ! m12, m22, m32 : magnetic quantum numbers times 2 (in,integer) ! !DESCRIPTION: ! Returns the Wigner $3j$-symbol for the case where the arguments may be ! fractional, i.e. multiples of $\frac{1}{2}$. The input parameters to this ! function are taken to be twice their actual values, which allows them to ! remain integers. The formula used is identical to that in {\tt wigner3j}. ! ! !REVISION HISTORY: ! Created January 2014 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: j12,j22,j32 integer, intent(in) :: m12,m22,m32 ! local variables integer jm1,jm2,jm3,n1,n2 integer l12,l22,l32,l42 integer k,k1,k2,l1,l2,l3 real(8) sgn,sm,t1 ! external functions real(8), external :: factn,factr ! check input variables if ((j12 < 0).or.(j22 < 0).or.(j32 < 0).or.(abs(m12) > j12).or. & (abs(m22) > j22).or.(abs(m32) > j32)) then write(*,*) write(*,'("Error(wigner3jf): invalid arguments :")') write(*,'("j12 = ",I8," j22 = ",I8," j32 = ",I8)') j12,j22,j32 write(*,'("m12 = ",I8," m22 = ",I8," m32 = ",I8)') m12,m22,m32 write(*,*) stop end if if ((j12 == 0).and.(j22 == 0).and.(j32 == 0)) then wigner3jf=1.d0 return end if if ((j12 > 100).or.(j22 > 100).or.(j32 > 100)) then write(*,*) write(*,'("Error(wigner3jf): angular momenta out of range : ",3I8)') j12, & j22,j32 write(*,*) stop end if jm1=j12+m12 jm2=j22+m22 jm3=j32+m32 if ((mod(jm1,2) /= 0).or.(mod(jm2,2) /= 0).or.(mod(jm3,2) /= 0)) then wigner3jf=0.d0 return end if l12=j22-j12+j32 l22=j12-j22+j32 l32=j12+j22-j32 l42=j12+j22+j32 if ((mod(l12,2) /= 0).or.(mod(l22,2) /= 0).or.(mod(l32,2) /= 0).or. & (mod(l42,2) /= 0)) then wigner3jf=0.d0 return end if l1=l12/2 l2=l22/2 l3=l32/2 if ((m12+m22+m32 /= 0).or.(l1 < 0).or.(l2 < 0).or.(l3 < 0)) then wigner3jf=0.d0 return end if n1=(j12-m12)/2 n2=(j22+m22)/2 k1=max(0,n1-l2,n2-l1) k2=min(l3,n1,n2) k=k1+(j22-j12+m32)/2 if (mod(k,2) /= 0) then sgn=-1.d0 else sgn=1.d0 end if sm=0.d0 do k=k1,k2 t1=sgn*factr(l1,l1-n2+k)*factr(l2,l2-n1+k)*factr(l3,l3-k) sm=sm+t1/(factn(k)*factn(n1-k)*factn(n2-k)) sgn=-sgn end do jm1=jm1/2 jm2=jm2/2 jm3=jm3/2 t1=factr(jm1,l1)*factr(jm2,l2)*factr(jm3,l3) jm1=(j12-m12)/2 jm2=(j22-m22)/2 jm3=(j32-m32)/2 t1=t1*factr(jm3,1+l42/2)*factn(jm1)*factn(jm2) wigner3jf=sm*sqrt(t1) end function !EOC elk-10.4.9/src/PaxHeaders/genhvec.f900000644000000000000000000000013114762655564014207 xustar0030 mtime=1741380468.925010849 29 atime=1741380467.35100262 30 ctime=1741380468.925010849 elk-10.4.9/src/genhvec.f900000644002504400250440000000611714762655564016737 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 Alexey I. Baranov. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genhvec use modmain use modpw implicit none ! local variables logical lsym(48) integer ih,jh,kh,lh,k integer i1,i2,i3,iv(3) integer nsym,isym,sym(3,3,48) real(8) v1(3),v2(3),v3(3) ! allocatable arrays integer, allocatable :: idx(:),ivh0(:,:) real(8), allocatable :: vhc0(:,:),hc0(:) ! find the H-vector grid sizes call gridsize(avec,hmaxvr,npfftg,ngridh,nhtot,inthv) ! allocate global H-vector arrays if (allocated(ivh)) deallocate(ivh) allocate(ivh(3,nhtot)) if (allocated(mulh)) deallocate(mulh) allocate(mulh(nhtot)) if (allocated(vhc)) deallocate(vhc) allocate(vhc(3,nhtot)) if (allocated(hc)) deallocate(hc) allocate(hc(nhtot)) ! allocate local arrays allocate(idx(nhtot),ivh0(3,nhtot)) allocate(vhc0(3,nhtot),hc0(nhtot)) ih=0 do i1=inthv(1,1),inthv(2,1) v1(:)=dble(i1)*bvec(:,1) do i2=inthv(1,2),inthv(2,2) v2(:)=v1(:)+dble(i2)*bvec(:,2) do i3=inthv(1,3),inthv(2,3) v3(:)=v2(:)+dble(i3)*bvec(:,3) ih=ih+1 ! map from H-vector to (i1,i2,i3) index ivh0(1,ih)=i1 ivh0(2,ih)=i2 ivh0(3,ih)=i3 ! H-vector in Cartesian coordinates vhc0(:,ih)=v3(:) ! length of each H-vector hc0(ih)=sqrt(v3(1)**2+v3(2)**2+v3(3)**2) end do end do end do ! sort by vector length call sortidx(nhtot,hc0,idx) ! reorder arrays do ih=1,nhtot jh=idx(ih) ivh(:,ih)=ivh0(:,jh) hc(ih)=hc0(jh) vhc(:,ih)=vhc0(:,jh) end do ! find the number of vectors with H < hmaxvr nhvec=1 do ih=nhtot,1,-1 if (hc(ih) < hmaxvr) then nhvec=ih exit end if end do ! find the subgroup of symmorphic, non-magnetic symmetries lsym(:)=.false. do isym=1,nsymcrys if (tv0symc(isym).and.(lspnsymc(isym) == 1)) lsym(lsplsymc(isym))=.true. end do nsym=0 do isym=1,nsymlat if (lsym(isym)) then nsym=nsym+1 sym(:,:,nsym)=symlat(:,:,isym) end if end do if (reduceh) then ! find the subgroup of symmorphic, non-magnetic symmetries lsym(:)=.false. do isym=1,nsymcrys if (tv0symc(isym).and.(lspnsymc(isym) == 1)) lsym(lsplsymc(isym))=.true. end do nsym=0 do isym=1,nsymlat if (lsym(isym)) then nsym=nsym+1 sym(:,:,nsym)=symlat(:,:,isym) end if end do else ! use only the identity element if no reduction is required nsym=1 end if ! reduce the H-vector set with the symmetries if required if (nsym > 1) then ivh0(:,1:nhvec)=ivh(:,1:nhvec) hc0(1:nhvec)=hc(1:nhvec) vhc0(:,1:nhvec)=vhc(:,1:nhvec) kh=0 lh=nhvec do ih=1,nhvec do isym=1,nsym call i3mtv(sym(:,:,isym),ivh0(:,ih),iv(:)) do jh=1,kh k=abs(ivh(1,jh)-iv(1))+abs(ivh(2,jh)-iv(2))+abs(ivh(3,jh)-iv(3)) if (k == 0) then ivh(:,lh)=ivh0(:,ih) hc(lh)=hc0(ih) vhc(:,lh)=vhc0(:,ih) lh=lh-1 mulh(jh)=mulh(jh)+1 goto 10 end if end do end do kh=kh+1 ivh(:,kh)=ivh0(:,ih) hc(kh)=hc0(ih) vhc(:,kh)=vhc0(:,ih) mulh(kh)=1 10 continue end do nhvec=kh else mulh(:)=1 end if deallocate(idx,ivh0,vhc0,hc0) end subroutine elk-10.4.9/src/PaxHeaders/ylmrot.f900000644000000000000000000000013214762655564014117 xustar0030 mtime=1741380468.926010854 30 atime=1741380467.355002641 30 ctime=1741380468.926010854 elk-10.4.9/src/ylmrot.f900000644002504400250440000000371214762655564016644 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: ylmrot ! !INTERFACE: subroutine ylmrot(p,ang,lmax,ld,d) ! !INPUT/OUTPUT PARAMETERS: ! p : if p=-1 then the rotation matrix is improper (in,integer) ! ang : Euler angles; alpha, beta, gamma (in,real(3)) ! lmax : maximum angular momentum (in,integer) ! ld : leading dimension (in,integer) ! d : complex spherical harmonic rotation matrix (out,complex(ld,*)) ! !DESCRIPTION: ! Returns the rotation matrix in the basis of complex spherical harmonics ! given the three Euler angles, $(\alpha,\beta,\gamma)$, and the parity, $p$, ! of the rotation. The matrix is given by the formula ! $$ D^l_{m_1m_2}(\alpha,\beta,\gamma)=d^l_{m_1m_2}(\beta) ! e^{-i(m_1\alpha+m_2\gamma)}, $$ ! where $d$ is the rotation matrix about the $y$-axis. For improper rotations, ! i.e. those which are a combination of a rotation and inversion, $D$ is ! modified with $D^l_{m_1m_2}\rightarrow(-1)^l D^l_{m_1m_2}$. See the routines ! {\tt roteuler} and {\tt ylmroty}. ! ! !REVISION HISTORY: ! Created December 2008 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: p real(8), intent(in) :: ang(3) integer, intent(in) :: lmax,ld complex(8), intent(out) :: d(ld,*) ! local variables integer l,m1,m2 integer lm1,lm2,n real(8) t1 ! automatic arrays real(8) dy(ld,ld) ! generate the rotation matrix about the y-axis call ylmroty(ang(2),lmax,ld,dy) ! apply inversion if required if (p == -1) then do l=1,lmax,2 lm1=l**2+1 lm2=lm1+2*l dy(lm1:lm2,lm1:lm2)=-dy(lm1:lm2,lm1:lm2) end do end if ! rotation by alpha and gamma do l=0,lmax n=l*(l+1)+1 do m1=-l,l lm1=n+m1 do m2=-l,l lm2=n+m2 t1=-dble(m1)*ang(1)-dble(m2)*ang(3) d(lm1,lm2)=dy(lm1,lm2)*cmplx(cos(t1),sin(t1),8) end do end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/wxcplot.f900000644000000000000000000000013214762655564014271 xustar0030 mtime=1741380468.928010865 30 atime=1741380467.357002652 30 ctime=1741380468.928010865 elk-10.4.9/src/wxcplot.f900000644002504400250440000000253514762655564017020 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wxcplot use modmain implicit none ! initialise universal variables call init0 if (all(xcgrad /= [3,4,5])) then write(*,*) write(*,'("Error(wxcplot): meta-GGA not in use")') write(*,*) stop end if ! read the density and potentials from file call readstate ! write the potential plots to file select case(task) case(341) open(50,file='WXC1D.OUT',form='FORMATTED') open(51,file='WLINES.OUT',form='FORMATTED') call plot1d(50,51,1,wxcmt,wxcir) close(50) close(51) write(*,*) write(*,'("Info(wxcplot):")') write(*,'(" 1D meta-GGA exchange-correlation potential written to & &WXC1D.OUT")') write(*,'(" vertex location lines written to WLINES.OUT")') case(342) open(50,file='WXC2D.OUT',form='FORMATTED') call plot2d(.false.,50,1,wxcmt,wxcir) close(50) write(*,*) write(*,'("Info(wxcplot):")') write(*,'(" 2D meta-GGA exchange-correlation potential written to & &WXC2D.OUT")') case(343) open(50,file='WXC3D.OUT',form='FORMATTED') call plot3d(50,1,wxcmt,wxcir) close(50) write(*,*) write(*,'("Info(wxcplot):")') write(*,'(" 3D meta-GGA exchange-correlation potential written to & &WXC3D.OUT")') end select end subroutine elk-10.4.9/src/PaxHeaders/massnucl.f900000644000000000000000000000013014762655564014414 xustar0029 mtime=1741380468.92901087 30 atime=1741380467.360002667 29 ctime=1741380468.92901087 elk-10.4.9/src/massnucl.f900000644002504400250440000000373514762655564017150 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: massnucl ! !INTERFACE: elemental real(8) function massnucl(z) ! !INPUT/OUTPUT PARAMETERS: ! z : atomic number (in,real) ! !DESCRIPTION: ! Computes an approximate nuclear mass from the atomic number $Z$. The nuclear ! mass number, $A$, is first estimated using ! $$ A=4.467\times 10^{-3}Z^2+2.163 Z-1.168, $$ ! [D. Andrae in {\it Relativistic Electronic Structure Theory - Fundamentals} ! {\bf 11}, 203 (2002)]. Then the nuclear mass can be determined from: ! $$ M=Z m_p+N m_n-\frac{B}{c^2}, $$ ! where $m_p$ is the proton mass, $m_n$ is the neutron mass and $B$ is the ! nuclear binding energy. The binding energy is approximated by the ! Weizs\"{a}cker formula: ! $$ B=a_V A-a_S A^{2/3}-a_C Z^2 A^{-1/3}-a_{\rm sym}(Z-N)^2A^{-1} ! +B_p+B_{\rm shell}. $$ ! See F. Yang and J. H. Hamilton in {\it Modern Atomic and Nuclear Physics}, ! Revised Edition 2010, for details on the quantities in this formula. In this ! implementation, $B_p$ and $B_{\rm shell}$ are set to zero. ! ! !REVISION HISTORY: ! Created February 2014 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: z ! local variables ! coefficients for computing mass number real(8), parameter :: c2=4.467d-3, c1=2.163d0, c0=-1.168d0 ! Weizsacker coefficients in MeV real(8), parameter :: av=15.8d0, as=18.3d0, ac=0.72d0, asym=23.2d0 ! proton and neutron masses in MeV/c^2 (CODATA 2018) real(8), parameter :: mp=938.27208816d0 real(8), parameter :: mn=939.56542052d0 ! atomic mass unit in MeV/c^2 (CODATA 2018) real(8), parameter :: mu=931.49410242d0 real(8) za,n,a,b za=abs(z) ! approximate nuclear mass number if (za <= 1.d0) then a=1.d0 else a=abs(c2*za**2+c1*za+c0) end if n=a-za b=av*a-as*a**(2.d0/3.d0)-ac*(za**2)/a**(1.d0/3.d0)-asym*(za-n)**2/a massnucl=(za*mp+n*mn-b)/mu end function !EOC elk-10.4.9/src/PaxHeaders/gendmatk.f900000644000000000000000000000013014762655564014361 xustar0029 mtime=1741380468.93101088 30 atime=1741380467.362002678 29 ctime=1741380468.93101088 elk-10.4.9/src/gendmatk.f900000644002504400250440000000440214762655564017105 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendmatk(tspndg,tlmdg,lmin,lmax,ias,nst,idx,ngp,apwalm,evecfv, & evecsv,ld,dmat) use modmain implicit none ! arguments logical, intent(in) :: tspndg,tlmdg integer, intent(in) :: lmin,lmax,ias integer, intent(in) :: nst,idx(*),ngp(nspnfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) integer, intent(in) :: ld complex(8), intent(out) :: dmat(ld,nspinor,ld,nspinor,nst) ! local variables integer ispn,jspn,ist,is integer nrc,nrci,irco integer l,lma,lmb,lm1,lm2 integer npci,ni,no,i1,i2 complex(8) zsm ! allocatable arrays complex(8), allocatable :: wfmt(:,:,:) if (lmin < 0) then write(*,*) write(*,'("Error(gendmatk): lmin < 0 : ",I8)') lmin write(*,*) stop end if if (lmax > lmaxo) then write(*,*) write(*,'("Error(gendmatk): lmax > lmaxo : ",2I8)') lmax,lmaxo write(*,*) stop end if is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) irco=nrci+1 npci=npcmti(is) ni=npci-1 no=npcmt(is)-npci-1 ! generate the second-variational wavefunctions allocate(wfmt(npcmtmax,nspinor,nst)) call wfmtsv(.true.,lradstp,is,ias,nst,idx,ngp,apwalm,evecfv,evecsv,npcmtmax, & wfmt) ! zero the density matrix dmat(:,:,:,:,:)=0.d0 ! loop over second-variational states do ist=1,nst do ispn=1,nspinor do jspn=1,nspinor if (tspndg.and.(ispn /= jspn)) cycle do l=lmin,lmax lma=l**2+1; lmb=lma+2*l do lm1=lma,lmb do lm2=lma,lmb if (tlmdg.and.(lm1 /= lm2)) cycle if (l <= lmaxi) then zsm=sum(wfmt(lm1:lm1+ni:lmmaxi,ispn,ist) & *conjg(wfmt(lm2:lm2+ni:lmmaxi,jspn,ist))*wr2cmt(1:nrci,is)) else zsm=0.d0 end if i1=npci+lm1; i2=npci+lm2 zsm=zsm+sum(wfmt(i1:i1+no:lmmaxo,ispn,ist) & *conjg(wfmt(i2:i2+no:lmmaxo,jspn,ist))*wr2cmt(irco:nrc,is)) dmat(lm1,ispn,lm2,jspn,ist)=zsm end do end do end do end do end do ! end loop over second-variational states end do deallocate(wfmt) end subroutine elk-10.4.9/src/PaxHeaders/rfplot.f900000644000000000000000000000013214762655564014077 xustar0030 mtime=1741380468.932010886 30 atime=1741380467.365002693 30 ctime=1741380468.932010886 elk-10.4.9/src/rfplot.f900000644002504400250440000000774214762655564016633 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfplot(np,vpl,rfmt,rfir,fp) use modmain use modomp implicit none ! arguments integer, intent(in) :: np real(8), intent(in) :: vpl(3,np),rfmt(npmtmax,natmtot),rfir(ngtot) real(8), intent(out) :: fp(np) ! local variables integer ias,is,ip,nthd ! allocatable arrays real(8), allocatable :: rfmt1(:,:,:) complex(8), allocatable :: zfft(:) ! unpack the muffin-tin function allocate(rfmt1(lmmaxo,nrmtmax,natmtot)) call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call rfmtpack(.false.,nrmt(is),nrmti(is),rfmt(:,ias),rfmt1(:,:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! Fourier transform rfir to G-space allocate(zfft(ngtot)) zfft(1:ngtot)=rfir(1:ngtot) call zfftifc(3,ngridg,-1,zfft) ! begin loop over all points call holdthd(np,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ip=1,np call rfip(ip) end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(rfmt1,zfft) return contains subroutine rfip(ip) implicit none ! arguments integer, intent(in) :: ip ! local variables integer is,ia,ias,nr,nri integer ir0,ir,lmax,l,m,lm integer ig,ifg,i1,i2,i3,i,j real(8) rmt2,r,sm,ya(4),t1 real(8) v1(3),v2(3),v3(3),v4(3),v5(3) ! automatic arrays real(8) rlm(lmmaxo) v2(1:3)=vpl(1:3,ip) call r3frac(epslat,v2) ! convert point to Cartesian coordinates call r3mv(avec,v2,v1) ! check if point is in a muffin-tin do is=1,nspecies nr=nrmt(is) nri=nrmti(is) rmt2=rmt(is)**2 do ia=1,natoms(is) ias=idxas(ia,is) v2(1:3)=v1(1:3)-atposc(1:3,ia,is) do i1=-1,1 v3(1:3)=v2(1:3)+dble(i1)*avec(1:3,1) do i2=-1,1 v4(1:3)=v3(1:3)+dble(i2)*avec(1:3,2) do i3=-1,1 v5(1:3)=v4(1:3)+dble(i3)*avec(1:3,3) t1=v5(1)**2+v5(2)**2+v5(3)**2 if (t1 < rmt2) then r=sqrt(t1) call genrlmv(lmaxo,v5,rlm) do ir=1,nr if (rsp(ir,is) >= r) then if (ir <= 3) then ir0=1 else if (ir > nr-2) then ir0=nr-3 else ir0=ir-2 end if r=max(r,rsp(1,is)) if (ir0 <= nri) then lmax=lmaxi else lmax=lmaxo end if sm=0.d0 lm=0 do l=0,lmax do m=-l,l lm=lm+1 do j=1,4 i=ir0+j-1 ya(j)=rfmt1(lm,i,ias) end do t1=poly4(rsp(ir0,is),ya,r) sm=sm+t1*rlm(lm) end do end do goto 10 end if end do end if end do end do end do end do end do ! otherwise use direct Fourier transform of interstitial function sm=0.d0 !$OMP SIMD PRIVATE(ifg,t1) REDUCTION(+:sm) do ig=1,ngvec ifg=igfft(ig) t1=vgc(1,ig)*v1(1)+vgc(2,ig)*v1(2)+vgc(3,ig)*v1(3) sm=sm+dble(zfft(ifg)*cmplx(cos(t1),sin(t1),8)) end do 10 continue fp(ip)=sm end subroutine pure real(8) function poly4(xa,ya,x) implicit none ! arguments real(8), intent(in) :: xa(4),ya(4),x ! local variables real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) c1,c2,c3,t0,t1,t2,t3,t4,t5,t6 ! evaluate the polynomial coefficients x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0; x3=xa(4)-x0 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0; y3=ya(4)-y0 t4=x1-x2; t5=x1-x3; t6=x2-x3 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 c3=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 c2=t1*(t5-t4)+t2*(t6-t5)+t3*(t4-t6) c1=t1*(x2*t4-x1*t5)+t2*(x3*t5-x2*t6)+t3*(x1*t6-x3*t4) t1=x-x0 ! evaluate the polynomial poly4=y0+t0*t1*(c1+t1*(c2+c3*t1)) end function end subroutine elk-10.4.9/src/PaxHeaders/strainabg.f900000644000000000000000000000013214762655564014543 xustar0030 mtime=1741380468.933010891 30 atime=1741380467.367002704 30 ctime=1741380468.933010891 elk-10.4.9/src/strainabg.f900000644002504400250440000000241314762655564017265 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine strainabg use modmain use modgw use modvars implicit none integer is,ia,ig real(8) ta(3,3),tb(3,3),vc(3) ! compute the strained lattice vectors if ((istrain >= 1).and.(istrain <= nstrain)) then avec(1:3,1:3)=avec0(1:3,1:3)+deltast*strain(1:3,1:3,istrain) else if (tavref) then avec(1:3,1:3)=avec0(1:3,1:3) else return end if ! generate the strained reciprocal lattice vectors and unit cell volume call reciplat(avec,bvec,omega,omegabz) ! determine the transformation matrix to the strained vectors call r3mm(avec,ainv,ta) call r3mm(bvec,binv,tb) ! recalculate all required variables which depend on avec call r3minv(avec,ainv) call r3minv(bvec,binv) call r3mv(bvec,vqlss,vqcss) do is=1,nspecies do ia=1,natoms(is) call r3mv(avec,atposl(:,ia,is),atposc(:,ia,is)) end do end do call r3mv(bvec,vecql,vecqc) call r3mv(ainv,efieldc,efieldl) call r3mv(ainv,afieldc,afieldl) call symmetry ! apply the transformation matrix to the G-vectors do ig=1,ngtot vc(1:3)=vgc(1:3,ig) call r3mv(tb,vc,vgc(:,ig)) gc(ig)=sqrt(vgc(1,ig)**2+vgc(2,ig)**2+vgc(3,ig)**2) end do end subroutine elk-10.4.9/src/PaxHeaders/eveqnit.f900000644000000000000000000000013214762655564014244 xustar0030 mtime=1741380468.934010896 30 atime=1741380467.370002719 30 ctime=1741380468.934010896 elk-10.4.9/src/eveqnit.f900000644002504400250440000001304214762655564016766 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnit(nmatp,ngp,igpig,vpl,vgpl,vgpc,apwalm,evalfv,evecfv) use modmain use modomp implicit none ! arguments integer, intent(in) :: nmatp,ngp,igpig(ngkmax) real(8), intent(in) :: vpl(3),vgpl(3,ngkmax),vgpc(3,ngkmax) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) real(8), intent(out) :: evalfv(nstfv) complex(8), intent(out) :: evecfv(nmatmax,nstfv) ! local variables integer ns,ist,it,j integer is,ias,nthd integer lwork,info real(8) rmax,t1 real(8) ts1,ts0 ! allocatable arrays real(8), allocatable :: w(:),rwork(:) complex(8), allocatable :: h(:,:),o(:,:),hv(:,:),ov(:,:) complex(8), allocatable :: u(:,:),hu(:,:),ou(:,:) complex(8), allocatable :: hs(:,:),os(:,:),work(:) ! external functions real(8), external :: ddot ns=2*nstfv if (iscl >= 2) then ! read in the eigenvalues/vectors from file call getevalfv(filext,0,vpl,evalfv) call getevecfv(filext,0,vpl,vgpl,evecfv) else ! initialise the eigenvectors to canonical basis vectors evecfv(1:nmatp,1:nstfv)=0.d0 do ist=1,nstfv evecfv(ist,ist)=1.d0 end do end if ! compute Hamiltonian and overlap matrices call timesec(ts0) allocate(h(nmatp,nmatp),o(nmatp,nmatp)) call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP PRIVATE(j,ias,is) & !$OMP NUM_THREADS(nthd) !$OMP SECTION ! Hamiltonian call hmlistl(ngp,igpig,vgpc,nmatp,h) do j=ngp+1,nmatp h(1:j,j)=0.d0 end do do ias=1,natmtot is=idxis(ias) call hmlaa(tefvr,is,ias,ngp,apwalm(:,:,:,ias),nmatp,h) call hmlalo(is,ias,ngp,apwalm(:,:,:,ias),nmatp,h) call hmllolo(is,ias,ngp,nmatp,h) end do !$OMP SECTION ! overlap call olpistl(ngp,igpig,nmatp,o) do j=ngp+1,nmatp o(1:j,j)=0.d0 end do do ias=1,natmtot is=idxis(ias) call olpaa(tefvr,is,ngp,apwalm(:,:,:,ias),nmatp,o) call olpalo(is,ias,ngp,apwalm(:,:,:,ias),nmatp,o) call olplolo(is,ias,ngp,nmatp,o) end do !$OMP END PARALLEL SECTIONS call freethd(nthd) call timesec(ts1) !$OMP ATOMIC timemat=timemat+ts1-ts0 call timesec(ts0) allocate(w(ns),rwork(3*ns)) allocate(hv(nmatp,nstfv),ov(nmatp,nstfv)) allocate(u(nmatp,nstfv),hu(nmatp,nstfv),ou(nmatp,nstfv)) allocate(hs(ns,ns),os(ns,ns)) lwork=2*ns allocate(work(lwork)) call holdthd(nstfv,nthd) ! iteration loop !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(it,ist,t1) & !$OMP NUM_THREADS(nthd) do it=1,maxitefv !$OMP SINGLE rmax=0.d0 !$OMP END SINGLE !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv ! operate with O on the current eigenvector call zhemv('U',nmatp,zone,o,nmatp,evecfv(:,ist),1,zzero,ov(:,ist),1) ! normalise the eigenvector t1=ddot(2*nmatp,evecfv(:,ist),1,ov(:,ist),1) if (t1 > 0.d0) then t1=1.d0/sqrt(t1) call zdscal(nmatp,t1,evecfv(:,ist),1) call zdscal(nmatp,t1,ov(:,ist),1) end if ! operate with H on the current eigenvector call zhemv('U',nmatp,zone,h,nmatp,evecfv(:,ist),1,zzero,hv(:,ist),1) ! estimate the eigenvalue t1=ddot(2*nmatp,evecfv(:,ist),1,hv(:,ist),1) if ((iscl <= 1).and.(it == 1)) then evalfv(ist)=t1 else evalfv(ist)=(1.d0-befvit)*evalfv(ist)+befvit*t1 end if ! compute the residual |u> = (H - eO)|v> call zcopy(nmatp,hv(:,ist),1,u(:,ist),1) t1=-evalfv(ist) u(1:nmatp,ist)=u(1:nmatp,ist)+t1*ov(1:nmatp,ist) ! apply the overlap matrix to the residual call zhemv('U',nmatp,zone,o,nmatp,u(:,ist),1,zzero,ou(:,ist),1) ! compute the overlap of the residual with itself t1=ddot(2*nmatp,u(:,ist),1,ou(:,ist),1) !$OMP ATOMIC rmax=max(rmax,t1) ! normalise the residual if (t1 > 0.d0) then t1=1.d0/sqrt(t1) call zdscal(nmatp,t1,u(:,ist),1) call zdscal(nmatp,t1,ou(:,ist),1) end if ! apply the Hamiltonian matrix to the residual call zhemv('U',nmatp,zone,h,nmatp,u(:,ist),1,zzero,hu(:,ist),1) end do !$OMP END DO ! compute the Hamiltonian and overlap matrices in the subspace formed by the ! eigenvectors and their residuals !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv call zgemv('C',nmatp,nstfv,zone,evecfv,nmatmax,hv(:,ist),1,zzero, & hs(1,ist),1) call zgemv('C',nmatp,nstfv,zone,evecfv,nmatmax,hu(:,ist),1,zzero, & hs(1,nstfv+ist),1) call zgemv('C',nmatp,nstfv,zone,u,nmatp,hu(:,ist),1,zzero, & hs(nstfv+1,nstfv+ist),1) end do !$OMP END DO NOWAIT !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv call zgemv('C',nmatp,nstfv,zone,evecfv,nmatmax,ov(:,ist),1,zzero, & os(1,ist),1) call zgemv('C',nmatp,nstfv,zone,evecfv,nmatmax,ou(:,ist),1,zzero, & os(1,nstfv+ist),1) call zgemv('C',nmatp,nstfv,zone,u,nmatp,ou(:,ist),1,zzero, & os(nstfv+1,nstfv+ist),1) end do !$OMP END DO ! solve the generalised eigenvalue problem in the subspace (one thread only) !$OMP SINGLE call zhegv(1,'V','U',ns,hs,ns,os,ns,w,work,lwork,rwork,info) !$OMP END SINGLE if (info /= 0) exit ! construct the new eigenvectors !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv call zgemv('N',nmatp,nstfv,zone,evecfv,nmatmax,hs(1,ist),1,zzero, & ov(:,ist),1) call zgemv('N',nmatp,nstfv,zone,u,nmatp,hs(nstfv+1,ist),1,zone,ov(:,ist),1) end do !$OMP END DO !$OMP DO SCHEDULE(DYNAMIC) do ist=1,nstfv call zcopy(nmatp,ov(:,ist),1,evecfv(:,ist),1) end do !$OMP END DO ! check for convergence !$OMP SINGLE rmax=sqrt(abs(rmax)/dble(nmatp)) !$OMP END SINGLE if ((it >= minitefv).and.(rmax < epsefvit)) exit ! end iteration loop end do !$OMP END PARALLEL call freethd(nthd) deallocate(w,rwork,h,o,hv,ov) deallocate(u,hu,ou,hs,os,work) call timesec(ts1) !$OMP ATOMIC timefv=timefv+ts1-ts0 end subroutine elk-10.4.9/src/PaxHeaders/oepmain.f900000644000000000000000000000013114762655564014220 xustar0030 mtime=1741380468.936010906 29 atime=1741380467.37200273 30 ctime=1741380468.936010906 elk-10.4.9/src/oepmain.f900000644002504400250440000001324514762655564016750 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine oepmain use modmain use modmpi use modomp implicit none ! local variables integer ik,idm,is,ias integer nrc,nrci,np,npc integer n,nthd,it real(8) resp,t1 ! automatic arrays real(8) rfmt2(npcmtmax) ! allocatable arrays real(8), allocatable :: rfmt1(:,:),rfir(:) real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) complex(8), allocatable :: vclcv(:,:,:,:),vclvv(:,:,:) ! external functions real(8), external :: rfint,rfinpc if (iscl < 1) return ! calculate Coulomb matrix elements allocate(vclcv(ncrmax,natmtot,nstsv,nkpt),vclvv(nstsv,nstsv,nkpt)) call oepvcl(vclcv,vclvv) ! allocate local arrays allocate(rfmt1(npmtmax,natmtot),rfir(ngtot)) if (spinpol) then allocate(rvfmt(npmtmax,natmtot,ndmag),rvfir(ngtot,ndmag)) end if ! zero initial exchange potential and magnetic field vxmt(:,:)=0.d0 vxir(:)=0.d0 if (spinpol) then bxmt(:,:,:)=0.d0 bxir(:,:)=0.d0 end if !------------------------------! ! start iteration loop ! !------------------------------! do it=1,maxitoep if (mp_mpi.and.(mod(it,10) == 0)) then write(*,'("Info(oepmain): done ",I4," iterations of ",I4)') it,maxitoep end if ! zero the residuals dvxmt(:,:)=0.d0 dvxir(:)=0.d0 if (spinpol) then dbxmt(:,:,:)=0.d0 dbxir(:,:)=0.d0 end if ! calculate the k-dependent residuals call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call oepresk(ik,vclcv,vclvv) end do !$OMP END PARALLEL DO call freethd(nthd) ! add residuals from each process and redistribute if (np_mpi > 1) then n=npcmtmax*natmtot call mpi_allreduce(mpi_in_place,dvxmt,n,mpi_double_precision,mpi_sum, & mpicom,ierror) call mpi_allreduce(mpi_in_place,dvxir,ngtot,mpi_double_precision, & mpi_sum,mpicom,ierror) if (spinpol) then n=n*ndmag call mpi_allreduce(mpi_in_place,dbxmt,n,mpi_double_precision,mpi_sum, & mpicom,ierror) n=ngtot*ndmag call mpi_allreduce(mpi_in_place,dbxir,n,mpi_double_precision,mpi_sum, & mpicom,ierror) end if end if ! convert muffin-tin residuals to spherical harmonics call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nrc,nrci,idm) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) call rfsht(nrc,nrci,dvxmt(:,ias),rfmt1(:,ias)) do idm=1,ndmag call rfsht(nrc,nrci,dbxmt(:,ias,idm),rvfmt(:,ias,idm)) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! symmetrise the residuals call symrf(nrcmt,nrcmti,npcmt,ngridg,ngtot,ngvec,nfgrz,igfft,igrzf,npmtmax, & rfmt1,dvxir) if (spinpol) then call symrvf(.true.,ncmag,nrcmt,nrcmti,npcmt,ngridg,ngtot,ngvec,nfgrz,igfft,& igrzf,npmtmax,rvfmt,ngtot,dbxir) end if ! magnitude of residuals resoep=rfinpc(npmtmax,rfmt1,dvxir,rfmt1,dvxir) do idm=1,ndmag t1=rfinpc(npmtmax,rvfmt(:,:,idm),dbxir(:,idm),rvfmt(:,:,idm),dbxir(:,idm)) resoep=resoep+t1 end do resoep=sqrt(resoep)/omega ! update the step size if (it >= 2) then ! check residual against previous value if (resoep < resp) then tauoep=tauoep+tau0oep else tauoep=tau0oep end if end if ! store previous residual resp=resoep ! update exchange potential and magnetic field call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(rfmt2,is,nrc,nrci,npc,idm) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! convert residual to spherical coordinates call rbsht(nrc,nrci,rfmt1(:,ias),rfmt2) ! subtract from exchange potential vxmt(1:npc,ias)=vxmt(1:npc,ias)-tauoep*rfmt2(1:npc) ! repeat for exchange magnetic field do idm=1,ndmag call rbsht(nrc,nrci,rvfmt(:,ias,idm),rfmt2) bxmt(1:npc,ias,idm)=bxmt(1:npc,ias,idm)-tauoep*rfmt2(1:npc) end do end do !$OMP END PARALLEL DO call freethd(nthd) vxir(:)=vxir(:)-tauoep*dvxir(:) do idm=1,ndmag bxir(:,idm)=bxir(:,idm)-tauoep*dbxir(:,idm) end do ! end iteration loop end do ! convert the exchange potential and field to spherical harmonics call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nrc,nrci,idm) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) call rfsht(nrc,nrci,vxmt(:,ias),rfmt1(:,ias)) do idm=1,ndmag call rfsht(nrc,nrci,bxmt(:,ias,idm),rvfmt(:,ias,idm)) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! convert potential and field from a coarse to a fine radial mesh call rfmtctof(rfmt1) do idm=1,ndmag call rfmtctof(rvfmt(:,:,idm)) end do ! add to existing (density derived) correlation potential and field do ias=1,natmtot is=idxis(ias) np=npmt(is) vxcmt(1:np,ias)=vxcmt(1:np,ias)+rfmt1(1:np,ias) do idm=1,ndmag bxcmt(1:np,ias,idm)=bxcmt(1:np,ias,idm)+rvfmt(1:np,ias,idm) end do end do vxcir(:)=vxcir(:)+vxir(:) do idm=1,ndmag bxcir(:,idm)=bxcir(:,idm)+bxir(:,idm) end do ! symmetrise the exchange potential and field call symrf(nrmt,nrmti,npmt,ngridg,ngtot,ngvec,nfgrz,igfft,igrzf,npmtmax,vxcmt, & vxcir) if (spinpol) then call symrvf(.true.,ncmag,nrmt,nrmti,npmt,ngridg,ngtot,ngvec,nfgrz,igfft, & igrzf,npmtmax,bxcmt,ngtot,bxcir) end if deallocate(rfmt1,rfir,vclcv,vclvv) if (spinpol) deallocate(rvfmt,rvfir) ! set the constant part of the exchange potential equal to zero call rfint0(0.d0,vxcmt,vxcir) end subroutine elk-10.4.9/src/PaxHeaders/rdirac.f900000644000000000000000000000013214762655564014035 xustar0030 mtime=1741380468.937010912 30 atime=1741380467.375002746 30 ctime=1741380468.937010912 elk-10.4.9/src/rdirac.f900000644002504400250440000000712514762655564016564 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rdirac ! !INTERFACE: subroutine rdirac(sol,n,l,k,nr,r,vr,eval,g0,f0) ! !INPUT/OUTPUT PARAMETERS: ! sol : speed of light in atomic units (in,real) ! n : principal quantum number (in,integer) ! l : quantum number l (in,integer) ! k : quantum number k (l or l+1) (in,integer) ! nr : number of radial mesh points (in,integer) ! r : radial mesh (in,real(nr)) ! vr : potential on radial mesh (in,real(nr)) ! eval : eigenvalue without rest-mass energy (inout,real) ! g0 : major component of the radial wavefunction (out,real(nr)) ! f0 : minor component of the radial wavefunction (out,real(nr)) ! !DESCRIPTION: ! Finds the solution to the radial Dirac equation for a given potential $v(r)$ ! and quantum numbers $n$, $k$ and $l$. The method involves integrating the ! equation using the predictor-corrector method and adjusting $E$ until the ! number of nodes in the wavefunction equals $n-l-1$. The calling routine must ! provide an initial estimate for the eigenvalue. Note that the arrays ! {\tt g0} and {\tt f0} represent the radial functions multiplied by $r$. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: sol integer, intent(in) :: n,l,k,nr real(8), intent(in) :: r(nr),vr(nr) real(8), intent(inout) :: eval real(8), intent(out) :: g0(nr),f0(nr) ! local variables integer, parameter :: maxit=2000 integer kpa,it,ir integer nn,nnd,nndp ! energy convergence tolerance real(8), parameter :: eps=1.d-12 real(8) t1,de ! automatic arrays real(8) g1(nr),f1(nr),fr(nr) ! external functions real(8), external :: splint if (k < 1) then write(*,*) write(*,'("Error(rdirac): k < 1 : ",I8)') k write(*,*) stop end if if (k > n) then write(*,*) write(*,'("Error(rdirac): incompatible n and k : ",2I8)') n,k write(*,*) stop end if if ((k == n).and.(l /= k-1)) then write(*,*) write(*,'("Error(rdirac): incompatible n, k and l : ",3I8)') n,k,l write(*,*) stop end if if (k == l) then kpa=k else if (k == l+1) then kpa=-k else write(*,*) write(*,'("Error(rdirac): incompatible l and k : ",2I8)') l,k write(*,*) stop end if if (nr < 4) then write(*,*) write(*,'("Error(rdirac): nr < 4 : ",I8)') nr write(*,*) stop end if de=1.d0 nndp=0 do it=1,maxit ! integrate the Dirac equation call rdiracint(sol,kpa,eval,nr,r,vr,nn,g0,g1,f0,f1) ! check the number of nodes nnd=nn-(n-l-1) if (nnd > 0) then eval=eval-de else eval=eval+de end if if (it > 1) then if ((nnd /= 0).or.(nndp /= 0)) then if (nnd*nndp < 1) then de=de*0.5d0 else de=de*1.1d0 end if end if end if nndp=nnd if (de < eps*(abs(eval)+1.d0)) goto 10 end do write(*,*) write(*,'("Warning(rdirac): maximum iterations exceeded")') 10 continue ! find effective infinity and set wavefunction to zero after that point ! major component do ir=nr,2,-1 if ((g0(ir-1)*g0(ir) < 0.d0).or.(g1(ir-1)*g1(ir) < 0.d0)) then g0(ir:nr)=0.d0 exit end if end do ! minor component do ir=nr,2,-1 if ((f0(ir-1)*f0(ir) < 0.d0).or.(f1(ir-1)*f1(ir) < 0.d0)) then f0(ir:nr)=0.d0 exit end if end do ! normalise do ir=1,nr fr(ir)=g0(ir)**2+f0(ir)**2 end do t1=splint(nr,r,fr) t1=sqrt(abs(t1)) if (t1 <= 0.d0) then write(*,*) write(*,'("Error(rdirac): zero wavefunction")') write(*,*) stop end if t1=1.d0/t1 g0(1:nr)=t1*g0(1:nr) f0(1:nr)=t1*f0(1:nr) end subroutine !EOC elk-10.4.9/src/PaxHeaders/bandstr.f900000644000000000000000000000013214762655564014226 xustar0030 mtime=1741380468.939010922 30 atime=1741380467.377002756 30 ctime=1741380468.939010922 elk-10.4.9/src/bandstr.f900000644002504400250440000001540714762655564016757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: bandstr ! !INTERFACE: subroutine bandstr ! !USES: use modmain use modomp ! !DESCRIPTION: ! Produces a band structure along the path in reciprocal space which connects ! the vertices in the array {\tt vvlp1d}. The band structure is obtained from ! the second-variational eigenvalues and is written to the file {\tt BAND.OUT} ! with the Fermi energy set to zero. If required, band structures are plotted ! to files {\tt BAND\_Sss\_Aaaaa.OUT} for atom {\tt aaaa} of species {\tt ss}, ! which include the band characters for each $l$ component of that atom in ! columns 4 onwards. Column 3 contains the sum over $l$ of the characters. ! Vertex location lines are written to {\tt BANDLINES.OUT}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! local variables integer ik,ist,ispn,is,ia,ias integer lmax,lmmax,l,m,lm,iv,nthd real(8) emin,emax,sm,t1 character(256) fname ! allocatable arrays real(8), allocatable :: evalfv(:,:) ! low precision for band character array saves memory real(4), allocatable :: bc(:,:,:,:) complex(8), allocatable :: dmat(:,:,:,:,:),apwalm(:,:,:,:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) ! initialise universal variables call init0 call init1 ! maximum angular momentum for band character lmax=min(3,lmaxo) lmmax=(lmax+1)**2 if (task == 21) then allocate(bc(0:lmax,natmtot,nstsv,nkpt)) else if (task == 22) then allocate(bc(lmmax,natmtot,nstsv,nkpt)) else if (task == 23) then allocate(bc(nspinor,natmtot,nstsv,nkpt)) end if ! read density and potentials from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! begin parallel loop over k-points call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evalfv,evecfv,evecsv) & !$OMP PRIVATE(dmat,apwalm,ist,ispn) & !$OMP PRIVATE(ias,l,m,lm,sm) & !$OMP NUM_THREADS(nthd) allocate(evalfv(nstfv,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) if (task >= 21) then allocate(dmat(lmmax,nspinor,lmmax,nspinor,nstsv)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) end if !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt !$OMP CRITICAL(bandstr_) write(*,'("Info(bandstr): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(bandstr_) ! solve the first- and second-variational eigenvalue equations call eveqn(ik,evalfv,evecfv,evecsv) ! compute the band characters if required if (task >= 21) then ! find the matching coefficients do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! average band character over spin and m for all atoms do ias=1,natmtot ! generate the diagonal of the density matrix call gendmatk(.true.,.true.,0,lmax,ias,nstsv,[0],ngk(:,ik),apwalm,evecfv,& evecsv,lmmax,dmat) do ist=1,nstsv if (task == 21) then ! l character of band lm=0 do l=0,lmax sm=0.d0 do m=-l,l lm=lm+1 do ispn=1,nspinor sm=sm+dble(dmat(lm,ispn,lm,ispn,ist)) end do end do bc(l,ias,ist,ik)=real(sm) end do else if (task == 22) then ! (l,m) character of band lm=0 do l=0,lmax do m=-l,l lm=lm+1 sm=0.d0 do ispn=1,nspinor sm=sm+dble(dmat(lm,ispn,lm,ispn,ist)) end do bc(lm,ias,ist,ik)=real(sm) end do end do else ! spin character of band do ispn=1,nspinor sm=0.d0 lm=0 do l=0,lmax do m=-l,l lm=lm+1 sm=sm+dble(dmat(lm,ispn,lm,ispn,ist)) end do end do bc(ispn,ias,ist,ik)=real(sm) end do end if end do end do end if ! end loop over k-points end do !$OMP END DO deallocate(evalfv,evecfv,evecsv) if (task >= 21) deallocate(dmat,apwalm) !$OMP END PARALLEL call freethd(nthd) ! subtract the Fermi energy evalsv(:,:)=evalsv(:,:)-efermi ! find the minimum and maximum eigenvalues emin=minval(evalsv(:,:)) emax=maxval(evalsv(:,:)) t1=(emax-emin)*0.5d0 emin=emin-t1 emax=emax+t1 ! output the band structure if (task == 20) then open(50,file='BAND.OUT',form='FORMATTED',action='WRITE') do ist=1,nstsv do ik=1,nkpt write(50,'(2G18.10)') dpp1d(ik),evalsv(ist,ik) end do write(50,*) end do close(50) write(*,*) write(*,'("Info(bandstr):")') write(*,'(" Band structure plot written to BAND.OUT")') else do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(fname,'("BAND_S",I2.2,"_A",I4.4,".OUT")') is,ia open(50,file=trim(fname),form='FORMATTED',action='WRITE') do ist=1,nstsv do ik=1,nkpt if (task == 21) then ! sum band character over l to find total atomic character sm=0.d0 do l=0,lmax sm=sm+bc(l,ias,ist,ik) end do write(50,'(2G18.10,5F12.6)') dpp1d(ik),evalsv(ist,ik),sm, & (bc(l,ias,ist,ik),l=0,lmax) else if (task == 22) then write(50,'(2G18.10,16F12.6)') dpp1d(ik),evalsv(ist,ik), & (bc(lm,ias,ist,ik),lm=1,lmmax) else write(50,'(2G18.10,2F12.6)') dpp1d(ik),evalsv(ist,ik), & (bc(ispn,ias,ist,ik),ispn=1,nspinor) end if end do write(50,*) end do close(50) end do end do write(*,*) write(*,'("Info(bandstr):")') write(*,'(" Band structure plot written to BAND_Sss_Aaaaa.OUT")') write(*,'(" for all species and atoms")') write(*,*) write(*,'(" Columns in the file are :")') if (task == 21) then write(*,'(" distance, eigenvalue, total atomic character, l character & &(l = 0...",I1,")")') lmax else if (task == 22) then write(*,'(" distance, eigenvalue, (l,m) character & &(l = 0...",I1,", m = -l...l)")') lmax else write(*,'(" distance, eigenvalue, spin-up and spin-down characters")') end if end if write(*,*) write(*,'(" Fermi energy is at zero in plot")') ! output the vertex location lines open(50,file='BANDLINES.OUT',form='FORMATTED',action='WRITE') do iv=1,nvp1d write(50,'(2G18.10)') dvp1d(iv),emin write(50,'(2G18.10)') dvp1d(iv),emax write(50,*) end do close(50) write(*,*) write(*,'(" Vertex location lines written to BANDLINES.OUT")') if (task >= 21) deallocate(bc) end subroutine !EOC elk-10.4.9/src/PaxHeaders/sfacinit.f900000644000000000000000000000013214762655564014371 xustar0030 mtime=1741380468.940010927 30 atime=1741380467.380002772 30 ctime=1741380468.940010927 elk-10.4.9/src/sfacinit.f900000644002504400250440000000351314762655564017115 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 A. I. Baranov and F. Wagner. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine sfacinit use modmain use modpw implicit none ! local variables logical trhonorm0 integer ik,ist,is,ias ! allocatable arrays real(8), allocatable :: occcr0(:,:) ! initialise universal variables call init0 call init1 ! read density and potentials from file call readstate ! use existing density if wsfac is default if ((wsfac(1) <= -1.d6).and.(wsfac(2) >= 1.d6)) goto 10 ! make a copy of the core state occupation numbers allocate(occcr0(nstspmax,natmtot)) occcr0(:,:)=occcr(:,:) ! zero the core state occupation numbers for eigenvalues not in energy window do ias=1,natmtot is=idxis(ias) do ist=1,nstsp(is) if (spcore(ist,is)) then if ((evalcr(ist,ias) < wsfac(1)).or.(evalcr(ist,ias) > wsfac(2))) then occcr(ist,ias)=0.d0 end if end if end do end do ! generate the core wavefunctions and densities call gencore ! restore the core state occupation numbers occcr(:,:)=occcr0(:,:) deallocate(occcr0) ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr do ik=1,nkpt ! get the eigenvalues and occupation numbers from file call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) ! zero occupation numbers for eigenvalues not in energy window do ist=1,nstsv if ((evalsv(ist,ik) < wsfac(1)).or.(evalsv(ist,ik) > wsfac(2))) then occsv(ist,ik)=0.d0 end if end do end do ! computed density should not be normalised trhonorm0=trhonorm trhonorm=.false. ! generate the density and magnetisation call rhomag trhonorm=trhonorm0 10 continue ! generate the H-vectors call genhvec end subroutine elk-10.4.9/src/PaxHeaders/findscq.f900000644000000000000000000000013214762655564014220 xustar0030 mtime=1741380468.941010932 30 atime=1741380467.382002782 30 ctime=1741380468.941010932 elk-10.4.9/src/findscq.f900000644002504400250440000000677314762655564016757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine findscq(iq,nsc,vsc) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq integer, intent(out) :: nsc real(8), intent(out) :: vsc(3,nqptnr) ! local variables integer i1,i2,i3 integer scl(3,3),i,n real(8) dmin,t1 real(8) v1(3),v2(3) ! check for Gamma-point phonon if (tphq0) then scl(:,:)=0 scl(1,1)=1 scl(2,2)=1 scl(3,3)=1 nsc=1 goto 10 end if ! find the first lattice vector dmin=1.d8 do i1=-ngridq(1),ngridq(1) do i2=-ngridq(2),ngridq(2) do i3=-ngridq(3),ngridq(3) t1=dble(i1)*vql(1,iq)+dble(i2)*vql(2,iq)+dble(i3)*vql(3,iq) if (abs(t1-nint(t1)) < epslat) then v1(:)=dble(i1)*avec0(:,1)+dble(i2)*avec0(:,2)+dble(i3)*avec0(:,3) t1=sqrt(v1(1)**2+v1(2)**2+v1(3)**2) if ((t1 < dmin).and.(t1 > epslat)) then scl(1,1)=i1 scl(2,1)=i2 scl(3,1)=i3 dmin=t1 end if end if end do end do end do ! find the second lattice vector dmin=1.d8 do i1=-ngridq(1),ngridq(1) do i2=-ngridq(2),ngridq(2) do i3=-ngridq(3),ngridq(3) t1=dble(i1)*vql(1,iq)+dble(i2)*vql(2,iq)+dble(i3)*vql(3,iq) if (abs(t1-nint(t1)) < epslat) then ! area defined by first two lattice vectors n=(i2*scl(3,1)-i3*scl(2,1))**2 & +(i3*scl(1,1)-i1*scl(3,1))**2 & +(i1*scl(2,1)-i2*scl(1,1))**2 if (n /= 0) then v1(:)=dble(i1)*avec0(:,1)+dble(i2)*avec0(:,2)+dble(i3)*avec0(:,3) t1=v1(1)**2+v1(2)**2+v1(3)**2 if (t1 < dmin) then scl(1,2)=i1 scl(2,2)=i2 scl(3,2)=i3 dmin=t1 end if end if end if end do end do end do ! find the third lattice vector nsc=0 dmin=1.d8 do i1=-ngridq(1),ngridq(1) do i2=-ngridq(2),ngridq(2) do i3=-ngridq(3),ngridq(3) t1=dble(i1)*vql(1,iq)+dble(i2)*vql(2,iq)+dble(i3)*vql(3,iq) if (abs(t1-nint(t1)) < epslat) then ! number of primitive unit cells in supercell n=scl(1,2)*(i2*scl(3,1)-i3*scl(2,1)) & +scl(2,2)*(i3*scl(1,1)-i1*scl(3,1)) & +scl(3,2)*(i1*scl(2,1)-i2*scl(1,1)) if (n /= 0) then v1(:)=dble(i1)*avec0(:,1)+dble(i2)*avec0(:,2)+dble(i3)*avec0(:,3) t1=v1(1)**2+v1(2)**2+v1(3)**2 if (t1 < dmin) then nsc=abs(n) scl(1,3)=i1 scl(2,3)=i2 scl(3,3)=i3 dmin=t1 end if end if end if end do end do end do if (nsc == 0) goto 30 10 continue ! new lattice vectors do i=1,3 avec(:,i)=dble(scl(1,i))*avec0(:,1) & +dble(scl(2,i))*avec0(:,2) & +dble(scl(3,i))*avec0(:,3) end do ! inverse of lattice vector matrix call r3minv(avec,ainv) ! generate offset vectors for each primitive cell in the supercell n=1 vsc(:,1)=0.d0 do i1=-ngridq(1),ngridq(1) do i2=-ngridq(2),ngridq(2) do i3=-ngridq(3),ngridq(3) if (n == nsc) return v1(:)=dble(i1)*avec0(:,1)+dble(i2)*avec0(:,2)+dble(i3)*avec0(:,3) call r3mv(ainv,v1,v2) call r3frac(epslat,v2) call r3mv(avec,v2,v1) do i=1,n t1=abs(v1(1)-vsc(1,i))+abs(v1(2)-vsc(2,i))+abs(v1(3)-vsc(3,i)) if (t1 < epslat) goto 20 end do n=n+1 vsc(:,n)=v1(:) 20 continue end do end do end do 30 continue write(*,*) write(*,'("Error(findscq): unable to generate supercell")') write(*,*) stop end subroutine elk-10.4.9/src/PaxHeaders/plot1d.f900000644000000000000000000000013214762655564013774 xustar0030 mtime=1741380468.943010943 30 atime=1741380467.385002798 30 ctime=1741380468.943010943 elk-10.4.9/src/plot1d.f900000644002504400250440000000354014762655564016520 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: plot1d ! !INTERFACE: subroutine plot1d(fnum1,fnum2,nf,rfmt,rfir) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! fnum1 : plot file number (in,integer) ! fnum2 : vertex location file number (in,integer) ! nf : number of functions (in,integer) ! rfmt : real muffin-tin function (in,real(npmtmax,natmtot,nf)) ! rfir : real intersitial function (in,real(ngtot,nf)) ! !DESCRIPTION: ! Produces a 1D plot of the real functions contained in arrays {\tt rfmt} and ! {\tt rfir} along the lines connecting the vertices in the global array ! {\tt vvlp1d}. See routine {\tt rfplot}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: fnum1,fnum2,nf real(8), intent(in) :: rfmt(npmtmax,natmtot,nf),rfir(ngtot,nf) ! local variables integer jf,ip,iv real(8) fmin,fmax,t1 ! allocatable arrays real(8), allocatable :: fp(:,:) if ((nf < 1).or.(nf > 4)) then write(*,*) write(*,'("Error(plot1d): invalid number of functions : ",I8)') nf write(*,*) stop end if allocate(fp(npp1d,nf)) ! connect the 1D plotting vertices call plotpt1d(avec,nvp1d,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) do jf=1,nf ! evaluate function at each point call rfplot(npp1d,vplp1d,rfmt(:,:,jf),rfir(:,jf),fp(:,jf)) end do do ip=ip01d,npp1d ! write the point distances and function to file write(fnum1,'(5G18.10)') dpp1d(ip),(fp(ip,jf),jf=1,nf) end do ! write the vertex location lines fmin=minval(fp(:,:)) fmax=maxval(fp(:,:)) t1=0.5d0*(fmax-fmin) fmin=fmin-t1 fmax=fmax+t1 do iv=1,nvp1d write(fnum2,'(2G18.10)') dvp1d(iv),fmin write(fnum2,'(2G18.10)') dvp1d(iv),fmax write(fnum2,*) end do deallocate(fp) end subroutine !EOC elk-10.4.9/src/PaxHeaders/plot2d.f900000644000000000000000000000013214762655564013775 xustar0030 mtime=1741380468.944010948 30 atime=1741380467.388002814 30 ctime=1741380468.944010948 elk-10.4.9/src/plot2d.f900000644002504400250440000000367314762655564016530 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: plot2d ! !INTERFACE: subroutine plot2d(tproj,fnum,nf,rfmt,rfir) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! tproj : .true. if nf=3 and the vector function should be projected onto the ! 2D plotting plane axes (in,logical) ! fnum : plot file number (in,integer) ! nf : number of functions (in,integer) ! rfmt : real muffin-tin function (in,real(npmtmax,natmtot,nf)) ! rfir : real intersitial function (in,real(ngtot,nf)) ! !DESCRIPTION: ! Produces a 2D plot of the real functions contained in arrays {\tt rfmt} and ! {\tt rfir} on the parallelogram defined by the corner vertices in the global ! array {\tt vclp2d}. See routine {\tt rfplot}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: tproj integer, intent(in) :: fnum,nf real(8), intent(in) :: rfmt(npmtmax,natmtot,nf),rfir(ngtot,nf) ! local variables integer np,jf,ip real(8) vpnl(3) ! allocatable arrays real(8), allocatable :: vpl(:,:),vppc(:,:),fp(:,:) if ((nf < 1).or.(nf > 4)) then write(*,*) write(*,'("Error(plot2d): invalid number of functions : ",I8)') nf write(*,*) stop end if ! allocate local arrays np=np2d(1)*np2d(2) allocate(vpl(3,np),vppc(2,np),fp(np,nf)) ! generate the 2D plotting points call plotpt2d(avec,ainv,vpnl,vpl,vppc) ! evaluate the functions at the grid points do jf=1,nf call rfplot(np,vpl,rfmt(:,:,jf),rfir(:,jf),fp(:,jf)) end do ! project the vector function onto the 2D plotting plane axes if required if (tproj.and.(nf == 3)) then call proj2d(np,fp) end if ! write the functions to file write(fnum,'(2I6," : grid size")') np2d(:) do ip=1,np write(fnum,'(6G18.10)') vppc(1,ip),vppc(2,ip),(fp(ip,jf),jf=1,nf) end do deallocate(vpl,vppc,fp) end subroutine !EOC elk-10.4.9/src/PaxHeaders/plot3d.f900000644000000000000000000000013214762655564013776 xustar0030 mtime=1741380468.945010953 30 atime=1741380467.390002824 30 ctime=1741380468.945010953 elk-10.4.9/src/plot3d.f900000644002504400250440000000332714762655564016525 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: plot3d ! !INTERFACE: subroutine plot3d(fnum,nf,rfmt,rfir) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! fnum : plot file number (in,integer) ! nf : number of functions (in,integer) ! rfmt : real muffin-tin function (in,real(npmtmax,natmtot,nf)) ! rfir : real intersitial function (in,real(ngtot,nf)) ! !DESCRIPTION: ! Produces a 3D plot of the real functions contained in arrays {\tt rfmt} and ! {\tt rfir} in the parallelepiped defined by the corner vertices in the ! global array {\tt vclp3d}. See routine {\tt rfarray}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) ! Modified, October 2008 (F. Bultmark, F. Cricchio, L. Nordstrom) !EOP !BOC implicit none ! arguments integer, intent(in) :: fnum,nf real(8), intent(in) :: rfmt(npmtmax,natmtot,nf),rfir(ngtot,nf) ! local variables integer np,jf,ip real(8) v1(3) ! allocatable arrays real(8), allocatable :: vpl(:,:),fp(:,:) if ((nf < 1).or.(nf > 4)) then write(*,*) write(*,'("Error(plot3d): invalid number of functions : ",I8)') nf write(*,*) stop end if ! total number of plot points np=np3d(1)*np3d(2)*np3d(3) ! allocate local arrays allocate(vpl(3,np),fp(np,nf)) ! generate the 3D plotting points call plotpt3d(vpl) ! evaluate the functions at the grid points do jf=1,nf call rfplot(np,vpl,rfmt(:,:,jf),rfir(:,jf),fp(:,jf)) end do ! write functions to file write(fnum,'(3I6," : grid size")') np3d(:) do ip=1,np call r3mv(avec,vpl(:,ip),v1) write(fnum,'(7G18.10)') v1(:),(fp(ip,jf),jf=1,nf) end do deallocate(vpl,fp) end subroutine !EOC elk-10.4.9/src/PaxHeaders/init0.f900000644000000000000000000000013114762655564013613 xustar0030 mtime=1741380468.947010964 29 atime=1741380467.39300284 30 ctime=1741380468.947010964 elk-10.4.9/src/init0.f900000644002504400250440000005515014762655564016344 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: init0 ! !INTERFACE: subroutine init0 ! !USES: use modmain use modxcifc use moddftu use modtddft use modphonon use modulr use modgw use modtest use modvars use modmpi use modomp ! !DESCRIPTION: ! Performs basic consistency checks as well as allocating and initialising ! global variables not dependent on the $k$-point set. ! ! !REVISION HISTORY: ! Created January 2004 (JKD) !EOP !BOC implicit none ! local variables logical hybrid_ integer is,ia,ias,idu integer ist,nr,l,n,i integer xcspin_ real(8) hybridc_,t1 real(8) ts0,ts1 !-------------------------------! ! zero timing variables ! !-------------------------------! timeinit=0.d0 timemat=0.d0 timefv=0.d0 timesv=0.d0 timerho=0.d0 timepot=0.d0 timefor=0.d0 call timesec(ts0) !------------------------------------! ! angular momentum variables ! !------------------------------------! if (lmaxo > lmaxapw) then write(*,*) write(*,'("Error(init0): lmaxo > lmaxapw : ",2I8)') lmaxo,lmaxapw write(*,*) stop end if lmaxi=min(lmaxi,lmaxo) lmmaxapw=(lmaxapw+1)**2 lmmaxi=(lmaxi+1)**2 lmmaxo=(lmaxo+1)**2 ! check DOS lmax is within range lmaxdos=min(lmaxdos,lmaxo) ! write to VARIABLES.OUT if (wrtvars) then call writevars('lmaxapw',iv=lmaxapw) call writevars('lmaxi',iv=lmaxi) call writevars('lmaxo',iv=lmaxo) end if !------------------------------------! ! index to atoms and species ! !------------------------------------! natmmax=0 ias=0 do is=1,nspecies do ia=1,natoms(is) ias=ias+1 idxas(ia,is)=ias idxis(ias)=is idxia(ias)=ia end do ! maximum number of atoms over all species natmmax=max(natmmax,natoms(is)) end do ! total number of atoms natmtot=ias ! number of phonon branches nbph=3*natmtot ! write to VARIABLES.OUT if (wrtvars) then call writevars('nspecies',iv=nspecies) call writevars('natoms',nv=nspecies,iva=natoms) call writevars('spsymb',nv=nspecies,sva=spsymb) call writevars('spname',nv=nspecies,sva=spname) call writevars('spzn',nv=nspecies,rva=spzn) end if !------------------------! ! spin variables ! !------------------------! if (spinsprl) then spinpol=.true. spinorb=.false. if (any(task == [5,51,52,53,61,62,63,700,701])) then write(*,*) write(*,'("Error(init0): spin-spirals do not work with task ",I4)') task write(*,*) stop end if if (xctype(1) < 0) then write(*,*) write(*,'("Error(init0): spin-spirals do not work with the OEP method")') write(*,*) stop end if if (tefvit) then write(*,*) write(*,'("Error(init0): spin-spirals do not work with iterative & &diagonalisation")') write(*,*) stop end if end if ! de-phasing required only for spin-spirals if (.not.spinsprl) ssdph=.false. ! spin-orbit coupling, fixed spin moment, spin spirals or spin-polarised cores ! requires a spin-polarised calculation if ((spinorb).or.(fsmtype /= 0).or.(spinsprl).or.(spincore)) spinpol=.true. ! number of spinor components and maximum allowed occupancy if (spinpol) then nspinor=2 occmax=1.d0 else nspinor=1 occmax=2.d0 end if ! number of spin-dependent first-variational functions per state and map from ! second- to first-variational spin index if (spinsprl) then nspnfv=2 jspnfv(1)=1 jspnfv(2)=2 else nspnfv=1 jspnfv(1)=1 jspnfv(2)=1 end if ! no calculation of second-variational eigenvectors by default tevecsv=.false. ! spin-polarised calculations require second-variational eigenvectors if (spinpol) tevecsv=.true. ! Hartree-Fock/RDMFT/TDDFT/GW/ULR requires second-variational eigenvectors if (any(task == [5,10,170,300,460,461,462,463,600,620,700,701,720]).or. & ksgwrho) then tevecsv=.true. end if ! get exchange-correlation functional data call getxcdata(xctype,xcdescr,xcspin,xcgrad,hybrid0,hybridc) if ((spinpol).and.(xcspin == 0)) then write(*,*) write(*,'("Error(init0): requested spin-polarised run with & &spin-unpolarised")') write(*,'(" exchange-correlation functional")') write(*,*) stop end if ! set flag for hybrid functional if (task == 5) then hybrid=hybrid0 else hybrid=.false. end if ! check for collinearity in the z-direction and set the dimension of the ! magnetisation and exchange-correlation vector fields if (spinpol) then ndmag=1 if ((abs(bfieldc0(1)) > epslat).or.(abs(bfieldc0(2)) > epslat)) ndmag=3 do is=1,nspecies do ia=1,natoms(is) if ((abs(bfcmt0(1,ia,is)) > epslat).or. & (abs(bfcmt0(2,ia,is)) > epslat)) ndmag=3 end do end do ! spin-orbit coupling is non-collinear in general if (spinorb) ndmag=3 ! source-free fields and spin-spirals must be non-collinear if ((nosource).or.(spinsprl)) then ndmag=3 cmagz=.false. end if ! force collinear magnetism along the z-axis if required if (cmagz) ndmag=1 else ndmag=0 end if ! set the non-collinear flag ncmag=(ndmag == 3) ! check for meta-GGA with non-collinearity if (any(xcgrad == [3,4,5]).and.ncmag) then write(*,*) write(*,'("Error(init0): meta-GGA is not valid for non-collinear magnetism")') write(*,*) stop end if if (tbdip.and.(.not.ncmag)) then write(*,*) write(*,'("Error(init0): non-collinear magnetism required for inclusion of & &the dipole field")') write(*,*) stop end if ! spin-polarised cores if (.not.spinpol) spincore=.false. if (fsmtype /= 0) then ! set fixed spin moment effective field to zero bfsmc(:)=0.d0 ! set muffin-tin FSM fields to zero if (allocated(bfsmcmt)) deallocate(bfsmcmt) allocate(bfsmcmt(3,natmtot)) bfsmcmt(:,:)=0.d0 if (mp_mpi.and.(mixtype /= 1)) then write(*,'("Info(init0): mixtype changed to 1 for FSM calculation")') end if mixtype=1 end if ! number of independent spin components of the f_xc spin tensor if (spinpol) then if (ncmag) then nscfxc=10 else nscfxc=3 end if else nscfxc=1 end if ! set the magnetic fields to the initial values bfieldc(:)=bfieldc0(:) bfcmt(:,:,:)=bfcmt0(:,:,:) ! if reducebf < 1 then reduce the external magnetic fields immediately for ! non-self-consistent calculations or resumptions if (reducebf < 1.d0-1.d-4) then if (all(task /= [0,1,2,3,5,28,200,201,350,351])) then bfieldc(:)=0.d0 bfcmt(:,:,:)=0.d0 end if end if if (tmwrite.or.(ftmtype /= 0).or.(task == 400)) then if (.not.spinorb) then write(*,*) write(*,'("Error(init0): tensor moments require spin-orbit coupling & &enabled")') write(*,'(" set spinorb=.true.")') write(*,*) stop end if end if ! generate the fixed tensor moment density matrices if required if (ftmtype /= 0) call gendmftm ! write to VARIABLES.OUT if (wrtvars) then call writevars('nspinor',iv=nspinor) call writevars('ndmag',iv=ndmag) call writevars('sxcscf',rv=sxcscf) call writevars('bfieldc0',nv=3,rva=bfieldc0) end if !----------------------------------! ! crystal structure set up ! !----------------------------------! ! use reference lattice vectors if required if (tavref) then avec0(:,:)=avec(:,:) avec(:,:)=avecref(:,:) end if ! generate the reciprocal lattice vectors, unit cell and Brillouin zone volumes call reciplat(avec,bvec,omega,omegabz) ! inverse of the lattice vector matrix call r3minv(avec,ainv) ! inverse of the reciprocal vector matrix call r3minv(bvec,binv) ! Cartesian coordinates of the spin-spiral vector call r3mv(bvec,vqlss,vqcss) do is=1,nspecies do ia=1,natoms(is) ! map atomic lattice coordinates to [0,1) call r3frac(epslat,atposl(:,ia,is)) ! determine atomic Cartesian coordinates call r3mv(avec,atposl(:,ia,is),atposc(:,ia,is)) end do end do ! check for overlapping muffin-tins and adjust radii if required call checkmt ! compute the total muffin-tin volume (M. Meinert) omegamt=0.d0 do is=1,nspecies omegamt=omegamt+dble(natoms(is))*(fourpi/3.d0)*rmt(is)**3 end do ! input q-vector in Cartesian coordinates call r3mv(bvec,vecql,vecqc) !-------------------------------! ! vector fields E and A ! !-------------------------------! ! static electric field tefield=.false. if (any(abs(efieldc(:)) > epslat)) then ! no shift of the atomic positions tshift=.false. ! electric field vector in lattice coordinates call r3mv(ainv,efieldc,efieldl) ! potential at maximum distance vmaxefc=dmaxefc*norm2(efieldc(:)) ! allocate array for average electric field in each muffin-tin if (allocated(efcmt)) deallocate(efcmt) allocate(efcmt(3,natmtot)) ! set the E-field flag tefield=.true. end if ! static vector potential tafield=.false. if (any(abs(afieldc(:)) > epslat)) then tafield=.true. ! A-field in lattice coordinates call r3mv(ainv,afieldc,afieldl) ! vector potential added in second-variational step tevecsv=.true. end if ! static spin-dependent vector potential tafsp=.false. if (spinpol.and.(any(abs(afspc(:,:)) > epslat))) then tafsp=.true. tevecsv=.true. end if ! time-dependent vector potential tafieldt=.false. if (any(task == [460,461,462,463,480,481,485])) then ! read time-dependent A-field from file call readafieldt tafieldt=.true. ! zero the induced A-field and its time derivative afindt(:,:)=0.d0 end if ! write to VARIABLES.OUT if (wrtvars) then call writevars('efieldc',nv=3,rva=efieldc) call writevars('afieldc',nv=3,rva=afieldc) call writevars('afspc',nv=9,rva=afspc) end if !---------------------------------! ! crystal symmetry set up ! !---------------------------------! call symmetry !-----------------------! ! radial meshes ! !-----------------------! nrmtmax=1 nrcmtmax=1 do is=1,nspecies ! make the muffin-tin mesh commensurate with lradstp nrmt(is)=nrmt(is)-mod(nrmt(is)-1,lradstp) nrmtmax=max(nrmtmax,nrmt(is)) ! number of coarse radial mesh points nrcmt(is)=(nrmt(is)-1)/lradstp+1 nrcmtmax=max(nrcmtmax,nrcmt(is)) end do ! set up atomic and muffin-tin radial meshes call genrmesh ! number of points in packed muffin-tins npmtmax=1 npcmtmax=1 do is=1,nspecies npmti(is)=lmmaxi*nrmti(is) npmt(is)=npmti(is)+lmmaxo*(nrmt(is)-nrmti(is)) npmtmax=max(npmtmax,npmt(is)) npcmti(is)=lmmaxi*nrcmti(is) npcmt(is)=npcmti(is)+lmmaxo*(nrcmt(is)-nrcmti(is)) npcmtmax=max(npcmtmax,npcmt(is)) end do !--------------------------------------! ! charges and number of states ! !--------------------------------------! chgzn=0.d0 chgcrtot=0.d0 chgval=0.d0 nstspmax=0 nstcr=0 do is=1,nspecies ! nuclear charge chgzn=chgzn+spzn(is)*natoms(is) ! find the maximum number of atomic states nstspmax=max(nstspmax,nstsp(is)) ! compute the electronic charge for each species, as well as the total core and ! valence charge spze(is)=0.d0 chgcr(is)=0.d0 do ist=1,nstsp(is) spze(is)=spze(is)+occsp(ist,is) if (spcore(ist,is)) then chgcr(is)=chgcr(is)+occsp(ist,is) nstcr=nstcr+2*ksp(ist,is)*natoms(is) else chgval=chgval+occsp(ist,is)*natoms(is) end if end do chgcrtot=chgcrtot+chgcr(is)*natoms(is) end do ! add excess charge chgval=chgval+chgexs ! total charge chgtot=chgcrtot+chgval if (chgtot < 1.d-8) then write(*,*) write(*,'("Error(init0): zero total charge")') write(*,*) stop end if ! subtract small charge to ensure consistent Fermi energy for insulators chgval=chgval-epsocc ! effective Wigner radius rwigner=(3.d0/(fourpi*(chgtot/omega)))**(1.d0/3.d0) ! write to VARIABLES.OUT if (wrtvars) then call writevars('spze',nv=nspecies,rva=spze) call writevars('chgcr',nv=nspecies,rva=chgcr) call writevars('chgexs',rv=chgexs) call writevars('chgval',rv=chgtot) end if !-------------------------! ! G-vector arrays ! !-------------------------! ! determine gkmax from rgkmax if (nspecies == 0) isgkmax=-2 select case(isgkmax) case(:-4) ! use largest muffin-tin radius gkmax=rgkmax/maxval(rmt(1:nspecies)) case(-3) ! use smallest muffin-tin radius gkmax=rgkmax/minval(rmt(1:nspecies)) case(-2) ! use the fixed value of 2.0 gkmax=rgkmax/2.d0 case(-1,0) ! use average muffin-tin radius t1=sum(natoms(1:nspecies)*rmt(1:nspecies))/dble(natmtot) gkmax=rgkmax/t1 case(1:) ! use user-specified muffin-tin radius if (isgkmax <= nspecies) then gkmax=rgkmax/rmt(isgkmax) else write(*,*) write(*,'("Error(init0): isgkmax > nspecies : ",2I8)') isgkmax,nspecies write(*,*) stop end if end select ! generate the G-vectors call gengvec ! apply strain to A-, B- and G-vectors if required call strainabg ! write number of G-vectors to test file call writetest(900,'number of G-vectors',iv=ngvec) ! Poisson solver pseudocharge density constant if (nspecies > 0) then t1=0.25d0*gmaxvr*maxval(rmt(1:nspecies)) else t1=0.25d0*gmaxvr*2.d0 end if npsd=max(nint(t1),1) lnpsd=lmaxo+npsd+1 ! generate the Coulomb Green's function in G-space = 4π/G² call gengclg ! compute the spherical Bessel functions j_l(|G|R_mt) if (allocated(jlgrmt)) deallocate(jlgrmt) allocate(jlgrmt(0:lnpsd,ngvec,nspecies)) call genjlgprmt(lnpsd,ngvec,gc,ngvec,jlgrmt) ! generate the spherical harmonics of the G-vectors call genylmg ! allocate structure factor array for G-vectors if (allocated(sfacg)) deallocate(sfacg) allocate(sfacg(ngvec,natmtot)) ! generate structure factors for G-vectors call gensfacgp(ngvec,vgc,ngvec,sfacg) ! generate the smooth step function form factors if (allocated(ffacg)) deallocate(ffacg) allocate(ffacg(ngtot,nspecies)) call genffacgp(ngtot,gc,ngtot,ffacg) ! generate the smooth characteristic function call gencfun ! G-vector variables for coarse grid with |G| < 2 gkmax call gengvc ! generate the characteristic function on the coarse grid call gencfrc ! write to VARIABLES.OUT if (wrtvars) then call writevars('avec',nv=9,rva=avec) call writevars('bvec',nv=9,rva=bvec) call writevars('omega',rv=omega) do is=1,nspecies call writevars('atposl',n1=is,nv=3*natoms(is),rva=atposl(:,:,is)) end do do is=1,nspecies call writevars('atposc',n1=is,nv=3*natoms(is),rva=atposc(:,:,is)) end do call writevars('vqlss',nv=3,rva=vqlss) call writevars('vqcss',nv=3,rva=vqcss) call writevars('gmaxvr',rv=gmaxvr) call writevars('ngridg',nv=3,iva=ngridg) call writevars('intgv',nv=6,iva=intgv) call writevars('ngvec',iv=ngvec) call writevars('ivg',nv=3*ngtot,iva=ivg) call writevars('igfft',nv=ngtot,iva=igfft) end if !-------------------------! ! atoms and cores ! !-------------------------! ! determine the nuclear Coulomb potential if (allocated(vcln)) deallocate(vcln) allocate(vcln(nrspmax,nspecies)) do is=1,nspecies nr=nrsp(is) call potnucl(ptnucl,nr,rsp(:,is),spzn(is),vcln(:,is)) vcln(1:nr,is)=vcln(1:nr,is)*y00i end do ! solve the Kohn-Sham-Dirac equations for all atoms call allatoms ! allocate core state occupancy and eigenvalue arrays and set to default if (allocated(occcr)) deallocate(occcr) allocate(occcr(nstspmax,natmtot)) if (allocated(evalcr)) deallocate(evalcr) allocate(evalcr(nstspmax,natmtot)) do ias=1,natmtot is=idxis(ias) do ist=1,nstsp(is) occcr(ist,ias)=occsp(ist,is) evalcr(ist,ias)=evalsp(ist,is) end do end do ! allocate core state radial wavefunction array if (allocated(rwfcr)) deallocate(rwfcr) allocate(rwfcr(nrspmax,2,nstspmax,natmtot)) ! number of core spin channels if (spincore) then nspncr=2 else nspncr=1 end if ! allocate core state charge density array if (allocated(rhocr)) deallocate(rhocr) allocate(rhocr(nrmtmax,natmtot,nspncr)) !-------------------------------------------------------------! ! charge density, potentials and exchange-correlation ! !-------------------------------------------------------------! ! allocate charge density arrays if (allocated(rhomt)) deallocate(rhomt) allocate(rhomt(npmtmax,natmtot)) if (allocated(rhoir)) deallocate(rhoir) allocate(rhoir(ngtot)) ! allocate magnetisation arrays if (allocated(magmt)) deallocate(magmt) if (allocated(magir)) deallocate(magir) if (spinpol) then allocate(magmt(npmtmax,natmtot,ndmag)) allocate(magir(ngtot,ndmag)) end if ! check if the current density j(r) should be calculated if (any(task == [371,372,373]).or.tafield.or.tdjr1d.or.tdjr2d.or.tdjr3d) then tjr=.true. end if ! allocate current density arrays if (allocated(jrmt)) deallocate(jrmt) if (allocated(jrir)) deallocate(jrir) if (tjr) then allocate(jrmt(npmtmax,natmtot,3),jrir(ngtot,3)) end if ! Coulomb potential if (allocated(vclmt)) deallocate(vclmt) allocate(vclmt(npmtmax,natmtot)) if (allocated(vclir)) deallocate(vclir) allocate(vclir(ngtot)) ! exchange energy density if (allocated(exmt)) deallocate(exmt) allocate(exmt(npmtmax,natmtot)) if (allocated(exir)) deallocate(exir) allocate(exir(ngtot)) ! correlation energy density if (allocated(ecmt)) deallocate(ecmt) allocate(ecmt(npmtmax,natmtot)) if (allocated(ecir)) deallocate(ecir) allocate(ecir(ngtot)) ! exchange-correlation potential if (allocated(vxcmt)) deallocate(vxcmt) allocate(vxcmt(npmtmax,natmtot)) if (allocated(vxcir)) deallocate(vxcir) allocate(vxcir(ngtot)) ! exchange-correlation and dipole magnetic fields if (allocated(bxcmt)) deallocate(bxcmt) if (allocated(bxcir)) deallocate(bxcir) if (allocated(bdmt)) deallocate(bdmt) if (allocated(bdir)) deallocate(bdir) if (spinpol) then allocate(bxcmt(npmtmax,natmtot,ndmag),bxcir(ngtot,ndmag)) if (tbdip) allocate(bdmt(npmtmax,natmtot,ndmag),bdir(ngtot,ndmag)) end if ! combined target array for Kohn-Sham potential and magnetic field if (allocated(vsbs)) deallocate(vsbs) n=npmtmax*natmtot+ngtc if (spinpol) n=n+(npcmtmax*natmtot+ngtc)*ndmag allocate(vsbs(n)) ! zero the array vsbs(1:n)=0.d0 ! associate pointer arrays with target vsmt(1:npmtmax,1:natmtot) => vsbs(1:) i=npmtmax*natmtot+1 vsirc(1:ngtc) => vsbs(i:) if (spinpol) then i=i+ngtc bsmt(1:npcmtmax,1:natmtot,1:ndmag) => vsbs(i:) i=i+npcmtmax*natmtot*ndmag bsirc(1:ngtc,1:ndmag) => vsbs(i:) ! allocate the Kohn-Sham magnetic field on the intersitial grid if (allocated(bsir)) deallocate(bsir) allocate(bsir(ngtot,ndmag)) end if ! interstitial Kohn-Sham potential if (allocated(vsir)) deallocate(vsir) allocate(vsir(ngtot)) ! interstitial Kohn-Sham potential in G-space if (allocated(vsig)) deallocate(vsig) allocate(vsig(ngvc)) ! kinetic energy density and meta-GGA exchange-correlation potential if (allocated(taumt)) deallocate(taumt) if (allocated(tauir)) deallocate(tauir) if (allocated(taucr)) deallocate(taucr) if (allocated(wxcmt)) deallocate(wxcmt) if (allocated(wxcir)) deallocate(wxcir) if (any(xcgrad == [3,4,5])) then allocate(taumt(npmtmax,natmtot,nspinor),tauir(ngtot,nspinor)) allocate(taucr(npmtmax,natmtot,nspinor)) allocate(wxcmt(npmtmax,natmtot),wxcir(ngtot)) ! approximate kinetic energy density functional used to compute the functional ! derivative δτ(r')/δρ(r) for meta-GGA call getxcdata(ktype,kdescr,xcspin_,kgrad,hybrid_,hybridc_) end if ! spin-orbit coupling radial function if (allocated(socfr)) deallocate(socfr) if (spinorb) then allocate(socfr(nrcmtmax,natmtot)) end if ! allocate muffin-tin charge and moment arrays if (allocated(chgcrlk)) deallocate(chgcrlk) allocate(chgcrlk(natmtot)) if (allocated(chgmt)) deallocate(chgmt) allocate(chgmt(natmtot)) if (allocated(mommt)) deallocate(mommt) allocate(mommt(3,natmtot)) ! check if scaled spin exchange-correlation should be used tssxc=(abs(sxcscf-1.d0) > 1.d-6) ! spin-spiral phase factors if (ssdph) then if (allocated(zqss)) deallocate(zqss) allocate(zqss(natmtot)) do ias=1,natmtot is=idxis(ias) ia=idxia(ias) t1=-0.5d0*dot_product(vqcss(1:3),atposc(1:3,ia,is)) zqss(ias)=cmplx(cos(t1),sin(t1),8) end do end if !-------------------------! ! force variables ! !-------------------------! if (tforce) then if (allocated(forcehf)) deallocate(forcehf) allocate(forcehf(3,natmtot)) if (allocated(forcetot)) deallocate(forcetot) allocate(forcetot(3,natmtot)) end if !-------------------------------------------------! ! DFT+U and fixed tensor moment variables ! !-------------------------------------------------! if ((dftu /= 0).or.(ftmtype /= 0)) then ! density matrix elements in each muffin-tin if (allocated(dmatmt)) deallocate(dmatmt) allocate(dmatmt(lmmaxdm,nspinor,lmmaxdm,nspinor,natmtot)) ! potential matrix elements in each muffin-tin if (allocated(vmatmt)) deallocate(vmatmt) allocate(vmatmt(lmmaxdm,nspinor,lmmaxdm,nspinor,natmtot)) ! zero the potential matrix vmatmt(:,:,:,:,:)=0.d0 ! matrix elements in spherical coordinates for TDDFT+U if (any(task == [460,461,462,463,478])) then if (allocated(vmatmti)) deallocate(vmatmti) allocate(vmatmti(lmmaxi,lmmaxi,nspinor,nspinor,natmtot)) if (allocated(vmatmto)) deallocate(vmatmto) allocate(vmatmto(lmmaxo,lmmaxo,nspinor,nspinor,natmtot)) end if ! require the potential matrix elements be calculated tvmatmt=.true. ! flags for non-zero muffin-tin potential matrices if (allocated(tvmmt)) deallocate(tvmmt) allocate(tvmmt(0:lmaxdm,natmtot)) tvmmt(:,:)=.false. ! require second-variational eigenvectors tevecsv=.true. end if if (dftu /= 0) then if (any(task == [5,300,600,610,620,640])) then write(*,*) write(*,'("Error(init0): DFT+U does not work with task ",I8)') task write(*,*) stop end if ! DFT+U energy for each atom if (allocated(engyadu)) deallocate(engyadu) allocate(engyadu(natmmax,ndftu)) ! flag the muffin-tin potential matrices which are non-zero do idu=1,ndftu is=isldu(1,idu) if (is > nspecies) then write(*,*) write(*,'("Error(init0): invalid species number : ",I8)') is write(*,*) stop end if l=isldu(2,idu) do ia=1,natoms(is) ias=idxas(ia,is) tvmmt(l,ias)=.true. end do end do ! zero the initial values of screening length lamdu0(:)=0.d0 ! write to VARIABLES.OUT if (wrtvars) then call writevars('udufix',nv=ndftu,rva=udufix) end if end if if (ftmtype /= 0) then ! allocate and zero the fixed tensor moment potential array if (allocated(vmftm)) deallocate(vmftm) allocate(vmftm(lmmaxdm,nspinor,lmmaxdm,nspinor,natmtot)) vmftm(:,:,:,:,:)=0.d0 ! flag the muffin-tin potential matrices which are non-zero do i=1,ntmfix is=itmfix(1,i) ia=itmfix(2,i) ias=idxas(ia,is) l=itmfix(3,i) tvmmt(l,ias)=.true. end do end if !-----------------------! ! miscellaneous ! !-----------------------! ! determine nuclear radii and volumes call nuclei ! determine the nuclear-nuclear energy call energynn ! get smearing function description call getsdata(stype,sdescr) ! get mixing type description call getmixdata(mixtype,mixdescr) ! generate the spherical harmonic transform (SHT) matrices call genshtmat ! find the maximum size of the spherical Bessel function array over all species call findnjcmax ! allocate 1D plotting arrays if (allocated(dvp1d)) deallocate(dvp1d) allocate(dvp1d(nvp1d)) if (allocated(vplp1d)) deallocate(vplp1d) allocate(vplp1d(3,npp1d)) if (allocated(dpp1d)) deallocate(dpp1d) allocate(dpp1d(npp1d)) ! initial self-consistent loop number iscl=1 tlast=.false. ! set the Fermi energy to zero efermi=0.d0 ! set the temperature from the smearing width tempk=swidth/kboltz call timesec(ts1) timeinit=timeinit+ts1-ts0 end subroutine !EOC elk-10.4.9/src/PaxHeaders/readstate.f900000644000000000000000000000013214762655564014545 xustar0030 mtime=1741380468.948010969 30 atime=1741380467.396002855 30 ctime=1741380468.948010969 elk-10.4.9/src/readstate.f900000644002504400250440000002420214762655564017267 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: readstate ! !INTERFACE: subroutine readstate ! !USES: use modmain use moddftu ! !DESCRIPTION: ! Reads in the charge density and other relevant variables from the file ! {\tt STATE.OUT}. Checks for version and parameter compatibility. ! ! !REVISION HISTORY: ! Created May 2003 (JKD) !EOP !BOC implicit none ! local variables logical spinpol_ integer is,ia,ias,lmmax,lm,ir,jr integer idm,jdm,mapidm(3),ios integer i1,i2,i3,j1,j2,j3,n integer version_(3) integer nspecies_,natoms_,lmmaxo_ integer nrmt_(maxspecies),nrmtmax_ integer nrcmt_(maxspecies),nrcmtmax_ integer ngridg_(3),ngtot_,ngvec_ integer ndmag_,nspinor_,fsmtype_,ftmtype_ integer dftu_,lmmaxdm_,xcgrad_ real(8) t1 ! allocatable arrays integer, allocatable :: mapir(:) real(8), allocatable :: rsp_(:,:),rcmt_(:,:) real(8), allocatable :: wcrmt_(:,:,:),wcrcmt_(:,:,:) real(8), allocatable :: rfmt_(:,:,:),rfir_(:) real(8), allocatable :: rvfmt_(:,:,:,:),rvfir_(:,:) real(8), allocatable :: rvfcmt_(:,:,:,:),rfmt(:,:) real(8), allocatable :: bfsmcmt_(:,:),fi(:),fo(:) complex(8), allocatable :: vsig_(:) complex(8), allocatable :: vmatmt_(:,:,:,:,:),vmftm_(:,:,:,:,:) open(100,file='STATE'//trim(filext),form='UNFORMATTED',action='READ', & status='OLD',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readstate): error opening ",A)') 'STATE'//trim(filext) write(*,*) stop end if read(100) version_ if (version_(1) < 2) then write(*,*) write(*,'("Error(readstate): unable to read STATE.OUT from versions earlier & &than 2.0.0")') write(*,*) stop end if if (any(version(:) /= version_(:))) then write(*,*) write(*,'("Warning(readstate): different versions")') write(*,'(" current : ",I0,".",I0,".",I0)') version write(*,'(" STATE.OUT : ",I0,".",I0,".",I0)') version_ end if read(100) spinpol_ read(100) nspecies_ if (nspecies /= nspecies_) then write(*,*) write(*,'("Error(readstate): differing nspecies")') write(*,'(" current : ",I4)') nspecies write(*,'(" STATE.OUT : ",I4)') nspecies_ write(*,*) stop end if read(100) lmmaxo_ lmmax=min(lmmaxo,lmmaxo_) read(100) nrmtmax_ read(100) nrcmtmax_ allocate(rsp_(nrmtmax_,nspecies)) allocate(rcmt_(nrcmtmax_,nspecies)) do is=1,nspecies read(100) natoms_ if (natoms(is) /= natoms_) then write(*,*) write(*,'("Error(readstate): differing natoms for species ",I4)') is write(*,'(" current : ",I4)') natoms(is) write(*,'(" STATE.OUT : ",I4)') natoms_ write(*,*) stop end if read(100) nrmt_(is) read(100) rsp_(1:nrmt_(is),is) read(100) nrcmt_(is) read(100) rcmt_(1:nrcmt_(is),is) end do read(100) ngridg_ read(100) ngvec_ read(100) ndmag_ if ((spinpol_).and.(ndmag_ /= 1).and.(ndmag_ /= 3)) then write(*,*) write(*,'("Error(readstate): invalid ndmag in STATE.OUT : ",I8)') ndmag_ write(*,*) stop end if read(100) nspinor_ read(100) fsmtype_ if ((version_(1) > 2).or.(version_(2) >= 3)) then read(100) ftmtype_ else ftmtype_=0 end if read(100) dftu_ read(100) lmmaxdm_ if ((version_(1) > 5).or.((version_(1) == 5).and.(version_(2) >= 1))) then read(100) xcgrad_ else xcgrad_=0 end if if ((version_(1) >= 10).or.((version_(1) == 9).and.(version_(2) >= 6))) then read(100) efermi else call readfermi end if ngtot_=ngridg_(1)*ngridg_(2)*ngridg_(3) ! map from old interstitial grid to new allocate(mapir(ngtot)) do i3=0,ngridg(3)-1 t1=dble(i3*ngridg_(3))/dble(ngridg(3)) j3=modulo(nint(t1),ngridg_(3)) do i2=0,ngridg(2)-1 t1=dble(i2*ngridg_(2))/dble(ngridg(2)) j2=modulo(nint(t1),ngridg_(2)) do i1=0,ngridg(1)-1 t1=dble(i1*ngridg_(1))/dble(ngridg(1)) j1=modulo(nint(t1),ngridg_(1)) jr=j3*ngridg_(2)*ngridg_(1)+j2*ngridg_(1)+j1+1 ir=i3*ngridg(2)*ngridg(1)+i2*ngridg(1)+i1+1 mapir(ir)=jr end do end do end do ! determine the spline coefficient weights on the old radial mesh allocate(wcrmt_(12,nrmtmax_,nspecies)) allocate(wcrcmt_(12,nrcmtmax_,nspecies)) do is=1,nspecies call wspline(nrmt_(is),rsp_(:,is),wcrmt_(:,:,is)) call wspline(nrcmt_(is),rcmt_(:,is),wcrcmt_(:,:,is)) end do allocate(rfmt_(lmmaxo_,nrmtmax_,natmtot),rfir_(ngtot_)) allocate(rfmt(lmmaxo,nrmtmax)) n=max(nrmtmax,nrmtmax_) allocate(fi(n),fo(n)) ! read the muffin-tin density read(100) rfmt_,rfir_ ! regrid and pack the muffin-tin function call rgfmt(rhomt) ! regrid the interstitial function rhoir(1:ngtot)=rfir_(mapir(1:ngtot)) ! read the Coulomb potential, regrid and pack read(100) rfmt_,rfir_ call rgfmt(vclmt) vclir(1:ngtot)=rfir_(mapir(1:ngtot)) ! read the exchange-correlation potential, regrid and pack read(100) rfmt_,rfir_ call rgfmt(vxcmt) vxcir(1:ngtot)=rfir_(mapir(1:ngtot)) ! read the Kohn-Sham effective potential, regrid and pack if ((version_(1) > 2).or.(version_(2) >= 2)) then read(100) rfmt_,rfir_ else allocate(vsig_(ngvec_)) read(100) rfmt_,rfir_,vsig_ deallocate(vsig_) end if call rgfmt(vsmt) vsir(1:ngtot)=rfir_(mapir(1:ngtot)) ! compute the Kohn-Sham potential on coarse interstitial grid call rfirftoc(vsir,vsirc) ! read the magnetisation, exchange-correlation and effective magnetic fields if (spinpol_) then ! component map for spin-polarised case mapidm(:)=0 if (ndmag == ndmag_) then do idm=1,ndmag mapidm(idm)=idm end do else mapidm(ndmag)=ndmag_ end if allocate(rvfmt_(lmmaxo_,nrmtmax_,natmtot,ndmag_)) allocate(rvfir_(ngtot_,ndmag_)) allocate(rvfcmt_(lmmaxo_,nrcmtmax_,natmtot,ndmag_)) read(100) rvfmt_,rvfir_ call rgvfmt(magmt) call rgvir(magir) read(100) rvfmt_,rvfir_ call rgvfmt(bxcmt) call rgvir(bxcir) read(100) rvfcmt_,rvfir_ call rgvfcmt(bsmt) call rgvir(bsir) ! compute the Kohn-Sham magnetic field on coarse interstitial grid do idm=1,ndmag call rfirftoc(bsir(:,idm),bsirc(:,idm)) end do deallocate(rvfmt_,rvfir_,rvfcmt_) ! read fixed spin moment effective fields if (fsmtype_ /= 0) then allocate(bfsmcmt_(3,natmtot)) read(100) bfsmc read(100) bfsmcmt_ if (fsmtype /= 0) bfsmcmt(:,:)=bfsmcmt_(:,:) ! make sure that the constraining fields are perpendicular to the fixed moments ! for fixed direction calculations (Y. Kvashnin and LN) if (fsmtype < 0) then if (ncmag) then call r3vo(momfix,bfsmc) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) call r3vo(mommtfix(:,ia,is),bfsmcmt(:,ias)) end do end do else bfsmc(:)=0.d0 bfsmcmt(:,:)=0.d0 end if end if deallocate(bfsmcmt_) end if end if if (any(xcgrad == [3,4,5])) then if (any(xcgrad_ == [3,4,5])) then read(100) rfmt_,rfir_ call rgfmt(wxcmt) wxcir(1:ngtot)=rfir_(mapir(1:ngtot)) else wxcmt(:,:)=0.d0 wxcir(1:ngtot)=0.d0 end if end if deallocate(wcrmt_,wcrcmt_,rfmt_,rfir_,rfmt,fi,fo) ! read DFT+U potential matrix in each muffin-tin if (((dftu /= 0).and.(dftu_ /= 0)).or. & ((ftmtype /= 0).and.(ftmtype_ /= 0))) then allocate(vmatmt_(lmmaxdm_,nspinor_,lmmaxdm_,nspinor_,natmtot)) read(100) vmatmt_ lmmax=min(lmmaxdm,lmmaxdm_) vmatmt(:,:,:,:,:)=0.d0 if (nspinor == nspinor_) then vmatmt(1:lmmax,:,1:lmmax,:,:)=vmatmt_(1:lmmax,:,1:lmmax,:,:) else if ((nspinor == 1).and.(nspinor_ == 2)) then vmatmt(1:lmmax,1,1:lmmax,1,:)=0.5d0*(vmatmt_(1:lmmax,1,1:lmmax,1,:) & +vmatmt_(1:lmmax,2,1:lmmax,2,:)) else vmatmt(1:lmmax,1,1:lmmax,1,:)=vmatmt_(1:lmmax,1,1:lmmax,1,:) vmatmt(1:lmmax,2,1:lmmax,2,:)=vmatmt_(1:lmmax,1,1:lmmax,1,:) end if deallocate(vmatmt_) end if ! read fixed tensor moment potential matrix elements if ((ftmtype /= 0).and.(ftmtype_ /= 0)) then allocate(vmftm_(lmmaxdm_,nspinor_,lmmaxdm_,nspinor_,natmtot)) read(100) vmftm_ lmmax=min(lmmaxdm,lmmaxdm_) vmftm_(:,:,:,:,:)=0.d0 if (nspinor == nspinor_) then vmftm(1:lmmax,:,1:lmmax,:,:)=vmftm_(1:lmmax,:,1:lmmax,:,:) else if ((nspinor == 1).and.(nspinor_ == 2)) then vmftm(1:lmmax,1,1:lmmax,1,:)=0.5d0*(vmftm_(1:lmmax,1,1:lmmax,1,:) & +vmftm_(1:lmmax,2,1:lmmax,2,:)) else vmftm(1:lmmax,1,1:lmmax,1,:)=vmftm_(1:lmmax,1,1:lmmax,1,:) vmftm(1:lmmax,2,1:lmmax,2,:)=vmftm_(1:lmmax,1,1:lmmax,1,:) end if deallocate(vmftm_) end if close(100) return contains subroutine rgfmt(rfmtp) implicit none ! arguments real(8), intent(out) :: rfmtp(npmtmax,natmtot) do ias=1,natmtot is=idxis(ias) ! regrid the muffin-tin function do lm=1,lmmax fi(1:nrmt_(is))=rfmt_(lm,1:nrmt_(is),ias) call rfinterp(nrmt_(is),rsp_(:,is),wcrmt_(:,:,is),fi,nrmt(is),rsp(:,is),fo) rfmt(lm,1:nrmt(is))=fo(1:nrmt(is)) end do rfmt(lmmax+1:lmmaxo,1:nrmt(is))=0.d0 ! pack the muffin-tin function call rfmtpack(.true.,nrmt(is),nrmti(is),rfmt,rfmtp(:,ias)) end do end subroutine subroutine rgvfmt(rvfmt) implicit none ! arguments real(8), intent(out) :: rvfmt(npmtmax,natmtot,ndmag) do idm=1,ndmag jdm=mapidm(idm) if (jdm == 0) then rvfmt(:,:,idm)=0.d0 cycle end if do ias=1,natmtot is=idxis(ias) do lm=1,lmmax fi(1:nrmt_(is))=rvfmt_(lm,1:nrmt_(is),ias,jdm) call rfinterp(nrmt_(is),rsp_(:,is),wcrmt_(:,:,is),fi,nrmt(is),rsp(:,is), & fo) rfmt(lm,1:nrmt(is))=fo(1:nrmt(is)) end do rfmt(lmmax+1:lmmaxo,1:nrmt(is))=0.d0 call rfmtpack(.true.,nrmt(is),nrmti(is),rfmt,rvfmt(:,ias,idm)) end do end do end subroutine subroutine rgvfcmt(rvfcmt) implicit none ! arguments real(8), intent(out) :: rvfcmt(npcmtmax,natmtot,ndmag) do idm=1,ndmag jdm=mapidm(idm) if (jdm == 0) then rvfcmt(:,:,idm)=0.d0 cycle end if do ias=1,natmtot is=idxis(ias) do lm=1,lmmax fi(1:nrcmt_(is))=rvfcmt_(lm,1:nrcmt_(is),ias,jdm) call rfinterp(nrcmt_(is),rcmt_(:,is),wcrcmt_(:,:,is),fi,nrcmt(is), & rcmt(:,is),fo) rfmt(lm,1:nrcmt(is))=fo(1:nrcmt(is)) end do rfmt(lmmax+1:lmmaxo,1:nrcmt(is))=0.d0 call rfmtpack(.true.,nrcmt(is),nrcmti(is),rfmt,rvfcmt(:,ias,idm)) end do end do end subroutine subroutine rgvir(rvfir) implicit none ! arguments real(8), intent(out) :: rvfir(ngtot,ndmag) do idm=1,ndmag jdm=mapidm(idm) if (jdm /= 0) then rvfir(1:ngtot,idm)=rvfir_(mapir(1:ngtot),jdm) else rvfir(1:ngtot,idm)=0.d0 end if end do end subroutine end subroutine !EOC elk-10.4.9/src/PaxHeaders/eveqnhf.f900000644000000000000000000000013014762655564014223 xustar0029 mtime=1741380468.95001098 30 atime=1741380467.399002871 29 ctime=1741380468.95001098 elk-10.4.9/src/eveqnhf.f900000644002504400250440000001466214762655564016760 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnhf(ikp,vmt,vir,bmt,bir,evecsvp) use modmain use modomp implicit none ! arguments integer, intent(in) :: ikp real(8), intent(in) :: vmt(npcmtmax,natmtot),vir(ngtc) real(8), intent(in) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag) complex(8), intent(inout) :: evecsvp(nstsv,nstsv) ! local variables integer ik,jk,nst integer ist1,ist2,ist3,jst3 integer iv(3),iq,ig,nthd real(8) vc(3),t1 complex(8) z1 ! automatic arrays integer idx(nstsv) real(8) vgqc(3,ngvc),gqc(ngvc),gclgq(ngvc) ! allocatable arrays real(8), allocatable :: jlgqrmt(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(8), allocatable :: h(:,:),v(:,:),kmat(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:,:),crhoir(:,:) complex(4), allocatable :: cvclmt(:,:),cvclir(:) ! external functions complex(8), external :: zcfinp !$OMP CRITICAL(eveqnhf_) write(*,'("Info(eveqnhf): ",I6," of ",I6," k-points")') ikp,nkpt !$OMP END CRITICAL(eveqnhf_) ! allocate local arrays allocate(jlgqrmt(0:lnpsd,ngvc,nspecies)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(ylmgq(lmmaxo,ngvc),sfacgq(ngvc,natmtot)) allocate(h(nstsv,nstsv),v(nstsv,nstsv)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(crhomt(npcmtmax,natmtot,nstsv),crhoir(ngtc,nstsv)) ! get the first-variational eigenvectors from file for input reduced k-point call getevecfv(filext,ikp,vkl(:,ikp),vgkl(:,:,1,ikp),evecfv) ! find the matching coefficients call match(ngk(1,ikp),vgkc(:,:,1,ikp),gkc(:,1,ikp),sfacgk(:,:,1,ikp),apwalm) ! calculate the wavefunctions for all states of the input k-point call genwfsv_sp(.false.,.true.,nstsv,[0],ngdgc,igfc,ngk(1,ikp),igkig(:,1,ikp), & apwalm,evecfv,evecsvp,wfmt1,ngtc,wfir1) !-----------------------------------------! ! local potential matrix elements ! !-----------------------------------------! if (hybrid.and.spinpol) then ! magnetic field matrix elements in hybrid case call genvbmatk(vmt,vir,bmt,bir,ngk(1,ikp),igkig(:,1,ikp),wfmt1,ngtc,wfir1,h) else call genvmatk(vmt,vir,ngk(1,ikp),igkig(:,1,ikp),wfmt1,ngtc,wfir1,h) end if ! Fourier transform wavefunctions to real-space call cftwfir(ngk(1,ikp),igkig(:,1,ikp),wfir1) !---------------------------------! ! kinetic matrix elements ! !---------------------------------! allocate(kmat(nstsv,nstsv)) call getkmat(ikp,kmat) call zgemm('N','N',nstsv,nstsv,nstsv,zone,kmat,nstsv,evecsvp,nstsv,zzero,v, & nstsv) call zgemm('C','N',nstsv,nstsv,nstsv,zone,evecsvp,nstsv,v,nstsv,zone,h,nstsv) deallocate(kmat) !------------------------------! ! Fock matrix elements ! !------------------------------! v(:,:)=0.d0 ! loop over non-reduced k-point set do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! determine the q-vector iv(:)=ivk(:,ikp)-ivk(:,ik) iv(:)=modulo(iv(:),ngridk(:)) ! check if the q-point is in user-defined set iv(:)=iv(:)*ngridq(:) if (any(mod(iv(:),ngridk(:)) /= 0)) cycle iv(:)=iv(:)/ngridk(:) iq=ivqiq(iv(1),iv(2),iv(3)) vc(:)=vkc(:,ikp)-vkc(:,ik) do ig=1,ngvc ! determine the G+q-vectors vgqc(1:3,ig)=vgc(1:3,ig)+vc(1:3) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(.true.,lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! structure factors for G+q call gensfacgp(ngvc,vgqc,ngvc,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngvc,gqc,gclgq) ! compute the required spherical Bessel functions call genjlgprmt(lnpsd,ngvc,gqc,ngvc,jlgqrmt) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! get the eigenvectors from file for non-reduced k-point call getevecfv(filext,0,vkl(:,ik),vgkl(:,:,1,ik),evecfv) call getevecsv(filext,0,vkl(:,ik),evecsv) ! count and index occupied states nst=0 do ist3=1,nstsv if (abs(occsv(ist3,jk)) < epsocc) cycle nst=nst+1 idx(nst)=ist3 end do ! calculate the wavefunctions for occupied states call genwfsv_sp(.false.,.false.,nst,idx,ngdgc,igfc,ngk(1,ik),igkig(:,1,ik), & apwalm,evecfv,evecsv,wfmt2,ngtc,wfir2) call holdthd(nstsv,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(cvclmt,cvclir) & !$OMP PRIVATE(ist1,ist2,ist3,jst3,t1,z1) & !$OMP NUM_THREADS(nthd) allocate(cvclmt(npcmtmax,natmtot),cvclir(ngtc)) do ist3=1,nst jst3=idx(ist3) ! calculate the complex overlap densities for all states (T. McQueen) !$OMP DO SCHEDULE(DYNAMIC) do ist1=1,nstsv call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist3),wfir2(:,:,ist3), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt(:,:,ist1),crhoir(:,ist1)) end do !$OMP END DO t1=wqptnr*occsv(jst3,jk)/occmax !$OMP DO SCHEDULE(DYNAMIC) do ist2=1,nstsv ! calculate the Coulomb potential call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax, & crhomt(:,:,ist2),cvclmt) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gqc, & gclgq,ngvc,jlgqrmt,ylmgq,sfacgq,crhoir(:,ist2),npcmtmax,cvclmt,cvclir) cvclir(:)=cvclir(:)*cfrc(:) do ist1=1,ist2 z1=zcfinp(crhomt(:,:,ist1),crhoir(:,ist1),cvclmt,cvclir) v(ist1,ist2)=v(ist1,ist2)-t1*z1 end do end do !$OMP END DO end do deallocate(cvclmt,cvclir) !$OMP END PARALLEL call freethd(nthd) ! end loop over non-reduced k-point set end do deallocate(jlgqrmt,ylmgq,sfacgq,apwalm,evecfv) deallocate(wfmt1,wfir1,wfmt2,wfir2,crhomt,crhoir) ! scale the Coulomb matrix elements in the case of a hybrid functional if (hybrid) v(:,:)=hybridc*v(:,:) ! add the Coulomb matrix elements to Hamiltonian h(:,:)=h(:,:)+v(:,:) !----------------------------------------------! ! diagonalise Hartree-Fock Hamiltonian ! !----------------------------------------------! call eveqnzh(nstsv,nstsv,h,evalsv(:,ikp)) ! apply unitary transformation to the third-variational states so that they ! refer to the first-variational basis evecsv(:,:)=evecsvp(:,:) call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,h,nstsv,zzero,evecsvp, & nstsv) deallocate(evecsv,h,v) end subroutine elk-10.4.9/src/PaxHeaders/zbsht.f900000644000000000000000000000013214762655564013723 xustar0030 mtime=1741380468.951010985 30 atime=1741380467.401002881 30 ctime=1741380468.951010985 elk-10.4.9/src/zbsht.f900000644002504400250440000000261614762655564016452 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zbsht ! !INTERFACE: subroutine zbsht(nr,nri,zfmt1,zfmt2) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on the inner part of the muffin-tin (in,integer) ! zfmt1 : input complex muffin-tin function in spherical harmonics ! (in,complex(*)) ! zfmt2 : output complex muffin-tin function in spherical coordinates ! (out,complex(*)) ! !DESCRIPTION: ! Performs a backward spherical harmonic transform (SHT) on a complex ! muffin-tin function expressed in spherical harmonics to obtain a function in ! spherical coordinates. See also {\tt genshtmat} and {\tt zfsht}. ! ! !REVISION HISTORY: ! Created October 2013 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri complex(8), intent(in) :: zfmt1(*) complex(8), intent(out) :: zfmt2(*) ! local variables integer i ! transform the inner part of the muffin-tin call zgemm('N','N',lmmaxi,nri,lmmaxi,zone,zbshti,lmmaxi,zfmt1,lmmaxi,zzero, & zfmt2,lmmaxi) ! transform the outer part of the muffin-tin i=lmmaxi*nri+1 call zgemm('N','N',lmmaxo,nr-nri,lmmaxo,zone,zbshto,lmmaxo,zfmt1(i),lmmaxo, & zzero,zfmt2(i),lmmaxo) end subroutine !EOC elk-10.4.9/src/PaxHeaders/i3mtv.f900000644000000000000000000000013014762655564013631 xustar0029 mtime=1741380468.95201099 30 atime=1741380467.404002897 29 ctime=1741380468.95201099 elk-10.4.9/src/i3mtv.f900000644002504400250440000000143714762655564016362 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: i3mtv ! !INTERFACE: pure subroutine i3mtv(a,x,y) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix (in,integer(3,3)) ! x : input vector (in,integer(3)) ! y : output vector (out,integer(3)) ! !DESCRIPTION: ! Multiplies the transpose of an integer $3\times 3$ matrix with a vector. ! ! !REVISION HISTORY: ! Created April 2007 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: a(3,3),x(3) integer, intent(out) :: y(3) y(1)=a(1,1)*x(1)+a(2,1)*x(2)+a(3,1)*x(3) y(2)=a(1,2)*x(1)+a(2,2)*x(2)+a(3,2)*x(3) y(3)=a(1,3)*x(1)+a(2,3)*x(2)+a(3,3)*x(3) end subroutine !EOC elk-10.4.9/src/PaxHeaders/spline.f900000644000000000000000000000012414762655564014064 xustar0027 mtime=1741380468.954011 30 atime=1741380467.407002913 27 ctime=1741380468.954011 elk-10.4.9/src/spline.f900000644002504400250440000000564614762655564016620 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: spline ! !INTERFACE: subroutine spline(n,x,f,cf) ! !INPUT/OUTPUT PARAMETERS: ! n : number of points (in,integer) ! x : abscissa array (in,real(n)) ! f : input data array (in,real(n)) ! cf : cubic spline coefficients (out,real(3,n)) ! !DESCRIPTION: ! Calculates the coefficients of a cubic spline fitted to input data. In other ! words, given a set of data points $f_i$ defined at $x_i$, where ! $i=1\ldots n$, the coefficients $c_j^i$ are determined such that ! $$ y_i(x)=f_i+c_1^i(x-x_i)+c_2^i(x-x_i)^2+c_3^i(x-x_i)^3, $$ ! is the interpolating function for $x\in[x_i,x_{i+1})$. The coefficients are ! determined piecewise by fitting a cubic polynomial to adjacent points. ! ! !REVISION HISTORY: ! Created November 2011 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: x(n),f(n) real(8), intent(out) :: cf(3,n) ! local variables integer i real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) t0,t1,t2,t3,t4,t5,t6,t7 if (n < 1) then write(*,*) write(*,'("Error(spline): n < 1 : ",I8)') n write(*,*) stop end if if (n == 1) then cf(1:3,1)=0.d0 return end if if (n == 2) then cf(1,1)=(f(2)-f(1))/(x(2)-x(1)) cf(2:3,1)=0.d0 cf(1,2)=cf(1,1) cf(2:3,2)=0.d0 return end if if (n == 3) then x0=x(1) x1=x(2)-x0; x2=x(3)-x0 y0=f(1) y1=f(2)-y0; y2=f(3)-y0 t0=1.d0/(x1*x2*(x2-x1)) t3=x1*y2; t4=x2*y1 t1=t0*(x2*t4-x1*t3) t2=t0*(t3-t4) cf(1,1)=t1 cf(2,1)=t2 cf(3,1)=0.d0 t3=2.d0*t2 cf(1,2)=t1+t3*x1 cf(2,2)=t2 cf(3,2)=0.d0 cf(1,3)=t1+t3*x2 cf(2,3)=t2 cf(3,3)=0.d0 return end if x0=x(1) x1=x(2)-x0; x2=x(3)-x0; x3=x(4)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3 y0=f(1) y1=f(2)-y0; y2=f(3)-y0; y3=f(4)-y0 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 t7=t0*(t1*t4+t2*t6-t3*t5) t4=x1**2; t5=x2**2; t6=x3**2 y1=t3*t6-t1*t5; y3=t2*t5-t3*t4; y2=t1*t4-t2*t6 t1=t0*(x1*y1+x2*y2+x3*y3) t2=-t0*(y1+y2+y3) cf(1,1)=t1; cf(2,1)=t2; cf(3,1)=t7 cf(1,2)=t1+2.d0*t2*x1+3.d0*t7*t4 cf(2,2)=t2+3.d0*t7*x1 cf(3,2)=t7 if (n == 4) then cf(1,3)=t1+2.d0*t2*x2+3.d0*t7*t5 cf(2,3)=t2+3.d0*t7*x2 cf(3,3)=t7 cf(1,4)=t1+2.d0*t2*x3+3.d0*t7*t6 cf(2,4)=t2+3.d0*t7*x3 cf(3,4)=t7 return end if do i=3,n-2 x0=x(i) x1=x(i-1)-x0; x2=x(i+1)-x0; x3=x(i+2)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3 y0=f(i) y1=f(i-1)-y0; y2=f(i+1)-y0; y3=f(i+2)-y0 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 t7=t0*(t1*t4+t2*t6-t3*t5) t4=x1**2; t5=x2**2; t6=x3**2 y1=t3*t6-t1*t5; y2=t1*t4-t2*t6; y3=t2*t5-t3*t4 t1=t0*(x1*y1+x2*y2+x3*y3) t2=-t0*(y1+y2+y3) cf(1,i)=t1; cf(2,i)=t2; cf(3,i)=t7 end do cf(1,n-1)=t1+2.d0*t2*x2+3.d0*t7*t5 cf(2,n-1)=t2+3.d0*t7*x2 cf(3,n-1)=t7 cf(1,n)=t1+2.d0*t2*x3+3.d0*t7*t6 cf(2,n)=t2+3.d0*t7*x3 cf(3,n)=t7 end subroutine !EOC elk-10.4.9/src/PaxHeaders/gauntyry.f900000644000000000000000000000013214762655564014453 xustar0030 mtime=1741380468.955011006 30 atime=1741380467.409002923 30 ctime=1741380468.955011006 elk-10.4.9/src/gauntyry.f900000644002504400250440000000276514762655564017207 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gauntyry ! !INTERFACE: complex(8) function gauntyry(l1,l2,l3,m1,m2,m3) ! !INPUT/OUTPUT PARAMETERS: ! l1, l2, l3 : angular momentum quantum numbers (in,integer) ! m1, m2, m3 : magnetic quantum numbers (in,integer) ! !DESCRIPTION: ! Returns the complex Gaunt-like coefficient given by ! $\langle Y^{l_1}_{m_1}|R^{l_2}_{m_2}|Y^{l_3}_{m_3}\rangle$, where $Y_{lm}$ ! and $R_{lm}$ are the complex and real spherical harmonics, respectively. ! Suitable for $l_i$ less than 50. See routine {\tt genrlm}. ! ! !REVISION HISTORY: ! Created November 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: l1,l2,l3 integer, intent(in) :: m1,m2,m3 ! local variables ! real constant sqrt(2)/2 real(8), parameter :: c1=0.7071067811865475244d0 real(8) t1 ! external functions real(8), external :: gaunt if (m2 > 0) then if (mod(m2,2) == 0) then t1=c1*(gaunt(l1,l2,l3,m1,m2,m3)+gaunt(l1,l2,l3,m1,-m2,m3)) else t1=c1*(gaunt(l1,l2,l3,m1,m2,m3)-gaunt(l1,l2,l3,m1,-m2,m3)) end if gauntyry=t1 else if (m2 < 0) then if (mod(m2,2) == 0) then t1=c1*(gaunt(l1,l2,l3,m1,m2,m3)-gaunt(l1,l2,l3,m1,-m2,m3)) else t1=c1*(gaunt(l1,l2,l3,m1,m2,m3)+gaunt(l1,l2,l3,m1,-m2,m3)) end if gauntyry=cmplx(0.d0,-t1,8) else gauntyry=gaunt(l1,l2,l3,m1,m2,m3) end if end function !EOC elk-10.4.9/src/PaxHeaders/findnjcmax.f900000644000000000000000000000013214762655564014712 xustar0030 mtime=1741380468.956011011 30 atime=1741380467.412002939 30 ctime=1741380468.956011011 elk-10.4.9/src/findnjcmax.f900000644002504400250440000000074414762655564017441 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine findnjcmax use modmain implicit none ! local variables integer is,n ! find the maximum size of the spherical Bessel function array over all species njcmax=1 do is=1,nspecies n=(lmaxi+1)*nrcmti(is)+(lmaxo+1)*(nrcmt(is)-nrcmti(is)) if (n > njcmax) njcmax=n end do end subroutine elk-10.4.9/src/PaxHeaders/gndstate.f900000644000000000000000000000013114762655564014401 xustar0030 mtime=1741380468.957011016 29 atime=1741380467.41400295 30 ctime=1741380468.957011016 elk-10.4.9/src/gndstate.f900000644002504400250440000002741614762655564017136 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2013 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gndstate ! !INTERFACE: subroutine gndstate ! !USES: use modmain use moddftu use modulr use modgw use modmpi use modomp use modvars use modramdisk ! !DESCRIPTION: ! Computes the self-consistent Kohn-Sham ground-state. General information is ! written to the file {\tt INFO.OUT}. First- and second-variational ! eigenvalues, eigenvectors and occupation numbers are written to the ! unformatted files {\tt EVALFV.OUT}, {\tt EVALSV.OUT}, {\tt EVECFV.OUT}, ! {\tt EVECSV.OUT} and {\tt OCCSV.OUT}. The density, magnetisation, Kohn-Sham ! potential and magnetic field are written to {\tt STATE.OUT}. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) ! Added MPI, August 2010 (JKD) !EOP !BOC implicit none ! local variables logical twrite integer ik,iscl0,nmix,nwork real(8) dv,etp,de,timetot character(64) str ! allocatable arrays real(8), allocatable :: work(:) ! initialise global variables call init0 ! initialise k- and G+k-vector-dependent variables call init1 ! initialise q-vector-dependent variables if required if ((xctype(1) < 0).or.ksgwrho) call init2 ! initialise GW variables if required if (ksgwrho) call init3 wrtdsk0=wrtdsk if (task == 0) trdstate=.false. if (task == 1) trdstate=.true. ! only the MPI master process should write files if (mp_mpi) then ! write the real and reciprocal lattice vectors to file call writelat ! write symmetry matrices to file call writesym ! output the k-point set to file call writekpts ! write lattice vectors and atomic positions to file open(50,file='GEOMETRY'//trim(filext),form='FORMATTED') call writegeom(50) close(50) ! write interatomic distances to file open(50,file='IADIST'//trim(filext),form='FORMATTED') call writeiad(50) close(50) ! open INFO.OUT file open(60,file='INFO'//trim(filext),form='FORMATTED') ! write out general information to INFO.OUT call writeinfo(60) write(60,*) ! open TOTENERGY.OUT open(61,file='TOTENERGY'//trim(filext),form='FORMATTED') ! open FERMIDOS.OUT open(62,file='FERMIDOS'//trim(filext),form='FORMATTED') ! open MOMENT.OUT if required if (spinpol) open(63,file='MOMENT'//trim(filext),form='FORMATTED') ! open GAP.OUT open(64,file='GAP'//trim(filext),form='FORMATTED') ! open RMSDVS.OUT open(65,file='RMSDVS'//trim(filext),form='FORMATTED') ! open DTOTENERGY.OUT open(66,file='DTOTENERGY'//trim(filext),form='FORMATTED') ! open MOMENTM.OUT if (spinpol) open(68,file='MOMENTM'//trim(filext),form='FORMATTED') ! open RESIDUAL.OUT if (xctype(1) < 0) open(69,file='RESIDUAL'//trim(filext),form='FORMATTED') end if iscl=0 if (trdstate) then ! read the Kohn-Sham potential and fields from file call readstate if (mp_mpi) then write(60,'("Potential read in from STATE.OUT")') end if else ! initialise the density and magnetisation from atomic data call rhoinit if (spinpol) call maginit ! compute the Kohn-Sham potential and magnetic field call potks(.true.) if (mp_mpi) then write(60,'("Kohn-Sham potential initialised from atomic data")') end if end if if (mp_mpi) flush(60) call genvsig ! size of mixing vector nmix=size(vsbs) ! determine the size of the mixer work array nwork=-1 call mixerifc(mixtype,nmix,vsbs,dv,nwork,vsbs) allocate(work(nwork)) ! initialise the mixer iscl=0 call mixerifc(mixtype,nmix,vsbs,dv,nwork,work) if (mixsave.and.trdstate) then ! read in starting loop and mixer work array from file if required call readmix(iscl0,nwork,work) iscl0=min(iscl0,mixsdb) else ! default starting loop iscl0=1 end if ! set the stop signal to .false. tstop=.false. ! set last self-consistent loop flag tlast=.false. etp=0.d0 ! begin the self-consistent loop if (mp_mpi) then call writebox(60,"Self-consistent loop started") end if do iscl=iscl0,maxscl if (mp_mpi) then write(str,'("Loop number : ",I0)') iscl call writebox(60,trim(str)) end if if (iscl >= maxscl) then if (mp_mpi) then write(60,*) write(60,'("Reached self-consistent loops maximum")') end if if (maxscl > 1) then write(*,*) write(*,'("Warning(gndstate): failed to reach self-consistency after ", & &I4," loops")') iscl end if tlast=.true. end if if (mp_mpi) flush(60) ! always write the eigenvectors to disk on the last loop if (tlast) wrtdsk=.true. ! generate the core wavefunctions and densities call gencore ! find the new linearisation energies call linengy ! write out the linearisation energies if (mp_mpi) call writelinen ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! generate the first- and second-variational eigenvectors and eigenvalues call genevfsv ! find the occupation numbers and Fermi energy call occupy if (mp_mpi) then if (autoswidth) then write(60,*) write(60,'("New smearing width : ",G18.10)') swidth end if ! write the occupation numbers to file do ik=1,nkpt call putoccsv(filext,ik,occsv(:,ik)) end do ! write eigenvalues to file call writeeval ! write the Fermi energy to file call writefermi end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! generate the density and magnetisation if (ksgwrho) then ! density calculated from the GW approximation call gwrhomag else ! density calculated directly from the Kohn-Sham states call rhomag end if ! DFT+U or fixed tensor moment calculation if ((dftu /= 0).or.(ftmtype /= 0)) then ! generate the muffin-tin density matrix used for computing the potential matrix call gendmatmt ! write the FTM tensor moments to file if (ftmtype /= 0) call writeftm ! generate the DFT+U or FTM muffin-tin potential matrices call genvmatmt end if if (dftu /= 0) then if (mp_mpi) then ! write the DFT+U matrices to file call writedftu ! calculate and write tensor moments to file if (tmwrite) call writetm3 end if end if ! compute the Kohn-Sham potential and magnetic field call potks(.true.) ! mix the old effective potential and field with the new call mixerifc(mixtype,nmix,vsbs,dv,nwork,work) ! calculate and add the fixed spin moment effective field (after mixing) call bfieldfsm call addbfsm ! Fourier transform Kohn-Sham potential to G-space call genvsig ! reduce the external magnetic fields if required if (reducebf < 1.d0) then bfieldc(:)=bfieldc(:)*reducebf bfcmt(:,:,:)=bfcmt(:,:,:)*reducebf end if ! compute the paramagnetic current density and total current if required if (tjr.and.tlast) then call genjpr call genjtot end if ! compute the energy components call energy if (mp_mpi) then ! output energy components call writeengy(60) write(60,*) write(60,'("Density of states at Fermi energy : ",G18.10)') fermidos write(60,'(" (states/Hartree/unit cell)")') write(60,*) write(60,'("Estimated indirect band gap : ",G18.10)') bandgap(1) write(60,'(" from k-point ",I6," to k-point ",I6)') ikgap(1),ikgap(2) write(60,'("Estimated direct band gap : ",G18.10)') bandgap(2) write(60,'(" at k-point ",I6)') ikgap(3) ! write total energy to TOTENERGY.OUT write(61,'(G22.12)') engytot flush(61) ! write DOS at Fermi energy to FERMIDOS.OUT write(62,'(G18.10)') fermidos flush(62) ! output charges and moments call writechg(60) if (spinpol) then call writemom(60) ! write total moment to MOMENT.OUT write(63,'(3G18.10)') momtot(1:ndmag) flush(63) ! write total moment magnitude to MOMENTM.OUT write(68,'(G18.10)') momtotm flush(68) end if ! write estimated Kohn-Sham indirect band gap write(64,'(G22.12)') bandgap(1) flush(64) ! output effective fields for fixed spin moment calculations if (fsmtype /= 0) call writefsm(60) ! write the average electric field in each muffin-tin if (tefield) call writeefield(60) ! check for existence of the WRITE file call checkwrite(twrite) ! check self-consistent loop number modulo nwrite if (nwrite >= 1) then if (mod(iscl,nwrite) == 0) twrite=.true. end if ! write STATE.OUT and mixer work array if required if (twrite) then call writestate write(60,*) write(60,'("Wrote STATE.OUT")') if (mixsave) call writemix(nwork,work) end if ! write OEP step size and residual if (xctype(1) < 0) then write(60,*) write(60,'("OEP iterative solver step size : ",G18.10)') tauoep write(60,'("Magnitude of OEP residual : ",G18.10)') resoep write(69,'(G18.10)') resoep flush(69) end if end if ! exit self-consistent loop if required if (tlast) goto 10 ! check for convergence if (iscl >= iscl0+1) then de=abs(engytot-etp) if (mp_mpi) then write(60,*) write(60,'("RMS change in Kohn-Sham potential (target) : ",G18.10," (",& &G18.10,")")') dv,epspot write(65,'(G18.10)') dv flush(65) write(60,'("Absolute change in total energy (target) : ",G18.10," (",& &G18.10,")")') de,epsengy write(66,'(G18.10)') de flush(66) if ((dv < epspot).and.(de < epsengy)) then write(60,*) write(60,'("Convergence targets achieved")') tlast=.true. end if end if end if ! average the current and previous total energies and store if (iscl == iscl0) etp=engytot etp=0.75d0*engytot+0.25d0*etp ! check for STOP file call checkstop if (tstop) tlast=.true. ! broadcast tlast from master process to all other processes call mpi_bcast(tlast,1,mpi_logical,0,mpicom,ierror) ! output the current total CPU time timetot=timeinit+timemat+timefv+timesv+timerho+timepot+timefor if (mp_mpi) then write(60,*) write(60,'("Time (CPU seconds) : ",F12.2)') timetot end if ! end the self-consistent loop end do 10 continue ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) then call writebox(60,"Self-consistent loop stopped") ! write STATE.OUT and mixer work array only if maxscl > 1 if (maxscl > 1) then call writestate write(60,*) write(60,'("Wrote STATE.OUT")') if (mixsave) call writemix(nwork,work) end if end if ! compute forces if required if (tforce) then call force ! output forces to INFO.OUT if (mp_mpi) call writeforces(60) end if ! output the paramagnetic current if (tjr.and.mp_mpi) then write(60,*) write(60,'("Total paramagnetic current per unit cell")') write(60,'(3G18.10)') jtot write(60,'(" magnitude : ",G18.10)') jtotm end if ! total time used timetot=timeinit+timemat+timefv+timesv+timerho+timepot+timefor if (mp_mpi) then ! output timing information write(60,*) write(60,'("Timings (CPU seconds) :")') write(60,'(" initialisation",T40,": ",F12.2)') timeinit write(60,'(" Hamiltonian and overlap matrix set up",T40,": ",F12.2)') timemat write(60,'(" first-variational eigenvalue equation",T40,": ",F12.2)') timefv if (tevecsv) then write(60,'(" second-variational calculation",T40,": ",F12.2)') timesv end if write(60,'(" charge density calculation",T40,": ",F12.2)') timerho write(60,'(" potential calculation",T40,": ",F12.2)') timepot if (tforce) then write(60,'(" force calculation",T40,": ",F12.2)') timefor end if write(60,'(" total",T40,": ",F12.2)') timetot ! close the INFO.OUT file close(60) ! close the TOTENERGY.OUT file close(61) ! close the FERMIDOS.OUT file close(62) ! close the MOMENT.OUT and MOMENTM.OUT files if (spinpol) then close(63); close(68) end if ! close the GAP.OUT file close(64) ! close the RMSDVS.OUT file close(65) ! close the DTOTENERGY.OUT file close(66) ! close the RESIDUAL.OUT file if (xctype(1) < 0) close(69) ! write to VARIABLES.OUT if required if (wrtvars) call writegsvars end if deallocate(work) wrtdsk=wrtdsk0 ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine !EOC elk-10.4.9/src/PaxHeaders/sstask.f900000644000000000000000000000013214762655564014101 xustar0030 mtime=1741380468.959011027 30 atime=1741380467.417002965 30 ctime=1741380468.959011027 elk-10.4.9/src/sstask.f900000644002504400250440000000165414762655564016631 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine sstask(fnum,fext) use modmain use modmpi implicit none ! arguments integer, intent(in) :: fnum character(*), intent(out) :: fext ! local variables logical exist ! only master process should search for file if (.not.mp_mpi) goto 10 do iqss=1,nqpt ! construct the spin-spiral file extension call ssfext(iqss,fext) ! determine if the SS file exists inquire(file='SS'//trim(fext),exist=exist) if (.not.exist) then open(fnum,file='SS'//trim(fext),form='FORMATTED') goto 10 end if end do iqss=0 write(*,'("Info(sstask): nothing more to do")') 10 continue ! broadcast to all other processes call mpi_bcast(iqss,1,mpi_integer,0,mpicom,ierror) if (iqss == 0) then fext='.OUT' else call ssfext(iqss,fext) end if end subroutine elk-10.4.9/src/PaxHeaders/fermisurf.f900000644000000000000000000000013214762655564014573 xustar0030 mtime=1741380468.960011032 30 atime=1741380467.419002976 30 ctime=1741380468.960011032 elk-10.4.9/src/fermisurf.f900000644002504400250440000001210614762655564017315 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine fermisurf use modmain use modomp implicit none ! local variables integer ik,ist,np,nfp,i integer ist0,ist1,jst0,jst1 integer l,i1,i2,i3,nthd real(8) e0,e1,v(3),x,fn ! allocatable arrays real(8), allocatable :: evalfv(:,:),vpc(:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) ! external functions real(8), external :: sdelta ! initialise universal variables call init0 ! no k-point reduction for the collinear case reducek0=reducek if (ndmag == 1) reducek=0 call init1 ! read density and potentials from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! begin parallel loop over reduced k-points set call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evalfv,evecfv,evecsv) & !$OMP NUM_THREADS(nthd) allocate(evalfv(nstfv,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt !$OMP CRITICAL(fermisurf_) write(*,'("Info(fermisurf): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(fermisurf_) ! solve the first- and second-variational eigenvalue equations call eveqn(ik,evalfv,evecfv,evecsv) ! end loop over reduced k-points set end do !$OMP END DO deallocate(evalfv,evecfv,evecsv) !$OMP END PARALLEL call freethd(nthd) ! if iterative diagonalisation is used the eigenvalues must be reordered if (tefvit.and.(.not.spinpol)) then do ik=1,nkpt call sort(nstsv,evalsv(:,ik)) end do end if ! generate the plotting point grid in Cartesian coordinates (this has the same ! arrangement as the k-point grid) np=np3d(1)*np3d(2)*np3d(3) allocate(vpc(3,np)) call plotpt3d(vpc) do i=1,np v(:)=vpc(:,i) call r3mv(bvec,v,vpc(:,i)) end do ! number of files to plot (2 for collinear magnetism, 1 otherwise) if (ndmag == 1) then nfp=2 else nfp=1 end if do l=1,nfp if (nfp == 2) then if (l == 1) then open(50,file='FERMISURF_UP.OUT',form='FORMATTED',action='WRITE') jst0=1; jst1=nstfv else open(50,file='FERMISURF_DN.OUT',form='FORMATTED',action='WRITE') jst0=nstfv+1; jst1=2*nstfv end if else open(50,file='FERMISURF.OUT',form='FORMATTED',action='WRITE') jst0=1; jst1=nstsv end if if ((task == 100).or.(task == 101)) then ! find the range of eigenvalues which contribute to the Fermi surface (Lars) ist0=jst1; ist1=jst0 do ist=jst0,jst1 e0=minval(evalsv(ist,:)); e1=maxval(evalsv(ist,:)) ! determine if the band crosses the Fermi energy if ((e0 < efermi).and.(e1 > efermi)) then ist0=min(ist0,ist); ist1=max(ist1,ist) end if end do else ! use all eigenvalues ist0=jst0; ist1=jst1 end if if ((task == 100).or.(task == 103)) then write(50,'(3I6," : grid size")') np3d(:) i=0 do i3=0,ngridk(3)-1 do i2=0,ngridk(2)-1 do i1=0,ngridk(1)-1 i=i+1 ik=ivkik(i1,i2,i3) if (task == 100) then ! write product of eigenstates minus the Fermi energy fn=product(evalsv(ist0:ist1,ik)-efermi) else ! write single smooth delta function at the Fermi energy fn=0.d0 do ist=ist0,ist1 x=(evalsv(ist,ik)-efermi)/swidth fn=fn+sdelta(stype,x)/swidth end do end if write(50,'(4G18.10)') vpc(:,i),fn end do end do end do else write(50,'(4I6," : grid size, number of states")') np3d(:),ist1-ist0+1 i=0 do i3=0,ngridk(3)-1 do i2=0,ngridk(2)-1 do i1=0,ngridk(1)-1 i=i+1 ik=ivkik(i1,i2,i3) write(50,'(3G18.10)',advance='NO') vpc(:,i) do ist=ist0,ist1 if (task == 101) then ! write the eigenvalues minus the Fermi energy separately write(50,'(F14.8)',advance='NO') evalsv(ist,ik)-efermi else ! write separate smooth delta functions at the Fermi energy x=(evalsv(ist,ik)-efermi)/swidth write(50,'(F14.8)',advance='NO') sdelta(stype,x)/swidth end if end do write(50,*) end do end do end do end if close(50) end do write(*,*) write(*,'("Info(fermisurf):")') if (ndmag == 1) then write(*,'(" 3D Fermi surface data written to FERMISURF_UP.OUT and & &FERMISURF_DN.OUT")') else write(*,'(" 3D Fermi surface data written to FERMISURF.OUT")') end if if (task == 100) then write(*,'(" in terms of the product of eigenvalues minus the Fermi energy")') else if (task == 101) then write(*,'(" in terms of separate eigenvalues minus the Fermi energy")') else if (task == 103) then write(*,'(" in terms of a smooth delta function at the Fermi energy")') else write(*,'(" in terms of separate delta functions at the Fermi energy")') end if deallocate(vpc) ! restore original parameters reducek=reducek0 end subroutine elk-10.4.9/src/PaxHeaders/spiralsc.f900000644000000000000000000000013214762655564014411 xustar0030 mtime=1741380468.962011042 30 atime=1741380467.422002991 30 ctime=1741380468.962011042 elk-10.4.9/src/spiralsc.f900000644002504400250440000000450014762655564017132 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine spiralsc use modmain use modmpi use moddelf implicit none ! local variables integer nq,iq,jq real(8) q ! store original parameters avec0(:,:)=avec(:,:) natoms0(:)=natoms(:) atposl0(:,:,:)=atposl(:,:,:) bfcmt00(:,:,:)=bfcmt0(:,:,:) mommtfix0(:,:,:)=mommtfix(:,:,:) autokpt0=autokpt ngridk0(:)=ngridk ! initialise universal variables call init0 ! initialise q-point dependent variables call init2 ! store original parameters atposc0(:,:,:)=atposc(:,:,:) 10 continue call sstask(80,filext) ! if nothing more to do then restore input parameters and return if (iqss == 0) then filext='.OUT' natoms(:)=natoms0(:) avec(:,:)=avec0(:,:) atposl(:,:,:)=atposl0(:,:,:) bfcmt0(:,:,:)=bfcmt00(:,:,:) mommtfix(:,:,:)=mommtfix0(:,:,:) autokpt=autokpt0 ngridk(:)=ngridk0(:) return end if ! spiral dry run: just generate empty SS files if (task == 352) goto 10 if (mp_mpi) then write(*,'("Info(spiralsc): working on ",A)') 'SS'//trim(filext) end if ! determine k-point grid size from radkpt autokpt=.true. ! generate the spin-spiral supercell call genscss ! initialise or read the charge density and potentials from file trdstate=(task == 351) ! run the ground-state calculation call gndstate if (mp_mpi) then write(80,'(I6,T20," : number of unit cells in supercell")') nscss write(80,'(G18.10,T20," : total energy per unit cell")') engytot/dble(nscss) write(80,*) write(80,'("q-point in lattice and Cartesian coordinates :")') write(80,'(3G18.10)') vql(:,iqss) write(80,'(3G18.10)') vqc(:,iqss) q=sqrt(vqc(1,iqss)**2+vqc(2,iqss)**2+vqc(3,iqss)**2) write(80,'(G18.10,T20," : length of q-vector")') q write(80,*) nq=nint(dble(nqptnr)*wqpt(iqss)) write(80,'(I6,T20," : number of equivalent q-points")') nq write(80,'("Equivalent q-points in lattice and Cartesian coordinates :")') do iq=1,nqptnr jq=ivqiq(ivq(1,iq),ivq(2,iq),ivq(3,iq)) if (jq == iqss) then write(80,'(3G18.10)') vql(:,iq) write(80,'(3G18.10)') vqc(:,iq) write(80,*) end if end do close(80) end if ! delete the eigenvector files call delfiles(evec=.true.) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) goto 10 end subroutine elk-10.4.9/src/PaxHeaders/atom.f900000644000000000000000000000013214762655564013531 xustar0030 mtime=1741380468.963011047 30 atime=1741380467.424003002 30 ctime=1741380468.963011047 elk-10.4.9/src/atom.f900000644002504400250440000001400214762655564016250 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: atom ! !INTERFACE: subroutine atom(sol,ptnucl,zn,nst,n,l,k,occ,xctype,xcgrad,nr,r,eval,rho,vr,rwf) ! !USES: use modxcifc ! !INPUT/OUTPUT PARAMETERS: ! sol : speed of light in atomic units (in,real) ! ptnucl : .true. if the nucleus is a point particle (in,logical) ! zn : nuclear charge (in,real) ! nst : number of states to solve for (in,integer) ! n : priciple quantum number of each state (in,integer(nst)) ! l : quantum number l of each state (in,integer(nst)) ! k : quantum number k (l or l+1) of each state (in,integer(nst)) ! occ : occupancy of each state (inout,real(nst)) ! xctype : exchange-correlation type (in,integer(3)) ! xcgrad : 1 for GGA functional, 0 otherwise (in,integer) ! nr : number of radial mesh points (in,integer) ! r : radial mesh (in,real(nr)) ! eval : eigenvalue without rest-mass energy for each state (out,real(nst)) ! rho : charge density (out,real(nr)) ! vr : self-constistent potential (out,real(nr)) ! rwf : major and minor components of radial wavefunctions for each state ! (out,real(nr,2,nst)) ! !DESCRIPTION: ! Solves the Dirac-Kohn-Sham equations for an atom using the ! exchange-correlation functional {\tt xctype} and returns the self-consistent ! radial wavefunctions, eigenvalues, charge densities and potentials. Requires ! the exchange-correlation interface routine {\tt xcifc}. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) ! Fixed s.c. convergence problem, October 2003 (JKD) ! Added support for GGA functionals, June 2006 (JKD) ! !EOP !BOC implicit none ! arguments real(8), intent(in) :: sol logical, intent(in) :: ptnucl real(8), intent(in) :: zn integer, intent(in) :: nst integer, intent(in) :: n(nst),l(nst),k(nst) real(8), intent(inout) :: occ(nst) integer, intent(in) :: xctype(3),xcgrad integer, intent(in) :: nr real(8), intent(in) :: r(nr) real(8), intent(out) :: eval(nst) real(8), intent(out) :: rho(nr),vr(nr) real(8), intent(out) :: rwf(nr,2,nst) ! local variables integer, parameter :: maxscl=200 integer ir,ist,iscl real(8), parameter :: fourpi=12.566370614359172954d0 ! potential convergence tolerance real(8), parameter :: eps=1.d-6 real(8) dv,dvp,ze,beta,t1 ! allocatable arrays real(8), allocatable :: vn(:),vh(:),ex(:),ec(:),vx(:),vc(:),vrp(:) real(8), allocatable :: ri(:),wpr(:,:),fr1(:),fr2(:),gr1(:),gr2(:) real(8), allocatable :: grho(:),g2rho(:),g3rho(:) if (nst < 1) then write(*,*) write(*,'("Error(atom): nst < 1 : ",I8)') nst write(*,*) stop end if ! allocate local arrays allocate(vn(nr),vh(nr),ex(nr),ec(nr),vx(nr),vc(nr),vrp(nr)) allocate(ri(nr),wpr(4,nr),fr1(nr),fr2(nr),gr1(nr),gr2(nr)) if (xcgrad == 1) then allocate(grho(nr),g2rho(nr),g3rho(nr)) end if ! find total electronic charge ze=0.d0 do ist=1,nst ze=ze+occ(ist) end do ! set up nuclear potential call potnucl(ptnucl,nr,r,zn,vn) do ir=1,nr ri(ir)=1.d0/r(ir) ! initialise the Kohn-Sham potential to the nuclear potential vr(ir)=vn(ir) end do ! determine the weights for radial integration call wsplintp(nr,r,wpr) dvp=0.d0 vrp(1:nr)=0.d0 ! initialise mixing parameter beta=0.5d0 ! initialise eigenvalues to relativistic values (minus the rest mass energy) do ist=1,nst t1=sqrt(dble(k(ist)**2)-(zn/sol)**2) t1=(dble(n(ist)-abs(k(ist)))+t1)**2 t1=1.d0+((zn/sol)**2)/t1 eval(ist)=sol**2/sqrt(t1)-sol**2 end do ! start of self-consistent loop do iscl=1,maxscl ! solve the Dirac equation for each state !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) do ist=1,nst call rdirac(sol,n(ist),l(ist),k(ist),nr,r,vr,eval(ist),rwf(:,1,ist), & rwf(:,2,ist)) end do !$OMP END PARALLEL DO ! compute the charge density do ir=1,nr t1=sum(occ(1:nst)*(rwf(ir,1,1:nst)**2+rwf(ir,2,1:nst)**2)) fr1(ir)=t1 fr2(ir)=t1*ri(ir) rho(ir)=(1.d0/fourpi)*t1*ri(ir)**2 end do call splintwp(nr,wpr,fr1,gr1) call splintwp(nr,wpr,fr2,gr2) ! find the Hartree potential t1=gr2(nr) vh(1:nr)=gr1(1:nr)*ri(1:nr)+t1-gr2(1:nr) ! normalise charge density and potential t1=ze/gr1(nr) rho(1:nr)=t1*rho(1:nr) vh(1:nr)=t1*vh(1:nr) ! compute the exchange-correlation energy and potential if (xcgrad == 1) then ! GGA functional ! |grad rho| call fderiv(1,nr,r,rho,grho) ! grad^2 rho call fderiv(2,nr,r,rho,g2rho) do ir=1,nr g2rho(ir)=g2rho(ir)+2.d0*ri(ir)*grho(ir) end do ! approximate (grad rho).(grad |grad rho|) do ir=1,nr g3rho(ir)=grho(ir)*g2rho(ir) end do call xcifc(xctype,nr,rho=rho,grho=grho,g2rho=g2rho,g3rho=g3rho,ex=ex,ec=ec,& vx=vx,vc=vc) else ! LDA functional call xcifc(xctype,nr,rho=rho,ex=ex,ec=ec,vx=vx,vc=vc) end if ! self-consistent potential vr(1:nr)=vh(1:nr)+vx(1:nr)+vc(1:nr) ! determine change in potential t1=sum((vr(1:nr)-vrp(1:nr))**2) dv=sqrt(t1)/dble(nr) if (iscl > 2) then ! reduce beta if change in potential is diverging if (dv > dvp) beta=beta*0.8d0 beta=max(beta,0.01d0) end if dvp=dv do ir=1,nr ! mix old and new potentials vr(ir)=(1.d0-beta)*vrp(ir)+beta*vr(ir) vrp(ir)=vr(ir) ! add nuclear potential vr(ir)=vr(ir)+vn(ir) end do ! check for convergence if ((iscl > 2).and.(dv < eps)) goto 10 ! end self-consistent loop end do write(*,*) write(*,'("Warning(atom): maximum iterations exceeded")') 10 continue deallocate(vn,vh,ex,ec,vx,vc,vrp) deallocate(ri,wpr,fr1,fr2,gr1,gr2) if (xcgrad == 1) deallocate(grho,g2rho,g3rho) return contains pure subroutine splintwp(n,wp,f,g) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wp(*),f(n) real(8), intent(out) :: g(n) ! local variables integer i,j real(8) sm g(1)=0.d0 sm=wp(5)*f(1)+wp(6)*f(2)+wp(7)*f(3)+wp(8)*f(4) g(2)=sm do i=2,n-2 j=i*4+1 sm=sm+wp(j)*f(i-1)+wp(j+1)*f(i)+wp(j+2)*f(i+1)+wp(j+3)*f(i+2) g(i+1)=sm end do j=(n-1)*4+1 g(n)=sm+wp(j)*f(n-3)+wp(j+1)*f(n-2)+wp(j+2)*f(n-1)+wp(j+3)*f(n) end subroutine end subroutine !EOC elk-10.4.9/src/PaxHeaders/maginit.f900000644000000000000000000000013214762655564014221 xustar0030 mtime=1741380468.964011053 30 atime=1741380467.426003012 30 ctime=1741380468.964011053 elk-10.4.9/src/maginit.f900000644002504400250440000000210314762655564016737 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine maginit use modmain implicit none ! local variables integer idm,is,ia,ias,np ! magnetisation as fraction of density real(8), parameter :: fmr=0.15d0 real(8) v(3),t1 ! initialise muffin-tin magnetisation do ias=1,natmtot is=idxis(ias) ia=idxia(ias) np=npmt(is) v(1:3)=bfcmt(1:3,ia,is)+bfieldc(1:3) t1=sqrt(v(1)**2+v(2)**2+v(3)**2) if (t1 > 1.d-8) then t1=-fmr/t1 v(1:3)=t1*v(1:3) if (.not.ncmag) v(1)=v(3) do idm=1,ndmag t1=v(idm) magmt(1:np,ias,idm)=t1*rhomt(1:np,ias) end do else magmt(1:np,ias,1:ndmag)=0.d0 end if end do ! initialise interstitial magnetisation v(1:3)=bfieldc(1:3) t1=sqrt(v(1)**2+v(2)**2+v(3)**2) if (t1 > 1.d-8) then t1=-fmr/t1 v(1:3)=t1*v(1:3) if (.not.ncmag) v(1)=v(3) do idm=1,ndmag t1=v(idm) magir(1:ngtot,idm)=t1*rhoir(1:ngtot) end do else magir(1:ngtot,1:ndmag)=0.d0 end if end subroutine elk-10.4.9/src/PaxHeaders/exxengyk.f900000644000000000000000000000013214762655564014433 xustar0030 mtime=1741380468.965011058 30 atime=1741380467.429003028 30 ctime=1741380468.965011058 elk-10.4.9/src/exxengyk.f900000644002504400250440000001471114762655564017161 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine exxengyk(ikp) use modmain implicit none ! arguments integer, intent(in) :: ikp ! local variables integer iq,ik,jk,m integer nst1,nst2,ist,jst integer is,ia,ias integer nrc,nrci,npc integer iv(3),ig real(8) ex,vc(3) complex(8) z1 ! automatic arrays integer idx(nstsv) ! allocatable arrays real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqrmt(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:),wfcr(:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:),crhoir(:) complex(4), allocatable :: cvclmt(:,:),cvclir(:) ! external functions complex(8), external :: zcfinp,zcfmtinp ! get the eigenvectors from file for input reduced k-point allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) call getevecfv(filext,ikp,vkl(:,ikp),vgkl(:,:,:,ikp),evecfv) call getevecsv(filext,ikp,vkl(:,ikp),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) call match(ngk(1,ikp),vgkc(:,:,1,ikp),gkc(:,1,ikp),sfacgk(:,:,1,ikp),apwalm) ! count and index the occupied states nst1=0 do ist=1,nstsv if (evalsv(ist,ikp) > efermi) cycle nst1=nst1+1 idx(nst1)=ist end do ! calculate the wavefunctions for occupied states of the input k-point allocate(wfmt1(npcmtmax,natmtot,nspinor,nst1),wfir1(ngtc,nspinor,nst1)) call genwfsv_sp(.false.,.false.,nst1,idx,ngdgc,igfc,ngk(1,ikp),igkig(:,1,ikp), & apwalm,evecfv,evecsv,wfmt1,ngtc,wfir1) ! allocate local arrays allocate(vgqc(3,ngvc),gqc(ngvc),gclgq(ngvc)) allocate(jlgqrmt(0:lnpsd,ngvc,nspecies)) allocate(ylmgq(lmmaxo,ngvc),sfacgq(ngvc,natmtot)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv)) allocate(wfir2(ngtc,nspinor,nstsv)) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) allocate(cvclmt(npcmtmax,natmtot),cvclir(ngtc)) ! zero the local exchange energy variable ex=0.d0 ! start loop over non-reduced k-point set do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! determine the q-vector iv(:)=ivk(:,ikp)-ivk(:,ik) iv(:)=modulo(iv(:),ngridk(:)) ! check if the q-point is in user-defined set iv(:)=iv(:)*ngridq(:) if (any(mod(iv(:),ngridk(:)) /= 0)) cycle iv(:)=iv(:)/ngridk(:) iq=ivqiq(iv(1),iv(2),iv(3)) vc(:)=vkc(:,ikp)-vkc(:,ik) do ig=1,ngvc ! determine the G+q-vectors vgqc(1:3,ig)=vgc(1:3,ig)+vc(1:3) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(.true.,lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! structure factors for G+q call gensfacgp(ngvc,vgqc,ngvc,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngvc,gqc,gclgq) ! compute the required spherical Bessel functions call genjlgprmt(lnpsd,ngvc,gqc,ngvc,jlgqrmt) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! get the eigenvectors from file for non-reduced k-point call getevecfv(filext,0,vkl(:,ik),vgkl(:,:,1,ik),evecfv) call getevecsv(filext,0,vkl(:,ik),evecsv) ! count and index the occupied states nst2=0 do jst=1,nstsv if (evalsv(jst,jk) > efermi) cycle nst2=nst2+1 idx(nst2)=jst end do ! calculate the wavefunctions for occupied states call genwfsv_sp(.false.,.false.,nst2,idx,ngdgc,igfc,ngk(1,ik),igkig(:,1,ik), & apwalm,evecfv,evecsv,wfmt2,ngtc,wfir2) !--------------------------------------------! ! valence-valence-valence contribution ! !--------------------------------------------! do jst=1,nst2 do ist=1,nst1 ! calculate the complex overlap density call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,jst),wfir2(:,:,jst), & wfmt1(:,:,:,ist),wfir1(:,:,ist),crhomt,crhoir) ! calculate the Coulomb potential call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax,crhomt,cvclmt) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gqc, & gclgq,ngvc,jlgqrmt,ylmgq,sfacgq,crhoir,npcmtmax,cvclmt,cvclir) cvclir(1:ngtc)=cvclir(1:ngtc)*cfrc(1:ngtc) z1=zcfinp(crhomt,crhoir,cvclmt,cvclir) ex=ex-0.5d0*occmax*wkpt(ikp)*wqptnr*dble(z1) end do end do ! end loop over non-reduced k-point set end do deallocate(vgqc,gqc,gclgq,jlgqrmt) deallocate(evecfv,evecsv) deallocate(apwalm,ylmgq,sfacgq) deallocate(wfmt2,wfir2) !-----------------------------------------! ! valence-core-valence contribution ! !-----------------------------------------! allocate(wfcr(npcmtmax,2)) ! begin loops over atoms and species do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do jst=1,nstsp(is) if (spcore(jst,is)) then do m=-ksp(jst,is),ksp(jst,is)-1 ! generate the core wavefunction in spherical coordinates (pass in m-1/2) call wavefcr(.false.,lradstp,is,ia,jst,m,npcmtmax,wfcr) do ist=1,nst1 ! calculate the complex overlap density in spherical harmonics if (spinpol) then call crho2(npc,wfcr,wfcr(:,2),wfmt1(:,ias,1,ist), & wfmt1(:,ias,2,ist),crhomt(:,ias)) else call crho1(npc,wfcr,wfmt1(:,ias,1,ist),crhomt(:,ias)) end if call cfshtip(nrc,nrci,crhomt(:,ias)) ! calculate the Coulomb potential call cpotclmt(nrc,nrci,nrcmtmax,rlcmt(:,:,is),wprcmt(:,:,is), & crhomt(:,ias),cvclmt(:,ias)) z1=zcfmtinp(nrc,nrci,wr2cmt(:,is),crhomt(:,ias),cvclmt(:,ias)) ex=ex-occmax*wkpt(ikp)*dble(z1) end do ! end loop over m end do ! end loop over jst end if end do ! end loops over atoms and species end do end do ! add to global exchange energy !$OMP CRITICAL(exxengyk_) engyx=engyx+ex !$OMP END CRITICAL(exxengyk_) deallocate(wfmt1,wfir1,wfcr) deallocate(crhomt,crhoir,cvclmt,cvclir) return contains pure subroutine crho1(n,wf1,wf2,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf1(n),wf2(n) complex(4), intent(out) :: crho(n) crho(1:n)=conjg(wf1(1:n))*wf2(1:n) end subroutine pure subroutine crho2(n,wf11,wf12,wf21,wf22,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf11(n),wf12(n),wf21(n),wf22(n) complex(4), intent(out) :: crho(n) crho(1:n)=conjg(wf11(1:n))*wf21(1:n)+conjg(wf12(1:n))*wf22(1:n) end subroutine end subroutine elk-10.4.9/src/PaxHeaders/moke.f900000644000000000000000000000013214762655564013524 xustar0030 mtime=1741380468.967011068 30 atime=1741380467.432003044 30 ctime=1741380468.967011068 elk-10.4.9/src/moke.f900000644002504400250440000000412014762655564016243 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 S. Sharma, J. K. Dewhurst and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine moke use modmain implicit none ! local variables integer iw,ios complex(8) z1,z2,z3 ! allocatable arrays real(8), allocatable :: w(:),sig1(:,:),sig2(:,:) complex(8), allocatable :: kerr(:) ! calculate dielectric function for the 11 and 12 components noptcomp=2 optcomp(1,1)=1 optcomp(2,1)=1 optcomp(1,2)=1 optcomp(2,2)=2 call dielectric ! allocate local arrays allocate(w(nwplot)) allocate(sig1(nwplot,2),sig2(nwplot,2)) allocate(kerr(nwplot)) ! read diagonal contribution to optical conductivity open(50,file='SIGMA_11.OUT',status='OLD',form='FORMATTED',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(moke): error opening SIGMA_11.OUT")') write(*,*) stop end if do iw=1,nwplot read(50,'(2G18.10)') w(iw),sig1(iw,1) end do read(50,*) do iw=1,nwplot read(50,'(2G18.10)') w(iw),sig2(iw,1) end do close(50) ! read off-diagonal contribution to optical conductivity open(50,file='SIGMA_12.OUT',status='OLD',form='FORMATTED',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(moke): error opening SIGMA_12.OUT")') write(*,*) stop end if do iw=1,nwplot read(50,'(2G18.10)') w(iw),sig1(iw,2) end do read(50,*) do iw=1,nwplot read(50,'(2G18.10)') w(iw),sig2(iw,2) end do close(50) ! calculate the complex Kerr angle do iw=1,nwplot if (w(iw) > 0.d0) then z1=cmplx(sig1(iw,1),sig2(iw,1),8) z2=cmplx(sig1(iw,2),sig2(iw,2),8) z3=z1*sqrt(1.d0+fourpi*zi*z1/w(iw)) if (abs(z3) > 1.d-8) then kerr(iw)=-z2/z3 else kerr(iw)=0.d0 end if else kerr(iw)=0.d0 end if end do open(50,file='KERR.OUT',form='FORMATTED') do iw=1,nwplot write(50,'(2G18.10)') w(iw),dble(kerr(iw))*180.d0/pi end do write(50,'(" ")') do iw=1,nwplot write(50,'(2G18.10)') w(iw),aimag(kerr(iw))*180.d0/pi end do close(50) write(*,*) write(*,'("Info(moke):")') write(*,'(" complex Kerr angle in degrees written to KERR.OUT")') deallocate(w,sig1,sig2,kerr) end subroutine elk-10.4.9/src/PaxHeaders/hmlrad.f900000644000000000000000000000013214762655564014040 xustar0030 mtime=1741380468.968011074 30 atime=1741380467.434003054 30 ctime=1741380468.968011074 elk-10.4.9/src/hmlrad.f900000644002504400250440000001342414762655564016566 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2016 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: hmlrad ! !INTERFACE: subroutine hmlrad ! !USES: use modmain use modomp ! !DESCRIPTION: ! Calculates the radial Hamiltonian integrals of the APW and local-orbital ! basis functions. In other words, for atom $\alpha$, it computes integrals of ! the form ! $$ h^{\alpha}_{qq';ll'l''m''}=\begin{cases} ! \int_0^{R_i}u^{\alpha}_{q;l}(r)H u^{\alpha}_{q';l'}(r)r^2dr & l''=0 \\ ! \int_0^{R_i}u^{\alpha}_{q;l}(r)V^{\alpha}_{l''m''}(r) ! u^{\alpha}_{q';l'}(r)r^2dr & l''>0 \end{cases} $$ ! where $u^{\alpha}_{q;l}$ is the $q$th APW radial function for angular ! momentum $l$; $H$ is the Hamiltonian of the radial Schr\"{o}dinger equation; ! and $V^{\alpha}_{l''m''}$ is the muffin-tin Kohn-Sham potential. Similar ! integrals are calculated for APW-local-orbital and ! local-orbital-local-orbital contributions. ! ! !REVISION HISTORY: ! Created December 2003 (JKD) ! Updated for compressed muffin-tin functions, March 2016 (JKD) !EOP !BOC implicit none ! local variables integer is,ias,nthd integer nr,nri,iro,i0,i1 integer l1,l2,l3,lm2 integer io,jo,ilo,jlo real(8) sm ! begin loops over atoms and species call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nr,nri,iro) & !$OMP PRIVATE(l1,l2,l3,io,jo,sm) & !$OMP PRIVATE(lm2,i0,i1,ilo,jlo) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 !---------------------------! ! APW-APW integrals ! !---------------------------! do l1=0,lmaxapw do io=1,apword(l1,is) do l3=0,lmaxapw do jo=1,apword(l3,is) if (l1 == l3) then sm=sum((apwfr(1:nr,1,io,l1,ias)*apwfr(1:nr,2,jo,l1,ias) & +apwfr(1:nr,2,io,l1,ias)*apwfr(1:nr,1,jo,l1,ias)) & *wr2mt(1:nr,is)) ! add kinetic surface term sm=sm+apwfr(nr,1,io,l1,ias)*apwdfr(jo,l1,ias) & +apwdfr(io,l1,ias)*apwfr(nr,1,jo,l1,ias) haa(1,jo,l1,io,l1,ias)=sm*y00i/2.d0 else haa(1,jo,l3,io,l1,ias)=0.d0 end if if (l1 >= l3) then do l2=1,lmaxi do lm2=l2**2+1,(l2+1)**2 i1=lmmaxi*(nri-1)+lm2 sm=sum(apwfr(1:nri,1,io,l1,ias)*apwfr(1:nri,1,jo,l3,ias) & *wr2mt(1:nri,is)*vsmt(lm2:i1:lmmaxi,ias)) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 sm=sm+sum(apwfr(iro:nr,1,io,l1,ias)*apwfr(iro:nr,1,jo,l3,ias) & *wr2mt(iro:nr,is)*vsmt(i0:i1:lmmaxo,ias)) haa(lm2,jo,l3,io,l1,ias)=sm haa(lm2,io,l1,jo,l3,ias)=sm end do end do do l2=lmaxi+1,lmaxo do lm2=l2**2+1,(l2+1)**2 i0=lmmaxi*nri+lm2 i1=lmmaxo*(nr-iro)+i0 sm=sum(apwfr(iro:nr,1,io,l1,ias)*apwfr(iro:nr,1,jo,l3,ias) & *wr2mt(iro:nr,is)*vsmt(i0:i1:lmmaxo,ias)) haa(lm2,jo,l3,io,l1,ias)=sm haa(lm2,io,l1,jo,l3,ias)=sm end do end do end if end do end do end do end do !-------------------------------------! ! local-orbital-APW integrals ! !-------------------------------------! do ilo=1,nlorb(is) l1=lorbl(ilo,is) do l3=0,lmaxapw do jo=1,apword(l3,is) if (l1 == l3) then sm=sum(lofr(1:nr,1,ilo,ias)*apwfr(1:nr,2,jo,l1,ias)*wr2mt(1:nr,is)) hloa(1,jo,l1,ilo,ias)=sm*y00i else hloa(1,jo,l3,ilo,ias)=0.d0 end if do l2=1,lmaxi do lm2=l2**2+1,(l2+1)**2 i1=lmmaxi*(nri-1)+lm2 sm=sum(lofr(1:nri,1,ilo,ias)*apwfr(1:nri,1,jo,l3,ias) & *wr2mt(1:nri,is)*vsmt(lm2:i1:lmmaxi,ias)) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 sm=sm+sum(lofr(iro:nr,1,ilo,ias)*apwfr(iro:nr,1,jo,l3,ias) & *wr2mt(iro:nr,is)*vsmt(i0:i1:lmmaxo,ias)) hloa(lm2,jo,l3,ilo,ias)=sm end do end do do l2=lmaxi+1,lmaxo do lm2=l2**2+1,(l2+1)**2 i0=lmmaxi*nri+lm2 i1=lmmaxo*(nr-iro)+i0 sm=sum(lofr(iro:nr,1,ilo,ias)*apwfr(iro:nr,1,jo,l3,ias) & *wr2mt(iro:nr,is)*vsmt(i0:i1:lmmaxo,ias)) hloa(lm2,jo,l3,ilo,ias)=sm end do end do end do end do end do !-----------------------------------------------! ! local-orbital-local-orbital integrals ! !-----------------------------------------------! do ilo=1,nlorb(is) l1=lorbl(ilo,is) do jlo=1,nlorb(is) l3=lorbl(jlo,is) if (l1 == l3) then sm=sum(lofr(1:nr,1,ilo,ias)*lofr(1:nr,2,jlo,ias)*wr2mt(1:nr,is)) hlolo(1,jlo,ilo,ias)=sm*y00i else hlolo(1,jlo,ilo,ias)=0.d0 end if do l2=1,lmaxi do lm2=l2**2+1,(l2+1)**2 i1=lmmaxi*(nri-1)+lm2 sm=sum(lofr(1:nri,1,ilo,ias)*lofr(1:nri,1,jlo,ias)*wr2mt(1:nri,is) & *vsmt(lm2:i1:lmmaxi,ias)) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 sm=sm+sum(lofr(iro:nr,1,ilo,ias)*lofr(iro:nr,1,jlo,ias) & *wr2mt(iro:nr,is)*vsmt(i0:i1:lmmaxo,ias)) hlolo(lm2,jlo,ilo,ias)=sm end do end do do l2=lmaxi+1,lmaxo do lm2=l2**2+1,(l2+1)**2 i0=lmmaxi*nri+lm2 i1=lmmaxo*(nr-iro)+i0 sm=sum(lofr(iro:nr,1,ilo,ias)*lofr(iro:nr,1,jlo,ias) & *wr2mt(iro:nr,is)*vsmt(i0:i1:lmmaxo,ias)) hlolo(lm2,jlo,ilo,ias)=sm end do end do end do end do ! end loops over atoms and species end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine !EOC elk-10.4.9/src/PaxHeaders/dos.f900000644000000000000000000000013114762655564013355 xustar0030 mtime=1741380468.969011079 29 atime=1741380467.43700307 30 ctime=1741380468.969011079 elk-10.4.9/src/dos.f900000644002504400250440000002600214762655564016100 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: dos ! !INTERFACE: subroutine dos(fext,tocc,occsvp) ! !USES: use modmain use modomp use modtest ! !INPUT/OUTPUT PARAMETERS: ! fext : filename extension (in,character(*)) ! tocc : .true. if just the occupied orbitals should contribute to the DOS ! (in,logical) ! occsvp : occupation numbers of second-variational orbitals ! (in,real(nstsv,nkpt)) ! !DESCRIPTION: ! Produces a total and partial density of states (DOS) for plotting. The total ! DOS is written to the file {\tt TDOS.OUT} while the partial DOS is written ! to the file {\tt PDOS\_Sss\_Aaaaa.OUT} for atom {\tt aaaa} of species ! {\tt ss}. In the case of the partial DOS, each symmetrised ! $(l,m)$-projection is written consecutively and separated by blank lines. ! If the global variable {\tt lmirep} is {\tt .true.}, then the density matrix ! from which the $(l,m)$-projections are obtained is first rotated into a ! irreducible representation basis, i.e. one that block diagonalises all the ! site symmetry matrices in the $Y_{lm}$ basis. Eigenvalues of a quasi-random ! matrix in the $Y_{lm}$ basis which has been symmetrised with the site ! symmetries are written to {\tt ELMIREP.OUT}. This allows for identification ! of the irreducible representations of the site symmetries, for example $e_g$ ! or $t_{2g}$, by the degeneracies of the eigenvalues. In the plot, spin-up is ! made positive and spin-down negative. See the routines {\tt gendmatk} and ! {\tt brzint}. ! ! !REVISION HISTORY: ! Created January 2004 (JKD) ! Parallelised and included sum over m, November 2009 (F. Cricchio) !EOP !BOC implicit none ! arguments character(*), intent(in) :: fext logical, intent(in) :: tocc real(8), intent(in) :: occsvp(nstsv,nkpt) ! local variables logical tsqaz integer nsk(3),ik,jk,ist,iw,ld integer nsd,ispn,jspn,is,ia,ias integer lmmax,l0,l1,l,m,lm,nthd real(8) dw,th,sps(2),vl(3),vc(3) real(8) v1(3),v2(3),v3(3),t1 complex(8) su2(2,2),b(2,2),c(2,2) character(256) fname ! allocatable arrays ! low precision for band/spin character array saves memory real(4), allocatable :: bc(:,:,:,:,:),sc(:,:,:) real(8), allocatable :: w(:),e(:,:,:),f(:,:),g(:) real(8), allocatable :: dt(:,:),dp(:,:,:),elm(:,:) complex(8), allocatable :: ulm(:,:,:),a(:,:) complex(8), allocatable :: dmat(:,:,:,:,:),sdmat(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) lmmax=(lmaxdos+1)**2 ld=lmmax*nspinor if (dosssum) then nsd=1 else nsd=nspinor end if if (dosmsum) then l0=0; l1=lmaxdos else l0=1; l1=lmmax end if allocate(bc(lmmax,nspinor,natmtot,nstsv,nkptnr)) allocate(sc(nspinor,nstsv,nkptnr)) ! generate unitary matrices which convert the Yₗₘ basis into the irreducible ! representation basis of the symmetry group at each atomic site if (lmirep) then allocate(elm(lmmax,natmtot)) allocate(ulm(lmmax,lmmax,natmtot)) call genlmirep(lmaxdos,lmmax,elm,ulm) end if ! compute the SU(2) operator used for rotating the density matrix to the ! desired spin-quantisation axis v1(:)=sqados(:) t1=sqrt(v1(1)**2+v1(2)**2+v1(3)**2) if (t1 <= epslat) then write(*,*) write(*,'("Error(dos): spin-quantisation axis (sqados) has zero length")') write(*,*) stop end if v1(:)=v1(:)/t1 if (v1(3) >= 1.d0-epslat) then tsqaz=.true. else tsqaz=.false. v2(1:2)=0.d0 v2(3)=1.d0 call r3cross(v1,v2,v3) ! note that the spin-quantisation axis is rotated, so the density matrix should ! be rotated in the opposite direction th=-acos(v1(3)) call axangsu2(v3,th,su2) end if ! begin parallel loop over k-points call holdthd(nkptnr,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(apwalm,evecfv,evecsv,dmat,sdmat,a) & !$OMP PRIVATE(jk,ispn,jspn,vl,vc) & !$OMP PRIVATE(is,ia,ias,ist,lm,b,c,t1) & !$OMP NUM_THREADS(nthd) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) allocate(dmat(lmmax,nspinor,lmmax,nspinor,nstsv)) allocate(sdmat(nspinor,nspinor,nstsv),a(lmmax,lmmax)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! loop over first-variational spins do ispn=1,nspnfv vl(:)=vkl(:,ik) vc(:)=vkc(:,ik) ! spin-spiral case if (spinsprl) then if (ispn == 1) then vl(:)=vl(:)+0.5d0*vqlss(:) vc(:)=vc(:)+0.5d0*vqcss(:) else vl(:)=vl(:)-0.5d0*vqlss(:) vc(:)=vc(:)-0.5d0*vqcss(:) end if end if ! find the matching coefficients call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! get the eigenvectors from file for non-reduced k-point call getevecfv('.OUT',0,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv('.OUT',0,vkl(:,ik),evecsv) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! generate the density matrix for all states call gendmatk(.false.,.false.,0,lmaxdos,ias,nstsv,[0],ngk(:,ik),apwalm, & evecfv,evecsv,lmmax,dmat) ! convert (l,m) part to an irreducible representation if required if (lmirep) then do ist=1,nstsv do ispn=1,nspinor do jspn=1,nspinor call zgemm('N','N',lmmax,lmmax,lmmax,zone,ulm(:,:,ias),lmmax, & dmat(:,ispn,1,jspn,ist),ld,zzero,a,lmmax) call zgemm('N','C',lmmax,lmmax,lmmax,zone,a,lmmax,ulm(:,:,ias), & lmmax,zzero,dmat(:,ispn,1,jspn,ist),ld) end do end do end do end if ! spin rotate the density matrices to desired spin-quantisation axis if (spinpol.and.(.not.tsqaz)) then do ist=1,nstsv do lm=1,lmmax b(:,:)=dmat(lm,:,lm,:,ist) call z2mm(su2,b,c) call z2mmct(c,su2,b) dmat(lm,:,lm,:,ist)=b(:,:) end do end do end if ! determine the band characters from the density matrix do ist=1,nstsv do ispn=1,nspinor do lm=1,lmmax t1=dble(dmat(lm,ispn,lm,ispn,ist)) bc(lm,ispn,ias,ist,ik)=real(t1) end do end do end do end do end do ! compute the spin density matrices of the second-variational states call gensdmat(evecsv,sdmat) ! spin rotate the density matrices to desired spin-quantisation axis if (spinpol.and.(.not.tsqaz)) then do ist=1,nstsv call z2mm(su2,sdmat(:,:,ist),b) call z2mmct(b,su2,sdmat(:,:,ist)) end do end if do ist=1,nstsv do ispn=1,nspinor t1=dble(sdmat(ispn,ispn,ist)) sc(ispn,ist,ik)=real(t1) end do end do end do !$OMP END DO deallocate(apwalm,evecfv,evecsv,dmat,sdmat,a) !$OMP END PARALLEL call freethd(nthd) allocate(w(nwplot),e(nstsv,nkptnr,nspinor)) allocate(dt(nwplot,nsd),dp(nwplot,l0:l1,nsd)) ! generate frequency grid dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot w(iw)=dw*dble(iw-1)+wplot(1) end do ! number of subdivisions used for interpolation in the Brillouin zone nsk(:)=max(ngrkf/ngridk(:),1) ! sign for spin in DOS sps(1)=1.d0 sps(2)=-1.d0 !-------------------! ! total DOS ! !-------------------! allocate(f(nstsv,nkptnr),g(nwplot)) dt(:,:)=0.d0 do ispn=1,nspinor do ik=1,nkptnr jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) do ist=1,nstsv ! subtract the Fermi energy e(ist,ik,ispn)=evalsv(ist,jk)-efermi ! use diagonal of spin density matrix for weight f(ist,ik)=sc(ispn,ist,ik) if (tocc) then f(ist,ik)=f(ist,ik)*occsvp(ist,jk) else f(ist,ik)=f(ist,ik)*occmax end if end do end do ! integrate over the Brillouin zone call brzint(nswplot,ngridk,nsk,ivkiknr,nwplot,wplot,nstsv,nstsv,e(:,:,ispn), & f,g) if (dosssum) then dt(:,1)=dt(:,1)+g(:) else dt(:,ispn)=g(:) end if end do deallocate(f,g) ! output to file open(50,file='TDOS'//trim(fext),form='FORMATTED',action='WRITE') do ispn=1,nsd do iw=1,nwplot write(50,'(2G18.10)') w(iw),dt(iw,ispn)*sps(ispn) end do write(50,*) end do close(50) ! skip the partial DOS if required if (.not.tpdos) goto 10 !---------------------! ! partial DOS ! !---------------------! do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) dp(:,:,:)=0.d0 do ispn=1,nspinor call holdthd(lmaxdos+1,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(f,g,lm,ik,jk,ist) & !$OMP NUM_THREADS(nthd) allocate(f(nstsv,nkptnr),g(nwplot)) !$OMP DO SCHEDULE(DYNAMIC) do l=0,lmaxdos do lm=l**2+1,(l+1)**2 do ik=1,nkptnr jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) do ist=1,nstsv f(ist,ik)=bc(lm,ispn,ias,ist,ik) if (tocc) then f(ist,ik)=f(ist,ik)*occsvp(ist,jk) else f(ist,ik)=f(ist,ik)*occmax end if end do end do call brzint(nswplot,ngridk,nsk,ivkiknr,nwplot,wplot,nstsv,nstsv, & e(:,:,ispn),f,g) if (dosmsum) then if (dosssum) then dp(:,l,1)=dp(:,l,1)+g(:) else dp(:,l,ispn)=dp(:,l,ispn)+g(:) end if else if (dosssum) then dp(:,lm,1)=dp(:,lm,1)+g(:) else dp(:,lm,ispn)=g(:) end if end if ! subtract from interstitial DOS !$OMP CRITICAL(dos_) if (dosssum) then dt(:,1)=dt(:,1)-g(:) else dt(:,ispn)=dt(:,ispn)-g(:) end if !$OMP END CRITICAL(dos_) end do end do !$OMP END DO deallocate(f,g) !$OMP END PARALLEL call freethd(nthd) end do ! output to file write(fname,'("PDOS_S",I2.2,"_A",I4.4)') is,ia open(50,file=trim(fname)//trim(fext),form='FORMATTED',action='WRITE') do ispn=1,nsd do l=l0,l1 do iw=1,nwplot write(50,'(2G18.10)') w(iw),dp(iw,l,ispn)*sps(ispn) end do write(50,*) end do end do close(50) end do end do !------------------------------------------! ! irreducible representations file ! !------------------------------------------! if (lmirep) then open(50,file='ELMIREP'//trim(fext),form='FORMATTED',action='WRITE') do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is, & trim(spsymb(is)),ia do l=0,lmaxdos do m=-l,l lm=l*(l+1)+m+1 write(50,'(" l = ",I2,", m = ",I2,", lm= ",I3," : ",G18.10)') l,m, & lm,elm(lm,ias) end do end do end do end do close(50) end if !--------------------------! ! interstitial DOS ! !--------------------------! open(50,file='IDOS'//trim(fext),form='FORMATTED',action='WRITE') do ispn=1,nsd do iw=1,nwplot write(50,'(2G18.10)') w(iw),dt(iw,ispn)*sps(ispn) end do write(50,*) end do close(50) 10 continue ! write the total DOS to test file call writetest(10,'total DOS',nv=nwplot*nsd,tol=2.d-2,rva=dt) deallocate(bc,sc,w,e,dt,dp) if (lmirep) deallocate(elm,ulm) end subroutine !EOC elk-10.4.9/src/PaxHeaders/findprimcell.f900000644000000000000000000000013114762655564015240 xustar0030 mtime=1741380468.971011089 29 atime=1741380467.43900308 30 ctime=1741380468.971011089 elk-10.4.9/src/findprimcell.f900000644002504400250440000000746614762655564020000 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: findprimcell ! !INTERFACE: subroutine findprimcell ! !USES: use modmain ! !DESCRIPTION: ! This routine finds the smallest primitive cell which produces the same ! crystal structure as the conventional cell. This is done by searching ! through all the vectors which connect atomic positions and finding those ! which leave the crystal structure invariant. Of these, the three shortest ! which produce a non-zero unit cell volume are chosen. ! ! !REVISION HISTORY: ! Created April 2007 (JKD) !EOP !BOC implicit none ! local variables integer is,js,ia,ja,ka,na integer i1,i2,i3,i,j,n real(8) v1(3),v2(3),v3(3) real(8) t1,t2 ! allocatable arrays real(8), allocatable :: dp(:),vp(:,:) do is=1,nspecies do ia=1,natoms(is) ! make sure all atomic coordinates are in [0,1) call r3frac(epslat,atposl(:,ia,is)) ! determine atomic Cartesian coordinates call r3mv(avec,atposl(:,ia,is),atposc(:,ia,is)) end do end do ! find the smallest set of atoms is=1 do js=1,nspecies ! if a species has only one atom the cell must be primitive if (natoms(js) == 1) return if (natoms(js) < natoms(is)) is=js end do n=27*natoms(is) allocate(dp(n),vp(3,n)) ! generate set of possible lattice vectors n=0 do ia=1,natoms(is) v1(:)=atposl(:,ia,is)-atposl(:,1,is) do i1=-1,1 v2(1)=v1(1)+dble(i1) do i2=-1,1 v2(2)=v1(2)+dble(i2) do i3=-1,1 v2(3)=v1(3)+dble(i3) t1=abs(v2(1))+abs(v2(2))+abs(v2(3)) if (t1 < epslat) goto 20 ! check if vector v2 leaves conventional cell invariant do js=1,nspecies do ja=1,natoms(js) v3(:)=atposl(:,ja,js)+v2(:) call r3frac(epslat,v3) do ka=1,natoms(js) ! check both positions and magnetic fields are the same t1=sum(abs(atposl(:,ka,js)-v3(:))) t2=sum(abs(bfcmt0(:,ja,js)-bfcmt0(:,ka,js))) if ((t1 < epslat).and.(t2 < epslat)) goto 10 end do ! atom ja has no equivalent under translation by v2 goto 20 10 continue end do end do ! cell invariant under translation by v2, so add to list n=n+1 call r3mv(avec,v2,vp(:,n)) dp(n)=sqrt(vp(1,n)**2+vp(2,n)**2+vp(3,n)**2) 20 continue end do end do end do end do if (n == 0) then write(*,*) write(*,'("Error(findprimcell): cannot find any lattice vectors")') write(*,*) stop end if ! find the shortest lattice vector j=1 t1=1.d8 do i=1,n if (dp(i) < t1+epslat) then j=i t1=dp(i) end if end do avec(:,1)=vp(:,j) ! find the next shortest lattice vector not parallel to the first j=1 t1=1.d8 do i=1,n call r3cross(avec(:,1),vp(:,i),v1) t2=sqrt(v1(1)**2+v1(2)**2+v1(3)**2) if (t2 > epslat) then if (dp(i) < t1+epslat) then j=i t1=dp(i) end if end if end do avec(:,2)=vp(:,j) ! find the next shortest lattice vector which gives non-zero unit cell volume call r3cross(avec(:,1),avec(:,2),v1) j=1 t1=1.d8 do i=1,n t2=dot_product(vp(:,i),v1(:)) if (abs(t2) > epslat) then if (dp(i) < t1+epslat) then j=i t1=dp(i) end if end if end do avec(:,3)=vp(:,j) call r3minv(avec,ainv) ! remove redundant atoms do is=1,nspecies na=0 do ia=1,natoms(is) call r3mv(ainv,atposc(:,ia,is),v1) call r3frac(epslat,v1) do ja=1,na t1=sum(abs(atposl(:,ja,is)-v1(:))) if (t1 < epslat) goto 30 end do na=na+1 atposl(:,na,is)=v1(:) call r3mv(avec,atposl(:,na,is),atposc(:,na,is)) ! re-index external magnetic fields bfcmt0(:,na,is)=bfcmt0(:,ia,is) ! re-index fixed spin moment vectors mommtfix(:,na,is)=mommtfix(:,ia,is) 30 continue end do natoms(is)=na end do deallocate(dp,vp) end subroutine !EOC elk-10.4.9/src/PaxHeaders/plotpt2d.f900000644000000000000000000000013214762655564014341 xustar0030 mtime=1741380468.972011095 30 atime=1741380467.442003096 30 ctime=1741380468.972011095 elk-10.4.9/src/plotpt2d.f900000644002504400250440000000277314762655564017074 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine plotpt2d(cvec,cinv,vpnl,vpl,vppc) use modmain implicit none ! arguments real(8), intent(in) :: cvec(3,3),cinv(3,3) real(8), intent(out) :: vpnl(3) real(8), intent(out) :: vpl(3,np2d(1)*np2d(2)) real(8), intent(out) :: vppc(2,np2d(1)*np2d(2)) ! local variables integer ip,i1,i2 real(8) vl1(3),vl2(3) real(8) vc1(3),vc2(3),vc3(3) real(8) d1,d2,d12,t1,t2 vl1(:)=vclp2d(:,1)-vclp2d(:,0) vl2(:)=vclp2d(:,2)-vclp2d(:,0) call r3mv(cvec,vl1,vc1) call r3mv(cvec,vl2,vc2) d1=sqrt(vc1(1)**2+vc1(2)**2+vc1(3)**2) d2=sqrt(vc2(1)**2+vc2(2)**2+vc2(3)**2) if ((d1 < epslat).or.(d2 < epslat)) then write(*,*) write(*,'("Error(plotpt2d): zero length plotting vectors")') write(*,*) stop end if d12=(vc1(1)*vc2(1)+vc1(2)*vc2(2)+vc1(3)*vc2(3))/(d1*d2) ! vector normal to plane call r3cross(vc1,vc2,vc3) t1=sqrt(vc3(1)**2+vc3(2)**2+vc3(3)**2) if (t1 < epslat) then write(*,*) write(*,'("Error(plotpt2d): 2D plotting plane vectors are collinear")') write(*,*) stop end if vc3(:)=vc3(:)/t1 call r3mv(cinv,vc3,vpnl) ip=0 do i2=0,np2d(2)-1 do i1=0,np2d(1)-1 ip=ip+1 t1=dble(i1)/dble(np2d(1)) t2=dble(i2)/dble(np2d(2)) ! plot points in 3D space vpl(:,ip)=t1*vl1(:)+t2*vl2(:)+vclp2d(:,0) ! plot points on the plane vppc(1,ip)=t1*d1+t2*d2*d12 vppc(2,ip)=t2*d2*sqrt(abs(1.d0-d12**2)) end do end do end subroutine elk-10.4.9/src/PaxHeaders/sfacrho.f900000644000000000000000000000012614762655564014221 xustar0028 mtime=1741380468.9730111 30 atime=1741380467.445003112 28 ctime=1741380468.9730111 elk-10.4.9/src/sfacrho.f900000644002504400250440000000510314762655564016737 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 A. I. Baranov and F. Wagner. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: sfacrho ! !INTERFACE: subroutine sfacrho ! !USES: use modmain use modpw use modtest ! !DESCRIPTION: ! Outputs X-ray structure factors, i.e. the Fourier transform coefficients of ! the total electron density ! $$ F({\bf H})=\int_{\Omega}d^3r\,\rho({\bf r})e^{i{\bf H}\cdot{\bf r}}, $$ ! to the file {\tt SFACRHO.OUT}. The lattice coordinates $(h,k,l)$ of the ! $\bf H$-vectors in this file are transformed by the matrix {\tt vhmat}. If ! and energy window is set using the variable {\tt wsfac}, then only those ! states within the window are used to compute the density. See also routines ! {\tt zftrf} and {\tt genhvec}. ! ! !REVISION HISTORY: ! Created July 2010 (Alexey I. Baranov) ! Added multiplicity of the H-vectors, Oct. 2010 (Alexey I. Baranov) !EOP !BOC implicit none ! local variables integer ih,iv(3) real(8) v(3),a,b,r ! allocatable arrays complex(8), allocatable :: zrhoh(:) ! initialise the structure factor specific variables call sfacinit ! calculate the density structure factors allocate(zrhoh(nhvec)) call zftrf(nhvec,ivh,vhc,rhomt,rhoir,zrhoh) open(50,file='SFACRHO.OUT',form='FORMATTED') write(50,*) write(50,'("h k l indices transformed by vhmat matrix:")') write(50,'(3G18.10)') vhmat(:,1) write(50,'(3G18.10)') vhmat(:,2) write(50,'(3G18.10)') vhmat(:,3) write(50,*) write(50,'(" h k l multipl. |H| Re(F)& & Im(F) |F|")') write(50,*) do ih=1,nhvec ! apply transformation matrix v(:)=vhmat(:,1)*dble(ivh(1,ih)) & +vhmat(:,2)*dble(ivh(2,ih)) & +vhmat(:,3)*dble(ivh(3,ih)) ! in crystallography the forward Fourier transform of real-space density is ! usually done with positive phase and without 1/omega prefactor a=dble(zrhoh(ih))*omega b=-aimag(zrhoh(ih))*omega r=abs(zrhoh(ih))*omega iv(:)=nint(v(:)) if ((abs(v(1)-iv(1)) <= epslat).and. & (abs(v(2)-iv(2)) <= epslat).and. & (abs(v(3)-iv(3)) <= epslat)) then ! integer hkl write(50,'(4I7,4G16.8)') iv(:),mulh(ih),hc(ih),a,b,r else ! non-integer hkl write(50,'(3F7.2,I7,4G16.8)') v(:),mulh(ih),hc(ih),a,b,r end if end do close(50) write(*,*) write(*,'("Info(sfacrho): density structure factors written to SFACRHO.OUT")') write(*,*) write(*,'(" Energy window : ",2G18.10)') wsfac(:) ! write the structure factors to test file call writetest(195,'density structure factors',nv=nhvec,tol=1.d-5,zva=zrhoh(:)) deallocate(zrhoh) end subroutine !EOC elk-10.4.9/src/PaxHeaders/bdipole.f900000644000000000000000000000013014762655564014205 xustar0029 mtime=1741380468.97501111 30 atime=1741380467.447003122 29 ctime=1741380468.97501111 elk-10.4.9/src/bdipole.f900000644002504400250440000000713514762655564016737 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: bdipole ! !INTERFACE: subroutine bdipole ! !USES: use modmain ! !DESCRIPTION: ! Calculates the magnetic dipole field arising from the spin and orbital ! current. The total current density is ! $$ {\bf j}({\bf r}) = {\rm Im}\sum_{i{\bf k}}^{\rm occ} ! \varphi_{i{\bf k}}^{\dag}({\bf r})\nabla\varphi_{i{\bf k}}({\bf r}) ! -\frac{1}{c}{\bf A}\,\rho({\bf r}) ! +\frac{g_s}{4}\nabla\times{\bf m}({\bf r}), $$ ! where $g_s$ is the electron spin $g$-factor. The vector potential arising ! from ${\bf j}({\bf r})$ is calculated by ! $$ {\bf A}({\bf r})=\frac{1}{c}\int d^3r'\,\frac{{\bf j}({\bf r}')} ! {|{\bf r}-{\bf r}'|}, $$ ! using the Poisson equation solver {\tt zpotcoul}. Finally, the magnetic ! field is determined from ${\bf B}({\bf r})=\nabla\times{\bf A}({\bf r})$. ! This field is included as a Zeeman term in the second-variational ! Hamiltonian: ! $$ \hat{H}\rightarrow\hat{H}+\frac{g_s}{4c}{\bf B}\cdot\boldsymbol\sigma. $$ ! ! !REVISION HISTORY: ! Created April 2018 (Mueller) !EOP !BOC implicit none ! local variables integer idm,is,ias integer nrc,nrci,npc real(8) cb,t1 ! automatic arrays real(8) rfmt(npcmtmax) ! allocatable arrays real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) complex(8), allocatable :: zrhomt(:,:),zrhoir(:) complex(8), allocatable :: zvclmt(:,:),zvclir(:) ! prefactor for the spin dipole magnetic field cb=gfacte/(4.d0*solsc) ! compute the gauge invariant current density if required if (tjr) call genjr ! allocate local arrays allocate(rvfmt(npmtmax,natmtot,3),rvfir(ngtot,3)) allocate(zrhomt(npmtmax,natmtot),zrhoir(ngtot)) allocate(zvclmt(npmtmax,natmtot),zvclir(ngtot)) ! compute the curl of the magnetisation density, i.e. the magnetisation current call curlrvf(magmt,magir,rvfmt,rvfir) ! multiply by prefactor rvfmt(:,:,:)=cb*rvfmt(:,:,:) rvfir(:,:)=cb*rvfir(:,:) ! add the current density if required if (tjr) then t1=1.d0/solsc rvfmt(:,:,:)=rvfmt(:,:,:)+t1*jrmt(:,:,:) rvfir(:,:)=rvfir(:,:)+t1*jrir(:,:) end if do idm=1,3 ! transform to complex spherical harmonics do ias=1,natmtot is=idxis(ias) call rtozfmt(nrmt(is),nrmti(is),rvfmt(:,ias,idm),zrhomt(:,ias)) end do ! solve Poisson's equation in the muffin-tin to find the A-field call genzvclmt(nrmt,nrmti,nrmtmax,rlmt,wprmt,npmtmax,zrhomt,zvclmt) zrhoir(1:ngtot)=rvfir(1:ngtot,idm) ! solve in the entire unit cell call zpotcoul(0,nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gc,gclg, & ngvec,jlgrmt,ylmg,sfacg,zrhoir,npmtmax,zvclmt,zvclir) ! convert muffin-tin A-field to real spherical harmonics do ias=1,natmtot is=idxis(ias) call ztorfmt(nrmt(is),nrmti(is),zvclmt(:,ias),rvfmt(:,ias,idm)) end do ! store the real part of the interstitial A-field rvfir(1:ngtot,idm)=dble(zvclir(1:ngtot)) end do ! compute the curl of A to obtain the dipole B-field call curlrvf(rvfmt,rvfir,bdmt,bdir) ! scale dipole B-field if required (by scaling the prefactor) cb=cb*bdipscf ! add to the Kohn-Sham field do idm=1,3 do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! convert to coarse radial mesh call rfmtftoc(nrc,nrci,bdmt(:,ias,idm),rfmt) ! convert to spherical coordinates call rbshtip(nrc,nrci,rfmt) bsmt(1:npc,ias,idm)=bsmt(1:npc,ias,idm)+cb*rfmt(1:npc) end do end do do idm=1,3 bsir(1:ngtot,idm)=bsir(1:ngtot,idm)+cb*bdir(1:ngtot,idm) end do deallocate(rvfmt,rvfir) deallocate(zrhomt,zrhoir,zvclmt,zvclir) end subroutine !EOC elk-10.4.9/src/PaxHeaders/dielectric.f900000644000000000000000000000013214762655564014700 xustar0030 mtime=1741380468.976011115 30 atime=1741380467.450003138 30 ctime=1741380468.976011115 elk-10.4.9/src/dielectric.f900000644002504400250440000001225714762655564017431 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2009 S. Sharma, J. K. Dewhurst and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: dielectric ! !INTERFACE: subroutine dielectric ! !USES: use modmain use modmpi use modomp use modtest ! !DESCRIPTION: ! Computes the dielectric tensor, optical conductivity and plasma frequency. ! The formulae are taken from {\it Physica Scripta} {\bf T109}, 170 (2004). ! ! !REVISION HISTORY: ! Created November 2005 (SS and JKD) ! Added plasma frequency and intraband contribution (S. Lebegue) ! Complete rewrite, 2008 (JKD) ! Fixed problem with plasma frequency, 2009 (Marty Blaber and JKD) ! Parallelised, 2009 (M. Blaber) !EOP !BOC implicit none ! local variables integer ik,jk,ist,jst integer iw,ioc,i,j,nthd real(8) w1,w2,wplas,x real(8) ei,ej,eji,t1,t2 complex(8) eta,z1 character(256) fname ! allocatable arrays real(8), allocatable :: w(:) complex(8), allocatable :: pmat(:,:,:),sigma(:) ! external functions real(8), external :: sdelta ! initialise universal variables call init0 call init1 ! read Fermi energy from file call readfermi ! get the eigenvalues and occupation numbers from file call readevalsv call readoccsv ! allocate local arrays allocate(w(nwplot),sigma(nwplot)) ! generate energy grid (always non-negative) w1=max(wplot(1),0.d0) w2=max(wplot(2),w1) t1=(w2-w1)/dble(nwplot) do iw=1,nwplot w(iw)=w1+t1*dble(iw-1) end do ! i divided by the complex relaxation time eta=cmplx(0.d0,swidth,8) ! loop over dielectric tensor components do ioc=1,noptcomp i=optcomp(1,ioc) j=optcomp(2,ioc) wplas=0.d0 sigma(:)=0.d0 ! parallel loop over non-reduced k-points call holdthd(nkptnr,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(pmat,jk,ist,jst) & !$OMP PRIVATE(ei,ej,eji,z1,t1,x) & !$OMP REDUCTION(+:wplas,sigma) & !$OMP NUM_THREADS(nthd) allocate(pmat(nstsv,nstsv,3)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(dielectric_) write(*,'("Info(dielectric): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(dielectric_) ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! read in the momentum matrix elements call getpmat(vkl(:,ik),pmat) ! valance states do ist=1,nstsv ei=evalsv(ist,jk) ! conduction states do jst=1,nstsv ej=evalsv(jst,jk) eji=ej-ei z1=pmat(ist,jst,i)*conjg(pmat(ist,jst,j)) if (abs(eji) > 1.d-8) then t1=occsv(ist,jk)*(1.d0-occsv(jst,jk)/occmax)/eji sigma(:)=sigma(:)+t1*(z1/(w(:)-eji+eta)+conjg(z1)/(w(:)+eji+eta)) end if ! add to the plasma frequency if (intraband) then if (i == j) then if (ist == jst) then x=(ei-efermi)/swidth t1=wkptnr*dble(z1)*sdelta(stype,x)/swidth wplas=wplas+t1 end if end if end if end do end do end do !$OMP END DO deallocate(pmat) !$OMP END PARALLEL call freethd(nthd) ! multiply response function by prefactor z1=zi*wkptnr/omega sigma(:)=z1*sigma(:) ! add response function and plasma frequency from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,sigma,nwplot,mpi_double_complex,mpi_sum, & mpicom,ierror) call mpi_allreduce(mpi_in_place,wplas,1,mpi_double_precision,mpi_sum, & mpicom,ierror) end if ! intraband contribution if (intraband) then if (i == j) then wplas=sqrt(occmax*abs(wplas)*fourpi/omega) ! write the plasma frequency to file write(fname,'("PLASMA_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') write(50,'(G18.10," : plasma frequency")') wplas close(50) ! add the intraband contribution to sigma t1=wplas**2/fourpi do iw=1,nwplot sigma(iw)=sigma(iw)+t1/(swidth-zi*w(iw)) end do end if end if ! write the optical conductivity to file write(fname,'("SIGMA_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') do iw=1,nwplot write(50,'(2G18.10)') w(iw),dble(sigma(iw)) end do write(50,*) do iw=1,nwplot write(50,'(2G18.10)') w(iw),aimag(sigma(iw)) end do close(50) ! write the dielectric function to file write(fname,'("EPSILON_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') t1=0.d0 if (i == j) t1=1.d0 do iw=1,nwplot t2=t1-fourpi*aimag(sigma(iw)/(w(iw)+eta)) write(50,'(2G18.10)') w(iw),t2 end do write(50,*) do iw=1,nwplot t2=fourpi*dble(sigma(iw)/(w(iw)+eta)) write(50,'(2G18.10)') w(iw),t2 end do close(50) ! end loop over tensor components end do if (mp_mpi) then write(*,*) write(*,'("Info(dielectric):")') write(*,'(" dielectric tensor written to EPSILON_ij.OUT")') write(*,'(" optical conductivity written to SIGMA_ij.OUT")') if (intraband) then write(*,'(" plasma frequency written to PLASMA_ij.OUT")') end if write(*,'(" for components")') do ioc=1,noptcomp write(*,'(" i = ",I1,", j = ",I1)') optcomp(1:2,ioc) end do end if ! write sigma to test file if required call writetest(121,'optical conductivity',nv=nwplot,tol=1.d-2,zva=sigma) deallocate(w,sigma) end subroutine !EOC elk-10.4.9/src/PaxHeaders/elfplot.f900000644000000000000000000000013214762655564014236 xustar0030 mtime=1741380468.978011126 30 atime=1741380467.452003148 30 ctime=1741380468.978011126 elk-10.4.9/src/elfplot.f900000644002504400250440000001276614762655564016774 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: elfplot ! !INTERFACE: subroutine elfplot ! !USES: use modmain ! !DESCRIPTION: ! Outputs the electron localisation function (ELF) for 1D, 2D or 3D plotting. ! The spin-averaged ELF is given by ! $$ f_{\rm ELF}({\bf r})=\frac{1}{1+[D({\bf r})/D^0({\bf r})]^2}, $$ ! where ! $$ D({\bf r})=\frac{1}{2}\left(\tau({\bf r})-\frac{1}{4} ! \frac{[\nabla n({\bf r})]^2}{n({\bf r})}\right) $$ ! and ! $$ \tau({\bf r})=\sum_{i=1}^N \left|\nabla\Psi_i({\bf r}) ! \right|^2 $$ ! is the spin-averaged kinetic energy density from the spinor wavefunctions. ! The function $D^0$ is the kinetic energy density for the homogeneous ! electron gas evaluated for $n({\bf r})$: ! $$ D^0({\bf r})=\frac{3}{5}(6\pi^2)^{2/3}\left(\frac{n({\bf r})}{2} ! \right)^{5/3}. $$ ! The ELF is useful for the topological classification of bonding. See for ! example T. Burnus, M. A. L. Marques and E. K. U. Gross [Phys. Rev. A 71, ! 10501 (2005)]. ! ! !REVISION HISTORY: ! Created September 2003 (JKD) ! Fixed bug found by F. Wagner (JKD) !EOP !BOC implicit none ! local variables integer ik,is,ias integer nr,nri,ir integer ig,ifg,i real(8) r,t1,t2 ! allocatable arrays real(8), allocatable :: gwf2mt(:,:),gwf2ir(:) real(8), allocatable :: rfmt(:),grfmt(:,:) real(8), allocatable :: rfir(:),grfir(:) real(8), allocatable :: elfmt(:,:),elfir(:) complex(8), allocatable :: zfft1(:),zfft2(:) ! initialise universal variables call init0 call init1 ! allocate local arrays allocate(gwf2mt(npmtmax,natmtot),gwf2ir(ngtot)) allocate(rfmt(npmtmax),grfmt(npmtmax,3)) allocate(rfir(ngtot),grfir(ngtot)) allocate(elfmt(npmtmax,natmtot),elfir(ngtot)) allocate(zfft1(nfgrz),zfft2(nfgrz)) ! read density and potentials from file call readstate ! generate the core wavefunctions and densities call gencore ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the occupation numbers from file call readoccsv ! set the wavefunction gradient squared to zero gwf2mt(:,:)=0.d0 gwf2ir(:)=0.d0 do ik=1,nkpt ! add to the valence wavefunction gradient squared call gradwf2(ik,gwf2mt,gwf2ir) end do ! convert muffin-tin gradient squared to spherical harmonics do ias=1,natmtot is=idxis(ias) call rfshtip(nrcmt(is),nrcmti(is),gwf2mt(:,ias)) end do ! symmetrise the wavefunction gradient squared call symrf(nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,nfgrzc,igfc,igrzfc,npmtmax, & gwf2mt,gwf2ir) ! convert back to spherical coordinates do ias=1,natmtot is=idxis(ias) call rbshtip(nrcmt(is),nrcmti(is),gwf2mt(:,ias)) end do ! convert from coarse to fine muffin-tin radial mesh call rfmtctof(gwf2mt) ! convert from coarse to fine interstitial grid call rfirctof(gwf2ir,gwf2ir) ! add core wavefunction gradient squared call gradwfcr2(gwf2mt) !------------------------! ! muffin-tin ELF ! !------------------------! do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) ! convert rho from spherical harmonics to spherical coordinates call rbsht(nr,nri,rhomt(:,ias),rfmt) ! compute the gradient of the density call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rhomt(:,ias),npmtmax,grfmt) ! convert gradient to spherical coordinates do i=1,3 call rbshtip(nr,nri,grfmt(:,i)) end do do i=1,npmt(is) r=abs(rfmt(i)) ! square of gradient of rho t1=grfmt(i,1)**2+grfmt(i,2)**2+grfmt(i,3)**2 ! D for inhomogeneous density t1=(1.d0/2.d0)*(gwf2mt(i,ias)-(1.d0/4.d0)*t1/r) ! D0 for uniform electron gas t2=(3.d0/5.d0)*((6.d0*pi**2)**(2.d0/3.d0))*(r/2.d0)**(5.d0/3.d0) ! ELF function elfmt(i,ias)=1.d0/(1.d0+(t1/t2)**2) end do ! convert ELF from spherical coordinates to spherical harmonics call rfshtip(nr,nri,elfmt(:,ias)) end do !--------------------------! ! interstitial ELF ! !--------------------------! ! Fourier transform density to G-space call rzfftifc(3,ngridg,-1,rhoir,zfft1) ! calculate the square of gradient of rho grfir(:)=0.d0 do i=1,3 do ifg=1,nfgrz ig=igrzf(ifg) if (ig <= ngvc) then zfft2(ifg)=vgc(i,ig)*zi*zfft1(ifg) else zfft2(ifg)=0.d0 end if end do ! Fourier transform gradient to real-space call rzfftifc(3,ngridg,1,rfir,zfft2) do ir=1,ngtot grfir(ir)=grfir(ir)+rfir(ir)**2 end do end do do ir=1,ngtot r=abs(rhoir(ir)) ! D for inhomogeneous density t1=(1.d0/2.d0)*(gwf2ir(ir)-(1.d0/4.d0)*grfir(ir)/r) ! D0 for homogeneous electron gas t2=(3.d0/5.d0)*((6.d0*pi**2)**(2.d0/3.d0))*(r/2.d0)**(5.d0/3.d0) ! ELF function elfir(ir)=1.d0/(1.d0+(t1/t2)**2) end do ! plot the ELF to file select case(task) case(51) open(50,file='ELF1D.OUT',form='FORMATTED') open(51,file='ELFLINES.OUT',form='FORMATTED') call plot1d(50,51,1,elfmt,elfir) close(50) close(51) write(*,*) write(*,'("Info(elfplot):")') write(*,'(" 1D ELF plot written to ELF1D.OUT")') write(*,'(" vertex location lines written to ELFLINES.OUT")') case(52) open(50,file='ELF2D.OUT',form='FORMATTED') call plot2d(.false.,50,1,elfmt,elfir) close(50) write(*,*) write(*,'("Info(elfplot): 2D ELF plot written to ELF2D.OUT")') case(53) open(50,file='ELF3D.OUT',form='FORMATTED') call plot3d(50,1,elfmt,elfir) close(50) write(*,*) write(*,'("Info(elfplot): 3D ELF plot written to ELF3D.OUT")') end select deallocate(gwf2mt,gwf2ir,rfmt,grfmt,rfir,grfir) deallocate(elfmt,elfir,zfft1,zfft2) end subroutine !EOC elk-10.4.9/src/PaxHeaders/vclcore.f900000644000000000000000000000013214762655564014226 xustar0030 mtime=1741380468.979011131 30 atime=1741380467.455003164 30 ctime=1741380468.979011131 elk-10.4.9/src/vclcore.f900000644002504400250440000000612114762655564016750 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vclcore(wfmt,vmat) use modmain use modomp implicit none ! arguments complex(4), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nstsv) complex(8), intent(inout) :: vmat(nstsv,nstsv) ! local variables integer ist1,ist2,ist3 integer is,ia,ias,m,nthd integer nrc,nrci,npc ! automatic arrays complex(4) wfcr(npcmtmax,2),cfmt(npcmtmax) complex(8) v(nstsv,nstsv) ! allocatable arrays complex(4), allocatable :: crhomt(:,:) ! external functions complex(8), external :: zcfmtinp allocate(crhomt(npcmtmax,nstsv)) ! zero the upper triangular matrix elements do ist2=1,nstsv v(1:ist2,ist2)=0.d0 end do call holdthd(nstsv,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(cfmt,is,ia,ias) & !$OMP PRIVATE(nrc,nrci,npc) & !$OMP PRIVATE(ist1,ist2,ist3,m) & !$OMP NUM_THREADS(nthd) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do ist3=1,nstsp(is) if (spcore(ist3,is)) then do m=-ksp(ist3,is),ksp(ist3,is)-1 ! generate the core wavefunction in spherical coordinates (pass in m-1/2) !$OMP SINGLE call wavefcr(.false.,lradstp,is,ia,ist3,m,npcmtmax,wfcr) !$OMP END SINGLE !$OMP DO SCHEDULE(DYNAMIC) do ist1=1,nstsv ! calculate the complex overlap density in spherical harmonics if (spinpol) then call crho2(npc,wfcr,wfcr(:,2),wfmt(:,ias,1,ist1), & wfmt(:,ias,2,ist1),cfmt) else call crho1(npc,wfcr,wfmt(:,ias,1,ist1),cfmt) end if call cfsht(nrc,nrci,cfmt,crhomt(:,ist1)) end do !$OMP END DO !$OMP DO SCHEDULE(DYNAMIC) do ist2=1,nstsv call cpotclmt(nrc,nrci,nrcmtmax,rlcmt(:,:,is),wprcmt(:,:,is), & crhomt(:,ist2),cfmt) do ist1=1,ist2 v(ist1,ist2)=v(ist1,ist2)-zcfmtinp(nrc,nrci,wr2cmt(:,is), & crhomt(:,ist1),cfmt) end do end do !$OMP END DO end do end if end do end do end do !$OMP END PARALLEL call freethd(nthd) do ist1=1,nstsv ! set the lower triangular part of the matrix do ist2=1,ist1-1 v(ist1,ist2)=conjg(v(ist2,ist1)) end do ! make the diagonal elements real v(ist1,ist1)=dble(v(ist1,ist1)) end do ! scale the Coulomb matrix elements in the case of a hybrid functional if (hybrid) v(1:nstsv,1:nstsv)=hybridc*v(1:nstsv,1:nstsv) ! add to input matrix vmat(1:nstsv,1:nstsv)=vmat(1:nstsv,1:nstsv)+v(1:nstsv,1:nstsv) deallocate(crhomt) return contains pure subroutine crho1(n,wf1,wf2,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf1(n),wf2(n) complex(4), intent(out) :: crho(n) crho(1:n)=conjg(wf1(1:n))*wf2(1:n) end subroutine pure subroutine crho2(n,wf11,wf12,wf21,wf22,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf11(n),wf12(n),wf21(n),wf22(n) complex(4), intent(out) :: crho(n) crho(1:n)=conjg(wf11(1:n))*wf21(1:n)+conjg(wf12(1:n))*wf22(1:n) end subroutine end subroutine elk-10.4.9/src/PaxHeaders/zfmtwr.f900000644000000000000000000000013214762655564014122 xustar0030 mtime=1741380468.980011136 30 atime=1741380467.457003174 30 ctime=1741380468.980011136 elk-10.4.9/src/zfmtwr.f900000644002504400250440000000123414762655564016644 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine zfmtwr(nr,nri,wr,zfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(8), intent(inout) :: zfmt(*) ! local variables integer n,ir,i i=1 if (lmaxi == 1) then do ir=1,nri zfmt(i:i+3)=wr(ir)*zfmt(i:i+3) i=i+4 end do else n=lmmaxi-1 do ir=1,nri zfmt(i:i+n)=wr(ir)*zfmt(i:i+n) i=i+lmmaxi end do end if n=lmmaxo-1 do ir=nri+1,nr zfmt(i:i+n)=wr(ir)*zfmt(i:i+n) i=i+lmmaxo end do end subroutine elk-10.4.9/src/PaxHeaders/zvcldisp.f900000644000000000000000000000013114762655564014426 xustar0030 mtime=1741380468.981011142 29 atime=1741380467.46000319 30 ctime=1741380468.981011142 elk-10.4.9/src/zvcldisp.f900000644002504400250440000000122014762655564017144 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zvcldisp(zvclmt) use modmain use modtddft implicit none ! arguments complex(8), intent(inout) :: zvclmt(npmtmax,natmtot) ! local variables integer is,ia,ias,np,i real(8) t1 do is=1,nspecies np=npmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do i=1,3 t1=-atdvc(i,0,ia,is) ! add the gradient of the Coulomb potential of the nucleus plus static density zvclmt(1:np,ias)=zvclmt(1:np,ias)+t1*gvnsmt(1:np,i,ias) end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/vecfbz.f900000644000000000000000000000013014762655564014046 xustar0030 mtime=1741380468.982011147 28 atime=1741380467.4620032 30 ctime=1741380468.982011147 elk-10.4.9/src/vecfbz.f900000644002504400250440000000274014762655564016575 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: vecfbz ! !INTERFACE: subroutine vecfbz(eps,bvec,vpl) ! !INPUT/OUTPUT PARAMETERS: ! eps : zero component tolerance (in,real) ! bvec : reciprocal lattice vectors (in,real(3,3)) ! vpl : input vector in lattice coordinates (inout,real(3)) ! !DESCRIPTION: ! Maps a vector in lattice coordinates to the first Brillouin zone. This is ! done by first removing its integer components and then adding primitive ! reciprocal lattice vectors until the shortest vector is found. ! ! !REVISION HISTORY: ! Created September 2008 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: eps,bvec(3,3) real(8), intent(inout) :: vpl(3) ! local variables integer i1,i2,i3,j1,j2,j3 real(8) v0(3),v1(3),v2(3),v3(3),t1,t2 ! map vector to [0,1) interval call r3frac(eps,vpl) v0(1:3)=bvec(1:3,1)*vpl(1)+bvec(1:3,2)*vpl(2)+bvec(1:3,3)*vpl(3) t1=v0(1)**2+v0(2)**2+v0(3)**2 j1=0; j2=0; j3=0 do i1=-1,0 v1(1:3)=v0(1:3)+dble(i1)*bvec(1:3,1) do i2=-1,0 v2(1:3)=v1(1:3)+dble(i2)*bvec(1:3,2) do i3=-1,0 v3(1:3)=v2(1:3)+dble(i3)*bvec(1:3,3) t2=v3(1)**2+v3(2)**2+v3(3)**2 if (t2 < t1+eps) then j1=i1; j2=i2; j3=i3 t1=t2 end if end do end do end do vpl(1)=vpl(1)+dble(j1) vpl(2)=vpl(2)+dble(j2) vpl(3)=vpl(3)+dble(j3) end subroutine !EOC elk-10.4.9/src/PaxHeaders/lopzflmn.f900000644000000000000000000000013214762655564014432 xustar0030 mtime=1741380468.984011157 30 atime=1741380467.465003216 30 ctime=1741380468.984011157 elk-10.4.9/src/lopzflmn.f900000644002504400250440000000222714762655564017157 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine lopzflmn(lmax,n,ld,zflm,zlflm1,zlflm2,zlflm3) implicit none ! arguments integer, intent(in) :: lmax,n,ld complex(8), intent(in) :: zflm(ld,n) complex(8), intent(out) :: zlflm1(ld,n),zlflm2(ld,n),zlflm3(ld,n) ! local variables integer l,m,lm,i real(8) t1 complex(8), parameter :: zi=(0.d0,1.d0),zmi=(0.d0,-1.d0) complex(8) z1 lm=0 do l=0,lmax do m=-l,l lm=lm+1 if (m == -l) then zlflm1(lm,1:n)=0.d0 zlflm2(lm,1:n)=0.d0 end if if (m < l) then t1=0.5d0*sqrt(dble((l-m)*(l+m+1))) do i=1,n z1=t1*zflm(lm,i) zlflm1(lm+1,i)=z1 zlflm2(lm+1,i)=zmi*z1 end do end if if (m > -l) then t1=0.5d0*sqrt(dble((l+m)*(l-m+1))) do i=1,n z1=t1*zflm(lm,i) zlflm1(lm-1,i)=zlflm1(lm-1,i)+z1 zlflm2(lm-1,i)=zlflm2(lm-1,i)+zi*z1 end do end if if (m /= 0) then zlflm3(lm,1:n)=dble(m)*zflm(lm,1:n) else zlflm3(lm,1:n)=0.d0 end if end do end do end subroutine elk-10.4.9/src/PaxHeaders/zpotclmt.f900000644000000000000000000000013214762655564014445 xustar0030 mtime=1741380468.985011163 30 atime=1741380467.467003227 30 ctime=1741380468.985011163 elk-10.4.9/src/zpotclmt.f900000644002504400250440000000645314762655564017177 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zpotclmt ! !INTERFACE: pure subroutine zpotclmt(nr,nri,ld,rl,wpr,zrhomt,zvclmt) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on inner part of muffin-tin (in,integer) ! ld : leading dimension (in,integer) ! rl : r^l on the radial mesh (in,real(ld,-lmaxo-1:lmaxo+2)) ! wpr : weights for partial integration on radial mesh (in,real(4,nr)) ! zrhomt : muffin-tin charge density (in,complex(*)) ! zvclmt : muffin-tin Coulomb potential (out,complex(*)) ! !DESCRIPTION: ! Solves the Poisson equation for the charge density contained in an isolated ! muffin-tin using the Green's function approach. In other words, the ! spherical harmonic expansion of the Coulomb potential, $V_{lm}$, is obtained ! from the density expansion, $\rho_{lm}$, by ! $$ V_{lm}(r)=\frac{4\pi}{2l+1}\left(\frac{1}{r^{l+1}}\int_0^r\rho_{lm}(r') ! {r'}^{l+2}dr'+r^l\int_r^R\frac{\rho_{lm}(r')}{{r'}^{l-1}}dr'\right) $$ ! where $R$ is the muffin-tin radius. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri,ld real(8), intent(in) :: rl(ld,-lmaxo-1:lmaxo+2),wpr(4,nr) complex(8), intent(in) :: zrhomt(*) complex(8), intent(out) :: zvclmt(*) ! local variables integer nro,iro,ir integer l,l1,l2,l3 integer lm,npi,i0,i real(8) t0 complex(8) z1 ! automatic arrays complex(8) f1(nr),f2(nr),f3(nr) nro=nr-nri iro=nri+1 npi=lmmaxi*nri do l=0,lmaxi l1=l+2 l2=-l+1 l3=-l-1 t0=fourpi/dble(2*l+1) do lm=l**2+1,(l+1)**2 do ir=1,nri i=lm+lmmaxi*(ir-1) f1(ir)=rl(ir,l1)*zrhomt(i) f2(ir)=rl(ir,l2)*zrhomt(i) end do i0=lm+npi do ir=iro,nr i=i0+lmmaxo*(ir-iro) f1(ir)=rl(ir,l1)*zrhomt(i) f2(ir)=rl(ir,l2)*zrhomt(i) end do call splintwp(nr,wpr,f1,f3) call splintwp(nr,wpr,f2,f1) z1=f1(nr) do ir=1,nri i=lm+lmmaxi*(ir-1) zvclmt(i)=t0*(rl(ir,l3)*f3(ir)+rl(ir,l)*(z1-f1(ir))) end do do ir=iro,nr i=i0+lmmaxo*(ir-iro) zvclmt(i)=t0*(rl(ir,l3)*f3(ir)+rl(ir,l)*(z1-f1(ir))) end do end do end do do l=lmaxi+1,lmaxo l1=l+2 l2=-l+1 l3=-l-1 t0=fourpi/dble(2*l+1) do lm=l**2+1,(l+1)**2 i0=lm+npi do ir=iro,nr i=i0+lmmaxo*(ir-iro) f1(ir)=rl(ir,l1)*zrhomt(i) f2(ir)=rl(ir,l2)*zrhomt(i) end do call splintwp(nro,wpr(1,iro),f1(iro),f3(iro)) call splintwp(nro,wpr(1,iro),f2(iro),f1(iro)) z1=f1(nr) do ir=iro,nr i=i0+lmmaxo*(ir-iro) zvclmt(i)=t0*(rl(ir,l3)*f3(ir)+rl(ir,l)*(z1-f1(ir))) end do end do end do return contains pure subroutine splintwp(n,wp,f,g) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wp(*) complex(8), intent(in) :: f(n) complex(8), intent(out) :: g(n) ! local variables integer i,j complex(8) zsm g(1)=0.d0 zsm=wp(5)*f(1)+wp(6)*f(2)+wp(7)*f(3)+wp(8)*f(4) g(2)=zsm do i=2,n-2 j=i*4+1 zsm=zsm+wp(j)*f(i-1)+wp(j+1)*f(i)+wp(j+2)*f(i+1)+wp(j+3)*f(i+2) g(i+1)=zsm end do j=(n-1)*4+1 g(n)=zsm+wp(j)*f(n-3)+wp(j+1)*f(n-2)+wp(j+2)*f(n-1)+wp(j+3)*f(n) end subroutine end subroutine !EOC elk-10.4.9/src/PaxHeaders/readfermi.f900000644000000000000000000000013214762655564014527 xustar0030 mtime=1741380468.986011168 30 atime=1741380467.470003242 30 ctime=1741380468.986011168 elk-10.4.9/src/readfermi.f900000644002504400250440000000157214762655564017256 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: readfermi ! !INTERFACE: subroutine readfermi ! !USES: use modmain ! !DESCRIPTION: ! Reads the Fermi energy from the file {\tt EFERMI.OUT}. ! ! !REVISION HISTORY: ! Created March 2005 (JKD) !EOP !BOC implicit none ! local variables integer ios open(50,file='EFERMI'//trim(filext),form='FORMATTED',action='READ', & status='OLD',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readfermi): error opening ",A)') 'EFERMI'//trim(filext) write(*,*) stop end if read(50,*,iostat=ios) efermi if (ios /= 0) then write(*,*) write(*,'("Error(readfermi): error reading Fermi energy from EFERMI.OUT")') write(*,*) stop end if close(50) end subroutine !EOC elk-10.4.9/src/PaxHeaders/gensdmat.f900000644000000000000000000000013214762655564014373 xustar0030 mtime=1741380468.987011173 30 atime=1741380467.472003253 30 ctime=1741380468.987011173 elk-10.4.9/src/gensdmat.f900000644002504400250440000000212314762655564017113 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gensdmat ! !INTERFACE: pure subroutine gensdmat(evecsv,sdmat) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! evecsv : second-variational eigenvectors (in,complex(nstsv,nstsv)) ! sdmat : spin density matrices (out,complex(nspinor,nspinor,nstsv)) ! !DESCRIPTION: ! Computes the spin density matrices for a set of second-variational states. ! ! !REVISION HISTORY: ! Created September 2008 (JKD) !EOP !BOC implicit none ! arguments complex(8), intent(in) :: evecsv(nstsv,nstsv) complex(8), intent(out) :: sdmat(nspinor,nspinor,nstsv) ! local variables integer ispn,jspn,ist,j complex(8) z1,z2 sdmat(:,:,:)=0.d0 do j=1,nstsv do ispn=1,nspinor do jspn=1,nspinor do ist=1,nstfv z1=evecsv(ist+nstfv*(ispn-1),j) z2=evecsv(ist+nstfv*(jspn-1),j) sdmat(ispn,jspn,j)=sdmat(ispn,jspn,j)+z1*conjg(z2) end do end do end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/symrfmt.f900000644000000000000000000000013214762655564014272 xustar0030 mtime=1741380468.988011178 30 atime=1741380467.474003263 30 ctime=1741380468.988011178 elk-10.4.9/src/symrfmt.f900000644002504400250440000000360514762655564017020 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine symrfmt(nrmt_,nrmti_,npmt_,ld,rfmt) use modmain implicit none ! arguments integer, intent(in) :: nrmt_(nspecies),nrmti_(nspecies),npmt_(nspecies),ld real(8), intent(inout) :: rfmt(ld,natmtot) ! local variables integer is,ia,ja,ias,jas integer nr,nri,np,isym,lspl real(8) t0 ! allocatable arrays real(8), allocatable :: rfmt1(:,:),rfmt2(:) allocate(rfmt1(ld,natmmax),rfmt2(ld)) t0=1.d0/dble(nsymcrys) do is=1,nspecies nr=nrmt_(is) nri=nrmti_(is) np=npmt_(is) ! make a copy of the input function do ia=1,natoms(is) ias=idxas(ia,is) rfmt1(1:np,ia)=rfmt(1:np,ias) end do ! loop over atoms do ia=1,natoms(is) ! only symmetrise first equivalent atom (rotate into others) if (.not.tfeqat(ia,is)) cycle ias=idxas(ia,is) rfmt(1:np,ias)=0.d0 ! loop over crystal symmetries do isym=1,nsymcrys ! index to spatial rotation lattice symmetry lspl=lsplsymc(isym) ! equivalent atom index (symmetry rotates atom ja into atom ia) ja=ieqatom(ia,is,isym) ! apply the rotation to the muffin-tin function call rotrfmt(symlatc(:,:,lspl),nr,nri,rfmt1(:,ja),rfmt2) ! accumulate in original function array rfmt(1:np,ias)=rfmt(1:np,ias)+rfmt2(1:np) end do ! normalise rfmt(1:np,ias)=t0*rfmt(1:np,ias) ! rotate into equivalent atoms do ja=1,natoms(is) if (eqatoms(ia,ja,is).and.(ia /= ja)) then isym=findloc(ieqatom(ia,is,1:nsymcrys),ja,1) jas=idxas(ja,is) ! inverse symmetry (which rotates atom ia into atom ja) lspl=isymlat(lsplsymc(isym)) ! rotate symmetrised function into equivalent muffin-tin call rotrfmt(symlatc(:,:,lspl),nr,nri,rfmt(:,ias),rfmt(:,jas)) end if end do end do end do deallocate(rfmt1,rfmt2) end subroutine elk-10.4.9/src/PaxHeaders/sphcrd.f900000644000000000000000000000013214762655564014054 xustar0030 mtime=1741380468.990011189 30 atime=1741380467.477003279 30 ctime=1741380468.990011189 elk-10.4.9/src/sphcrd.f900000644002504400250440000000222214762655564016574 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: sphcrd ! !INTERFACE: pure subroutine sphcrd(v,r,tp) ! !INPUT/OUTPUT PARAMETERS: ! v : input vector (in,real(3)) ! r : length of v (out,real) ! tp : (theta, phi) coordinates (out,real(2)) ! !DESCRIPTION: ! Returns the spherical coordinates $(r,\theta,\phi)$ of a vector ! $$ {\bf v}=(r\sin(\theta)\cos(\phi), r\sin(\theta)\sin(\phi), ! r\cos(\theta)). $$ ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: v(3) real(8), intent(out) :: r,tp(2) ! local variables real(8), parameter :: eps=1.d-14 real(8) t1 r=sqrt(v(1)**2+v(2)**2+v(3)**2) if (r > eps) then t1=v(3)/r if (t1 >= 1.d0) then tp(1)=0.d0 else if (t1 <= -1.d0) then tp(1)=3.1415926535897932385d0 else tp(1)=acos(t1) end if if ((abs(v(1)) > eps).or.(abs(v(2)) > eps)) then tp(2)=atan2(v(2),v(1)) else tp(2)=0.d0 end if else tp(1)=0.d0 tp(2)=0.d0 end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/gencrm.f900000644000000000000000000000013214762655564014044 xustar0030 mtime=1741380468.991011194 30 atime=1741380467.479003289 30 ctime=1741380468.991011194 elk-10.4.9/src/gencrm.f900000644002504400250440000000232014762655564016563 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine gencrm(n,wf11,wf12,wf21,wf22,crho,ld,cmag) use modmain implicit none ! arguments integer, intent(in) :: n complex(4), intent(in) :: wf11(n),wf12(n),wf21(n),wf22(n) complex(4), intent(out) :: crho(n) integer, intent(in) :: ld complex(4), intent(out) :: cmag(ld,ndmag) ! local variables integer i complex(4) c11,c12,c21,c22,c1,c2 if (ncmag) then ! non-collinear case !$OMP SIMD PRIVATE(c11,c12,c21,c22,c1,c2) SIMDLEN(8) do i=1,n c11=wf11(i); c12=wf12(i) c21=wf21(i); c22=wf22(i) ! up-dn spin density c1=conjg(c11)*c22 ! dn-up spin density c2=conjg(c12)*c21 ! x-component: up-dn + dn-up cmag(i,1)=c1+c2 ! y-component: i*(dn-up - up-dn) cmag(i,2)=ci*(c2-c1) c1=conjg(c11)*c21 c2=conjg(c12)*c22 ! z-component: up-up - dn-dn cmag(i,3)=c1-c2 ! density: up-up + dn-dn crho(i)=c1+c2 end do else ! collinear case !$OMP SIMD PRIVATE(c1,c2) SIMDLEN(8) do i=1,n c1=conjg(wf11(i))*wf21(i) c2=conjg(wf12(i))*wf22(i) cmag(i,1)=c1-c2 crho(i)=c1+c2 end do end if end subroutine elk-10.4.9/src/PaxHeaders/rminv.f900000644000000000000000000000013214762655564013724 xustar0030 mtime=1741380468.992011199 30 atime=1741380467.482003305 30 ctime=1741380468.992011199 elk-10.4.9/src/rminv.f900000644002504400250440000000143014762655564016444 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rminv(n,a) implicit none ! arguments integer, intent(in) :: n real(8), intent(inout) :: a(n,n) ! local variables integer info ! automatic arrays integer ipiv(n) real(8) work(n) call dgetrf(n,n,a,n,ipiv,info) if (info /= 0) then write(*,*) write(*,'("Error(rminv): unable to invert matrix")') write(*,'(" DGETRF returned INFO = ",I8)') info write(*,*) stop end if call dgetri(n,a,n,ipiv,work,n,info) if (info /= 0) then write(*,*) write(*,'("Error(rminv): unable to invert matrix")') write(*,'(" DGETRI returned INFO = ",I8)') info write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/rtozfmt.f900000644000000000000000000000013214762655564014276 xustar0030 mtime=1741380468.993011205 30 atime=1741380467.484003315 30 ctime=1741380468.993011205 elk-10.4.9/src/rtozfmt.f900000644002504400250440000000421614762655564017023 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine rtozfmt(nr,nri,rfmt,zfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: rfmt(*) complex(8), intent(out) :: zfmt(*) ! local variables integer i call rtozflmn(lmaxi,nri,lmmaxi,rfmt,zfmt) i=lmmaxi*nri+1 call rtozflmn(lmaxo,nr-nri,lmmaxo,rfmt(i),zfmt(i)) return contains !BOP ! !ROUTINE: rtozflmn ! !INTERFACE: pure subroutine rtozflmn(lmax,n,ld,rflm,zflm) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum angular momentum (in,integer) ! n : number of functions to convert (in,integer) ! ld : leading dimension (in,integer) ! rflm : coefficients of real spherical harmonic expansion (in,real(ld,n)) ! zflm : coefficients of complex spherical harmonic expansion ! (out,complex(ld,n)) ! !DESCRIPTION: ! Converts a real function, $r_{lm}$, expanded in terms of real spherical ! harmonics into a complex spherical harmonic expansion, $z_{lm}$: ! $$ z_{lm}=\begin{cases} \frac{1}{\sqrt{2}}(r_{lm}+i(-1)^mr_{l-m}) & m>0 \\ ! \frac{1}{\sqrt{2}}((-1)^mr_{l-m}-ir_{lm}) & m<0 \\ ! r_{lm} & m=0 \end{cases} $$ ! See routine {\tt genrlm}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax,n,ld real(8), intent(in) :: rflm(ld,n) complex(8), intent(out) :: zflm(ld,n) ! local variables integer l,m,lm1,lm2 ! real constant 1/sqrt(2) real(8), parameter :: c1=0.7071067811865475244d0 lm1=0 do l=0,lmax lm2=lm1+2*(l+1) do m=-l,-1 lm1=lm1+1 lm2=lm2-1 if (mod(m,2) /= 0) then zflm(lm1,1:n)=c1*cmplx(-rflm(lm2,1:n),-rflm(lm1,1:n),8) else zflm(lm1,1:n)=c1*cmplx(rflm(lm2,1:n),-rflm(lm1,1:n),8) end if end do lm1=lm1+1 lm2=lm2-1 zflm(lm1,1:n)=rflm(lm1,1:n) do m=1,l lm1=lm1+1 lm2=lm2-1 if (mod(m,2) /= 0) then zflm(lm1,1:n)=c1*cmplx(rflm(lm1,1:n),-rflm(lm2,1:n),8) else zflm(lm1,1:n)=c1*cmplx(rflm(lm1,1:n),rflm(lm2,1:n),8) end if end do end do end subroutine !EOC end subroutine elk-10.4.9/src/PaxHeaders/genwfsvp.f900000644000000000000000000000013214762655564014430 xustar0030 mtime=1741380468.994011209 30 atime=1741380467.487003331 30 ctime=1741380468.994011209 elk-10.4.9/src/genwfsvp.f900000644002504400250440000000404714762655564017157 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genwfsvp(tsh,tgp,nst,idx,ngridg_,igfft_,vpl,ngp,igpig,wfmt,ld,wfir) use modmain implicit none ! arguments logical, intent(in) :: tsh,tgp integer, intent(in) :: nst,idx(*),ngridg_(3),igfft_(*) real(8), intent(in) :: vpl(3) integer, intent(out) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(8), intent(out) :: wfmt(npcmtmax,natmtot,nspinor,nst) integer, intent(in) :: ld complex(8), intent(out) :: wfir(ld,nspinor,nst) ! local variables integer ispn real(8) vl(3),vc(3) ! automatic arrays real(8) vgpl(3,ngkmax,nspnfv),vgpc(3,ngkmax),gpc(ngkmax) ! allocatable arrays complex(8), allocatable :: sfacgp(:,:),apwalm(:,:,:,:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) allocate(sfacgp(ngkmax,natmtot)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) ! loop over first-variational spins do ispn=1,nspnfv vl(1:3)=vpl(1:3) vc(1:3)=bvec(1:3,1)*vpl(1)+bvec(1:3,2)*vpl(2)+bvec(1:3,3)*vpl(3) ! spin-spiral case if (spinsprl) then if (ispn == 1) then vl(1:3)=vl(1:3)+0.5d0*vqlss(1:3) vc(1:3)=vc(1:3)+0.5d0*vqcss(1:3) else vl(1:3)=vl(1:3)-0.5d0*vqlss(1:3) vc(1:3)=vc(1:3)-0.5d0*vqcss(1:3) end if end if ! generate the G+p-vectors call gengkvec(ngvc,ivg,vgc,vl,vc,gkmax,ngkmax,ngp(ispn),igpig(:,ispn), & vgpl(:,:,ispn),vgpc,gpc) ! generate structure factors for G+p-vectors call gensfacgp(ngp(ispn),vgpc,ngkmax,sfacgp) ! find the matching coefficients call match(ngp(ispn),vgpc,gpc,sfacgp,apwalm(:,:,:,:,ispn)) end do deallocate(sfacgp) ! get the first- and second-variational eigenvectors from file allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) call getevecfv(filext,0,vpl,vgpl,evecfv) call getevecsv(filext,0,vpl,evecsv) ! calculate the second-variational wavefunctions call genwfsv(tsh,tgp,nst,idx,ngridg_,igfft_,ngp,igpig,apwalm,evecfv,evecsv, & wfmt,ld,wfir) deallocate(apwalm,evecfv,evecsv) end subroutine elk-10.4.9/src/PaxHeaders/genwfsvp_sp.f900000644000000000000000000000013214762655564015132 xustar0030 mtime=1741380468.995011215 30 atime=1741380467.489003342 30 ctime=1741380468.995011215 elk-10.4.9/src/genwfsvp_sp.f900000644002504400250440000000404114762655564017653 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genwfsvp_sp(tsh,tgp,nst,idx,ngridg_,igfft_,vpl,ngp,igpig,wfmt,ld, & wfir) use modmain implicit none ! arguments logical, intent(in) :: tsh,tgp integer, intent(in) :: nst,idx(*),ngridg_(3),igfft_(*) real(8), intent(in) :: vpl(3) integer, intent(out) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(4), intent(out) :: wfmt(npcmtmax,natmtot,nspinor,nst) integer, intent(in) :: ld complex(4), intent(out) :: wfir(ld,nspinor,nst) ! local variables integer ispn real(8) vl(3),vc(3) ! automatic arrays real(8) vgpl(3,ngkmax,nspnfv),vgpc(3,ngkmax),gpc(ngkmax) ! allocatable arrays complex(8), allocatable :: sfacgp(:,:),apwalm(:,:,:,:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) allocate(sfacgp(ngkmax,natmtot)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) ! loop over first-variational spins do ispn=1,nspnfv vl(1:3)=vpl(1:3) vc(1:3)=bvec(1:3,1)*vpl(1)+bvec(1:3,2)*vpl(2)+bvec(1:3,3)*vpl(3) ! spin-spiral case if (spinsprl) then if (ispn == 1) then vl(1:3)=vl(1:3)+0.5d0*vqlss(1:3) vc(1:3)=vc(1:3)+0.5d0*vqcss(1:3) else vl(1:3)=vl(1:3)-0.5d0*vqlss(1:3) vc(1:3)=vc(1:3)-0.5d0*vqcss(1:3) end if end if ! generate the G+p-vectors call gengkvec(ngvc,ivg,vgc,vl,vc,gkmax,ngkmax,ngp(ispn),igpig(:,ispn), & vgpl(:,:,ispn),vgpc,gpc) ! generate structure factors for G+p-vectors call gensfacgp(ngp(ispn),vgpc,ngkmax,sfacgp) ! find the matching coefficients call match(ngp(ispn),vgpc,gpc,sfacgp,apwalm(:,:,:,:,ispn)) end do deallocate(sfacgp) ! get the first- and second-variational eigenvectors from file allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) call getevecfv(filext,0,vpl,vgpl,evecfv) call getevecsv(filext,0,vpl,evecsv) ! calculate the second-variational wavefunctions call genwfsv_sp(tsh,tgp,nst,idx,ngridg_,igfft_,ngp,igpig,apwalm,evecfv,evecsv, & wfmt,ld,wfir) deallocate(apwalm,evecfv,evecsv) end subroutine elk-10.4.9/src/PaxHeaders/rdiracint.f900000644000000000000000000000013214762655564014550 xustar0030 mtime=1741380468.997011225 30 atime=1741380467.492003357 30 ctime=1741380468.997011225 elk-10.4.9/src/rdiracint.f900000644002504400250440000001065414762655564017300 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2015 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rdiracint ! !INTERFACE: pure subroutine rdiracint(sol,kpa,e,nr,r,vr,nn,g0,g1,f0,f1) ! !INPUT/OUTPUT PARAMETERS: ! sol : speed of light in atomic units (in,real) ! kpa : quantum number kappa (in,integer) ! e : energy (in,real) ! nr : number of radial mesh points (in,integer) ! r : radial mesh (in,real(nr)) ! vr : potential on radial mesh (in,real(nr)) ! nn : number of nodes (out,integer) ! g0 : major component multiplied by r (out,real(nr)) ! g1 : radial derivative of g0 (out,real(nr)) ! f0 : minor component multiplied by r (out,real(nr)) ! f1 : radial derivative of f0 (out,real(nr)) ! !DESCRIPTION: ! Integrates the radial Dirac equation from $r=0$ outwards. This involves ! using the predictor-corrector method to solve the coupled first-order ! equations (in atomic units) ! \begin{align*} ! \left(\frac{d}{dr}+\frac{\kappa}{r}\right)G_{\kappa}&=\frac{1}{c} ! \{2E_0+E-V\}F_{\kappa}\\ ! \left(\frac{d}{dr}-\frac{\kappa}{r}\right)F_{\kappa}&= ! -\frac{1}{c}\{E-V\}G_{\kappa}, ! \end{align*} ! where $G_{\kappa}=rg_{\kappa}$ and $F_{\kappa}=rf_{\kappa}$ are the major ! and minor components multiplied by $r$, respectively; $V$ is the external ! potential; $E_0$ is the electron rest energy; $E$ is the eigen energy ! (excluding $E_0$); and $\kappa=l$ for $j=l-\frac{1}{2}$ or $\kappa=-(l+1)$ ! for $j=l+\frac{1}{2}$. ! ! !REVISION HISTORY: ! Created September 2002 (JKD) ! Polynomial order fixed to 3, September 2013 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: sol integer, intent(in) :: kpa real(8), intent(in) :: e integer, intent(in) :: nr real(8), intent(in) :: r(nr),vr(nr) integer, intent(out) :: nn real(8), intent(out) :: g0(nr),g1(nr) real(8), intent(out) :: f0(nr),f1(nr) ! local variables integer ir,ir0 ! rescaling limit real(8), parameter :: rsc=1.d100 real(8) ci,e0,t1,t2,t3,t4 ! inverse speed of light ci=1.d0/sol ! electron rest energy e0=sol**2 t1=2.d0*e0+e ! determine the r -> 0 boundary values of F and G t2=dble(kpa)/r(1) t3=ci*(t1-vr(1)) t4=ci*(vr(1)-e) f0(1)=1.d0 f1(1)=0.d0 g0(1)=(f1(1)-t2*f0(1))/t4 g1(1)=t3*f0(1)-t2*g0(1) ! extrapolate to the first four points g1(2:4)=g1(1) f1(2:4)=f1(1) nn=0 do ir=2,nr t2=dble(kpa)/r(ir) t3=ci*(t1-vr(ir)) t4=ci*(vr(ir)-e) ir0=ir-3 if (ir0 < 1) ir0=1 g1(ir)=poly3(r(ir0),g1(ir0),r(ir)) f1(ir)=poly3(r(ir0),f1(ir0),r(ir)) ! integrate to find wavefunction g0(ir)=poly4i(r(ir0),g1(ir0),r(ir))+g0(ir0) f0(ir)=poly4i(r(ir0),f1(ir0),r(ir))+f0(ir0) ! compute the derivatives g1(ir)=t3*f0(ir)-t2*g0(ir) f1(ir)=t4*g0(ir)+t2*f0(ir) ! integrate for correction g0(ir)=poly4i(r(ir0),g1(ir0),r(ir))+g0(ir0) f0(ir)=poly4i(r(ir0),f1(ir0),r(ir))+f0(ir0) ! compute the derivatives again g1(ir)=t3*f0(ir)-t2*g0(ir) f1(ir)=t4*g0(ir)+t2*f0(ir) ! check for overflow if ((abs(g0(ir)) > rsc).or.(abs(g1(ir)) > rsc).or. & (abs(f0(ir)) > rsc).or.(abs(f1(ir)) > rsc)) then ! set the remaining points and return g0(ir+1:nr)=g0(ir); g1(ir+1:nr)=g1(ir) f0(ir+1:nr)=f0(ir); f1(ir+1:nr)=f1(ir) return end if ! check for node if (g0(ir-1)*g0(ir) < 0.d0) nn=nn+1 end do return contains pure real(8) function poly3(xa,ya,x) implicit none ! arguments real(8), intent(in) :: xa(3),ya(3),x ! local variables real(8) x0,x1,x2,y0,y1,y2 real(8) c1,c2,t0,t1,t2 ! evaluate the polynomial coefficients x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0 t0=1.d0/(x1*x2*(x2-x1)) t1=x1*y2; t2=x2*y1 c1=x2*t2-x1*t1 c2=t1-t2 t1=x-x0 ! evaluate the polynomial poly3=y0+t0*t1*(c1+c2*t1) end function pure real(8) function poly4i(xa,ya,x) implicit none ! arguments real(8), intent(in) :: xa(4),ya(4),x ! local variables real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) c1,c2,c3,t0,t1,t2,t3,t4,t5,t6 ! evaluate the polynomial coefficients x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0; x3=xa(4)-x0 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0; y3=ya(4)-y0 t4=x1-x2; t5=x1-x3; t6=x2-x3 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 c3=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 c2=t1*(t5-t4)+t2*(t6-t5)+t3*(t4-t6) c1=t1*(x2*t4-x1*t5)+t2*(x3*t5-x2*t6)+t3*(x1*t6-x3*t4) t1=x-x0 ! integrate the polynomial poly4i=t1*(y0+t0*t1*(0.5d0*c1+t1*(0.3333333333333333333d0*c2+0.25d0*c3*t1))) end function end subroutine !EOC elk-10.4.9/src/PaxHeaders/rotzflm.f900000644000000000000000000000013014762655564014264 xustar0029 mtime=1741380468.99801123 30 atime=1741380467.494003368 29 ctime=1741380468.99801123 elk-10.4.9/src/rotzflm.f900000644002504400250440000000476214762655564017021 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rotzflm ! !INTERFACE: subroutine rotzflm(rot,lmin,lmax,lmmax,n,ld,zflm1,zflm2) ! !INPUT/OUTPUT PARAMETERS: ! rot : rotation matrix (in,real(3,3)) ! lmin : minimum angular momentum (in,integer) ! lmax : maximum angular momentum (in,integer) ! lmmax : (lmax+1)^2 or larger (in,integer) ! n : number of functions to rotate (in,integer) ! ld : leading dimension (in,integer) ! zflm1 : coefficients of the complex spherical harmonic expansion for each ! function (in,complex(ld,n)) ! zflm2 : coefficients of rotated functions (out,complex(ld,n)) ! !DESCRIPTION: ! Rotates a set of complex functions ! $$ f_i({\bf r})=\sum_{lm}f_{lm}^iY_{lm}(\hat{\bf r}) $$ ! for all $i$, given the coefficients $f_{lm}^i$ and a rotation matrix $R$. ! This is done by first the computing the Euler angles $(\alpha,\beta,\gamma)$ ! of $R^{-1}$ (see routine {\tt roteuler}) and then applying the spherical ! harmonic rotation matrix generated by the routine {\tt ylmrot}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Modified, December 2008 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rot(3,3) integer, intent(in) :: lmin,lmax,lmmax,n,ld complex(8), intent(in) :: zflm1(ld,n) complex(8), intent(out) :: zflm2(ld,n) ! local variables integer l,lm1,lm2,nm,p real(8) det,ang(3),angi(3) complex(8), parameter :: zzero=(0.d0,0.d0),zone=(1.d0,0.d0) ! automatic arrays complex(8) d(lmmax,lmmax) if ((lmin < 0).or.(lmin > lmax).or.(n < 1)) return ! find the determinant det=rot(1,1)*(rot(2,2)*rot(3,3)-rot(3,2)*rot(2,3)) & +rot(2,1)*(rot(3,2)*rot(1,3)-rot(1,2)*rot(3,3)) & +rot(3,1)*(rot(1,2)*rot(2,3)-rot(2,2)*rot(1,3)) ! calculate the Euler angles of the proper rotation if (det > 0.d0) then p=1 call roteuler(rot,ang) else p=-1 call roteuler(-rot(:,:),ang) end if ! inverse rotation: the function is to be rotated, not the spherical harmonics angi(1)=-ang(3) angi(2)=-ang(2) angi(3)=-ang(1) ! determine the rotation matrix for complex spherical harmonics call ylmrot(p,angi,lmax,lmmax,d) ! apply rotation matrix (d and zflm may have different starting indices) lm1=lmin**2+1 lm2=1 do l=lmin,lmax nm=2*l+1 call zgemm('N','N',nm,n,nm,zone,d(lm1,lm1),lmmax,zflm1(lm2,1),ld,zzero, & zflm2(lm2,1),ld) lm1=lm1+nm lm2=lm2+nm end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/latvstep.f900000644000000000000000000000013214762655564014433 xustar0030 mtime=1741380468.999011236 30 atime=1741380467.497003383 30 ctime=1741380468.999011236 elk-10.4.9/src/latvstep.f900000644002504400250440000000203314762655564017153 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine latvstep use modmain use modmpi implicit none ! local variables integer i real(8) t1 do i=1,nstrain ! compute product of current and previous stress tensor components t1=stress(i)*stressp(i) ! if component is in the same direction then increase step size parameter if (t1 > 0.d0) then taulatv(i)=taulatv(i)+tau0latv else taulatv(i)=tau0latv end if t1=taulatv(i)*(stress(i)+stressp(i)) avec(1:3,1:3)=avec(1:3,1:3)-t1*strain(1:3,1:3,i) end do ! compute the new unit cell volume call reciplat(avec,bvec,omega,omegabz) ! preserve the volume if required (added by Ronald Cohen) if (latvopt == 2) then t1=(omega0/omega)**(1.d0/3.d0) avec(1:3,1:3)=t1*avec(1:3,1:3) omega=omega0 end if ! each MPI process should have numerically identical lattice vectors call mpi_bcast(avec,9,mpi_double_precision,0,mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/gradzfmt.f900000644000000000000000000000013214762655565014410 xustar0030 mtime=1741380469.001011246 30 atime=1741380467.500003399 30 ctime=1741380469.001011246 elk-10.4.9/src/gradzfmt.f900000644002504400250440000001365414762655565017143 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2009 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gradzfmt ! !INTERFACE: subroutine gradzfmt(nr,nri,ri,wcr,zfmt,ld,gzfmt) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of points on inner part of muffin-tin (in,integer) ! ri : 1/r on the radial mesh (in,real(nr)) ! wcr : weights for spline coefficients on radial mesh (in,real(12,nr)) ! zfmt : complex muffin-tin function (in,complex(*)) ! ld : leading dimension (in,integer) ! gzfmt : gradient of zfmt (out,complex(ld,3)) ! !DESCRIPTION: ! Calculates the gradient of a complex muffin-tin function. In other words, ! given the spherical harmonic expansion coefficients, $f_{lm}(r)$, of a ! function $f({\bf r})$, the routine returns ${\bf F}_{lm}$ where ! $$ \sum_{lm}{\bf F}_{lm}(r)Y_{lm}(\hat{\bf r})=\nabla f({\bf r}). $$ ! This is done using the gradient formula (see, for example, V. Devanathan, ! {\em Angular Momentum Techniques In Quantum Mechanics}) ! \begin{align*} ! \nabla f_{lm}(r)Y_{lm}(\hat{\bf r})&=-\sqrt{\frac{l+1}{2l+1}} ! \left(\frac{d}{dr}-\frac{l}{r}\right)f_{lm}(r) ! {\bf Y}_{lm}^{l+1}(\hat{\bf r})\\ ! &+\sqrt{\frac{l}{2l+1}}\left(\frac{d}{dr}+\frac{l+1}{r}\right)f_{lm}(r) ! {\bf Y}_{lm}^{l-1}(\hat{\bf r}), ! \end{align*} ! where the vector spherical harmonics are determined from Clebsch-Gordan ! coefficients as follows: ! $$ {\bf Y}_{lm}^{l'}(\hat{\bf r})=\sum_{m'\mu} ! \begin{bmatrix} l' & 1 & l \\ m' & \mu & m \end{bmatrix} ! Y_{lm}(\hat{\bf r})\hat{\bf e}^{\mu} $$ ! and the (contravariant) spherical unit vectors are given by ! $$ \hat{\bf e}_{+1}=-\frac{\hat{\bf x}+i\hat{\bf y}}{\sqrt{2}}, ! \qquad\hat{\bf e}_0=\hat{\bf z},\qquad ! \hat{\bf e}_{-1}=\frac{\hat{\bf x}-i\hat{\bf y}}{\sqrt{2}}. $$ ! ! !REVISION HISTORY: ! Rewritten May 2009 (JKD) ! Modified, February 2020 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: ri(nr),wcr(12,nr) complex(8), intent(in) :: zfmt(*) integer, intent(in) :: ld complex(8), intent(out) :: gzfmt(ld,3) ! local variables integer nro,iro,ir,mu integer np,npi,i,i1,j integer l,m,lm,lm1 ! real constant 1/sqrt(2) real(8), parameter :: c1=0.7071067811865475244d0 real(8) t1,t2,t3 complex(8) z1 ! automatic arrays real(8) f1(nr),f2(nr),g1(nr),g2(nr) complex(8) drmt(ld) ! external functions real(8), external :: clebgor nro=nr-nri iro=nri+1 npi=lmmaxi*nri np=npi+lmmaxo*nro !----------------------------------------! ! compute the radial derivatives ! !----------------------------------------! do lm=1,lmmaxi i=lm do ir=1,nri f1(ir)=dble(zfmt(i)) f2(ir)=aimag(zfmt(i)) i=i+lmmaxi end do do ir=iro,nr f1(ir)=dble(zfmt(i)) f2(ir)=aimag(zfmt(i)) i=i+lmmaxo end do call splined(nr,wcr,f1,g1) call splined(nr,wcr,f2,g2) i=lm do ir=1,nri drmt(i)=cmplx(g1(ir),g2(ir),8) i=i+lmmaxi end do do ir=iro,nr drmt(i)=cmplx(g1(ir),g2(ir),8) i=i+lmmaxo end do end do do lm=lmmaxi+1,lmmaxo i=npi+lm do ir=iro,nr f1(ir)=dble(zfmt(i)) f2(ir)=aimag(zfmt(i)) i=i+lmmaxo end do call splined(nro,wcr(1,iro),f1(iro),g1(iro)) call splined(nro,wcr(1,iro),f2(iro),g2(iro)) i=npi+lm do ir=iro,nr drmt(i)=cmplx(g1(ir),g2(ir),8) i=i+lmmaxo end do end do !-----------------------------------------------------! ! compute the gradient in the spherical basis ! !-----------------------------------------------------! ! zero the gradient array gzfmt(1:np,1:3)=0.d0 ! inner part of muffin-tin lm=0 do l=0,lmaxi t1=-sqrt(dble(l+1)/dble(2*l+1)) if (l > 0) then t2=sqrt(dble(l)/dble(2*l+1)) else t2=0.d0 end if do m=-l,l lm=lm+1 j=1 do mu=-1,1 if (mu == 0) j=3 if (mu == 1) j=2 if (l+1 <= lmaxi) then ! index to (l,m) is l*(l+1)+m+1, therefore index to (l+1,m-mu) is lm1=(l+1)*(l+2)+(m-mu)+1 t3=t1*clebgor(l+1,1,l,m-mu,mu,m) i=lm; i1=lm1 do ir=1,nri gzfmt(i1,j)=gzfmt(i1,j)+t3*(drmt(i)-dble(l)*ri(ir)*zfmt(i)) i=i+lmmaxi; i1=i1+lmmaxi end do end if if (abs(m-mu) <= l-1) then ! index to (l-1,m-mu) lm1=(l-1)*l+(m-mu)+1 t3=t2*clebgor(l-1,1,l,m-mu,mu,m) i=lm; i1=lm1 do ir=1,nri gzfmt(i1,j)=gzfmt(i1,j)+t3*(drmt(i)+dble(l+1)*ri(ir)*zfmt(i)) i=i+lmmaxi; i1=i1+lmmaxi end do end if end do end do end do ! outer part of muffin-tin lm=0 do l=0,lmaxo t1=-sqrt(dble(l+1)/dble(2*l+1)) if (l > 0) then t2=sqrt(dble(l)/dble(2*l+1)) else t2=0.d0 end if do m=-l,l lm=lm+1 j=1 do mu=-1,1 if (mu == 0) j=3 if (mu == 1) j=2 if (l+1 <= lmaxo) then lm1=(l+1)*(l+2)+(m-mu)+1 t3=t1*clebgor(l+1,1,l,m-mu,mu,m) i=npi+lm; i1=npi+lm1 do ir=iro,nr gzfmt(i1,j)=gzfmt(i1,j)+t3*(drmt(i)-dble(l)*ri(ir)*zfmt(i)) i=i+lmmaxo; i1=i1+lmmaxo end do end if if (abs(m-mu) <= l-1) then lm1=(l-1)*l+(m-mu)+1 t3=t2*clebgor(l-1,1,l,m-mu,mu,m) i=npi+lm; i1=npi+lm1 do ir=iro,nr gzfmt(i1,j)=gzfmt(i1,j)+t3*(drmt(i)+dble(l+1)*ri(ir)*zfmt(i)) i=i+lmmaxo; i1=i1+lmmaxo end do end if end do end do end do !---------------------------------------------------! ! convert from spherical to Cartesian basis ! !---------------------------------------------------! ! note that the gradient transforms as a covariant vector, i.e. y -> -y i=0 do ir=1,nri do lm=1,lmmaxi i=i+1 z1=gzfmt(i,1) gzfmt(i,1)=c1*(z1-gzfmt(i,2)) gzfmt(i,2)=c1*(z1+gzfmt(i,2))*zmi end do end do do ir=iro,nr do lm=1,lmmaxo i=i+1 z1=gzfmt(i,1) gzfmt(i,1)=c1*(z1-gzfmt(i,2)) gzfmt(i,2)=c1*(z1+gzfmt(i,2))*zmi end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/eveqnfv.f900000644000000000000000000000013214762655565014244 xustar0030 mtime=1741380469.002011251 30 atime=1741380467.502003409 30 ctime=1741380469.002011251 elk-10.4.9/src/eveqnfv.f900000644002504400250440000000463014762655565016771 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: eveqnfv ! !INTERFACE: subroutine eveqnfv(nmatp,ngp,igpig,vpc,vgpc,apwalm,evalfv,evecfv) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! nmatp : order of overlap and Hamiltonian matrices (in,integer) ! ngp : number of G+p-vectors (in,integer) ! igpig : index from G+p-vectors to G-vectors (in,integer(ngkmax)) ! vpc : p-vector in Cartesian coordinates (in,real(3)) ! vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax)) ! apwalm : APW matching coefficients ! (in,complex(ngkmax,apwordmax,lmmaxapw,natmtot)) ! evalfv : first-variational eigenvalues (out,real(nstfv)) ! evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv)) ! !DESCRIPTION: ! Solves the eigenvalue equation, ! $$ (H-\epsilon O)b=0, $$ ! for the all the first-variational states of the input $p$-point. ! ! !REVISION HISTORY: ! Created March 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nmatp,ngp,igpig(ngkmax) real(8), intent(in) :: vpc(3),vgpc(3,ngkmax) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) real(8), intent(out) :: evalfv(nstfv) complex(8), intent(out) :: evecfv(nmatmax,nstfv) ! local variables integer nthd real(8) ts0,ts1 ! allocatable arrays complex(8), allocatable :: h(:,:),o(:,:) !-----------------------------------------------! ! Hamiltonian and overlap matrix set up ! !-----------------------------------------------! call timesec(ts0) allocate(h(nmatp,nmatp),o(nmatp,nmatp)) call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP SECTION ! Hamiltonian call hmlfv(nmatp,ngp,igpig,vgpc,apwalm,h) !$OMP SECTION ! overlap call olpfv(nmatp,ngp,igpig,apwalm,o) !$OMP END PARALLEL SECTIONS call freethd(nthd) call timesec(ts1) !$OMP ATOMIC timemat=timemat+ts1-ts0 !---------------------------------------! ! solve the eigenvalue equation ! !---------------------------------------! if (tefvr) then ! system has inversion symmetry: use real symmetric matrix eigen solver call eveqnfvr(nmatp,ngp,vpc,h,o,evalfv,evecfv) else ! no inversion symmetry: use complex Hermitian matrix eigen solver call eveqnfvz(nmatp,h,o,evalfv,evecfv) end if deallocate(h,o) end subroutine !EOC elk-10.4.9/src/PaxHeaders/cfsht.f900000644000000000000000000000013214762655565013701 xustar0030 mtime=1741380469.003011257 30 atime=1741380467.505003425 30 ctime=1741380469.003011257 elk-10.4.9/src/cfsht.f900000644002504400250440000000130714762655565016424 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cfsht(nr,nri,cfmt1,cfmt2) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(4), intent(in) :: cfmt1(*) complex(4), intent(out) :: cfmt2(*) ! local variables integer i ! transform the inner part of the muffin-tin call cgemm('N','N',lmmaxi,nri,lmmaxi,cone,cfshti,lmmaxi,cfmt1,lmmaxi,czero, & cfmt2,lmmaxi) ! transform the outer part of the muffin-tin i=lmmaxi*nri+1 call cgemm('N','N',lmmaxo,nr-nri,lmmaxo,cone,cfshto,lmmaxo,cfmt1(i),lmmaxo, & czero,cfmt2(i),lmmaxo) end subroutine elk-10.4.9/src/PaxHeaders/wfirsv.f900000644000000000000000000000013214762655565014112 xustar0030 mtime=1741380469.004011262 30 atime=1741380467.507003436 30 ctime=1741380469.004011262 elk-10.4.9/src/wfirsv.f900000644002504400250440000000437414762655565016644 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wfirsv(tgp,nst,idx,ngridg_,igfft_,ngp,igpig,evecfv,evecsv,ld,wfir) use modmain use modomp implicit none ! arguments logical, intent(in) :: tgp integer, intent(in) :: nst,idx(*),ngridg_(3),igfft_(*) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) integer, intent(in) :: ld complex(8), intent(out) :: wfir(ld,nspinor,nst) ! local variables integer ist,ispn,jspn integer n,igp,i,j,k,nthd real(8) t0 complex(8) z1 ! automatic arrays complex(8) wfgp(ngkmax) t0=1.d0/sqrt(omega) call holdthd(nst,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(wfgp,k,ispn,jspn) & !$OMP PRIVATE(n,ist,i,z1,igp) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do j=1,nst ! index to state in evecsv if (idx(1) == 0) then; k=j; else; k=idx(j); end if if (tevecsv) then ! generate spinor wavefunction from second-variational eigenvectors do ispn=1,nspinor jspn=jspnfv(ispn) n=ngp(jspn) if (tgp) then wfir(1:n,ispn,j)=0.d0 else wfgp(1:n)=0.d0 end if do ist=1,nstfv i=(ispn-1)*nstfv+ist z1=evecsv(i,k) if (abs(dble(z1))+abs(aimag(z1)) < 1.d-10) cycle if (tgp) then ! wavefunction in G+p-space wfir(1:n,ispn,j)=wfir(1:n,ispn,j)+z1*evecfv(1:n,ist,jspn) else ! wavefunction in real-space z1=t0*z1 wfgp(1:n)=wfgp(1:n)+z1*evecfv(1:n,ist,jspn) end if end do ! Fourier transform wavefunction to real-space if required if (.not.tgp) then wfir(1:ld,ispn,j)=0.d0 do igp=1,n wfir(igfft_(igpig(igp,jspn)),ispn,j)=wfgp(igp) end do call zfftifc(3,ngridg_,1,wfir(:,ispn,j)) end if end do else ! spin-unpolarised wavefunction n=ngp(1) if (tgp) then wfir(1:n,1,j)=evecfv(1:n,k,1) else wfir(1:ld,1,j)=0.d0 do igp=1,n wfir(igfft_(igpig(igp,1)),1,j)=t0*evecfv(igp,k,1) end do call zfftifc(3,ngridg_,1,wfir(:,1,j)) end if end if end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/wfirsv_sp.f900000644000000000000000000000013214762655565014614 xustar0030 mtime=1741380469.006011272 30 atime=1741380467.510003451 30 ctime=1741380469.006011272 elk-10.4.9/src/wfirsv_sp.f900000644002504400250440000000435714762655565017347 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine wfirsv_sp(tgp,nst,idx,ngridg_,igfft_,ngp,igpig,evecfv,evecsv,ld,wfir) use modmain use modomp implicit none ! arguments logical, intent(in) :: tgp integer, intent(in) :: nst,idx(*),ngridg_(3),igfft_(*) integer, intent(in) :: ngp(nspnfv),igpig(ngkmax,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) integer, intent(in) :: ld complex(4), intent(out) :: wfir(ld,nspinor,nst) ! local variables integer ist,ispn,jspn integer n,igp,i,j,k,nthd real(8) t0 complex(8) z1 ! automatic arrays complex(4) wfgp(ngkmax) t0=1.d0/sqrt(omega) call holdthd(nst,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(wfgp,k,ispn,jspn) & !$OMP PRIVATE(n,ist,i,z1,igp) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do j=1,nst ! index to state in evecsv if (idx(1) == 0) then; k=j; else; k=idx(j); end if if (tevecsv) then ! generate spinor wavefunction from second-variational eigenvectors do ispn=1,nspinor jspn=jspnfv(ispn) n=ngp(jspn) if (tgp) then wfir(1:n,ispn,j)=0.e0 else wfgp(1:n)=0.e0 end if do ist=1,nstfv i=(ispn-1)*nstfv+ist z1=evecsv(i,k) if (abs(dble(z1))+abs(aimag(z1)) < epsocc) cycle if (tgp) then ! wavefunction in G+p-space wfir(1:n,ispn,j)=wfir(1:n,ispn,j)+z1*evecfv(1:n,ist,jspn) else ! wavefunction in real-space z1=t0*z1 wfgp(1:n)=wfgp(1:n)+z1*evecfv(1:n,ist,jspn) end if end do ! Fourier transform wavefunction to real-space if required if (.not.tgp) then wfir(1:ld,ispn,j)=0.e0 do igp=1,n wfir(igfft_(igpig(igp,jspn)),ispn,j)=wfgp(igp) end do call cfftifc(3,ngridg_,1,wfir(:,ispn,j)) end if end do else ! spin-unpolarised wavefunction n=ngp(1) if (tgp) then wfir(1:n,1,j)=evecfv(1:n,k,1) else wfir(1:ld,1,j)=0.e0 do igp=1,n wfir(igfft_(igpig(igp,1)),1,j)=t0*evecfv(igp,k,1) end do call cfftifc(3,ngridg_,1,wfir(:,1,j)) end if end if end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/ggamt_4.f900000644000000000000000000000013214762655565014114 xustar0030 mtime=1741380469.007011278 30 atime=1741380467.512003462 30 ctime=1741380469.007011278 elk-10.4.9/src/ggamt_4.f900000644002504400250440000000251414762655565016640 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ggamt_4(is,np,gvrho,vx,vc,wx,wc,dtdr,dtdgr2) use modmain implicit none ! arguments integer, intent(in) :: is,np real(8), intent(in) :: gvrho(np,3) real(8), intent(inout) :: vx(np),vc(np) real(8), intent(in) :: wx(np),wc(np) real(8), intent(in) :: dtdr(np),dtdgr2(np) ! local variables integer nr,nri,i ! automatic arrays real(8) grfmt(np,3),rfmt1(np),rfmt2(np),rfmt3(np) nr=nrmt(is) nri=nrmti(is) !------------------! ! exchange ! !------------------! vx(1:np)=vx(1:np)+wx(1:np)*dtdr(1:np) rfmt1(1:np)=wx(1:np)*dtdgr2(1:np) do i=1,3 rfmt2(1:np)=rfmt1(1:np)*gvrho(1:np,i) call rfsht(nr,nri,rfmt2,rfmt3) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt3,np,grfmt) call rbsht(nr,nri,grfmt(:,i),rfmt2) vx(1:np)=vx(1:np)-2.d0*rfmt2(1:np) end do !---------------------! ! correlation ! !---------------------! vc(1:np)=vc(1:np)+wc(1:np)*dtdr(1:np) rfmt1(1:np)=wc(1:np)*dtdgr2(1:np) do i=1,3 rfmt2(1:np)=rfmt1(1:np)*gvrho(1:np,i) call rfsht(nr,nri,rfmt2,rfmt3) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),rfmt3,np,grfmt) call rbsht(nr,nri,grfmt(:,i),rfmt2) vc(1:np)=vc(1:np)-2.d0*rfmt2(1:np) end do end subroutine elk-10.4.9/src/PaxHeaders/ggair_4.f900000644000000000000000000000013214762655565014106 xustar0030 mtime=1741380469.008011283 30 atime=1741380467.515003478 30 ctime=1741380469.008011283 elk-10.4.9/src/ggair_4.f900000644002504400250440000000255414762655565016636 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ggair_4(gvrho,vx,vc,wx,wc,dtdr,dtdgr2) use modmain implicit none ! arguments real(8), intent(in) :: gvrho(ngtot,3) real(8), intent(inout) :: vx(ngtot),vc(ngtot) real(8), intent(in) :: wx(ngtot),wc(ngtot) real(8), intent(in) :: dtdr(ngtot),dtdgr2(ngtot) ! local variables integer ig,ifg,i ! allocatable arrays real(8), allocatable :: rfir1(:),rfir2(:) complex(8), allocatable :: zfft(:) allocate(rfir1(ngtot),rfir2(ngtot),zfft(nfgrz)) !------------------! ! exchange ! !------------------! vx(:)=vx(:)+wx(:)*dtdr(:) rfir1(:)=wx(:)*dtdgr2(:) do i=1,3 rfir2(:)=rfir1(:)*gvrho(:,i) call rzfftifc(3,ngridg,-1,rfir2,zfft) do ifg=1,nfgrz ig=igrzf(ifg) zfft(ifg)=vgc(i,ig)*zi*zfft(ifg) end do call rzfftifc(3,ngridg,1,rfir2,zfft) vx(:)=vx(:)-2.d0*rfir2(:) end do !---------------------! ! correlation ! !---------------------! vc(:)=vc(:)+wc(:)*dtdr(:) rfir1(:)=wc(:)*dtdgr2(:) do i=1,3 rfir2(:)=rfir1(:)*gvrho(:,i) call rzfftifc(3,ngridg,-1,rfir2,zfft) do ifg=1,nfgrz ig=igrzf(ifg) zfft(ifg)=vgc(i,ig)*zi*zfft(ifg) end do call rzfftifc(3,ngridg,1,rfir2,zfft) vc(:)=vc(:)-2.d0*rfir2(:) end do deallocate(rfir1,rfir2,zfft) end subroutine elk-10.4.9/src/PaxHeaders/trzhmm.f900000644000000000000000000000013214762655565014113 xustar0030 mtime=1741380469.009011288 30 atime=1741380467.517003488 30 ctime=1741380469.009011288 elk-10.4.9/src/trzhmm.f900000644002504400250440000000201214762655565016630 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: trzhmm ! !INTERFACE: pure real(8) function trzhmm(n,a,b) ! !INPUT/OUTPUT PARAMETERS: ! n : order of matrix (in,integer) ! a : Hermitian matrix A (in,complex(n,n)) ! b : Hermitian matrix B (in,complex(n,n)) ! !DESCRIPTION: ! Calculates the trace of the product of two Hermitian matrices, $\tr(AB)$. ! Only the upper triangular parts of $A$ and $B$ are referenced. ! ! !REVISION HISTORY: ! Created December 2021 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: a(n,n),b(n,n) ! local variables integer i,j real(8) sm sm=0.d0 ! off-diagonal contribution (use upper triangular part) do j=1,n do i=1,j-1 sm=sm+dble(a(i,j)*conjg(b(i,j))) end do end do sm=sm*2.d0 ! diagonal contribution do i=1,n sm=sm+dble(a(i,i))*dble(b(i,i)) end do trzhmm=sm end function !EOC elk-10.4.9/src/PaxHeaders/rfmtinp.f900000644000000000000000000000013214762655565014251 xustar0030 mtime=1741380469.011011298 30 atime=1741380467.520003504 30 ctime=1741380469.011011298 elk-10.4.9/src/rfmtinp.f900000644002504400250440000000361114762655565016774 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2003-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rfmtinp ! !INTERFACE: pure real(8) function rfmtinp(nr,nri,wr,rfmt1,rfmt2) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! nr : number of radial mesh points (in,integer) ! nri : number of radial mesh points on the inner part of the muffin-tin ! (in,integer) ! wr : weights for integration on radial mesh (in,real(nr)) ! rfmt1 : first real function inside muffin-tin (in,real(*)) ! rfmt2 : second real function inside muffin-tin (in,real(*)) ! !DESCRIPTION: ! Calculates the inner product of two real functions in the muffin-tin. So ! given two real functions of the form ! $$ f({\bf r})=\sum_{l=0}^{l_{\rm max}}\sum_{m=-l}^{l}f_{lm}(r)R_{lm} ! (\hat{\bf r}) $$ ! where $R_{lm}$ are the real spherical harmonics, the function returns ! $$ I=\int\sum_{l=0}^{l_{\rm max}}\sum_{m=-l}^{l}f_{lm}^1(r)f_{lm}^2(r)r^2 ! dr\;. $$ ! ! !REVISION HISTORY: ! Created November 2003 (Sharma) !EOP !BOC implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) real(8), intent(in) :: rfmt1(*),rfmt2(*) ! local variables integer n,ir,i ! compute the dot-products for each radial point and integrate over r rfmtinp=0.d0 if (lmaxi == 1) then !$OMP SIMD PRIVATE(i) REDUCTION(+:rfmtinp) do ir=1,nri i=4*(ir-1)+1 rfmtinp=rfmtinp+wr(ir) & *(rfmt1(i)*rfmt2(i) & +rfmt1(i+1)*rfmt2(i+1) & +rfmt1(i+2)*rfmt2(i+2) & +rfmt1(i+3)*rfmt2(i+3)) end do i=4*nri+1 else i=1 n=lmmaxi-1 do ir=1,nri rfmtinp=rfmtinp+wr(ir)*dot_product(rfmt1(i:i+n),rfmt2(i:i+n)) i=i+lmmaxi end do end if n=lmmaxo-1 do ir=nri+1,nr rfmtinp=rfmtinp+wr(ir)*dot_product(rfmt1(i:i+n),rfmt2(i:i+n)) i=i+lmmaxo end do end function !EOC elk-10.4.9/src/PaxHeaders/findngkmax.f900000644000000000000000000000013214762655565014720 xustar0030 mtime=1741380469.012011304 30 atime=1741380467.522003514 30 ctime=1741380469.012011304 elk-10.4.9/src/findngkmax.f900000644002504400250440000000424214762655565017444 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2012 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: findngkmax ! !INTERFACE: pure subroutine findngkmax(nkpt,vkc,nspnfv,vqcss,ngv,vgc,gkmax,ngkmax) ! !INPUT/OUTPUT PARAMETERS: ! nkpt : number of k-points (in,integer) ! vkc : k-point vectors in Cartesian coordinates (in,real(3,nkpt)) ! nspnfv : number of first-variational spin components: 1 normal case, 2 for ! spin-spiral case (in,integer) ! vqcss : spin-spiral q-vector, not referenced if nspnfv=1 (in,integer) ! ngv : number of G-vectors (in,integer) ! vgc : G-vectors in Cartesian coordinates (in,real(3,ngv)) ! gkmax : maximum allowed |G+k| (in,real) ! ngkmax : maximum number of G+k-vectors over all k-points (out,integer) ! !DESCRIPTION: ! Determines the largest number of ${\bf G+k}$-vectors with length less than ! {\tt gkmax} over all the $k$-points. This variable is used for allocating ! arrays. ! ! !REVISION HISTORY: ! Created October 2004 (JKD) ! Modified, August 2012 (JKD) ! Removed modmain and added arguments, September 2012 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nkpt real(8), intent(in) :: vkc(3,nkpt) integer, intent(in) :: nspnfv real(8), intent(in) :: vqcss(3) integer, intent(in) :: ngv real(8), intent(in) :: vgc(3,ngv),gkmax integer, intent(out) :: ngkmax ! local variables integer ispn,ik,n,ig real(8) v1,v2,v3,w1,w2,w3,t0,t1 t0=gkmax**2+1.d-6 ngkmax=0 do ispn=1,nspnfv do ik=1,nkpt if (nspnfv == 2) then ! spin-spiral case if (ispn == 1) then v1=vkc(1,ik)+0.5d0*vqcss(1) v2=vkc(2,ik)+0.5d0*vqcss(2) v3=vkc(3,ik)+0.5d0*vqcss(3) else v1=vkc(1,ik)-0.5d0*vqcss(1) v2=vkc(2,ik)-0.5d0*vqcss(2) v3=vkc(3,ik)-0.5d0*vqcss(3) end if else v1=vkc(1,ik) v2=vkc(2,ik) v3=vkc(3,ik) end if n=0 do ig=1,ngv w1=vgc(1,ig)+v1 w2=vgc(2,ig)+v2 w3=vgc(3,ig)+v3 t1=w1**2+w2**2+w3**2 if (t1 < t0) n=n+1 end do ngkmax=max(ngkmax,n) end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/potks.f900000644000000000000000000000013114762655565013731 xustar0030 mtime=1741380469.013011309 29 atime=1741380467.52500353 30 ctime=1741380469.013011309 elk-10.4.9/src/potks.f900000644002504400250440000000354214762655565016460 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: potks ! !INTERFACE: subroutine potks(txc) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! txc : .true. if the exchange-correlation energy density and potentials ! should be calculated (in,logical) ! !DESCRIPTION: ! Computes the Kohn-Sham effective potential by adding together the Coulomb ! and exchange-correlation potentials. Also computes the effective magnetic ! field. See routines {\tt potcoul} and {\tt potxc}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments logical, intent(in) :: txc ! local variables integer is,ias,np real(8) ts0,ts1 call timesec(ts0) ! compute the Coulomb potential call potcoul ! generate the kinetic energy density for meta-GGA if (any(xcgrad == [3,4,5])) call gentau ! compute the exchange-correlation potential and fields if (txc) call potxc(.true.,xctype,rhomt,rhoir,magmt,magir,taumt,tauir,exmt, & exir,ecmt,ecir,vxcmt,vxcir,bxcmt,bxcir,wxcmt,wxcir) ! optimised effective potential exchange potential if (xctype(1) < 0) call oepmain ! remove the source term of the exchange-correlation magnetic field if required if (spinpol.and.nosource) call projsbf ! trim the exchange-correlation potential for |G| > 2 gkmax call trimrfg(vxcir) ! effective potential from sum of Coulomb and exchange-correlation potentials do ias=1,natmtot is=idxis(ias) np=npmt(is) vsmt(1:np,ias)=vclmt(1:np,ias)+vxcmt(1:np,ias) end do vsir(1:ngtot)=vclir(1:ngtot)+vxcir(1:ngtot) ! multiply interstitial part by characteristic function and store on coarse grid call rfirftoc(vsir,vsirc) ! generate the effective magnetic fields call genbs call timesec(ts1) timepot=timepot+ts1-ts0 end subroutine !EOC elk-10.4.9/src/PaxHeaders/mtdmin.f900000644000000000000000000000013114762655565014061 xustar0030 mtime=1741380469.015011319 29 atime=1741380467.52700354 30 ctime=1741380469.015011319 elk-10.4.9/src/mtdmin.f900000644002504400250440000000337714762655565016616 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: mtdmin ! !INTERFACE: pure subroutine mtdmin(is,js,dmin) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! is, js : species numbers (out,integer) ! dmin : minimum distance between muffin-tin surfaces (out,real) ! !DESCRIPTION: ! Finds the atomic species pair for which the distance between the muffin-tin ! surfaces is a minimum. This distance may be negative if the muffin-tins ! overlap. ! ! !REVISION HISTORY: ! Created October 2011 (JKD) !EOP !BOC implicit none ! arguments integer, intent(out) :: is,js real(8), intent(out) :: dmin ! local variables integer i1,i2,i3,ks,ka,ls,la real(8) d2,d2m,r,r2,rm,dr,drm real(8) v1,v2,v3,w1,w2,w3 is=1 js=1 drm=1.d8 do i1=-1,1; do i2=-1,1; do i3=-1,1 v1=i1*avec(1,1)+i2*avec(1,2)+i3*avec(1,3) v2=i1*avec(2,1)+i2*avec(2,2)+i3*avec(2,3) v3=i1*avec(3,1)+i2*avec(3,2)+i3*avec(3,3) do ks=1,nspecies do ka=1,natoms(ks) w1=v1+atposc(1,ka,ks) w2=v2+atposc(2,ka,ks) w3=v3+atposc(3,ka,ks) do ls=1,nspecies r=rmt(ks)+rmt(ls) r2=r**2 do la=1,natoms(ls) if ((i1 /= 0).or.(i2 /= 0).or.(i3 /= 0).or. & (ks /= ls).or.(ka /= la)) then d2=(w1-atposc(1,la,ls))**2 & +(w2-atposc(2,la,ls))**2 & +(w3-atposc(3,la,ls))**2 dr=d2-r2 if (dr < drm-epslat) then is=ks js=ls rm=r d2m=d2 drm=dr end if end if end do end do end do end do end do; end do; end do dmin=sqrt(d2m)-rm end subroutine !EOC elk-10.4.9/src/PaxHeaders/rfcopy.f900000644000000000000000000000013214762655565014074 xustar0030 mtime=1741380469.016011325 30 atime=1741380467.530003556 30 ctime=1741380469.016011325 elk-10.4.9/src/rfcopy.f900000644002504400250440000000106114762655565016614 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine rfcopy(rfmt1,rfir1,rfmt2,rfir2) use modmain implicit none ! arguments real(8), intent(in) :: rfmt1(npmtmax,natmtot),rfir1(ngtot) real(8), intent(out) :: rfmt2(npmtmax,natmtot),rfir2(ngtot) ! local variables integer is,ias do ias=1,natmtot is=idxis(ias) rfmt2(1:npmt(is),ias)=rfmt1(1:npmt(is),ias) end do rfir2(1:ngtot)=rfir1(1:ngtot) end subroutine elk-10.4.9/src/PaxHeaders/rhomagv.f900000644000000000000000000000013014762655565014233 xustar0029 mtime=1741380469.01701133 30 atime=1741380467.533003572 29 ctime=1741380469.01701133 elk-10.4.9/src/rhomagv.f900000644002504400250440000000640214762655565016761 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhomagv use modmain use modmpi use modomp implicit none ! local variables integer ik,ispn,idm integer is,ias,n,nthd ! automatic arrays integer(omp_lock_kind) lock(natmtot) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:,:),evecsv(:,:) ! set the charge density and magnetisation to zero do ias=1,natmtot is=idxis(ias) rhomt(1:npcmt(is),ias)=0.d0 end do rhoir(1:ngtc)=0.d0 do idm=1,ndmag do ias=1,natmtot is=idxis(ias) magmt(1:npcmt(is),ias,idm)=0.d0 end do magir(1:ngtc,idm)=0.d0 end do ! initialise the OpenMP locks do ias=1,natmtot call omp_init_lock(lock(ias)) end do call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(apwalm,evecfv,evecsv,ispn) & !$OMP NUM_THREADS(nthd) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! find the matching coefficients do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! add to the density and magnetisation call rhomagk(ngk(:,ik),igkig(:,:,ik),lock,wkpt(ik),occsv(:,ik),apwalm, & evecfv,evecsv) end do !$OMP END DO deallocate(apwalm,evecfv,evecsv) !$OMP END PARALLEL call freethd(nthd) ! destroy the OpenMP locks do ias=1,natmtot call omp_destroy_lock(lock(ias)) end do ! convert muffin-tin density/magnetisation to spherical harmonics call rhomagsh call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP PRIVATE(idm) & !$OMP NUM_THREADS(nthd) !$OMP SECTION ! symmetrise the density call symrf(nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,nfgrzc,igfc,igrzfc,npmtmax,rhomt,& rhoir) ! convert the muffin-tin density from coarse to fine radial mesh call rfmtctof(rhomt) ! convert the interstitial density from coarse to fine grid call rfirctof(rhoir,rhoir) !$OMP SECTION if (spinpol) then ! symmetrise the magnetisation call symrvf(.true.,ncmag,nrcmt,nrcmti,npcmt,ngdgc,ngtc,ngvc,nfgrzc,igfc, & igrzfc,npmtmax,magmt,ngtot,magir) ! convert the muffin-tin magnetisation from coarse to fine radial mesh do idm=1,ndmag call rfmtctof(magmt(:,:,idm)) end do ! convert the interstitial magnetisation from coarse to fine grid do idm=1,ndmag call rfirctof(magir(:,idm),magir(:,idm)) end do end if !$OMP END PARALLEL SECTIONS call freethd(nthd) ! add densities from each process and redistribute if (np_mpi > 1) then n=npmtmax*natmtot call mpi_allreduce(mpi_in_place,rhomt,n,mpi_double_precision,mpi_sum,mpicom, & ierror) call mpi_allreduce(mpi_in_place,rhoir,ngtot,mpi_double_precision,mpi_sum, & mpicom,ierror) if (spinpol) then n=n*ndmag call mpi_allreduce(mpi_in_place,magmt,n,mpi_double_precision,mpi_sum, & mpicom,ierror) n=ngtot*ndmag call mpi_allreduce(mpi_in_place,magir,n,mpi_double_precision,mpi_sum, & mpicom,ierror) end if end if end subroutine elk-10.4.9/src/PaxHeaders/eveqn.f900000644000000000000000000000013214762655565013710 xustar0030 mtime=1741380469.018011335 30 atime=1741380467.535003582 30 ctime=1741380469.018011335 elk-10.4.9/src/eveqn.f900000644002504400250440000000416514762655565016440 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: eveqn ! !INTERFACE: subroutine eveqn(ik,evalfv,evecfv,evecsv) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ik : k-point number (in,integer) ! evalfv : first-variational eigenvalues (out,real(nstfv)) ! evecfv : first-variational eigenvectors (out,complex(nmatmax,nstfv)) ! evecsv : second-variational eigenvectors (out,complex(nstsv,nstsv)) ! !DESCRIPTION: ! Solves the first- and second-variational eigenvalue equations. See routines ! {\tt match}, {\tt eveqnfv}, {\tt eveqnss} and {\tt eveqnsv}. ! ! !REVISION HISTORY: ! Created March 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ik real(8), intent(out) :: evalfv(nstfv,nspnfv) complex(8), intent(out) :: evecfv(nmatmax,nstfv,nspnfv),evecsv(nstsv,nstsv) ! local variables integer jspn ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) ! loop over first-variational spins (nspnfv=2 for spin-spirals only) do jspn=1,nspnfv ! find the matching coefficients call match(ngk(jspn,ik),vgkc(:,:,jspn,ik),gkc(:,jspn,ik), & sfacgk(:,:,jspn,ik),apwalm(:,:,:,:,jspn)) ! solve the first-variational eigenvalue equation if (tefvit) then ! iteratively call eveqnit(nmat(jspn,ik),ngk(jspn,ik),igkig(:,jspn,ik),vkl(:,ik), & vgkl(:,:,jspn,ik),vgkc(:,:,jspn,ik),apwalm(:,:,:,:,jspn),evalfv(:,jspn), & evecfv(:,:,jspn)) else ! directly call eveqnfv(nmat(jspn,ik),ngk(jspn,ik),igkig(:,jspn,ik),vkc(:,ik), & vgkc(:,:,jspn,ik),apwalm(:,:,:,:,jspn),evalfv(:,jspn),evecfv(:,:,jspn)) end if end do if (spinsprl) then ! solve the spin-spiral second-variational eigenvalue equation call eveqnss(ngk(:,ik),igkig(:,:,ik),apwalm,evalfv,evecfv,evalsv(:,ik),evecsv) else ! solve the second-variational eigenvalue equation call eveqnsv(ngk(1,ik),igkig(:,1,ik),vgkc(:,:,1,ik),apwalm,evalfv,evecfv, & evalsv(:,ik),evecsv) end if deallocate(apwalm) end subroutine !EOC elk-10.4.9/src/PaxHeaders/genffacgp.f900000644000000000000000000000013014762655565014510 xustar0029 mtime=1741380469.01901134 30 atime=1741380467.538003598 29 ctime=1741380469.01901134 elk-10.4.9/src/genffacgp.f900000644002504400250440000000224014762655565017232 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genffacgp ! !INTERFACE: pure subroutine genffacgp(ngp,gpc,ld,ffacgp) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer) ! gpc : length of G+p-vectors (in,real(ngp)) ! ld : leading dimension (in,integer) ! ffacgp : form factors (out,real(ld,nspecies)) ! !DESCRIPTION: ! Generates the form factors used to determine the smooth characteristic ! function. See {\tt gencfun} for details. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp real(8), intent(in) :: gpc(ngp) integer, intent(in) :: ld real(8), intent(out) :: ffacgp(ld,nspecies) ! local variables integer is,ig real(8) r,t0,t1 t0=fourpi/omega do is=1,nspecies r=rmt(is) do ig=1,ngp if (gpc(ig) > epslat) then t1=gpc(ig)*r ffacgp(ig,is)=t0*(sin(t1)-t1*cos(t1))/(gpc(ig)**3) else ffacgp(ig,is)=(t0/3.d0)*(r**3) end if end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/unitary.f900000644000000000000000000000013214762655565014265 xustar0030 mtime=1741380469.021011351 30 atime=1741380467.540003608 30 ctime=1741380469.021011351 elk-10.4.9/src/unitary.f900000644002504400250440000000274714762655565017021 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: unitary ! !INTERFACE: subroutine unitary(n,a) ! !INPUT/OUTPUT PARAMETERS: ! n : order of matrix (in,integer) ! a : complex square matrix (inout,complex(n,n)) ! !DESCRIPTION: ! Finds the closest unitary matrix (in terms of the Frobenius norm) to a ! given matrix $A$. Let $U\Sigma V^{\dag}$ be the singular value ! decomposition of $A$. Then it can be shown that $UV^{\dag}$ is the closest ! unitary matrix to $A$. The input matrix is overwritten by this matrix. ! ! !REVISION HISTORY: ! Created January 2020 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n complex(8), intent(inout) :: a(n,n) ! local variables integer info complex(8), parameter :: zzero=(0.d0,0.d0),zone=(1.d0,0.d0) ! automatic arrays real(8) s(n),rwork(5*n) complex(8) work(3*n) ! allocatable arrays complex(8), allocatable :: u(:,:),vt(:,:) ! perform singular value decomposition on matrix allocate(u(n,n),vt(n,n)) call zgesvd('A','A',n,n,a,n,s,u,n,vt,n,work,3*n,rwork,info) if (info /= 0) then write(*,*) write(*,'("Error(unitary): singular value decomposition failed")') write(*,'(" ZGESVD returned INFO = ",I8)') info write(*,*) stop end if ! multiply the two unitary matrices together and store in the input matrix call zgemm('N','N',n,n,n,zone,u,n,vt,n,zzero,a,n) deallocate(u,vt) end subroutine !EOC elk-10.4.9/src/PaxHeaders/zmdet.f900000644000000000000000000000013214762655565013715 xustar0030 mtime=1741380469.022011356 30 atime=1741380467.543003624 30 ctime=1741380469.022011356 elk-10.4.9/src/zmdet.f900000644002504400250440000000244414762655565016443 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zmdet ! !INTERFACE: complex(8) function zmdet(n,a) ! !INPUT/OUTPUT PARAMETERS: ! n : order of matrix (in,integer) ! a : complex square matrix (inout,complex(n,n)) ! !DESCRIPTION: ! Calculates the determinant of a complex matrix $A$ by using its $LU$ ! decomposition with partial pivoting. Let $A=PLU$ where $P$ is the ! permutation matrix corresponding to row interchanges, then ! \begin{align*} ! |A|&=|P||L||U| \\ ! &=(-1)^p\prod_{i=1}^n U_{ii}, ! \end{align*} ! where $p$ is the number of interchanges. Note that the input matrix is ! destroyed on exit. ! ! !REVISION HISTORY: ! Created January 2020 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n complex(8), intent(inout) :: a(n,n) ! local variables integer i,m,info ! automatic arrays integer ipiv(n) ! perform an LU factorisation of the input matrix call zgetrf(n,n,a,n,ipiv,info) ! multiply diagonal elements of U together zmdet=a(1,1) do i=2,n zmdet=zmdet*a(i,i) end do ! determine the sign from the number of row interchanges m=1 do i=1,n if (ipiv(i) /= i) m=-m end do if (m == -1) zmdet=-zmdet end function !EOC elk-10.4.9/src/PaxHeaders/rfmtftoc.f900000644000000000000000000000013214762655565014416 xustar0030 mtime=1741380469.023011361 30 atime=1741380467.545003634 30 ctime=1741380469.023011361 elk-10.4.9/src/rfmtftoc.f900000644002504400250440000000122714762655565017142 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine rfmtftoc(nrc,nrci,rfmt,rfcmt) use modmain implicit none ! arguments integer, intent(in) :: nrc,nrci real(8), intent(in) :: rfmt(*) real(8), intent(out) :: rfcmt(*) ! local variables integer irc,i,j,m,n i=1 j=1 m=lmmaxi*lradstp n=lmmaxi-1 do irc=1,nrci rfcmt(i:i+n)=rfmt(j:j+n) i=i+lmmaxi j=j+m end do j=j+(lradstp-1)*(lmmaxo-lmmaxi) m=lmmaxo*lradstp n=lmmaxo-1 do irc=nrci+1,nrc rfcmt(i:i+n)=rfmt(j:j+n) i=i+lmmaxo j=j+m end do end subroutine elk-10.4.9/src/PaxHeaders/zminv.f900000644000000000000000000000013114762655565013734 xustar0030 mtime=1741380469.024011366 29 atime=1741380467.54800365 30 ctime=1741380469.024011366 elk-10.4.9/src/zminv.f900000644002504400250440000000170014762655565016455 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zminv(n,a) use modomp implicit none ! arguments integer, intent(in) :: n complex(8), intent(inout) :: a(n,n) ! local variables integer info,nthd,nts ! automatic arrays integer ipiv(n) complex(8) work(n) ! enable MKL parallelism call holdthd(maxthdmkl,nthd) nts=mkl_set_num_threads_local(nthd) call zgetrf(n,n,a,n,ipiv,info) if (info /= 0) then write(*,*) write(*,'("Error(zminv): unable to invert matrix")') write(*,'(" ZGETRF returned INFO = ",I8)') info write(*,*) stop end if call zgetri(n,a,n,ipiv,work,n,info) if (info /= 0) then write(*,*) write(*,'("Error(zminv): unable to invert matrix")') write(*,'(" ZGETRI returned INFO = ",I8)') info write(*,*) stop end if nts=mkl_set_num_threads_local(0) call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/symrf.f900000644000000000000000000000013114762655565013731 xustar0030 mtime=1741380469.026011377 29 atime=1741380467.55000366 30 ctime=1741380469.026011377 elk-10.4.9/src/symrf.f900000644002504400250440000000447414762655565016465 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: symrf ! !INTERFACE: subroutine symrf(nrmt_,nrmti_,npmt_,ngridg_,ngtot_,ngvec_,nfgrz_,igfft_,igrzf_,& ld,rfmt,rfir) ! !USES: use modmain use modomp ! !INPUT/OUTPUT PARAMETERS: ! nrmt_ : number of radial points for each species (in,integer(nspecies)) ! nrmti_ : number of radial points on the inner part (in,integer(nspecies)) ! npmt_ : total number of points in each muffin-tin (in,integer(nspecies)) ! ngridg_ : G-vector grid sizes (in,integer(3)) ! ngtot_ : total number of G-vectors (in,integer) ! ngvec_ : number of G-vectors within cut-off (in,integer) ! nfgrz_ : number of FFT elements for real-complex transforms (in,integer) ! igfft_ : map from G-vector index to FFT array (in,integer(ngvec_)) ! igrzf_ : map from real-complex FFT index to G-point index ! (in,integer(nfgrz_) ! ld : leading dimension (in,integer) ! rfmt : real muffin-tin function (inout,real(ld,natmtot)) ! rfir : real intersitial function (inout,real(ngtot_)) ! !DESCRIPTION: ! Symmetrises a real scalar function defined over the entire unit cell using ! the full set of crystal symmetries. In the muffin-tin of a particular atom ! the spherical harmonic coefficients of every equivlent atom are rotated and ! averaged. The interstitial part of the function is first Fourier transformed ! to $G$-space, and then averaged over each symmetry by rotating the Fourier ! coefficients and multiplying them by a phase factor corresponding to the ! symmetry translation. ! ! !REVISION HISTORY: ! Created May 2007 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: nrmt_(nspecies),nrmti_(nspecies),npmt_(nspecies) integer, intent(in) :: ngridg_(3),ngtot_,ngvec_,nfgrz_ integer, intent(in) :: igfft_(ngvec_),igrzf_(nfgrz_),ld real(8), intent(inout) :: rfmt(ld,natmtot),rfir(ngtot_) ! local variables integer nthd call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP SECTION call symrfmt(nrmt_,nrmti_,npmt_,ld,rfmt) !$OMP SECTION call symrfir(ngridg_,ngtot_,ngvec_,nfgrz_,igfft_,igrzf_,rfir) !$OMP END PARALLEL SECTIONS call freethd(nthd) end subroutine !EOC elk-10.4.9/src/PaxHeaders/genvmat.f900000644000000000000000000000013214762655565014233 xustar0030 mtime=1741380469.027011382 30 atime=1741380467.553003676 30 ctime=1741380469.027011382 elk-10.4.9/src/genvmat.f900000644002504400250440000000527214762655565016763 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genvmat(vmt,vir,vmat) ! generates potential matrix elements for all states and k-points use modmain use modmpi use modomp implicit none ! arguments real(8), intent(in) :: vmt(npmtmax,natmtot),vir(ngtot) complex(8), intent(out) :: vmat(nstsv,nstsv,nkpt) ! local variables integer ik,ispn integer is,ias,nrc,nrci integer n,lp,nthd ! automatic arrays real(8) vmtc(npcmtmax,natmtot),virc(ngtc) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:,:),evecfv(:,:),evecsv(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:) call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nrc,nrci) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) ! convert muffin-tin potential to a coarse radial mesh call rfmtftoc(nrc,nrci,vmt(:,ias),vmtc(:,ias)) ! convert potential to spherical coordinates call rbshtip(nrc,nrci,vmtc(:,ias)) ! multiply by the radial integration weights call rfcmtwr(nrc,nrci,wr2cmt(:,is),vmtc(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! multiply by characteristic function and convert to coarse grid call rfirftoc(vir,virc) ! loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(apwalm,evecfv,evecsv) & !$OMP PRIVATE(wfmt,wfgk,ispn) & !$OMP NUM_THREADS(nthd) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfgk(ngkmax,nspinor,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! find the matching coefficients do ispn=1,nspnfv call match(ngk(ispn,ik),vgkc(:,:,ispn,ik),gkc(:,ispn,ik), & sfacgk(:,:,ispn,ik),apwalm(:,:,:,:,ispn)) end do ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! calculate the wavefunctions for all states of the input k-point call genwfsv_sp(.false.,.true.,nstsv,[0],ngridg,igfft,ngk(:,ik), & igkig(:,:,ik),apwalm,evecfv,evecsv,wfmt,ngkmax,wfgk) call genvmatk(vmtc,virc,ngk(:,ik),igkig(:,:,ik),wfmt,ngkmax,wfgk,vmat(:,:,ik)) end do !$OMP END DO deallocate(apwalm,evecfv,evecsv,wfmt,wfgk) !$OMP END PARALLEL call freethd(nthd) ! broadcast matrix elements to every process if (np_mpi > 1) then n=nstsv*nstsv do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(vmat(:,:,ik),n,mpi_double_complex,lp,mpicom,ierror) end do end if end subroutine elk-10.4.9/src/PaxHeaders/writeeval.f900000644000000000000000000000013214762655565014574 xustar0030 mtime=1741380469.028011387 30 atime=1741380467.556003692 30 ctime=1741380469.028011387 elk-10.4.9/src/writeeval.f900000644002504400250440000000264114762655565017321 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writeeval ! !INTERFACE: subroutine writeeval ! !USES: use modmain ! !DESCRIPTION: ! Outputs the second-variational eigenvalues and occupation numbers to the ! file {\tt EIGVAL.OUT}. ! ! !REVISION HISTORY: ! Created June 2003 (JKD) !EOP !BOC implicit none ! local variables integer ik,ist,is,ia,ias ! write out the valence eigenvalues open(50,file='EIGVAL'//trim(filext),form='FORMATTED') write(50,'(I6," : nkpt")') nkpt write(50,'(I6," : nstsv")') nstsv do ik=1,nkpt write(50,*) write(50,'(I6,3G18.10," : k-point, vkl")') ik,vkl(:,ik) write(50,'(" (state, eigenvalue and occupancy below)")') do ist=1,nstsv write(50,'(I6,2G18.10)') ist,evalsv(ist,ik),occsv(ist,ik) end do write(50,*) end do close(50) ! write out the core eigenvalues open(50,file='EVALCORE'//trim(filext),form='FORMATTED') do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),ia do ist=1,nstsp(is) if (spcore(ist,is)) then write(50,'(" n = ",I2,", l = ",I2,", k = ",I2," : ",G18.10)') & nsp(ist,is),lsp(ist,is),ksp(ist,is),evalcr(ist,ias) end if end do end do end do close(50) end subroutine !EOC elk-10.4.9/src/PaxHeaders/mixerifc.f900000644000000000000000000000013214762655565014400 xustar0030 mtime=1741380469.030011398 30 atime=1741380467.558003702 30 ctime=1741380469.030011398 elk-10.4.9/src/mixerifc.f900000644002504400250440000000303314762655565017121 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine mixerifc(mtype,n,v,dv,nwork,work) use modmain implicit none ! arguments integer, intent(in) :: mtype,n real(8), intent(inout) :: v(n) real(8), intent(out) :: dv integer, intent(inout) :: nwork real(8), intent(inout) :: work(*) select case(mtype) case(0) ! linear mixing if (nwork < 1) then nwork=n return end if call mixlinear(iscl,amixpm(1),n,v,work,dv) case(1) ! adaptive linear mixing if (nwork < 1) then nwork=3*n return end if call mixadapt(iscl,amixpm(1),amixpm(2),n,v,work,work(n+1),work(2*n+1),dv) case(3) ! Broyden mixing if (nwork < 1) then nwork=(4+2*mixsdb)*n+mixsdb**2 return end if call mixbroyden(iscl,n,mixsdb,broydpm(1),broydpm(2),v,work,work(2*n+1), & work(4*n+1),work((4+mixsdb)*n+1),work((4+2*mixsdb)*n+1),dv) case default write(*,*) write(*,'("Error(mixerifc): mtype not defined : ",I8)') mtype write(*,*) stop end select end subroutine subroutine getmixdata(mtype,mixdescr) implicit none ! arguments integer, intent(in) :: mtype character(*), intent(out) :: mixdescr select case(mtype) case(0) mixdescr='Linear mixing' case(1) mixdescr='Adaptive linear mixing' case(3) mixdescr='Broyden mixing, J. Phys. A: Math. Gen. 17, L317 (1984)' case default write(*,*) write(*,'("Error(getmixdata): mixtype not defined : ",I8)') mtype write(*,*) stop end select end subroutine elk-10.4.9/src/PaxHeaders/splinew.f900000644000000000000000000000013214762655565014253 xustar0030 mtime=1741380469.031011403 30 atime=1741380467.561003718 30 ctime=1741380469.031011403 elk-10.4.9/src/splinew.f900000644002504400250440000000267214762655565017004 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine splinew(n,wc,f,cf) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wc(4,3,n),f(n) real(8), intent(out) :: cf(3,n) ! local variables integer i real(8) f1,f2,f3,f4 f1=f(1); f2=f(2); f3=f(3); f4=f(4) cf(1,1)=wc(1,1,1)*f1+wc(2,1,1)*f2+wc(3,1,1)*f3+wc(4,1,1)*f4 cf(2,1)=wc(1,2,1)*f1+wc(2,2,1)*f2+wc(3,2,1)*f3+wc(4,2,1)*f4 cf(3,1)=wc(1,3,1)*f1+wc(2,3,1)*f2+wc(3,3,1)*f3+wc(4,3,1)*f4 cf(1,2)=wc(1,1,2)*f1+wc(2,1,2)*f2+wc(3,1,2)*f3+wc(4,1,2)*f4 cf(2,2)=wc(1,2,2)*f1+wc(2,2,2)*f2+wc(3,2,2)*f3+wc(4,2,2)*f4 cf(3,2)=wc(1,3,2)*f1+wc(2,3,2)*f2+wc(3,3,2)*f3+wc(4,3,2)*f4 !$OMP SIMD LASTPRIVATE(f1,f2,f3,f4) SIMDLEN(8) do i=3,n-2 f1=f(i-1); f2=f(i); f3=f(i+1); f4=f(i+2) cf(1,i)=wc(1,1,i)*f1+wc(2,1,i)*f2+wc(3,1,i)*f3+wc(4,1,i)*f4 cf(2,i)=wc(1,2,i)*f1+wc(2,2,i)*f2+wc(3,2,i)*f3+wc(4,2,i)*f4 cf(3,i)=wc(1,3,i)*f1+wc(2,3,i)*f2+wc(3,3,i)*f3+wc(4,3,i)*f4 end do i=n-1 cf(1,i)=wc(1,1,i)*f1+wc(2,1,i)*f2+wc(3,1,i)*f3+wc(4,1,i)*f4 cf(2,i)=wc(1,2,i)*f1+wc(2,2,i)*f2+wc(3,2,i)*f3+wc(4,2,i)*f4 cf(3,i)=wc(1,3,i)*f1+wc(2,3,i)*f2+wc(3,3,i)*f3+wc(4,3,i)*f4 cf(1,n)=wc(1,1,n)*f1+wc(2,1,n)*f2+wc(3,1,n)*f3+wc(4,1,n)*f4 cf(2,n)=wc(1,2,n)*f1+wc(2,2,n)*f2+wc(3,2,n)*f3+wc(4,2,n)*f4 cf(3,n)=wc(1,3,n)*f1+wc(2,3,n)*f2+wc(3,3,n)*f3+wc(4,3,n)*f4 end subroutine elk-10.4.9/src/PaxHeaders/nfftifc.f900000644000000000000000000000013214762655565014211 xustar0030 mtime=1741380469.032011408 30 atime=1741380467.563003728 30 ctime=1741380469.032011408 elk-10.4.9/src/nfftifc.f900000644002504400250440000000277314762655565016744 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: nfftifc ! !INTERFACE: subroutine nfftifc(np,nd,n) ! !INPUT/OUTPUT PARAMETERS: ! np : number of allowed primes (in,integer) ! nd : number of dimensions (in,integer) ! n : required/available grid size (inout,integer(nd)) ! !DESCRIPTION: ! Interface to the grid requirements of the fast Fourier transform routine. ! Most routines restrict $n$ to specific prime factorisations. This routine ! returns the next largest grid size allowed by the FFT routine. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: np,nd integer, intent(inout) :: n(nd) ! local variables integer i,j,l integer, parameter :: p(10)=[2,3,5,7,11,13,17,19,23,29] if ((np < 1).or.(np > 10)) then write(*,*) write(*,'("Error(nfftifc): np out of range : ",I8)') np write(*,*) stop end if if (nd < 1) then write(*,*) write(*,'("Error(nfftifc): nd < 1 : ",I8)') nd write(*,*) stop end if ! loop over dimensions do l=1,nd if (n(l) < 1) then write(*,*) write(*,'("Error(nfftifc): n < 1 : ",I8)') n(l) write(*,'(" for dimension : ",I4)') l write(*,*) stop end if do i=n(l) do j=1,np do while (mod(i,p(j)) == 0) i=i/p(j) end do end do if (i == 1) exit n(l)=n(l)+1 end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/batchdv.f900000644000000000000000000000013214762655565014205 xustar0030 mtime=1741380469.033011414 30 atime=1741380467.566003744 30 ctime=1741380469.033011414 elk-10.4.9/src/batchdv.f900000644002504400250440000000515314762655565016733 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine batchdv use modmain use moddftu use modvars use modmpi implicit none ! no increment for first task if (itask <= 1) return ! only increment for ground-state tasks if (all(task /= [0,1,2,3])) return ! increment selected variables if (any(dngridk(:) /= 0)) then ngridk(:)=ngridk(:)+dngridk(:) if (mp_mpi) write(*,'("Info(batchdv): incremented ngridk")') end if if (dlmaxapw /= 0) then lmaxapw=lmaxapw+dlmaxapw if (mp_mpi) write(*,'("Info(batchdv): incremented lmaxapw")') end if if (dlmaxo /= 0) then lmaxo=lmaxo+dlmaxo if (mp_mpi) write(*,'("Info(batchdv): incremented lmaxo")') end if if (any(davec(:,:) /= 0.d0)) then avec(:,:)=avec(:,:)+davec(:,:) if (mp_mpi) write(*,'("Info(batchdv): incremented avec")') end if if (any(datposl(:,:,:) /= 0.d0)) then atposl(:,:,:)=atposl(:,:,:)+datposl(:,:,:) if (mp_mpi) write(*,'("Info(batchdv): incremented atposl")') end if if (drgkmax /= 0.d0) then rgkmax=rgkmax+drgkmax if (mp_mpi) write(*,'("Info(batchdv): incremented rgkmax")') end if if (dgmaxvr /= 0.d0) then gmaxvr=gmaxvr+dgmaxvr if (mp_mpi) write(*,'("Info(batchdv): incremented gmaxvr")') end if if (dnempty0 /= 0.d0) then nempty0=nempty0+dnempty0 if (mp_mpi) write(*,'("Info(batchdv): incremented nempty")') end if if (dchgexs /= 0.d0) then chgexs=chgexs+dchgexs if (mp_mpi) write(*,'("Info(batchdv): incremented chgexs")') end if if (dsxcscf /= 0.d0) then sxcscf=sxcscf+dsxcscf if (mp_mpi) write(*,'("Info(batchdv): incremented sxcscf")') end if if (dnrmtscf /= 0.d0) then nrmtscf=nrmtscf+dnrmtscf if (mp_mpi) write(*,'("Info(batchdv): incremented nrmtscf")') end if if (any(dudufix(:) /= 0.d0)) then udufix(:)=udufix(:)+dudufix(:) if (mp_mpi) write(*,'("Info(batchdv): incremented udufix")') end if if (any(dmomfix(:) /= 0.d0)) then momfix(:)=momfix(:)+dmomfix(:) if (mp_mpi) write(*,'("Info(batchdv): incremented momfix")') end if if (any(dbfieldc0(:) /= 0.d0)) then bfieldc0(:)=bfieldc0(:)+dbfieldc0(:) if (mp_mpi) write(*,'("Info(batchdv): incremented dbfieldc0")') end if if (any(dvqlss(:) /= 0.d0)) then vqlss(:)=vqlss(:)+dvqlss(:) if (mp_mpi) write(*,'("Info(batchdv): incremented vqlss")') end if if (any(dafieldc(:) /= 0.d0)) then afieldc(:)=afieldc(:)+dafieldc(:) if (mp_mpi) write(*,'("Info(batchdv): incremented afieldc")') end if if (any(dafspc(:,:) /= 0.d0)) then afspc(:,:)=afspc(:,:)+dafspc(:,:) if (mp_mpi) write(*,'("Info(batchdv): incremented afspc")') end if end subroutine elk-10.4.9/src/PaxHeaders/readevalsv.f900000644000000000000000000000013214762655565014726 xustar0030 mtime=1741380469.034011419 30 atime=1741380467.568003755 30 ctime=1741380469.034011419 elk-10.4.9/src/readevalsv.f900000644002504400250440000000064714762655565017457 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readevalsv use modmain implicit none ! local variables integer ik ! get the second-variational eigenvalues from file for all k-points do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do end subroutine elk-10.4.9/src/PaxHeaders/readoccsv.f900000644000000000000000000000013114762655565014542 xustar0030 mtime=1741380469.036011429 29 atime=1741380467.57100377 30 ctime=1741380469.036011429 elk-10.4.9/src/readoccsv.f900000644002504400250440000000063014762655565017264 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readoccsv use modmain implicit none ! local variables integer ik ! get the occupation numbers from file for all k-points do ik=1,nkpt call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do end subroutine elk-10.4.9/src/PaxHeaders/z2mm.f900000644000000000000000000000013214762655565013457 xustar0030 mtime=1741380469.037011434 30 atime=1741380467.574003786 30 ctime=1741380469.037011434 elk-10.4.9/src/z2mm.f900000644002504400250440000000155314762655565016205 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: z2mm ! !INTERFACE: pure subroutine z2mm(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,complex(2,2)) ! b : input matrix 2 (in,complex(2,2)) ! c : output matrix (out,complex(2,2)) ! !DESCRIPTION: ! Multiplies two complex $2\times 2$ matrices. Note that the output matrix ! cannot be one of the input matrices. ! ! !REVISION HISTORY: ! Created October 2007 (JKD) !EOP !BOC implicit none ! arguments complex(8), intent(in) :: a(2,2),b(2,2) complex(8), intent(out) :: c(2,2) c(1,1)=a(1,1)*b(1,1)+a(1,2)*b(2,1) c(2,1)=a(2,1)*b(1,1)+a(2,2)*b(2,1) c(1,2)=a(1,1)*b(1,2)+a(1,2)*b(2,2) c(2,2)=a(2,1)*b(1,2)+a(2,2)*b(2,2) end subroutine !EOC elk-10.4.9/src/PaxHeaders/z2mctm.f900000644000000000000000000000013014762655565014004 xustar0029 mtime=1741380469.03801144 30 atime=1741380467.576003796 29 ctime=1741380469.03801144 elk-10.4.9/src/z2mctm.f900000644002504400250440000000171514762655565016534 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: z2mctm ! !INTERFACE: pure subroutine z2mctm(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,complex(2,2)) ! b : input matrix 2 (in,complex(2,2)) ! c : output matrix (out,complex(2,2)) ! !DESCRIPTION: ! Multiplies the conjugate transpose of one complex $2\times 2$ matrix with ! another. Note that the output matrix cannot be one of the input matrices. ! ! !REVISION HISTORY: ! Created October 2007 (JKD) !EOP !BOC implicit none ! arguments complex(8), intent(in) :: a(2,2),b(2,2) complex(8), intent(out) :: c(2,2) c(1,1)=conjg(a(1,1))*b(1,1)+conjg(a(2,1))*b(2,1) c(2,1)=conjg(a(1,2))*b(1,1)+conjg(a(2,2))*b(2,1) c(1,2)=conjg(a(1,1))*b(1,2)+conjg(a(2,1))*b(2,2) c(2,2)=conjg(a(1,2))*b(1,2)+conjg(a(2,2))*b(2,2) end subroutine !EOC elk-10.4.9/src/PaxHeaders/z2mmct.f900000644000000000000000000000013214762655565014006 xustar0030 mtime=1741380469.039011445 30 atime=1741380467.579003812 30 ctime=1741380469.039011445 elk-10.4.9/src/z2mmct.f900000644002504400250440000000170314762655565016531 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: z2mmct ! !INTERFACE: pure subroutine z2mmct(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,complex(2,2)) ! b : input matrix 2 (in,complex(2,2)) ! c : output matrix (out,complex(2,2)) ! !DESCRIPTION: ! Multiplies a $2\times 2$ matrix with the conjugate transpose of another. ! Note that the output matrix cannot be one of the input matrices. ! ! !REVISION HISTORY: ! Created October 2007 (JKD) !EOP !BOC implicit none ! arguments complex(8), intent(in) :: a(2,2),b(2,2) complex(8), intent(out) :: c(2,2) c(1,1)=a(1,1)*conjg(b(1,1))+a(1,2)*conjg(b(1,2)) c(2,1)=a(2,1)*conjg(b(1,1))+a(2,2)*conjg(b(1,2)) c(1,2)=a(1,1)*conjg(b(2,1))+a(1,2)*conjg(b(2,2)) c(2,2)=a(2,1)*conjg(b(2,1))+a(2,2)*conjg(b(2,2)) end subroutine !EOC elk-10.4.9/src/PaxHeaders/zmmabu.f900000644000000000000000000000013014762655565014063 xustar0029 mtime=1741380469.04001145 30 atime=1741380467.582003828 29 ctime=1741380469.04001145 elk-10.4.9/src/zmmabu.f900000644002504400250440000000146314762655565016613 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zmmabu(l,n,a,b,ld,c) use modomp implicit none ! arguments integer, intent(in) :: l,n ! pass in complex arrays as real real(8), intent(in) :: a(2*l,n),b(2*l,n) integer, intent(in) :: ld complex(8), intent(inout) :: c(ld,*) ! local variables integer i,j,nthd ! external functions complex(8), external :: zdotc call holdthd(n,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(i) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do j=1,n do i=1,j-1 c(i,j)=c(i,j)+zdotc(l,a(1,i),1,b(1,j),1) end do c(j,j)=c(j,j)+dot_product(a(:,j),b(:,j)) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/zmmab.f900000644000000000000000000000013014762655565013676 xustar0029 mtime=1741380469.04201146 30 atime=1741380467.584003838 29 ctime=1741380469.04201146 elk-10.4.9/src/zmmab.f900000644002504400250440000000134714762655565016427 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zmmab(l,m,n,a,b,ld,c) use modomp implicit none ! arguments integer, intent(in) :: l,m,n complex(8), intent(in) :: a(l,m),b(l,n) integer, intent(in) :: ld complex(8), intent(inout) :: c(ld,*) ! local variables integer i,j,nthd ! external functions complex(8), external :: zdotc call holdthd(n,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(i) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do j=1,n do i=1,m c(i,j)=c(i,j)+zdotc(l,a(1,i),1,b(1,j),1) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/rzmmabu.f900000644000000000000000000000013214762655565014247 xustar0030 mtime=1741380469.043011466 30 atime=1741380467.587003854 30 ctime=1741380469.043011466 elk-10.4.9/src/rzmmabu.f900000644002504400250440000000130414762655565016767 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rzmmabu(l,n,a,b,ld,c) use modomp implicit none ! arguments integer, intent(in) :: l,n ! pass in complex arrays as real real(8), intent(in) :: a(2*l,n),b(2*l,n) integer, intent(in) :: ld complex(8), intent(inout) :: c(ld,*) ! local variables integer i,j,nthd call holdthd(n,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(i) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do j=1,n do i=1,j c(i,j)=c(i,j)+dot_product(a(:,i),b(:,j)) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/rzmmaau.f900000644000000000000000000000013214762655565014246 xustar0030 mtime=1741380469.044011471 30 atime=1741380467.589003864 30 ctime=1741380469.044011471 elk-10.4.9/src/rzmmaau.f900000644002504400250440000000127014762655565016770 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rzmmaau(l,n,a,ld,c) use modomp implicit none ! arguments integer, intent(in) :: l,n ! pass in complex array as real real(8), intent(in) :: a(2*l,n) integer, intent(in) :: ld complex(8), intent(inout) :: c(ld,*) ! local variables integer i,j,nthd call holdthd(n,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(i) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do j=1,n do i=1,j c(i,j)=c(i,j)+dot_product(a(:,i),a(:,j)) end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/zmmaau.f900000644000000000000000000000013214762655565014064 xustar0030 mtime=1741380469.046011481 30 atime=1741380467.591003875 30 ctime=1741380469.046011481 elk-10.4.9/src/zmmaau.f900000644002504400250440000000144714762655565016614 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zmmaau(l,n,a,ld,c) use modomp implicit none ! arguments integer, intent(in) :: l,n ! pass in complex array as real real(8), intent(in) :: a(2*l,n) integer, intent(in) :: ld complex(8), intent(inout) :: c(ld,*) ! local variables integer i,j,nthd ! external functions complex(8), external :: zdotc call holdthd(n,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(i) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do j=1,n do i=1,j-1 c(i,j)=c(i,j)+zdotc(l,a(1,i),1,a(1,j),1) end do c(j,j)=c(j,j)+dot_product(a(:,j),a(:,j)) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/moldyn.f900000644000000000000000000000013214762655565014074 xustar0030 mtime=1741380469.047011487 30 atime=1741380467.594003891 30 ctime=1741380469.047011487 elk-10.4.9/src/moldyn.f900000644002504400250440000000526514762655565016626 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine moldyn use modmain use modtddft use modmpi use modomp use moddelf implicit none ! local variables integer is,ia ! initialise universal variables call init0 ! store original parameters atposl0(:,:,:)=atposl(:,:,:) atposc0(:,:,:)=atposc(:,:,:) tshift0=tshift tforce0=tforce tfav00=tfav0 ! no shifting of atomic basis allowed tshift=.false. ! calculate atomic forces tforce=.true. ! average force can be non-zero (allow for translation of atomic basis) tfav0=.false. ! generate the time step grid call gentimes ! flag for starting at t=0 or a restart tdt0=(task == 420) if (tdt0) then ! start from t=0 itimes0=1 else ! restart if required call readtimes itimes0=itimes0+ntsforce trdatdv=.true. end if if (trdatdv) then ! read the atomic displacements and velocities call readatdvc else ! set the displacements and velocities to zero atdvc(:,:,:,:)=0.d0 end if trdstate=.false. if (tdt0.and.mp_mpi) then call delfile('TOTENERGY_TD.OUT') if (spinpol) then call delfile('MOMENT_TD.OUT') call delfile('MOMENTM_TD.OUT') call delfile('MOMENTMT_TD.OUT') call delfile('MOMENTIR_TD.OUT') end if call delfile('FORCETOT_TD.OUT') call delfile('FORCEMAX_TD.OUT') call delfile('ATDISPL_TD.OUT') call delfile('ATDISPC_TD.OUT') end if do itimes=itimes0,ntimes-1,ntsforce if (mp_mpi) then write(*,'("Info(moldyn): time step ",I8," of ",I8,", t = ",G18.10)') & itimes,ntimes,times(itimes) end if ! reset the OpenMP thread variables call omp_reset ! add the displacements to the atomic positions do is=1,nspecies do ia=1,natoms(is) atposc(:,ia,is)=atposc0(:,ia,is)+atdvc(:,0,ia,is) call r3mv(ainv,atposc(:,ia,is),atposl(:,ia,is)) end do end do ! calculate the ground-state and atomic forces call gndstate ! subsequent calculations will read in the potential from STATE.OUT trdstate=.true. ! time step the atomic positions within the adiabatic approximation call atptstep(forcetot) if (mp_mpi) then ! write the time step to file call writetimes ! write time-dependent total energy call writetdengy ! write spin moments if required if (spinpol) call writemomtd ! write time-dependent atomic forces call writetdforces ! write the time-dependent atomic displacements call writeatdisp ! write the XCrysden animation file crystal.axsf call writeaxsf end if if (tstop) exit end do ! restore original input parameters atposl(:,:,:)=atposl0(:,:,:) tshift=tshift0 tforce=tforce0 tfav0=tfav00 ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/gencrho.f900000644000000000000000000000013214762655565014217 xustar0030 mtime=1741380469.048011492 30 atime=1741380467.597003906 30 ctime=1741380469.048011492 elk-10.4.9/src/gencrho.f900000644002504400250440000000357114762655565016747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gencrho(tsh,tspc,ngt,wfmt1,wfir1,wfmt2,wfir2,crhomt,crhoir) use modmain implicit none ! arguments logical, intent(in) :: tsh,tspc integer, intent(in) :: ngt complex(4), intent(in) :: wfmt1(npcmtmax,natmtot,*),wfir1(ngt,*) complex(4), intent(in) :: wfmt2(npcmtmax,natmtot,*),wfir2(ngt,*) complex(4), intent(out) :: crhomt(npcmtmax,natmtot),crhoir(ngt) ! local variables integer is,ias ! muffin-tin part do ias=1,natmtot is=idxis(ias) if (tsh) then if (tspc.and.spinpol) then ! contract over spin call crho2(npcmt(is),wfmt1(:,ias,1),wfmt1(:,ias,2),wfmt2(:,ias,1), & wfmt2(:,ias,2),crhomt(:,ias)) else ! no spin contraction call crho1(npcmt(is),wfmt1(:,ias,1),wfmt2(:,ias,1),crhomt(:,ias)) end if ! convert to spherical harmonics call cfshtip(nrcmt(is),nrcmti(is),crhomt(:,ias)) else if (tspc.and.spinpol) then call crho2(npcmt(is),wfmt1(:,ias,1),wfmt1(:,ias,2),wfmt2(:,ias,1), & wfmt2(:,ias,2),crhomt(:,ias)) else call crho1(npcmt(is),wfmt1(:,ias,1),wfmt2(:,ias,1),crhomt(:,ias)) end if end if end do ! interstitial part if (tspc.and.spinpol) then call crho2(ngt,wfir1,wfir1(:,2),wfir2,wfir2(:,2),crhoir) else call crho1(ngt,wfir1,wfir2,crhoir) end if return contains pure subroutine crho1(n,wf1,wf2,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf1(n),wf2(n) complex(4), intent(out) :: crho(n) crho(1:n)=conjg(wf1(1:n))*wf2(1:n) end subroutine pure subroutine crho2(n,wf11,wf12,wf21,wf22,crho) implicit none integer, intent(in) :: n complex(4), intent(in) :: wf11(n),wf12(n),wf21(n),wf22(n) complex(4), intent(out) :: crho(n) crho(1:n)=conjg(wf11(1:n))*wf21(1:n)+conjg(wf12(1:n))*wf22(1:n) end subroutine end subroutine elk-10.4.9/src/PaxHeaders/cpotclmt.f900000644000000000000000000000013214762655565014417 xustar0030 mtime=1741380469.050011502 30 atime=1741380467.599003917 30 ctime=1741380469.050011502 elk-10.4.9/src/cpotclmt.f900000644002504400250440000000432014762655565017140 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine cpotclmt(nr,nri,ld,rl,wpr,crhomt,cvclmt) use modmain integer, intent(in) :: nr,nri,ld real(8), intent(in) :: rl(ld,-lmaxo-1:lmaxo+2),wpr(4,nr) complex(4), intent(in) :: crhomt(*) complex(4), intent(out) :: cvclmt(*) ! local variables integer nro,iro,ir integer l,l1,l2,l3 integer lm,npi,i0,i real(8) t0 complex(4) c1 ! automatic arrays complex(4) f1(nr),f2(nr),f3(nr) nro=nr-nri iro=nri+1 npi=lmmaxi*nri do l=0,lmaxi l1=l+2 l2=-l+1 l3=-l-1 t0=fourpi/dble(2*l+1) do lm=l**2+1,(l+1)**2 do ir=1,nri i=lm+lmmaxi*(ir-1) f1(ir)=rl(ir,l1)*crhomt(i) f2(ir)=rl(ir,l2)*crhomt(i) end do i0=lm+npi do ir=iro,nr i=i0+lmmaxo*(ir-iro) f1(ir)=rl(ir,l1)*crhomt(i) f2(ir)=rl(ir,l2)*crhomt(i) end do call splintwp(nr,wpr,f1,f3) call splintwp(nr,wpr,f2,f1) c1=f1(nr) do ir=1,nri i=lm+lmmaxi*(ir-1) cvclmt(i)=t0*(rl(ir,l3)*f3(ir)+rl(ir,l)*(c1-f1(ir))) end do do ir=iro,nr i=i0+lmmaxo*(ir-iro) cvclmt(i)=t0*(rl(ir,l3)*f3(ir)+rl(ir,l)*(c1-f1(ir))) end do end do end do do l=lmaxi+1,lmaxo l1=l+2 l2=-l+1 l3=-l-1 t0=fourpi/dble(2*l+1) do lm=l**2+1,(l+1)**2 i0=lm+npi do ir=iro,nr i=i0+lmmaxo*(ir-iro) f1(ir)=rl(ir,l1)*crhomt(i) f2(ir)=rl(ir,l2)*crhomt(i) end do call splintwp(nro,wpr(1,iro),f1(iro),f3(iro)) call splintwp(nro,wpr(1,iro),f2(iro),f1(iro)) c1=f1(nr) do ir=iro,nr i=i0+lmmaxo*(ir-iro) cvclmt(i)=t0*(rl(ir,l3)*f3(ir)+rl(ir,l)*(c1-f1(ir))) end do end do end do return contains pure subroutine splintwp(n,wp,f,g) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wp(*) complex(4), intent(in) :: f(n) complex(4), intent(out) :: g(n) ! local variables integer i,j complex(8) zsm g(1)=0.e0 zsm=wp(5)*f(1)+wp(6)*f(2)+wp(7)*f(3)+wp(8)*f(4) g(2)=zsm do i=2,n-2 j=i*4+1 zsm=zsm+wp(j)*f(i-1)+wp(j+1)*f(i)+wp(j+2)*f(i+1)+wp(j+3)*f(i+2) g(i+1)=zsm end do j=(n-1)*4+1 g(n)=zsm+wp(j)*f(n-3)+wp(j+1)*f(n-2)+wp(j+2)*f(n-1)+wp(j+3)*f(n) end subroutine end subroutine elk-10.4.9/src/PaxHeaders/rfmtsm.f900000644000000000000000000000013214762655565014102 xustar0030 mtime=1741380469.051011508 30 atime=1741380467.602003932 30 ctime=1741380469.051011508 elk-10.4.9/src/rfmtsm.f900000644002504400250440000000154714762655565016633 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfmtsm(m,nr,nri,rfmt) use modmain implicit none ! arguments integer, intent(in) :: m,nr,nri real(8), intent(inout) :: rfmt(*) ! local variables integer nro,iro,lm integer i1,j0,j1 ! automatic arrays real(8) fr(nr) if (m < 1) return nro=nr-nri iro=nri+1 do lm=1,lmmaxi i1=lmmaxi*(nri-1)+lm j0=i1+lmmaxi j1=lmmaxo*(nr-iro)+j0 fr(1:nri)=rfmt(lm:i1:lmmaxi) fr(iro:nr)=rfmt(j0:j1:lmmaxo) call fsmooth(m,nr,fr) rfmt(lm:i1:lmmaxi)=fr(1:nri) rfmt(j0:j1:lmmaxo)=fr(iro:nr) end do do lm=lmmaxi+1,lmmaxo j0=lmmaxi*nri+lm j1=lmmaxo*(nr-iro)+j0 fr(iro:nr)=rfmt(j0:j1:lmmaxo) call fsmooth(m,nro,fr(iro)) rfmt(j0:j1:lmmaxo)=fr(iro:nr) end do end subroutine elk-10.4.9/src/PaxHeaders/rbshtip.f900000644000000000000000000000013214762655565014245 xustar0030 mtime=1741380469.052011513 30 atime=1741380467.605003948 30 ctime=1741380469.052011513 elk-10.4.9/src/rbshtip.f900000644002504400250440000000147114762655565016772 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rbshtip(nr,nri,rfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(inout) :: rfmt(*) ! local variables integer nro,npi,npo,i ! automatic arrays real(8) f(max(lmmaxi*nri,lmmaxo*(nr-nri))) ! transform the inner part of the muffin-tin function in-place npi=lmmaxi*nri f(1:npi)=rfmt(1:npi) call dgemm('N','N',lmmaxi,nri,lmmaxi,1.d0,rbshti,lmmaxi,f,lmmaxi,0.d0,rfmt, & lmmaxi) ! transform the outer part of the muffin-tin function in-place nro=nr-nri npo=lmmaxo*nro i=npi+1 f(1:npo)=rfmt(i:npi+npo) call dgemm('N','N',lmmaxo,nro,lmmaxo,1.d0,rbshto,lmmaxo,f,lmmaxo,0.d0,rfmt(i), & lmmaxo) end subroutine elk-10.4.9/src/PaxHeaders/rfshtip.f900000644000000000000000000000013214762655565014251 xustar0030 mtime=1741380469.053011518 30 atime=1741380467.607003958 30 ctime=1741380469.053011518 elk-10.4.9/src/rfshtip.f900000644002504400250440000000147114762655565016776 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfshtip(nr,nri,rfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(inout) :: rfmt(*) ! local variables integer nro,npi,npo,i ! automatic arrays real(8) f(max(lmmaxi*nri,lmmaxo*(nr-nri))) ! transform the inner part of the muffin-tin function in-place npi=lmmaxi*nri f(1:npi)=rfmt(1:npi) call dgemm('N','N',lmmaxi,nri,lmmaxi,1.d0,rfshti,lmmaxi,f,lmmaxi,0.d0,rfmt, & lmmaxi) ! transform the outer part of the muffin-tin function in-place nro=nr-nri npo=lmmaxo*nro i=npi+1 f(1:npo)=rfmt(i:npi+npo) call dgemm('N','N',lmmaxo,nro,lmmaxo,1.d0,rfshto,lmmaxo,f,lmmaxo,0.d0,rfmt(i), & lmmaxo) end subroutine elk-10.4.9/src/PaxHeaders/zbshtip.f900000644000000000000000000000013214762655565014255 xustar0030 mtime=1741380469.054011523 30 atime=1741380467.610003974 30 ctime=1741380469.054011523 elk-10.4.9/src/zbshtip.f900000644002504400250440000000150014762655565016773 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zbshtip(nr,nri,zfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(8), intent(inout) :: zfmt(*) ! local variables integer nro,npi,npo,i ! automatic arrays complex(8) f(max(lmmaxi*nri,lmmaxo*(nr-nri))) ! transform the inner part of the muffin-tin function in-place npi=lmmaxi*nri f(1:npi)=zfmt(1:npi) call zgemm('N','N',lmmaxi,nri,lmmaxi,zone,zbshti,lmmaxi,f,lmmaxi,zzero,zfmt, & lmmaxi) ! transform the outer part of the muffin-tin function in-place nro=nr-nri npo=lmmaxo*nro i=npi+1 f(1:npo)=zfmt(i:npi+npo) call zgemm('N','N',lmmaxo,nro,lmmaxo,zone,zbshto,lmmaxo,f,lmmaxo,zzero,zfmt(i),& lmmaxo) end subroutine elk-10.4.9/src/PaxHeaders/zfshtip.f900000644000000000000000000000013214762655565014261 xustar0030 mtime=1741380469.056011534 30 atime=1741380467.612003985 30 ctime=1741380469.056011534 elk-10.4.9/src/zfshtip.f900000644002504400250440000000150014762655565016777 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zfshtip(nr,nri,zfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(8), intent(inout) :: zfmt(*) ! local variables integer nro,npi,npo,i ! automatic arrays complex(8) f(max(lmmaxi*nri,lmmaxo*(nr-nri))) ! transform the inner part of the muffin-tin function in-place npi=lmmaxi*nri f(1:npi)=zfmt(1:npi) call zgemm('N','N',lmmaxi,nri,lmmaxi,zone,zfshti,lmmaxi,f,lmmaxi,zzero,zfmt, & lmmaxi) ! transform the outer part of the muffin-tin function in-place nro=nr-nri npo=lmmaxo*nro i=npi+1 f(1:npo)=zfmt(i:npi+npo) call zgemm('N','N',lmmaxo,nro,lmmaxo,zone,zfshto,lmmaxo,f,lmmaxo,zzero,zfmt(i),& lmmaxo) end subroutine elk-10.4.9/src/PaxHeaders/cbsht.f900000644000000000000000000000012714762655565013701 xustar0030 mtime=1741380469.057011539 27 atime=1741380467.615004 30 ctime=1741380469.057011539 elk-10.4.9/src/cbsht.f900000644002504400250440000000130714762655565016420 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cbsht(nr,nri,cfmt1,cfmt2) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(4), intent(in) :: cfmt1(*) complex(4), intent(out) :: cfmt2(*) ! local variables integer i ! transform the inner part of the muffin-tin call cgemm('N','N',lmmaxi,nri,lmmaxi,cone,cbshti,lmmaxi,cfmt1,lmmaxi,czero, & cfmt2,lmmaxi) ! transform the outer part of the muffin-tin i=lmmaxi*nri+1 call cgemm('N','N',lmmaxo,nr-nri,lmmaxo,cone,cbshto,lmmaxo,cfmt1(i),lmmaxo, & czero,cfmt2(i),lmmaxo) end subroutine elk-10.4.9/src/PaxHeaders/cbshtip.f900000644000000000000000000000013214762655565014226 xustar0030 mtime=1741380469.058011544 30 atime=1741380467.617004011 30 ctime=1741380469.058011544 elk-10.4.9/src/cbshtip.f900000644002504400250440000000150014762655565016744 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cbshtip(nr,nri,cfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(4), intent(inout) :: cfmt(*) ! local variables integer nro,npi,npo,i ! automatic arrays complex(4) f(max(lmmaxi*nri,lmmaxo*(nr-nri))) ! transform the inner part of the muffin-tin function in-place npi=lmmaxi*nri f(1:npi)=cfmt(1:npi) call cgemm('N','N',lmmaxi,nri,lmmaxi,cone,cbshti,lmmaxi,f,lmmaxi,czero,cfmt, & lmmaxi) ! transform the outer part of the muffin-tin function in-place nro=nr-nri npo=lmmaxo*nro i=npi+1 f(1:npo)=cfmt(i:npi+npo) call cgemm('N','N',lmmaxo,nro,lmmaxo,cone,cbshto,lmmaxo,f,lmmaxo,czero,cfmt(i),& lmmaxo) end subroutine elk-10.4.9/src/PaxHeaders/cfshtip.f900000644000000000000000000000013214762655565014232 xustar0030 mtime=1741380469.059011549 30 atime=1741380467.620004027 30 ctime=1741380469.059011549 elk-10.4.9/src/cfshtip.f900000644002504400250440000000150014762655565016750 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cfshtip(nr,nri,cfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri complex(4), intent(inout) :: cfmt(*) ! local variables integer nro,npi,npo,i ! automatic arrays complex(4) f(max(lmmaxi*nri,lmmaxo*(nr-nri))) ! transform the inner part of the muffin-tin function in-place npi=lmmaxi*nri f(1:npi)=cfmt(1:npi) call cgemm('N','N',lmmaxi,nri,lmmaxi,cone,cfshti,lmmaxi,f,lmmaxi,czero,cfmt, & lmmaxi) ! transform the outer part of the muffin-tin function in-place nro=nr-nri npo=lmmaxo*nro i=npi+1 f(1:npo)=cfmt(i:npi+npo) call cgemm('N','N',lmmaxo,nro,lmmaxo,cone,cfshto,lmmaxo,f,lmmaxo,czero,cfmt(i),& lmmaxo) end subroutine elk-10.4.9/src/PaxHeaders/gencvclmt.f900000644000000000000000000000013014762655565014552 xustar0029 mtime=1741380469.06101156 30 atime=1741380467.622004037 29 ctime=1741380469.06101156 elk-10.4.9/src/gencvclmt.f900000644002504400250440000000167614762655565017310 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gencvclmt(nrmt_,nrmti_,ld1,rl,wpr,ld2,crhomt,cvclmt) use modmain use modomp implicit none ! arguments integer, intent(in) :: nrmt_(nspecies),nrmti_(nspecies) integer, intent(in) :: ld1 real(8), intent(in) :: rl(ld1,-lmaxo-1:lmaxo+2,nspecies) real(8), intent(in) :: wpr(4,ld1,nspecies) integer, intent(in) :: ld2 complex(4), intent(in) :: crhomt(ld2,natmtot) complex(4), intent(out) :: cvclmt(ld2,natmtot) ! local variables integer is,ias,nthd call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call cpotclmt(nrmt_(is),nrmti_(is),ld1,rl(:,:,is),wpr(:,:,is),crhomt(:,ias), & cvclmt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/zcfmtinp.f900000644000000000000000000000013214762655565014424 xustar0030 mtime=1741380469.062011565 30 atime=1741380467.625004053 30 ctime=1741380469.062011565 elk-10.4.9/src/zcfmtinp.f900000644002504400250440000000175514762655565017156 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure complex(8) function zcfmtinp(nr,nri,wr,cfmt1,cfmt2) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(4), intent(in) :: cfmt1(*),cfmt2(*) ! local variables integer n,ir,i ! compute the dot-products for each radial point and integrate over r zcfmtinp=0.d0 if (lmaxi == 1) then do ir=1,nri i=4*(ir-1)+1 zcfmtinp=zcfmtinp+wr(ir) & *(conjg(cfmt1(i))*cfmt2(i) & +conjg(cfmt1(i+1))*cfmt2(i+1) & +conjg(cfmt1(i+2))*cfmt2(i+2) & +conjg(cfmt1(i+3))*cfmt2(i+3)) end do i=4*nri+1 else i=1 n=lmmaxi-1 do ir=1,nri zcfmtinp=zcfmtinp+wr(ir)*dot_product(cfmt1(i:i+n),cfmt2(i:i+n)) i=i+lmmaxi end do end if n=lmmaxo-1 do ir=nri+1,nr zcfmtinp=zcfmtinp+wr(ir)*dot_product(cfmt1(i:i+n),cfmt2(i:i+n)) i=i+lmmaxo end do end function elk-10.4.9/src/PaxHeaders/zcfinp.f900000644000000000000000000000013014762655565014061 xustar0029 mtime=1741380469.06301157 30 atime=1741380467.627004063 29 ctime=1741380469.06301157 elk-10.4.9/src/zcfinp.f900000644002504400250440000000217314762655565016610 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. complex(8) function zcfinp(cfmt1,cfir1,cfmt2,cfir2) use modmain use modomp implicit none ! arguments complex(4), intent(in) :: cfmt1(npcmtmax,natmtot),cfir1(ngtc) complex(4), intent(in) :: cfmt2(npcmtmax,natmtot),cfir2(ngtc) ! local variables integer is,ias,nthd complex(4) c1 ! external functions complex(4), external :: cdotc complex(8), external :: zcfmtinp zcfinp=0.d0 call holdthd(natmtot+1,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(is,c1) REDUCTION(+:zcfinp) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) ! muffin-tin contribution zcfinp=zcfinp+zcfmtinp(nrcmt(is),nrcmti(is),wr2cmt(:,is),cfmt1(:,ias), & cfmt2(:,ias)) end do !$OMP END DO NOWAIT ! interstitial contribution (requires that one of the functions has been ! multiplied by the characteristic function) !$OMP SINGLE c1=cdotc(ngtc,cfir1,1,cfir2,1) zcfinp=zcfinp+c1*omega/dble(ngtc) !$OMP END SINGLE !$OMP END PARALLEL call freethd(nthd) end function elk-10.4.9/src/PaxHeaders/ggamt_3.f900000644000000000000000000000013214762655565014113 xustar0030 mtime=1741380469.064011576 30 atime=1741380467.630004079 30 ctime=1741380469.064011576 elk-10.4.9/src/ggamt_3.f900000644002504400250440000000204514762655565016636 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ggamt_3(is,np,vx,vc,wx,wc,dtdg2r) use modmain implicit none ! arguments integer, intent(in) :: is,np real(8), intent(inout) :: vx(np),vc(np) real(8), intent(in) :: wx(np),wc(np) real(8), intent(in) :: dtdg2r(np) ! local variables integer nr,nri ! automatic arrays real(8) rfmt1(np),rfmt2(np) nr=nrmt(is) nri=nrmti(is) !------------------! ! exchange ! !------------------! rfmt1(1:np)=wx(1:np)*dtdg2r(1:np) call rfsht(nr,nri,rfmt1,rfmt2) call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt2,rfmt1) call rbsht(nr,nri,rfmt1,rfmt2) vx(1:np)=vx(1:np)+rfmt2(1:np) !---------------------! ! correlation ! !---------------------! rfmt1(1:np)=wc(1:np)*dtdg2r(1:np) call rfsht(nr,nri,rfmt1,rfmt2) call grad2rfmt(nr,nri,rlmt(:,-1,is),rlmt(:,-2,is),wcrmt(:,:,is),rfmt2,rfmt1) call rbsht(nr,nri,rfmt1,rfmt2) vc(1:np)=vc(1:np)+rfmt2(1:np) end subroutine elk-10.4.9/src/PaxHeaders/ggair_3.f900000644000000000000000000000013214762655565014105 xustar0030 mtime=1741380469.065011581 30 atime=1741380467.633004094 30 ctime=1741380469.065011581 elk-10.4.9/src/ggair_3.f900000644002504400250440000000230614762655565016630 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ggair_3(vx,vc,wx,wc,dtdg2r) use modmain implicit none ! arguments real(8), intent(inout) :: vx(ngtot),vc(ngtot) real(8), intent(in) :: wx(ngtot),wc(ngtot) real(8), intent(in) :: dtdg2r(ngtot) ! local variables integer ig,ifg ! allocatable arrays real(8), allocatable :: rfir(:) complex(8), allocatable :: zfft(:) allocate(rfir(ngtot),zfft(nfgrz)) !------------------! ! exchange ! !------------------! ! Fourier transform (wx * dtdg2r) to G-space rfir(:)=wx(:)*dtdg2r(:) call rzfftifc(3,ngridg,-1,rfir,zfft) ! grad^2 (wx * dtdg2r) do ifg=1,nfgrz ig=igrzf(ifg) zfft(ifg)=-(gc(ig)**2)*zfft(ifg) end do call rzfftifc(3,ngridg,1,rfir,zfft) vx(:)=vx(:)+rfir(:) !---------------------! ! correlation ! !---------------------! ! Fourier transform (wc * dtdg2r) to G-space rfir(:)=wc(:)*dtdg2r(:) call rzfftifc(3,ngridg,-1,rfir,zfft) ! grad^2 (wc * dtdg2r) do ifg=1,nfgrz ig=igrzf(ifg) zfft(ifg)=-(gc(ig)**2)*zfft(ifg) end do call rzfftifc(3,ngridg,1,rfir,zfft) vc(:)=vc(:)+rfir(:) deallocate(rfir,zfft) end subroutine elk-10.4.9/src/PaxHeaders/piezoelt.f900000644000000000000000000000013214762655565014425 xustar0030 mtime=1741380469.067011591 30 atime=1741380467.635004105 30 ctime=1741380469.067011591 elk-10.4.9/src/piezoelt.f900000644002504400250440000000570014762655565017151 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine piezoelt use modmain use modmpi use modtest implicit none ! local variables integer i,j,k real(8) pvl1(3),pvl2(3) real(8) vc(3),t1 ! allocatable arrays real(8), allocatable :: pelt(:,:) ! initialise universal variables call init0 call init1 ! store original parameters avec0(:,:)=avec(:,:) ngridk0(:)=ngridk(:) maxscl0=maxscl tshift0=tshift ! no shifting of the atomic basis tshift=.false. ! generate the strain tensors call genstrain ! allocate the piezoelectric tensor array allocate(pelt(3,nstrain)) ! initial ground-state run should start from atomic densities trdstate=.false. ! run the ground-state calculation call gndstate ! subsequent calculations will read in the previous potential trdstate=.true. ! compute the first polarisation in lattice coordinates call polar(pvl1) ! loop over strain tensors do istrain=1,nstrain if (mp_mpi) then write(*,'("Info(piezoelt): working on strain tensor ",I1," of ",I1)') & istrain,nstrain end if ! restore the lattice vectors avec(:,:)=avec0(:,:) ! run the ground-state calculation call gndstate ! compute the second polarisation call polar(pvl2) do i=1,3 ! add multiple of 2*pi to bring polarisation vectors into coincidence pvl1(i)=modulo(pvl1(i),twopi) pvl2(i)=modulo(pvl2(i),twopi) t1=pvl1(i)-pvl2(i) if (abs(t1-twopi) < abs(t1)) then pvl1(i)=pvl1(i)-twopi else if (abs(t1+twopi) < abs(t1)) then pvl1(i)=pvl1(i)+twopi end if ! calculate the piezoelectric tensor element from difference in polarisations t1=wkptnr*occmax*dble(nkspolar*ngridk(i))/(twopi*deltast) pelt(i,istrain)=t1*(pvl2(i)-pvl1(i)) end do end do if (mp_mpi) then open(50,file='PIEZOELT.OUT',form='FORMATTED') write(50,*) write(50,'("Lattice vector matrix, A, changed by")') write(50,*) write(50,'(" A → A + eₖ dt,")') write(50,*) write(50,'("where dt is an infinitesimal scalar and eₖ is a strain tensor")') write(50,*) write(50,'("The piezoelectric tensor is the derivative of the polarisation & &vector dPᵢ/dt, i=1...3")') do k=1,nstrain write(50,*) write(50,'("Strain tensor k : ",I1)') k do j=1,3 write(50,'(3G18.10)') (strain(i,j,k),i=1,3) end do write(50,'("Piezoelectric tensor components dPᵢ/dt, i=1...3 :")') write(50,'(" lattice coordinates : ",3G18.10)') pelt(:,k) call r3mv(avec,pelt(:,k),vc) write(50,'(" Cartesian coordinates : ",3G18.10)') vc(:) write(50,'(" length : ",G18.10)') norm2(vc(:)) end do close(50) write(*,*) write(*,'("Info(piezoelt):")') write(*,'(" Piezoelectric tensor written to PIEZOELT.OUT")') end if ! write test file if required call writetest(380,'Piezoelectric tensor',nv=3*nstrain,tol=5.d-5,rva=pelt) deallocate(pelt) ! restore original parameters istrain=0 avec(:,:)=avec0(:,:) tshift=tshift0 end subroutine elk-10.4.9/src/PaxHeaders/magnetoelt.f900000644000000000000000000000013214762655565014731 xustar0030 mtime=1741380469.068011596 30 atime=1741380467.638004121 30 ctime=1741380469.068011596 elk-10.4.9/src/magnetoelt.f900000644002504400250440000000546014762655565017460 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine magnetoelt use modmain use modmpi use modtest implicit none ! local variables integer i,j real(8) pvl1(3),pvl2(3) real(8) felt(3,3),vc(3),t1 ! initialise universal variables call init0 call init1 ! store original parameters bfieldc00(:)=bfieldc0(:) ngridk0(:)=ngridk(:) maxscl0=maxscl spinpol0=spinpol reducebf0=reducebf tshift0=tshift ! no shifting of the atomic basis tshift=.false. ! enable spin-polarisation spinpol=.true. ! no magnetic field reduction reducebf=1.d0 ! initial ground-state run should start from atomic densities trdstate=.false. do j=1,3 if (mp_mpi) then write(*,'("Info(magnetoelt): working on magnetic field component ",I1)') j end if ! apply negative change to magnetic field bfieldc0(j)=bfieldc00(j)-0.5d0*deltabf ! run the ground-state calculation call gndstate ! subsequent calculations will read in the previous potential trdstate=.true. ! compute the first polarisation in lattice coordinates call polar(pvl1) ! apply positive change to magnetic field bfieldc0(j)=bfieldc00(j)+0.5d0*deltabf ! run the ground-state calculation again call gndstate ! compute the second polarisation call polar(pvl2) do i=1,3 ! add multiple of 2*pi to bring polarisation vectors into coincidence pvl1(i)=modulo(pvl1(i),twopi) pvl2(i)=modulo(pvl2(i),twopi) t1=pvl1(i)-pvl2(i) if (abs(t1-twopi) < abs(t1)) then pvl1(i)=pvl1(i)-twopi else if (abs(t1+twopi) < abs(t1)) then pvl1(i)=pvl1(i)+twopi end if ! calculate the magnetoelectric tensor element from difference in polarisations t1=wkptnr*occmax*dble(nkspolar*ngridk(i))/(twopi*deltabf) felt(i,j)=t1*(pvl2(i)-pvl1(i)) end do end do if (mp_mpi) then open(50,file='MAGNETOELT.OUT',form='FORMATTED') write(50,*) write(50,'("The magnetoelectric tensor is the change in the polarisation")') write(50,'("with respect to the external magnetic field dPᵢ/dBⱼ, for")') write(50,'("components i,j=1...3")') do j=1,3 write(50,*) write(50,'("Magnetic field Cartesian component j : ",I1)') j write(50,'("Magnetoelectric tensor components dPᵢ/dBⱼ, i=1...3")') write(50,'(" lattice coordinates : ",3G18.10)') felt(:,j) call r3mv(avec,felt(:,j),vc) write(50,'(" Cartesian coordinates : ",3G18.10)') vc(:) write(50,'(" length : ",G18.10)') norm2(vc(:)) end do close(50) write(*,*) write(*,'("Info(magnetoelt):")') write(*,'(" Magnetoelectric tensor writtent to MAGNETOELT.OUT")') end if ! write test file if required call writetest(390,'Magnetoelectric tensor',nv=9,tol=1.d-5,rva=felt) ! restore original parameters tshift=tshift0 spinpol=spinpol0 bfieldc0(:)=bfieldc00(:) reducebf=reducebf0 end subroutine elk-10.4.9/src/PaxHeaders/rmtavrg.f900000644000000000000000000000013214762655565014254 xustar0030 mtime=1741380469.069011602 30 atime=1741380467.641004136 30 ctime=1741380469.069011602 elk-10.4.9/src/rmtavrg.f900000644002504400250440000000100214762655565016767 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rmtavrg use modmain implicit none ! local variables integer is,i real(8) ra if (nspecies <= 1) return do i=1,mrmtav ! average muffin-tin radius ra=sum(rmt(1:nspecies))/nspecies ! replace each muffin-tin radius with half itself plus the average do is=1,nspecies rmt(is)=0.5d0*(rmt(is)+ra) end do end do end subroutine elk-10.4.9/src/PaxHeaders/zlrzncnv.f900000644000000000000000000000013214762655565014460 xustar0030 mtime=1741380469.070011607 30 atime=1741380467.643004147 30 ctime=1741380469.070011607 elk-10.4.9/src/zlrzncnv.f900000644002504400250440000000120414762655565017177 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zlrzncnv(n,s,w,zf) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: s,w(n) complex(8), intent(inout) :: zf(n) ! local variables integer i,j real(8), parameter :: pi=3.1415926535897932385d0 real(8) s2,wi,dw complex(8) zsm ! automatic arrays complex(8) zg(n) s2=s**2 do i=1,n wi=w(i) zsm=0.d0 do j=1,n-1 dw=w(j+1)-w(j) zsm=zsm+zf(j)*(dw/((w(j)-wi)**2+s2)) end do zg(i)=zsm*s/pi end do zf(1:n)=zg(1:n) end subroutine elk-10.4.9/src/PaxHeaders/efieldmt.f900000644000000000000000000000013214762655565014363 xustar0030 mtime=1741380469.071011612 30 atime=1741380467.646004162 30 ctime=1741380469.071011612 elk-10.4.9/src/efieldmt.f900000644002504400250440000000227614762655565017114 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: efieldmt ! !INTERFACE: subroutine efieldmt ! !USES: use modmain ! !DESCRIPTION: ! Calculates the average electric field in each muffin-tin from the gradient ! of the Coulomb potential: ! \begin{align*} ! {\bf E}_{\alpha}&\equiv-\frac{3}{4\pi R_{\alpha}^3} ! \int_{{\rm MT}_\alpha} \nabla V_{\rm C}({\bf r})\,d^3r \\ ! &=-\frac{3}{4\pi R_{\alpha}^3}\int_{{\rm MT}_\alpha} ! V_{\rm C}({\bf r})\,\hat{\bf n}\,dS, ! \end{align*} ! where $R_{\alpha}$ is the radius of muffin-tin $\alpha$. ! ! !REVISION HISTORY: ! Created April 2024 (JKD) !EOP !BOC implicit none ! local variables integer is,ias,nr,nri,i real(8) t1,t2 ! automatic arrays real(8) grfmt(npmtmax,3) ! external functions real(8), external :: rfmtint do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) call gradrfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),vclmt(:,ias),npmtmax,grfmt) t1=-(fourpi/3.d0)*rmt(is)**3 do i=1,3 t2=rfmtint(nr,nri,wr2mt(:,is),grfmt(:,i)) efcmt(i,ias)=t2/t1 end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/energyafsp.f900000644000000000000000000000013214762655565014735 xustar0030 mtime=1741380469.073011623 30 atime=1741380467.648004173 30 ctime=1741380469.073011623 elk-10.4.9/src/energyafsp.f900000644002504400250440000000544414762655565017466 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 Eddie Harris-Lee, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine energyafsp use modmain use modmpi use modomp implicit none ! local variables integer ik,ist,i,l,nthd real(8) ca,sm,v(3),wo,t1 complex(8) z11,z12,z21,z22 ! automatic arrays complex(8) y(nstsv) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:),pmat(:,:,:) ! external functions complex(8), external :: zdotc ! coupling constant of the external spin-polarised A-field (-1/c) ca=-1.d0/solsc sm=0.d0 ! begin parallel loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(apwalm,evecfv,evecsv) & !$OMP PRIVATE(wfmt,wfgk,pmat,y) & !$OMP PRIVATE(ist,wo,l,v,z11,z12,z21,z22,i,t1) & !$OMP REDUCTION(+:sm) & !$OMP NUM_THREADS(nthd) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfgk(ngkmax,nspinor,nstsv)) allocate(pmat(nstsv,nstsv,3)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! calculate the wavefunctions for all states call genwfsv(.true.,.true.,nstsv,[0],ngridg,igfft,ngk(:,ik),igkig(:,:,ik), & apwalm,evecfv,evecsv,wfmt,ngkmax,wfgk) ! calculate the momentum matrix elements in the second-variational basis call genpmatk(ngk(:,ik),igkig(:,:,ik),vgkc(:,:,:,ik),wfmt,wfgk,pmat) do ist=1,nstsv wo=occsv(ist,ik) if (abs(wo) < epsocc) cycle wo=wo*wkpt(ik) do l=1,3 v(1:3)=ca*afspc(l,1:3) z11=v(3) z12=cmplx(v(1),-v(2),8) z21=cmplx(v(1),v(2),8) z22=-v(3) ! convert momentum matrix elements to first-variational basis call zgemv('N',nstsv,nstsv,zone,evecsv,nstsv,pmat(:,ist,l),1,zzero,y,1) i=nstfv+1 t1=dble(z11*zdotc(nstfv,evecsv(1,ist),1,y,1)) & +dble(z12*zdotc(nstfv,evecsv(1,ist),1,y(i),1)) & +dble(z21*zdotc(nstfv,evecsv(i,ist),1,y,1)) & +dble(z22*zdotc(nstfv,evecsv(i,ist),1,y(i),1)) ! add to the expectation value sm=sm+wo*t1 end do end do end do !$OMP END DO deallocate(apwalm,evecfv,evecsv) deallocate(wfmt,wfgk,pmat) !$OMP END PARALLEL call freethd(nthd) ! add sums from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,sm,1,mpi_double_precision,mpi_sum,mpicom, & ierror) end if ! subtract from kinetic energy engykn=engykn-0.5d0*sm end subroutine elk-10.4.9/src/PaxHeaders/writebox.f900000644000000000000000000000013214762655565014435 xustar0030 mtime=1741380469.074011628 30 atime=1741380467.651004188 30 ctime=1741380469.074011628 elk-10.4.9/src/writebox.f900000644002504400250440000000075214762655565017163 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writebox(fnum,str) implicit none ! arguments integer, intent(in) :: fnum character(*), intent(in) :: str ! local variables integer l l=len(str)+2 write(fnum,*) write(fnum,'("┌",A,"┐")') repeat("─",l) write(fnum,'("│ ",A," │")') str write(fnum,'("└",A,"┘")') repeat("─",l) end subroutine elk-10.4.9/src/PaxHeaders/factn.f900000644000000000000000000000013214762655565013665 xustar0030 mtime=1741380469.075011633 30 atime=1741380467.654004204 30 ctime=1741380469.075011633 elk-10.4.9/src/factn.f900000644002504400250440000000230214762655565016404 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. elemental real(8) function factn(n) implicit none ! arguments integer, intent(in) :: n ! local variables integer i real(8), parameter :: f(24)=[ & 1.d0, 2.d0, & 6.d0, 24.d0, & 120.d0, 720.d0, & 5040.d0, 40320.d0, & 362880.d0, 3628800.d0, & 39916800.d0, 479001600.d0, & 6227020800.d0, 87178291200.d0, & 1307674368000.d0, 20922789888000.d0, & 355687428096000.d0, 6402373705728000.d0, & 121645100408832000.d0, 2432902008176640000.d0, & 51090942171709440000.d0, 1124000727777607680000.d0, & 25852016738884976640000.d0, 620448401733239439360000.d0] if (n <= 1) then factn=1.d0 else if (n <= 24) then factn=f(n) else factn=f(24) do i=25,n factn=factn*dble(i) end do end if end function elk-10.4.9/src/PaxHeaders/factr.f900000644000000000000000000000013214762655565013671 xustar0030 mtime=1741380469.077011643 30 atime=1741380467.656004215 30 ctime=1741380469.077011643 elk-10.4.9/src/factr.f900000644002504400250440000000175014762655565016416 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: factr ! !INTERFACE: real(8) function factr(n,d) ! !INPUT/OUTPUT PARAMETERS: ! n : numerator (in,integer) ! d : denominator (in,integer) ! !DESCRIPTION: ! Returns the ratio $n!/d!$ for $n,d\ge 0$. Performs no under- or overflow ! checking. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n,d ! local variables integer i ! external functions real(8), external :: factn if (d == 1) then factr=factn(n) return end if if ((n < 0).or.(d < 0)) then factr=0.d0 return end if if (n < d) then factr=dble(n+1) do i=n+2,d factr=factr*dble(i) end do factr=1.d0/factr else if (n == d) then factr=1.d0 else factr=dble(d+1) do i=d+2,n factr=factr*dble(i) end do end if end function !EOC elk-10.4.9/src/PaxHeaders/factn2.f900000644000000000000000000000013114762655565013746 xustar0030 mtime=1741380469.078011649 29 atime=1741380467.65900423 30 ctime=1741380469.078011649 elk-10.4.9/src/factn2.f900000644002504400250440000000317414762655565016476 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. elemental real(8) function factn2(n) implicit none ! arguments integer, intent(in) :: n ! local variables integer i real(8), parameter :: f(38)=[ & 1.d0, 2.d0, & 3.d0, 8.d0, & 15.d0, 48.d0, & 105.d0, 384.d0, & 945.d0, 3840.d0, & 10395.d0, 46080.d0, & 135135.d0, 645120.d0, & 2027025.d0, 10321920.d0, & 34459425.d0, 185794560.d0, & 654729075.d0, 3715891200.d0, & 13749310575.d0, 81749606400.d0, & 316234143225.d0, 1961990553600.d0, & 7905853580625.d0, 51011754393600.d0, & 213458046676875.d0, 1428329123020800.d0, & 6190283353629375.d0, 42849873690624000.d0, & 191898783962510625.d0, 1371195958099968000.d0, & 6332659870762850625.d0, 46620662575398912000.d0, & 221643095476699771875.d0, 1678343852714360832000.d0, & 8200794532637891559375.d0, 63777066403145711616000.d0] if (n <= 1) then factn2=1.d0 else if (n <= 38) then factn2=f(n) else factn2=dble(n) do i=1,n/2-1 factn2=factn2*dble(n-2*i) end do end if end function elk-10.4.9/src/PaxHeaders/r3mm.f900000644000000000000000000000013214762655565013450 xustar0030 mtime=1741380469.079011654 30 atime=1741380467.661004241 30 ctime=1741380469.079011654 elk-10.4.9/src/r3mm.f900000644002504400250440000000210414762655565016167 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mm ! !INTERFACE: pure subroutine r3mm(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,real(3,3)) ! b : input matrix 2 (in,real(3,3)) ! c : output matrix (out,real(3,3)) ! !DESCRIPTION: ! Multiplies two real $3\times 3$ matrices. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3),b(3,3) real(8), intent(out) :: c(3,3) c(1,1)=a(1,1)*b(1,1)+a(1,2)*b(2,1)+a(1,3)*b(3,1) c(2,1)=a(2,1)*b(1,1)+a(2,2)*b(2,1)+a(2,3)*b(3,1) c(3,1)=a(3,1)*b(1,1)+a(3,2)*b(2,1)+a(3,3)*b(3,1) c(1,2)=a(1,1)*b(1,2)+a(1,2)*b(2,2)+a(1,3)*b(3,2) c(2,2)=a(2,1)*b(1,2)+a(2,2)*b(2,2)+a(2,3)*b(3,2) c(3,2)=a(3,1)*b(1,2)+a(3,2)*b(2,2)+a(3,3)*b(3,2) c(1,3)=a(1,1)*b(1,3)+a(1,2)*b(2,3)+a(1,3)*b(3,3) c(2,3)=a(2,1)*b(1,3)+a(2,2)*b(2,3)+a(2,3)*b(3,3) c(3,3)=a(3,1)*b(1,3)+a(3,2)*b(2,3)+a(3,3)*b(3,3) end subroutine !EOC elk-10.4.9/src/PaxHeaders/r3mtm.f900000644000000000000000000000013214762655565013634 xustar0030 mtime=1741380469.080011659 30 atime=1741380467.664004256 30 ctime=1741380469.080011659 elk-10.4.9/src/r3mtm.f900000644002504400250440000000214414762655565016357 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mtm ! !INTERFACE: pure subroutine r3mtm(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,real(3,3)) ! b : input matrix 2 (in,real(3,3)) ! c : output matrix (out,real(3,3)) ! !DESCRIPTION: ! Multiplies the transpose of one real $3\times 3$ matrix with another. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3),b(3,3) real(8), intent(out) :: c(3,3) c(1,1)=a(1,1)*b(1,1)+a(2,1)*b(2,1)+a(3,1)*b(3,1) c(2,1)=a(1,2)*b(1,1)+a(2,2)*b(2,1)+a(3,2)*b(3,1) c(3,1)=a(1,3)*b(1,1)+a(2,3)*b(2,1)+a(3,3)*b(3,1) c(1,2)=a(1,1)*b(1,2)+a(2,1)*b(2,2)+a(3,1)*b(3,2) c(2,2)=a(1,2)*b(1,2)+a(2,2)*b(2,2)+a(3,2)*b(3,2) c(3,2)=a(1,3)*b(1,2)+a(2,3)*b(2,2)+a(3,3)*b(3,2) c(1,3)=a(1,1)*b(1,3)+a(2,1)*b(2,3)+a(3,1)*b(3,3) c(2,3)=a(1,2)*b(1,3)+a(2,2)*b(2,3)+a(3,2)*b(3,3) c(3,3)=a(1,3)*b(1,3)+a(2,3)*b(2,3)+a(3,3)*b(3,3) end subroutine !EOC elk-10.4.9/src/PaxHeaders/r3mmt.f900000644000000000000000000000013014762655565013632 xustar0029 mtime=1741380469.08201167 30 atime=1741380467.666004267 29 ctime=1741380469.08201167 elk-10.4.9/src/r3mmt.f900000644002504400250440000000212614762655565016357 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2003-2004 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: r3mmt ! !INTERFACE: pure subroutine r3mmt(a,b,c) ! !INPUT/OUTPUT PARAMETERS: ! a : input matrix 1 (in,real(3,3)) ! b : input matrix 2 (in,real(3,3)) ! c : output matrix (out,real(3,3)) ! !DESCRIPTION: ! Multiplies a real matrix with the transpose of another. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: a(3,3),b(3,3) real(8), intent(out) :: c(3,3) c(1,1)=a(1,1)*b(1,1)+a(1,2)*b(1,2)+a(1,3)*b(1,3) c(2,1)=a(2,1)*b(1,1)+a(2,2)*b(1,2)+a(2,3)*b(1,3) c(3,1)=a(3,1)*b(1,1)+a(3,2)*b(1,2)+a(3,3)*b(1,3) c(1,2)=a(1,1)*b(2,1)+a(1,2)*b(2,2)+a(1,3)*b(2,3) c(2,2)=a(2,1)*b(2,1)+a(2,2)*b(2,2)+a(2,3)*b(2,3) c(3,2)=a(3,1)*b(2,1)+a(3,2)*b(2,2)+a(3,3)*b(2,3) c(1,3)=a(1,1)*b(3,1)+a(1,2)*b(3,2)+a(1,3)*b(3,3) c(2,3)=a(2,1)*b(3,1)+a(2,2)*b(3,2)+a(2,3)*b(3,3) c(3,3)=a(3,1)*b(3,1)+a(3,2)*b(3,2)+a(3,3)*b(3,3) end subroutine !EOC elk-10.4.9/src/PaxHeaders/r3vo.f900000644000000000000000000000013214762655565013463 xustar0030 mtime=1741380469.083011675 30 atime=1741380467.669004283 30 ctime=1741380469.083011675 elk-10.4.9/src/r3vo.f900000644002504400250440000000077514762655565016216 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine r3vo(x,y) implicit none ! arguments real(8), intent(in) :: x(3) real(8), intent(inout) :: y(3) ! local variables real(8) t1,t2 ! orthogonalise the vector y with respect to x t1=x(1)**2+x(2)**2+x(3)**2 if (t1 < 1.d-8) return t2=(x(1)*y(1)+x(2)*y(2)+x(3)*y(3))/t1 y(1:3)=y(1:3)-t2*x(1:3) end subroutine elk-10.4.9/src/PaxHeaders/gcd.f900000644000000000000000000000013014762655565013325 xustar0029 mtime=1741380469.08401168 30 atime=1741380467.671004293 29 ctime=1741380469.08401168 elk-10.4.9/src/gcd.f900000644002504400250440000000155614762655565016060 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gcd ! !INTERFACE: integer function gcd(x,y) ! !INPUT/OUTPUT PARAMETERS: ! x : first integer (in,integer) ! y : second integer (in,integer) ! !DESCRIPTION: ! Computes the greatest common divisor (GCD) of two integers using Euclid's ! algorithm. ! ! !REVISION HISTORY: ! Created September 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: x,y ! local variables integer a,b,c if ((x < 1).or.(y < 1)) then write(*,*) write(*,'("Error(gcd): x < 1 or y < 1 : ",2I8)') x,y write(*,*) stop end if if (x >= y) then a=x b=y else a=y b=x end if 10 continue c=mod(a,b) a=b b=c if (c > 0) goto 10 gcd=a end function !EOC elk-10.4.9/src/PaxHeaders/rfint.f900000644000000000000000000000013214762655565013714 xustar0030 mtime=1741380469.085011685 30 atime=1741380467.674004309 30 ctime=1741380469.085011685 elk-10.4.9/src/rfint.f900000644002504400250440000000122314762655565016434 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function rfint(rfmt,rfir) use modmain implicit none ! arguments real(8), intent(in) :: rfmt(npmtmax,natmtot),rfir(ngtot) ! local variables integer is,ias ! external functions real(8), external :: rfmtint ! interstitial contribution rfint=dot_product(rfir(1:ngtot),cfunir(1:ngtot)) rfint=rfint*omega/dble(ngtot) ! muffin-tin contribution do ias=1,natmtot is=idxis(ias) rfint=rfint+rfmtint(nrmt(is),nrmti(is),wr2mt(:,is),rfmt(:,ias)) end do end function elk-10.4.9/src/PaxHeaders/sort.f900000644000000000000000000000013214762655565013561 xustar0030 mtime=1741380469.087011696 30 atime=1741380467.676004319 30 ctime=1741380469.087011696 elk-10.4.9/src/sort.f900000644002504400250440000000132214762655565016301 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: sort ! !INTERFACE: subroutine sort(n,x) ! !INPUT/OUTPUT PARAMETERS: ! n : number of elements in array (in,integer) ! x : real array (inout,real(n)) ! !DESCRIPTION: ! Sorts elements of a real array into ascending order. See {\tt sortidx}. ! ! !REVISION HISTORY: ! Created May 2024 (JKD) !EOP !BOC implicit none integer, intent(in) :: n real(8), intent(inout) :: x(n) ! automatic arrays integer idx(n) real(8) xt(n) xt(1:n)=x(1:n) ! find the permutation index call sortidx(n,xt,idx) x(1:n)=xt(idx(1:n)) end subroutine !EOC elk-10.4.9/src/PaxHeaders/gengvec.f900000644000000000000000000000013214762655565014210 xustar0030 mtime=1741380469.089011706 30 atime=1741380467.679004335 30 ctime=1741380469.089011706 elk-10.4.9/src/gengvec.f900000644002504400250440000000655614762655565016746 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2012 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: gengvec ! !INTERFACE: subroutine gengvec ! !USES: use modmain ! !DESCRIPTION: ! Generates a set of ${\bf G}$-vectors used for the Fourier transform of the ! charge density and potential and sorts them according to length. Integers ! corresponding to the vectors in lattice coordinates are stored, as well as ! the map from these integer coordinates to the ${\bf G}$-vector index. A map ! from the ${\bf G}$-vector set to the standard FFT array structure is also ! generated. Finally, the number of ${\bf G}$-vectors with magnitude less than ! {\tt gmaxvr} is determined. ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! local variables integer ig,jg,ifg,n1 integer i1,i2,i3,j1,j2,j3 real(8) v1(3),v2(3),v3(3) ! allocatable arrays integer, allocatable :: idx(:),ivg_(:,:) real(8), allocatable :: vgc_(:,:),gc_(:) if (gmaxvr < 0.d0) gmaxvr=abs(gmaxvr)*gkmax ! ensure |G| cut-off is at least twice |G+k| cut-off gmaxvr=max(gmaxvr,2.d0*gkmax+epslat) ! find the G-vector grid sizes call gridsize(avec,gmaxvr,npfftg,ngridg,ngtot,intgv) ! number of complex FFT elements for real-complex transforms n1=ngridg(1)/2+1 nfgrz=n1*ngridg(2)*ngridg(3) ! allocate local arrays allocate(idx(ngtot),ivg_(3,ngtot)) allocate(vgc_(3,ngtot),gc_(ngtot)) ig=0 do i1=intgv(1,1),intgv(2,1) v1(1:3)=dble(i1)*bvec(1:3,1) do i2=intgv(1,2),intgv(2,2) v2(1:3)=v1(1:3)+dble(i2)*bvec(1:3,2) do i3=intgv(1,3),intgv(2,3) v3(1:3)=v2(1:3)+dble(i3)*bvec(1:3,3) ig=ig+1 ! map from G-vector to (i1,i2,i3) index ivg_(1,ig)=i1; ivg_(2,ig)=i2; ivg_(3,ig)=i3 ! G-vector in Cartesian coordinates vgc_(1:3,ig)=v3(1:3) ! length of each G-vector gc_(ig)=sqrt(v3(1)**2+v3(2)**2+v3(3)**2) end do end do end do ! sort by vector length call sortidx(ngtot,gc_,idx) ! find the number of vectors with |G| <= gmaxvr ngvec=1 do ig=2,ngtot jg=idx(ig) if (gc_(jg) > gmaxvr) then ngvec=ig-1 exit end if end do ! allocate global G-vector arrays if (allocated(ivg)) deallocate(ivg) allocate(ivg(3,ngtot)) if (allocated(vgc)) deallocate(vgc) allocate(vgc(3,ngtot)) if (allocated(gc)) deallocate(gc) allocate(gc(ngtot)) ! reorder arrays and store globally do ig=1,ngtot jg=idx(ig) ivg(1:3,ig)=ivg_(1:3,jg) vgc(1:3,ig)=vgc_(1:3,jg) gc(ig)=gc_(jg) end do deallocate(idx,ivg_,vgc_,gc_) ! generate index arrays if (allocated(ivgig)) deallocate(ivgig) allocate(ivgig(intgv(1,1):intgv(2,1), & intgv(1,2):intgv(2,2), & intgv(1,3):intgv(2,3))) ivgig(:,:,:)=0 if (allocated(igfft)) deallocate(igfft) allocate(igfft(ngtot)) if (allocated(igrzf)) deallocate(igrzf) allocate(igrzf(nfgrz)) do ig=1,ngtot i1=ivg(1,ig); i2=ivg(2,ig); i3=ivg(3,ig) ! map from (i1,i2,i3) to G-vector index ivgig(i1,i2,i3)=ig ! Fourier transform index if (i1 >= 0) then j1=i1 else j1=ngridg(1)+i1 end if if (i2 >= 0) then j2=i2 else j2=ngridg(2)+i2 end if if (i3 >= 0) then j3=i3 else j3=ngridg(3)+i3 end if igfft(ig)=j3*ngridg(2)*ngridg(1)+j2*ngridg(1)+j1+1 ! map from real-complex FFT index to G-vector index if (i1 >= 0) then ifg=j3*ngridg(2)*n1+j2*n1+j1+1 igrzf(ifg)=ig end if end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/gengvc.f900000644000000000000000000000013214762655565014043 xustar0030 mtime=1741380469.090011711 30 atime=1741380467.681004346 30 ctime=1741380469.090011711 elk-10.4.9/src/gengvc.f900000644002504400250440000000270214762655565016566 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengvc use modmain implicit none ! local variables integer ig,ifg,n1 integer i1,i2,i3,j1,j2,j3 real(8) gk2 ! find optimal grid size for |G| < 2 gkmax gk2=2.d0*gkmax+epslat ngdgc(1:3)=int(gk2*sqrt(avec(1,1:3)**2+avec(2,1:3)**2+avec(3,1:3)**2)/pi)+1 ! find next largest FFT-compatible grid size call nfftifc(npfftgc,3,ngdgc) ! total number of points in coarse grid ngtc=ngdgc(1)*ngdgc(2)*ngdgc(3) ! find the number of vectors with |G| < 2 gkmax ngvc=ngvec do ig=2,ngvec if (gc(ig) > gk2) then ngvc=ig-1 exit end if end do ! number of complex FFT elements for real-complex transforms n1=ngdgc(1)/2+1 nfgrzc=n1*ngdgc(2)*ngdgc(3) ! Fourier transform index if (allocated(igfc)) deallocate(igfc) allocate(igfc(ngvc)) if (allocated(igrzfc)) deallocate(igrzfc) allocate(igrzfc(nfgrzc)) igrzfc(1:nfgrzc)=ngvc+1 do ig=1,ngvc i1=ivg(1,ig) i2=ivg(2,ig) i3=ivg(3,ig) if (i1 >= 0) then j1=i1 else j1=ngdgc(1)+i1 end if if (i2 >= 0) then j2=i2 else j2=ngdgc(2)+i2 end if if (i3 >= 0) then j3=i3 else j3=ngdgc(3)+i3 end if igfc(ig)=j3*ngdgc(2)*ngdgc(1)+j2*ngdgc(1)+j1+1 ! map from real-complex FFT index to G-vector index if (i1 >= 0) then ifg=j3*ngdgc(2)*n1+j2*n1+j1+1 igrzfc(ifg)=ig end if end do end subroutine elk-10.4.9/src/PaxHeaders/potnucl.f900000644000000000000000000000013214762655565014256 xustar0030 mtime=1741380469.092011722 30 atime=1741380467.684004361 30 ctime=1741380469.092011722 elk-10.4.9/src/potnucl.f900000644002504400250440000000307014762655565017000 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: potnucl ! !INTERFACE: subroutine potnucl(ptnucl,nr,r,zn,vn) ! !INPUT/OUTPUT PARAMETERS: ! ptnucl : .true. if the nucleus is a point charge (in,logical) ! nr : number of radial mesh points (in,integer) ! r : radial mesh (in,real(nr)) ! zn : nuclear charge (in,real) ! vn : potential on radial mesh (out,real(nr)) ! !DESCRIPTION: ! Computes the nuclear Coulomb potential on a radial mesh. The nuclear radius ! $R$ is estimated from the nuclear charge $Z$ and the potential is given by ! $$ V(r)=\begin{cases} ! Z(3R^2-r^2)/2R^3 & r= 1 if (lmaxi == 1) then do irc=1,nrci zsm=zsm+wr2cmt(irc,is)*(jlgpr(j,is,ig)*y0*cfmt(i,ias) & +jlgpr(j+1,is,ig)*(cfmt(i+1,ias)*ylm(2)+cfmt(i+2,ias)*ylm(3) & +cfmt(i+3,ias)*ylm(4))) i=i+4 j=j+2 end do else do irc=1,nrci z1=jlgpr(j,is,ig)*y0*cfmt(i,ias)+jlgpr(j+1,is,ig) & *(cfmt(i+1,ias)*ylm(2)+cfmt(i+2,ias)*ylm(3)+cfmt(i+3,ias)*ylm(4)) i=i+4 j=j+2 do l=2,lmaxi n=2*l lm=l**2+1 z1=z1+jlgpr(j,is,ig)*sum(cfmt(i:i+n,ias)*ylm(lm:lm+n)) i=i+n+1 j=j+1 end do zsm=zsm+wr2cmt(irc,is)*z1 end do end if ! outer part of muffin-tin, note that lmaxo >= 3 do irc=irco,nrc z1=jlgpr(j,is,ig)*y0*cfmt(i,ias)+jlgpr(j+1,is,ig) & *(cfmt(i+1,ias)*ylm(2)+cfmt(i+2,ias)*ylm(3)+cfmt(i+3,ias)*ylm(4)) & +jlgpr(j+2,is,ig) & *(cfmt(i+4,ias)*ylm(5)+cfmt(i+5,ias)*ylm(6)+cfmt(i+6,ias)*ylm(7) & +cfmt(i+7,ias)*ylm(8)+cfmt(i+8,ias)*ylm(9)) & +jlgpr(j+3,is,ig) & *(cfmt(i+9,ias)*ylm(10)+cfmt(i+10,ias)*ylm(11)+cfmt(i+11,ias)*ylm(12) & +cfmt(i+12,ias)*ylm(13)+cfmt(i+13,ias)*ylm(14)+cfmt(i+14,ias)*ylm(15)& +cfmt(i+15,ias)*ylm(16)) i=i+16 j=j+4 do l=4,lmaxo n=2*l lm=l**2+1 z1=z1+jlgpr(j,is,ig)*sum(cfmt(i:i+n,ias)*ylm(lm:lm+n)) i=i+n+1 j=j+1 end do zsm=zsm+wr2cmt(irc,is)*z1 end do zfgp(ig)=zfgp(ig)+conjg(sfacgp(ig,ias))*zsm end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/gencfun.f900000644000000000000000000000013214762655565014217 xustar0030 mtime=1741380469.095011738 30 atime=1741380467.689004387 30 ctime=1741380469.095011738 elk-10.4.9/src/gencfun.f900000644002504400250440000000405514762655565016745 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gencfun ! !INTERFACE: subroutine gencfun ! !USES: use modmain ! !DESCRIPTION: ! Generates the smooth characteristic function. This is the function which is ! 0 within the muffin-tins and 1 in the intersitial region and is constructed ! from radial step function form factors with $GG_{\rm max}\end{cases} $$ ! where $R_i$ is the muffin-tin radius of the $i$th species and $\Omega$ is ! the unit cell volume. Therefore the characteristic function in $G$-space is ! $$ \tilde{\Theta}({\bf G})=\delta_{G,0}-\sum_{ij}\exp(-i{\bf G}\cdot ! {\bf r}_{ij})\tilde{\Theta}_i(G), $$ ! where ${\bf r}_{ij}$ is the position of the $j$th atom of the $i$th species. ! ! !REVISION HISTORY: ! Created January 2003 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ig,ifg real(8) v1,v2,v3,t1 ! allocatable arrays complex(8), allocatable :: zfft(:) allocate(zfft(ngtot)) zfft(1)=1.d0 zfft(2:ngtot)=0.d0 ! begin loop over species do is=1,nspecies ! loop over atoms do ia=1,natoms(is) v1=atposc(1,ia,is); v2=atposc(2,ia,is); v3=atposc(3,ia,is) do ig=1,ngtot ifg=igfft(ig) ! structure factor t1=vgc(1,ig)*v1+vgc(2,ig)*v2+vgc(3,ig)*v3 ! add to characteristic function in G-space zfft(ifg)=zfft(ifg)-ffacg(ig,is)*cmplx(cos(t1),-sin(t1),8) end do end do end do ! allocate global characteristic function arrays if (allocated(cfunig)) deallocate(cfunig) allocate(cfunig(ngvec)) if (allocated(cfunir)) deallocate(cfunir) allocate(cfunir(ngtot)) cfunig(1:ngvec)=zfft(igfft(1:ngvec)) ! Fourier transform to real-space call zfftifc(3,ngridg,1,zfft) cfunir(1:ngtot)=dble(zfft(1:ngtot)) deallocate(zfft) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rfirftoc.f900000644000000000000000000000013214762655565014410 xustar0030 mtime=1741380469.096011743 30 atime=1741380467.692004403 30 ctime=1741380469.096011743 elk-10.4.9/src/rfirftoc.f900000644002504400250440000000161714762655565017137 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfirftoc(rfir,rfirc) use modmain implicit none ! arguments real(8), intent(in) :: rfir(ngtot) real(8), intent(out) :: rfirc(ngtc) ! local variables integer ig,ifg ! allocatable arrays complex(8), allocatable :: zfft(:) ! automatic arrays complex(8) zfftc(nfgrzc) allocate(zfft(ngtot)) ! multiply by characteristic function and Fourier transform on fine grid zfft(1:ngtot)=rfir(1:ngtot)*cfunir(1:ngtot) call zfftifc(3,ngridg,-1,zfft) ! Fourier transform to coarse real-space grid do ifg=1,nfgrzc ig=igrzfc(ifg) if (ig <= ngvc) then zfftc(ifg)=zfft(igfft(ig)) else zfftc(ifg)=0.d0 end if end do deallocate(zfft) ! Fourier transform to real-space coarse grid call rzfftifc(3,ngdgc,1,rfirc,zfftc) end subroutine elk-10.4.9/src/PaxHeaders/zfirftoc.f900000644000000000000000000000013214762655565014420 xustar0030 mtime=1741380469.098011753 30 atime=1741380467.694004413 30 ctime=1741380469.098011753 elk-10.4.9/src/zfirftoc.f900000644002504400250440000000136714762655565017151 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zfirftoc(zfir,zfirc) use modmain implicit none ! arguments complex(8), intent(in) :: zfir(ngtot) complex(8), intent(out) :: zfirc(ngtc) ! local variables integer ig ! allocatable arrays complex(8), allocatable :: zfft(:) allocate(zfft(ngtot)) ! multiply by characteristic function and Fourier transform on fine grid zfft(1:ngtot)=zfir(1:ngtot)*cfunir(1:ngtot) call zfftifc(3,ngridg,-1,zfft) zfirc(1:ngtc)=0.d0 do ig=1,ngvc zfirc(igfc(ig))=zfft(igfft(ig)) end do ! Fourier transform to real-space coarse grid call zfftifc(3,ngdgc,1,zfirc) deallocate(zfft) end subroutine elk-10.4.9/src/PaxHeaders/zfirctof.f900000644000000000000000000000013214762655565014420 xustar0030 mtime=1741380469.099011758 30 atime=1741380467.697004429 30 ctime=1741380469.099011758 elk-10.4.9/src/zfirctof.f900000644002504400250440000000125214762655565017142 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zfirctof(zfirc,zfir) use modmain implicit none ! arguments complex(8), intent(in) :: zfirc(ngtc) complex(8), intent(out) :: zfir(ngtot) ! local variables integer ig ! automatic arrays complex(8) zfftc(ngtc) ! Fourier transform function on coarse grid to G-space zfftc(1:ngtc)=zfirc(1:ngtc) call zfftifc(3,ngdgc,-1,zfftc) ! Fourier transform to fine real-space grid do ig=1,ngvc zfir(igfft(ig))=zfftc(igfc(ig)) end do zfir(igfft(ngvc+1:ngtot))=0.d0 call zfftifc(3,ngridg,1,zfir) end subroutine elk-10.4.9/src/PaxHeaders/hflocal.f900000644000000000000000000000013214762655565014202 xustar0030 mtime=1741380469.100011764 30 atime=1741380467.699004439 30 ctime=1741380469.100011764 elk-10.4.9/src/hflocal.f900000644002504400250440000000355414762655565016733 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hflocal(vmt,vir,bmt,bir) use modmain implicit none ! arguments real(8), intent(out) :: vmt(npcmtmax,natmtot),vir(ngtc) real(8), intent(out) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag) ! local variables integer idm,is,ias integer np,nrc,nrci ! automatic arrays real(8) rfmt(npmtmax),rfir(ngtot) ! compute the Coulomb potential call potcoul ! convert to spherical coordinates and store in output arrays if (hybrid) then ! hybrid functional case call potxc(.true.,xctype,rhomt,rhoir,magmt,magir,taumt,tauir,exmt,exir,ecmt, & ecir,vxcmt,vxcir,bxcmt,bxcir,wxcmt,wxcir) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) np=npmt(is) rfmt(1:np)=vclmt(1:np,ias)+vxcmt(1:np,ias) call rfmtftoc(nrc,nrci,rfmt,vmt(:,ias)) call rbshtip(nrc,nrci,vmt(:,ias)) call rfcmtwr(nrc,nrci,wr2cmt(:,is),vmt(:,ias)) end do rfir(1:ngtot)=vclir(1:ngtot)+vxcir(1:ngtot) ! multiply interstitial potential by characteristic function and convert to ! coarse grid call rfirftoc(rfir,vir) if (spinpol) then do idm=1,ndmag do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) call rfmtftoc(nrc,nrci,bxcmt(:,ias,idm),bmt(:,ias,idm)) call rbshtip(nrc,nrci,bmt(:,ias,idm)) call rfcmtwr(nrc,nrci,wr2cmt(:,is),bmt(:,ias,idm)) end do call rfirftoc(bxcir(:,idm),bir(:,idm)) end do end if else ! normal Hartree-Fock case do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) call rfmtftoc(nrc,nrci,vclmt(:,ias),vmt(:,ias)) call rbshtip(nrc,nrci,vmt(:,ias)) call rfcmtwr(nrc,nrci,wr2cmt(:,is),vmt(:,ias)) end do call rfirftoc(vclir,vir) end if end subroutine elk-10.4.9/src/PaxHeaders/match.f900000644000000000000000000000013214762655565013666 xustar0030 mtime=1741380469.102011774 30 atime=1741380467.702004455 30 ctime=1741380469.102011774 elk-10.4.9/src/match.f900000644002504400250440000001167214762655565016417 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2006 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: match ! !INTERFACE: subroutine match(ngp,vgpc,gpc,sfacgp,apwalm) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ngp : number of G+p-vectors (in,integer) ! vgpc : G+p-vectors in Cartesian coordinates (in,real(3,ngkmax)) ! gpc : length of G+p-vectors (in,real(ngkmax)) ! sfacgp : structure factors of G+p-vectors (in,complex(ngkmax,natmtot)) ! apwalm : APW matching coefficients ! (out,complex(ngkmax,apwordmax,lmmaxapw,natmtot)) ! !DESCRIPTION: ! Computes the $({\bf G+p})$-dependent matching coefficients for the APW basis ! functions. Inside muffin-tin $\alpha$, the APW functions are given by ! $$ \phi^{\alpha}_{\bf G+p}({\bf r})=\sum_{l=0}^{l_{\rm max}} ! \sum_{m=-l}^{l}\sum_{j=1}^{M^{\alpha}_l}A^{\alpha}_{jlm}({\bf G+p}) ! u^{\alpha}_{jl}(r)Y_{lm}(\hat{{\bf r}}), $$ ! where $A^{\alpha}_{jlm}({\bf G+p})$ is the matching coefficient, ! $M^{\alpha}_l$ is the order of the APW and $u^{\alpha}_{jl}$ is the radial ! function. In the interstitial region, an APW function is a plane wave, ! $\exp(i({\bf G+p})\cdot{\bf r})/\sqrt{\Omega}$, where $\Omega$ is the unit ! cell volume. Ensuring continuity up to the $(M^{\alpha}_l-1)$th derivative ! across the muffin-tin boundary therefore requires that the matching ! coefficients satisfy ! $$ \sum_{j=1}^{M^{\alpha}_l}D_{ij}A^{\alpha}_{jlm}({\bf G+p})=b_i\;, $$ ! where ! $$ D_{ij}=\left.\frac{d^{i-1}u^{\alpha}_{jl}(r)}{dr^{i-1}} ! \right|_{r=R_{\alpha}} $$ ! and ! $$ b_i=\frac{4\pi i^l}{\sqrt{\Omega}}|{\bf G+p}|^{i-1}j^{(i-1)}_l ! (|{\bf G+p}|R_{\alpha})\exp(i({\bf G+p})\cdot{\bf r}_{\alpha})Y^*_{lm} ! (\widehat{{\bf G+p}}), $$ ! with ${\bf r}_{\alpha}$ the atomic position and $R_{\alpha}$ the muffin-tin ! radius. See routine {\tt wfmtfv}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) ! Fixed documentation, June 2006 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: ngp real(8), intent(in) :: vgpc(3,ngkmax),gpc(ngkmax) complex(8), intent(in) :: sfacgp(ngkmax,natmtot) complex(8), intent(out) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) ! local variables integer is,ia,ias,omax,ord integer l,lma,lmb,lm,io,jo integer nr,ir,igp,i,info real(8) t0,t1,t2 complex(8) z1,z2 ! automatic arrays integer ipiv(apwordmax) real(8) djl(0:lmaxapw,apwordmax,ngp) complex(8) a(apwordmax,apwordmax),ylmgp(lmmaxapw,ngp) complex(8) b(apwordmax,ngp*(2*lmaxapw+1)) ! external functions real(8), external :: polynm ! compute the spherical harmonics of the G+p-vectors do igp=1,ngp call genylmv(.true.,lmaxapw,vgpc(:,igp),ylmgp(:,igp)) end do t0=1.d0/sqrt(omega) ! loop over species do is=1,nspecies nr=nrmt(is) ! maximum APW order for this species omax=maxval(apword(1:lmaxapw,is)) ! special case of omax=1 if (omax == 1) then do igp=1,ngp t1=gpc(igp)*rmt(is) call sbessel(lmaxapw,t1,djl(:,1,igp)) end do do ia=1,natoms(is) ias=idxas(ia,is) do l=0,lmaxapw t1=t0/apwfr(nr,1,1,l,ias) lma=l**2+1; lmb=lma+2*l do igp=1,ngp z1=t1*djl(l,1,igp)*sfacgp(igp,ias) apwalm(igp,1,lma:lmb,ias)=z1*conjg(ylmgp(lma:lmb,igp)) end do end do end do cycle end if ! starting point on radial mesh for fitting polynomial of order npapw ir=nr-npapw+1 ! evaluate the spherical Bessel function derivatives for all G+p-vectors do igp=1,ngp t1=gpc(igp)*rmt(is) call sbessel(lmaxapw,t1,djl(:,1,igp)) t2=1.d0 do io=2,omax call sbesseldm(io-1,lmaxapw,t1,djl(:,io,igp)) t2=t2*gpc(igp) djl(0:lmaxapw,io,igp)=t2*djl(0:lmaxapw,io,igp) end do end do ! loop over atoms do ia=1,natoms(is) ias=idxas(ia,is) ! begin loop over l do l=0,lmaxapw ord=apword(l,is) ! set up matrix of derivatives do jo=1,ord a(1,jo)=apwfr(nr,1,jo,l,ias) do io=2,ord a(io,jo)=polynm(io-1,npapw,rsp(ir,is),apwfr(ir,1,jo,l,ias),rmt(is)) end do end do lma=l**2+1; lmb=lma+2*l ! set up target vectors i=0 do igp=1,ngp z1=t0*sfacgp(igp,ias) do lm=lma,lmb i=i+1 z2=z1*conjg(ylmgp(lm,igp)) b(1:ord,i)=djl(l,1:ord,igp)*z2 end do end do ! solve the general complex linear systems call zgesv(ord,i,a,apwordmax,ipiv,b,apwordmax,info) if (info /= 0) then write(*,*) write(*,'("Error(match): could not find APW matching coefficients")') write(*,'(" for species ",I4," and atom ",I4)') is,ia write(*,'(" ZGESV returned INFO = ",I8)') info write(*,*) stop end if i=0 do igp=1,ngp do lm=lma,lmb i=i+1 apwalm(igp,1:ord,lm,ias)=b(1:ord,i) end do end do ! end loop over l end do ! end loops over atoms and species end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/genvsig.f900000644000000000000000000000013214762655565014234 xustar0030 mtime=1741380469.103011779 30 atime=1741380467.705004471 30 ctime=1741380469.103011779 elk-10.4.9/src/genvsig.f900000644002504400250440000000130114762655565016751 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genvsig ! !INTERFACE: subroutine genvsig ! !USES: use modmain ! !DESCRIPTION: ! Generates the Fourier transform of the Kohn-Sham effective potential in the ! interstitial region. ! ! !REVISION HISTORY: ! Created January 2004 (JKD) !EOP !BOC implicit none ! automatic arrays complex(8) zfft(ngtc) ! Fourier transform intersitial potential to G-space zfft(1:ngtc)=vsirc(1:ngtc) call zfftifc(3,ngdgc,-1,zfft) ! store in global array vsig(1:ngvc)=zfft(igfc(1:ngvc)) end subroutine !EOC elk-10.4.9/src/PaxHeaders/zpotcoul.f900000644000000000000000000000013014762655565014447 xustar0029 mtime=1741380469.10501179 30 atime=1741380467.707004481 29 ctime=1741380469.10501179 elk-10.4.9/src/zpotcoul.f900000644002504400250440000002324214762655565017176 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: zpotcoul ! !INTERFACE: subroutine zpotcoul(iash,nrmt_,nrmti_,npmt_,ld1,rl,ngridg_,igfft_,ngp,gpc, & gclgp,ld2,jlgprmt,ylmgp,sfacgp,zrhoir,ld3,zvclmt,zvclir) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! iash : if iash > 0 then the homogeous solution is stored for this ! muffin-tin in the array zvclmt(:,natmtot+1) (in,integer) ! nrmt_ : number of radial points for each species (in,integer(nspecies)) ! nrmti_ : number of radial points on inner part (in,integer(nspecies)) ! npmt_ : total number of points in muffin-tins (in,integer(nspecies)) ! ld1 : leading dimension (in,integer) ! rl : r^l on radial mesh for each species ! (in,real(ld1,-lmaxo-1:lmaxo+2,nspecies)) ! ngridg_ : G-vector grid sizes (in,integer(3)) ! igfft_ : map from G-vector index to FFT array (in,integer(*)) ! ngp : number of G+p-vectors (in,integer) ! gpc : G+p-vector lengths (in,real(ngp)) ! gclgp : Coulomb Green's function in G+p-space (in,real(ngp)) ! ld2 : leading dimension (in,integer) ! jlgprmt : spherical Bessel functions for evergy G+p-vector and muffin-tin ! radius (in,real(0:lnpsd,ld2,nspecies)) ! ylmgp : spherical harmonics of the G+p-vectors (in,complex(lmmaxo,ngp)) ! sfacgp : structure factors of the G+p-vectors (in,complex(ld2,natmtot)) ! zrhoir : interstitial charge density (in,complex(*)) ! ld3 : leading dimension (in,integer) ! zvclmt : muffin-tin Coulomb potential, with the contribution from the ! isolated muffin-tin density precalculated and passed in ! (inout,complex(ld3,*)) ! zvclir : interstitial Coulomb potential (out,complex(*)) ! !DESCRIPTION: ! Calculates the Coulomb potential of a complex charge density by solving ! Poisson's equation using the method of M. Weinert, {\it J. Math. Phys.} ! {\bf 22}, 2433 (1981). First, the multipole moments of the muffin-tin charge ! are determined for the $j$th atom of the $i$th species by ! $$ q_{ij;lm}^{\rm MT}=\int_0^{R_i}r^{l+2}\rho_{ij;lm}(r)dr+z_{ij}Y_{00} ! \,\delta_{l,0}\;, $$ ! where $R_i$ is the muffin-tin radius and $z_{ij}$ is a point charge located ! at the atom center (usually the nuclear charge, which should be taken as ! {\bf negative}). Next, the multipole moments of the continuation of the ! interstitial density, $\rho^{\rm I}$, into the muffin-tin are found with ! $$ q_{ij;lm}^{\rm I}=4\pi i^l R_i^{l+3}\sum_{\bf G}\frac{j_{l+1}(GR_i)} ! {GR_i}\rho^{\rm I}({\bf G})\exp(i{\bf G}\cdot{\bf r}_{ij})Y_{lm}^* ! (\hat{\bf G}), $$ ! remembering that ! $$ \lim_{x\rightarrow 0}\frac{j_{l+n}(x)}{x^n}=\frac{1}{(2n+1)!!} ! \delta_{l,0} $$ ! should be used for the case ${\bf G}=0$. A pseudocharge is now constructed ! which is equal to the real density in the interstitial region and whose ! multipoles are the difference between the real and interstitial muffin-tin ! multipoles. This pseudocharge density is smooth in the sense that it can be ! expanded in terms of the finite set of ${\bf G}$-vectors. In each muffin-tin ! the pseudocharge has the form ! $$ \rho_{ij}^{\rm P}({\bf r})=\rho^{\rm I}({\bf r}-{\bf r}_{ij})+\sum_{lm} ! \rho_{ij;lm}^{\rm P}\frac{1}{R_i^{l+3}}\left(\frac{r}{R_i}\right)^l\left(1- ! \frac{r^2}{R_i^2}\right)^{N_i}Y_{lm}(\hat{\bf r}) $$ ! where ! $$ \rho_{ij;lm}^{\rm P}=\frac{(2l+2N_i+3)!!}{2^N_iN_i!(2l+1)!!}\left( ! q_{ij;lm}^{\rm MT}-q_{ij;lm}^{\rm I}\right) $$ ! and $N_i\approx\frac{1}{4}R_iG_{\rm max}$ is generally a good choice. ! The pseudocharge in reciprocal space is given by ! $$ \rho^{\rm P}({\bf G})=\rho^{\rm I}({\bf G})+\sum_{ij;lm}2^{N_i}N_i! ! \frac{4\pi(-i)^l}{\Omega R_i^l}\frac{j_{l+N_i+1}(GR_i)}{(GR_i)^{N_i+1}} ! \rho_{ij;lm}^{\rm P}\exp(-i{\bf G}\cdot{\bf r}_{ij})Y_{lm}(\hat{\bf G}) $$ ! which may be used for solving Poisson's equation directly ! $$ V^{\rm P}({\bf G})=\begin{cases} ! 4\pi\frac{\rho^{\rm P}({\bf G})}{G^2} & G>0 \\ ! 0 & G=0 \end{cases} $$ ! The usual Green's function approach is then employed to determine the ! potential in the muffin-tin sphere due to charge in the sphere. In other ! words ! $$ V_{ij;lm}^{\rm MT}(r)=\frac{4\pi}{2l+1}\left(\frac{1}{r^{l+1}}\int_0^r ! \rho_{ij;lm}^{\rm MT}(r'){r'}^{l+2}dr'+r^l\int_r^{R_i}\frac{ ! \rho_{ij;lm}^{\rm MT}(r')}{{r'}^{l-1}}dr'\right)+\frac{1}{Y_{00}} ! \frac{z_{ij}}{r}\delta_{l,0} $$ ! where the last term is the monopole arising from the point charge. All that ! remains is to add the homogenous solution of Poisson's equation, ! $$ V_{ij}^{\rm H}({\bf r})=\sum_{lm}V_{ij;lm}^{\rm H}\left(\frac{r} ! {R_i}\right)^lY_{lm}(\hat{\bf r}), $$ ! to the muffin-tin potential so that it is continuous at the muffin-tin ! boundary. Therefore the coefficients, $\rho_{ij;lm}^{\rm H}$, are given by ! $$ V_{ij;lm}^{\rm H}=4\pi i^l\sum_{\bf G}j_{l}(Gr)V^{\rm P}({\bf G}) ! \exp(i{\bf G}\cdot{\bf r}_{ij})Y_{lm}^*(\hat{\bf G})-V_{ij;lm}^{\rm MT} ! (R_i). $$ ! Finally note that the ${\bf G}$-vectors passed to the routine can represent ! vectors with a non-zero offset, ${\bf G}+{\bf p}$ say, which is required for ! calculating Coulomb matrix elements. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: iash,nrmt_(nspecies),nrmti_(nspecies),npmt_(nspecies) integer, intent(in) :: ld1 real(8), intent(in) :: rl(ld1,-lmaxo-1:lmaxo+2,nspecies) integer, intent(in) :: ngridg_(3),igfft_(*),ngp real(8), intent(in) :: gpc(ngp),gclgp(ngp) integer, intent(in) :: ld2 real(8), intent(in) :: jlgprmt(0:lnpsd,ld2,nspecies) complex(8), intent(in) :: ylmgp(lmmaxo,ngp),sfacgp(ld2,natmtot) complex(8), intent(in) :: zrhoir(*) integer, intent(in) :: ld3 complex(8), intent(inout) :: zvclmt(ld3,*) complex(8), intent(out) :: zvclir(*) ! local variables integer is,ia,ias integer nr,nri,iro,np integer l,lm,lma,lmb integer ig,jg,i,i0,i1 real(8) t1,t2,t3 complex(8) z1,z2 ! automatic arrays real(8) rl2(0:lmaxo) complex(8) qlm(lmmaxo,natmtot),zlm(lmmaxo),zhmt(ld3) ! external functions real(8), external :: factn2 ! compute the multipole moments from the muffin-tin potentials t1=1.d0/fourpi do ias=1,natmtot is=idxis(ias) i=npmt_(is)-lmmaxo do l=0,lmaxo t2=t1*dble(2*l+1)*rmtl(l+1,is) lma=l**2+1; lmb=lma+2*l qlm(lma:lmb,ias)=t2*zvclmt(i+lma:i+lmb,ias) end do end do ! Fourier transform density to G-space and store in zvclir call zcopy(ngridg_(1)*ngridg_(2)*ngridg_(3),zrhoir,1,zvclir,1) call zfftifc(3,ngridg_,-1,zvclir) ! subtract the multipole moments of the interstitial charge density do is=1,nspecies rl2(0:lmaxo)=rmtl(2:lmaxo+2,is) t1=rl2(0)*fourpi*y00 do ia=1,natoms(is) ias=idxas(ia,is) zlm(1:lmmaxo)=0.d0 do ig=1,ngp jg=igfft_(ig) if (gpc(ig) > epslat) then z1=zvclir(jg)*sfacgp(ig,ias)/gpc(ig) zlm(1)=zlm(1)+jlgprmt(1,ig,is)*t1*z1 do l=1,lmaxo lma=l**2+1; lmb=lma+2*l z2=jlgprmt(l+1,ig,is)*rl2(l)*z1 zlm(lma:lmb)=zlm(lma:lmb)+z2*conjg(ylmgp(lma:lmb,ig)) end do else t2=(fourpi/3.d0)*rmtl(3,is)*y00 zlm(1)=zlm(1)+t2*zvclir(jg) end if end do qlm(1:lmmaxo,ias)=qlm(1:lmmaxo,ias)-zlm(1:lmmaxo) end do end do ! find the smooth pseudocharge within the muffin-tin whose multipoles are the ! difference between the real muffin-tin and interstitial multipoles t1=factn2(2*lnpsd+1)/omega do ias=1,natmtot is=idxis(ias) do l=0,lmaxo t2=t1/(factn2(2*l+1)*rmtl(l,is)) lma=l**2+1; lmb=lma+2*l zlm(lma:lmb)=t2*qlm(lma:lmb,ias) end do ! add the pseudocharge and real interstitial densities in G-space do ig=1,ngp jg=igfft_(ig) if (gpc(ig) > epslat) then t2=gpc(ig)*rmt(is) t3=1.d0/t2**lnpsd z1=t3*fourpi*y00*zlm(1) do l=1,lmaxo lma=l**2+1; lmb=lma+2*l t3=t3*t2 z1=z1+t3*sum(zlm(lma:lmb)*ylmgp(lma:lmb,ig)) end do z2=jlgprmt(lnpsd,ig,is)*conjg(sfacgp(ig,ias)) zvclir(jg)=zvclir(jg)+z1*z2 else t2=fourpi*y00/factn2(2*lnpsd+1) zvclir(jg)=zvclir(jg)+t2*zlm(1) end if end do end do ! solve Poisson's equation in G+p-space for the pseudocharge do ig=1,ngp jg=igfft_(ig) zvclir(jg)=gclgp(ig)*zvclir(jg) end do ! match potentials at muffin-tin boundary by adding homogeneous solution do ias=1,natmtot is=idxis(ias) nr=nrmt_(is) nri=nrmti_(is) iro=nri+1 np=npmt_(is) ! find the spherical harmonic expansion of the interstitial potential at the ! muffin-tin radius zlm(1:lmmaxo)=0.d0 do ig=1,ngp z1=zvclir(igfft_(ig))*sfacgp(ig,ias) zlm(1)=zlm(1)+(jlgprmt(0,ig,is)*fourpi*y00)*z1 do l=1,lmaxo lma=l**2+1; lmb=lma+2*l z2=jlgprmt(l,ig,is)*z1 zlm(lma:lmb)=zlm(lma:lmb)+z2*conjg(ylmgp(lma:lmb,ig)) end do end do ! calculate the homogenous solution i=np-lmmaxo do l=0,lmaxi t1=1.d0/rmtl(l,is) do lm=l**2+1,(l+1)**2 z1=t1*(zlm(lm)-zvclmt(i+lm,ias)) i1=lmmaxi*(nri-1)+lm zhmt(lm:i1:lmmaxi)=z1*rl(1:nri,l,is) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zhmt(i0:i1:lmmaxo)=z1*rl(iro:nr,l,is) end do end do do l=lmaxi+1,lmaxo t1=1.d0/rmtl(l,is) do lm=l**2+1,(l+1)**2 z1=t1*(zlm(lm)-zvclmt(i+lm,ias)) i0=lmmaxi*nri+lm i1=lmmaxo*(nr-iro)+i0 zhmt(i0:i1:lmmaxo)=z1*rl(iro:nr,l,is) end do end do zvclmt(1:np,ias)=zvclmt(1:np,ias)+zhmt(1:np) ! store the homogenous solution if required if (iash > 0) then if (ias == iash) zvclmt(1:np,natmtot+1)=zhmt(1:np) end if end do ! Fourier transform interstitial potential to real-space call zfftifc(3,ngridg_,1,zvclir) end subroutine !EOC elk-10.4.9/src/PaxHeaders/cpotcoul.f900000644000000000000000000000012614762655565014425 xustar0028 mtime=1741380469.1070118 30 atime=1741380467.710004497 28 ctime=1741380469.1070118 elk-10.4.9/src/cpotcoul.f900000644002504400250440000001100114762655565017135 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cpotcoul(nrmt_,nrmti_,npmt_,ld1,rl,ngridg_,igfft_,ngp,gpc,gclgp,ld2,& jlgprmt,ylmgp,sfacgp,crhoir,ld3,cvclmt,cvclir) use modmain use modphonon implicit none ! arguments integer, intent(in) :: nrmt_(nspecies),nrmti_(nspecies),npmt_(nspecies) integer, intent(in) :: ld1 real(8), intent(in) :: rl(ld1,-lmaxo-1:lmaxo+2,nspecies) integer, intent(in) :: ngridg_(3),igfft_(*),ngp real(8), intent(in) :: gpc(ngp),gclgp(ngp) integer, intent(in) :: ld2 real(8), intent(in) :: jlgprmt(0:lnpsd,ld2,nspecies) complex(8), intent(in) :: ylmgp(lmmaxo,ngp),sfacgp(ld2,natmtot) complex(4), intent(in) :: crhoir(*) integer, intent(in) :: ld3 complex(4), intent(inout) :: cvclmt(ld3,natmtot) complex(4), intent(out) :: cvclir(*) ! local variables integer is,ia,ias integer nr,nri,iro integer l,lm,lma,lmb integer ig,jg,i,i0,i1 real(8) t1,t2,t3 complex(8) z1,z2 ! automatic arrays real(8) rl2(0:lmaxo) complex(8) qlm(lmmaxo,natmtot),zlm(lmmaxo) ! external functions real(8), external :: factn2 ! compute the multipole moments from the muffin-tin potentials t1=1.d0/fourpi do ias=1,natmtot is=idxis(ias) i=npmt_(is)-lmmaxo do l=0,lmaxo t2=t1*dble(2*l+1)*rmtl(l+1,is) lma=l**2+1; lmb=lma+2*l qlm(lma:lmb,ias)=t2*cvclmt(i+lma:i+lmb,ias) end do end do ! Fourier transform density to G-space and store in zvclir call ccopy(ngridg_(1)*ngridg_(2)*ngridg_(3),crhoir,1,cvclir,1) call cfftifc(3,ngridg_,-1,cvclir) ! subtract the multipole moments of the interstitial charge density do is=1,nspecies rl2(0:lmaxo)=rmtl(2:lmaxo+2,is) t1=rl2(0)*fourpi*y00 do ia=1,natoms(is) ias=idxas(ia,is) zlm(1:lmmaxo)=0.d0 do ig=1,ngp jg=igfft_(ig) if (gpc(ig) > epslat) then z1=cvclir(jg)*sfacgp(ig,ias)/gpc(ig) zlm(1)=zlm(1)+jlgprmt(1,ig,is)*t1*z1 do l=1,lmaxo lma=l**2+1; lmb=lma+2*l z2=jlgprmt(l+1,ig,is)*rl2(l)*z1 zlm(lma:lmb)=zlm(lma:lmb)+z2*conjg(ylmgp(lma:lmb,ig)) end do else t2=(fourpi/3.d0)*rmtl(3,is)*y00 zlm(1)=zlm(1)+t2*cvclir(jg) end if end do qlm(1:lmmaxo,ias)=qlm(1:lmmaxo,ias)-zlm(1:lmmaxo) end do end do ! find the smooth pseudocharge within the muffin-tin whose multipoles are the ! difference between the real muffin-tin and interstitial multipoles t1=factn2(2*lnpsd+1)/omega do ias=1,natmtot is=idxis(ias) do l=0,lmaxo t2=t1/(factn2(2*l+1)*rmtl(l,is)) lma=l**2+1; lmb=lma+2*l zlm(lma:lmb)=t2*qlm(lma:lmb,ias) end do ! add the pseudocharge and real interstitial densities in G-space do ig=1,ngp jg=igfft_(ig) if (gpc(ig) > epslat) then t2=gpc(ig)*rmt(is) t3=1.d0/t2**lnpsd z1=t3*fourpi*y00*zlm(1) do l=1,lmaxo lma=l**2+1; lmb=lma+2*l t3=t3*t2 z1=z1+t3*sum(zlm(lma:lmb)*ylmgp(lma:lmb,ig)) end do z2=jlgprmt(lnpsd,ig,is)*conjg(sfacgp(ig,ias)) cvclir(jg)=cvclir(jg)+z1*z2 else t2=fourpi*y00/factn2(2*lnpsd+1) cvclir(jg)=cvclir(jg)+t2*zlm(1) end if end do end do ! solve Poisson's equation in G+p-space for the pseudocharge do ig=1,ngp jg=igfft_(ig) cvclir(jg)=gclgp(ig)*cvclir(jg) end do ! match potentials at muffin-tin boundary by adding homogeneous solution do ias=1,natmtot is=idxis(ias) nr=nrmt_(is) nri=nrmti_(is) iro=nri+1 ! find the spherical harmonic expansion of the interstitial potential at the ! muffin-tin radius zlm(1:lmmaxo)=0.d0 do ig=1,ngp z1=cvclir(igfft_(ig))*sfacgp(ig,ias) zlm(1)=zlm(1)+jlgprmt(0,ig,is)*fourpi*y00*z1 do l=1,lmaxo lma=l**2+1; lmb=lma+2*l z2=jlgprmt(l,ig,is)*z1 zlm(lma:lmb)=zlm(lma:lmb)+z2*conjg(ylmgp(lma:lmb,ig)) end do end do ! add the homogenous solution i=npmt_(is)-lmmaxo do l=0,lmaxi t1=1.d0/rmtl(l,is) do lm=l**2+1,(l+1)**2 z1=t1*(zlm(lm)-cvclmt(i+lm,ias)) i1=lmmaxi*(nri-1)+lm cvclmt(lm:i1:lmmaxi,ias)=cvclmt(lm:i1:lmmaxi,ias)+z1*rl(1:nri,l,is) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 cvclmt(i0:i1:lmmaxo,ias)=cvclmt(i0:i1:lmmaxo,ias)+z1*rl(iro:nr,l,is) end do end do do l=lmaxi+1,lmaxo t1=1.d0/rmtl(l,is) do lm=l**2+1,(l+1)**2 z1=t1*(zlm(lm)-cvclmt(i+lm,ias)) i0=lmmaxi*nri+lm i1=lmmaxo*(nr-iro)+i0 cvclmt(i0:i1:lmmaxo,ias)=cvclmt(i0:i1:lmmaxo,ias)+z1*rl(iro:nr,l,is) end do end do end do ! Fourier transform interstitial potential to real-space call cfftifc(3,ngridg_,1,cvclir) end subroutine elk-10.4.9/src/PaxHeaders/clebgor.f900000644000000000000000000000013214762655565014207 xustar0030 mtime=1741380469.108011806 30 atime=1741380467.713004513 30 ctime=1741380469.108011806 elk-10.4.9/src/clebgor.f900000644002504400250440000000325214762655565016733 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: clebgor ! !INTERFACE: real(8) function clebgor(j1,j2,j3,m1,m2,m3) ! !INPUT/OUTPUT PARAMETERS: ! j1, j2, j3 : angular momentum quantum numbers (in,integer) ! m1, m2, m3 : magnetic quantum numbers (in,integer) ! !DESCRIPTION: ! Returns the Clebsch-Gordon coefficients using the Wigner $3j$-symbols ! $$ C(J_1 J_2 J_3 | m_1 m_2 m_3)=(-1)^{J_1-J_2+m_3}\sqrt{2J_3+1} ! \begin{pmatrix} J_1 & J_2 & J_3 \\ m_1 & m_2 & -m_3 \end{pmatrix}. $$ ! Suitable for $J_i\le 50$. See {\tt wigner3j}. ! ! !REVISION HISTORY: ! Created September 2003 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: j1,j2,j3 integer, intent(in) :: m1,m2,m3 ! external functions real(8), external :: wigner3j if ((j1 < 0).or.(j2 < 0).or.(j3 < 0).or.(abs(m1) > j1).or.(abs(m2) > j2) & .or.(abs(m3) > j3)) then write(*,*) write(*,'("Error(clebgor): non-physical arguments :")') write(*,'("j1 = ",I8," j2 = ",I8," j3 = ",I8)') j1,j2,j3 write(*,'("m1 = ",I8," m2 = ",I8," m3 = ",I8)') m1,m2,m3 write(*,*) stop end if if ((j1 == 0).and.(j2 == 0).and.(j3 == 0)) then clebgor=1.d0 return end if if ((j1 > 50).or.(j2 > 50).or.(j3 > 50)) then write(*,*) write(*,'("Error(clebgor): angular momenta out of range : ",3I8)') j1,j2,j3 write(*,*) stop end if if ((m1+m2 /= m3).or.(j1+j2 < j3).or.(j2+j3 < j1).or.(j1+j3 < j2)) then clebgor=0.d0 return end if clebgor=sqrt(dble(2*j3+1))*wigner3j(j1,j2,j3,m1,m2,-m3) if (mod(j1-j2+m3,2) /= 0) clebgor=-clebgor end function !EOC elk-10.4.9/src/PaxHeaders/wigner3j.f900000644000000000000000000000013214762655565014322 xustar0030 mtime=1741380469.110011816 30 atime=1741380467.715004523 30 ctime=1741380469.110011816 elk-10.4.9/src/wigner3j.f900000644002504400250440000000501714762655565017047 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: wigner3j ! !INTERFACE: real(8) function wigner3j(j1,j2,j3,m1,m2,m3) ! !INPUT/OUTPUT PARAMETERS: ! j1, j2, j3 : angular momentum quantum numbers (in,integer) ! m1, m2, m3 : magnetic quantum numbers (in,integer) ! !DESCRIPTION: ! Returns the Wigner $3j$-symbol. There are many equivalent formulae for ! the $3j$-symbols, the following provides high accuracy for $j\le 50$ ! \begin{align*} ! &\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix}= \\ ! &(-1)^{j1+j2+m3}\sqrt{\frac{(j_1+m_1)!\,(j_2+m_2)!\,(j_3+m_3)!\, ! (j_3-m_3)!\,(j_1-m_1)!\,(j_2-m_2)!}{(j_2-j_1+j_3)!\,(j_1-j_2+j_3)!\, ! (j_1+j_2-j_3)!\,(1+j_1+j_2+j_3)!}}\,\sum_k(-1)^k \\ ! &\frac{(j_2-j_1+j_3)!\,(j_1-j_2+j_3)!\,(j_1+j_2-j_3)!}{(j_3-j_1-m_2+k)!\, ! (j_3-j_2+m_1+k)!\,(j_1+j_2-j_3-k)!\,k!\,(j_1-m_1-k)!\,(j_2+m_2-k)!}, ! \end{align*} ! where the sum is over all integers $k$ for which the factorials in the ! summand are non-negative. ! ! !REVISION HISTORY: ! Created November 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: j1,j2,j3 integer, intent(in) :: m1,m2,m3 ! local variables integer k,k1,k2,l1,l2,l3,n1,n2 real(8) sgn,sm,t1 ! external functions real(8), external :: factn,factr ! check input variables if ((j1 < 0).or.(j2 < 0).or.(j3 < 0).or.(abs(m1) > j1).or.(abs(m2) > j2) & .or.(abs(m3) > j3)) then write(*,*) write(*,'("Error(wigner3j): invalid arguments :")') write(*,'("j1 = ",I8," j2 = ",I8," j3 = ",I8)') j1,j2,j3 write(*,'("m1 = ",I8," m2 = ",I8," m3 = ",I8)') m1,m2,m3 write(*,*) stop end if if ((j1 == 0).and.(j2 == 0).and.(j3 == 0)) then wigner3j=1.d0 return end if if ((j1 > 50).or.(j2 > 50).or.(j3 > 50)) then write(*,*) write(*,'("Error(wigner3j): angular momenta out of range : ",3I8)') j1,j2,j3 write(*,*) stop end if l1=j2-j1+j3 l2=j1-j2+j3 l3=j1+j2-j3 if ((m1+m2+m3 /= 0).or.(l1 < 0).or.(l2 < 0).or.(l3 < 0)) then wigner3j=0.d0 return end if n1=j1-m1 n2=j2+m2 k1=max(0,n1-l2,n2-l1) k2=min(l3,n1,n2) if (mod(k1-j1+j2+m3,2) /= 0) then sgn=-1.d0 else sgn=1.d0 end if sm=0.d0 do k=k1,k2 t1=sgn*factr(l1,l1-n2+k)*factr(l2,l2-n1+k)*factr(l3,l3-k) sm=sm+t1/(factn(k)*factn(n1-k)*factn(n2-k)) sgn=-sgn end do t1=factr(j1+m1,l1)*factr(j2+m2,l2)*factr(j3+m3,l3) t1=t1*factr(j3-m3,1+j1+j2+j3)*factn(j1-m1)*factn(j2-m2) wigner3j=sm*sqrt(t1) end function !EOC elk-10.4.9/src/PaxHeaders/zfmtftoc.f900000644000000000000000000000013214762655565014426 xustar0030 mtime=1741380469.111011821 30 atime=1741380467.718004539 30 ctime=1741380469.111011821 elk-10.4.9/src/zfmtftoc.f900000644002504400250440000000123514762655565017151 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine zfmtftoc(nrc,nrci,zfmt,zfcmt) use modmain implicit none ! arguments integer, intent(in) :: nrc,nrci complex(8), intent(in) :: zfmt(*) complex(8), intent(out) :: zfcmt(*) ! local variables integer irc,i,j,m,n i=1 j=1 m=lmmaxi*lradstp n=lmmaxi-1 do irc=1,nrci zfcmt(i:i+n)=zfmt(j:j+n) i=i+lmmaxi j=j+m end do j=j+(lradstp-1)*(lmmaxo-lmmaxi) m=lmmaxo*lradstp n=lmmaxo-1 do irc=nrci+1,nrc zfcmt(i:i+n)=zfmt(j:j+n) i=i+lmmaxo j=j+m end do end subroutine elk-10.4.9/src/PaxHeaders/writeefield.f900000644000000000000000000000013214762655565015075 xustar0030 mtime=1741380469.112011827 30 atime=1741380467.720004549 30 ctime=1741380469.112011827 elk-10.4.9/src/writeefield.f900000644002504400250440000000206514762655565017622 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeefield(fnum) use modmain implicit none ! arguments integer, intent(in) :: fnum ! local variables integer is,ia,ias,i real(8) efc(3),t1 if (natmtot == 0) return ! determine the average electric field in each muffin-tin call efieldmt ! write the electric fields to file write(fnum,*) write(fnum,'("Average electric field in each muffin-tin")') do is=1,nspecies write(fnum,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(fnum,'(" atom ",I4,T30,": ",3G18.10)') ia,efcmt(:,ias) end do end do ! compute the average electric field do i=1,3 efc(i)=sum(efcmt(i,1:natmtot))/dble(natmtot) end do write(fnum,*) write(fnum,'("Average of muffin-tin electric fields :")') write(fnum,'(3G18.10)') efc t1=norm2(efc(:)) write(fnum,'(" magnitude : ",G18.10)') t1 write(fnum,'(" volts/nanometer : ",G18.10)') t1*ef_si/1.d9 end subroutine elk-10.4.9/src/PaxHeaders/potcoul.f900000644000000000000000000000013214762655565014257 xustar0030 mtime=1741380469.114011837 30 atime=1741380467.723004565 30 ctime=1741380469.114011837 elk-10.4.9/src/potcoul.f900000644002504400250440000000525714762655565017012 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: potcoul ! !INTERFACE: subroutine potcoul ! !USES: use modmain use modomp ! !DESCRIPTION: ! Calculates the Coulomb potential of the real charge density stored in the ! global variables {\tt rhomt} and {\tt rhoir} by solving Poisson's equation. ! These variables are coverted to complex representations and passed to the ! routine {\tt zpotcoul}. ! ! !REVISION HISTORY: ! Created April 2003 (JKD) !EOP !BOC implicit none ! local variables integer is,ias,nthd integer nr,nri,iro,i0,i1 ! allocatable arrays complex(8), allocatable :: zrhomt(:,:),zrhoir(:) complex(8), allocatable :: zvclmt(:,:),zvclir(:) allocate(zrhomt(npmtmax,natmtot)) ! convert real muffin-tin charge density to complex spherical harmonic expansion call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call rtozfmt(nrmt(is),nrmti(is),rhomt(:,ias),zrhomt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! solve the complex Poisson's equation in the muffin-tins allocate(zvclmt(npmtmax,natmtot)) call genzvclmt(nrmt,nrmti,nrmtmax,rlmt,wprmt,npmtmax,zrhomt,zvclmt) deallocate(zrhomt) ! add the nuclear monopole potentials do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 i1=lmmaxi*(nri-1)+1 zvclmt(1:i1:lmmaxi,ias)=zvclmt(1:i1:lmmaxi,ias)+vcln(1:nri,is) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zvclmt(i0:i1:lmmaxo,ias)=zvclmt(i0:i1:lmmaxo,ias)+vcln(iro:nr,is) end do ! apply atomic displacement potential if required if (tatdisp) call zvcldisp(zvclmt) allocate(zrhoir(ngtot),zvclir(ngtot)) ! store real interstitial charge density in complex array zrhoir(1:ngtot)=rhoir(1:ngtot) ! solve Poisson's equation in the entire unit cell call zpotcoul(0,nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gc,gclg,ngvec, & jlgrmt,ylmg,sfacg,zrhoir,npmtmax,zvclmt,zvclir) deallocate(zrhoir) ! convert complex muffin-tin potential to real spherical harmonic expansion call holdthd(natmtot+1,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(ias,is) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) call ztorfmt(nrmt(is),nrmti(is),zvclmt(:,ias),vclmt(:,ias)) end do !$OMP END DO NOWAIT ! store complex interstitial potential in real array !$OMP SINGLE vclir(1:ngtot)=dble(zvclir(1:ngtot)) !$OMP END SINGLE !$OMP END PARALLEL call freethd(nthd) deallocate(zvclmt,zvclir) ! apply constant electric field if required if (tefield) call potefield end subroutine !EOC elk-10.4.9/src/PaxHeaders/eveqnfvz.f900000644000000000000000000000013214762655565014436 xustar0030 mtime=1741380469.115011842 30 atime=1741380467.725004575 30 ctime=1741380469.115011842 elk-10.4.9/src/eveqnfvz.f900000644002504400250440000000323314762655565017161 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnfvz(nmatp,h,o,evalfv,evecfv) use modmain use modomp implicit none ! arguments integer, intent(in) :: nmatp complex(8), intent(in) :: h(*),o(*) real(8), intent(out) :: evalfv(nstfv) complex(8), intent(out) :: evecfv(nmatmax,nstfv) ! local variables integer nb,lwork,nts integer m,info,nthd real(8) vl,vu real(8) ts0,ts1 ! automatic arrays integer iwork(5*nmatp),ifail(nmatp) real(8) w(nmatp),rwork(7*nmatp) ! allocatable arrays complex(8), allocatable :: work(:) ! external functions integer, external :: ilaenv call timesec(ts0) ! find the optimal blocksize for allocating the work array nb=ilaenv(1,'ZHETRD','U',nmatp,-1,-1,-1) nb=max(nb,1) lwork=(nb+1)*nmatp allocate(work(lwork)) ! enable MKL parallelism call holdthd(maxthdmkl,nthd) nts=mkl_set_num_threads_local(nthd) ! diagonalise the matrix call zhegvx(1,'V','I','U',nmatp,h,nmatp,o,nmatp,vl,vu,1,nstfv,evaltol,m,w, & evecfv,nmatmax,work,lwork,rwork,iwork,ifail,info) nts=mkl_set_num_threads_local(0) call freethd(nthd) if (info /= 0) then write(*,*) write(*,'("Error(eveqnfvz): diagonalisation failed")') write(*,'(" ZHEGVX returned INFO = ",I8)') info if (info > nmatp) then write(*,'(" The leading minor of the overlap matrix of order ",I8)') & info-nmatp write(*,'(" is not positive definite")') write(*,'(" Order of overlap matrix : ",I8)') nmatp end if write(*,*) stop end if evalfv(1:nstfv)=w(1:nstfv) deallocate(work) call timesec(ts1) !$OMP ATOMIC timefv=timefv+ts1-ts0 end subroutine elk-10.4.9/src/PaxHeaders/rfmtint.f900000644000000000000000000000013214762655565014255 xustar0030 mtime=1741380469.116011847 30 atime=1741380467.728004591 30 ctime=1741380469.116011847 elk-10.4.9/src/rfmtint.f900000644002504400250440000000106114762655565016775 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure real(8) function rfmtint(nr,nri,wr,rfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr),rfmt(*) ! local variables integer iro,i0,i1 i1=lmmaxi*(nri-1)+1 rfmtint=sum(wr(1:nri)*rfmt(1:i1:lmmaxi)) iro=nri+1 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 rfmtint=rfmtint+sum(wr(iro:nr)*rfmt(i0:i1:lmmaxo)) rfmtint=fourpi*y00*rfmtint end function elk-10.4.9/src/PaxHeaders/zfmtint.f900000644000000000000000000000013214762655565014265 xustar0030 mtime=1741380469.118011858 30 atime=1741380467.730004601 30 ctime=1741380469.118011858 elk-10.4.9/src/zfmtint.f900000644002504400250440000000113614762655565017010 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure complex(8) function zfmtint(nr,nri,wr,zfmt) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: wr(nr) complex(8), intent(in) :: zfmt(*) ! local variables integer iro,i0,i1 i1=lmmaxi*(nri-1)+1 zfmtint=sum(wr(1:nri)*zfmt(1:i1:lmmaxi)) iro=nri+1 i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zfmtint=zfmtint+sum(wr(iro:nr)*zfmt(i0:i1:lmmaxo)) zfmtint=fourpi*y00*zfmtint end function elk-10.4.9/src/PaxHeaders/rbsht.f900000644000000000000000000000013214762655565013714 xustar0030 mtime=1741380469.119011863 30 atime=1741380467.733004617 30 ctime=1741380469.119011863 elk-10.4.9/src/rbsht.f900000644002504400250440000000127714762655565016445 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rbsht(nr,nri,rfmt1,rfmt2) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: rfmt1(*) real(8), intent(out) :: rfmt2(*) ! local variables integer i ! transform the inner part of the muffin-tin call dgemm('N','N',lmmaxi,nri,lmmaxi,1.d0,rbshti,lmmaxi,rfmt1,lmmaxi,0.d0, & rfmt2,lmmaxi) ! transform the outer part of the muffin-tin i=lmmaxi*nri+1 call dgemm('N','N',lmmaxo,nr-nri,lmmaxo,1.d0,rbshto,lmmaxo,rfmt1(i),lmmaxo, & 0.d0,rfmt2(i),lmmaxo) end subroutine elk-10.4.9/src/PaxHeaders/rfsht.f900000644000000000000000000000013214762655565013720 xustar0030 mtime=1741380469.120011868 30 atime=1741380467.735004628 30 ctime=1741380469.120011868 elk-10.4.9/src/rfsht.f900000644002504400250440000000127714762655565016451 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfsht(nr,nri,rfmt1,rfmt2) use modmain implicit none ! arguments integer, intent(in) :: nr,nri real(8), intent(in) :: rfmt1(*) real(8), intent(out) :: rfmt2(*) ! local variables integer i ! transform the inner part of the muffin-tin call dgemm('N','N',lmmaxi,nri,lmmaxi,1.d0,rfshti,lmmaxi,rfmt1,lmmaxi,0.d0, & rfmt2,lmmaxi) ! transform the outer part of the muffin-tin i=lmmaxi*nri+1 call dgemm('N','N',lmmaxo,nr-nri,lmmaxo,1.d0,rfshto,lmmaxo,rfmt1(i),lmmaxo, & 0.d0,rfmt2(i),lmmaxo) end subroutine elk-10.4.9/src/PaxHeaders/olprad.f900000644000000000000000000000013214762655565014053 xustar0030 mtime=1741380469.122011879 30 atime=1741380467.738004643 30 ctime=1741380469.122011879 elk-10.4.9/src/olprad.f900000644002504400250440000000362014762655565016576 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: olprad ! !INTERFACE: subroutine olprad ! !USES: use modmain use modomp ! !DESCRIPTION: ! Calculates the radial overlap integrals of the APW and local-orbital basis ! functions. In other words, for atom $\alpha$, it computes integrals of the ! form ! $$ o^{\alpha}_{qp}=\int_0^{R_i}u^{\alpha}_{q;l_p}(r)v^{\alpha}_p(r)r^2dr $$ ! and ! $$ o^{\alpha}_{pp'}=\int_0^{R_i}v^{\alpha}_p(r)v^{\alpha}_{p'}(r)r^2dr, ! \quad l_p=l_{p'} $$ ! where $u^{\alpha}_{q;l}$ is the $q$th APW radial function for angular ! momentum $l$; and $v^{\alpha}_p$ is the $p$th local-orbital radial function ! and has angular momentum $l_p$. ! ! !REVISION HISTORY: ! Created November 2003 (JKD) !EOP !BOC implicit none ! local variables integer is,ias,nr,nthd integer ilo,jlo,l,io ! loop over atoms call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is,nr,ilo,jlo,l,io) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) ! loop over local-orbitals do ilo=1,nlorb(is) l=lorbl(ilo,is) !-------------------------------------! ! APW-local-orbital integrals ! !-------------------------------------! do io=1,apword(l,is) oalo(io,ilo,ias)=sum(apwfr(1:nr,1,io,l,ias)*lofr(1:nr,1,ilo,ias) & *wr2mt(1:nr,is)) end do !-----------------------------------------------! ! local-orbital-local-orbital integrals ! !-----------------------------------------------! do jlo=1,nlorb(is) if (lorbl(jlo,is) == l) then ololo(ilo,jlo,ias)=sum(lofr(1:nr,1,ilo,ias)*lofr(1:nr,1,jlo,ias) & *wr2mt(1:nr,is)) end if end do end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine !EOC elk-10.4.9/src/PaxHeaders/checkrst.f900000644000000000000000000000013214762655565014400 xustar0030 mtime=1741380469.124011889 30 atime=1741380467.740004654 30 ctime=1741380469.124011889 elk-10.4.9/src/checkrst.f900000644002504400250440000000117214762655565017123 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine checkrst use modmain use modmpi use moddelf implicit none ! check for RESTART file (only MPI master process) if (mp_mpi) then inquire(file='RESTART',exist=trestart) if (trestart) then write(*,'("Info(checkrst): RESTART file exists")') ! delete the RESTART file call delfile('RESTART') end if end if ! broadcast trestart from master process to all other processes call mpi_bcast(trestart,1,mpi_logical,0,mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/writegsvars.f900000644000000000000000000000013214762655565015152 xustar0030 mtime=1741380469.125011894 30 atime=1741380467.742004664 30 ctime=1741380469.125011894 elk-10.4.9/src/writegsvars.f900000644002504400250440000000141714762655565017677 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writegsvars use modmain use modvars implicit none call writevars('engytot',rv=engytot) call writevars('engyx',rv=engyx) call writevars('engyc',rv=engyc) call writevars('efermi',rv=efermi) call writevars('evalsum',rv=evalsum) call writevars('engykn',rv=engykn) call writevars('fermidos',rv=fermidos) call writevars('bandgap',nv=2,rva=bandgap) if (spinpol) then call writevars('momtot',nv=ndmag,rva=momtot) call writevars('momtotm',rv=momtotm) call writevars('mommt',nv=3*natmtot,rva=mommt) end if if (tforce) then call writevars('forcetot',nv=3*natmtot,rva=forcetot) end if end subroutine elk-10.4.9/src/PaxHeaders/trimrfg.f900000644000000000000000000000012514762655565014246 xustar0028 mtime=1741380469.1260119 29 atime=1741380467.74500468 28 ctime=1741380469.1260119 elk-10.4.9/src/trimrfg.f900000644002504400250440000000107614762655565016772 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine trimrfg(rfir) use modmain implicit none ! arguments real(8), intent(inout) :: rfir(ngtot) ! automatic arrays complex(8) zfft(nfgrz) ! Fourier transform function to G-space call rzfftifc(3,ngridg,-1,rfir,zfft) ! zero the components for |G| > 2 gkmax where(igrzf(1:nfgrz) > ngvc) zfft(1:nfgrz)=0.d0 ! Fourier transform back to real-space call rzfftifc(3,ngridg,1,rfir,zfft) end subroutine elk-10.4.9/src/PaxHeaders/writemix.f900000644000000000000000000000013114762655565014441 xustar0030 mtime=1741380469.127011905 29 atime=1741380467.74700469 30 ctime=1741380469.127011905 elk-10.4.9/src/writemix.f900000644002504400250440000000072714762655565017172 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2025 Eddie Harris-Lee, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writemix(nwork,work) use modmain implicit none ! arguments integer, intent(in) :: nwork real(8), intent(in) :: work(nwork) open(80,file='MIXWORK'//trim(filext),form='UNFORMATTED',action='WRITE') write(80) iscl write(80) nwork write(80) work close(80) end subroutine elk-10.4.9/src/PaxHeaders/readmix.f900000644000000000000000000000013214762655565014223 xustar0030 mtime=1741380469.129011915 30 atime=1741380467.750004706 30 ctime=1741380469.129011915 elk-10.4.9/src/readmix.f900000644002504400250440000000161114762655565016744 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2025 Eddie Harris-Lee, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readmix(iscl0,nwork,work) use modmain implicit none ! arguments integer, intent(out) :: iscl0 integer, intent(in) :: nwork real(8), intent(out) :: work(nwork) ! local variables integer ios,nwork_ open(80,file='MIXWORK'//trim(filext),form='UNFORMATTED',action='READ', & status='OLD',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readmix): error opening ",A)') 'MIXWORK'//trim(filext) write(*,*) stop end if read(80) iscl0 read(80) nwork_ if (nwork /= nwork_) then write(*,*) write(*,'("Error(readmix): differing nwork")') write(*,'(" current : ",I12)') nwork write(*,'(" MIXWORK.OUT : ",I12)') nwork_ write(*,*) stop end if read(80) work close(80) end subroutine elk-10.4.9/src/PaxHeaders/phdisp.f900000644000000000000000000000013214762655565014061 xustar0030 mtime=1741380469.130011921 30 atime=1741380467.753004722 30 ctime=1741380469.130011921 elk-10.4.9/src/phdisp.f900000644002504400250440000000316714762655565016612 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine phdisp use modmain use modphonon implicit none ! local variables integer iq,i,iv real(8) wmin,wmax,t1 ! allocatable arrays real(8), allocatable :: wq(:,:) complex(8), allocatable :: dq(:,:),ev(:,:) ! initialise universal variables call init0 call init2 call initph ! allocate local arrays allocate(wq(nbph,npp1d),dq(nbph,nbph),ev(nbph,nbph)) ! generate a set of q-point vectors along a path in the Brillouin zone call plotpt1d(bvec,nvp1d,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) ! compute the phonon frequencies along the path do iq=ip01d,npp1d ! compute the dynamical matrix at this particular q-point call dynrtoq(vplp1d(:,iq),dynr,dq) ! find the phonon frequencies and eigenvectors call dynev(dq,wq(:,iq),ev) end do ! find the minimum and maximum phonon frequencies wmin=minval(wq(1,:)) wmax=maxval(wq(nbph,:)) t1=(wmax-wmin)*0.5d0 wmin=wmin-t1 wmax=wmax+t1 ! output the vertex location lines open(50,file='PHDLINES.OUT',form='FORMATTED') do iv=1,nvp1d write(50,'(2G18.10)') dvp1d(iv),wmin write(50,'(2G18.10)') dvp1d(iv),wmax write(50,*) end do close(50) ! output the phonon dispersion open(50,file='PHDISP.OUT',form='FORMATTED') do i=1,nbph do iq=ip01d,npp1d write(50,'(2G18.10)') dpp1d(iq),wq(i,iq) end do write(50,*) end do close(50) write(*,*) write(*,'("Info(phdisp):")') write(*,'(" phonon dispersion written to PHDISP.OUT")') write(*,'(" vertex location lines written to PHDLINES.OUT")') deallocate(dq,ev) end subroutine elk-10.4.9/src/PaxHeaders/phdos.f900000644000000000000000000000013214762655565013707 xustar0030 mtime=1741380469.131011926 30 atime=1741380467.755004732 30 ctime=1741380469.131011926 elk-10.4.9/src/phdos.f900000644002504400250440000000743014762655565016435 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine phdos use modmain use modphonon use modtest implicit none ! local variables integer iq,i,iw integer i1,i2,i3 real(8) wmin,wmax,wd,dw real(8) tmax,temp(ntemp),s(ntemp) real(8) v(3),t1,t2 ! allocatable arrays real(8), allocatable :: wq(:),w(:),gw(:),f(:) complex(8), allocatable :: dq(:,:),ev(:,:) ! external functions real(8), external :: splint ! initialise universal variables call init0 call init2 call initph allocate(wq(nbph),w(nwplot),gw(nwplot),f(nwplot)) allocate(dq(nbph,nbph),ev(nbph,nbph)) ! find the minimum and maximum frequencies wmin=0.d0 wmax=0.d0 do iq=1,nqpt call dynev(dynq(:,:,iq),wq,ev) wmin=min(wmin,wq(1)) wmax=max(wmax,wq(nbph)) end do t1=(wmax-wmin)*0.1d0 wmin=wmin-t1 wmax=wmax+t1 wd=wmax-wmin if (wd < 1.d-8) wd=1.d0 dw=wd/dble(nwplot) ! generate energy grid do iw=1,nwplot w(iw)=dw*dble(iw-1)+wmin end do gw(:)=0.d0 do i1=0,ngrkf-1 v(1)=dble(i1)/dble(ngrkf) do i2=0,ngrkf-1 v(2)=dble(i2)/dble(ngrkf) do i3=0,ngrkf-1 v(3)=dble(i3)/dble(ngrkf) ! compute the dynamical matrix at this particular q-point call dynrtoq(v,dynr,dq) ! find the phonon frequencies call dynev(dq,wq,ev) do i=1,nbph t1=(wq(i)-wmin)/dw+1.d0 iw=nint(t1) if ((iw >= 1).and.(iw <= nwplot)) then gw(iw)=gw(iw)+1.d0 end if end do end do end do end do t1=1.d0/(dw*dble(ngrkf)**3) gw(:)=t1*gw(:) ! smooth phonon DOS if required if (nswplot > 0) call fsmooth(nswplot,nwplot,gw) ! write phonon DOS to file open(50,file='PHDOS.OUT',form='FORMATTED') do iw=1,nwplot write(50,'(2G18.10)') w(iw),gw(iw) end do close(50) write(*,*) write(*,'("Info(phdos):")') write(*,'(" phonon density of states written to PHDOS.OUT")') !-------------------------------------------! ! thermodynamic properties from DOS ! !-------------------------------------------! ! maximum temperature tmax=wmax/kboltz ! temperature grid do i=1,ntemp temp(i)=tmax*dble(i)/dble(ntemp) end do open(50,file='THERMO.OUT',form='FORMATTED') write(50,*) write(50,'("(All quantities are per unit cell)")') ! zero point energy do iw=1,nwplot f(iw)=gw(iw)*w(iw) end do t1=splint(nwplot,w,f) t1=0.5d0*t1 write(50,*) write(50,'("Zero-point energy : ",G18.10)') t1 ! vibrational energy write(50,*) write(50,'("Vibrational energy vs. temperature :")') do i=1,ntemp do iw=1,nwplot t1=w(iw)/(2.d0*kboltz*temp(i)) if (t1 > 0.d0) then f(iw)=gw(iw)*w(iw)*cosh(t1)/sinh(t1) else f(iw)=0.d0 end if end do t1=splint(nwplot,w,f) t1=0.5d0*t1 write(50,'(2G18.10)') temp(i),t1 s(i)=t1 end do ! free energy write(50,*) write(50,'("Free energy vs. temperature :")') do i=1,ntemp do iw=1,nwplot t1=2.d0*sinh(w(iw)/(2.d0*kboltz*temp(i))) if (t1 > 0.d0) then f(iw)=gw(iw)*log(t1) else f(iw)=0.d0 end if end do t1=splint(nwplot,w,f) t1=kboltz*temp(i)*t1 write(50,'(2G18.10)') temp(i),t1 ! compute entropy from S = (F-E)/T s(i)=(s(i)-t1)/temp(i) end do ! entropy write(50,*) write(50,'("Entropy vs. temperature :")') do i=1,ntemp write(50,'(2G18.10)') temp(i),s(i) end do ! heat capacity write(50,*) write(50,'("Heat capacity vs. temperature :")') do i=1,ntemp do iw=1,nwplot t1=w(iw)/(kboltz*temp(i)) t2=exp(t1)-1.d0 if (abs(t2) > 1.d-14) then f(iw)=gw(iw)*(t1**2)*(t2+1.d0)/t2**2 else f(iw)=0.d0 end if end do t1=splint(nwplot,w,f) t1=kboltz*t1 write(50,'(2G18.10)') temp(i),t1 end do close(50) write(*,'(" thermodynamic properties written to THERMO.OUT")') ! write phonon DOS to test file call writetest(210,'phonon DOS',nv=nwplot,tol=1.d-2,rva=gw) deallocate(wq,w,gw,f,dq,ev) end subroutine elk-10.4.9/src/PaxHeaders/dynqtor.f900000644000000000000000000000013214762655565014272 xustar0030 mtime=1741380469.132011931 30 atime=1741380467.758004748 30 ctime=1741380469.132011931 elk-10.4.9/src/dynqtor.f900000644002504400250440000000415714762655565017023 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynqtor(dq,dr) use modmain use modphonon implicit none ! arguments complex(8), intent(in) :: dq(nbph,nbph,nqpt) real(8), intent(out) :: dr(nbph,nbph,nqptnr) ! local variables integer intr(2,3),iq,n integer isym,lspl,ir integer i1,i2,i3,j1,j2,j3 real(8) v1(3),v2(3),s(3,3),t1 complex(8) z1 ! automatic arrays complex(8) dqs(nbph,nbph) intr(2,:)=ngridq(:)/2 intr(1,:)=intr(2,:)-ngridq(:)+1 dr(:,:,:)=0.d0 ! loop over q-vectors do j1=0,ngridq(1)-1 v1(1)=dble(j1)/dble(ngridq(1)) do j2=0,ngridq(2)-1 v1(2)=dble(j2)/dble(ngridq(2)) do j3=0,ngridq(3)-1 v1(3)=dble(j3)/dble(ngridq(3)) iq=ivqiq(j1,j2,j3) ! map v1 to the first Brillouin zone call vecfbz(epslat,bvec,v1) ! rotate and add the dynamical matrix of the reduced q-point with all symmetries n=0 dqs(:,:)=0.d0 do isym=1,nsymcrys lspl=lsplsymc(isym) s(:,:)=dble(symlat(:,:,lspl)) call r3mtv(s,vql(:,iq),v2) call vecfbz(epslat,bvec,v2) t1=abs(v1(1)-v2(1))+abs(v1(2)-v2(2))+abs(v1(3)-v2(3)) if (t1 < epslat) then call dynsymapp(isym,vql(:,iq),dq(:,:,iq),dqs) n=n+1 end if end do if (n == 0) then write(*,*) write(*,'("Error(dynqtor): vector ",3G18.10)') v1 write(*,'(" cannot be mapped to reduced q-point set")') write(*,*) stop end if t1=1.d0/dble(n) dqs(:,:)=t1*dqs(:,:) ! subtract the non-analytic term if required if (tphnat) call dynqnat(-1,v1,dqs) ! loop over R-vectors ir=0 do i3=intr(1,3),intr(2,3) do i2=intr(1,2),intr(2,2) do i1=intr(1,1),intr(2,1) ir=ir+1 t1=twopi*(v1(1)*dble(i1)+v1(2)*dble(i2)+v1(3)*dble(i3)) z1=cmplx(cos(t1),sin(t1),8) dr(:,:,ir)=dr(:,:,ir)+dble(z1*dqs(:,:)) end do end do end do end do end do end do t1=1.d0/dble(nqptnr) dr(:,:,:)=t1*dr(:,:,:) end subroutine elk-10.4.9/src/PaxHeaders/dynrtoq.f900000644000000000000000000000013214762655565014272 xustar0030 mtime=1741380469.134011942 30 atime=1741380467.760004758 30 ctime=1741380469.134011942 elk-10.4.9/src/dynrtoq.f900000644002504400250440000000307314762655565017017 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynrtoq(vpl,dr,dq) use modmain use modphonon implicit none ! arguments real(8), intent(in) :: vpl(3) real(8), intent(in) :: dr(nbph,nbph,nqptnr) complex(8), intent(out) :: dq(nbph,nbph) ! local variables integer isym,lspl,ilspl integer i1,i2,i3,ir real(8) s(3,3),v(3),t1 complex(8) z1 ! automatic arrays complex(8) d(nbph,nbph) dq(:,:)=0.d0 ! loop over crystal symmetries do isym=1,nsymcrys ! index to spatial rotation in lattice point group lspl=lsplsymc(isym) ! the inverse of the spatial symmetry ilspl=isymlat(lspl) ! symmetry matrix in lattice coordinates s(:,:)=dble(symlat(:,:,ilspl)) ! operate with inverse symmetry matrix on vpl call r3mtv(s,vpl,v) ! construct dynamical matrix for rotated vpl d(:,:)=0.d0 ! loop over R-vectors ir=0 do i3=ngridq(3)/2-ngridq(3)+1,ngridq(3)/2 do i2=ngridq(2)/2-ngridq(2)+1,ngridq(2)/2 do i1=ngridq(1)/2-ngridq(1)+1,ngridq(1)/2 ir=ir+1 t1=-twopi*(v(1)*dble(i1)+v(2)*dble(i2)+v(3)*dble(i3)) z1=cmplx(cos(t1),sin(t1),8) d(:,:)=d(:,:)+z1*dr(:,:,ir) end do end do end do ! apply symmetry operation to dynamical matrix and add to total call dynsymapp(isym,v,d,dq) ! end loop over symmetries end do ! normalise by the number of symmetry operations t1=1.d0/dble(nsymcrys) dq(:,:)=t1*dq(:,:) ! add the non-analytic term if required if (tphnat) call dynqnat(1,vpl,dq) end subroutine elk-10.4.9/src/PaxHeaders/sumrule.f900000644000000000000000000000013214762655565014266 xustar0030 mtime=1741380469.135011947 30 atime=1741380467.763004774 30 ctime=1741380469.135011947 elk-10.4.9/src/sumrule.f900000644002504400250440000000313514762655565017012 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: sumrule ! !INTERFACE: subroutine sumrule ! !DESCRIPTION: ! Applies the same correction to all the dynamical matrices such that the ! matrix for ${\bf q}=0$ satisfies the acoustic sum rule. In other words, the ! matrices are updated with ! $$ D_{ij}^{\bf q}\rightarrow D_{ij}^{\bf q}-\sum_{k=1}^3 \omega_k^0 ! v_{k;i}^0 v_{k;j}^0 $$ ! for all ${\bf q}$, where $\omega_k^0$ is the $k$th eigenvalue of the ! ${\bf q}=0$ dynamical matrix and $v_{k;i}^0$ the $i$th component of its ! eigenvector. The eigenvalues are assumed to be arranged in ascending order. ! This ensures that the ${\bf q}=0$ dynamical matrix has 3 zero eigenvalues, ! which the uncorrected matrix may not have due to the finite ! exchange-correlation grid. ! ! !REVISION HISTORY: ! Created May 2005 (JKD) !EOP !BOC use modmain use modphonon implicit none ! local variables integer iq,i,j,k ! automatic arrays real(8) wq0(nbph) complex(8) ev(nbph,nbph) ! compute the eigenvalues and vectors of the q = 0 dynamical matrix do i=1,nbph do j=i,nbph ev(i,j)=0.5d0*(dynq(i,j,1)+conjg(dynq(j,i,1))) end do end do call eveqnzh(nbph,nbph,ev,wq0) ! subtract outer products of 3 lowest eigenvectors for q = 0 from all the ! dynamical matrices do iq=1,nqpt do i=1,nbph do j=1,nbph do k=1,3 dynq(i,j,iq)=dynq(i,j,iq)-wq0(k)*ev(i,k)*conjg(ev(j,k)) end do end do end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/readdyn.f900000644000000000000000000000013114762655565014217 xustar0030 mtime=1741380469.136011952 29 atime=1741380467.76600479 30 ctime=1741380469.136011952 elk-10.4.9/src/readdyn.f900000644002504400250440000000234514762655565016746 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readdyn use modmain use modphonon implicit none ! local variables logical exist integer iq,is,js,ia,ja integer ip,jp,i,j real(8) a,b character(256) fext do iq=1,nqpt i=0 do is=1,nspecies do ia=1,natoms(is) do ip=1,3 i=i+1 call dynfext(iq,is,ia,ip,fext) inquire(file='DYN'//trim(fext),exist=exist) if (.not.exist) then write(*,*) write(*,'("Error(readdyn): file not found :")') write(*,'(A)') ' DYN'//trim(fext) write(*,*) stop end if open(50,file='DYN'//trim(fext),status='OLD',form='FORMATTED') j=0 do js=1,nspecies do ja=1,natoms(js) do jp=1,3 j=j+1 read(50,*) a,b dynq(i,j,iq)=cmplx(a,b,8) end do end do end do close(50) end do ! end loops over atoms and species end do end do ! symmetrise the dynamical matrix call dynsym(vql(:,iq),dynq(:,:,iq)) ! end loop over q-vectors end do end subroutine elk-10.4.9/src/PaxHeaders/ephcouple.f900000644000000000000000000000013014762655565014554 xustar0030 mtime=1741380469.138011962 28 atime=1741380467.7680048 30 ctime=1741380469.138011962 elk-10.4.9/src/ephcouple.f900000644002504400250440000001256214762655565017306 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine ephcouple use modmain use modphonon use modmpi use modomp implicit none ! local variables integer iq,ik,jk,jkq integer ist,jst,isym,ip integer is,ia,ias,js,jas integer nr,nri,np,i,n,nthd real(8) vl(3),de,x real(8) t1,t2,t3,t4 ! allocatable arrays real(8), allocatable :: gq(:,:),y(:) complex(8), allocatable :: ev(:,:),a(:,:) complex(8), allocatable :: dvmt(:,:,:),dvir(:,:) complex(8), allocatable :: zfmt(:),gzfmt(:,:,:) complex(8), allocatable :: ephmat(:,:,:) ! external functions real(8), external :: sdelta ! increase the angular momentum cut-off on the inner part of the muffin-tin lmaxi0=lmaxi lmaxi=max(lmaxi,4) ! initialise universal variables call init0 call init1 call init2 call initph ! allocate global arrays if (allocated(dvsbs)) deallocate(dvsbs) n=npmtmax*natmtot allocate(dvsbs(n)) dvsmt(1:npmtmax,1:natmtot) => dvsbs(1:) if (allocated(dvsir)) deallocate(dvsir) allocate(dvsir(ngtot)) ! allocate local arrays allocate(gq(nbph,nqpt),y(nbph)) allocate(ev(nbph,nbph),a(nbph,nbph)) allocate(dvmt(npcmtmax,natmtot,nbph),dvir(ngtc,nbph)) allocate(zfmt(npmtmax),gzfmt(npmtmax,3,natmtot)) ! read in the density and potentials from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! set the speed of light >> 1 (non-relativistic approximation) solsc=sol*100.d0 ! new file extension for eigenvector files with c >> 1 filext='_EPH.OUT' ! generate the first- and second-variational eigenvectors and eigenvalues call linengy call genapwlofr call gensocfr call genevfsv ! precise determination of the Fermi energy swidth0=swidth swidth=1.d-5 call occupy swidth=swidth0 ! restore the speed of light solsc=sol ! compute the gradients of the Kohn-Sham potential for the rigid-ion term do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) call rtozfmt(nr,nri,vsmt(:,ias),zfmt) call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),zfmt,npmtmax,gzfmt(:,:,ias)) end do ! energy window for calculating the electron-phonon matrix elements if (task == 240) then de=4.d0*swidth else de=1.d6 end if ! loop over phonon q-points do iq=1,nqpt if (mp_mpi) write(*,'("Info(ephcouple): ",I6," of ",I6," q-points")') iq,nqpt ! diagonalise the dynamical matrix call dynev(dynq(:,:,iq),wphq(:,iq),ev) ! generate the matrix for converting between Cartesian and phonon coordinates call genmcph(wphq(:,iq),ev,a) i=0 do is=1,nspecies nr=nrmt(is) nri=nrmti(is) np=npmt(is) do ia=1,natoms(is) ias=idxas(ia,is) do ip=1,3 i=i+1 ! read in the Cartesian change in Kohn-Sham potential call readdvs(iq,is,ia,ip,dvsmt,dvsir) ! add the rigid-ion term dvsmt(1:np,ias)=dvsmt(1:np,ias)-gzfmt(1:np,ip,ias) do jas=1,natmtot js=idxis(jas) ! convert to coarse radial mesh call zfmtftoc(nrcmt(js),nrcmti(js),dvsmt(:,jas),dvmt(:,jas,i)) ! apply the radial integration weights call zfmtwr(nrcmt(js),nrcmti(js),wr2cmt(:,js),dvmt(:,jas,i)) end do ! multiply the interstitial potential with the characteristic function and ! convert to coarse grid call zfirftoc(dvsir,dvir(:,i)) end do end do end do y(1:nbph)=0.d0 call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(ephmat,jk,vl,isym,jkq) & !$OMP PRIVATE(t1,t2,t3,t4,ist,jst,x,i) & !$OMP REDUCTION(+:y) & !$OMP NUM_THREADS(nthd) allocate(ephmat(nstsv,nstsv,nbph)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! compute the electron-phonon coupling matrix elements call genephmat(iq,ik,de,a,dvmt,dvir,ephmat) ! write the matrix elements to file if required if (task == 241) call putephmat(iq,ik,ephmat) ! k+q-vector in lattice coordinates vl(1:3)=vkl(1:3,ik)+vql(1:3,iq) ! index to k+q-vector call findkpt(vl,isym,jkq) t1=pi*wkptnr*occmax ! loop over second-variational states do ist=1,nstsv x=(evalsv(ist,jkq)-efermi)/swidth t2=t1*sdelta(stype,x)/swidth do jst=1,nstsv ! loop over phonon branches do i=1,nbph x=(wphq(i,iq)+evalsv(jst,jk)-evalsv(ist,jkq))/swidth t3=t2*sdelta(stype,x)/swidth t4=dble(ephmat(ist,jst,i))**2+aimag(ephmat(ist,jst,i))**2 y(i)=y(i)+wphq(i,iq)*t3*t4 end do end do end do ! end loop over k-points end do !$OMP END DO deallocate(ephmat) !$OMP END PARALLEL call freethd(nthd) ! store in phonon linewidths array gq(1:nbph,iq)=y(1:nbph) ! end loop over phonon q-points end do ! add gq from each MPI process if (np_mpi > 1) then n=nbph*nqpt call mpi_allreduce(mpi_in_place,gq,n,mpi_double_precision,mpi_sum,mpicom, & ierror) end if ! restore the default file extension filext='.OUT' if (mp_mpi) then ! write the phonon linewidths to file call writegamma(gq) ! write electron-phonon coupling constants to file call writelambda(gq) if (task == 241) then write(*,*) write(*,'("Info(ephcouple):")') write(*,'(" wrote electron-phonon matrix elements to EPHMAT.OUT")') end if end if ! deallocate global arrays deallocate(dvsbs) ! deallocate local arrays deallocate(gq,y,ev,a,dvmt,dvir,zfmt,gzfmt) ! restore original input parameters lmaxi=lmaxi0 end subroutine elk-10.4.9/src/PaxHeaders/alpha2f.f900000644000000000000000000000013214762655565014107 xustar0030 mtime=1741380469.139011968 30 atime=1741380467.771004816 30 ctime=1741380469.139011968 elk-10.4.9/src/alpha2f.f900000644002504400250440000001067014762655565016635 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine alpha2f use modmain use modphonon use modtest implicit none ! local variables integer iq,i,j,i1,i2,i3,iw real(8) wmin,wmax,wd,dw real(8) wlog,wrms,lambda,tc real(8) v(3),t1 ! allocatable arrays real(8), allocatable :: gq(:,:),wq(:),w(:) real(8), allocatable :: a2fmr(:,:,:),a2fp(:),a2f(:) complex(8), allocatable :: dq(:,:),ev(:,:),b(:,:) complex(8), allocatable :: a2fmq(:,:,:),a2fmp(:,:) ! initialise universal variables call init0 call init1 call init2 call initph ! allocate local arrays allocate(gq(nbph,nqpt),wq(nbph),w(nwplot)) allocate(a2fmr(nbph,nbph,nqptnr),a2fp(nbph),a2f(nwplot)) allocate(dq(nbph,nbph),ev(nbph,nbph),b(nbph,nbph)) allocate(a2fmq(nbph,nbph,nqpt),a2fmp(nbph,nbph)) ! get the eigenvalues from file call readevalsv ! compute the density of states at the Fermi energy call occupy ! read in the phonon linewidths for each q-point call readgamma(gq) ! loop over phonon q-points do iq=1,nqpt ! find the eigenvalues and eigenvectors of the dynamical matrix call dynev(dynq(:,:,iq),wphq(:,iq),ev) ! construct a complex matrix from the phonon eigenvectors such that its ! eigenvalues squared are the phonon linewidths divided by the frequency do i=1,nbph if (wphq(i,iq) > 1.d-8) then t1=sqrt(abs(gq(i,iq)/wphq(i,iq))) else t1=0.d0 end if do j=1,nbph b(i,j)=t1*conjg(ev(j,i)) end do end do call zgemm('N','N',nbph,nbph,nbph,zone,ev,nbph,b,nbph,zzero,a2fmq(:,:,iq), & nbph) end do ! Fourier transform the matrices to real-space call dynqtor(a2fmq,a2fmr) ! find the minimum and maximum phonon frequencies wmin=minval(wphq(1,:)) wmax=maxval(wphq(nbph,:)) t1=(wmax-wmin)*0.1d0 wmin=wmin-t1 wmax=wmax+t1 wd=wmax-wmin if (wd < 1.d-8) wd=1.d0 dw=wd/dble(nwplot) ! generate energy grid do iw=1,nwplot w(iw)=dw*dble(iw-1)+wmin end do a2f(:)=0.d0 do i1=0,ngrkf-1 v(1)=dble(i1)/dble(ngrkf) do i2=0,ngrkf-1 v(2)=dble(i2)/dble(ngrkf) do i3=0,ngrkf-1 v(3)=dble(i3)/dble(ngrkf) ! compute the dynamical matrix at this particular q-point call dynrtoq(v,dynr,dq) ! find the phonon eigenvalues and eigenvectors call dynev(dq,wq,ev) ! compute the α²F matrix at this particular q-point call dynrtoq(v,a2fmr,a2fmp) ! diagonalise the α²F matrix simultaneously with the dynamical matrix ! (thanks to Matthieu Verstraete and Ryotaro Arita for correcting this) call dynevs(ev,a2fmp,a2fp) ! square the eigenvalues to recover the linewidths divided by the frequency a2fp(:)=a2fp(:)**2 do i=1,nbph t1=(wq(i)-wmin)/dw+1.d0 iw=nint(t1) if ((iw >= 1).and.(iw <= nwplot)) then a2f(iw)=a2f(iw)+a2fp(i) end if end do end do end do end do t1=twopi*(fermidos/2.d0)*dw*dble(ngrkf)**3 if (t1 > 1.d-8) then t1=1.d0/t1 else t1=0.d0 end if a2f(:)=t1*a2f(:) ! smooth Eliashberg function if required if (nswplot > 0) call fsmooth(nswplot,nwplot,a2f) ! write Eliashberg function to file open(50,file='ALPHA2F.OUT',form='FORMATTED') do iw=1,nwplot write(50,'(2G18.10)') w(iw),a2f(iw) end do close(50) write(*,*) write(*,'("Info(alpha2f):")') write(*,'(" Eliashberg function α²F written to ALPHA2F.OUT")') ! compute lambda, logarithmic average frequency, RMS average frequency and ! McMillan-Allen-Dynes superconducting critical temperature call mcmillan(w,a2f,lambda,wlog,wrms,tc) open(50,file='MCMILLAN.OUT',form='FORMATTED') write(50,*) write(50,'("Electron-phonon coupling constant, λ : ",G18.10)') lambda write(50,*) write(50,'("Logarithmic average frequency : ",G18.10)') wlog write(50,*) write(50,'("RMS average frequency : ",G18.10)') wrms write(50,*) write(50,'("Coulomb pseudopotential, μ* : ",G18.10)') mustar write(50,*) write(50,'("McMillan-Allen-Dynes superconducting critical temperature")') write(50,'(" [Eq. 34, Phys. Rev. B 12, 905 (1975)] (kelvin) : ",G18.10)') tc write(50,*) close(50) write(*,*) write(*,'("Info(alpha2f):")') write(*,'(" Electron-phonon coupling constant, λ,")') write(*,'(" logarithmic and RMS average frequencies,")') write(*,'(" and McMillan-Allen-Dynes superconducting critical temperature")') write(*,'(" written to MCMILLAN.OUT")') ! write lambda to test file call writetest(251,'electron-phonon coupling constant, lambda',tol=5.d-2, & rv=lambda) deallocate(gq,wq,w,dq,ev,b) deallocate(a2fmr,a2fp,a2f) deallocate(a2fmq,a2fmp) end subroutine elk-10.4.9/src/PaxHeaders/phlwidth.f900000644000000000000000000000013214762655565014415 xustar0030 mtime=1741380469.140011973 30 atime=1741380467.774004832 30 ctime=1741380469.140011973 elk-10.4.9/src/phlwidth.f900000644002504400250440000000526514762655565017147 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine phlwidth use modmain use modphonon implicit none ! local variables integer iq,i,j,iv real(8) gmin,gmax,t1 ! allocatable arrays real(8), allocatable :: wq(:),gmr(:,:,:),gq(:,:),gp(:,:) complex(8), allocatable :: dq(:,:),ev(:,:),b(:,:) complex(8), allocatable :: gmq(:,:,:),gmp(:,:) ! initialise universal variables call init0 call init2 call initph allocate(wq(nbph),gmr(nbph,nbph,nqptnr),gq(nbph,nqpt),gp(nbph,npp1d)) allocate(dq(nbph,nbph),ev(nbph,nbph),b(nbph,nbph)) allocate(gmq(nbph,nbph,nqpt),gmp(nbph,nbph)) ! read in the phonon linewidths for each q-point call readgamma(gq) ! loop over phonon q-points do iq=1,nqpt ! find the eigenvalues and eigenvectors of the dynamical matrix call dynev(dynq(:,:,iq),wq,ev) ! construct a complex matrix from the phonon eigenvectors such that its ! eigenvalues squared are the phonon linewidths do i=1,nbph t1=sqrt(abs(gq(i,iq))) do j=1,nbph b(i,j)=t1*conjg(ev(j,i)) end do end do call zgemm('N','N',nbph,nbph,nbph,zone,ev,nbph,b,nbph,zzero,gmq(:,:,iq),nbph) end do ! Fourier transform the gamma matrices to real-space call dynqtor(gmq,gmr) ! generate a set of q-point vectors along a path in the Brillouin zone call plotpt1d(bvec,nvp1d,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) gmin=1.d8 gmax=0.d0 ! compute the linewidths along the path do iq=ip01d,npp1d ! compute the dynamical matrix at this particular q-point call dynrtoq(vplp1d(:,iq),dynr,dq) ! find the phonon eigenvalues and eigenvectors call dynev(dq,wq,ev) ! compute the gamma matrix at this particular q-point call dynrtoq(vplp1d(:,iq),gmr,gmp) ! diagonalise the gamma matrix simultaneously with the dynamical matrix call dynevs(ev,gmp,gp(:,iq)) ! square the eigenvalues to recover the linewidths gp(:,iq)=gp(:,iq)**2 do i=1,nbph t1=gp(i,iq) if (t1 < gmin) gmin=t1 if (t1 > gmax) gmax=t1 end do end do t1=(gmax-gmin)*0.5d0 gmin=gmin-t1 gmax=gmax+t1 ! output the vertex location lines open(50,file='PHLWLINES.OUT',form='FORMATTED') do iv=1,nvp1d write(50,'(2G18.10)') dvp1d(iv),gmin write(50,'(2G18.10)') dvp1d(iv),gmax write(50,*) end do close(50) ! output the phonon linewidth dispersion open(50,file='PHLWIDTH.OUT',form='FORMATTED') do i=1,nbph do iq=ip01d,npp1d write(50,'(2G18.10)') dpp1d(iq),gp(i,iq) end do write(50,*) end do close(50) write(*,*) write(*,'("Info(phlwidth):")') write(*,'(" phonon linewidth dispersion written to PHLWIDTH.OUT")') write(*,'(" vertex location lines written to PHLWLINES.OUT")') deallocate(wq,gmr,gq,gp,dq,ev,b,gmq,gmp) end subroutine elk-10.4.9/src/PaxHeaders/writephn.f900000644000000000000000000000013214762655565014432 xustar0030 mtime=1741380469.142011983 30 atime=1741380467.776004842 30 ctime=1741380469.142011983 elk-10.4.9/src/writephn.f900000644002504400250440000000255214762655565017160 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writephn use modmain use modphonon implicit none ! local variables integer iq,i,j,is,ia,ip ! allocatable arrays real(8), allocatable :: wq(:) complex(8), allocatable :: dq(:,:),ev(:,:) ! initialise universal variables call init0 call init2 call initph allocate(wq(nbph),dq(nbph,nbph),ev(nbph,nbph)) open(50,file='PHONON.OUT',form='FORMATTED') do iq=1,nphwrt call dynrtoq(vqlwrt(:,iq),dynr,dq) call dynev(dq,wq,ev) write(50,*) write(50,'(I6,3G18.10," : q-point, vqlwrt")') iq,vqlwrt(:,iq) do j=1,nbph write(50,*) write(50,'(I6,G18.10," : mode, frequency")') j,wq(j) i=0 do is=1,nspecies do ia=1,natoms(is) do ip=1,3 i=i+1 if (i == 1) then write(50,'(3I4,2G18.10," : species, atom, polarisation, & &eigenvector")') is,ia,ip,ev(i,j) else write(50,'(3I4,2G18.10)') is,ia,ip,ev(i,j) end if end do end do end do end do write(50,*) end do close(50) write(*,*) write(*,'("Info(writephn): phonon frequencies and eigenvectors written to & &PHONON.OUT")') write(*,'(" for all q-vectors in the phwrite list")') deallocate(wq,dq,ev) end subroutine elk-10.4.9/src/PaxHeaders/initeph.f900000644000000000000000000000013214762655565014232 xustar0030 mtime=1741380469.143011989 30 atime=1741380467.779004858 30 ctime=1741380469.143011989 elk-10.4.9/src/initeph.f900000644002504400250440000000624114762655565016757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine initeph use modmain use modphonon use modbog implicit none ! local variables integer iq,ik,n,i ! automatic arrays complex(8) u(nstsv,nstsv),v(nstsv,nstsv) complex(8) w(nbph,nbph),x(nbph,nbph),y(nbph) complex(8) ev(nbph,nbph) ! allocatable arrays complex(8), allocatable :: ephmat(:,:,:) ! combined target array for fermionic and bosonic density matrices if (allocated(duvwx)) deallocate(duvwx) n=2*nstsv*nstsv*nkpt+2*nbph*nbph*nqpt allocate(duvwx(n)) !------------------------------! ! electronic variables ! !------------------------------! if (allocated(evaluv)) deallocate(evaluv) allocate(evaluv(nstsv,nkpt)) if (allocated(vnorm)) deallocate(vnorm) allocate(vnorm(nstsv,nkpt)) ! associate the electronic density matrices with target dvv(1:nstsv,1:nstsv,1:nkpt) => duvwx(1:) i=nstsv*nstsv*nkpt+1 duv(1:nstsv,1:nstsv,1:nkpt) => duvwx(i:) i=i+nstsv*nstsv*nkpt if (task == 270) then ! initialise the density matrices to random numbers dvv(:,:,:)=0.d0 duv(:,:,:)=0.d0 do ik=1,nkpt call rndevsv(1.d0,dvv(:,:,ik)) call rndevsv(1.d0,duv(:,:,ik)) end do else do ik=1,nkpt ! get the eigenvalues from file call getevaluv(ik,evaluv(:,ik)) ! get the eigenvectors from file call getevecuv(ik,vkl(:,ik),u,v) ! calculate the density matrices call dmatuv(nstsv,efermi,evalsv(:,ik),u,v,dvv(:,:,ik),duv(:,:,ik), & vnorm(:,ik)) end do end if !----------------------------! ! phononic variables ! !----------------------------! ! initialise the phonon dynamical matrices call initph ! find the eigenvalues of the dynamical matrices and store in global array do iq=1,nqpt call dynev(dynq(:,:,iq),wphq(:,iq),ev) end do if (allocated(evalwx)) deallocate(evalwx) allocate(evalwx(nbph,nqpt)) if (allocated(xnorm)) deallocate(xnorm) allocate(xnorm(nbph,nqpt)) ! associate the phononic density matrices with target dxx(1:nbph,1:nbph,1:nqpt) => duvwx(i:) i=i+nbph*nbph*nqpt dwx(1:nbph,1:nbph,1:nqpt) => duvwx(i:) if (task == 270) then ! zero the density matrices dxx(:,:,:)=0.d0 dwx(:,:,:)=0.d0 else do iq=1,nqpt ! get the eigenvalues from file call getevalwx(iq,evalwx(:,iq)) ! get the eigenvectors from file call getevecwxy(iq,w,x,y) ! calculate the density matrices call dmatwx(nbph,w,x,dxx(:,:,iq),dwx(:,:,iq),xnorm(:,iq)) end do end if !-----------------------------------! ! electron-phonon variables ! !-----------------------------------! if (any(task == [270,271])) then ! allocate the electron-phonon matrix elements array if (allocated(ephmkq)) deallocate(ephmkq) allocate(ephmkq(nstsv,nstsv,nbph,nkptnr,nqpt)) ! read the matrix elements from file and store in global array allocate(ephmat(nstsv,nstsv,nbph)) do iq=1,nqpt do ik=1,nkptnr call getephmat(iq,ik,ephmat) ephmkq(:,:,:,ik,iq)=ephmat(:,:,:) end do ! zero the electron-phonon coupling for phonon small phonon frequencies do i=1,nbph if (wphq(i,iq) < wphcut) ephmkq(:,:,i,:,iq)=0.d0 end do end do deallocate(ephmat) end if end subroutine elk-10.4.9/src/PaxHeaders/dynsymapp.f900000644000000000000000000000013214762655565014616 xustar0030 mtime=1741380469.144011994 30 atime=1741380467.782004874 30 ctime=1741380469.144011994 elk-10.4.9/src/dynsymapp.f900000644002504400250440000000357114762655565017346 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2005-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynsymapp(isym,vpl,dq,dqs) use modmain use modphonon implicit none ! arguments integer, intent(in) :: isym real(8), intent(in) :: vpl(3) complex(8), intent(in) :: dq(nbph,nbph) complex(8), intent(inout) :: dqs(nbph,nbph) ! local variables integer is,ia,ja,ias,jas integer lspl,ilspl,i,j,k,l,m,n real(8) sl(3,3),sic(3,3),v(3),t1 real(8) a(3,3),b(3,3),c(3,3) complex(8) z1 ! automatic arrays integer map(natmtot) complex(8) zph(natmtot) ! index to spatial rotation in lattice point group lspl=lsplsymc(isym) ! the inverse of the spatial symmetry ilspl=isymlat(lspl) ! symmetry matrix in lattice coordinates sl(:,:)=dble(symlat(:,:,lspl)) ! inverse symmetry matrix in Cartesian coordinates sic(:,:)=symlatc(:,:,ilspl) ! operate with symmetry matrix on vpl call r3mtv(sl,vpl,v) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) ! equivalent atom with this symmetry ja=ieqatom(ia,is,isym) jas=idxas(ja,is) map(ias)=jas ! phase factor t1=twopi*dot_product(vpl(:),atposl(:,ia,is)) z1=cmplx(cos(t1),sin(t1),8) zph(ias)=z1 t1=-twopi*dot_product(v(:),atposl(:,ja,is)) zph(ias)=z1*cmplx(cos(t1),sin(t1),8) end do end do ! rotate and phase-shift dynamical matrix with symmetry do ias=1,natmtot i=3*(ias-1) k=3*(map(ias)-1) do jas=1,natmtot j=3*(jas-1) l=3*(map(jas)-1) do m=1,3 do n=1,3 a(m,n)=dble(dq(i+m,j+n)) b(m,n)=aimag(dq(i+m,j+n)) end do end do call r3mm(sic,a,c) call r3mmt(c,sic,a) call r3mm(sic,b,c) call r3mmt(c,sic,b) z1=zph(ias)*conjg(zph(jas)) do m=1,3 do n=1,3 dqs(k+m,l+n)=dqs(k+m,l+n)+z1*cmplx(a(m,n),b(m,n),8) end do end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/dynsym.f900000644000000000000000000000013214762655565014115 xustar0030 mtime=1741380469.146012004 30 atime=1741380467.784004884 30 ctime=1741380469.146012004 elk-10.4.9/src/dynsym.f900000644002504400250440000000232014762655565016634 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynsym(vpl,dq) use modmain use modphonon implicit none ! arguments real(8), intent(in) :: vpl(3) complex(8), intent(inout) :: dq(nbph,nbph) ! local variables integer isym,lspl,i,j,n real(8) v1(3),v2(3),s(3,3),t1 ! automatic arrays complex(8) dqs(nbph,nbph) ! map input vector to first Brillouin zone v1(:)=vpl(:) call vecfbz(epslat,bvec,v1) n=0 dqs(:,:)=0.d0 ! use the symmetries which leave vpl invariant do isym=1,nsymcrys if (.not.tv0symc(isym)) cycle lspl=lsplsymc(isym) s(:,:)=dble(symlat(:,:,lspl)) call r3mtv(s,v1,v2) t1=abs(v1(1)-v2(1))+abs(v1(2)-v2(2))+abs(v1(3)-v2(3)) if (t1 < epslat) then call dynsymapp(isym,v1,dq,dqs) n=n+1 end if end do if (n == 0) then write(*,*) write(*,'("Error(dynsym): no symmetries leave vpl invariant")') write(*,*) stop end if t1=1.d0/dble(n) dq(:,:)=t1*dqs(:,:) ! make the dynamical matrix Hermitian do j=1,nbph do i=1,j-1 dq(i,j)=0.5d0*(dq(i,j)+conjg(dq(j,i))) dq(j,i)=conjg(dq(i,j)) end do dq(j,j)=dble(dq(j,j)) end do end subroutine elk-10.4.9/src/PaxHeaders/dynev.f900000644000000000000000000000013214762655565013717 xustar0030 mtime=1741380469.147012009 30 atime=1741380467.787004899 30 ctime=1741380469.147012009 elk-10.4.9/src/dynev.f900000644002504400250440000000236014762655565016442 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynev(dq,wq,ev) use modmain use modphonon implicit none ! arguments complex(8), intent(in) :: dq(nbph,nbph) real(8), intent(out) :: wq(nbph) complex(8), intent(out) :: ev(nbph,nbph) ! local variables integer is,ia,js,ja integer ip,jp,i,j real(8) t1 ev(:,:)=0.d0 i=0 do is=1,nspecies do ia=1,natoms(is) do ip=1,3 i=i+1 j=0 do js=1,nspecies ! mass factor if ((spmass(is) <= 0.d0).or.(spmass(js) <= 0.d0)) then ! infinite mass t1=0.d0 else t1=1.d0/sqrt(spmass(is)*spmass(js)) end if do ja=1,natoms(js) do jp=1,3 j=j+1 if (i <= j) then ! use Hermitian average of dynamical matrix ev(i,j)=0.5d0*t1*(dq(i,j)+conjg(dq(j,i))) end if end do end do end do end do end do end do ! find the eigenvalues and eigenvectors of the dynamical matrix call eveqnzh(nbph,nbph,ev,wq) do i=1,nbph if (wq(i) >= 0.d0) then wq(i)=sqrt(wq(i)) else wq(i)=-sqrt(abs(wq(i))) end if end do end subroutine elk-10.4.9/src/PaxHeaders/dynevs.f900000644000000000000000000000013214762655565014102 xustar0030 mtime=1741380469.148012015 30 atime=1741380467.790004915 30 ctime=1741380469.148012015 elk-10.4.9/src/dynevs.f900000644002504400250440000000154214762655565016626 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynevs(ev,dq,wq) use modmain use modphonon implicit none ! arguments complex(8), intent(in) :: ev(nbph,nbph) complex(8), intent(inout) :: dq(nbph,nbph) real(8), intent(out) :: wq(nbph) ! local variables integer i,j,k real(8) t1,t2 complex(8) z1 ! automatic arrays real(8) wt(nbph) ! find the eigenvalues and eigenvectors of the matrix dq call eveqnzh(nbph,nbph,dq,wq) ! reorder eigenvalues so that the eigenvectors maximally overlap with ev wt(:)=wq(:) do i=1,nbph j=1 t1=0.d0 do k=1,nbph z1=dot_product(ev(:,i),dq(:,k)) t2=dble(z1)**2+aimag(z1)**2 if (t2 > t1) then j=k t1=t2 end if end do wq(i)=wt(j) end do end subroutine elk-10.4.9/src/PaxHeaders/readbec.f900000644000000000000000000000013214762655565014157 xustar0030 mtime=1741380469.150012025 30 atime=1741380467.792004926 30 ctime=1741380469.150012025 elk-10.4.9/src/readbec.f900000644002504400250440000000151614762655565016704 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readbec use modmain use modphonon implicit none ! local variables logical exist integer is,ia,ias,ip,jp character(256) fext do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) do ip=1,3 call becfext(is,ia,ip,fext) inquire(file='BEC'//trim(fext),exist=exist) if (.not.exist) then write(*,*) write(*,'("Error(readbec): file not found :")') write(*,'(A)') ' BEC'//trim(fext) write(*,*) stop end if open(50,file='BEC'//trim(fext),status='OLD',form='FORMATTED') do jp=1,3 read(50,*) bec(ip,jp,ias) end do close(50) end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/initph.f900000644000000000000000000000013014762655565014063 xustar0029 mtime=1741380469.15101203 30 atime=1741380467.795004941 29 ctime=1741380469.15101203 elk-10.4.9/src/initph.f900000644002504400250440000000161614762655565016613 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine initph use modmain use modphonon implicit none ! allocate global arrays if (allocated(dynq)) deallocate(dynq) allocate(dynq(nbph,nbph,nqpt)) if (allocated(dynr)) deallocate(dynr) allocate(dynr(nbph,nbph,nqptnr)) if (allocated(wphq)) deallocate(wphq) allocate(wphq(nbph,nqpt)) ! read in the dynamical matrices call readdyn ! apply the acoustic sum rule call sumrule ! if the non-analytic term is required then read in the Born effective charge ! tensor for each atom as well as the static dielectric tensor if (allocated(bec)) deallocate(bec) if (tphnat) then allocate(bec(3,3,natmtot)) call readbec call readepsw0 end if ! Fourier transform the dynamical matrices to real-space call dynqtor(dynq,dynr) end subroutine elk-10.4.9/src/PaxHeaders/olpaloq.f900000644000000000000000000000013214762655565014241 xustar0030 mtime=1741380469.152012036 30 atime=1741380467.798004957 30 ctime=1741380469.152012036 elk-10.4.9/src/olpaloq.f900000644002504400250440000000170514762655565016766 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine olpaloq(is,ias,ngp,ngpq,apwalm,apwalmq,ld,oq) use modmain implicit none ! arguments integer, intent(in) :: is,ias integer, intent(in) :: ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: oq(ld,*) ! local variables integer ilo,io,l,lm integer i0,j0,i,j real(8) t1 do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 i=idxlo(lm,ilo,ias) i0=ngpq+i j0=ngp+i do io=1,apword(l,is) t1=oalo(io,ilo,ias) do i=1,ngpq oq(i,j0)=oq(i,j0)+t1*conjg(apwalmq(i,io,lm)) end do do j=1,ngp oq(i0,j)=oq(i0,j)+t1*apwalm(j,io,lm) end do end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/hmlaloq.f900000644000000000000000000000013214762655565014227 xustar0030 mtime=1741380469.153012041 30 atime=1741380467.800004968 30 ctime=1741380469.153012041 elk-10.4.9/src/hmlaloq.f900000644002504400250440000000261214762655565016752 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmlaloq(is,ias,ngp,ngpq,apwalm,apwalmq,ld,hq) use modmain implicit none ! arguments integer, intent(in) :: is,ias integer, intent(in) :: ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: hq(ld,*) ! local variables integer io,ilo integer l0,l1,l2,l3 integer lm1,lm3,lma,lmb integer i0,j0,i,j complex(8) z1 do ilo=1,nlorb(is) l1=lorbl(ilo,is) do lm1=l1**2+1,(l1+1)**2 i=idxlo(lm1,ilo,ias) i0=ngpq+i j0=ngp+i do l3=0,lmaxapw if (mod(l1+l3,2) == 0) then; l0=0; else; l0=1; end if do lm3=l3**2+1,(l3+1)**2 do io=1,apword(l3,is) z1=0.d0 do l2=l0,lmaxo,2 lma=l2**2+1; lmb=lma+2*l2 z1=z1+sum(gntyry(lma:lmb,lm3,lm1)*hloa(lma:lmb,io,l3,ilo,ias)) end do if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then do i=1,ngpq hq(i,j0)=hq(i,j0)+conjg(z1*apwalmq(i,io,lm3)) end do do j=1,ngp hq(i0,j)=hq(i0,j)+z1*apwalm(j,io,lm3) end do end if end do end do end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/gendcfun.f900000644000000000000000000000013214762655565014363 xustar0030 mtime=1741380469.155012051 30 atime=1741380467.803004983 30 ctime=1741380469.155012051 elk-10.4.9/src/gendcfun.f900000644002504400250440000000121114762655565017100 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendcfun use modmain use modphonon implicit none ! local variables integer ig real(8) v1,v2,v3,t1,t2 complex(8) z1 v1=atposc(1,iaph,isph); v2=atposc(2,iaph,isph); v3=atposc(3,iaph,isph) do ig=1,ngvec t1=vgqc(1,ig)*v1+vgqc(2,ig)*v2+vgqc(3,ig)*v3 t2=ffacgq(ig,isph)*vgqc(ipph,ig) z1=t2*cmplx(sin(t1),cos(t1),8) dcfunig(ig)=z1 dcfunir(igfft(ig))=z1 end do dcfunir(igfft(ngvec+1:ngtot))=0.d0 call zfftifc(3,ngridg,1,dcfunir) end subroutine elk-10.4.9/src/PaxHeaders/dmatch.f900000644000000000000000000000013214762655565014032 xustar0030 mtime=1741380469.156012056 30 atime=1741380467.805004994 30 ctime=1741380469.156012056 elk-10.4.9/src/dmatch.f900000644002504400250440000000137714762655565016564 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dmatch(ias,ip,ngp,vgpc,apwalm,dapwalm) use modmain implicit none ! arguments integer, intent(in) :: ias,ip,ngp real(8), intent(in) :: vgpc(3,ngkmax) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) complex(8), intent(out) :: dapwalm(ngkmax,apwordmax,lmmaxapw) ! local variables integer is,l,lm,io ! take derivative with respect to atomic displacement is=idxis(ias) do l=0,lmaxapw do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) dapwalm(1:ngp,io,lm)=vgpc(ip,1:ngp)*zi*apwalm(1:ngp,io,lm,ias) end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/dolpistl.f900000644000000000000000000000013214762655565014424 xustar0030 mtime=1741380469.157012062 30 atime=1741380467.807005004 30 ctime=1741380469.157012062 elk-10.4.9/src/dolpistl.f900000644002504400250440000000126514762655565017152 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dolpistl(ngp,ngpq,igpig,igpqig,ld,od) use modmain use modphonon implicit none ! arguments integer, intent(in) :: ngp,ngpq integer, intent(in) :: igpig(ngkmax),igpqig(ngkmax) integer, intent(in) :: ld complex(8), intent(out) :: od(ld,*) ! local variables integer ig,j1,j2,j3,i,j do j=1,ngp ig=igpig(j) j1=ivg(1,ig); j2=ivg(2,ig); j3=ivg(3,ig) do i=1,ngpq ig=igpqig(i) ig=ivgig(ivg(1,ig)-j1,ivg(2,ig)-j2,ivg(3,ig)-j3) od(i,j)=dcfunig(ig) end do end do end subroutine elk-10.4.9/src/PaxHeaders/gendvsig.f900000644000000000000000000000013114762655565014377 xustar0030 mtime=1741380469.158012067 29 atime=1741380467.81000502 30 ctime=1741380469.158012067 elk-10.4.9/src/gendvsig.f900000644002504400250440000000111414762655565017117 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendvsig use modmain use modphonon implicit none ! allocatable arrays complex(8), allocatable :: zfft(:) allocate(zfft(ngtot)) zfft(1:ngtot)=dvsir(1:ngtot)*cfunir(1:ngtot) zfft(1:ngtot)=zfft(1:ngtot)+vsir(1:ngtot)*dcfunir(1:ngtot) ! Fourier transform to G+q-space call zfftifc(3,ngridg,-1,zfft) ! store in global array dvsig(1:ngvc)=zfft(igfft(1:ngvc)) deallocate(zfft) end subroutine elk-10.4.9/src/PaxHeaders/drhomagsh.f900000644000000000000000000000013114762655565014545 xustar0030 mtime=1741380469.160012077 29 atime=1741380467.81200503 30 ctime=1741380469.160012077 elk-10.4.9/src/drhomagsh.f900000644002504400250440000000157214762655565017275 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine drhomagsh use modmain use modphonon use modomp implicit none ! local variables integer idm,is,ias,nthd call holdthd(2*natmtot,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(is,idm) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) ! convert the density derivative to spherical harmonics call zfshtip(nrcmt(is),nrcmti(is),drhomt(:,ias)) end do !$OMP END DO NOWAIT do idm=1,ndmag !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) ! convert the magnetisation derivative to spherical harmonics call zfshtip(nrcmt(is),nrcmti(is),dmagmt(:,ias,idm)) end do !$OMP END DO end do !$OMP END PARALLEL call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/dpotcoul.f900000644000000000000000000000013214762655565014423 xustar0030 mtime=1741380469.161012083 30 atime=1741380467.815005046 30 ctime=1741380469.161012083 elk-10.4.9/src/dpotcoul.f900000644002504400250440000000164114762655565017147 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dpotcoul use modmain use modphonon implicit none ! local variables integer np ! allocatable arrays complex(8), allocatable :: gzfmt(:,:) ! solve the complex Poisson's equation in the muffin-tins call genzvclmt(nrmt,nrmti,nrmtmax,rlmt,wprmt,npmtmax,drhomt,dvclmt) ! calculate the gradient of the nuclear potential allocate(gzfmt(npmtmax,3)) call gradzvcln(isph,gzfmt) ! subtract gradient component corresponding to the phonon polarisation np=npmt(isph) dvclmt(1:np,iasph)=dvclmt(1:np,iasph)-gzfmt(1:np,ipph) deallocate(gzfmt) ! solve Poisson's equation in the entire unit cell call zpotcoul(0,nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gqc,gclgq, & ngvec,jlgqrmt,ylmgq,sfacgq,drhoir,npmtmax,dvclmt,dvclir) end subroutine elk-10.4.9/src/PaxHeaders/dpotks.f900000644000000000000000000000013214762655565014076 xustar0030 mtime=1741380469.162012088 30 atime=1741380467.817005056 30 ctime=1741380469.162012088 elk-10.4.9/src/dpotks.f900000644002504400250440000000260414762655565016622 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dpotks use modmain use modphonon use modomp implicit none ! local variables integer is,ias,np,nthd ! convert density derivative to spherical coordinates call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call zbshtip(nrmt(is),nrmti(is),drhomt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! compute the exchange-correlation potential derivative call dpotxc ! convert density derivative to spherical harmonics call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call zfshtip(nrmt(is),nrmti(is),drhomt(:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! generate the Coulomb potential derivative call dpotcoul ! add to the Kohn-Sham potential derivative do ias=1,natmtot is=idxis(ias) np=npmt(is) dvsmt(1:np,ias)=dvsmt(1:np,ias)+dvclmt(1:np,ias) end do dvsir(1:ngtot)=dvsir(1:ngtot)+dvclir(1:ngtot) ! remove the gradient part of the potential derivative for displaced muffin-tin np=npmt(isph) dvsmt(1:np,iasph)=dvsmt(1:np,iasph)+gvsmt(1:np) end subroutine elk-10.4.9/src/PaxHeaders/dhmlistl.f900000644000000000000000000000013214762655565014412 xustar0030 mtime=1741380469.163012093 30 atime=1741380467.820005072 30 ctime=1741380469.163012093 elk-10.4.9/src/dhmlistl.f900000644002504400250440000000171114762655565017134 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dhmlistl(ngp,ngpq,igpig,igpqig,vgpc,vgpqc,ld,dh) use modmain use modphonon implicit none ! arguments integer, intent(in) :: ngp,ngpq integer, intent(in) :: igpig(ngkmax),igpqig(ngkmax) real(8), intent(in) :: vgpc(3,ngkmax),vgpqc(3,ngkmax) integer, intent(in) :: ld complex(8), intent(out) :: dh(ld,*) ! local variables integer j1,j2,j3,ig,i,j real(8) v1,v2,v3,t1 do j=1,ngp ig=igpig(j) j1=ivg(1,ig); j2=ivg(2,ig); j3=ivg(3,ig) v1=0.5d0*vgpc(1,j); v2=0.5d0*vgpc(2,j); v3=0.5d0*vgpc(3,j) do i=1,ngpq ig=igpqig(i) ig=ivgig(ivg(1,ig)-j1,ivg(2,ig)-j2,ivg(3,ig)-j3) if (ig <= ngvc) then t1=vgpqc(1,i)*v1+vgpqc(2,i)*v2+vgpqc(3,i)*v3 dh(i,j)=dvsig(ig)+t1*dcfunig(ig) else dh(i,j)=0.d0 end if end do end do end subroutine elk-10.4.9/src/PaxHeaders/dolpalo.f900000644000000000000000000000013214762655565014224 xustar0030 mtime=1741380469.164012098 30 atime=1741380467.822005083 30 ctime=1741380469.164012098 elk-10.4.9/src/dolpalo.f900000644002504400250440000000165014762655565016750 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dolpalo(is,ias,ngp,ngpq,dapwalm,dapwalmq,ld,od) use modmain use modphonon implicit none ! arguments integer, intent(in) :: is,ias,ngp,ngpq complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: od(ld,*) ! local variables integer ilo,io,l,lm,i,j,k real(8) t1 if (ias /= iasph) return do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 k=idxlo(lm,ilo,ias) i=ngpq+k j=ngp+k do io=1,apword(l,is) t1=oalo(io,ilo,ias) od(1:ngpq,j)=od(1:ngpq,j)+t1*conjg(dapwalmq(1:ngpq,io,lm)) od(i,1:ngp)=od(i,1:ngp)+t1*dapwalm(1:ngp,io,lm) end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/dhmlalo.f900000644000000000000000000000013214762655565014212 xustar0030 mtime=1741380469.166012109 30 atime=1741380467.825005098 30 ctime=1741380469.166012109 elk-10.4.9/src/dhmlalo.f900000644002504400250440000000432614762655565016741 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dhmlalo(is,ias,ngp,ngpq,apwalm,apwalmq,dapwalm,dapwalmq,ld,dh) use modmain use modphonon implicit none ! arguments integer, intent(in) :: is,ias,ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: dh(ld,*) ! local variables integer io,ilo integer l0,l1,l2,l3 integer lm1,lm3,lma,lmb integer i0,j0,i,j complex(8) z1 do ilo=1,nlorb(is) l1=lorbl(ilo,is) do lm1=l1**2+1,(l1+1)**2 i=idxlo(lm1,ilo,ias) i0=ngpq+i j0=ngp+i do l3=0,lmaxapw if (mod(l1+l3,2) == 0) then; l0=0; else; l0=1; end if do lm3=l3**2+1,(l3+1)**2 do io=1,apword(l3,is) z1=0.d0 do l2=l0,lmaxo,2 lma=l2**2+1; lmb=lma+2*l2 z1=z1+sum(gntyyy(lma:lmb,lm3,lm1)*dhloa(lma:lmb,io,l3,ilo,ias)) end do if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then do i=1,ngpq dh(i,j0)=dh(i,j0)+conjg(z1*apwalmq(i,io,lm3)) end do do j=1,ngp dh(i0,j)=dh(i0,j)+z1*apwalm(j,io,lm3) end do end if end do end do end do if (ias == iasph) then do l3=0,lmaxapw if (mod(l1+l3,2) == 0) then; l0=0; else; l0=1; end if do lm3=l3**2+1,(l3+1)**2 do io=1,apword(l3,is) z1=0.d0 do l2=l0,lmaxo,2 lma=l2**2+1; lmb=lma+2*l2 z1=z1+sum(gntyry(lma:lmb,lm3,lm1)*hloa(lma:lmb,io,l3,ilo,ias)) end do if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then do i=1,ngpq dh(i,j0)=dh(i,j0)+conjg(z1*dapwalmq(i,io,lm3)) end do do j=1,ngp dh(i0,j)=dh(i0,j)+z1*dapwalm(j,io,lm3) end do end if end do end do end do end if end do end do end subroutine elk-10.4.9/src/PaxHeaders/dhmllolo.f900000644000000000000000000000013214762655565014404 xustar0030 mtime=1741380469.167012114 30 atime=1741380467.827005109 30 ctime=1741380469.167012114 elk-10.4.9/src/dhmllolo.f900000644002504400250440000000177114762655565017134 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dhmllolo(is,ias,ngp,ngpq,ld,dh) use modmain use modphonon implicit none ! arguments integer, intent(in) :: is,ias integer, intent(in) :: ngp,ngpq integer, intent(in) :: ld complex(8), intent(out) :: dh(ld,*) ! local variables integer ilo,jlo,i,j integer l0,l1,l2,l3 integer lm1,lm3,lma,lmb complex(8) z1 do jlo=1,nlorb(is) l3=lorbl(jlo,is) do lm3=l3**2+1,(l3+1)**2 j=ngp+idxlo(lm3,jlo,ias) do ilo=1,nlorb(is) l1=lorbl(ilo,is) if (mod(l1+l3,2) == 0) then; l0=0; else; l0=1; end if do lm1=l1**2+1,(l1+1)**2 i=ngpq+idxlo(lm1,ilo,ias) z1=0.d0 do l2=l0,lmaxo,2 lma=l2**2+1; lmb=(l2+1)**2 z1=z1+sum(gntyyy(lma:lmb,lm3,lm1)*dhlolo(lma:lmb,jlo,ilo,ias)) end do dh(i,j)=z1 end do end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/olpaaq.f900000644000000000000000000000013214762655565014047 xustar0030 mtime=1741380469.168012119 30 atime=1741380467.830005124 30 ctime=1741380469.168012119 elk-10.4.9/src/olpaaq.f900000644002504400250440000000151314762655565016571 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine olpaaq(is,ngp,ngpq,apwalm,apwalmq,ld,oq) use modmain implicit none ! arguments integer, intent(in) :: is,ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: oq(*) ! local variables integer io,l,lm,i ! automatic arrays complex(8) a(lmoapw(is),ngpq),b(lmoapw(is),ngp) i=0 do l=0,lmaxapw do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) i=i+1 a(i,1:ngpq)=apwalmq(1:ngpq,io,lm) b(i,1:ngp)=apwalm(1:ngp,io,lm) end do end do end do call zmmab(lmoapw(is),ngpq,ngp,a,b,ld,oq) end subroutine elk-10.4.9/src/PaxHeaders/dolpaa.f900000644000000000000000000000013214762655565014032 xustar0030 mtime=1741380469.169012124 30 atime=1741380467.832005135 30 ctime=1741380469.169012124 elk-10.4.9/src/dolpaa.f900000644002504400250440000000240114762655565016551 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dolpaa(is,ias,ngp,ngpq,apwalm,apwalmq,dapwalm,dapwalmq,ld,od) use modmain use modphonon implicit none ! arguments integer, intent(in) :: is,ias integer, intent(in) :: ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: od(*) ! local variables integer io,l,lm,i ! automatic arrays complex(8) a(lmoapw(is),ngpq),b(lmoapw(is),ngp) if (ias /= iasph) return i=0 do l=0,lmaxapw do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) i=i+1 a(i,1:ngpq)=apwalmq(1:ngpq,io,lm) b(i,1:ngp)=dapwalm(1:ngp,io,lm) end do end do end do call zmmab(lmoapw(is),ngpq,ngp,a,b,ld,od) i=0 do l=0,lmaxapw do lm=l**2+1,(l+1)**2 do io=1,apword(l,is) i=i+1 a(i,1:ngpq)=dapwalmq(1:ngpq,io,lm) b(i,1:ngp)=apwalm(1:ngp,io,lm) end do end do end do call zmmab(lmoapw(is),ngpq,ngp,a,b,ld,od) end subroutine elk-10.4.9/src/PaxHeaders/dhmlaa.f900000644000000000000000000000013214762655565014020 xustar0030 mtime=1741380469.171012135 30 atime=1741380467.834005145 30 ctime=1741380469.171012135 elk-10.4.9/src/dhmlaa.f900000644002504400250440000000472014762655565016545 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dhmlaa(is,ias,ngp,ngpq,apwalm,apwalmq,dapwalm,dapwalmq,ld,dh) use modmain use modphonon implicit none ! arguments integer, intent(in) :: is,ias integer, intent(in) :: ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: dh(*) ! local variables integer io,jo,i integer l0,l1,l2,l3 integer lm1,lm3,lma,lmb complex(8) z1 ! automatic arrays complex(8) y1(ngp),a1(lmoapw(is),ngpq),b1(lmoapw(is),ngp) complex(8) y2(ngp),a2(lmoapw(is),ngpq),b2(lmoapw(is),ngp) i=0 do l1=0,lmaxapw do lm1=l1**2+1,(l1+1)**2 do io=1,apword(l1,is) i=i+1 y1(1:ngp)=0.d0 do l3=0,lmaxapw if (mod(l1+l3,2) == 0) then; l0=0; else; l0=1; end if do lm3=l3**2+1,(l3+1)**2 do jo=1,apword(l3,is) z1=0.d0 do l2=l0,lmaxo,2 lma=l2**2+1; lmb=lma+2*l2 z1=z1+sum(gntyyy(lma:lmb,lm3,lm1)*dhaa(lma:lmb,jo,l3,io,l1,ias)) end do if (abs(dble(z1))+abs(aimag(z1)) > 1.d-12) then call zaxpy(ngp,z1,apwalm(:,jo,lm3),1,y1,1) end if end do end do end do if (ias == iasph) then y2(1:ngp)=0.d0 do l3=0,lmaxapw if (mod(l1+l3,2) == 0) then; l0=0; else; l0=1; end if do lm3=l3**2+1,(l3+1)**2 do jo=1,apword(l3,is) z1=0.d0 do l2=l0,lmaxo,2 lma=l2**2+1; lmb=lma+2*l2 z1=z1+sum(gntyry(lma:lmb,lm3,lm1)*haa(lma:lmb,jo,l3,io,l1,ias)) end do if (abs(dble(z1))+abs(aimag(z1)) > 1.d-12) then call zaxpy(ngp,z1,dapwalm(:,jo,lm3),1,y1,1) call zaxpy(ngp,z1,apwalm(:,jo,lm3),1,y2,1) end if end do end do end do a2(i,1:ngpq)=dapwalmq(1:ngpq,io,lm1) b2(i,1:ngp)=y2(1:ngp) end if a1(i,1:ngpq)=apwalmq(1:ngpq,io,lm1) b1(i,1:ngp)=y1(1:ngp) end do end do end do call zmmab(lmoapw(is),ngpq,ngp,a1,b1,ld,dh) if (ias == iasph) then call zmmab(lmoapw(is),ngpq,ngp,a2,b2,ld,dh) end if end subroutine elk-10.4.9/src/PaxHeaders/hmlaaq.f900000644000000000000000000000013014762655565014033 xustar0029 mtime=1741380469.17201214 30 atime=1741380467.837005161 29 ctime=1741380469.17201214 elk-10.4.9/src/hmlaaq.f900000644002504400250440000000267114762655565016565 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hmlaaq(is,ias,ngp,ngpq,apwalm,apwalmq,ld,hq) use modmain implicit none integer, intent(in) :: is,ias,ngp,ngpq complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) integer, intent(in) :: ld complex(8), intent(inout) :: hq(*) ! local variables integer io,jo,i integer l0,l1,l2,l3 integer lm1,lm3,lma,lmb complex(8) z1 ! automatic arrays complex(8) y(ngp),a(lmoapw(is),ngpq),b(lmoapw(is),ngp) i=0 do l1=0,lmaxapw do lm1=l1**2+1,(l1+1)**2 do io=1,apword(l1,is) i=i+1 y(:)=0.d0 do l3=0,lmaxapw if (mod(l1+l3,2) == 0) then; l0=0; else; l0=1; end if do lm3=l3**2+1,(l3+1)**2 do jo=1,apword(l3,is) z1=0.d0 ! kinetic and potential contribution do l2=l0,lmaxo,2 lma=l2**2+1; lmb=lma+2*l2 z1=z1+sum(gntyry(lma:lmb,lm3,lm1)*haa(lma:lmb,jo,l3,io,l1,ias)) end do if (abs(dble(z1))+abs(aimag(z1)) > 1.d-14) then call zaxpy(ngp,z1,apwalm(:,jo,lm3),1,y,1) end if end do end do end do a(i,1:ngpq)=apwalmq(1:ngpq,io,lm1) b(i,1:ngp)=y(1:ngp) end do end do end do call zmmab(lmoapw(is),ngpq,ngp,a,b,ld,hq) end subroutine elk-10.4.9/src/PaxHeaders/dengyeph.f900000644000000000000000000000013214762655565014375 xustar0030 mtime=1741380469.173012145 30 atime=1741380467.839005171 30 ctime=1741380469.173012145 elk-10.4.9/src/dengyeph.f900000644002504400250440000000134314762655565017120 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine dengyeph use modmain use modphonon use modbog implicit none ! local variables integer ik,iq,i real(8) w ! change in electron energy per unit cell dengye=0.d0 do ik=1,nkpt w=wkpt(ik) do i=1,nstsv dengye=dengye+w*abs((evalsv(i,ik)-efermi)*dble(dvv(i,i,ik))) end do end do dengye=abs(occmax*dengye) ! change in phonon energy per unit cell dengyph=0.d0 do iq=1,nqpt w=wqpt(iq) do i=1,nbph dengyph=dengyph+w*abs(wphq(i,iq)*dble(dxx(i,i,iq))) end do end do ! sum of both dengy=dengye+dengyph end subroutine elk-10.4.9/src/PaxHeaders/gndsteph.f900000644000000000000000000000013214762655565014406 xustar0030 mtime=1741380469.174012151 30 atime=1741380467.842005187 30 ctime=1741380469.174012151 elk-10.4.9/src/gndsteph.f900000644002504400250440000001061414762655565017132 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gndsteph use modmain use modphonon use modbog use modmpi use modomp implicit none ! local variables integer nmix,nwork real(8) dv character(64) str ! allocatable arrays real(8), allocatable :: work(:) ! initialise universal variables call init0 call init1 call init2 call readstate call genvsig call gencore call linengy call genapwlofr call gensocfr call genevfsv ! precise determination of the Fermi energy swidth0=swidth swidth=1.d-5 call occupy swidth=swidth0 ! initialise electron-phonon variables call initeph ! size of mixing vector for electron and phonon density matrices (complex array) nmix=2*size(duvwx) ! determine the size of the mixer work array nwork=-1 call mixerifc(mixtype,nmix,duvwx,dv,nwork,work) allocate(work(nwork)) ! initialise the mixer iscl=0 call mixerifc(mixtype,nmix,duvwx,dv,nwork,work) ! set the stop signal to .false. tstop=.false. ! set last self-consistent loop flag tlast=.false. ! only the MPI master process should write files if (mp_mpi) then ! open EPH_INFO.OUT file open(60,file='EPH_INFO.OUT',form='FORMATTED') call writebox(60,"Self-consistent loop started") ! open EPHGAP.OUT open(64,file='EPHGAP.OUT',form='FORMATTED') ! open RMSDVS.OUT open(65,file='RMSDVS.OUT',form='FORMATTED') ! open FACE.OUT open(67,file='FACE.OUT',form='FORMATTED') end if if (mp_mpi) write(*,*) ! begin the self-consistent loop do iscl=1,maxscl if (mp_mpi) then write(str,'("Loop number : ",I0)') iscl call writebox(60,trim(str)) flush(60) write(*,'("Info(gndsteph): self-consistent loop number : ",I4)') iscl end if if (iscl >= maxscl) then if (mp_mpi) then write(60,*) write(60,'("Reached self-consistent loops maximum")') end if tlast=.true. end if ! determine change in electron and phonon energies call dengyeph ! solve the electron and phonon eigenvalue equations call eveqneph ! update the Fermi energy call occupyuv if (mp_mpi) then ! write the electronic eigenvalues to file call writeevaluv ! write the phononic eigenvalues to file call writeevalwx ! write the Fermi energy to file call writefermi write(60,*) write(60,'("Energies :")') write(60,'(" Fermi",T30,": ",G22.12)') efermi write(60,'(" electronic change",T30,": ",G22.12)') dengye write(60,'(" phononic change",T30,": ",G22.12)') dengyph write(60,'(" sum of changes",T30,": ",G22.12)') dengy write(60,*) write(60,'("Estimated indirect band gap : ",G18.10)') bandgap(1) write(60,'(" from k-point ",I6," to k-point ",I6)') ikgap(1),ikgap(2) write(60,'("Estimated direct band gap : ",G18.10)') bandgap(2) write(60,'(" at k-point ",I6)') ikgap(3) write(60,*) write(60,'("Fermionic anomalous correlation entropy : ",G18.10)') face write(60,*) write(60,'("Electron-phonon scaling factor : ",G18.10)') ephscf(1) ! write estimated indirect band gap write(64,'(G22.12)') bandgap(1) flush(64) ! write the fermionic anomalous correlation entropy write(67,'(G18.10)') face flush(67) end if ! mix the old and new electron and phonon density matrices call mixerifc(mixtype,nmix,duvwx,dv,nwork,work) ! adjust the electron-phonon term scale factor towards 1 ephscf(1)=(1.d0-ephscf(2))*ephscf(1)+ephscf(2) ! exit self-consistent loop if required if (tlast) goto 10 ! check for convergence if (iscl >= 2) then if (mp_mpi) then write(60,*) write(60,'("RMS change in density matrices (target) : ",G18.10," (",& &G18.10,")")') dv,epspot write(65,'(G18.10)') dv flush(65) if (dv < epspot) then write(60,*) write(60,'("Convergence targets achieved")') tlast=.true. end if end if end if ! check for STOP file call checkstop if (tstop) tlast=.true. ! broadcast tlast from master process to all other processes call mpi_bcast(tlast,1,mpi_logical,0,mpicom,ierror) ! reset the OpenMP thread variables call omp_reset end do 10 continue if (mp_mpi) then call writebox(60,"Self-consistent loop stopped") ! close the EPH_INFO.OUT file close(60) ! close the EPHGAP.OUT file close(64) ! close the RMSDVS.OUT file close(65) ! close the FACE.OUT file close(67) end if deallocate(work) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/eveqneph.f900000644000000000000000000000013214762655565014405 xustar0030 mtime=1741380469.176012161 30 atime=1741380467.844005197 30 ctime=1741380469.176012161 elk-10.4.9/src/eveqneph.f900000644002504400250440000000702314762655565017131 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine eveqneph use modmain use modphonon use modbog use modmpi use modomp implicit none ! local variables integer iq,ik integer n,lp,nthd ! allocatable arrays complex(8), allocatable :: dw(:,:,:),ex(:,:,:),fy(:,:) complex(8), allocatable :: au(:,:,:),bv(:,:,:) !------------------------------------! ! phonon eigenvalue equation ! !------------------------------------! allocate(dw(nbph,nbph,nqpt),ex(nbph,nbph,nqpt),fy(nbph,nqpt)) ! parallel loop over reduced q-point set call holdthd(nqpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do iq=1,nqpt ! distribute among MPI processes if (mod(iq-1,np_mpi) /= lp_mpi) cycle ! generate the matrices D and E call hmlephde(iq,dw(:,:,iq),ex(:,:,iq)) ! zero the vector F fy(:,iq)=0.d0 ! solve the phononic Bogoliubov equation call eveqnwxy(nbph,pwxpsn,dw(:,:,iq),ex(:,:,iq),fy(:,iq),evalwx(:,iq)) end do !$OMP END DO !$OMP DO SCHEDULE(DYNAMIC) do iq=1,nqpt ! distribute among MPI processes if (mod(iq-1,np_mpi) /= lp_mpi) cycle ! compute the density matrices call dmatwx(nbph,dw(:,:,iq),ex(:,:,iq),dxx(:,:,iq),dwx(:,:,iq),xnorm(:,iq)) ! write the eigenvalues, eigenvectors and X-norms to file if (tlast) then call putevalwx(iq,evalwx(:,iq)) call putevecwxy(iq,dw(:,:,iq),ex(:,:,iq),fy(:,iq)) end if end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) deallocate(dw,ex,fy) ! broadcast arrays to every MPI process if (np_mpi > 1) then n=nbph*nbph do iq=1,nqpt lp=mod(iq-1,np_mpi) call mpi_bcast(evalwx(:,iq),nbph,mpi_double_precision,lp,mpicom,ierror) call mpi_bcast(xnorm(:,iq),nbph,mpi_double_precision,lp,mpicom,ierror) call mpi_bcast(dxx(:,:,iq),n,mpi_double_complex,lp,mpicom,ierror) call mpi_bcast(dwx(:,:,iq),n,mpi_double_complex,lp,mpicom,ierror) end do end if !--------------------------------------! ! electron eigenvalue equation ! !--------------------------------------! allocate(au(nstsv,nstsv,nkpt),bv(nstsv,nstsv,nkpt)) ! parallel loop over reduced k-point set call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! generate the matrix A call hmlepha(ik,au(:,:,ik)) ! generate the matrix B call hmlephb(ik,bv(:,:,ik)) ! solve the electronic Bogoliubov equation call eveqnuv(nstsv,au(:,:,ik),bv(:,:,ik),evaluv(:,ik)) end do !$OMP END DO !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! compute the density matrices call dmatuv(nstsv,efermi,evalsv(:,ik),au(:,:,ik),bv(:,:,ik),dvv(:,:,ik), & duv(:,:,ik),vnorm(:,ik)) ! write the eigenvalues and eigenvectors to file if (tlast) then call putevaluv(ik,evaluv(:,ik)) call putevecuv(ik,au(:,:,ik),bv(:,:,ik)) end if end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) deallocate(au,bv) ! broadcast arrays to every MPI process if (np_mpi > 1) then n=nstsv*nstsv do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(evaluv(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) call mpi_bcast(vnorm(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) call mpi_bcast(dvv(:,:,ik),n,mpi_double_complex,lp,mpicom,ierror) call mpi_bcast(duv(:,:,ik),n,mpi_double_complex,lp,mpicom,ierror) end do end if end subroutine elk-10.4.9/src/PaxHeaders/hmlepha.f900000644000000000000000000000013214762655565014210 xustar0030 mtime=1741380469.177012166 30 atime=1741380467.847005213 30 ctime=1741380469.177012166 elk-10.4.9/src/hmlepha.f900000644002504400250440000000406314762655565016735 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine hmlepha(ik,a) use modmain use modphonon use modbog use modomp implicit none ! arguments integer, intent(in) :: ik complex(8), intent(out) :: a(nstsv,nstsv) ! local variables integer iq,jq,ikq,isym,nthd integer i1,i2,j1,j2,l1,l2 real(8) vl(3),t0 complex(8) z1,z2 ! automatic arrays complex(4) ephmat(nstsv,nstsv,nbph) complex(8) x(nbph,nstsv),y(nstsv,nbph) ! prefactor t0=-2.d0*wqptnr*ephscf(1)**2/dengy a(:,:)=0.d0 if (anomalous) goto 10 ! parallel loop over non-reduced q-points call holdthd(nqptnr,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ephmat,x,y,jq,vl,isym,ikq) & !$OMP PRIVATE(i1,i2,j1,j2,l1,l2,z1,z2) & !$OMP REDUCTION(+:a) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do iq=1,nqptnr ! equivalent reduced q-point jq=ivqiq(ivq(1,iq),ivq(2,iq),ivq(3,iq)) ! k+q-vector in lattice coordinates vl(:)=vkl(:,ik)+vql(:,iq) ! index to reduced k+q-vector call findkpt(vl,isym,ikq) ! read in the electron-phonon matrix elements from file call getephmkq(iq,ik,ephmat) ! perform the contraction do i2=1,nstsv do j2=1,nstsv do l2=1,nbph z1=0.d0 do j1=1,nstsv ! swap indices of VV† to get the density matrix at k+q z1=z1+ephmat(j1,i2,l2)*dvv(j2,j1,ikq) end do x(l2,j2)=z1 end do end do do l1=1,nbph do j2=1,nstsv z1=0.d0 do l2=1,nbph z2=dxx(l2,l1,jq)+dwx(l2,l1,jq) z1=z1+z2*x(l2,j2) end do y(j2,l1)=z1 end do end do do i1=1,i2 z1=0.d0 do l1=1,nbph do j2=1,nstsv z1=z1+conjg(ephmat(j2,i1,l1))*y(j2,l1) end do end do a(i1,i2)=a(i1,i2)+t0*z1 end do end do end do !$OMP END PARALLEL DO call freethd(nthd) 10 continue ! add the second-variational eigenvalues minus the Fermi energy do i1=1,nstsv a(i1,i1)=dble(a(i1,i1))+evalsv(i1,ik)-efermi end do end subroutine elk-10.4.9/src/PaxHeaders/hmlephb.f900000644000000000000000000000013214762655565014211 xustar0030 mtime=1741380469.178012171 30 atime=1741380467.849005224 30 ctime=1741380469.178012171 elk-10.4.9/src/hmlephb.f900000644002504400250440000000377314762655565016745 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine hmlephb(ik,b) use modmain use modphonon use modbog use modomp implicit none ! arguments integer, intent(in) :: ik complex(8), intent(out) :: b(nstsv,nstsv) ! local variables integer iq,jq,ikq,isym,nthd integer i1,i2,j1,j2,l1,l2 real(8) vl(3),t0 complex(8) z1,z2 ! automatic arrays complex(4) ephmat(nstsv,nstsv,nbph) complex(8) x(nbph,nstsv),y(nstsv,nbph) ! prefactor t0=-2.d0*wqptnr*ephscf(1)**2/dengy b(:,:)=0.d0 if (.not.anomalous) return ! parallel loop over non-reduced q-points call holdthd(nqptnr,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ephmat,x,y,jq,vl,isym,ikq) & !$OMP PRIVATE(i1,i2,j1,j2,l1,l2,z1,z2) & !$OMP REDUCTION(+:b) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do iq=1,nqptnr ! equivalent reduced q-point jq=ivqiq(ivq(1,iq),ivq(2,iq),ivq(3,iq)) ! k+q-vector in lattice coordinates vl(:)=vkl(:,ik)+vql(:,iq) ! index to reduced k+q-vector call findkpt(vl,isym,ikq) ! read in the electron-phonon matrix elements from file call getephmkq(iq,ik,ephmat) ! perform the contraction do i2=1,nstsv if (abs(evalsv(i2,ik)-efermi) > ecutb) cycle do j1=1,nstsv do l2=1,nbph z1=0.d0 do j2=1,nstsv z1=z1+ephmat(j2,i2,l2)*duv(j1,j2,ikq) end do x(l2,j1)=z1 end do end do do l1=1,nbph do j1=1,nstsv z1=0.d0 do l2=1,nbph z2=dxx(l2,l1,jq)+dwx(l2,l1,jq) z1=z1+z2*x(l2,j1) end do y(j1,l1)=z1 end do end do do i1=1,nstsv if (bdiag.and.(i1 /= i2)) cycle if (abs(evalsv(i1,ik)-efermi) > ecutb) cycle z1=0.d0 do l1=1,nbph do j1=1,nstsv z1=z1+conjg(ephmat(j1,i1,l1))*y(j1,l1) end do end do b(i1,i2)=b(i1,i2)+t0*z1 end do end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/hmlephde.f900000644000000000000000000000013214762655565014360 xustar0030 mtime=1741380469.180012182 30 atime=1741380467.852005239 30 ctime=1741380469.180012182 elk-10.4.9/src/hmlephde.f900000644002504400250440000000557214762655565017113 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine hmlephde(iq,d,e) use modmain use modphonon use modbog use modomp implicit none ! arguments integer, intent(in) :: iq complex(8), intent(out) :: d(nbph,nbph),e(nbph,nbph) ! local variables integer ik,jk,ikq,isym,nthd integer i1,i2,j1,j2,l1,l2 real(8) vl(3),t0 complex(8) z1 ! automatic arrays complex(4) ephmat(nstsv,nstsv,nbph) complex(8) x(nstsv,nstsv),y(nstsv,nstsv) ! prefactor t0=-occmax*wkptnr*ephscf(1)**2/dengy e(:,:)=0.d0 ! parallel loop over non-reduced k-points call holdthd(nkptnr,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ephmat,x,y,jk,vl,isym,ikq) & !$OMP PRIVATE(l1,l2,j1,j2,i1,i2,z1) & !$OMP REDUCTION(+:e) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! k+q-vector in lattice coordinates vl(:)=vkl(:,ik)+vql(:,iq) ! index to reduced k+q-vector call findkpt(vl,isym,ikq) ! read in the electron-phonon matrix elements from file call getephmkq(iq,ik,ephmat) ! perform the contraction if (anomalous) then do l2=1,nbph do j1=1,nstsv do i2=1,nstsv z1=0.d0 do j2=1,nstsv z1=z1+ephmat(j2,i2,l2)*duv(j1,j2,ikq) end do x(i2,j1)=z1 end do end do do i1=1,nstsv do j1=1,nstsv z1=0.d0 do i2=1,nstsv z1=z1-conjg(duv(i1,i2,jk))*x(i2,j1) end do y(j1,i1)=z1 end do end do do l1=1,nbph if (ediag.and.(l1 /= l2)) cycle z1=0.d0 do i1=1,nstsv do j1=1,nstsv z1=z1+conjg(ephmat(j1,i1,l1))*y(j1,i1) end do end do e(l1,l2)=e(l1,l2)+t0*z1 end do end do else do l2=1,nbph do j2=1,nstsv do i2=1,nstsv z1=0.d0 do j1=1,nstsv ! swap indices of VV† to get the density matrix at k+q z1=z1+ephmat(j1,i2,l2)*dvv(j2,j1,ikq) end do x(i2,j2)=z1 end do end do do j2=1,nstsv do i1=1,nstsv z1=0.d0 do i2=1,nstsv ! swap indices of VV† to get density matrix at k z1=z1+dvv(i2,i1,jk)*x(i2,j2) end do y(i1,j2)=z1 end do end do do l1=1,nbph if (ediag.and.(l1 /= l2)) cycle z1=0.d0 do j2=1,nstsv do i1=1,nstsv z1=z1+conjg(ephmat(j2,i1,l1))*y(i1,j2) end do end do e(l1,l2)=e(l1,l2)+t0*z1 end do end do end if end do !$OMP END PARALLEL DO call freethd(nthd) ! determine the matrix D = D0 or D = D0 + E if (tephde) then d(:,:)=e(:,:) else d(:,:)=0.d0 end if do l1=1,nbph d(l1,l1)=d(l1,l1)+wphq(l1,iq) end do end subroutine elk-10.4.9/src/PaxHeaders/getephmkq.f900000644000000000000000000000013214762655565014557 xustar0030 mtime=1741380469.181012187 30 atime=1741380467.855005255 30 ctime=1741380469.181012187 elk-10.4.9/src/getephmkq.f900000644002504400250440000000135314762655565017303 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getephmkq(iqp,ikp,ephmat) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iqp,ikp complex(4), intent(out) :: ephmat(nstsv,nstsv,nbph) ! local variables integer isym,lspl,iq,ik,iv(3) if (iqp <= nqpt) then ! q-point is in the reduced set iq=iqp ik=ikp else ! q-point is not in the reduced set call findqpt(vql(:,iqp),isym,iq) lspl=lsplsymc(isym) call i3mtv(symlat(:,:,lspl),ivk(:,ikp),iv) iv(:)=modulo(iv(:),ngridk(:)) ik=ivkiknr(iv(1),iv(2),iv(3)) end if ephmat(:,:,:)=ephmkq(:,:,:,ik,iq) end subroutine elk-10.4.9/src/PaxHeaders/ephdos.f900000644000000000000000000000013214762655565014054 xustar0030 mtime=1741380469.183012198 30 atime=1741380467.857005265 30 ctime=1741380469.183012198 elk-10.4.9/src/ephdos.f900000644002504400250440000000475014762655565016604 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine ephdos use modmain use modphonon use modbog implicit none ! local variables integer nsk(3),ik,ist,iw real(8) v(3),dw,vn,t1 ! allocatable arrays integer, allocatable :: idx(:) real(8), allocatable :: w(:),f(:,:),g(:) ! initialise universal variables call init0 call init1 call init2 call initeph allocate(idx(nstsv),w(nstsv)) do ik=1,nkpt ! get the eigenvalues from file call getevaluv(ik,evaluv(:,ik)) ! negate eigenvalues corresponding to V-norm > 1/2 do ist=1,nstsv if (vnorm(ist,ik) > 0.5d0) evaluv(ist,ik)=-evaluv(ist,ik) end do ! arrange in ascending order w(:)=evaluv(:,ik) call sortidx(nstsv,w,idx) evaluv(:,ik)=w(idx(:)) ! put the V-norm into the same order as the eigenvalues w(:)=vnorm(:,ik) vnorm(:,ik)=w(idx(:)) end do deallocate(idx,w) ! generate the partial and total DOS and write to file allocate(w(nwplot),f(nstsv,nkptnr),g(nwplot)) ! generate frequency grid dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot w(iw)=dw*dble(iw-1)+wplot(1) end do ! number of subdivisions used for interpolation in the Brillouin zone nsk(:)=max(ngrkf/ngridk(:),1) ! set the weight array f(:,:)=occmax ! integrate over the Brillouin zone call brzint(nswplot,ngridk,nsk,ivkik,nwplot,wplot,nstsv,nstsv,evaluv,f,g) ! output the total electronic DOS to file open(50,file='TDOS_EPH.OUT.OUT',form='FORMATTED',action='WRITE') do iw=1,nwplot write(50,'(2G18.10)') w(iw),g(iw) end do close(50) ! output the FACE vs energy histogram to file open(50,file='FACEEH.OUT',form='FORMATTED',action='WRITE') do ik=1,nkpt ! map k-vector to first Brillouin zone v(:)=vkc(:,ik) call vecfbz(epslat,bvec,v) do ist=1,nstsv vn=vnorm(ist,ik) if ((vn > 0.d0).and.(vn < 1.d0)) then t1=-(vn*log(vn)+(1.d0-vn)*log(1.d0-vn)) else t1=0.d0 end if if (t1 < 1.d-4) cycle write(50,'(5G18.10)') evaluv(ist,ik),t1,v end do end do close(50) write(*,*) write(*,'("Info(ephdos):")') write(*,'(" Total electronic density of states for the electron-phonon")') write(*,'(" system written to TDOS_EPH.OUT.OUT")') write(*,*) write(*,'(" Fermionic anomalous correlation entropy vs energy histogram")') write(*,'(" written to FACEEH.OUT")') write(*,*) write(*,'(" Fermi energy is at zero in plots")') write(*,*) write(*,'(" DOS units are states/Hartree/unit cell")') deallocate(w,f,g) end subroutine elk-10.4.9/src/PaxHeaders/gradrhomt.f900000644000000000000000000000013214762655565014561 xustar0030 mtime=1741380469.185012208 30 atime=1741380467.860005281 30 ctime=1741380469.185012208 elk-10.4.9/src/gradrhomt.f900000644002504400250440000000164714762655565017313 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gradrhomt use modmain use modphonon implicit none ! local variables integer nr,nri,np ! allocatable arrays complex(8), allocatable :: zfmt(:),grhomt(:,:) allocate(zfmt(npmtmax),grhomt(npmtmax,3)) ! add gradient contribution from rigid shift of muffin-tin nr=nrmt(isph) nri=nrmti(isph) np=npmt(isph) ! convert the density to complex spherical harmonic expansion call rtozfmt(nr,nri,rhomt(:,iasph),zfmt) ! compute the gradient call gradzfmt(nr,nri,rlmt(:,-1,isph),wcrmt(:,:,isph),zfmt,npmtmax,grhomt) ! store density derivative for displaced atom if (tlast) drhomt(1:np,natmtot+1)=drhomt(1:np,iasph) ! subtract from the density derivative drhomt(1:np,iasph)=drhomt(1:np,iasph)-grhomt(1:np,ipph) deallocate(zfmt,grhomt) end subroutine elk-10.4.9/src/PaxHeaders/doccupy.f900000644000000000000000000000013214762655565014240 xustar0030 mtime=1741380469.187012219 30 atime=1741380467.863005297 30 ctime=1741380469.187012219 elk-10.4.9/src/doccupy.f900000644002504400250440000000217514762655565016767 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine doccupy use modmain use modphonon implicit none ! local variables integer, parameter :: maxit=1000 integer ik,jk,ist,it real(8) de0,de1,de real(8) dchg,x,dx,t1 ! external functions real(8), external :: sdelta if (.not.tphq0) return de0=1.d6 de1=-1.d6 do ik=1,nkptnr do ist=1,nstsv de=devalsv(ist,ik) if (de < de0) de0=de if (de > de1) de1=de end do end do t1=1.d0/swidth do it=1,maxit defermi=0.5d0*(de0+de1) dchg=0.d0 do ik=1,nkptnr jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) do ist=1,nstsv x=(efermi-evalsv(ist,jk))*t1 dx=(defermi-devalsv(ist,ik))*t1 doccsv(ist,ik)=occmax*sdelta(stype,x)*dx dchg=dchg+wkptnr*doccsv(ist,ik) end do end do if (dchg < 0.d0) then de0=defermi else de1=defermi end if if ((de1-de0) < 1.d-12) return end do write(*,*) write(*,'("Warning(doccupy): could not find Fermi energy derivative")') write(*,'(" for s.c. loop ",I5)') iscl end subroutine elk-10.4.9/src/PaxHeaders/dhmlrad.f900000644000000000000000000000013214762655565014205 xustar0030 mtime=1741380469.188012224 30 atime=1741380467.865005307 30 ctime=1741380469.188012224 elk-10.4.9/src/dhmlrad.f900000644002504400250440000000715114762655565016733 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dhmlrad use modmain use modphonon implicit none ! local variables integer is,ias integer nr,nri,iro,i0,i1 integer l1,l2,l3,lm2 integer io,jo,ilo,jlo complex(8) zsm ! begin loops over atoms and species do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 !---------------------------! ! APW-APW integrals ! !---------------------------! do l1=0,lmaxapw do io=1,apword(l1,is) do l3=0,lmaxapw do jo=1,apword(l3,is) do l2=0,lmaxi do lm2=l2**2+1,(l2+1)**2 i1=lmmaxi*(nri-1)+lm2 zsm=sum(apwfr(1:nri,1,io,l1,ias)*apwfr(1:nri,1,jo,l3,ias) & *wr2mt(1:nri,is)*dvsmt(lm2:i1:lmmaxi,ias)) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zsm=zsm+sum(apwfr(iro:nr,1,io,l1,ias)*apwfr(iro:nr,1,jo,l3,ias) & *wr2mt(iro:nr,is)*dvsmt(i0:i1:lmmaxo,ias)) dhaa(lm2,jo,l3,io,l1,ias)=zsm end do end do do l2=lmaxi+1,lmaxo do lm2=l2**2+1,(l2+1)**2 i0=lmmaxi*nri+lm2 i1=lmmaxo*(nr-iro)+i0 zsm=sum(apwfr(iro:nr,1,io,l1,ias)*apwfr(iro:nr,1,jo,l3,ias) & *wr2mt(iro:nr,is)*dvsmt(i0:i1:lmmaxo,ias)) dhaa(lm2,jo,l3,io,l1,ias)=zsm end do end do end do end do end do end do !-------------------------------------! ! local-orbital-APW integrals ! !-------------------------------------! do ilo=1,nlorb(is) l1=lorbl(ilo,is) do l3=0,lmaxapw do io=1,apword(l3,is) do l2=0,lmaxi do lm2=l2**2+1,(l2+1)**2 i1=lmmaxi*(nri-1)+lm2 zsm=sum(lofr(1:nri,1,ilo,ias)*apwfr(1:nri,1,io,l3,ias) & *wr2mt(1:nri,is)*dvsmt(lm2:i1:lmmaxi,ias)) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zsm=zsm+sum(lofr(iro:nr,1,ilo,ias)*apwfr(iro:nr,1,io,l3,ias) & *wr2mt(iro:nr,is)*dvsmt(i0:i1:lmmaxo,ias)) dhloa(lm2,io,l3,ilo,ias)=zsm end do end do do l2=lmaxi+1,lmaxo do lm2=l2**2+1,(l2+1)**2 i0=lmmaxi*nri+lm2 i1=lmmaxo*(nr-iro)+i0 zsm=sum(lofr(iro:nr,1,ilo,ias)*apwfr(iro:nr,1,io,l3,ias) & *wr2mt(iro:nr,is)*dvsmt(i0:i1:lmmaxo,ias)) dhloa(lm2,io,l3,ilo,ias)=zsm end do end do end do end do end do !-----------------------------------------------! ! local-orbital-local-orbital integrals ! !-----------------------------------------------! do ilo=1,nlorb(is) l1=lorbl(ilo,is) do jlo=1,nlorb(is) l3=lorbl(jlo,is) do l2=0,lmaxi do lm2=l2**2+1,(l2+1)**2 i1=lmmaxi*(nri-1)+lm2 zsm=sum(lofr(1:nri,1,ilo,ias)*lofr(1:nri,1,jlo,ias)*wr2mt(1:nri,is) & *dvsmt(lm2:i1:lmmaxi,ias)) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zsm=zsm+sum(lofr(iro:nr,1,ilo,ias)*lofr(iro:nr,1,jlo,ias) & *wr2mt(iro:nr,is)*dvsmt(i0:i1:lmmaxo,ias)) dhlolo(lm2,jlo,ilo,ias)=zsm end do end do do l2=lmaxi+1,lmaxo do lm2=l2**2+1,(l2+1)**2 i0=lmmaxi*nri+lm2 i1=lmmaxo*(nr-iro)+i0 zsm=sum(lofr(iro:nr,1,ilo,ias)*lofr(iro:nr,1,jlo,ias) & *wr2mt(iro:nr,is)*dvsmt(i0:i1:lmmaxo,ias)) dhlolo(lm2,jlo,ilo,ias)=zsm end do end do end do end do ! end loops over atoms and species end do end subroutine elk-10.4.9/src/PaxHeaders/gendwfsv.f900000644000000000000000000000013214762655565014415 xustar0030 mtime=1741380469.189012229 30 atime=1741380467.868005323 30 ctime=1741380469.189012229 elk-10.4.9/src/gendwfsv.f900000644002504400250440000001250314762655565017140 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendwfsv(tsh,tgp,nst,idx,ngp,ngpq,igpqig,apwalmq,dapwalm,evecfv, & devecfv,evecsv,devecsv,dwfmt,ld,dwfir) use modmain implicit none ! arguments logical, intent(in) :: tsh,tgp integer, intent(in) :: nst,idx(*) integer, intent(in) :: ngp(nspnfv),ngpq(nspnfv),igpqig(ngkmax,nspnfv) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv) complex(8), intent(in) :: devecfv(nmatmax,nstfv,nspnfv) complex(8), intent(in) :: evecsv(nstsv,nstsv),devecsv(nstsv,nstsv) complex(8), intent(out) :: dwfmt(npcmtmax,natmtot,nspinor,nst) integer, intent(in) :: ld complex(8), intent(out) :: dwfir(ld,nspinor,nst) ! local variables integer ist,ispn,jspn integer is,ia,ias,nrc,nrci integer npc,igp,ifg,i,j,k real(8) t0 complex(8) z1 ! automatic arrays logical done(nstfv),ddone(nstfv) ! allocatable arrays complex(8), allocatable :: wfmt1(:,:),wfmt2(:),dwfmt1(:,:) !---------------------------------------------! ! muffin-tin wavefunction derivatives ! !---------------------------------------------! if (tevecsv) then allocate(wfmt1(npcmtmax,nstfv),dwfmt1(npcmtmax,nstfv)) end if if (.not.tsh) allocate(wfmt2(npcmtmax)) do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) do ia=1,natoms(is) ias=idxas(ia,is) done(:)=.false. do j=1,nst k=idx(j) if (tevecsv) then i=0 do ispn=1,nspinor jspn=jspnfv(ispn) dwfmt(1:npc,ias,ispn,j)=0.d0 do ist=1,nstfv i=i+1 z1=devecsv(i,k) !***** check if tq0 is needed here if (abs(dble(z1))+abs(aimag(z1)) > epsocc) then if (.not.done(ist)) then if (tsh) then call wfmtfv(ias,ngp(jspn),apwalmq(:,:,:,ias,jspn), & evecfv(:,ist,jspn),wfmt1(:,ist)) else call wfmtfv(ias,ngp(jspn),apwalmq(:,:,:,ias,jspn), & evecfv(:,ist,jspn),wfmt2) call zbsht(nrc,nrci,wfmt2,wfmt1(:,ist)) end if done(ist)=.true. end if call zaxpy(npc,z1,wfmt1(:,ist),1,dwfmt(:,ias,ispn,j),1) end if z1=evecsv(i,k) if (abs(dble(z1))+abs(aimag(z1)) > epsocc) then if (.not.ddone(ist)) then if (tsh) then call dwfmtfv(ias,ngp(jspn),ngpq(jspn), & apwalmq(:,:,:,ias,jspn),dapwalm(:,:,:,jspn), & evecfv(:,ist,jspn),devecfv(:,ist,jspn),dwfmt1(:,ist)) else call dwfmtfv(ias,ngp(jspn),ngpq(jspn), & apwalmq(:,:,:,ias,jspn),dapwalm(:,:,:,jspn), & evecfv(:,ist,jspn),devecfv(:,ist,jspn),wfmt2) call zbsht(nrc,nrci,wfmt2,dwfmt1(:,ist)) end if ddone(ist)=.true. end if call zaxpy(npc,z1,dwfmt1(:,ist),1,dwfmt(:,ias,ispn,j),1) end if end do end do else if (tsh) then call dwfmtfv(ias,ngp,ngpq,apwalmq(:,:,:,ias,1),dapwalm,evecfv(:,k,1),& devecfv(:,k,1),dwfmt(:,ias,1,j)) else call dwfmtfv(ias,ngp,ngpq,apwalmq(:,:,:,ias,1),dapwalm,evecfv(:,k,1),& devecfv(:,k,1),wfmt2) call zbsht(nrc,nrci,wfmt2,dwfmt(:,ias,1,j)) end if end if end do end do end do if (tevecsv) deallocate(wfmt1,dwfmt1) if (.not.tsh) deallocate(wfmt2) !-----------------------------------------------! ! interstitial wavefunction derivatives ! !-----------------------------------------------! t0=1.d0/sqrt(omega) do j=1,nst k=idx(j) dwfir(1:ld,1:nspinor,j)=0.d0 if (tevecsv) then i=0 do ispn=1,nspinor jspn=jspnfv(ispn) do ist=1,nstfv i=i+1 z1=devecsv(i,k) !***** check if tq0 is needed here if (abs(dble(z1))+abs(aimag(z1)) > epsocc) then if (tgp) then do igp=1,ngp(jspn) dwfir(igp,ispn,j)=dwfir(igp,ispn,j)+z1*evecfv(igp,ist,jspn) end do else z1=t0*z1 do igp=1,ngp(jspn) ifg=igfc(igpqig(igp,jspn)) dwfir(ifg,ispn,j)=dwfir(ifg,ispn,j)+z1*evecfv(igp,ist,jspn) end do end if end if z1=evecsv(i,k) if (abs(dble(z1))+abs(aimag(z1)) > epsocc) then if (tgp) then do igp=1,ngpq(jspn) dwfir(igp,ispn,j)=dwfir(igp,ispn,j)+z1*devecfv(igp,ist,jspn) end do else z1=t0*z1 do igp=1,ngpq(jspn) ifg=igfc(igpqig(igp,jspn)) dwfir(ifg,ispn,j)=dwfir(ifg,ispn,j)+z1*devecfv(igp,ist,jspn) end do end if end if end do end do else if (tgp) then do igp=1,ngpq(1) dwfir(igp,1,j)=devecfv(igp,k,1) end do else do igp=1,ngpq(1) ifg=igfc(igpqig(igp,1)) dwfir(ifg,1,j)=t0*devecfv(igp,k,1) end do end if end if if (.not.tgp) then do ispn=1,nspinor call zfftifc(3,ngdgc,1,dwfir(:,ispn,j)) end do end if end do end subroutine elk-10.4.9/src/PaxHeaders/dwfmtfv.f900000644000000000000000000000013214762655565014247 xustar0030 mtime=1741380469.191012239 30 atime=1741380467.871005339 30 ctime=1741380469.191012239 elk-10.4.9/src/dwfmtfv.f900000644002504400250440000000406414762655565016775 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dwfmtfv(ias,ngp,ngpq,apwalmq,dapwalm,evecfv,devecfv,dwfmt) use modmain use modphonon implicit none ! arguments integer, intent(in) :: ias,ngp,ngpq complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: evecfv(nmatmax),devecfv(nmatmax) complex(8), intent(out) :: dwfmt(*) ! local variables integer is,io,ilo integer nrci,nrco,iro integer l,lm,npci,i complex(8) z1 ! external functions complex(8), external :: zdotu is=idxis(ias) iro=nrmti(is)+lradstp nrci=nrcmti(is) nrco=nrcmt(is)-nrci npci=npcmti(is) ! zero the wavefunction derivative dwfmt(1:npcmt(is))=0.d0 !-----------------------! ! APW functions ! !-----------------------! do l=0,lmaxo do lm=l**2+1,(l+1)**2 i=npci+lm do io=1,apword(l,is) z1=zdotu(ngpq,devecfv,1,apwalmq(:,io,lm),1) if (ias == iasph) then z1=z1+zdotu(ngp,evecfv,1,dapwalm(:,io,lm),1) end if if (l <= lmaxi) then call zfzrf(nrci,z1,lradstp,apwfr(1,1,io,l,ias),lmmaxi,dwfmt(lm)) end if call zfzrf(nrco,z1,lradstp,apwfr(iro,1,io,l,ias),lmmaxo,dwfmt(i)) end do end do end do !---------------------------------! ! local-orbital functions ! !---------------------------------! do ilo=1,nlorb(is) l=lorbl(ilo,is) do lm=l**2+1,(l+1)**2 i=npci+lm z1=devecfv(ngpq+idxlo(lm,ilo,ias)) if (l <= lmaxi) then call zfzrf(nrci,z1,lradstp,lofr(1,1,ilo,ias),lmmaxi,dwfmt(lm)) end if call zfzrf(nrco,z1,lradstp,lofr(iro,1,ilo,ias),lmmaxo,dwfmt(i)) end do end do return contains pure subroutine zfzrf(n,z,ld1,rf,ld2,zf) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: z integer, intent(in) :: ld1 real(8), intent(in) :: rf(ld1,n) integer, intent(in) :: ld2 complex(8), intent(inout) :: zf(ld2,n) zf(1,:)=zf(1,:)+z*rf(1,:) end subroutine end subroutine elk-10.4.9/src/PaxHeaders/gengqvec.f900000644000000000000000000000013214762655565014371 xustar0030 mtime=1741380469.192012245 30 atime=1741380467.873005349 30 ctime=1741380469.192012245 elk-10.4.9/src/gengqvec.f900000644002504400250440000000154714762655565017122 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengqvec(iq) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq ! local variables integer ig do ig=1,ngvec ! G+q-vector in Cartesian coordinates vgqc(1:3,ig)=vgc(1:3,ig)+vqc(1:3,iq) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(.true.,lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! compute the spherical Bessel functions j_l(|G+q|R_mt) call genjlgprmt(lnpsd,ngvec,gqc,ngvec,jlgqrmt) ! structure factors for G+q call gensfacgp(ngvec,vgqc,ngvec,sfacgq) ! generate the smooth step function form factors for G+q call genffacgp(ngvec,gqc,ngvec,ffacgq) end subroutine elk-10.4.9/src/PaxHeaders/writedvs.f900000644000000000000000000000013214762655565014441 xustar0030 mtime=1741380469.194012255 30 atime=1741380467.876005365 30 ctime=1741380469.194012255 elk-10.4.9/src/writedvs.f900000644002504400250440000000147214762655565017167 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writedvs(fext) use modmain use modphonon implicit none ! arguments character(*), intent(in) :: fext ! local variables integer is,ias ! allocatable arrays complex(8), allocatable :: zfmt(:,:,:) allocate(zfmt(lmmaxo,nrmtmax,natmtot)) open(150,file='DVS'//trim(fext),form='UNFORMATTED',action='WRITE') write(150) version write(150) nspecies write(150) lmmaxo do is=1,nspecies write(150) natoms(is) write(150) nrmt(is) end do write(150) ngridg do ias=1,natmtot is=idxis(ias) call zfmtpack(.false.,nrmt(is),nrmti(is),dvsmt(:,ias),zfmt(:,:,ias)) end do write(150) zfmt,dvsir close(150) deallocate(zfmt) end subroutine elk-10.4.9/src/PaxHeaders/dyntask.f900000644000000000000000000000013014762655565014245 xustar0029 mtime=1741380469.19501226 30 atime=1741380467.879005381 29 ctime=1741380469.19501226 elk-10.4.9/src/dyntask.f900000644002504400250440000000270114762655565016771 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dyntask(fnum,fext) use modmain use modphonon use modmpi implicit none ! arguments integer, intent(in) :: fnum character(*), intent(out) :: fext ! local variables logical exist ! only master process should search for file if (.not.mp_mpi) goto 10 do ipph=1,3 do isph=1,nspecies do iaph=1,natoms(isph) do iqph=1,nqpt ! construct the dynamical matrix file extension call dynfext(iqph,isph,iaph,ipph,fext) ! determine if the DYN file with this extension exists inquire(file='DYN'//trim(fext),exist=exist) if (.not.exist) then open(fnum,file='DYN'//trim(fext),form='FORMATTED') iasph=idxas(iaph,isph) goto 10 end if end do end do end do end do iqph=0; isph=0; iaph=0; iasph=0; ipph=0 write(*,'("Info(dyntask): nothing more to do")') 10 continue ! broadcast to all other MPI processes call mpi_bcast(iqph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(isph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(iaph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(iasph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(ipph,1,mpi_integer,0,mpicom,ierror) if (iqph == 0) then fext='.OUT' else call dynfext(iqph,isph,iaph,ipph,fext) end if ! set the q = 0 flag tphq0=(iqph == 1) end subroutine elk-10.4.9/src/PaxHeaders/dpotxc.f900000644000000000000000000000013214762655565014073 xustar0030 mtime=1741380469.196012266 30 atime=1741380467.881005391 30 ctime=1741380469.196012266 elk-10.4.9/src/dpotxc.f900000644002504400250440000001106314762655565016616 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dpotxc use modmain use modphonon implicit none ! local variables integer idm,is,ias integer nr,nri,nrc,nrci integer ir,np ! allocatable arrays real(8), allocatable :: fxcmt(:,:,:,:),fxcir(:,:,:) complex(8), allocatable :: dvmt(:),dbmt(:,:) ! compute the exchange-correlation kernel if (spinpol) then allocate(fxcmt(npmtmax,natmtot,4,4),fxcir(ngtot,4,4)) call genspfxcr(.false.,fxcmt,fxcir) else allocate(fxcmt(npmtmax,natmtot,1,1),fxcir(ngtot,1,1)) call genfxcr(.false.,fxcmt,fxcir) end if allocate(dvmt(npmtmax)) if (spinpol) allocate(dbmt(npmtmax,3)) !---------------------------------------! ! muffin-tin potential and field ! !---------------------------------------! ! note: muffin-tin functions are in spherical coordinates do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) nrc=nrcmt(is) nrci=nrcmti(is) np=npmt(is) ! charge-charge contribution to potential derivative dvmt(1:np)=fxcmt(1:np,ias,1,1)*drhomt(1:np,ias) ! spin-polarised case if (spinpol) then if (ncmag) then ! non-collinear ! add charge-spin contribution to potential derivative dvmt(1:np)=dvmt(1:np) & +fxcmt(1:np,ias,1,2)*dmagmt(1:np,ias,1) & +fxcmt(1:np,ias,1,3)*dmagmt(1:np,ias,2) & +fxcmt(1:np,ias,1,4)*dmagmt(1:np,ias,3) ! spin-charge contribution to B-field derivative dbmt(1:np,1)=fxcmt(1:np,ias,1,2)*drhomt(1:np,ias) dbmt(1:np,2)=fxcmt(1:np,ias,1,3)*drhomt(1:np,ias) dbmt(1:np,3)=fxcmt(1:np,ias,1,4)*drhomt(1:np,ias) ! add spin-spin contribution to B-field derivative ! (note: fxc is stored as an upper triangular matrix) dbmt(1:np,1)=dbmt(1:np,1) & +fxcmt(1:np,ias,2,2)*dmagmt(1:np,ias,1) & +fxcmt(1:np,ias,2,3)*dmagmt(1:np,ias,2) & +fxcmt(1:np,ias,2,4)*dmagmt(1:np,ias,3) dbmt(1:np,2)=dbmt(1:np,2) & +fxcmt(1:np,ias,2,3)*dmagmt(1:np,ias,1) & +fxcmt(1:np,ias,3,3)*dmagmt(1:np,ias,2) & +fxcmt(1:np,ias,3,4)*dmagmt(1:np,ias,3) dbmt(1:np,3)=dbmt(1:np,3) & +fxcmt(1:np,ias,2,4)*dmagmt(1:np,ias,1) & +fxcmt(1:np,ias,3,4)*dmagmt(1:np,ias,2) & +fxcmt(1:np,ias,4,4)*dmagmt(1:np,ias,3) else ! collinear ! add charge-spin contribution to potential derivative dvmt(1:np)=dvmt(1:np)+fxcmt(1:np,ias,1,4)*dmagmt(1:np,ias,1) ! spin-charge contribution to B-field derivative dbmt(1:np,1)=fxcmt(1:np,ias,1,4)*drhomt(1:np,ias) ! add spin-spin contribution to B-field derivative dbmt(1:np,1)=dbmt(1:np,1)+fxcmt(1:np,ias,4,4)*dmagmt(1:np,ias,1) end if end if ! convert potential derivative to spherical harmonics call zfsht(nr,nri,dvmt,dvsmt(:,ias)) ! convert magnetic field derivative to spherical harmonics on coarse mesh do idm=1,ndmag call zfmtftoc(nrc,nrci,dbmt(:,idm),dbsmt(:,ias,idm)) call zfshtip(nrc,nrci,dbsmt(:,ias,idm)) end do end do !------------------------------------------! ! interstitial potential and field ! !------------------------------------------! ! charge-charge contribution to potential derivative do ir=1,ngtot dvsir(ir)=fxcir(ir,1,1)*drhoir(ir) end do ! spin-polarised case if (spinpol) then if (ncmag) then ! non-collinear do ir=1,ngtot ! add charge-spin contribution to potential derivative dvsir(ir)=dvsir(ir) & +fxcir(ir,1,2)*dmagir(ir,1) & +fxcir(ir,1,3)*dmagir(ir,2) & +fxcir(ir,1,4)*dmagir(ir,3) ! spin-charge contribution to B-field derivative dbsir(ir,1)=fxcir(ir,1,2)*drhoir(ir) dbsir(ir,2)=fxcir(ir,1,3)*drhoir(ir) dbsir(ir,3)=fxcir(ir,1,4)*drhoir(ir) ! add spin-spin contribution to B-field derivative dbsir(ir,1)=dbsir(ir,1) & +fxcir(ir,2,2)*dmagir(ir,1) & +fxcir(ir,2,3)*dmagir(ir,2) & +fxcir(ir,2,4)*dmagir(ir,3) dbsir(ir,2)=dbsir(ir,2) & +fxcir(ir,2,3)*dmagir(ir,1) & +fxcir(ir,3,3)*dmagir(ir,2) & +fxcir(ir,3,4)*dmagir(ir,3) dbsir(ir,3)=dbsir(ir,3) & +fxcir(ir,2,4)*dmagir(ir,1) & +fxcir(ir,3,4)*dmagir(ir,2) & +fxcir(ir,4,4)*dmagir(ir,3) end do else ! collinear do ir=1,ngtot ! add charge-spin contribution to potential derivative dvsir(ir)=dvsir(ir)+fxcir(ir,1,4)*dmagir(ir,1) ! spin-charge contribution to B-field derivative dbsir(ir,1)=fxcir(ir,1,4)*drhoir(ir) ! add spin-spin contribution to B-field derivative dbsir(ir,1)=dbsir(ir,1)+fxcir(ir,4,4)*dmagir(ir,1) end do end if end if deallocate(fxcmt,fxcir,dvmt) if (spinpol) deallocate(dbmt) end subroutine elk-10.4.9/src/PaxHeaders/deveqnfv.f900000644000000000000000000000013214762655565014410 xustar0030 mtime=1741380469.198012276 30 atime=1741380467.884005407 30 ctime=1741380469.198012276 elk-10.4.9/src/deveqnfv.f900000644002504400250440000000722514762655565017140 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine deveqnfv(ngp,ngpq,igpig,igpqig,vgpc,vgpqc,evalfv,apwalm,apwalmq, & dapwalm,dapwalmq,evecfv,devalfvp,devecfv) use modmain use modphonon use modomp implicit none ! arguments integer, intent(in) :: ngp,ngpq integer, intent(in) :: igpig(ngkmax),igpqig(ngkmax) real(8), intent(in) :: vgpc(3,ngkmax),vgpqc(3,ngkmax) real(8), intent(in) :: evalfv(nstfv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw,natmtot) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: dapwalmq(ngkmax,apwordmax,lmmaxapw) complex(8), intent(in) :: evecfv(nmatmax,nstfv) real(8), intent(out) :: devalfvp(nstfv) complex(8), intent(out) :: devecfv(nmatmax,nstfv) ! local variables integer nm,nmq,is,ias,jst,i integer lwork,info,nthd real(8) t1 complex(8) z1 ! allocatable arrays real(8), allocatable :: w(:),rwork(:) complex(8), allocatable :: h(:,:),o(:,:),dh(:,:),od(:,:) complex(8), allocatable :: x(:),y(:),work(:) ! external functions real(8), external :: ddot ! matrix sizes for k and k+q nm=ngp+nlotot nmq=ngpq+nlotot allocate(h(nmq,nmq),o(nmq,nmq)) ! compute the Hamiltonian and overlap matrices at p+q call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP NUM_THREADS(nthd) !$OMP SECTION call hmlfv(nmq,ngpq,igpqig,vgpqc,apwalmq,h) !$OMP SECTION call olpfv(nmq,ngpq,igpqig,apwalmq,o) !$OMP END PARALLEL SECTIONS call freethd(nthd) ! solve the generalised eigenvalue problem (H - eⱼ O)|vⱼ> = 0 ! (note: these are also the eigenvalues/vectors of O⁻¹ H ) lwork=2*nmq allocate(w(nmq),rwork(3*nmq),work(lwork)) call zhegv(1,'V','U',nmq,h,nmq,o,nmq,w,work,lwork,rwork,info) if (info /= 0) then write(*,*) write(*,'("Error(deveqnfv): diagonalisation failed")') write(*,'(" ZHEGV returned INFO = ",I8)') info write(*,*) stop end if deallocate(rwork,o,work) ! compute the Hamiltonian and overlap matrix derivatives allocate(dh(nmq,nm),od(nmq,nm)) call holdthd(2,nthd) !$OMP PARALLEL SECTIONS DEFAULT(SHARED) & !$OMP PRIVATE(ias,is) & !$OMP NUM_THREADS(nthd) !$OMP SECTION call dhmlistl(ngp,ngpq,igpig,igpqig,vgpc,vgpqc,nmq,dh) dh(ngpq+1:nmq,1:ngp)=0.d0 dh(1:nmq,ngp+1:nm)=0.d0 do ias=1,natmtot is=idxis(ias) call dhmlaa(is,ias,ngp,ngpq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),dapwalm, & dapwalmq,nmq,dh) call dhmlalo(is,ias,ngp,ngpq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),dapwalm, & dapwalmq,nmq,dh) call dhmllolo(is,ias,ngp,ngpq,nmq,dh) end do !$OMP SECTION call dolpistl(ngp,ngpq,igpig,igpqig,nmq,od) od(ngpq+1:nmq,1:ngp)=0.d0 od(1:nmq,ngp+1:nm)=0.d0 do ias=1,natmtot is=idxis(ias) call dolpaa(is,ias,ngp,ngpq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),dapwalm, & dapwalmq,nmq,od) call dolpalo(is,ias,ngp,ngpq,dapwalm,dapwalmq,nmq,od) end do !$OMP END PARALLEL SECTIONS call freethd(nthd) allocate(x(nmq),y(nmq)) ! loop over states do jst=1,nstfv ! compute |dvⱼ> = V (eⱼ - D)⁻¹ V† (dH - eⱼ dO)|vⱼ> z1=-evalfv(jst) call zgemv('N',nmq,nm,z1,od,nmq,evecfv(:,jst),1,zzero,x,1) call zgemv('N',nmq,nm,zone,dh,nmq,evecfv(:,jst),1,zone,x,1) ! compute the first-order change in eigenvalue if (tphq0) then devalfvp(jst)=ddot(2*nmq,evecfv(:,jst),1,x,1) else devalfvp(jst)=0.d0 end if call zgemv('C',nmq,nmq,zone,h,nmq,x,1,zzero,y,1) do i=1,nmq t1=evalfv(jst)-w(i) if (abs(t1) > epsdev) then y(i)=y(i)/t1 else y(i)=0.d0 end if end do call zgemv('N',nmq,nmq,zone,h,nmq,y,1,zzero,devecfv(:,jst),1) end do deallocate(w,h,dh,od,x,y) end subroutine elk-10.4.9/src/PaxHeaders/drhomagk.f900000644000000000000000000000013214762655565014366 xustar0030 mtime=1741380469.199012281 30 atime=1741380467.887005422 30 ctime=1741380469.199012281 elk-10.4.9/src/drhomagk.f900000644002504400250440000001523114762655565017112 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine drhomagk(ngp,ngpq,igpig,igpqig,occsvp,doccsvp,apwalm,apwalmq, & dapwalm,evecfv,devecfv,evecsv,devecsv) use modmain use modphonon implicit none ! arguments integer, intent(in) :: ngp(nspnfv),ngpq(nspnfv) integer, intent(in) :: igpig(ngkmax,nspnfv),igpqig(ngkmax,nspnfv) real(8), intent(in) :: occsvp(nstsv),doccsvp(nstsv) complex(8), intent(in) :: apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: apwalmq(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv) complex(8), intent(in) :: dapwalm(ngkmax,apwordmax,lmmaxapw,nspnfv) complex(8), intent(in) :: evecfv(nmatmax,nstfv,nspnfv) complex(8), intent(in) :: devecfv(nmatmax,nstfv,nspnfv) complex(8), intent(in) :: evecsv(nstsv,nstsv),devecsv(nstsv,nstsv) ! local variables integer nst,ist,jst integer is,ias,npc real(8) wo,dwo ! automatic arrays integer idx(nstsv) ! allocatable arrays complex(8), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(8), allocatable :: dwfmt(:,:,:,:),dwfir(:,:,:) ! count and index the occupied states nst=0 do ist=1,nstsv if (abs(occsvp(ist)) < epsocc) cycle nst=nst+1 idx(nst)=ist end do ! generate the wavefunctions allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfir(ngtc,nspinor,nst)) call genwfsv(.false.,.false.,nst,idx,ngdgc,igfc,ngp,igpig,apwalm,evecfv,evecsv,& wfmt,ngtc,wfir) ! generate the wavefunction derivatives allocate(dwfmt(npcmtmax,natmtot,nspinor,nst),dwfir(ngtc,nspinor,nst)) call gendwfsv(.false.,.false.,nst,idx,ngp,ngpq,igpqig,apwalmq,dapwalm,evecfv, & devecfv,evecsv,devecsv,dwfmt,ngtc,dwfir) ! loop over occupied states do ist=1,nst jst=idx(ist) wo=2.d0*wkptnr*occsvp(jst) dwo=wkptnr*doccsvp(jst) !----------------------------------------------! ! muffin-tin density and magnetisation ! !----------------------------------------------! do ias=1,natmtot is=idxis(ias) npc=npcmt(is) !$OMP CRITICAL(drhomagk_1) if (spinpol) then ! spin-polarised if (ncmag) then ! non-collinear call drmk1(npc,wo,wfmt(:,ias,1,jst),wfmt(:,ias,2,jst), & dwfmt(:,ias,1,jst),dwfmt(:,ias,2,jst),drhomt(:,ias),dmagmt(:,ias,1), & dmagmt(:,ias,2),dmagmt(:,ias,3)) if (tphq0) then call drmk01(npc,dwo,wfmt(:,ias,1,jst),wfmt(:,ias,2,jst), & drhomt(:,ias),dmagmt(:,ias,1),dmagmt(:,ias,2),dmagmt(:,ias,3)) end if else ! collinear call drmk2(npc,wo,wfmt(:,ias,1,jst),wfmt(:,ias,2,jst), & dwfmt(:,ias,1,jst),dwfmt(:,ias,2,jst),drhomt(:,ias),dmagmt(:,ias,1)) if (tphq0) then call drmk02(npc,dwo,wfmt(:,ias,1,jst),wfmt(:,ias,2,jst), & drhomt(:,ias),dmagmt(:,ias,1)) end if end if else ! spin-unpolarised call drmk3(npc,wo,wfmt(:,ias,1,jst),dwfmt(:,ias,1,jst),drhomt(:,ias)) if (tphq0) then call drmk03(npc,dwo,wfmt(:,ias,1,jst),drhomt(:,ias)) end if end if !$OMP END CRITICAL(drhomagk_1) !****** use lock end do !------------------------------------------------! ! interstitial density and magnetisation ! !------------------------------------------------! !$OMP CRITICAL(drhomagk_2) if (spinpol) then ! spin-polarised if (ncmag) then call drmk1(ngtc,wo,wfir(:,1,jst),wfir(:,2,jst),dwfir(:,1,jst), & dwfir(:,2,jst),drhoir,dmagir,dmagir(:,2),dmagir(:,3)) if (tphq0) then call drmk01(ngtc,dwo,wfir(:,1,jst),wfir(:,2,jst),drhoir,dmagir, & dmagir(:,2),dmagir(:,3)) end if else ! collinear call drmk2(ngtc,wo,wfir(:,1,jst),wfir(:,2,jst),dwfir(:,1,jst), & dwfir(:,2,jst),drhoir,dmagir) if (tphq0) then call drmk02(ngtc,dwo,wfir(:,1,jst),wfir(:,2,jst),drhoir,dmagir) end if end if else ! spin-unpolarised call drmk3(ngtc,wo,wfir(:,1,jst),dwfir(:,1,jst),drhoir) if (tphq0) then call drmk03(ngtc,dwo,wfir(:,1,jst),drhoir) end if end if !$OMP END CRITICAL(drhomagk_2) ! end loop over states end do deallocate(wfmt,wfir,dwfmt,dwfir) return contains pure subroutine drmk1(n,wo,wf1,wf2,dwf1,dwf2,drho,dmag1,dmag2,dmag3) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wo complex(8), intent(in) :: wf1(n),wf2(n) complex(8), intent(in) :: dwf1(n),dwf2(n) complex(8), intent(inout) :: drho(n) complex(8), intent(inout) :: dmag1(n),dmag2(n),dmag3(n) ! local variables integer i complex(8) z1,z2,z3,z4,z5,z6 do i=1,n z1=conjg(wf1(i)) z2=conjg(wf2(i)) z3=dwf1(i) z4=dwf2(i) z5=z1*z3 z6=z2*z4 drho(i)=drho(i)+wo*(z5+z6) dmag3(i)=dmag3(i)+wo*(z5-z6) z5=z1*z4 z6=z2*z3 dmag1(i)=dmag1(i)+wo*(z5+z6) z5=z5-z6 dmag2(i)=dmag2(i)+wo*zmi*z5 end do end subroutine pure subroutine drmk01(n,dwo,wf1,wf2,drho,dmag1,dmag2,dmag3) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: dwo complex(8), intent(in) :: wf1(n),wf2(n) complex(8), intent(inout) :: drho(n) complex(8), intent(inout) :: dmag1(n),dmag2(n),dmag3(n) ! local variables integer i real(8) t1,t2 complex(8) z1,z2 do i=1,n z1=wf1(i) z2=wf2(i) t1=dble(z1)**2+aimag(z1)**2 t2=dble(z2)**2+aimag(z2)**2 z1=conjg(z1)*z2 drho(i)=drho(i)+dwo*(t1+t2) dmag1(i)=dmag1(i)+dwo*2.d0*dble(z1) dmag2(i)=dmag2(i)+dwo*2.d0*aimag(z1) dmag3(i)=dmag3(i)+dwo*(t1-t2) end do end subroutine pure subroutine drmk2(n,wo,wf1,wf2,dwf1,dwf2,drho,dmag) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wo complex(8), intent(in) :: wf1(n),wf2(n) complex(8), intent(in) :: dwf1(n),dwf2(n) complex(8), intent(inout) :: drho(n),dmag(n) ! local variables integer i complex(8) z1,z2 do i=1,n z1=conjg(wf1(i))*dwf1(i) z2=conjg(wf2(i))*dwf2(i) drho(i)=drho(i)+wo*(z1+z2) dmag(i)=dmag(i)+wo*(z1-z2) end do end subroutine pure subroutine drmk02(n,dwo,wf1,wf2,drho,dmag) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: dwo complex(8), intent(in) :: wf1(n),wf2(n) complex(8), intent(inout) :: drho(n),dmag(n) ! local variables integer i real(8) t1,t2 do i=1,n t1=dble(wf1(i))**2+aimag(wf1(i))**2 t2=dble(wf2(i))**2+aimag(wf2(i))**2 drho(i)=drho(i)+dwo*(t1+t2) dmag(i)=dmag(i)+dwo*(t1-t2) end do end subroutine pure subroutine drmk3(n,wo,wf,dwf,drho) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: wo complex(8), intent(in) :: wf(n),dwf(n) complex(8), intent(inout) :: drho(n) drho(1:n)=drho(1:n)+wo*conjg(wf(1:n))*dwf(1:n) end subroutine pure subroutine drmk03(n,dwo,wf,drho) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: dwo complex(8), intent(in) :: wf(n) complex(8), intent(inout) :: drho(n) drho(1:n)=drho(1:n)+dwo*(dble(wf(1:n))**2+aimag(wf(1:n))**2) end subroutine end subroutine elk-10.4.9/src/PaxHeaders/gengvsmt.f900000644000000000000000000000013214762655565014424 xustar0030 mtime=1741380469.200012286 30 atime=1741380467.889005433 30 ctime=1741380469.200012286 elk-10.4.9/src/gengvsmt.f900000644002504400250440000000135614762655565017153 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengvsmt use modmain use modphonon implicit none ! local variables integer nr,nri,np ! allocatable arrays complex(8), allocatable :: zfmt(:),gzfmt(:,:) allocate(zfmt(npmtmax),gzfmt(npmtmax,3)) nr=nrmt(isph) nri=nrmti(isph) np=npmt(isph) ! convert potential to complex spherical harmonics call rtozfmt(nr,nri,vsmt(:,iasph),zfmt) ! calculate the gradient call gradzfmt(nr,nri,rlmt(:,-1,isph),wcrmt(:,:,isph),zfmt,npmtmax,gzfmt) ! copy current polarisation component to global array gvsmt(1:np)=gzfmt(1:np,ipph) deallocate(zfmt,gzfmt) end subroutine elk-10.4.9/src/PaxHeaders/dforce.f900000644000000000000000000000013214762655565014034 xustar0030 mtime=1741380469.202012297 30 atime=1741380467.892005448 30 ctime=1741380469.202012297 elk-10.4.9/src/dforce.f900000644002504400250440000001251714762655565016564 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dforce(dyn) use modmain use modphonon use modmpi use modomp implicit none ! arguments complex(8), intent(out) :: dyn(3,natmtot) ! local variables integer ik,is,ias,jas,ip integer nr,nri,nthd complex(8) z1 ! automatic arrays complex(8) dynibs(3,natmtot) ! allocatable arrays complex(8), allocatable :: zrhomt(:,:),zrhoir(:) complex(8), allocatable :: grhomt(:,:,:),grhoir(:,:) complex(8), allocatable :: zvclmt(:,:),zvclir(:) complex(8), allocatable :: gvclmt(:,:,:),gvclir(:,:) complex(8), allocatable :: zfmt(:),gvcln(:,:),gzfmt(:,:) ! external functions complex(8), external :: zfmtinp allocate(zrhomt(npmtmax,natmtot),zrhoir(ngtot)) allocate(grhomt(npmtmax,natmtot,3),grhoir(ngtot,3)) allocate(zvclmt(npmtmax,natmtot+1),zvclir(ngtot)) allocate(gvclmt(npmtmax,natmtot,3),gvclir(ngtot,3)) allocate(zfmt(npmtmax),gvcln(npmtmax,3),gzfmt(npmtmax,3)) ! make complex copy of the density do ias=1,natmtot is=idxis(ias) call rtozfmt(nrmt(is),nrmti(is),rhomt(:,ias),zrhomt(:,ias)) end do zrhoir(1:ngtot)=rhoir(1:ngtot) ! compute the gradient of the density call gradzf(zrhomt,zrhoir,grhomt,grhoir) !--------------------------------------------------------------! ! Hellmann-Feynman force derivative for displaced atom ! !--------------------------------------------------------------! ! calculate the gradient of the nuclear potential call gradzvcln(isph,gvcln) do ip=1,3 ! compute the q-dependent nuclear Coulomb potential derivative zvclmt(1:npmtmax,1:natmtot)=0.d0 zvclmt(1:npmt(isph),iasph)=gvcln(1:npmt(isph),ip) ! zero the interstitial density zrhoir(1:ngtot)=0.d0 if (ip == ipph) then; jas=iasph; else; jas=0; endif call zpotcoul(jas,nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gqc,gclgq, & ngvec,jlgqrmt,ylmgq,sfacgq,zrhoir,npmtmax,zvclmt,zvclir) ! multiply with density derivative and integrate z1=sum(cfunir(1:ngtot)*conjg(zvclir(1:ngtot))*drhoir(1:ngtot)) z1=z1*omega/dble(ngtot) do ias=1,natmtot is=idxis(ias) z1=z1+zfmtinp(nrmt(is),nrmti(is),wr2mt(:,is),zvclmt(:,ias),drhomt(:,ias)) end do dyn(ip,iasph)=-z1 ! nuclear-nuclear term if (ip == ipph) then; jas=natmtot+1; else; jas=iasph; end if call gradzfmt(nrmt(isph),nrmti(isph),rlmt(:,-1,isph),wcrmt(:,:,isph), & zvclmt(:,jas),npmtmax,gzfmt) z1=spzn(isph)*gzfmt(1,ipph)*y00 dyn(ip,iasph)=dyn(ip,iasph)-z1 end do ! compute the lattice-periodic nuclear Coulomb potential derivative zvclmt(1:npmtmax,1:natmtot)=0.d0 zvclmt(1:npmt(isph),iasph)=gvcln(1:npmt(isph),ipph) call zpotcoul(iasph,nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gc,gclg, & ngvec,jlgrmt,ylmg,sfacg,zrhoir,npmtmax,zvclmt,zvclir) do ip=1,3 ! multiply with density gradient and integrate z1=sum(cfunir(1:ngtot)*zvclir(1:ngtot)*grhoir(1:ngtot,ip)) z1=z1*omega/dble(ngtot) do ias=1,natmtot is=idxis(ias) z1=z1+zfmtinp(nrmt(is),nrmti(is),wr2mt(:,is),grhomt(:,ias,ip),zvclmt(:,ias)) end do dyn(ip,iasph)=dyn(ip,iasph)-z1 end do ! nuclear-nuclear term do ip=1,3 do ias=1,natmtot is=idxis(ias) if (ias == iasph) then; jas=natmtot+1; else; jas=ias; end if call gradzfmt(nrmt(is),nrmti(is),rlmt(:,-1,is),wcrmt(:,:,is),zvclmt(:,jas),& npmtmax,gzfmt) z1=spzn(is)*gzfmt(1,ip)*y00 dyn(ip,iasph)=dyn(ip,iasph)+z1 end do end do !-------------------------------------------------------------------! ! Hellmann-Feynman force derivative for non-displaced atoms ! !-------------------------------------------------------------------! do ias=1,natmtot if (ias == iasph) cycle is=idxis(ias) nr=nrmt(is) nri=nrmti(is) ! compute the gradient of the Coulomb potential derivative at the nucleus call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),dvclmt(:,ias),npmtmax,gzfmt) do ip=1,3 dyn(ip,ias)=spzn(is)*gzfmt(1,ip)*y00 end do end do !--------------------------------------------! ! IBS correction to force derivative ! !--------------------------------------------! dynibs(:,:)=0.d0 ! k-point dependent part call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP REDUCTION(+:dynibs) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call dforcek(ik,dynibs) end do !$OMP END PARALLEL DO call freethd(nthd) ! add IBS force derivatives from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,dynibs,3*natmtot,mpi_double_complex,mpi_sum, & mpicom,ierror) end if ! k-point independent part do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) do ip=1,3 z1=zfmtinp(nr,nri,wr2mt(:,is),grhomt(:,ias,ip),dvsmt(:,ias)) dynibs(ip,ias)=dynibs(ip,ias)-z1 end do ! compute the gradient of the density derivative if (ias == iasph) then; jas=natmtot+1; else; jas=ias; end if call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),drhomt(:,jas),npmtmax,gzfmt) ! convert Kohn-Sham potential to complex spherical harmonics call rtozfmt(nr,nri,vsmt(:,ias),zfmt) do ip=1,3 z1=zfmtinp(nr,nri,wr2mt(:,is),zfmt,gzfmt(:,ip)) dynibs(ip,ias)=dynibs(ip,ias)-z1 end do end do ! add the IBS force derivatives to the total dyn(:,:)=dyn(:,:)+dynibs(:,:) deallocate(zrhomt,zrhoir,grhomt,grhoir) deallocate(zvclmt,zvclir,gvclmt,gvclir,zfmt,gzfmt) end subroutine elk-10.4.9/src/PaxHeaders/dforcek.f900000644000000000000000000000013214762655565014207 xustar0030 mtime=1741380469.203012302 30 atime=1741380467.895005464 30 ctime=1741380469.203012302 elk-10.4.9/src/dforcek.f900000644002504400250440000002330514762655565016734 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dforcek(ik,dynibs) use modmain use modphonon use modpw implicit none ! arguments integer, intent(in) :: ik complex(8), intent(inout) :: dynibs(3,natmtot) ! local variables integer ispn0,ispn1,ispn,jspn integer n,nq,nm,nmq integer is,ias,ist,jst,jk integer iv(3),ig,i,j,l real(8) t1 complex(8) z1,z2,dt1,dz1,dz2 ! automatic arrays real(8) evalfv(nstfv,nspnfv) complex(8) vh(nmatmax),vo(nmatmax),dvh(nmatmax),dvo(nmatmax) complex(8) ffv(nstfv,nstfv),dffv(nstfv,nstfv),y(nstfv),dy(nstfv) ! allocatable arrays integer, allocatable :: ijg(:,:),ijgq(:,:) real(8), allocatable :: dp(:,:),dpq(:,:) complex(8), allocatable :: apwalm(:,:,:,:),apwalmq(:,:,:,:),dapwalm(:,:,:) complex(8), allocatable :: evecfv(:,:,:),devecfv(:,:,:) complex(8), allocatable :: evecsv(:,:),devecsv(:,:) complex(8), allocatable :: h(:,:),o(:,:),dlh(:,:),dlo(:,:) complex(8), allocatable :: hq(:,:),oq(:,:),dh(:,:),od(:,:) complex(8), allocatable :: dlhq(:,:),dloq(:,:),ddlh(:,:),ddlo(:,:) ! external functions complex(8), external :: zdotc ! allocate local arrays allocate(ijg(nmatmax,nmatmax),ijgq(nmatmax,nmatmax)) allocate(dp(nmatmax,nmatmax),dpq(nmatmax,nmatmax)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(apwalmq(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(dapwalm(ngkmax,apwordmax,lmmaxapw)) allocate(evecfv(nmatmax,nstfv,nspnfv)) allocate(devecfv(nmatmax,nstfv,nspnfv)) allocate(h(nmatmax,nmatmax),o(nmatmax,nmatmax)) allocate(dlh(nmatmax,nmatmax),dlo(nmatmax,nmatmax)) allocate(hq(nmatmax,nmatmax),oq(nmatmax,nmatmax)) allocate(dh(nmatmax,nmatmax),od(nmatmax,nmatmax)) allocate(dlhq(nmatmax,nmatmax),dloq(nmatmax,nmatmax)) allocate(ddlh(nmatmax,nmatmax),ddlo(nmatmax,nmatmax)) ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! get the eigenvalues/vectors from file call getevalfv(filext,0,vkl(:,ik),evalfv) call getevecfv(filext,0,vkl(:,ik),vgkl(:,:,:,ik),evecfv) ! get the eigenvalue/vector derivatives from file call getdevecfv(ik,iqph,isph,iaph,ipph,devecfv) if (tevecsv) then allocate(evecsv(nstsv,nstsv),devecsv(nstsv,nstsv)) call getevecsv(filext,0,vkl(:,ik),evecsv) call getdevecsv(ik,iqph,isph,iaph,ipph,devecsv) end if ! loop over first-variational spin components do jspn=1,nspnfv if (spinsprl) then ispn0=jspn; ispn1=jspn else ispn0=1; ispn1=nspinor end if n=ngk(jspn,ik) nq=ngkq(jspn,ik) nm=n+nlotot nmq=nq+nlotot do j=1,n do i=1,n iv(:)=ivg(:,igkig(i,jspn,ik))-ivg(:,igkig(j,jspn,ik)) iv(:)=modulo(iv(:)-intgv(1,:),ngridg(:))+intgv(1,:) ijg(i,j)=ivgig(iv(1),iv(2),iv(3)) dp(i,j)=0.5d0*dot_product(vgkc(1:3,i,jspn,ik),vgkc(1:3,j,jspn,ik)) end do end do do j=1,n do i=1,nq iv(:)=ivg(:,igkqig(i,jspn,ik))-ivg(:,igkig(j,jspn,ik)) iv(:)=modulo(iv(:)-intgv(1,:),ngridg(:))+intgv(1,:) ijgq(i,j)=ivgig(iv(1),iv(2),iv(3)) dpq(i,j)=0.5d0*dot_product(vgkqc(1:3,i,jspn,ik),vgkc(1:3,j,jspn,ik)) end do end do ! find the matching coefficients call match(n,vgkc(:,:,jspn,ik),gkc(:,jspn,ik),sfacgk(:,:,jspn,ik),apwalm) call match(nq,vgkqc(:,:,jspn,ik),gkqc(:,jspn,ik),sfacgkq(:,:,jspn,ik), & apwalmq) ! find the matching coefficient derivatives call dmatch(iasph,ipph,n,vgkc(:,:,jspn,ik),apwalm,dapwalm) ! loop over species and atoms do ias=1,natmtot is=idxis(ias) ! Hamiltonian and overlap matrices do j=1,nm h(1:j,j)=0.d0 end do call hmlaa(.false.,is,ias,n,apwalm(:,:,:,ias),nmatmax,h) call hmlalo(is,ias,n,apwalm(:,:,:,ias),nmatmax,h) do j=1,nm o(1:j,j)=0.d0 end do call olpaa(.false.,is,n,apwalm(:,:,:,ias),nmatmax,o) call olpalo(is,ias,n,apwalm(:,:,:,ias),nmatmax,o) hq(:,:)=0.d0 call hmlaaq(is,ias,n,nq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),nmatmax,hq) call hmlaloq(is,ias,n,nq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),nmatmax,hq) oq(:,:)=0.d0 call olpaaq(is,n,nq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),nmatmax,oq) call olpaloq(is,ias,n,nq,apwalm(:,:,:,ias),apwalmq(:,:,:,ias),nmatmax,oq) ! Hamiltonian and overlap derivatives dh(:,:)=0.d0 call dhmlaa(is,ias,n,n,apwalm(:,:,:,ias),apwalm(:,:,:,ias),dapwalm,dapwalm,& nmatmax,dh) call dhmlalo(is,ias,n,n,apwalm(:,:,:,ias),apwalm(:,:,:,ias),dapwalm, & dapwalm,nmatmax,dh) od(:,:)=0.d0 call dolpaa(is,ias,n,n,apwalm(:,:,:,ias),apwalm(:,:,:,ias),dapwalm,dapwalm,& nmatmax,od) call dolpalo(is,ias,n,n,dapwalm,dapwalm,nmatmax,od) ! loop over Cartesian directions do l=1,3 ! APW-APW contribution do j=1,n do i=1,j ig=ijg(i,j) t1=vgc(l,ig) z1=-ffacg(ig,is)*conjg(sfacg(ig,ias)) z2=t1*(dp(i,j)*z1+h(i,j)) dlh(i,j)=zi*z2 z2=t1*(z1+o(i,j)) dlo(i,j)=zi*z2 end do end do do j=n+1,nm ! APW-local-orbital contribution do i=1,n t1=vgkc(l,i,jspn,ik) z1=t1*h(i,j) dlh(i,j)=zi*z1 z1=t1*o(i,j) dlo(i,j)=zi*z1 end do ! zero the local-orbital-local-orbital contribution do i=n+1,j dlh(i,j)=0.d0 dlo(i,j)=0.d0 end do end do ! non-square H/O(G+k+q,G'+k) matrices ! APW-APW contribution do j=1,n do i=1,nq ig=ijgq(i,j) t1=vgqc(l,ig) z1=-ffacgq(ig,is)*conjg(sfacgq(ig,ias)) z2=t1*(dpq(i,j)*z1+hq(i,j)) dlhq(i,j)=zi*z2 z2=t1*(z1+oq(i,j)) dloq(i,j)=zi*z2 end do ! local-orbital-APW derivative t1=-vgkc(l,j,jspn,ik) do i=nq+1,nmq z1=t1*hq(i,j) dlhq(i,j)=zi*z1 z1=t1*oq(i,j) dloq(i,j)=zi*z1 end do end do do j=n+1,nm ! APW-local-orbital contribution do i=1,nq t1=vgkqc(l,i,jspn,ik) z1=t1*hq(i,j) dlhq(i,j)=zi*z1 z1=t1*oq(i,j) dloq(i,j)=zi*z1 end do ! zero the local-orbital-local-orbital contribution do i=nq+1,nmq dlhq(i,j)=0.d0 dloq(i,j)=0.d0 end do end do ! APW-APW derivative do j=1,n do i=1,n ig=ijg(i,j) t1=vgc(l,ig) if (ias == iasph) then z1=-ffacg(ig,is)*conjg(sfacg(ig,ias)) dz1=vgc(ipph,ig)*zmi*z1 else dz1=0.d0 end if z2=t1*(dp(i,j)*dz1+dh(i,j)) ddlh(i,j)=zi*z2 z2=t1*(dz1+od(i,j)) ddlo(i,j)=zi*z2 end do ! local-orbital-APW derivative t1=-vgkc(l,j,jspn,ik) do i=n+1,nm z1=t1*dh(i,j) ddlh(i,j)=zi*z1 z1=t1*od(i,j) ddlo(i,j)=zi*z1 end do end do ! APW-local-orbital derivative do j=n+1,nm do i=1,n t1=vgkc(l,i,jspn,ik) z1=t1*dh(i,j) ddlh(i,j)=zi*z1 z1=t1*od(i,j) ddlo(i,j)=zi*z1 end do ! zero the local-orbital-local-orbital derivative do i=n+1,nm ddlh(i,j)=0.d0 ddlo(i,j)=0.d0 end do end do if (tphq0) then ! compute the force matrix elements in the first-variational basis do jst=1,nstfv call zhemv('U',nm,zone,dlh,nmatmax,evecfv(:,jst,jspn),1,zzero,vh,1) call zhemv('U',nm,zone,dlo,nmatmax,evecfv(:,jst,jspn),1,zzero,vo,1) t1=evalfv(jst,jspn) do ist=1,nstfv z1=zdotc(nm,evecfv(:,ist,jspn),1,vh,1) z2=zdotc(nm,evecfv(:,ist,jspn),1,vo,1) ffv(ist,jst)=z1-t1*z2 end do end do end if ! compute the force derivative matrix elements in the first-variational basis dffv(:,:)=0.d0 do jst=1,nstfv call zhemv('U',nm,zone,dlo,nmatmax,evecfv(:,jst,jspn),1,zzero,vo,1) call zgemv('N',nm,nm,zone,ddlh,nmatmax,evecfv(:,jst,jspn),1,zzero,dvh,1) call zgemv('N',nm,nm,zone,ddlo,nmatmax,evecfv(:,jst,jspn),1,zzero,dvo,1) t1=evalfv(jst,jspn) dt1=devalfv(jst,jspn,ik) do ist=1,nstfv z2=zdotc(nm,evecfv(:,ist,jspn),1,vo,1) dz1=zdotc(nm,evecfv(:,ist,jspn),1,dvh,1) dz2=zdotc(nm,evecfv(:,ist,jspn),1,dvo,1) dffv(ist,jst)=dffv(ist,jst)+dz1-dt1*z2-t1*dz2 end do call zgemv('C',nmq,nm,zone,dlhq,nmatmax,devecfv(:,jst,jspn),1,zzero, & dvh,1) call zgemv('C',nmq,nm,zone,dloq,nmatmax,devecfv(:,jst,jspn),1,zzero, & dvo,1) do ist=1,nstfv dz1=2.d0*zdotc(nm,evecfv(:,ist,jspn),1,dvh,1) dz2=2.d0*zdotc(nm,evecfv(:,ist,jspn),1,dvo,1) dffv(ist,jst)=dffv(ist,jst)+dz1-t1*dz2 end do end do z1=0.d0 if (tevecsv) then ! spin-polarised case do j=1,nstsv do ispn=ispn0,ispn1 i=(ispn-1)*nstfv+1 call zgemv('N',nstfv,nstfv,zone,ffv,nstfv,evecsv(i,j),1,zzero,y,1) call zgemv('N',nstfv,nstfv,zone,dffv,nstfv,evecsv(i,j),1,zzero,dy,1) call zgemv('N',nstfv,nstfv,zone,ffv,nstfv,devecsv(i,j),1,zone,dy,1) dz1=zdotc(nstfv,evecsv(i,j),1,dy,1) dz1=dz1+zdotc(nstfv,devecsv(i,j),1,y,1) z1=z1+occsv(j,jk)*dz1 !******** doccsv end do end do else ! spin-unpolarised case do j=1,nstsv z1=z1+occsv(j,jk)*dffv(j,j) if (tphq0) then z1=z1+doccsv(j,ik)*dble(ffv(j,j)) end if end do end if dynibs(l,ias)=dynibs(l,ias)-wkptnr*z1 ! end loop over Cartesian components end do ! end loop over atoms and species end do ! end loop over first-variational spins end do deallocate(ijg,ijgq,dp,dpq) deallocate(apwalm,apwalmq,dapwalm) deallocate(evecfv,devecfv) deallocate(h,o,dlh,dlo,hq,oq,dh,od) deallocate(dlhq,dloq,ddlh,ddlo) if (tevecsv) deallocate(evecsv,devecsv) end subroutine elk-10.4.9/src/PaxHeaders/phonon.f900000644000000000000000000000013114762655565014072 xustar0030 mtime=1741380469.205012313 29 atime=1741380467.89800548 30 ctime=1741380469.205012313 elk-10.4.9/src/phonon.f900000644002504400250440000002351414762655565016622 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine phonon use modmain use modphonon use modpw use modmpi use modomp use moddelf implicit none ! local variables integer ik,jk,iv(3),jspn,idm integer is,ia,ias,ip,nthd integer nmix,nwork,n,lp ! use Broyden mixing only integer, parameter :: mtype=3 real(8) ddv,a,b character(256) fext ! allocatable arrays real(8), allocatable :: evalfv(:,:),work(:) complex(8), allocatable :: dyn(:,:) complex(8), allocatable :: apwalm(:,:,:,:,:),apwalmq(:,:,:,:,:) complex(8), allocatable :: dapwalm(:,:,:,:),dapwalmq(:,:,:,:) complex(8), allocatable :: evecfv(:,:,:),devecfv(:,:,:) complex(8), allocatable :: evecsv(:,:),devecsv(:,:) ! initialise universal variables call init0 call init1 call init2 call init4 ! check k-point grid is commensurate with q-point grid iv(:)=mod(ngridk(:),ngridq(:)) if ((iv(1) /= 0).or.(iv(2) /= 0).or.(iv(3) /= 0)) then write(*,*) write(*,'("Error(phonon): k-point grid incommensurate with q-point grid")') write(*,'(" ngridk : ",3I6)') ngridk write(*,'(" ngridq : ",3I6)') ngridq write(*,*) stop end if if (lmaxi < 2) then write(*,*) write(*,'("Error(phonon): lmaxi too small for calculating DFPT phonons : ",& &I4)') lmaxi write(*,'(" Run the ground-state calculation again with lmaxi >= 2")') write(*,*) stop end if if (spinpol) then write(*,*) write(*,'("Error(phonon): spin-polarised phonons not yet available")') write(*,*) stop end if ! check spin-spiral de-phasing is not used if (ssdph) then write(*,*) write(*,'("Error(phonon): ssdph should be .false. for DFPT phonons")') write(*,*) stop end if ! check for zero atoms if (natmtot == 0) return ! read in the density and potentials call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! get the eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! size of mixing vector (complex array) nmix=2*size(dvsbs) ! determine the size of the mixer work array nwork=-1 call mixerifc(mtype,nmix,dvsbs,ddv,nwork,work) allocate(work(nwork)) ! allocate dynamical matrix column allocate(dyn(3,natmtot)) ! begin new dynamical matrix task 10 continue call dyntask(80,fext) ! if nothing more to do then return if (iqph == 0) return if (mp_mpi) then write(*,'("Info(phonon): working on ",A)') 'DYN'//trim(fext) ! open RMSDDVS.OUT open(65,file='RMSDDVS'//trim(fext),form='FORMATTED') end if ! zero the dynamical matrix row dyn(:,:)=0.d0 ! check to see if mass is considered infinite if (spmass(isph) <= 0.d0) goto 20 ! generate the G+k+q-vectors and related quantities call gengkqvec(iqph) ! generate the G+q-vectors and related quantities call gengqvec(iqph) ! generate the Coulomb Green's function in G+q-space call gengclgq(.false.,iqph,ngvec,gqc,gclgq) ! generate the characteristic function derivative call gendcfun ! generate the gradient of the Kohn-Sham potential call gengvsmt ! initialise the potential derivative drhomt(:,:)=0.d0 drhoir(:)=0.d0 if (spinpol) then dmagmt(:,:,:)=0.d0 dmagir(:,:)=0.d0 end if call dpotks call gendvsig ! initialise the mixer iscl=0 call mixerifc(mtype,nmix,dvsbs,ddv,nwork,work) ! initialise the Fermi energy and occupancy derivatives defermi=0.d0 doccsv(:,:)=0.d0 ! set last self-consistent loop flag tlast=.false. ! begin the self-consistent loop do iscl=1,maxscl ! compute the Hamiltonian radial integral derivatives call dhmlrad ! zero the density and magnetisation derivatives drhomt(:,:)=0.d0 drhoir(:)=0.d0 if (spinpol) then dmagmt(:,:,:)=0.d0 dmagir(:,:)=0.d0 end if ! parallel loop over k-points call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evalfv,apwalm,apwalmq,dapwalm,dapwalmq) & !$OMP PRIVATE(evecfv,devecfv,evecsv,devecsv,jk,jspn) & !$OMP NUM_THREADS(nthd) allocate(evalfv(nstfv,nspnfv)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(apwalmq(ngkmax,apwordmax,lmmaxapw,natmtot,nspnfv)) allocate(dapwalm(ngkmax,apwordmax,lmmaxapw,nspnfv)) allocate(dapwalmq(ngkmax,apwordmax,lmmaxapw,nspnfv)) allocate(evecfv(nmatmax,nstfv,nspnfv),devecfv(nmatmax,nstfv,nspnfv)) allocate(evecsv(nstsv,nstsv),devecsv(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! compute the matching coefficients and derivatives do jspn=1,nspnfv call match(ngk(jspn,ik),vgkc(:,:,jspn,ik),gkc(:,jspn,ik), & sfacgk(:,:,jspn,ik),apwalm(:,:,:,:,jspn)) call dmatch(iasph,ipph,ngk(jspn,ik),vgkc(:,:,jspn,ik), & apwalm(:,:,:,:,jspn),dapwalm(:,:,:,jspn)) call match(ngkq(jspn,ik),vgkqc(:,:,jspn,ik),gkqc(:,jspn,ik), & sfacgkq(:,:,jspn,ik),apwalmq(:,:,:,:,jspn)) call dmatch(iasph,ipph,ngkq(jspn,ik),vgkqc(:,:,jspn,ik), & apwalmq(:,:,:,:,jspn),dapwalmq(:,:,:,jspn)) end do ! get the first- and second-variational eigenvalues and eigenvectors from file call getevalfv(filext,jk,vkl(:,ik),evalfv) call getevecfv(filext,0,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,0,vkl(:,ik),evecsv) ! solve the first-variational eigenvalue equation derivative do jspn=1,nspnfv call deveqnfv(ngk(jspn,ik),ngkq(jspn,ik),igkig(:,jspn,ik), & igkqig(:,jspn,ik),vgkc(:,:,jspn,ik),vgkqc(:,:,jspn,ik),evalfv(:,jspn), & apwalm(:,:,:,:,jspn),apwalmq(:,:,:,:,jspn),dapwalm(:,:,:,jspn), & dapwalmq(:,:,:,jspn),evecfv(:,:,jspn),devalfv(:,jspn,ik), & devecfv(:,:,jspn)) end do if (spinsprl) then ! solve the spin-spiral second-variational eigenvalue equation derivative ! call deveqnss(ngk(:,ik),ngkq(:,ik),igkig(:,:,ik),igkqig(:,:,ik),apwalm, & ! dapwalm,devalfv,evecfv,evecfvq,devecfv,evalsv(:,jk),evecsv,devecsv) else ! solve the second-variational eigenvalue equation derivative ! call deveqnsv(ngk(1,ik),ngkq(1,ik),igkig(:,1,ik),igkqig(:,1,ik), & ! vgkqc(:,:,1,ik),apwalm,dapwalm,devalfv,evecfv,evecfvq,devecfv, & ! evalsv(:,jk),evecsv,devecsv) end if !******* devalsv(:,ik)=devalfv(:,1,ik) !******* ! write the eigenvalue/vector derivatives to file call putdevecfv(ik,devecfv) if (tevecsv) call putdevecsv(ik,devecsv) ! add to the density and magnetisation derivatives call drhomagk(ngk(:,ik),ngkq(:,ik),igkig(:,:,ik),igkqig(:,:,ik), & occsv(:,jk),doccsv(:,ik),apwalm,apwalmq,dapwalm,evecfv,devecfv,evecsv, & devecsv) end do !$OMP END DO deallocate(evalfv,apwalm,apwalmq,dapwalm,dapwalmq) deallocate(evecfv,devecfv,evecsv,devecsv) !$OMP END PARALLEL call freethd(nthd) ! broadcast eigenvalue derivative arrays to every process n=nstfv*nspnfv do ik=1,nkptnr lp=mod(ik-1,np_mpi) call mpi_bcast(devalfv(:,:,ik),n,mpi_double_precision,lp,mpicom,ierror) call mpi_bcast(devalsv(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) end do ! convert muffin-tin density/magnetisation derivatives to spherical harmonics call drhomagsh ! convert from a coarse to a fine radial mesh call zfmtctof(drhomt) do idm=1,ndmag call zfmtctof(dmagmt(:,:,idm)) end do ! convert interstitial density/magnetisation derivatives to fine grid call zfirctof(drhoir,drhoir) do idm=1,ndmag call zfirctof(dmagir(:,idm),dmagir(:,idm)) end do ! add densities from each process and redistribute if (np_mpi > 1) then n=npmtmax*natmtot call mpi_allreduce(mpi_in_place,drhomt,n,mpi_double_complex,mpi_sum, & mpicom,ierror) call mpi_allreduce(mpi_in_place,drhoir,ngtot,mpi_double_complex,mpi_sum, & mpicom,ierror) if (spinpol) then n=npmtmax*natmtot*ndmag call mpi_allreduce(mpi_in_place,dmagmt,n,mpi_double_complex,mpi_sum, & mpicom,ierror) n=ngtot*ndmag call mpi_allreduce(mpi_in_place,dmagir,n,mpi_double_complex,mpi_sum, & mpicom,ierror) end if end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! add gradient contribution to density derivative call gradrhomt ! compute the Kohn-Sham potential derivative call dpotks ! Fourier transform Kohn-Sham potential derivative to G+q-space call gendvsig ! mix the old potential and field with the new call mixerifc(mtype,nmix,dvsbs,ddv,nwork,work) if (mp_mpi) then write(65,'(G18.10)') ddv flush(65) end if ! exit self-consistent loop if required if (tlast) goto 20 ! check for convergence if (iscl >= 2) then if (ddv < epspot) tlast=.true. end if ! broadcast tlast from master process to all other processes call mpi_bcast(tlast,1,mpi_logical,0,mpicom,ierror) ! compute the occupation number derivatives call doccupy ! end the self-consistent loop end do write(*,*) write(*,'("Warning(phonon): failed to reach self-consistency after ",I4,& &" loops")') maxscl 20 continue ! close the RMSDDVS.OUT file if (mp_mpi) close(65) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! generate the dynamical matrix row from force derivatives call dforce(dyn) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! write dynamical matrix row to file if (mp_mpi) then do ias=1,natmtot is=idxis(ias) ia=idxia(ias) do ip=1,3 a=dble(dyn(ip,ias)) b=aimag(dyn(ip,ias)) if (abs(a) < 1.d-12) a=0.d0 if (abs(b) < 1.d-12) b=0.d0 write(80,'(2G18.10," : is = ",I4,", ia = ",I4,", ip = ",I4)') a,b,is,ia,ip end do end do close(80) ! write the complex Kohn-Sham potential derivative to file call writedvs(fext) end if ! delete the non-essential files call delfiles(devec=.true.) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) goto 10 end subroutine elk-10.4.9/src/PaxHeaders/mcmillan.f900000644000000000000000000000013214762655565014366 xustar0030 mtime=1741380469.207012323 30 atime=1741380467.901005496 30 ctime=1741380469.207012323 elk-10.4.9/src/mcmillan.f900000644002504400250440000000275114762655565017115 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, A. Sanna, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine mcmillan(w,a2f,lambda,wlog,wrms,tc) use modmain use modphonon implicit none ! arguments real(8), intent(in) :: w(nwplot),a2f(nwplot) real(8), intent(out) :: lambda,wlog,wrms,tc ! local variables integer iw real(8) l1,l2,f1,f2,t1 ! allocatable arrays real(8), allocatable :: f(:) ! external functions real(8), external :: splint allocate(f(nwplot)) ! compute the total lambda do iw=1,nwplot if (w(iw) > 1.d-8) then f(iw)=a2f(iw)/w(iw) else f(iw)=0.d0 end if end do t1=splint(nwplot,w,f) lambda=2.d0*t1 ! compute the logarithmic average frequency do iw=1,nwplot if (w(iw) > 1.d-8) then f(iw)=a2f(iw)*log(w(iw))/w(iw) else f(iw)=0.d0 end if end do t1=splint(nwplot,w,f) t1=(2.d0/lambda)*t1 wlog=exp(t1) ! compute ⟨w²⟩¹⸍² do iw=1,nwplot if (w(iw) > 1.d-8) then f(iw)=a2f(iw)*w(iw) else f(iw)=0.d0 end if end do t1=splint(nwplot,w,f) t1=(2.d0/lambda)*t1 wrms=sqrt(abs(t1)) ! compute McMillan-Allen-Dynes superconducting critical temperature t1=(-1.04d0*(1.d0+lambda))/(lambda-mustar-0.62d0*lambda*mustar) tc=(wlog/(1.2d0*kboltz))*exp(t1) l1=2.46d0*(1.d0+3.8d0*mustar) l2=1.82d0*(1.d0+6.3d0*mustar)*(wrms/wlog) f1=(1.d0+(lambda/l1)**(3.d0/2.d0))**(1.d0/3.d0) f2=1.d0+(wrms/wlog-1.d0)*(lambda**2)/(lambda**2+l2**2) tc=tc*f1*f2 deallocate(f) end subroutine elk-10.4.9/src/PaxHeaders/genephmat.f900000644000000000000000000000013214762655565014542 xustar0030 mtime=1741380469.208012328 30 atime=1741380467.903005506 30 ctime=1741380469.208012328 elk-10.4.9/src/genephmat.f900000644002504400250440000000747614762655565017302 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genephmat(iq,ik,de,a,dvmt,dvir,ephmat) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq,ik real(8), intent(in) :: de complex(8), intent(in) :: a(nbph,nbph) complex(8), intent(in) :: dvmt(npcmtmax,natmtot,nbph),dvir(ngtc,nbph) complex(8), intent(out) :: ephmat(nstsv,nstsv,nbph) ! local variables integer jk,jkq,isym,ld integer nst,nstq,ist,jst integer ispn,jspn,is,ias integer npc,nq,igp,i,j,l real(8) vpql(3) ! automatic arrays integer idx(nstsv),idxq(nstsv) integer ngp(nspnfv),ngpq(nspnfv) complex(4) cfmt1(npcmtmax),cfmt2(npcmtmax),c(ngkmax) complex(8) x(nbph) ! allocatable arrays integer, allocatable :: igpig(:,:),igpqig(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfgp(:,:,:) complex(4), allocatable :: wfmtq(:,:,:,:),wfgpq(:,:,:) complex(4), allocatable :: wfir1(:),wfir2(:) ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! k+q-vector in lattice coordinates vpql(1:3)=vkl(1:3,ik)+vql(1:3,iq) ! find reduced k-point index corresponding to k+q call findkpt(vpql,isym,jkq) ! index to states in energy window around Fermi energy nst=0 do ist=1,nstsv if (abs(evalsv(ist,jk)-efermi) > de) cycle nst=nst+1 idx(nst)=ist end do nstq=0 do ist=1,nstsv if (abs(evalsv(ist,jkq)-efermi) > de) cycle nstq=nstq+1 idxq(nstq)=ist end do ! generate the second-variational wavefunctions for all states at k and k+q allocate(igpig(ngkmax,nspnfv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nst),wfgp(ngkmax,nspinor,nst)) call genwfsvp_sp(.false.,.true.,nst,idx,ngridg,igfft,vkl(:,ik),ngp,igpig,wfmt, & ngkmax,wfgp) allocate(igpqig(ngkmax,nspnfv)) allocate(wfmtq(npcmtmax,natmtot,nspinor,nstq),wfgpq(ngkmax,nspinor,nstq)) call genwfsvp_sp(.false.,.true.,nstq,idxq,ngridg,igfft,vpql,ngpq,igpqig,wfmtq, & ngkmax,wfgpq) ! zero the electron-phonon coupling matrix elements ephmat(1:nstsv,1:nstsv,1:nbph)=0.d0 !-------------------------! ! muffin-tin part ! !-------------------------! do j=1,nst jst=idx(j) do i=1,nstq ist=idxq(i) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) if (spinpol) then cfmt1(1:npc)=wfmtq(1:npc,ias,1,i)*conjg(wfmt(1:npc,ias,1,j)) & +wfmtq(1:npc,ias,2,i)*conjg(wfmt(1:npc,ias,2,j)) else cfmt1(1:npc)=wfmtq(1:npc,ias,1,i)*conjg(wfmt(1:npc,ias,1,j)) end if call cfsht(nrcmt(is),nrcmti(is),cfmt1,cfmt2) do l=1,nbph ephmat(ist,jst,l)=ephmat(ist,jst,l) & +dot_product(cfmt2(1:npc),dvmt(1:npc,ias,l)) end do end do end do end do deallocate(wfmt,wfmtq) !---------------------------! ! interstitial part ! !---------------------------! allocate(wfir1(ngtc),wfir2(ngtc)) do j=1,nst jst=idx(j) do ispn=1,nspinor jspn=jspnfv(ispn) nq=ngpq(jspn) ! Fourier transform wavefunction to real-space wfir1(1:ngtc)=0.e0 do igp=1,ngp(jspn) wfir1(igfc(igpig(igp,jspn)))=wfgp(igp,ispn,j) end do call cfftifc(3,ngdgc,1,wfir1) do l=1,nbph ! apply potential derivative to wavefunction wfir2(1:ngtc)=dvir(1:ngtc,l)*wfir1(1:ngtc) ! Fourier transform to G+p+q-space call cfftifc(3,ngdgc,-1,wfir2) do igp=1,nq c(igp)=wfir2(igfc(igpqig(igp,jspn))) end do do i=1,nstq ist=idxq(i) ! compute inner product ephmat(ist,jst,l)=ephmat(ist,jst,l) & +dot_product(wfgpq(1:nq,ispn,i),c(1:nq)) end do end do end do end do deallocate(wfir1,wfir2) ! convert to phonon coordinates ld=nstsv**2 do i=1,nstq ist=idxq(i) do j=1,nst jst=idx(j) x(1:nbph)=ephmat(ist,jst,1:nbph) call zgemv('T',nbph,nbph,zone,a,nbph,x,1,zzero,ephmat(ist,jst,1),ld) end do end do deallocate(igpig,igpqig,wfgp,wfgpq) end subroutine elk-10.4.9/src/PaxHeaders/gengkqvec.f900000644000000000000000000000013214762655565014544 xustar0030 mtime=1741380469.210012339 30 atime=1741380467.906005522 30 ctime=1741380469.210012339 elk-10.4.9/src/gengkqvec.f900000644002504400250440000000226214762655565017270 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengkqvec(iq) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq ! local variables integer ik,jspn real(8) vl(3),vc(3) ! loop over non-reduced k-point set do ik=1,nkptnr ! k+q-vectors in lattice and Cartesian coordinates vkql(1:3,ik)=vkl(1:3,ik)+vql(1:3,iq) vkqc(1:3,ik)=vkc(1:3,ik)+vqc(1:3,iq) do jspn=1,nspnfv vl(1:3)=vkql(1:3,ik) vc(1:3)=vkqc(1:3,ik) ! spin-spiral case if (spinsprl) then if (jspn == 1) then vl(1:3)=vl(1:3)+0.5d0*vqlss(1:3) vc(1:3)=vc(1:3)+0.5d0*vqcss(1:3) else vl(1:3)=vl(1:3)-0.5d0*vqlss(1:3) vc(1:3)=vc(1:3)-0.5d0*vqcss(1:3) end if end if ! generate the G+k+q-vectors call gengkvec(ngvc,ivg,vgc,vl,vc,gkmax,ngkmax,ngkq(jspn,ik), & igkqig(:,jspn,ik),vgkql(:,:,jspn,ik),vgkqc(:,:,jspn,ik),gkqc(:,jspn,ik)) ! generate structure factors for the G+k+q-vectors call gensfacgp(ngkq(jspn,ik),vgkqc(:,:,jspn,ik),ngkmax,sfacgkq(:,:,jspn,ik)) end do end do end subroutine elk-10.4.9/src/PaxHeaders/genmcph.f900000644000000000000000000000013214762655565014213 xustar0030 mtime=1741380469.211012344 30 atime=1741380467.909005537 30 ctime=1741380469.211012344 elk-10.4.9/src/genmcph.f900000644002504400250440000000143714762655565016742 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine genmcph(wq,ev,a) use modmain use modphonon implicit none ! arguments real(8), intent(in) :: wq(nbph) complex(8), intent(in) :: ev(nbph,nbph) complex(8), intent(out) :: a(nbph,nbph) ! local variables integer is,ia,ip,i,j real(8) t1 ! generate the matrix for converting between Cartesian and phonon coordinates do j=1,nbph i=0 do is=1,nspecies t1=2.d0*spmass(is)*wq(j) if (t1 > 1.d-8) then t1=1.d0/sqrt(t1) else t1=0.d0 end if do ia=1,natoms(is) do ip=1,3 i=i+1 a(i,j)=t1*ev(i,j) end do end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/putdevecfv.f900000644000000000000000000000013214762655565014745 xustar0030 mtime=1741380469.213012355 30 atime=1741380467.911005548 30 ctime=1741380469.213012355 elk-10.4.9/src/putdevecfv.f900000644002504400250440000000211114762655565017462 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putdevecfv(ik,devecfv) use modmain use modphonon use modramdisk implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: devecfv(nmatmax,nstfv,nspnfv) ! local variables integer recl character(256) fext,fname ! construct the dynamical matrix file extension call dynfext(iqph,isph,iaph,ipph,fext) ! construct filename fname=trim(scrpath)//'DEVECFV'//trim(fext) !$OMP CRITICAL(u222) ! write to RAM disk if required if (ramdisk) then call putrd(fname,ik,v1=vkl(1:3,ik),n1=nmatmax,n2=nstfv,n3=nspnfv, & nzv=nmatmax*nstfv*nspnfv,zva=devecfv) end if ! write to disk if required if (wrtdsk) then ! find the record length inquire(iolength=recl) vkl(1:3,ik),nmatmax,nstfv,nspnfv,devecfv open(222,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) write(222,rec=ik) vkl(1:3,ik),nmatmax,nstfv,nspnfv,devecfv close(222) end if !$OMP END CRITICAL(u222) end subroutine elk-10.4.9/src/PaxHeaders/getdevecfv.f900000644000000000000000000000013014762655565014712 xustar0029 mtime=1741380469.21401236 30 atime=1741380467.914005563 29 ctime=1741380469.21401236 elk-10.4.9/src/getdevecfv.f900000644002504400250440000000411514762655565017437 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getdevecfv(ik,iq,is,ia,ip,devecfv) use modmain use modphonon use modramdisk implicit none ! arguments integer, intent(in) :: ik,iq,is,ia,ip complex(8), intent(out) :: devecfv(nmatmax,nstfv,nspnfv) ! local variables logical tgs integer recl,nmatmax_,nstfv_,nspnfv_ real(8) vkl_(3),t1 character(256) fext,fname ! construct the dynamical matrix file extension call dynfext(iq,is,ia,ip,fext) ! construct filename fname=trim(scrpath)//'DEVECFV'//trim(fext) !$OMP CRITICAL(u222) ! read from RAM disk if required if (ramdisk) then call getrd(fname,ik,tgs,v1=vkl_,n1=nmatmax_,n2=nstfv_,n3=nspnfv_, & nzv=nmatmax*nstfv*nspnfv,zva=devecfv) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nmatmax_,nstfv_,nspnfv_,devecfv open(222,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) read(222,rec=ik) vkl_,nmatmax_,nstfv_,nspnfv_,devecfv close(222) 10 continue !$OMP END CRITICAL(u222) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getdevecfv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" ",A," : ",3G18.10)') trim(fname),vkl_ write(*,*) stop end if if (nmatmax /= nmatmax_) then write(*,*) write(*,'("Error(getdevecfv): differing nmatmax for k-point ",I8)') ik write(*,'(" current : ",I8)') nmatmax write(*,'(" ",A," : ",I8)') trim(fname),nmatmax_ write(*,*) stop end if if (nstfv /= nstfv_) then write(*,*) write(*,'("Error(getdevecfv): differing nstfv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstfv write(*,'(" ",A," : ",I8)') trim(fname),nstfv_ write(*,*) stop end if if (nspnfv /= nspnfv_) then write(*,*) write(*,'("Error(getdevecfv): differing nspnfv for k-point ",I8)') ik write(*,'(" current : ",I8)') nspnfv write(*,'(" ",A," : ",I8)') trim(fname),nspnfv_ write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/putdevecsv.f900000644000000000000000000000013214762655565014762 xustar0030 mtime=1741380469.215012365 30 atime=1741380467.917005579 30 ctime=1741380469.215012365 elk-10.4.9/src/putdevecsv.f900000644002504400250440000000177614762655565017517 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putdevecsv(ik,devecsv) use modmain use modphonon use modramdisk implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: devecsv(nstsv,nstsv) ! local variables integer recl character(256) fext,fname ! construct the dynamical matrix file extension call dynfext(iqph,isph,iaph,ipph,fext) ! construct filename fname=trim(scrpath)//'DEVECSV'//trim(fext) !$OMP CRITICAL(u226) ! write to RAM disk if required if (ramdisk) then call putrd(fname,ik,v1=vkl(1:3,ik),n1=nstsv,nzv=nstsv*nstsv,zva=devecsv) end if ! write to disk if required if (wrtdsk) then ! find the record length inquire(iolength=recl) vkl(1:3,ik),nstsv,devecsv open(226,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) write(226,rec=ik) vkl(1:3,ik),nstsv,devecsv close(226) end if !$OMP END CRITICAL(u226) end subroutine elk-10.4.9/src/PaxHeaders/getdevecsv.f900000644000000000000000000000013114762655565014730 xustar0030 mtime=1741380469.217012375 29 atime=1741380467.91900559 30 ctime=1741380469.217012375 elk-10.4.9/src/getdevecsv.f900000644002504400250440000000303414762655565017453 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getdevecsv(ik,iq,is,ia,ip,devecsv) use modmain use modphonon use modramdisk implicit none ! arguments integer, intent(in) :: ik,iq,is,ia,ip complex(8), intent(out) :: devecsv(nstsv,nstsv) ! local variables logical tgs integer recl,nstsv_ real(8) vkl_(3),t1 character(256) fext,fname ! construct the dynamical matrix file extension call dynfext(iq,is,ia,ip,fext) ! construct filename fname=trim(scrpath)//'DEVECSV'//trim(fext) !$OMP CRITICAL(u226) ! read from RAM disk if required if (ramdisk) then call getrd(fname,ik,tgs,v1=vkl_,n1=nstsv_,nzv=nstsv*nstsv,zva=devecsv) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,devecsv open(226,file=fname,form='UNFORMATTED',access='DIRECT',recl=recl) read(226,rec=ik) vkl_,nstsv_,devecsv close(226) 10 continue !$OMP END CRITICAL(u226) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getdevecsv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" ",A," : ",3G18.10)') trim(fname),vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getdevecsv): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" ",A," : ",I8)') trim(fname),nstsv_ write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/phononsc.f900000644000000000000000000000013214762655565014421 xustar0030 mtime=1741380469.218012381 30 atime=1741380467.922005605 30 ctime=1741380469.218012381 elk-10.4.9/src/phononsc.f900000644002504400250440000001163414762655565017150 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine phononsc use modmain use modphonon use modmpi use moddelf implicit none ! local variables integer is,ia,ja,ias,jas integer ip,nph,p,n,i real(8) a,b,t1 real(8) ft(3,maxatoms*maxspecies) complex(8) z1,z2 ! allocatable arrays real(8), allocatable :: vsmt0(:,:),vsir0(:) complex(8), allocatable :: dyn(:,:) ! store original parameters avec0(:,:)=avec(:,:) natoms0(:)=natoms(:) atposl0(:,:,:)=atposl(:,:,:) bfcmt00(:,:,:)=bfcmt0(:,:,:) mommtfix0(:,:,:)=mommtfix(:,:,:) tshift0=tshift tforce0=tforce autokpt0=autokpt primcell0=primcell ngridk0(:)=ngridk(:) ! no shifting of atomic basis allowed tshift=.false. ! require forces tforce=.true. ! determine k-point grid size from radkpt autokpt=.true. ! no reduction to primitive cell primcell=.false. ! initialise universal variables call init0 ! initialise q-point dependent variables call init2 ! store original parameters natmtot0=natmtot idxis0(1:natmtot)=idxis(1:natmtot) bvec0(:,:)=bvec(:,:) binv0(:,:)=binv(:,:) atposc0(:,:,:)=atposc(:,:,:) ngridg0(:)=ngridg(:) ngtot0=ngtot if (allocated(ivg0)) deallocate(ivg0) allocate(ivg0(3,ngtot0)) ivg0(:,:)=ivg(:,:) if (allocated(igfft0)) deallocate(igfft0) allocate(igfft0(ngtot0)) igfft0(:)=igfft(:) ! allocate the Kohn-Sham potential derivative arrays if (allocated(dvsbs)) deallocate(dvsbs) n=npmtmax*natmtot allocate(dvsbs(n)) dvsmt(1:npmtmax,1:natmtot) => dvsbs(1:) if (allocated(dvsir)) deallocate(dvsir) allocate(dvsir(ngtot)) ! allocate supercell offset vector array if (allocated(vscph)) deallocate(vscph) allocate(vscph(3,nqptnr)) ! allocate dynamical matrix column allocate(dyn(3,natmtot)) ! begin new phonon task 10 continue natoms(:)=natoms0(:) ! find a dynamical matrix to calculate call dyntask(80,filext) ! if nothing more to do then restore original input parameters and return if (iqph == 0) then filext='.OUT' natoms(:)=natoms0(:) avec(:,:)=avec0(:,:) atposl(:,:,:)=atposl0(:,:,:) bfcmt0(:,:,:)=bfcmt00(:,:,:) mommtfix(:,:,:)=mommtfix0(:,:,:) tshift=tshift0 tforce=tforce0 autokpt=autokpt0 primcell=primcell0 ngridk(:)=ngridk0(:) deallocate(ivg0,igfft0) return end if if (mp_mpi) write(*,'("Info(phononsc): working on ",A)') 'DYN'//trim(filext) ! dry run: just generate empty DYN files if (task == 202) goto 10 ! zero the dynamical matrix row dyn(:,:)=0.d0 ! zero the Kohn-Sham potential derivative dvsmt(:,:)=0.d0 dvsir(:)=0.d0 ! check to see if mass is considered infinite if (spmass(isph) <= 0.d0) goto 20 ! loop over phases: 0 = cos and 1 = sin displacements if ((ivq(1,iqph) == 0).and.(ivq(2,iqph) == 0).and.(ivq(3,iqph) == 0)) then nph=0 else nph=1 end if ! initialise or read the charge density and potentials from file trdstate=(task == 201) ! loop over cos and sin displacements do p=0,nph ! generate the supercell with negative displacement call genscph(p,-0.5d0*deltaph) ! run the ground-state calculation call gndstate ! subsequent calculations will read in this supercell potential trdstate=.true. ! store the total force for this displacement do ias=1,natmtot ft(:,ias)=forcetot(:,ias) end do ! store the Kohn-Sham potential for this displacement allocate(vsmt0(npmtmax,natmtot),vsir0(ngtot)) vsmt0(:,:)=vsmt(:,:) vsir0(:)=vsir(:) ! generate the supercell again with positive displacement call genscph(p,0.5d0*deltaph) ! run the ground-state calculation again call gndstate ! compute the complex Kohn-Sham potential derivative with implicit q-phase call phscdvs(p,vsmt0,vsir0) deallocate(vsmt0,vsir0) ! Fourier transform the force differences to obtain the dynamical matrix z1=1.d0/(dble(nscph)*deltaph) ! multiply by i for sin-like displacement if (p == 1) z1=z1*zi ias=0 jas=0 do is=1,nspecies ja=0 do ia=1,natoms0(is) ias=ias+1 do i=1,nscph ja=ja+1 jas=jas+1 t1=-dot_product(vqc(:,iqph),vscph(:,i)) z2=z1*cmplx(cos(t1),sin(t1),8) do ip=1,3 t1=-(forcetot(ip,jas)-ft(ip,jas)) dyn(ip,ias)=dyn(ip,ias)+z2*t1 end do end do end do end do end do 20 continue ! write dynamical matrix row to file if (mp_mpi) then ias=0 do is=1,nspecies do ia=1,natoms0(is) ias=ias+1 do ip=1,3 a=dble(dyn(ip,ias)) b=aimag(dyn(ip,ias)) if (abs(a) < 1.d-12) a=0.d0 if (abs(b) < 1.d-12) b=0.d0 write(80,'(2G18.10," : is = ",I4,", ia = ",I4,", ip = ",I4)') a,b,is, & ia,ip end do end do end do close(80) ! write the complex Kohn-Sham potential derivative to file natoms(:)=natoms0(:) natmtot=natmtot0 idxis(1:natmtot)=idxis0(1:natmtot) ngridg(:)=ngridg0(:) call writedvs(filext) end if ! delete the non-essential files call delfiles(evec=.true.,eval=.true.,occ=.true.) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) goto 10 end subroutine elk-10.4.9/src/PaxHeaders/genscph.f900000644000000000000000000000013214762655565014221 xustar0030 mtime=1741380469.219012386 30 atime=1741380467.924005616 30 ctime=1741380469.219012386 elk-10.4.9/src/genscph.f900000644002504400250440000000325014762655565016743 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genscph(p,dph) use modmain use modphonon implicit none ! arguments integer, intent(in) :: p real(8), intent(in) :: dph ! local variables integer is,ia,na,i real(8) vc(3),t1 if ((p /= 0).and.(p /= 1)) then write(*,*) write(*,'("Error(genscph): phase (p) should be 0 or 1 : ",I8)') p write(*,*) stop end if ! find the smallest supercell which contains the q-vector call findscq(iqph,nscph,vscph) ! construct supercell atomic positions and magnetic fields do is=1,nspecies na=0 do ia=1,natoms0(is) do i=1,nscph na=na+1 if (na > maxatoms) then write(*,*) write(*,'("Error(genscph): too many atoms in supercell : ",I8)') na write(*,'(" for species ",I4)') is write(*,'("Adjust maxatoms in modmain and recompile code")') write(*,*) stop end if vc(:)=vscph(:,i)+atposc0(:,ia,is) ! add small periodic displacement if ((isph == is).and.(iaph == ia)) then t1=dot_product(vqc(:,iqph),vscph(:,i)) if (p == 0) then vc(ipph)=vc(ipph)+dph*cos(t1) else vc(ipph)=vc(ipph)+dph*sin(t1) end if end if ! convert to new lattice coordinates call r3mv(ainv,vc,atposl(:,na,is)) call r3frac(epslat,atposl(:,na,is)) ! set muffin-tin fields and fixed spin moments if required if (spinpol) then bfcmt0(:,na,is)=bfcmt00(:,ia,is) mommtfix(:,na,is)=mommtfix0(:,ia,is) end if end do end do natoms(is)=na end do end subroutine elk-10.4.9/src/PaxHeaders/dynfext.f900000644000000000000000000000013214762655565014253 xustar0030 mtime=1741380469.221012396 30 atime=1741380467.927005631 30 ctime=1741380469.221012396 elk-10.4.9/src/dynfext.f900000644002504400250440000000132414762655565016775 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynfext(iq,is,ia,ip,fext) use modmain implicit none ! arguments integer, intent(in) :: iq,is,ia,ip character(*), intent(out) :: fext ! local variables integer i,j,m(3),n(3) ! external functions integer, external :: gcd do i=1,3 if (ivq(i,iq) /= 0) then j=gcd(ivq(i,iq),ngridq(i)) m(i)=ivq(i,iq)/j n(i)=ngridq(i)/j else m(i)=0 n(i)=0 end if end do write(fext,'("_Q",2I2.2,"_",2I2.2,"_",2I2.2,"_S",I2.2,"_A",I3.3,"_P",I1,& &".OUT")') m(1),n(1),m(2),n(2),m(3),n(3),is,ia,ip end subroutine elk-10.4.9/src/PaxHeaders/writegamma.f900000644000000000000000000000013214762655565014727 xustar0030 mtime=1741380469.222012401 30 atime=1741380467.929005642 30 ctime=1741380469.222012401 elk-10.4.9/src/writegamma.f900000644002504400250440000000164714762655565017461 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writegamma(gq) use modmain use modphonon implicit none ! arguments real(8), intent(in) :: gq(nbph,nqpt) ! local variables integer iq,i open(50,file='GAMMAQ.OUT',form='FORMATTED',action='WRITE') write(50,*) write(50,'(I4," : total number of atoms")') natmtot write(50,'(I6," : number of q-points")') nqpt write(50,*) do iq=1,nqpt write(50,'(I6," : q-point")') iq write(50,'(3G18.10," : q-vector (lattice coordinates)")') vql(:,iq) write(50,'(3G18.10," : q-vector (Cartesian coordinates)")') vqc(:,iq) do i=1,nbph write(50,'(I4,G18.10)') i,gq(i,iq) end do write(50,*) end do close(50) write(*,*) write(*,'("Info(writegamma):")') write(*,'(" wrote phonon linewidths for all q-points to GAMMAQ.OUT")') end subroutine elk-10.4.9/src/PaxHeaders/readgamma.f900000644000000000000000000000013214762655565014510 xustar0030 mtime=1741380469.223012407 30 atime=1741380467.932005658 30 ctime=1741380469.223012407 elk-10.4.9/src/readgamma.f900000644002504400250440000000401114762655565017226 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readgamma(gq) use modmain use modphonon implicit none ! arguments real(8), intent(out) :: gq(nbph,nqpt) ! local variables integer iq,i integer natmtot_,nqpt_,iq_,i_ real(8) vql_(3),vqc_(3),t1 open(50,file='GAMMAQ.OUT',form='FORMATTED',status='OLD') read(50,*) read(50,*) natmtot_ if (natmtot /= natmtot_) then write(*,*) write(*,'("Error(readgamma): differing natmtot")') write(*,'(" current : ",I4)') natmtot write(*,'(" GAMMAQ.OUT : ",I4)') natmtot_ write(*,*) stop end if read(50,*) nqpt_ if (nqpt /= nqpt_) then write(*,*) write(*,'("Error(readgamma): differing nqpt")') write(*,'(" current : ",I6)') nqpt write(*,'(" GAMMAQ.OUT : ",I6)') nqpt_ write(*,*) stop end if read(50,*) do iq=1,nqpt read(50,*) iq_ if (iq /= iq_) then write(*,*) write(*,'("Error(readgamma): incorrect q-point index in GAMMAQ.OUT for & &q-point ",I6)') iq write(*,*) stop end if read(50,*) vql_ t1=sum(abs(vql(:,iq)-vql_(:))) if (t1 > epslat) then write(*,*) write(*,'("Error(readgamma): differing q-vectors in lattice coordinates & &for q-point ",I6)') iq write(*,'(" current : ",3G18.10)') vql(:,iq) write(*,'(" GAMMAQ.OUT : ",3G18.10)') vql_ write(*,*) stop end if read(50,*) vqc_ t1=sum(abs(vqc(:,iq)-vqc_(:))) if (t1 > epslat) then write(*,*) write(*,'("Error(readgamma): differing q-vectors in Cartesian coordinates & &for q-point ",I6)') iq write(*,'(" current : ",3G18.10)') vqc(:,iq) write(*,'(" GAMMAQ.OUT : ",3G18.10)') vqc_ write(*,*) stop end if do i=1,nbph read(50,*) i_,gq(i,iq) if (i /= i_) then write(*,*) write(*,'("Error(readgamma): incorrect mode index in GAMMAQ.OUT for & &q-point ",I6)') iq write(*,*) stop end if end do read(50,*) end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/writelambda.f900000644000000000000000000000013214762655565015065 xustar0030 mtime=1741380469.225012417 30 atime=1741380467.934005668 30 ctime=1741380469.225012417 elk-10.4.9/src/writelambda.f900000644002504400250440000000204714762655565017612 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writelambda(gq) use modmain use modphonon implicit none ! arguments real(8), intent(in) :: gq(nbph,nqpt) ! local variables integer iq,i real(8) t1,t2 open(50,file='LAMBDAQ.OUT',form='FORMATTED') write(50,*) write(50,'(I4," : total number of atoms")') natmtot write(50,'(I6," : number of q-points")') nqpt write(50,*) do iq=1,nqpt write(50,'(I6," : q-point")') iq write(50,'(3G18.10," : q-vector (lattice coordinates)")') vql(:,iq) write(50,'(3G18.10," : q-vector (Cartesian coordinates)")') vqc(:,iq) do i=1,nbph t1=pi*fermidos*wphq(i,iq)**2 if (t1 > 1.d-8) then t2=gq(i,iq)/t1 else t2=0.d0 end if write(50,'(I4,G18.10)') i,t2 end do write(50,*) end do close(50) write(*,*) write(*,'("Info(writelambda):")') write(*,'(" wrote electron-phonon coupling constants for all q-points to & &LAMBDAQ.OUT")') end subroutine elk-10.4.9/src/PaxHeaders/eliashberg.f900000644000000000000000000000013214762655565014677 xustar0030 mtime=1741380469.226012422 30 atime=1741380467.937005684 30 ctime=1741380469.226012422 elk-10.4.9/src/eliashberg.f900000644002504400250440000001427114762655565017426 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 A. Sanna and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: eliashberg ! !INTERFACE: subroutine eliashberg ! !USES: use modmain use modphonon use modomp ! !DESCRIPTION: ! Calculates the superconducting gap within Eliashberg theory. This ! implementation is isotropic and assumes a flat density of states. The ! Eliashberg function $\alpha^2F$ is required as input for this calculation. ! ! !REVISION HISTORY: ! Created December 2010 (Antonio Sanna) ! Modified, June 2011 (JKD) !EOP !BOC implicit none ! local variables ! maximum allowed number of Matsubara frequencies integer, parameter :: maxwf=40000 ! maximum number of iterations integer, parameter :: maxit=1000 integer nwf,nwfcl,nin,nout integer itemp,it,i,m,n,nthd ! convergence tolerance real(8), parameter :: eps=1.d-12 ! mixing paramter real(8), parameter :: beta=0.5d0 real(8) lambda,wlog,wrms,tc real(8) wfmax,tmin,tmax,dtemp,temp real(8) dw,dmu,sm,a,b,t0,t1 ! allocatable arrays real(8), allocatable :: w(:),a2f(:),wf(:),l(:) real(8), allocatable :: d0(:),d(:),z0(:),z(:),r(:) complex(8), allocatable :: zin(:),uin(:),zout(:),uout(:) ! initialise universal variables call init0 call init1 allocate(w(nwplot),a2f(nwplot)) ! read in the Eliashberg function call readalpha2f(w,a2f) dw=(w(nwplot)-w(1))/dble(nwplot) ! compute the McMillan parameters call mcmillan(w,a2f,lambda,wlog,wrms,tc) ! Matsubara frequency cut-off wfmax=20.d0*wrms ! minumum temperature tmin=tc/6.d0 if (tmin < 1.d-2) tmin=0.1d0 ! maximum temperature tmax=5.d0*tc if (tmax < 1.d0) tmax=1.d0 ! temperature step size dtemp=(tmax-tmin)/dble(ntemp) ! maximum number of fermionic Matsubara frequencies nwf=nint(wfmax/(twopi*kboltz*dtemp)) if (nwf < 1) nwf=1 if (nwf > maxwf) nwf=maxwf allocate(wf(-nwf:nwf)) allocate(l(-2*nwf:2*nwf)) allocate(d0(0:nwf),d(0:nwf)) allocate(z0(0:nwf),z(0:nwf)) allocate(r(0:nwf)) allocate(zin(0:nwf),uin(0:nwf)) ! generate output points for continuation on the real axis nout=4*nwplot allocate(zout(nout),uout(nout)) do i=1,nout zout(i)=2.d0*dble(i-1)*dw end do ! open files for writing open(62,file='ELIASHBERG.OUT',form='FORMATTED') open(63,file='ELIASHBERG_IA.OUT',form='FORMATTED') open(64,file='ELIASHBERG_GAP_T.OUT',form='FORMATTED') open(65,file='ELIASHBERG_GAP_RA.OUT',form='FORMATTED') open(66,file='ELIASHBERG_Z_RA.OUT',form='FORMATTED') call writebox(62,"Eliashberg equations") write(62,*) write(62,'("Temperature range : ",2G18.10)') tmin,tmax write(62,'("Number of temperature steps : ",I6)') ntemp write(62,'("Number of output frequencies : ",I8)') nout write(62,'("Fermionic Matsubara frequency cut-off")') write(62,'(" phonons : ",G18.10)') wfmax write(62,'(" Coulomb : ",G18.10)') 2.d0*wrms flush(62) d0(:)=1.d-4 z0(:)=1.d0 ! main loop over temperature do itemp=1,ntemp write(*,'("Info(eliashberg): temperature step ",I6," of ",I6)') itemp,ntemp temp=dble(itemp)*dtemp+tmin write(62,*) write(62,'("Temperature (kelvin) : ",G18.10)') temp t0=pi*kboltz*temp ! number of Matsubara frequencies nwf=nint(wfmax/(2.d0*t0)) if (nwf > maxwf) nwf=maxwf nwfcl=nint(2.d0*wrms/(2.d0*t0)) if (nwfcl < 1) nwfcl=1 if (nwfcl > nwf) nwfcl=nwf write(62,'("Number of Matsubara frequencies")') write(62,'(" phonons : ",I8)') nwf write(62,'(" Coulomb : ",I8)') nwfcl ! make Pade approximant input points same as Matsubara frequencies nin=nwf ! generate fermionic Matsubara frequencies do m=-nwf,nwf wf(m)=t0*dble(2*m+1) end do ! compute lambda call holdthd(4*nwf+1,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(t1,sm,i) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do m=-2*nwf,2*nwf t1=(t0*dble(2*m))**2 sm=0.d0 do i=1,nwplot sm=sm+w(i)*a2f(i)/(w(i)**2+t1) end do l(m)=2.d0*sm*dw end do !$OMP END PARALLEL DO call freethd(nthd) ! begin iteration loop do it=1,maxit do m=0,nwf r(m)=sqrt((wf(m)**2+d0(m)**2)*z0(m)**2) end do do n=0,nwf sm=0.d0 do m=0,nwf-1 sm=sm+(l(n-m)-l(n+m+1))*z0(m)*wf(m)/r(m) end do z(n)=t0*sm/wf(n) end do z(0:nwf)=z(0:nwf)+1.d0 z0(0:nwf)=z(0:nwf) ! Coulomb part of summation dmu=0.d0 do n=0,nwfcl dmu=dmu+mustar*d0(n)*z(n)/r(n) end do dmu=dmu*2.d0 ! Gap do n=0,nwf sm=0.d0 do m=0,nwf-1 sm=sm+(l(n-m)+l(n+m+1))*d0(m)*z(m)/r(m) end do d(n)=t0*(sm-dmu)/z(n) end do ! mix old and new gap functions d(0:nwf)=beta*d(0:nwf)+(1.d0-beta)*d0(0:nwf) sm=0.d0 do m=0,nwf sm=sm+abs(d0(m)-d(m)) end do sm=sm/dble(2*nwf) d0(0:nwf)=d(0:nwf) if (sm <= eps) then write(62,'("Eliashberg equations converged in ",I6," iterations")') it goto 10 end if ! end iteration loop end do write(*,*) write(*,'("Warning(eliashberg): failed to converge: possibly close to T_c")') write(62,'("Failed to converge: possibly close to T_c")') 10 continue flush(62) do n=-nwf,nwf if (n >= 0) then m=n else m=-n-1 end if write(63,'(3G18.10)') wf(n),d(m),z(m) end do write(63,*) flush(63) write(64,'(3G18.10)') temp,d(0),z(0) flush(64) ! analytic continuation to real axis do m=0,nin zin(m)=cmplx(0.d0,wf(m),8) uin(m)=d(m) end do call pade(nin,zin,uin,nout,zout,uout) do i=1,nout a=dble(uout(i)) b=aimag(uout(i)) write(65,'(3G18.10)') dble(zout(i)),a,b end do write(65,*) flush(65) do m=0,nin uin(m)=z(m) end do call pade(nin,zin,uin,nout,zout,uout) do i=1,nout a=dble(uout(i)) b=aimag(uout(i)) write(66,'(3G18.10)') dble(zout(i)),a,b end do write(66,*) flush(66) ! end loop over temperatures end do close(62); close(63); close(64); close(65); close(66) write(*,*) write(*,'("Info(eliashberg):")') write(*,'(" calculation information written to ELIASHBERG.OUT")') write(*,'(" gap and Z functions on the imaginary axis written to & &ELIASHBERG_IA.OUT")') write(*,'(" gap vs. temperature written to ELIASHBERG_GAP_T.OUT")') write(*,'(" gap function on the real axis written to ELIASHBERG_GAP_RA.OUT")') write(*,'(" Z function on the real axis written to ELIASHBERG_Z_RA.OUT")') deallocate(w,a2f,wf,l) deallocate(d0,d,z0,z,r) deallocate(zin,uin,zout,uout) end subroutine !EOC elk-10.4.9/src/PaxHeaders/phscdvs.f900000644000000000000000000000013214762655565014244 xustar0030 mtime=1741380469.228012433 30 atime=1741380467.939005694 30 ctime=1741380469.228012433 elk-10.4.9/src/phscdvs.f900000644002504400250440000000454714762655565017000 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine phscdvs(p,vsmt0,vsir0) use modmain use modphonon implicit none ! arguments integer, intent(in) :: p real(8), intent(in) :: vsmt0(npmtmax,natmtot),vsir0(ngtot) ! local variables integer is,ia,ja,ias,jas integer nr,nri,np,i integer iv(3),ig0,ifg0,ifg real(8) vl(3),vc(3),t1 complex(8) z0,z1,z2 ! allocatable arrays real(8), allocatable :: rfmt(:) complex(8), allocatable :: zfmt(:),zfir(:) ! prefactor z0=1.d0/deltaph ! multiply by i for sin-like displacement if (p == 1) z0=z0*zi !------------------------------! ! muffin-tin potential ! !------------------------------! allocate(rfmt(npmtmax),zfmt(npmtmax)) z1=z0/dble(nscph) ias=0 jas=0 do is=1,nspecies nr=nrmt(is) nri=nrmti(is) np=npmt(is) ja=0 do ia=1,natoms0(is) ias=ias+1 do i=1,nscph ja=ja+1 jas=jas+1 ! compute the difference between the perturbed and unperturbed potentials rfmt(1:np)=vsmt(1:np,jas)-vsmt0(1:np,jas) ! convert real potential difference to a complex spherical harmonic expansion call rtozfmt(nr,nri,rfmt,zfmt) ! the muffin-tin potential should have an *explicit* phase exp(iq.r) t1=-dot_product(vqc(:,iqph),vscph(:,i)) z2=z1*cmplx(cos(t1),sin(t1),8) ! add to total dvsmt(1:np,ias)=dvsmt(1:np,ias)+z2*zfmt(1:np) end do ! end loop over atoms and species end do end do deallocate(rfmt,zfmt) !--------------------------------! ! interstitial potential ! !--------------------------------! ! Fourier transform interstitial potential derivative to G-space allocate(zfir(ngtot)) zfir(1:ngtot)=z0*(vsir(1:ngtot)-vsir0(1:ngtot)) call zfftifc(3,ngridg,-1,zfir) ! convert to G+q-space do ig0=1,ngtot0 ifg0=igfft0(ig0) vl(1:3)=dble(ivg0(1:3,ig0))+vql(1:3,iqph) call r3mv(bvec0,vl,vc) call r3mv(binv,vc,vl) iv(1:3)=nint(vl(1:3)) if ((iv(1) >= intgv(1,1)).and.(iv(1) <= intgv(2,1)).and. & (iv(2) >= intgv(1,2)).and.(iv(2) <= intgv(2,2)).and. & (iv(3) >= intgv(1,3)).and.(iv(3) <= intgv(2,3))) then ifg=igfft(ivgig(iv(1),iv(2),iv(3))) dvsir(ifg0)=dvsir(ifg0)+zfir(ifg) else dvsir(ifg0)=0.d0 end if end do ! Fourier transform back to real-space if (p == 1) call zfftifc(3,ngridg0,1,dvsir) deallocate(zfir) end subroutine elk-10.4.9/src/PaxHeaders/readdvs.f900000644000000000000000000000013114762655565014221 xustar0030 mtime=1741380469.229012438 29 atime=1741380467.94200571 30 ctime=1741380469.229012438 elk-10.4.9/src/readdvs.f900000644002504400250440000000546714762655565016760 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readdvs(iq,is,ia,ip,dvsmt,dvsir) use modmain implicit none ! arguments integer, intent(in) :: iq,is,ia,ip complex(8), intent(out) :: dvsmt(npmtmax,natmtot),dvsir(ngtot) ! local variables integer js,jas,ios integer version_(3),nspecies_ integer lmmaxo_,natoms_ integer nrmt_,ngridg_(3) character(256) fext,fname ! allocatable arrays complex(8), allocatable :: zfmt(:,:,:) call dynfext(iq,is,ia,ip,fext) fname='DVS'//trim(fext) open(150,file=trim(fname),form='UNFORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readdvs): error opening ",A)') trim(fname) write(*,*) stop end if read(150) version_ if ((version(1) /= version_(1)).or.(version(2) /= version_(2)) & .or.(version(3) /= version_(3))) then write(*,*) write(*,'("Warning(readdvs): different versions")') write(*,'(" current : ",I0,".",I0,".",I0)') version write(*,'(" file : ",I0,".",I0,".",I0)') version_ write(*,'(" in file ",A)') trim(fname) end if read(150) nspecies_ if (nspecies /= nspecies_) then write(*,*) write(*,'("Error(readdvs): differing nspecies")') write(*,'(" current : ",I4)') nspecies write(*,'(" file : ",I4)') nspecies_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if read(150) lmmaxo_ if (lmmaxo /= lmmaxo_) then write(*,*) write(*,'("Error(readdvs): differing lmmaxo")') write(*,'(" current : ",I4)') lmmaxo write(*,'(" file : ",I4)') lmmaxo_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if do js=1,nspecies read(150) natoms_ if (natoms(js) /= natoms_) then write(*,*) write(*,'("Error(readdvs): differing natoms for species ",I4)') js write(*,'(" current : ",I4)') natoms(js) write(*,'(" file : ",I4)') natoms_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if read(150) nrmt_ if (nrmt(js) /= nrmt_) then write(*,*) write(*,'("Error(readdvs): differing nrmt for species ",I4)') js write(*,'(" current : ",I6)') nrmt(js) write(*,'(" file : ",I6)') nrmt_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if end do read(150) ngridg_ if ((ngridg(1) /= ngridg_(1)).or.(ngridg(2) /= ngridg_(2)).or. & (ngridg(3) /= ngridg_(3))) then write(*,*) write(*,'("Error(readdvs): differing ngridg")') write(*,'(" current : ",3I6)') ngridg write(*,'(" file : ",3I6)') ngridg_ write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if allocate(zfmt(lmmaxo,nrmtmax,natmtot)) read(150) zfmt,dvsir do jas=1,natmtot js=idxis(jas) call zfmtpack(.true.,nrmt(js),nrmti(js),zfmt(:,:,jas),dvsmt(:,jas)) end do close(150) deallocate(zfmt) end subroutine elk-10.4.9/src/PaxHeaders/readalpha2f.f900000644000000000000000000000013114762655565014742 xustar0030 mtime=1741380469.230012443 29 atime=1741380467.94400572 30 ctime=1741380469.230012443 elk-10.4.9/src/readalpha2f.f900000644002504400250440000000146314762655565017471 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 A. Sanna and E. K. U. Gross ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readalpha2f(w,a2f) use modmain implicit none ! arguments real(8), intent(out) :: w(nwplot) real(8), intent(out) :: a2f(nwplot) ! local variables integer iw,ios open(50,file='ALPHA2F.OUT',form='FORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readalpha2f): error opening ALPHA2F.OUT")') write(*,*) stop end if do iw=1,nwplot read(50,*,iostat=ios) w(iw),a2f(iw) if (ios /= 0) then write(*,*) write(*,'("Error(readalpha2f): error reading from ALPHA2F.OUT")') write(*,'(" for frequency ",I6)') iw write(*,*) stop end if end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/gendsocfr.f900000644000000000000000000000013214762655565014544 xustar0030 mtime=1741380469.231012449 30 atime=1741380467.947005736 30 ctime=1741380469.231012449 elk-10.4.9/src/gendsocfr.f900000644002504400250440000000215114762655565017265 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 J. K. Dewhurst, S. Sharma and E. K. U. Gross ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine gendsocfr use modmain use modphonon implicit none integer is,ias,i integer nr,nri,ir,irc real(8) cso complex(8) z1 ! allocatable arrays real(8), allocatable :: vr1(:),vr2(:) real(8), allocatable :: dvr1(:),dvr2(:) if (.not.spinorb) return ! coefficient of spin-orbit coupling cso=y00*socscf/(4.d0*solsc**2) allocate(vr1(nrmtmax),vr2(nrmtmax)) allocate(dvr1(nrmtmax),dvr2(nrmtmax)) do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) i=1 do ir=1,nri vr1(ir)=dble(dvsmt(i,ias)) vr2(ir)=aimag(dvsmt(i,ias)) i=i+lmmaxi end do do ir=nri+1,nr vr1(ir)=dble(dvsmt(i,ias)) vr2(ir)=aimag(dvsmt(i,ias)) i=i+lmmaxo end do call splined(nr,wcrmt(:,:,is),vr1,dvr1) call splined(nr,wcrmt(:,:,is),vr2,dvr2) do ir=1,nr,lradstp irc=(ir-1)/lradstp+1 z1=cmplx(dvr1(ir),dvr2(ir),8) dsocfr(irc,ias)=(cso/rsp(ir,is))*z1 end do end do deallocate(vr1,vr2,dvr1,dvr2) end subroutine elk-10.4.9/src/PaxHeaders/bornechg.f900000644000000000000000000000013214762655565014361 xustar0030 mtime=1741380469.233012459 30 atime=1741380467.949005746 30 ctime=1741380469.233012459 elk-10.4.9/src/bornechg.f900000644002504400250440000000546414762655565017114 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine bornechg use modmain use modphonon use modmpi use modtest use moddelf implicit none ! local variables integer ip,i real(8) vc(3),pvl1(3),pvl2(3) real(8) becl(3),becc(3),t1 ! initialise universal variables call init0 call init1 ! store original parameters atposl0(:,:,:)=atposl(:,:,:) atposc0(:,:,:)=atposc(:,:,:) ngridk0(:)=ngridk(:) maxscl0=maxscl tshift0=tshift ! no shifting of the atomic basis tshift=.false. ! begin new Born effective charge task 10 continue call bectask(80,filext) ! if nothing more to do then restore original input parameters and return if (isph == 0) then filext='.OUT' tshift=tshift0 atposl(:,:,:)=atposl0(:,:,:) return end if if (mp_mpi) then write(*,'("Info(bornechg): working on ",A)') 'BEC'//trim(filext) end if ! dry run: just generate empty BEC files if (task == 209) goto 10 ! apply negative atomic displacement atposl(:,:,:)=atposl0(:,:,:) atposc(:,:,:)=atposc0(:,:,:) vc(:)=atposc(:,iaph,isph) vc(ipph)=vc(ipph)-0.5d0*deltaph call r3mv(ainv,vc,atposl(:,iaph,isph)) ! initial ground-state run should start from atomic densities trdstate=.false. ! run the ground-state calculation call gndstate ! subsequent calculations will read in the previous potential trdstate=.true. ! compute the first polarisation in lattice coordinates call polar(pvl1) ! apply positive atomic displacement atposl(:,:,:)=atposl0(:,:,:) atposc(:,:,:)=atposc0(:,:,:) vc(:)=atposc(:,iaph,isph) vc(ipph)=vc(ipph)+0.5d0*deltaph call r3mv(ainv,vc,atposl(:,iaph,isph)) ! run the ground-state calculation again call gndstate ! compute the second polarisation call polar(pvl2) do i=1,3 ! add multiple of 2*pi to bring polarisation vectors into coincidence pvl1(i)=modulo(pvl1(i),twopi) pvl2(i)=modulo(pvl2(i),twopi) t1=pvl1(i)-pvl2(i) if (abs(t1-twopi) < abs(t1)) then pvl1(i)=pvl1(i)-twopi else if (abs(t1+twopi) < abs(t1)) then pvl1(i)=pvl1(i)+twopi end if ! calculate the Born effective charge from the difference in polarisations t1=wkptnr*occmax*dble(nkspolar*ngridk(i))/(twopi*deltaph) becl(i)=t1*(pvl2(i)-pvl1(i)) end do ! convert from lattice to Cartesian coordinates call r3mv(avec,becl,becc) ! add the core and nuclear charge becc(ipph)=becc(ipph)+chgcr(isph)+spzn(isph) ! write Born effective charge matrix row to file if (mp_mpi) then do ip=1,3 write(80,'(G18.10," : ip = ",I4)') becc(ip),ip end do close(80) end if ! write test file if required and return if (test) then call writetest(208,'Born effective charge',nv=3,tol=1.d-3,rva=becc) return end if ! delete the non-essential files call delfiles(evec=.true.,eval=.true.,occ=.true.) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) goto 10 end subroutine elk-10.4.9/src/PaxHeaders/bectask.f900000644000000000000000000000013214762655565014206 xustar0030 mtime=1741380469.234012464 30 atime=1741380467.951005757 30 ctime=1741380469.234012464 elk-10.4.9/src/bectask.f900000644002504400250440000000240414762655565016730 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine bectask(fnum,fext) use modmain use modphonon use modmpi implicit none ! arguments integer, intent(in) :: fnum character(*), intent(out) :: fext ! local variables logical exist ! only master process should search for file if (.not.mp_mpi) goto 10 do ipph=1,3 do isph=1,nspecies do iaph=1,natoms(isph) ! Born effective charge file extension call becfext(isph,iaph,ipph,fext) ! determine if the BEC file with this extension exists inquire(file='BEC'//trim(fext),exist=exist) if (.not.exist) then open(fnum,file='BEC'//trim(fext),form='FORMATTED') iasph=idxas(iaph,isph) goto 10 end if end do end do end do isph=0; iaph=0; iasph=0; ipph=0 write(*,'("Info(bectask): nothing more to do")') 10 continue ! broadcast to all other MPI processes call mpi_bcast(isph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(iaph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(iasph,1,mpi_integer,0,mpicom,ierror) call mpi_bcast(ipph,1,mpi_integer,0,mpicom,ierror) if (isph == 0) then fext='.OUT' else call becfext(isph,iaph,ipph,fext) end if end subroutine elk-10.4.9/src/PaxHeaders/becfext.f900000644000000000000000000000013014762655565014210 xustar0029 mtime=1741380469.23501247 30 atime=1741380467.954005773 29 ctime=1741380469.23501247 elk-10.4.9/src/becfext.f900000644002504400250440000000060514762655565016735 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine becfext(is,ia,ip,fext) use modmain implicit none ! arguments integer, intent(in) :: is,ia,ip character(*), intent(out) :: fext write(fext,'("_S",I2.2,"_A",I3.3,"_P",I1,".OUT")') is,ia,ip end subroutine elk-10.4.9/src/PaxHeaders/putephmat.f900000644000000000000000000000013014762655565014577 xustar0029 mtime=1741380469.23701248 30 atime=1741380467.956005783 29 ctime=1741380469.23701248 elk-10.4.9/src/putephmat.f900000644002504400250440000000133514762655565017325 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine putephmat(iq,ik,ephmat) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq,ik complex(8), intent(in) :: ephmat(nstsv,nstsv,nbph) ! local variables integer recl,n ! determine the record length inquire(iolength=recl) vql(:,iq),vkl(:,ik),nstsv,nbph,ephmat ! record number n=(iq-1)*nkptnr+ik !$OMP CRITICAL(u240) open(240,file='EPHMAT.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(240,rec=n) vql(:,iq),vkl(:,ik),nstsv,nbph,ephmat close(240) !$OMP END CRITICAL(u240) end subroutine elk-10.4.9/src/PaxHeaders/getephmat.f900000644000000000000000000000013214762655565014550 xustar0030 mtime=1741380469.238012485 30 atime=1741380467.959005799 30 ctime=1741380469.238012485 elk-10.4.9/src/getephmat.f900000644002504400250440000000413714762655565017277 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine getephmat(iqp,ikp,ephmat) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iqp,ikp complex(8), intent(out) :: ephmat(nstsv,nstsv,nbph) ! local variables integer isym,lspl,iq,ik,iv(3) integer recl,n,nstsv_,nbph_ real(8) vql_(3),vkl_(3),t1 if (iqp <= nqpt) then ! q-point is in the reduced set iq=iqp ik=ikp else ! q-point is not in the reduced set call findqpt(vql(:,iqp),isym,iq) lspl=lsplsymc(isym) call i3mtv(symlat(:,:,lspl),ivk(:,ikp),iv) iv(:)=modulo(iv(:),ngridk(:)) ik=ivkiknr(iv(1),iv(2),iv(3)) end if ! find the record length inquire(iolength=recl) vql_,vkl_,nstsv_,nbph_,ephmat ! record number n=(iq-1)*nkptnr+ik !$OMP CRITICAL(u240) open(240,file='EPHMAT.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(240,rec=n) vql_,vkl_,nstsv_,nbph_,ephmat close(240) !$OMP END CRITICAL(u240) t1=abs(vql(1,iq)-vql_(1))+abs(vql(2,iq)-vql_(2))+abs(vql(3,iq)-vql_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getephmat): differing vectors for q-point ",I8)') iq write(*,'(" current : ",3G18.10)') vql(:,iq) write(*,'(" EPHMAT.OUT : ",3G18.10)') vql_ write(*,*) stop end if t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getephmat): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EPHMAT.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getephmat): differing nstsv for q-point, k-point ",2I8)') & iq,ik write(*,'(" current : ",I8)') nstsv write(*,'(" EPHMAT.OUT : ",I8)') nstsv_ write(*,*) stop end if if (nbph /= nbph_) then write(*,*) write(*,'("Error(getephmat): differing nbph for q-point, k-point ",2I8)') & iq,ik write(*,'(" current : ",I8)') nbph write(*,'(" EPHMAT.OUT : ",I8)') nbph_ write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/readepsw0.f900000644000000000000000000000013014762655565014462 xustar0029 mtime=1741380469.23901249 30 atime=1741380467.961005809 29 ctime=1741380469.23901249 elk-10.4.9/src/readepsw0.f900000644002504400250440000000206014762655565017204 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readepsw0 use modmain use modphonon implicit none ! local variables logical exist integer i,j real(8) w character(256) fname do j=1,3 do i=1,3 write(fname,'("EPSILON_",2I1,".OUT")') i,j inquire(file=trim(fname),exist=exist) if (.not.exist) then write(*,*) write(*,'("Error(readepsw0): file not found :")') write(*,'(" ",A)') trim(fname) write(*,*) stop end if open(50,file=trim(fname),status='OLD',form='FORMATTED') read(50,*) w,epsw0(i,j) if (abs(w) > 1.d-8) then write(*,*) write(*,'("Error(readepsw0): first frequency should be zero")') write(*,'(" in file ",A)') trim(fname) write(*,*) stop end if close(50) end do end do ! make dielectric tensor symmetric do j=1,3 do i=1,j-1 epsw0(i,j)=0.5d0*(epsw0(i,j)+epsw0(j,i)) epsw0(j,i)=epsw0(i,j) end do end do end subroutine elk-10.4.9/src/PaxHeaders/dynqnat.f900000644000000000000000000000013214762655565014250 xustar0030 mtime=1741380469.240012496 30 atime=1741380467.964005825 30 ctime=1741380469.240012496 elk-10.4.9/src/dynqnat.f900000644002504400250440000000246714762655565017003 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dynqnat(sgn,vpl,dq) use modmain use modphonon implicit none ! arguments integer, intent(in) :: sgn real(8), intent(in) :: vpl(3) complex(8), intent(inout) :: dq(nbph,nbph) ! local variables integer ias,jas,ip,jp,i,j real(8) vpfl(3),vpc(3),v(3),t0,t1 ! automatic arrays real(8) vbpc(3,natmtot) ! map vpl to the first Brillouin zone vpfl(:)=vpl(:) call vecfbz(epslat,bvec,vpfl) ! q-vector in Cartesian coordinates call r3mv(bvec,vpfl,vpc) ! multiply the q-vector with the Born effective charge tensor do ias=1,natmtot call r3mv(bec(:,:,ias),vpc,vbpc(:,ias)) end do ! compute q⋅ϵ⋅q call r3mv(epsw0,vpc,v) t0=vpc(1)*v(1)+vpc(2)*v(2)+vpc(3)*v(3) if (abs(t0) > 1.d-8) then t0=fourpi/(omega*t0) if (sgn < 0) t0=-t0 else t0=0.d0 end if ! ensure that the function tends to zero smoothly near the zone boundary do i=1,3 t1=abs(vpfl(i)) if (t1 < 0.5d0) then t0=t0*(1.d0-2.d0*t1) else t0=0.d0 end if end do j=0 do jas=1,natmtot do jp=1,3 j=j+1 i=0 do ias=1,natmtot do ip=1,3 i=i+1 t1=vbpc(ip,ias)*vbpc(jp,jas) dq(i,j)=dq(i,j)+t0*t1 end do end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/xc_pzca.f900000644000000000000000000000013114762655565014220 xustar0030 mtime=1741380469.242012506 29 atime=1741380467.96700584 30 ctime=1741380469.242012506 elk-10.4.9/src/xc_pzca.f900000644002504400250440000000375414762655565016754 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: xc_pzca ! !INTERFACE: subroutine xc_pzca(n,rho,ex,ec,vx,vc) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rho : charge density (in,real(n)) ! ex : exchange energy density (out,real(n)) ! ec : correlation energy density (out,real(n)) ! vx : exchange potential (out,real(n)) ! vc : correlation potential (out,real(n)) ! !DESCRIPTION: ! Spin-unpolarised exchange-correlation potential and energy of the ! Perdew-Zunger parameterisation of Ceperley-Alder electron gas: {\it Phys. ! Rev. B} {\bf 23}, 5048 (1981) and {\it Phys. Rev. Lett.} {\bf 45}, 566 ! (1980). ! ! !REVISION HISTORY: ! Created October 2002 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n) real(8), intent(out) :: ex(n),ec(n),vx(n),vc(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: thrd=1.d0/3.d0, thrd2=2.d0/3.d0, thrd4=4.d0/3.d0 real(8), parameter :: g=-0.1423d0,b1=1.0529d0,b2=0.3334d0 real(8), parameter :: a=0.0311d0,b=-0.048d0,c=0.0020d0,d=-0.0116d0 real(8) p1,p2,r,rs,t1 if (n < 1) then write(*,*) write(*,'("Error(xc_pzca): n < 1 : ",I8)') n write(*,*) stop end if ! prefactors t1=3.d0/(4.d0*pi) p1=t1**thrd p2=t1*(9.d0*pi/4.d0)**thrd do i=1,n r=rho(i) if (r < 1.d-12) then ex(i)=0.d0 ec(i)=0.d0 vx(i)=0.d0 vc(i)=0.d0 cycle end if rs=p1/r**thrd ! exchange energy and potential ex(i)=-p2/rs vx(i)=thrd4*ex(i) ! correlation energy and potential if (rs >= 1.d0) then t1=sqrt(rs) ec(i)=g/(1.d0+b1*t1+b2*rs) vc(i)=ec(i)*(1.d0+(7.d0/6.d0)*b1*t1+thrd4*b2*rs)/(1.d0+b1*t1+b2*rs) else t1=dlog(rs) ec(i)=a*t1+b+c*rs*t1+d*rs vc(i)=a*t1+(b-thrd*a)+thrd2*c*rs*t1+thrd*(2.d0*d-c)*rs end if end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/xc_pwca.f900000644000000000000000000000013214762655565014216 xustar0030 mtime=1741380469.243012511 30 atime=1741380467.969005851 30 ctime=1741380469.243012511 elk-10.4.9/src/xc_pwca.f900000644002504400250440000001101214762655565016733 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2011 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: xc_pwca ! !INTERFACE: subroutine xc_pwca(n,rhoup,rhodn,ex,ec,vxup,vxdn,vcup,vcdn) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rhoup : spin-up charge density (in,real(n)) ! rhodn : spin-down charge density (in,real(n)) ! ex : exchange energy density (out,real(n)) ! ec : correlation energy density (out,real(n)) ! vxup : spin-up exchange potential (out,real(n)) ! vxdn : spin-down exchange potential (out,real(n)) ! vcup : spin-up correlation potential (out,real(n)) ! vcdn : spin-down correlation potential (out,real(n)) ! !DESCRIPTION: ! Spin-polarised exchange-correlation potential and energy of the Perdew-Wang ! parameterisation of the Ceperley-Alder electron gas: {\it Phys. Rev. B} ! {\bf 45}, 13244 (1992) and {\it Phys. Rev. Lett.} {\bf 45}, 566 (1980). ! ! !REVISION HISTORY: ! Created January 2004 (JKD) ! Rewrote, October 2011 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rhoup(n),rhodn(n) real(8), intent(out) :: ex(n),ec(n) real(8), intent(out) :: vxup(n),vxdn(n) real(8), intent(out) :: vcup(n),vcdn(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: thrd=1.d0/3.d0, thrd4=4.d0/3.d0 real(8), parameter :: d2f0=1.709921d0 real(8), parameter :: a(3)=[ 0.0310907d0, 0.01554535d0, 0.0168869d0 ] real(8), parameter :: a1(3)=[ 0.21370d0, 0.20548d0, 0.11125d0 ] real(8), parameter :: b1(3)=[ 7.5957d0, 14.1189d0, 10.357d0 ] real(8), parameter :: b2(3)=[ 3.5876d0, 6.1977d0, 3.6231d0 ] real(8), parameter :: b3(3)=[ 1.6382d0, 3.3662d0, 0.88026d0 ] real(8), parameter :: b4(3)=[ 0.49294d0, 0.62517d0, 0.49671d0 ] real(8) p1,p2,p3,rup,rdn,r,ri,ri2 real(8) rs,rs2,rs12,rs32,rsi,rs12i real(8) mz,z,z3,z4,drs,dzu,dzd real(8) fz,dfz,ders,dez,deu,ded real(8) a2,ec0,dec0,ec1,dec1,ac,dac real(8) t1,t2,t3,t4,t5,t6,t7,dt1,dt2 if (n < 1) then write(*,*) write(*,'("Error(xc_pwca): n < 1 : ",I8)') n write(*,*) stop end if ! prefactors t1=3.d0/(4.d0*pi) p1=t1**thrd p2=t1*(9.d0*pi/4.d0)**thrd p3=1.d0/(2.d0**thrd4-2.d0) do i=1,n rup=rhoup(i); rdn=rhodn(i) ! total density r=rup+rdn if ((rup < 0.d0).or.(rdn < 0.d0).or.(r < 1.d-20)) then ex(i)=0.d0 ec(i)=0.d0 vxup(i)=0.d0 vxdn(i)=0.d0 vcup(i)=0.d0 vcdn(i)=0.d0 cycle end if ri=1.d0/r ri2=ri**2 rs=p1*ri**thrd rs2=rs**2 rs12=sqrt(rs) rs32=rs12*rs rsi=1.d0/rs rs12i=1.d0/rs12 mz=rup-rdn z=mz/r z3=z**3 z4=z3*z ! drs/drup = drs/drdn = drs/drho drs=-thrd*rs*ri ! dz/drup, dz/drdn t1=mz*ri2 dzu=ri-t1 dzd=-ri-t1 !------------------! ! exchange ! !------------------! t1=-p2*rsi/2.d0 t2=1.d0+z t3=1.d0-z t4=t2**thrd4 t5=t3**thrd4 t6=t4+t5 ! exchange energy density ex(i)=t1*t6 ! dex/drs ders=-ex(i)*rsi ! f(z) fz=p3*(t6-2.d0) ! dex/dz t4=t4/t2 t5=t5/t3 t6=t4-t5 t7=thrd4*t6 dez=t1*t7 ! df/dz dfz=p3*t7 ! dex/drup, dex/drdn t1=ders*drs deu=t1+dez*dzu ded=t1+dez*dzd ! exchange potential vxup(i)=ex(i)+r*deu vxdn(i)=ex(i)+r*ded !---------------------! ! correlation ! !---------------------! ! ec(rs,0) a2=2.d0*a(1) t1=a2*(b1(1)*rs12+b2(1)*rs+b3(1)*rs32+b4(1)*rs2) dt1=a2*(0.5d0*b1(1)*rs12i+b2(1)+1.5d0*b3(1)*rs12+2.d0*b4(1)*rs) t3=1.d0/t1 t2=1.d0+t3 dt2=-dt1*t3**2 t3=1.d0/t2 t4=1.d0+a1(1)*rs t5=log(t2) ec0=-a2*t4*t5 dec0=-a2*(a1(1)*t5+t4*t3*dt2) ! ec(rs,1) a2=2.d0*a(2) t1=a2*(b1(2)*rs12+b2(2)*rs+b3(2)*rs32+b4(2)*rs2) dt1=a2*(0.5d0*b1(2)*rs12i+b2(2)+1.5d0*b3(2)*rs12+2.d0*b4(2)*rs) t3=1.d0/t1 t2=1.d0+t3 dt2=-dt1*t3**2 t3=1.d0/t2 t4=1.d0+a1(2)*rs t5=log(t2) ec1=-a2*t4*t5 dec1=-a2*(a1(2)*t5+t4*t3*dt2) ! ac(rs) a2=2.d0*a(3) t1=a2*(b1(3)*rs12+b2(3)*rs+b3(3)*rs32+b4(3)*rs2) dt1=a2*(0.5d0*b1(3)*rs12i+b2(3)+1.5d0*b3(3)*rs12+2.d0*b4(3)*rs) t3=1.d0/t1 t2=1.d0+t3 dt2=-dt1*t3**2 t3=1.d0/t2 t4=1.d0+a1(3)*rs t5=log(t2) ac=a2*t4*t5 dac=a2*(a1(3)*t5+t4*t3*dt2) ! correlation energy density t1=1.d0-z4 t2=(fz/d2f0)*t1 t3=ec1-ec0 t4=fz*z4 ec(i)=ec0+ac*t2+t3*t4 ! dec/drs t5=dec1-dec0 ders=dec0+dac*t2+t5*t4 ! dec/dz t6=4.d0*fz*z3 dez=(ac/d2f0)*(dfz*t1-t6)+t3*(dfz*z4+t6) ! dec/drup, dec/drdn t1=ders*drs deu=t1+dez*dzu ded=t1+dez*dzd ! correlation potential vcup(i)=ec(i)+r*deu vcdn(i)=ec(i)+r*ded end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/xc_pbe.f900000644000000000000000000000013214762655565014032 xustar0030 mtime=1741380469.245012522 30 atime=1741380467.972005867 30 ctime=1741380469.245012522 elk-10.4.9/src/xc_pbe.f900000644002504400250440000000711214762655565016555 0ustar00dewhurstdewhurst00000000000000 ! This routine is based on code written by K. Burke. !BOP ! !ROUTINE: xc_pbe ! !INTERFACE: subroutine xc_pbe(n,kappa,mu,beta,rhoup,rhodn,grho,gup,gdn,g2up,g2dn,g3rho, & g3up,g3dn,ex,ec,vxup,vxdn,vcup,vcdn) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! kappa : parameter for large-gradient limit (in,real) ! mu : gradient expansion coefficient (in,real) ! beta : gradient expansion coefficient (in,real) ! rhoup : spin-up charge density (in,real(n)) ! rhodn : spin-down charge density (in,real(n)) ! grho : |grad rho| (in,real(n)) ! gup : |grad rhoup| (in,real(n)) ! gdn : |grad rhodn| (in,real(n)) ! g2up : grad^2 rhoup (in,real(n)) ! g2dn : grad^2 rhodn (in,real(n)) ! g3rho : (grad rho).(grad |grad rho|) (in,real(n)) ! g3up : (grad rhoup).(grad |grad rhoup|) (in,real(n)) ! g3dn : (grad rhodn).(grad |grad rhodn|) (in,real(n)) ! ex : exchange energy density (out,real(n)) ! ec : correlation energy density (out,real(n)) ! vxup : spin-up exchange potential (out,real(n)) ! vxdn : spin-down exchange potential (out,real(n)) ! vcup : spin-up correlation potential (out,real(n)) ! vcdn : spin-down correlation potential (out,real(n)) ! !DESCRIPTION: ! Spin-polarised exchange-correlation potential and energy of the generalised ! gradient approximation functional of J. P. Perdew, K. Burke and M. Ernzerhof ! {\it Phys. Rev. Lett.} {\bf 77}, 3865 (1996) and {\bf 78}, 1396(E) (1997). ! The parameter $\kappa$, which controls the large-gradient limit, can be set ! to $0.804$ or $1.245$ corresponding to the value in the original article or ! the revised version of Y. Zhang and W. Yang, {\it Phys. Rev. Lett.} ! {\bf 80}, 890 (1998). ! ! !REVISION HISTORY: ! Modified routines written by K. Burke, October 2004 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: kappa,mu,beta real(8), intent(in) :: rhoup(n),rhodn(n) real(8), intent(in) :: grho(n),gup(n),gdn(n) real(8), intent(in) :: g2up(n),g2dn(n) real(8), intent(in) :: g3rho(n),g3up(n),g3dn(n) real(8), intent(out) :: ex(n),ec(n) real(8), intent(out) :: vxup(n),vxdn(n) real(8), intent(out) :: vcup(n),vcdn(n) ! local variables integer i real(8), parameter :: thrd=1.d0/3.d0 real(8), parameter :: thrd2=2.d0/3.d0 real(8), parameter :: pi=3.1415926535897932385d0 real(8) rup,rdn,r,r2,kf,s,u,v real(8) rs,z,g,ks,ksg real(8) t,uu,vv,ww real(8) g2rho,exup,exdn do i=1,n rup=rhoup(i); rdn=rhodn(i) ! total density r=rup+rdn if ((rup >= 0.d0).and.(rdn >= 0.d0).and.(r > 1.d-12)) then ! exchange energy density and potential ! spin-up r2=2.d0*rup kf=(r2*3.d0*pi**2)**thrd s=gup(i)/(2.d0*kf*rup) u=g3up(i)/((rup**2)*(2.d0*kf)**3) v=g2up(i)/(rup*(2.d0*kf)**2) call x_pbe(kappa,mu,r2,s,u,v,exup,vxup(i)) ! spin-down r2=2.d0*rdn kf=(r2*3.d0*pi**2)**thrd s=gdn(i)/(2.d0*kf*rdn) u=g3dn(i)/((rdn**2)*(2.d0*kf)**3) v=g2dn(i)/(rdn*(2.d0*kf)**2) call x_pbe(kappa,mu,r2,s,u,v,exdn,vxdn(i)) ! average exchange energy density ex(i)=(exup*rhoup(i)+exdn*rhodn(i))/r ! correlation rs=(3.d0/(4.d0*pi*r))**thrd z=(rhoup(i)-rhodn(i))/r g=((1.d0+z)**thrd2+(1.d0-z)**thrd2)/2.d0 kf=(r*3.d0*pi**2)**thrd ks=sqrt(4.d0*kf/pi) ksg=2.d0*ks*g t=grho(i)/(ksg*r) uu=g3rho(i)/((r**2)*ksg**3) g2rho=g2up(i)+g2dn(i) vv=g2rho/(r*ksg**2) ww=(gup(i)**2-gdn(i)**2-z*grho(i)**2)/(r*r*ksg**2) call c_pbe(beta,rs,z,t,uu,vv,ww,ec(i),vcup(i),vcdn(i)) else ex(i)=0.d0 ec(i)=0.d0 vxup(i)=0.d0 vxdn(i)=0.d0 vcup(i)=0.d0 vcdn(i)=0.d0 end if end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/xc_am05.f900000644000000000000000000000013214762655565014026 xustar0030 mtime=1741380469.246012527 30 atime=1741380467.974005877 30 ctime=1741380469.246012527 elk-10.4.9/src/xc_am05.f900000644002504400250440000002322314762655565016552 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2004, 2005 Rickard Armiento ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: xc_am05 ! !INTERFACE: subroutine xc_am05(n,rho,grho,g2rho,g3rho,ex,ec,vx,vc) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rho : charge density (in,real(n)) ! grho : |grad rho| (in,real(n)) ! g2rho : grad^2 rho (in,real(n)) ! g3rho : (grad rho).(grad |grad rho|) (in,real(n)) ! ex : exchange energy density (out,real(n)) ! ec : correlation energy density (out,real(n)) ! vx : spin-unpolarised exchange potential (out,real(n)) ! vc : spin-unpolarised correlation potential (out,real(n)) ! !DESCRIPTION: ! Spin-unpolarised exchange-correlation potential and energy functional of ! R. Armiento and A. E. Mattsson, {\it Phys. Rev. B} {\bf 72}, 085108 (2005). ! ! !REVISION HISTORY: ! Created April 2005 (RAR); based on xc_pbe !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n),grho(n),g2rho(n),g3rho(n) real(8), intent(out) :: ex(n),ec(n),vx(n),vc(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8) r,kf,s,v,u real(8) grho_,g2rho_,g3rho_ do i=1,n r=rho(i) if (r > 1.d-12) then grho_=grho(i) g2rho_=g2rho(i) g3rho_=g3rho(i) ! exchange energy density and potential kf=(r*3.d0*pi**2)**(1.d0/3.d0) s=grho_/(2.d0*kf*r) v=g2rho_/(r*(2.d0*kf)**2) u=g3rho_/((r**2)*(2.d0*kf)**3) call xc_am05_point(r,s,u,v,ex(i),ec(i),vx(i),vc(i),1) else ex(i)=0.d0 ec(i)=0.d0 vx(i)=0.d0 vc(i)=0.d0 end if end do end subroutine !EOC !BOP ! !ROUTINE: xc_am05_point ! !INTERFACE: subroutine xc_am05_point(rho,s,u,v,ex,ec,vx,vc,pot) ! !INPUT/OUTPUT PARAMETERS: ! rho : electron density (in,real) ! s : gradient of n / (2 kF n) ! u : grad n * grad | grad n | / (n**2 (2 kF)**3) ! v : laplacian of density / (n**2 (2.d0*kf)**3) ! ex : exchange energy density (out,real) ! ec : correlation energy density (out,real) ! vx : spin-unpolarised exchange potential (out,real) ! vc : spin-unpolarised correlation potential (out,real) ! !DESCRIPTION: ! Calculate the spin-unpolarised exchange-correlation potential and energy for ! the Armiento-Mattsson 05 functional for a single point. ! ! !REVISION HISTORY: ! Created April 2005 (RAR) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rho, s, u, v integer, intent(in) :: pot real(8), intent(out) :: ex, ec, vx, vc ! constants real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: g = 0.8098d0 real(8), parameter :: a = 2.804d0 real(8), parameter :: c = 0.7168d0 ! local variables real(8) s2,exlda, vxlda, eclda, vclda, X, Xs, Xss real(8) F, Fs, Fss, Hx, Hxs, Hxss, Hc, Hcs, Hcss real(8) zb, zbs, zbss, w real(8) n0b, n0bs, n0bss real(8) ln0b, ln0bs, ln0bss real(8) zbb, zbbc, zbbs, zbbss real(8) fxb, fxbs, fxbss ! cutoff if((rho <= 1.d-16)) then ex = 0.0d0 ec = 0.0d0 vx = 0.0d0 vc = 0.0d0 return endif s2 = s**2 ! LDA correlation call xc_am05_ldapwc(rho,eclda,vclda) ! LDA exchange call xc_am05_ldax(rho,exlda,vxlda) !------------------! ! exchange ! !------------------! ! interpolation index X = 1.0d0 - a*s2/(1.0d0 + a*s2) ! Airy LAA refinement function call xc_am05_labertw(s**(3.0d0/2.0d0)/sqrt(24.0d0),w) zb = (3.0d0/2.0d0*w)**(2.0d0/3.0d0) n0b = w/(2.0d0*pi**2*s**3) ln0b = -3.0d0/(2.0d0*pi)*(3.0d0*pi**2*n0b)**(1.0d0/3.0d0) zbbc = ((4.0d0/3.0d0)**(1.0d0/3.0d0)*2.0d0*pi/3.0d0)**4 zbb = (zbbc*zb**2 + zb**4)**(1.0d0/4.0d0) Fxb = -1.0d0/(ln0b*2.0d0*zbb) F = (c*s2 + 1.0d0)/(c*s2/Fxb + 1.0d0) ! exchange refinement function Hx = X + (1.0d0 - X)*F ! exchange energy per particle, Ex = Integrate[n*ex] ex = exlda*Hx !---------------------! ! correlation ! !---------------------! ! correlation refinement function Hc = X + g*(1.0d0 - X) ! correlation energy per particle, Ec = Integrate[rho*ec] ec = eclda*Hc if (pot == 0) return !----------------------------! ! exchange potential ! !----------------------------! ! interpolation index derivatives, dX/ds Xs = -2.0d0*a*s/(1.0d0 + a*s2)**2 Xss = 2.0d0*a*(3.0d0*a*s2-1.0d0)/(1.0d0+a*s2)**3 ! airy LAA refinement function derivatives, dF/ds zbs = zb/(s + s*w) zbss = - zb*w*(5.0d0+2.0d0*w)/(2.0d0*s2*(1.0d0+w)**3) n0bs = sqrt(zb)*(-2.0d0*zb+s*zbs)/(2.0d0*pi**2*s2**2) n0bss = (16.0d0*zb**2+s**2*zbs**2+2.0d0*s*zb*(-6.0d0* & zbs+s*zbss))/(4.0d0*pi**2*s**5*sqrt(zb)) ln0bs = -(3.0d0/pi)**(1.0d0/3.0d0)*n0bs/ & (2.0d0*n0b**(2.0d0/3.0d0)) ln0bss = (2.0d0*n0bs**2-3.0d0*n0b*n0bss)/(2.0d0* & 3.0d0**(2.0d0/3.0d0)*pi**(1.0d0/3.0d0)*n0b**(5.0d0/3.0d0)) zbbs = zb*(zbbc+2*zb**2)*zbs/ & (2.0d0*(zb**2*(zbbc+zb**2))**(3.0d0/4.0d0)) zbbss = zb**2*(-zbbc*(zbbc-2.0d0*zb**2)*zbs**2+ & 2.0d0*zb*(zbbc+zb**2)*(zbbc+2.0d0*zb**2)*zbss)/ & (4.0d0*(zb**2*(zbbc+zb**2))**(7.0d0/4.0d0)) Fxbs = (zbb*ln0bs+ln0b*zbbs)/(2.0d0*ln0b**2*zbb**2) Fxbss = (-2.0d0*ln0b**2*zbbs**2+zbb**2*(-2.0d0*ln0bs**2 + & ln0b*ln0bss)+ln0b*zbb*(-2.0d0*ln0bs*zbbs+ln0b*zbbss))/ & (2.0d0*ln0b**3*zbb**3) Fs = (c*s*(2.0d0*(Fxb-1.0d0)*Fxb + s*(1.0d0+c*s2)*Fxbs))/ & (c*s2 + Fxb)**2 Fss = (c*(-2.0d0*(3.0d0*c*s2-Fxb)*(Fxb-1.0d0)*Fxb+ & 4.0d0*s*(-c*s2+Fxb+2.0d0*c*s2*Fxb)*Fxbs - & 2.0d0*s2*(1.0d0+c*s2)*Fxbs**2+s2*(1.0d0+c*s2)* & (c*s2 + Fxb)*Fxbss))/(c*s2+Fxb)**3 ! GGA refinement function derivatives, dF/ds Hxs = - (X - 1.0d0)*Fs - (F - 1.0d0)*Xs Hxss = - 2.0d0*Fs*Xs - (X - 1.0d0)*Fss - (F - 1.0d0)*Xss ! vx formula for gradient dependent functional, ! generalized form of Eq. (24) in PRB 33, 8800 (1986) vx = vxlda*(Hx - s*Hxs) + & exlda*((4.0d0/3.0d0*s-v/s)*Hxs - & (u-4.0d0/3.0d0*s**3)*(Hxss/s-Hxs/s2)) !-------------------------------! ! correlation potential ! !-------------------------------! ! correlation refinement function derivatives, dF/ds Hcs = Xs - g*Xs Hcss = Xss - g*Xss ! vc formula for gradient dependent functional, ! generalized form of Eq. (24) in Phys. Rev. B 33, 8800 (1986) vc = vclda*(Hc - s*Hcs) + & eclda*((4.0d0/3.0d0*s - v/s)*Hcs - & (u - 4.0d0/3.0d0*s**3)*(Hcss/s - Hcs/s2)) end subroutine !EOC !BOP ! !ROUTINE: xc_am05_ldax ! !INTERFACE: subroutine xc_am05_ldax(n,ex,vx) ! !INPUT/OUTPUT PARAMETERS: ! n : electron density (in,real) ! ex : exchange energy per electron (out,real) ! vx : exchange potential (out,real) ! !DESCRIPTION: ! Local density approximation exchange. ! ! !REVISION HISTORY: ! Created April 2005 (RAR) !EOP !BOC implicit none ! arguments real(8), intent(in) :: n real(8), intent(out) :: ex real(8), intent(out) :: vx ! constants real(8), parameter :: pi=3.1415926535897932385d0 vx=-(3.d0*n/pi)**(1.d0/3.d0) ex=(3.d0/4.d0)*vx end subroutine !EOC !BOP ! !ROUTINE: xc_am05_ldapwc ! !INTERFACE: subroutine xc_am05_ldapwc(n,ec,vc) ! !INPUT/OUTPUT PARAMETERS: ! n : electron density (in,real) ! ec : correlation energy per electron (out,real) ! vc : correlation potential (out,real) ! !DESCRIPTION: ! Correlation energy and potential of the Perdew-Wang parameterisation of ! the Ceperley-Alder electron gas {\it Phys. Rev. B} {\bf 45}, 13244 (1992) ! and {\it Phys. Rev. Lett.} {\bf 45}, 566 (1980). This is a clean-room ! implementation from paper. ! ! !REVISION HISTORY: ! Created April 2005 (RAR) !EOP !BOC implicit none ! arguments real(8), intent(in) :: n real(8), intent(out) :: ec real(8), intent(out) :: vc ! constants real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: a01 = 0.21370d0 real(8), parameter :: b01 = 7.5957d0 real(8), parameter :: b02 = 3.5876d0 real(8), parameter :: b03 = 1.6382d0 real(8), parameter :: b04 = 0.49294d0 ! paper actually use this: ! real(8), parameter (A0 = 0.031091d0) ! but routines now "defacto standard" was distributed using: real(8), parameter :: A0 = 0.0310907d0 ! local variables real(8) rsq real(8) Q0, Q1, Q1p, ecrs rsq = (3.0d0/(4.0d0*pi*n))**(1.0d0/6.0d0) ec = -2.0d0*A0*(1.0d0 + a01*rsq**2)* & log(1.0d0 + 1.0d0/ & (2.0d0*A0*rsq*(b01 + rsq*(b02 + rsq*(b03 + b04*rsq))))) Q0 = -2.0d0*A0*(1.0d0 + a01*rsq**2) Q1 = 2.0d0*A0*rsq*(b01 + rsq*(b02 + rsq*(b03 + b04*rsq))) Q1p = A0*(b01/rsq+2.0d0*b02+3.0d0*b03*rsq+4.0d0*b04*rsq**2) ecrs = -2.0d0*A0*a01*log(1.0d0 + 1.0d0/Q1)-Q0*Q1p/(Q1**2+Q1) vc = ec - rsq**2/3.0d0*ecrs end subroutine !EOC !BOP ! !ROUTINE: xc_am05_labertw ! !INTERFACE: subroutine xc_am05_labertw(z,val) ! !INPUT/OUTPUT PARAMETERS: ! z : function argument (in,real) ! val : value of lambert W function of z (out,real) ! !DESCRIPTION: ! Lambert $W$-function using the method of Corless, Gonnet, Hare, Jeffrey and ! Knuth, {\it Adv. Comp. Math.} {\bf 5}, 329 (1996). The approach is based ! loosely on that in GNU Octave by N. N. Schraudolph, but this implementation ! is for real values and the principal branch only. ! ! !REVISION HISTORY: ! Created April 2005 (RAR) !EOP !BOC implicit none ! arguments real(8), intent(in) :: z real(8), intent(out) :: val ! local variables real(8) e,t,p integer i ! if z too low, go with the first term of the power expansion, z if (z < 1.d-20) then val=z return end if e=exp(1.d0) ! inital guess if (abs(z+1.d0/e) > 1.45d0) then ! asymptotic expansion at 0 and Inf val=log(z) val=val-log(val) else ! series expansion about -1/e to first order val=1.d0*sqrt(2.d0*e*z+2.d0)-1.d0 end if ! find val through iteration do i=1,10 p=exp(val) t=val*p-z if (val /= -1.d0) then t=t/(p*(val+1.d0)-0.5d0*(val+2.d0)*t/(val+1.d0)) else t=0.d0 end if val=val-t if (abs(t) < (2.48d0*1.d-14)*(1.d0+abs(val))) return end do ! this should never happen! write(*,*) write(*,'("Error(xc_am05_labertw): iteration limit reached")') write(*,'(" Likely cause: improper numbers (INFs, NaNs) in density")') write(*,*) stop end subroutine !EOC elk-10.4.9/src/PaxHeaders/xc_xalpha.f900000644000000000000000000000013214762655565014541 xustar0030 mtime=1741380469.248012537 30 atime=1741380467.978005898 30 ctime=1741380469.248012537 elk-10.4.9/src/xc_xalpha.f900000644002504400250440000000244014762655565017263 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 1998-2006 ABINIT group (DCA, XG, GMR). ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: xc_xalpha ! !INTERFACE: subroutine xc_xalpha(n,rho,exc,vxc) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rho : charge density (in,real(n)) ! exc : exchange-correlation energy density (out,real(n)) ! vxc : exchange-correlation potential (out,real(n)) ! !DESCRIPTION: ! $X_{\alpha}$ approximation to the exchange-correlation potential and energy ! density. See J. C. Slater, {\it Phys. Rev.} {\bf 81}, 385 (1951). ! ! !REVISION HISTORY: ! Modified an ABINIT routine, September 2006 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n) real(8), intent(out) :: exc(n),vxc(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: alpha=1.d0 real(8) r,efac,rs,rsm1,vfac vfac=(1.5d0/pi)**(2.d0/3.d0) efac=0.75d0*vfac ! loop over density points do i=1,n r=rho(i) if (r > 1.d-12) then rs=(3.d0/(4.d0*pi*r))**(1.d0/3.d0) rsm1=1.0d0/rs ! compute energy density exc(i)=-alpha*efac*rsm1 ! compute potential vxc(i)=-alpha*vfac*rsm1 end if end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/xc_wc06.f900000644000000000000000000000013214762655565014043 xustar0030 mtime=1741380469.250012548 30 atime=1741380467.981005914 30 ctime=1741380469.250012548 elk-10.4.9/src/xc_wc06.f900000644002504400250440000000242514762655565016570 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 Zhigang Wu and R. E. Cohen. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine xc_wc06(n,rho,grho,g2rho,g3rho,ex,ec,vx,vc) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n),grho(n),g2rho(n),g3rho(n) real(8), intent(out) :: ex(n),ec(n),vx(n),vc(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: thrd=1.d0/3.d0 ! default PBE beta real(8), parameter :: beta=0.06672455060314922d0 real(8) r,grho_,g2rho_,g3rho_ real(8) kf,s,u,v,rs,z,g real(8) ks,ksg,t,uu,vv,ww do i=1,n r=rho(i) if (r > 1.d-12) then grho_=grho(i) g2rho_=g2rho(i) g3rho_=g3rho(i) kf=(r*3.d0*pi**2)**thrd s=grho_/(2.d0*kf*r) u=g3rho_/((r**2)*(2.d0*kf)**3) v=g2rho_/(r*(2.d0*kf)**2) ! Wu-Cohen exchange call x_wc06(r,s,u,v,ex(i),vx(i)) ! Perdew-Burke-Ernzerhof correlation rs=(3.d0/(4.d0*pi*r))**thrd z=0.d0 g=1.d0 ks=sqrt(4.d0*kf/pi) ksg=2.d0*ks*g t=grho_/(ksg*r) uu=g3rho_/((r**2)*ksg**3) vv=g2rho_/(r*ksg**2) ww=0.d0 call c_pbe(beta,rs,z,t,uu,vv,ww,ec(i),vc(i),vc(i)) else ex(i)=0.d0 ec(i)=0.d0 vx(i)=0.d0 vc(i)=0.d0 end if end do end subroutine elk-10.4.9/src/PaxHeaders/x_wc06.f900000644000000000000000000000013214762655565013700 xustar0030 mtime=1741380469.251012553 30 atime=1741380467.983005924 30 ctime=1741380469.251012553 elk-10.4.9/src/x_wc06.f900000644002504400250440000000221314762655565016420 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2006 Zhigang Wu and R. E. Cohen. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. elemental subroutine x_wc06(rho,s,u,v,ex,vx) implicit none ! arguments real(8), intent(in) :: rho,s,u,v real(8), intent(out) :: ex,vx ! local variables real(8), parameter :: ax=-0.7385587663820224059d0 real(8), parameter :: mu=0.2195149727645171d0 real(8), parameter :: kappa=0.804d0 real(8), parameter :: b=10.d0/81.d0 real(8), parameter :: c=0.00793746933516d0 real(8), parameter :: thrd=1.d0/3.d0 real(8), parameter :: thrd4=4.d0/3.d0 real(8) dmu,exu real(8) s2,s4,es2,x,p0,fxwc real(8) fs,fss,t0,t1,t2,t3 ! lda exchange energy density exu=ax*rho**thrd s2=s**2 s4=s2**2 es2=exp(-s2) t0=1.d0+c*s4 dmu=mu-b x=b*s2+dmu*s2*es2+log(t0) p0=1.d0+x/kappa ! WC enhancement factor fxwc=1.d0+kappa-kappa/p0 ! exchange energy density ex=exu*fxwc t1=b+dmu*(1.d0-s2)*es2+2.d0*c*s2/t0 t2=dmu*s*(s2-2.d0)*es2+2.d0*c/t0-4.d0*(c**2)*s4/(t0**2) t3=1.d0/(p0**2) fs=2.d0*t1*t3 fss=t3*(4.d0*t2-8.d0*s*(t1**2)/(kappa*p0)) ! exchange potential vx=exu*(thrd4*fxwc-(u-thrd4*s2*s)*fss-v*fs) end subroutine elk-10.4.9/src/PaxHeaders/x_pbe.f900000644000000000000000000000013114762655565013666 xustar0030 mtime=1741380469.252012558 29 atime=1741380467.98600594 30 ctime=1741380469.252012558 elk-10.4.9/src/x_pbe.f900000644002504400250440000000125714762655565016416 0ustar00dewhurstdewhurst00000000000000 ! This routine is based on code written by K. Burke. elemental subroutine x_pbe(kappa,mu,rho,s,u,v,ex,vx) implicit none ! arguments real(8), intent(in) :: kappa,mu real(8), intent(in) :: rho,s,u,v real(8), intent(out) :: ex,vx ! local variables real(8), parameter :: ax=-0.7385587663820224058d0 real(8), parameter :: thrd=1.d0/3.d0 real(8), parameter :: thrd4=4.d0/3.d0 real(8) ul,exu,s2,p0 real(8) fxpbe,fs,fss ul=mu/kappa ! LDA exchange energy density exu=ax*rho**thrd ! PBE enhancement factor s2=s**2 p0=1.d0+ul*s2 fxpbe=1.d0+kappa-kappa/p0 ex=exu*fxpbe fs=2.d0*kappa*ul/(p0*p0) fss=-4.d0*ul*s*fs/p0 ! exchange potential vx=exu*(thrd4*fxpbe-(u-thrd4*s2*s)*fss-v*fs) end subroutine elk-10.4.9/src/PaxHeaders/c_pbe.f900000644000000000000000000000013214762655565013642 xustar0030 mtime=1741380469.253012564 30 atime=1741380467.989005955 30 ctime=1741380469.253012564 elk-10.4.9/src/c_pbe.f900000644002504400250440000000516414762655565016372 0ustar00dewhurstdewhurst00000000000000 ! This routine is based on code written by K. Burke. subroutine c_pbe(beta,rs,z,t,uu,vv,ww,ec,vcup,vcdn) implicit none ! arguments real(8), intent(in) :: beta,rs,z,t,uu,vv,ww real(8), intent(out) :: ec,vcup,vcdn ! local variables real(8), parameter :: thrd=1.d0/3.d0 real(8), parameter :: thrdm=-thrd real(8), parameter :: thrd2=2.d0*thrd real(8), parameter :: thrd4=4.d0*thrd real(8), parameter :: sixthm=thrdm/2.d0 real(8), parameter :: gam=0.5198420997897463295d0 real(8), parameter :: fzz=8.d0/(9.d0*gam) real(8), parameter :: gamma=0.0310906908696548950d0 real(8), parameter :: eta=1.d-12 real(8) rtrs,eu,eurs,ep,eprs,alfm,alfrsm,z4,f real(8) ecrs,fz,ecz,comm,g,g3,pon,b,b2,t2,t4 real(8) q4,q5,g4,t6,rsthrd,gz,fac,bg,bec,q8,q9 real(8) hb,hrs,fact0,fact1,hbt,hrst,hz,ht,hzt real(8) fact2,fact3,htt,pref,fact5,h,dvcup,dvcdn real(8) delt delt=beta/gamma rtrs=sqrt(rs) call c_pbe_gcor(0.0310907d0,0.21370d0,7.5957d0,3.5876d0,1.6382d0,0.49294d0, & rtrs,eu,eurs) call c_pbe_gcor(0.01554535d0,0.20548d0,14.1189d0,6.1977d0,3.3662d0,0.62517d0, & rtrs,ep,eprs) call c_pbe_gcor(0.0168869d0,0.11125d0,10.357d0,3.6231d0,0.88026d0,0.49671d0, & rtrs,alfm,alfrsm) z4=z**4 f=((1.d0+z)**thrd4+(1.d0-z)**thrd4-2.d0)/gam ! local contribution to correlation energy density ec=eu*(1.d0-f*z4)+ep*f*z4-alfm*f*(1.d0-z4)/fzz ecrs=eurs*(1.d0-f*z4)+eprs*f*z4-alfrsm*f*(1.d0-z4)/fzz fz=thrd4*((1.d0+z)**thrd-(1.d0-z)**thrd)/gam ecz=4.d0*(z**3)*f*(ep-eu+alfm/fzz)+fz*(z4*ep-z4*eu-(1.d0-z4)*alfm/fzz) comm=ec-rs*ecrs/3.d0-z*ecz ! local contribution to correlation potential vcup=comm+ecz vcdn=comm-ecz g=((1.d0+z)**thrd2+(1.d0-z)**thrd2)/2.d0 g3=g**3 pon=-ec/(g3*gamma) b=delt/(exp(pon)-1.d0) b2=b*b t2=t*t t4=t2*t2 q4=1.d0+b*t2 q5=1.d0+b*t2+b2*t4 ! gradient correction to energy density h=g3*(beta/delt)*log(1.d0+delt*q4*t2/q5) g4=g3*g t6=t4*t2 rsthrd=rs/3.d0 gz=(((1.d0+z)**2+eta)**sixthm-((1.d0-z)**2+eta)**sixthm)/3.d0 fac=delt/b+1.d0 bg=-3.d0*b2*ec*fac/(beta*g4) bec=b2*fac/(beta*g3) q8=q5*q5+delt*q4*q5*t2 q9=1.d0+2.d0*b*t2 hb=-beta*g3*b*t6*(2.d0+b*t2)/q8 hrs=-rsthrd*hb*bec*ecrs fact0=2.d0*delt-6.d0*b fact1=q5*q9+q4*q9*q9 hbt=2.d0*beta*g3*t4*((q4*q5*fact0-delt*fact1)/q8)/q8 hrst=rsthrd*t2*hbt*bec*ecrs hz=3.d0*gz*h/g+hb*(bg*gz+bec*ecz) ht=2.d0*beta*g3*q9/q8 hzt=3.d0*gz*ht/g+hbt*(bg*gz+bec*ecz) fact2=q4*q5+b*t2*(q4*q9+q5) fact3=2.d0*b*q5*q9+delt*fact2 htt=4.d0*beta*g3*t*(2.d0*b/q8-(q9*fact3/q8)/q8) comm=h+hrs+hrst+t2*ht/6.d0+7.d0*t2*t*htt/6.d0 pref=hz-gz*t2*ht/g fact5=gz*(2.d0*ht+t*htt)/g comm=comm-pref*z-uu*htt-vv*ht-ww*(hzt-fact5) ! gradient correction to potential dvcup=comm+pref dvcdn=comm-pref ! add gradient corrections ec=ec+h vcup=vcup+dvcup vcdn=vcdn+dvcdn end subroutine elk-10.4.9/src/PaxHeaders/c_pbe_gcor.f900000644000000000000000000000013214762655565014654 xustar0030 mtime=1741380469.255012574 30 atime=1741380467.991005966 30 ctime=1741380469.255012574 elk-10.4.9/src/c_pbe_gcor.f900000644002504400250440000000073314762655565017401 0ustar00dewhurstdewhurst00000000000000 ! This routine is based on code written by K. Burke. elemental subroutine c_pbe_gcor(a,a1,b1,b2,b3,b4,rtrs,gg,ggrs) implicit none ! arguments real(8), intent(in) :: a,a1,b1,b2,b3,b4,rtrs real(8), intent(out) :: gg,ggrs ! local variables real(8) q0,q1,q2,q3 q0=-2.d0*a*(1.d0+a1*rtrs*rtrs) q1=2.d0*a*rtrs*(b1+rtrs*(b2+rtrs*(b3+b4*rtrs))) q2=log(1.d0+1.d0/q1) gg=q0*q2 q3=a*(b1/rtrs+2.d0*b2+rtrs*(3.d0*b3+4.d0*b4*rtrs)) ggrs=-2.d0*a*a1*q2-q0*q3/(q1*(1.d0+q1)) end subroutine elk-10.4.9/src/PaxHeaders/xc_vbh.f900000644000000000000000000000013214762655565014043 xustar0030 mtime=1741380469.256012579 30 atime=1741380467.993005976 30 ctime=1741380469.256012579 elk-10.4.9/src/xc_vbh.f900000644002504400250440000000620114762655565016564 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 F. Cricchio, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: xc_vbh ! !INTERFACE: subroutine xc_vbh(n,rhoup,rhodn,ex,ec,vxup,vxdn,vcup,vcdn) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rhoup : spin-up charge density (in,real(n)) ! rhodn : spin-down charge density (in,real(n)) ! ex : exchange energy density (out,real(n)) ! ec : correlation energy density (out,real(n)) ! vxup : spin-up exchange potential (out,real(n)) ! vxdn : spin-down exchange potential (out,real(n)) ! vcup : spin-up correlation potential (out,real(n)) ! vcdn : spin-down correlation potential (out,real(n)) ! !DESCRIPTION: ! Spin-polarised exchange-correlation potential and energy functional of ! von Barth and Hedin: {\it J. Phys. C} {\bf 5}, 1629 (1972). Note that the ! implementation is in Rydbergs in order to follow the paper step by step, at ! the end the potential and energy are converted to Hartree. ! ! !REVISION HISTORY: ! Created September 2007 (F. Cricchio) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rhoup(n),rhodn(n) real(8), intent(out) :: ex(n),ec(n) real(8), intent(out) :: vxup(n),vxdn(n) real(8), intent(out) :: vcup(n),vcdn(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: cp=0.0504d0 real(8), parameter :: cf=0.0254d0 real(8), parameter :: rp=30.d0 real(8), parameter :: rf=75.d0 real(8) alpha0,eps0_x,a,gamma real(8) rup,rdn,r,rs,x,zf,zp real(8) fx,fp,ff,epsp_x,mup_x real(8) epsp_c,epsf_c,mup_c,muf_c,vc,tau_c alpha0=(4.d0/(9.d0*pi))**(1.d0/3.d0) eps0_x=(3.d0/2.d0)/(pi*alpha0) a=2.d0**(-1.d0/3.d0) gamma=(4.d0/3.d0)*a/(1.d0-a) do i=1,n rup=rhoup(i); rdn=rhodn(i) ! total density r=rup+rdn if ((rup >= 0.d0).and.(rdn >= 0.d0).and.(r > 1.d-12)) then ! Wigner-Seitz radius in atomic units (a0=1) rs=(3.d0/(4.d0*pi*r))**(1.d0/3.d0) x=rup/r fx=(1.d0/(1.d0-a))*(x**(4.d0/3.d0)+(1.d0-x)**(4.d0/3.d0)-a) epsp_x=-eps0_x/rs mup_x=(4.d0/3.d0)*epsp_x ! exchange energy ex(i)=epsp_x+(1.d0/gamma)*mup_x*fx zp=rs/rp fp=(1.d0+zp**3)*log(1.d0+1.d0/zp)+0.5d0*zp-zp**2-1.d0/3.d0 zf=rs/rf ff=(1.d0+zf**3)*log(1.d0+1.d0/zf)+0.5d0*zf-zf**2-1.d0/3.d0 epsp_c=-cp*fp epsf_c=-cf*ff vc=gamma*(epsf_c-epsp_c) ! correlation energy ec(i)=epsp_c+(1.d0/gamma)*vc*fx mup_c=-cp*log(1.d0+rp/rs) muf_c=-cf*log(1.d0+rf/rs) tau_c=muf_c-mup_c-(4.d0/3.d0)*(epsf_c-epsp_c) ! exchange potential vxup(i)=mup_x*(2.d0*x)**(1.d0/3.d0) vxdn(i)=mup_x*(2.d0*(1.d0-x))**(1.d0/3.d0) ! correlation potential vcup(i)=vc*(2.d0*x)**(1.d0/3.d0)+mup_c-vc+tau_c*fx vcdn(i)=vc*(2.d0*(1.d0-x))**(1.d0/3.d0)+mup_c-vc+tau_c*fx ! convert from Rybergs to Hartree ex(i)=0.5d0*ex(i) ec(i)=0.5d0*ec(i) vxup(i)=0.5d0*vxup(i) vxdn(i)=0.5d0*vxdn(i) vcup(i)=0.5d0*vcup(i) vcdn(i)=0.5d0*vcdn(i) else ex(i)=0.d0 ec(i)=0.d0 vxup(i)=0.d0 vxdn(i)=0.d0 vcup(i)=0.d0 vcdn(i)=0.d0 end if end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/fxc_pwca.f900000644000000000000000000000013214762655565014364 xustar0030 mtime=1741380469.257012584 30 atime=1741380467.996005992 30 ctime=1741380469.257012584 elk-10.4.9/src/fxc_pwca.f900000644002504400250440000001251014762655565017105 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine fxc_pwca(n,rhoup,rhodn,fxcuu,fxcud,fxcdd) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rhoup(n) real(8), intent(in) :: rhodn(n) real(8), intent(out) :: fxcuu(n) real(8), intent(out) :: fxcud(n) real(8), intent(out) :: fxcdd(n) ! local variables integer i real(8), parameter :: pi=3.1415926535897932385d0 real(8), parameter :: thrd=1.d0/3.d0, thrd4=4.d0/3.d0 real(8), parameter :: d2f0=1.709921d0 real(8), parameter :: a(3)=[ 0.0310907d0, 0.01554535d0, 0.0168869d0 ] real(8), parameter :: a1(3)=[ 0.21370d0, 0.20548d0, 0.11125d0 ] real(8), parameter :: b1(3)=[ 7.5957d0, 14.1189d0, 10.357d0 ] real(8), parameter :: b2(3)=[ 3.5876d0, 6.1977d0, 3.6231d0 ] real(8), parameter :: b3(3)=[ 1.6382d0, 3.3662d0, 0.88026d0 ] real(8), parameter :: b4(3)=[ 0.49294d0, 0.62517d0, 0.49671d0 ] real(8) p1,p2,p3,rup,rdn,r,ri,ri2,ri3 real(8) rs,rs2,rs12,rs32,rsi,rs12i,rs32i real(8) mz,z,z2,z3,z4,fz,dfz,d2fz real(8) drs,d2rs,dzu,d2zu,dzd,d2zd,d2zud real(8) ders,d2ers,dez,d2ez,d2ersz real(8) deu,d2eu,ded,d2ed,d2eud,ex real(8) ec0,dec0,d2ec0,ec1,dec1,d2ec1 real(8) ac,dac,d2ac,a2,dt1,d2t1,dt2,d2t2 real(8) t1,t2,t3,t4,t5,t6,t7,t8 if (n < 1) then write(*,*) write(*,'("Error(fxc_pwca): n < 1 : ",I8)') n write(*,*) stop end if ! prefactors t1=3.d0/(4.d0*pi) p1=t1**thrd p2=t1*(9.d0*pi/4.d0)**thrd p3=1.d0/(2.d0**thrd4-2.d0) do i=1,n rup=rhoup(i); rdn=rhodn(i) ! total density r=rup+rdn if ((rup < 0.d0).or.(rdn < 0.d0).or.(r < 1.d-20)) then fxcuu(i)=0.d0 fxcud(i)=0.d0 fxcdd(i)=0.d0 cycle end if ri=1.d0/r ri2=ri**2 ri3=ri2*ri rs=p1*ri**thrd rs2=rs**2 rs12=sqrt(rs) rs32=rs12*rs rsi=1.d0/rs rs12i=1.d0/rs12 rs32i=1.d0/rs32 mz=rup-rdn z=mz/r z2=z**2 z3=z2*z z4=z3*z ! drs/drup = drs/drdn = drs/drho drs=-thrd*rs*ri ! d2rs/drup^2 = d^2rs/drn^2 = d^2rs/drho^2 d2rs=-thrd4*drs*ri ! dz/drup, dz/drdn t1=mz*ri2 dzu=ri-t1 dzd=-ri-t1 ! d^2z/drup^2, d^2z/drdn^2, d^2z/drup*drdn t1=2.d0*mz*ri3 t2=2.d0*ri2 d2zu=t1-t2 d2zd=t1+t2 d2zud=t1 !------------------! ! exchange ! !------------------! t1=-p2*rsi/2.d0 t2=1.d0+z t3=1.d0-z t4=t2**thrd4 t5=t3**thrd4 t6=t4+t5 ! exchange energy density ex=t1*t6 ! dex/drs ders=-ex*rsi ! d^2ex/drs^2 d2ers=-2.d0*ders*rsi ! f(z) fz=p3*(t6-2.d0) ! dex/dz t4=t4/t2 t5=t5/t3 t6=t4-t5 t7=thrd4*t6 dez=t1*t7 ! df/dz dfz=p3*t7 ! d^2ex/dz^2 t4=t4/t2 t5=t5/t3 t6=t4+t5 t7=thrd4*thrd*t6 d2ez=t1*t7 ! d^2f/dz^2 d2fz=p3*t7 ! d^2ex/drs*dz d2ersz=-dez*rsi ! dex/drup, dex/drdn t1=ders*drs deu=t1+dez*dzu ded=t1+dez*dzd ! d^2ex/drup^2 t1=d2ers*drs t2=d2ersz*drs t3=ders*d2rs t4=(t1+d2ersz*dzu)*drs+t3 t5=t2+d2ez*dzu d2eu=t4+t5*dzu+dez*d2zu ! d^2ex/drdn^2 d2ed=(t1+d2ersz*dzd)*drs+t3+(t2+d2ez*dzd)*dzd+dez*d2zd ! d^2ex/drup*drdn d2eud=t4+t5*dzd+dez*d2zud ! calculate fxc fxcuu(i)=2.d0*deu+r*d2eu fxcud(i)=deu+ded+r*d2eud fxcdd(i)=2.d0*ded+r*d2ed !---------------------! ! correlation ! !---------------------! ! ec(rs,0) a2=2.d0*a(1) t1=a2*(b1(1)*rs12+b2(1)*rs+b3(1)*rs32+b4(1)*rs2) dt1=a2*(0.5d0*b1(1)*rs12i+b2(1)+1.5d0*b3(1)*rs12+2.d0*b4(1)*rs) d2t1=a2*(-0.25d0*b1(1)*rs32i+0.75d0*b3(1)*rs12i+2.d0*b4(1)) t3=1.d0/t1 t4=t3**2 t2=1.d0+t3 dt2=-dt1*t4 d2t2=t4*(2.d0*t3*dt1**2-d2t1) t3=1.d0/t2 t4=1.d0+a1(1)*rs t5=log(t2) ec0=-a2*t4*t5 dec0=-a2*(a1(1)*t5+t4*t3*dt2) d2ec0=-a2*(2.d0*a1(1)*t3*dt2+t4*t3*(d2t2-t3*dt2**2)) ! ec(rs,1) a2=2.d0*a(2) t1=a2*(b1(2)*rs12+b2(2)*rs+b3(2)*rs32+b4(2)*rs2) dt1=a2*(0.5d0*b1(2)*rs12i+b2(2)+1.5d0*b3(2)*rs12+2.d0*b4(2)*rs) d2t1=a2*(-0.25d0*b1(2)*rs32i+0.75d0*b3(2)*rs12i+2.d0*b4(2)) t3=1.d0/t1 t4=t3**2 t2=1.d0+t3 dt2=-dt1*t4 d2t2=t4*(2.d0*t3*dt1**2-d2t1) t3=1.d0/t2 t4=1.d0+a1(2)*rs t5=log(t2) ec1=-a2*t4*t5 dec1=-a2*(a1(2)*t5+t4*t3*dt2) d2ec1=-a2*(2.d0*a1(2)*t3*dt2+t4*t3*(d2t2-t3*dt2**2)) ! ac(rs) a2=2.d0*a(3) t1=a2*(b1(3)*rs12+b2(3)*rs+b3(3)*rs32+b4(3)*rs2) dt1=a2*(0.5d0*b1(3)*rs12i+b2(3)+1.5d0*b3(3)*rs12+2.d0*b4(3)*rs) d2t1=a2*(-0.25d0*b1(3)*rs32i+0.75d0*b3(3)*rs12i+2.d0*b4(3)) t3=1.d0/t1 t4=t3**2 t2=1.d0+t3 dt2=-dt1*t4 d2t2=t4*(2.d0*t3*dt1**2-d2t1) t3=1.d0/t2 t4=1.d0+a1(3)*rs t5=log(t2) ac=a2*t4*t5 dac=a2*(a1(3)*t5+t4*t3*dt2) d2ac=a2*(2.d0*a1(3)*t3*dt2+t4*t3*(d2t2-t3*dt2**2)) ! correlation energy density derivatives t1=1.d0-z4 t2=(fz/d2f0)*t1 t3=ec1-ec0 t4=fz*z4 ! dec/drs t5=dec1-dec0 ders=dec0+dac*t2+t5*t4 ! d^2ec/drs^2 t6=d2ec1-d2ec0 d2ers=d2ec0+d2ac*t2+t6*t4 ! dec/dz t4=ac/d2f0 t6=4.d0*fz*z3 t7=dfz*t1-t6 t8=dfz*z4+t6 dez=t4*t7+t3*t8 ! d^2ec/drs*dz d2ersz=(dac/d2f0)*t7+t5*t8 ! d^2ec/dz^2 t7=8.d0*dfz*z3 t8=12.d0*fz*z2 d2ez=t4*(d2fz*t1-t7-t8)+t3*(d2fz*z4+t7+t8) ! dec/drup, dec/drdn t1=ders*drs deu=t1+dez*dzu ded=t1+dez*dzd ! d^2ec/drup^2 t1=d2ers*drs t2=d2ersz*drs t3=ders*d2rs t4=(t1+d2ersz*dzu)*drs+t3 t5=t2+d2ez*dzu d2eu=t4+t5*dzu+dez*d2zu ! d^2ec/drdn^2 d2ed=(t1+d2ersz*dzd)*drs+t3+(t2+d2ez*dzd)*dzd+dez*d2zd ! d^2ec/drup*drdn d2eud=t4+t5*dzd+dez*d2zud ! calculate fxc fxcuu(i)=fxcuu(i)+2.d0*deu+r*d2eu fxcud(i)=fxcud(i)+deu+ded+r*d2eud fxcdd(i)=fxcdd(i)+2.d0*ded+r*d2ed end do end subroutine elk-10.4.9/src/PaxHeaders/k_tf.f900000644000000000000000000000013214762655565013515 xustar0030 mtime=1741380469.259012595 30 atime=1741380467.998006003 30 ctime=1741380469.259012595 elk-10.4.9/src/k_tf.f900000644002504400250440000000064514762655565016244 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine k_tf(n,rho,dtdr) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n) real(8), intent(out) :: dtdr(n) ! local variables integer i do i=1,n call k_tf1(rho(i),dtdr(i)) end do end subroutine elk-10.4.9/src/PaxHeaders/k_tf_sp.f900000644000000000000000000000012614762655565014222 xustar0028 mtime=1741380469.2600126 30 atime=1741380468.001006018 28 ctime=1741380469.2600126 elk-10.4.9/src/k_tf_sp.f900000644002504400250440000000101114762655565016732 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine k_tf_sp(n,rhoup,rhodn,dtdru,dtdrd) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rhoup(n),rhodn(n) real(8), intent(out) :: dtdru(n),dtdrd(n) ! local variables integer i do i=1,n call k_tf1(2.d0*rhoup(i),dtdru(i)) end do do i=1,n call k_tf1(2.d0*rhodn(i),dtdrd(i)) end do end subroutine elk-10.4.9/src/PaxHeaders/k_tf1.f900000644000000000000000000000013214762655565013576 xustar0030 mtime=1741380469.262012611 30 atime=1741380468.003006029 30 ctime=1741380469.262012611 elk-10.4.9/src/k_tf1.f900000644002504400250440000000107614762655565016324 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. elemental subroutine k_tf1(rho,dtdr) implicit none ! arguments real(8), intent(in) :: rho real(8), intent(out) :: dtdr ! local variables real(8), parameter :: pi=3.1415926535897932385d0 ! Thomas-Fermi coefficient real(8), parameter :: ctf=(3.d0/10.d0)*(3.d0*pi**2)**(2.d0/3.d0) if (rho < 1.d-20) then dtdr=0.d0 return end if dtdr=ctf*(5.d0/3.d0)*rho**(2.d0/3.d0) end subroutine elk-10.4.9/src/PaxHeaders/k_tfsc.f900000644000000000000000000000013214762655565014043 xustar0030 mtime=1741380469.263012616 30 atime=1741380468.006006044 30 ctime=1741380469.263012616 elk-10.4.9/src/k_tfsc.f900000644002504400250440000000065314762655565016571 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2025 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine k_tfsc(n,rho,tau,dtdr) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n),tau(n) real(8), intent(out) :: dtdr(n) ! local variables integer i do i=1,n call k_tfsc1(rho(i),tau(i),dtdr(i)) end do end subroutine elk-10.4.9/src/PaxHeaders/k_tfsc_sp.f900000644000000000000000000000013214762655565014545 xustar0030 mtime=1741380469.264012621 30 atime=1741380468.008006055 30 ctime=1741380469.264012621 elk-10.4.9/src/k_tfsc_sp.f900000644002504400250440000000107114762655565017266 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2025 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine k_tfsc_sp(n,rhoup,rhodn,tauup,taudn,dtdru,dtdrd) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rhoup(n),rhodn(n),tauup(n),taudn(n) real(8), intent(out) :: dtdru(n),dtdrd(n) ! local variables integer i do i=1,n call k_tfsc1(2.d0*rhoup(i),2.d0*tauup(i),dtdru(i)) end do do i=1,n call k_tfsc1(2.d0*rhodn(i),2.d0*taudn(i),dtdrd(i)) end do end subroutine elk-10.4.9/src/PaxHeaders/k_tfsc1.f900000644000000000000000000000013214762655565014124 xustar0030 mtime=1741380469.265012626 30 atime=1741380468.010006065 30 ctime=1741380469.265012626 elk-10.4.9/src/k_tfsc1.f900000644002504400250440000000127514762655565016653 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2025 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. elemental subroutine k_tfsc1(rho,tau,dtdr) implicit none ! arguments real(8), intent(in) :: rho,tau real(8), intent(out) :: dtdr ! local variables real(8), parameter :: pi=3.1415926535897932385d0 ! Thomas-Fermi coefficient real(8), parameter :: ctf=(3.d0/10.d0)*(3.d0*pi**2)**(2.d0/3.d0) real(8) ttf if (rho < 1.d-20) then dtdr=0.d0 return end if ! Thomas-Fermi τ ttf=ctf*rho**(5.d0/3.d0) ! δτ(r')/δρ(r) scaled by the ratio of the exact τ to the TF τ dtdr=(tau/ttf)*ctf*(5.d0/3.d0)*rho**(2.d0/3.d0) end subroutine elk-10.4.9/src/PaxHeaders/k_tfvw.f900000644000000000000000000000013214762655565014072 xustar0030 mtime=1741380469.267012637 30 atime=1741380468.013006081 30 ctime=1741380469.267012637 elk-10.4.9/src/k_tfvw.f900000644002504400250440000000206014762655565016612 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: k_tfvw ! !INTERFACE: subroutine k_tfvw(n,rho,grho2,dtdr,dtdgr2) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rho : spin-unpolarised charge density (in,real(n)) ! grho2 : |grad rho|^2 (in,real(n)) ! dtdr : dtau/drho (out,real(n)) ! dtdgr2 : dtau/d|grad rho|^2 (out,real(n)) ! !DESCRIPTION: ! Calculates the derivatives $\partial\tau/\partial\rho$ and ! $\partial\tau/\partial|\nabla\rho|^2$ of the gradient expansion of the ! kinetic energy density $\tau$ for a set of points. See {\tt k\_tfvw1}. ! ! !REVISION HISTORY: ! Created December 2021 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n),grho2(n) real(8), intent(out) :: dtdr(n),dtdgr2(n) ! local variables integer i do i=1,n call k_tfvw1(rho(i),grho2(i),dtdr(i),dtdgr2(i)) end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/k_tfvw_sp.f900000644000000000000000000000013214762655565014574 xustar0030 mtime=1741380469.268012642 30 atime=1741380468.015006091 30 ctime=1741380469.268012642 elk-10.4.9/src/k_tfvw_sp.f900000644002504400250440000000434514762655565017324 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: k_tfvw_sp ! !INTERFACE: subroutine k_tfvw_sp(n,rhoup,rhodn,gup2,gdn2,dtdru,dtdrd,dtdgu2,dtdgd2) ! !INPUT/OUTPUT PARAMETERS: ! n : number of density points (in,integer) ! rhoup : spin-up charge density (in,real(n)) ! rhodn : spin-down charge density (in,real(n)) ! gup2 : |grad rhoup|^2 (in,real(n)) ! gdn2 : |grad rhodn|^2 (in,real(n)) ! dtdru : dtauup/drhoup (out,real(n)) ! dtdrd : dtaudn/drhodn (out,real(n)) ! dtdgu2 : dtauup/d(|grad rhoup|^2) (out,real(n)) ! dtdgu2 : dtaudn/d(|grad rhodn|^2) (out,real(n)) ! !DESCRIPTION: ! Calculates the derivatives of the spin-polarised kinetic energy density ! $\partial\tau^{\uparrow}/\partial\rho^{\uparrow}$, ! $\partial\tau^{\downarrow}/\partial\rho^{\downarrow}$, ! $\partial\tau^{\uparrow}/\partial|\nabla\rho^{\uparrow}|^2$ and ! $\partial\tau^{\downarrow}/\partial|\nabla\rho^{\downarrow}|^2$. ! This is done by noting the relation for the kinetic energy functional ! [G. L. Oliver and J. P. Perdew, {\it Phys. Rev. A} ! {\bf 20}, 397 (1979)] ! $$ T[\rho^{\uparrow},\rho^{\downarrow}]=\tfrac{1}{2}T[2\rho^{\uparrow}] ! +\tfrac{1}{2}T[2\rho^{\downarrow}] $$ ! and taking, for example, ! $$ \tau^{\uparrow}(\rho^{\uparrow},|\nabla\rho^{\uparrow}|^2) ! =\tfrac{1}{2}\tau(2\rho^{\uparrow},4|\nabla\rho^{\uparrow}|^2), $$ ! where the gradient expansion of the unpolarised kinetic energy density is ! used for $\tau$. See the routines {\tt k\_tfvw1}, {\tt ggamt\_4}, ! {\tt ggair\_4}, {\tt potxcmt}, and {\tt potxcir}. ! ! !REVISION HISTORY: ! Created December 2021 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rhoup(n),rhodn(n) real(8), intent(in) :: gup2(n),gdn2(n) real(8), intent(out) :: dtdru(n),dtdrd(n) real(8), intent(out) :: dtdgu2(n),dtdgd2(n) ! local variables integer i do i=1,n call k_tfvw1(2.d0*rhoup(i),4.d0*gup2(i),dtdru(i),dtdgu2(i)) dtdgu2(i)=2.d0*dtdgu2(i) end do do i=1,n call k_tfvw1(2.d0*rhodn(i),4.d0*gdn2(i),dtdrd(i),dtdgd2(i)) dtdgd2(i)=2.d0*dtdgd2(i) end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/k_tfvw1.f900000644000000000000000000000013214762655565014153 xustar0030 mtime=1741380469.269012647 30 atime=1741380468.018006107 30 ctime=1741380469.269012647 elk-10.4.9/src/k_tfvw1.f900000644002504400250440000000262114762655565016676 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: k_tfvw1 ! !INTERFACE: elemental subroutine k_tfvw1(rho,grho2,dtdr,dtdgr2) ! !INPUT/OUTPUT PARAMETERS: ! rho : spin-unpolarised charge density (in,real) ! grho2 : |grad rho|^2 (in,real) ! dtdr : dtau/drho (out,real) ! dtdgr2 : dtau/d(|grad rho|^2) (out,real) ! !DESCRIPTION: ! Calculates the derivatives $\partial\tau/\partial\rho$ and ! $\partial\tau/\partial|\nabla\rho|^2$ of the gradient expansion of ! the kinetic energy density $\tau$. This includes the Thomas-Fermi and ! von Weizsacker terms: ! $$ \tau=\frac{3}{10}(3\pi^2)^{2/3}\rho^{5/3} ! +\frac{1}{72}\frac{|\nabla\rho|^2}{\rho}. $$ ! ! !REVISION HISTORY: ! Created December 2021 (JKD) !EOP !BOC implicit none ! arguments real(8), intent(in) :: rho,grho2 real(8), intent(out) :: dtdr,dtdgr2 ! local variables real(8), parameter :: pi=3.1415926535897932385d0 ! Thomas-Fermi coefficient real(8), parameter :: ctf=(3.d0/10.d0)*(3.d0*pi**2)**(2.d0/3.d0) ! von Weizsacker coefficient real(8), parameter :: cvw=1.d0/72.d0 real(8) ri,t1,t2 if ((rho < 1.d-20).or.(grho2 < 0.d0)) then dtdr=0.d0 dtdgr2=0.d0 return end if ri=1.d0/rho t1=ctf*(5.d0/3.d0)*rho**(2.d0/3.d0) t2=cvw*ri dtdr=t1-t2*grho2*ri dtdgr2=t2 end subroutine !EOC elk-10.4.9/src/PaxHeaders/k_vwlb.f900000644000000000000000000000013214762655565014056 xustar0030 mtime=1741380469.270012652 30 atime=1741380468.020006118 30 ctime=1741380469.270012652 elk-10.4.9/src/k_vwlb.f900000644002504400250440000000102014762655565016571 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine k_vwlb(n,rho,grho2,tau) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: rho(n),grho2(n) real(8), intent(inout) :: tau(n) ! local variables integer i real(8) t1 ! enforce the von Weizsacker lower bound do i=1,n t1=(1.d0/8.d0)*grho2(i)/rho(i) if (tau(i) < t1) tau(i)=t1 end do end subroutine elk-10.4.9/src/PaxHeaders/gendmatmt.f900000644000000000000000000000013214762655565014552 xustar0030 mtime=1741380469.272012663 30 atime=1741380468.023006133 30 ctime=1741380469.272012663 elk-10.4.9/src/gendmatmt.f900000644002504400250440000000116614762655565017300 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendmatmt use modmain use moddftu implicit none ! generate the density matrix in each muffin-tin call gendmat(.false.,.false.,0,lmaxdm,lmmaxdm,dmatmt) ! initialise with symmetry-breaking tensor moments if (ftmtype < 0) then dmftm(:,:,:,:,:)=dmftm(:,:,:,:,:)*reducebf dmatmt(:,:,:,:,:)=dmatmt(:,:,:,:,:)+dmftm(:,:,:,:,:) end if ! symmetrise the density matrix call symdmat(lmaxdm,lmmaxdm,dmatmt) end subroutine elk-10.4.9/src/PaxHeaders/genveedu.f900000644000000000000000000000013214762655565014374 xustar0030 mtime=1741380469.273012668 30 atime=1741380468.025006144 30 ctime=1741380469.273012668 elk-10.4.9/src/genveedu.f900000644002504400250440000000317114762655565017120 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genveedu ! !INTERFACE: subroutine genveedu(idu,u,j,vee) ! !USES: use modmain use moddftu ! !INPUT/OUTPUT PARAMETERS: ! idu : DFT+U entry (in,integer) ! u : parameter U (out,real) ! j : parameter J (out,real) ! vee : Coulomb matrix elements (out,real(-lmaxdm:lmaxdm,-lmaxdm:lmaxdm, ! -lmaxdm:lmaxdm,-lmaxdm:lmaxdm)) ! !DESCRIPTION: ! Calculates the Coulomb matrix elements used in DFT+U calculations. See ! {\it Phys. Rev. B} {\bf 52}, 5467 (1995). ! ! !REVISION HISTORY: ! Created November 2007 (FC,JKD,FB,LN) ! Modified July 2009 (FC) !EOP !BOC implicit none ! arguments integer, intent(in) :: idu real(8), intent(out) :: u,j real(8), intent(out) :: vee(-lmaxdm:lmaxdm,-lmaxdm:lmaxdm,-lmaxdm:lmaxdm, & -lmaxdm:lmaxdm) ! local variables integer l,m1,m2,m3,m4,k,q real(8) sm1,sm2,t1 ! automatic arrays real(8) :: f(0:2*lmaxdm) ! external functions real(8), external :: gaunt l=isldu(2,idu) ! calculate Slater integrals call genfdu(idu,u,j,f) do m1=-l,l do m2=-l,l do m3=-l,l do m4=-l,l sm1=0.d0 do k=0,2*l,2 sm2=0.d0 do q=-k,k t1=gaunt(l,k,l,m1,q,m2)*gaunt(l,k,l,m3,-q,m4) if (mod(q,2) == 0) then sm2=sm2+t1 else sm2=sm2-t1 end if end do sm1=sm1+f(k)*sm2/dble(2*k+1) end do vee(m1,m3,m2,m4)=fourpi*sm1 end do end do end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/tm2todm.f900000644000000000000000000000013214762655565014160 xustar0030 mtime=1741380469.275012679 30 atime=1741380468.027006154 30 ctime=1741380469.275012679 elk-10.4.9/src/tm2todm.f900000644002504400250440000000722614762655565016711 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: tm2todm ! !INTERFACE: subroutine tm2todm(l,k,p,ld,wkp,dm) ! !INPUT/OUTPUT PARAMETERS: ! l : angular momentum quantum number (in,integer) ! k : angular momentum tensor moment label (in,integer) ! p : spin tensor moment label (in,integer) ! ld : leading dimension (in,integer) ! wkp : 2-index tensor moment components (in,real(-ld:ld,-1:1)) ! dm : real density matrix (out,real(ld,2,ld,2)) ! !DESCRIPTION: ! Calculates the real density matrix ! $$ D=\sum_{y=-p}^p\sum_{x=-k}^k w_{xy}^{kp}\,\Gamma_{xy}^{kp} $$ ! from the real 2-index coefficients $w_{xy}^{kp}$ and the uncoupled tensor ! moment matrices given by ! $$ \Gamma_{xy}^{kp}(m_1\sigma_1,m_2\sigma_2)= ! (-1)^{l-m_2+s-\sigma_2}\sqrt{(2k+1)(2p+1)} ! \begin{pmatrix} l & k & l \\ -m_2 & x & m_1 \end{pmatrix} ! \begin{pmatrix} s & p & s \\ -\sigma_2 & y & \sigma_1 \end{pmatrix}, $$ ! where $l$ is the angular momentum quantum number, $s=\frac{1}{2}$ and the ! irreducible representations are labeled by $k\in\{0,\ldots,2l\}$ and ! $p\in\{0,1\}$. The variables $x\in\{-k,\ldots, k\}$ and $y\in\{-1,0,1\}$ ! index the components in the array {\tt wkp}. These matrices are real and ! orthonormal in the sense ! $$ \tr\big(\Gamma_{xy}^{kp}\Gamma_{x'y'}^{k'p'}\big)= ! \delta_{kk'}\delta_{pp'}\delta_{xx'}\delta_{yy'}. $$ ! For a detailed derivation see {\it Phys. Rev. B} {\bf 80}, 035121 (2009) and ! {\it J. Phys.: Condens. Matter} {\bf 7}, 9947 (1995). See also the routine ! {\tt tm3todm}. ! ! !REVISION HISTORY: ! Created 2007 (Francesco Cricchio and Lars Nordstrom) ! Changed normalisation and decoupled loops, January 2022 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: l,k,p,ld real(8), intent(in) :: wkp(-ld:ld,-1:1) real(8), intent(out) :: dm(ld,2,ld,2) ! local variables integer ispn,jspn integer m1,m2,n,x,y integer lm0,lm1,lm2 real(8) t0,t1 ! automatic arrays real(8) dlm(2*l+1,2*l+1,-k:k),dsp(2,2,-p:p) ! external functions real(8), external :: wigner3j,wigner3jf if (l < 0) then write(*,*) write(*,'("Error(tm2todm): l < 0 : ",I8)') l write(*,*) stop end if if (k < 0) then write(*,*) write(*,'("Error(tm2todm): k < 0 : ",I8)') k write(*,*) stop end if if (k > 2*l) then write(*,*) write(*,'("Error(tm2todm): k > 2*l : ",2I8)') k,2*l write(*,*) stop end if if ((p < 0).or.(p > 1)) then write(*,*) write(*,'("Error(tm2todm): p should be 0 or 1 : ",I8)') p write(*,*) stop end if ! calculate the angular momentum matrices t0=sqrt(dble(2*k+1)) do x=-k,k dlm(:,:,x)=0.d0 lm2=0 do m2=-l,l lm2=lm2+1 if (mod(l-m2,2) == 0) then t1=t0 else t1=-t0 end if lm1=0 do m1=-l,l lm1=lm1+1 dlm(lm1,lm2,x)=t1*wigner3j(l,k,l,-m2,x,m1) end do end do end do ! calculate the spin matrices t0=sqrt(dble(2*p+1)) do y=-p,p dsp(:,:,y)=0.d0 do jspn=1,2 if (jspn == 1) then t1=t0 else t1=-t0 end if do ispn=1,2 dsp(ispn,jspn,y)=t1*wigner3jf(1,2*p,1,2*jspn-3,2*y,3-2*ispn) end do end do end do ! determine the full matrix from the Kronecker product of dlm and dsp dm(:,:,:,:)=0.d0 lm0=l**2 n=2*l+1 do y=-p,p do x=-k,k t1=wkp(x,y) if (abs(t1) < 1.d-8) cycle do jspn=1,2 do lm2=1,n do ispn=1,2 do lm1=1,n dm(lm0+lm1,ispn,lm0+lm2,jspn)=dm(lm0+lm1,ispn,lm0+lm2,jspn) & +t1*dlm(lm1,lm2,x)*dsp(ispn,jspn,y) end do end do end do end do end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/tm3todm.f900000644000000000000000000000013114762655565014160 xustar0030 mtime=1741380469.276012684 29 atime=1741380468.03000617 30 ctime=1741380469.276012684 elk-10.4.9/src/tm3todm.f900000644002504400250440000001120714762655565016704 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: tm3todm ! !INTERFACE: subroutine tm3todm(l,k,p,r,ld,wkpr,dm) ! !INPUT/OUTPUT PARAMETERS: ! l : angular momentum quantum number (in,integer) ! k : k-index of tensor moment (in,integer) ! p : p-index of tensor moment (in,integer) ! r : r-index of tensor moment (in,integer) ! ld : leading dimension (in,integer) ! wkpr : 3-index tensor moment components (in,real(-ld:ld)) ! dm : complex Hermitian density matrix (out,complex(ld,2,ld,2)) ! !DESCRIPTION: ! The 3-index coupled tensor moment matrices are given by ! $$ \Gamma_t^{kpr}= ! \sqrt{2r+1}\sum_{x=-k}^k\sum_{y=-p}^p ! \begin{pmatrix} k & r & p \\ -x & t & -y \end{pmatrix} ! \Gamma_{xy}^{kp}, $$ ! where the irreducible representations are labeled by $k\in\{0,\ldots,2l\}$, ! $p\in\{0,1\}$, $r\in\{|k-p|,\ldots,k+p\}$ and $\Gamma_{xy}^{kp}$ are the ! uncoupled tensor moments (note that the phase $(-1)^{x+y}$ in the original ! formula has been removed because of the Wigner $3j$ condition $x+y=t$). The ! coupled tensor moment matrices are real and orthonormal in the sense ! $$ \tr\big(\Gamma_t^{kpr}\Gamma_{t'}^{k'p'r'}\big)= ! \delta_{kk'}\delta_{pp'}\delta_{rr'}\delta_{tt'}. $$ ! It can also be shown that the matrices are complete, thus any general ! complex matrix $D$ of dimension $2(2l+1)$ can be expanded as ! $$ D=\sum_{k=0}^{2l}\sum_{p=0}^1\sum_{r=|k-p|}^{k+p}\sum_{t=-r}^r ! z_t^{kpr}\Gamma_t^{kpr} $$ ! where $z_t^{kpr}$ are complex numbers. Likewise, any real matrix can be ! expanded in real tensor moments $w_t^{kpr}$. Using the the symmetry ! properties of the Wigner $3j$-symbols, one can show that the transpose ! $$ \big(\Gamma_t^{kpr}\big)^t=(-1)^{k+p+r+t}\,\Gamma_{-t}^{kpr} $$ ! and thus both the symmetric and antisymmetric parts of $\Gamma_t^{kpr}$ ! transform under rotation within the same irreducible representation. ! Consequently, any complex Hermitian matrix $D$ can be written as ! $$ D=\sum_{k,p,r,t} w_t^{kpr}\big[(\Gamma_t^{kpr})_{\rm S} ! +i(\Gamma_t^{kpr})_{\rm A}\big], $$ ! where the subscripts S and A refer to the symmetric and antisymmetric parts ! of the matrix, respectively. This routine generates the Hermitian density ! matrix $D$ as described above from the real tensor moments $w_t^{kpr}$. For ! a detailed derivation see {\it Phys. Rev. B} {\bf 80}, 035121 (2009) and ! {\it J. Phys.: Condens. Matter} {\bf 7}, 9947 (1995). See also the routines ! {\tt tm2todm} and {\tt tm3rtoz}. ! ! !REVISION HISTORY: ! Created 2007 (Francesco Cricchio and Lars Nordstrom) ! Changed normalisation, made the moments real and the matrix Hermitian, ! January 2022 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: l,k,p,r,ld real(8), intent(in) :: wkpr(-ld:ld) complex(8), intent(out) :: dm(ld,2,ld,2) ! local variables integer x,y,t real(8) t0,t1 ! automatic arrays real(8) wkp(-ld:ld,-1:1),dmr(ld,2,ld,2) ! external functions real(8), external :: wigner3j if (l < 0) then write(*,*) write(*,'("Error(tm3todm): l < 0 : ",I8)') l write(*,*) stop end if if (k < 0) then write(*,*) write(*,'("Error(tm3todm): k < 0 : ",I8)') k write(*,*) stop end if if (k > 2*l) then write(*,*) write(*,'("Error(tm3todm): k > 2*l : ",2I8)') k,2*l write(*,*) stop end if if ((p < 0).or.(p > 1)) then write(*,*) write(*,'("Error(tm3todm): p should be 0 or 1 : ",I8)') p write(*,*) stop end if if (r < abs(k-p)) then write(*,*) write(*,'("Error(tm3todm): r < |k-p| : ",2I8)') r,abs(k-p) write(*,*) stop end if if (r > (k+p)) then write(*,*) write(*,'("Error(tm3todm): r > k+p : ",2I8)') r,k+p write(*,*) stop end if ! compute 2-index tensor moment from 3-index tensor moment wkp(:,:)=0.d0 t0=sqrt(dble(2*r+1)) do t=-r,r t1=wkpr(t) if (abs(t1) < 1.d-8) cycle t1=t0*t1 do x=-k,k do y=-p,p wkp(x,y)=wkp(x,y)+t1*wigner3j(k,r,p,-x,t,-y) end do end do end do ! compute the real matrix from the 2-index tensor moment call tm2todm(l,k,p,ld,wkp,dmr) ! convert to complex Hermitian matrix call dmrtoz(ld*2,dmr,dm) return contains pure subroutine dmrtoz(n,dmr,dm) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: dmr(n,n) complex(8), intent(out) :: dm(n,n) ! local variables integer i,j real(8) a,b do j=1,n do i=1,j-1 ! symmetric part a=0.5d0*(dmr(i,j)+dmr(j,i)) ! antisymmetric part b=0.5d0*(dmr(i,j)-dmr(j,i)) dm(i,j)=cmplx(a,b,8) dm(j,i)=cmplx(a,-b,8) end do dm(j,j)=dmr(j,j) end do end subroutine end subroutine !EOC elk-10.4.9/src/PaxHeaders/dmtotm3.f900000644000000000000000000000013114762655565014160 xustar0030 mtime=1741380469.277012689 29 atime=1741380468.03200618 30 ctime=1741380469.277012689 elk-10.4.9/src/dmtotm3.f900000644002504400250440000000425214762655565016706 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: dmtotm3 ! !INTERFACE: subroutine dmtotm3(l,k,p,r,ld,dm,wkpr) ! !INPUT/OUTPUT PARAMETERS: ! l : angular momentum (in,integer) ! k : k-index of tensor moment (in,integer) ! p : p-index of tensor moment (in,integer) ! r : r-index of tensor moment (in,integer) ! ld : leading dimension (in,integer) ! dm : density matrix (in,complex(ld,2,ld,2)) ! wkpr : 3-index spherical tensor moments (out,real(-ld:ld)) ! !DESCRIPTION: ! Determines the 3-index spherical tensor moments of a density matrix $D$ with ! $$ w_t^{kpr}=\tr\big(\Gamma_t^{kpr}D\big). $$ ! This exploits the orthonormality of the $\Gamma_t^{kpr}$ matrices. See the ! routines {\tt tm2todm} and {\tt tm3todm} for more details. ! ! !REVISION HISTORY: ! Created April 2008 (F. Cricchio and L. Nordstrom) ! Modified, January 2014 (JKD) ! Changed to real tensor moments, December 2021 (JKD) !EOP !BOC implicit none integer, intent(in) :: l,k,p,r,ld complex(8), intent(in) :: dm(ld,2,ld,2) real(8), intent(out) :: wkpr(-ld:ld) ! local variables integer n,t ! automatic arrays real(8) w(-ld:ld) complex(8) gamma(ld,2,ld,2) ! external functions real(8), external :: trzhmm if (l < 0) then write(*,*) write(*,'("Error(dmtotm3): l < 0 : ",I8)') l write(*,*) stop end if if (k < 0) then write(*,*) write(*,'("Error(dmtotm3): k < 0 : ",I8)') k write(*,*) stop end if if (k > 2*l) then write(*,*) write(*,'("Error(dmtotm3): k > 2*l : ",2I8)') k,2*l write(*,*) stop end if if ((p < 0).or.(p > 1)) then write(*,*) write(*,'("Error(dmtotm3): p should be 0 or 1 : ",I8)') p write(*,*) stop end if if (r < abs(k-p)) then write(*,*) write(*,'("Error(dmtotm3): r < |k-p| : ",2I8)') r,abs(k-p) write(*,*) stop end if if (r > (k+p)) then write(*,*) write(*,'("Error(dmtotm3): r > k+p : ",2I8)') r,k+p write(*,*) stop end if n=ld*2 wkpr(:)=0.d0 do t=-r,r w(:)=0.d0 w(t)=1.d0 call tm3todm(l,k,p,r,ld,w,gamma) wkpr(t)=trzhmm(n,gamma,dm) end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/writedftu.f900000644000000000000000000000013214762655565014607 xustar0030 mtime=1741380469.279012699 30 atime=1741380468.035006196 30 ctime=1741380469.279012699 elk-10.4.9/src/writedftu.f900000644002504400250440000000421614762655565017334 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. subroutine writedftu use modmain use moddftu implicit none ! local variables integer ispn,jspn,idu integer is,ia,ias integer k,l,ll,m1,m2,lm1,lm2 if (dftu == 0) return ! machine readable density matrix file open(50,file='DMATMT'//trim(filext),form='FORMATTED',action='WRITE') do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) ll=l*(l+1)+1 do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,*) write(50,'(3I4," : species, atom, l")') is,ia,l do ispn=1,nspinor do jspn=1,nspinor write(50,*) write(50,'(2I4," : ispn, jspn; m1, m2, dmatmt below")') ispn,jspn do m1=-l,l lm1=ll+m1 do m2=-l,l lm2=ll+m2 write(50,'(2I6," ",2G18.10)') m1,m2,dmatmt(lm1,ispn,lm2,jspn,ias) end do end do end do end do end do end do close(50) ! machine readable potential matrix file open(50,file='VMATMT'//trim(filext),form='FORMATTED',action='WRITE') do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) ll=l*(l+1)+1 do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,*) write(50,'(3I4," : species, atom, l")') is,ia,l do ispn=1,nspinor do jspn=1,nspinor write(50,*) write(50,'(2I4," : ispn, jspn; m1, m2, vmatmt below")') ispn,jspn do m1=-l,l lm1=ll+m1 do m2=-l,l lm2=ll+m2 write(50,'(2I6," ",2G18.10)') m1,m2,vmatmt(lm1,ispn,lm2,jspn,ias) end do end do end do end do end do end do close(50) ! Slater parameters open(50,file='FDU'//trim(filext),form='FORMATTED',action='WRITE') do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) write(50,*) write(50,'(2I4," : species, l")') is,l do k=0,2*l,2 write(50,'(G18.10," : F^(",I1,")")') fdu(k,idu),k end do write(50,'(G18.10," : U")') ujdu(1,idu) write(50,'(G18.10," : J")') ujdu(2,idu) if (inpdftu >= 4) write(50,'(G18.10," : screening length λ")') lamdu(idu) end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/sbesseli.f900000644000000000000000000000013214762655565014403 xustar0030 mtime=1741380469.280012705 30 atime=1741380468.037006206 30 ctime=1741380469.280012705 elk-10.4.9/src/sbesseli.f900000644002504400250440000000524714762655565017135 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: sbesseli ! !INTERFACE: subroutine sbesseli(lmax,x,jl) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum order of Bessel function (in,integer) ! x : real argument (in,real) ! jl : array of returned values (out,real(0:lmax)) ! !DESCRIPTION: ! Computes spherical Bessel functions with imaginary argument, ! $\tilde{j}_l(x)\equiv i^lj_l(ix)$, for real $x$ and ! $l=0\ldots l_{\rm max}$. The recurrence relation ! $$ \tilde{j}_{l+1}(x)=\frac{2l+1}{x}\tilde{j}_l(x)+\tilde{j}_{l-1}(x) $$ ! is used either downwards for $x<2\,l_{\rm max}$ or upwards for ! $x\ge 2\,l_{\rm max}$. The starting values are $\tilde{j}_0(x)=\sinh(x)/x$ ! and $\tilde{j}_1(x)=(\tilde{j}_0(x)-\cosh(x))/x$. The asymptotic form ! $$ \tilde{j}_l(x)\approx\frac{(-x)^l}{(2l+1)!!} $$ ! is used for $x\ll 1$. ! ! !REVISION HISTORY: ! Created April 2008 from sbessel routine (Lars Nordstrom) ! Fixed accuracy issue and changed name, September 2021 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax real(8), intent(in) :: x real(8), intent(out) :: jl(0:lmax) ! local variables integer l,lst real(8), parameter :: rsc=1.d150,rsci=1.d0/rsc real(8) xi,j0,j1,t1 if ((lmax < 0).or.(lmax > 20)) then write(*,*) write(*,'("Error(sbesseli): lmax out of range : ",I8)') lmax write(*,*) stop end if if ((x < 0.d0).or.(x > 1.d8)) then write(*,*) write(*,'("Error(sbesseli): x out of range : ",G18.10)') x write(*,*) stop end if ! treat x << 1 if (x < 1.d-8) then jl(0)=1.d0 t1=1.d0 do l=1,lmax t1=-t1*x/dble(2*l+1) jl(l)=t1 end do return end if if (lmax == 0) then jl(0)=sinh(x)/x return end if xi=1.d0/x if (x < 2*lmax) then ! for x < 2*lmax recurse down j1=1.d0 j0=0.d0 ! starting value for l above lmax lst=lmax+lmax/2+12 do l=lst,lmax+1,-1 t1=j0-(2*l+1)*j1*xi j0=j1 j1=t1 ! check for overflow if (abs(j1) > rsc) then ! rescale t1=t1*rsci j0=j0*rsci j1=j1*rsci end if end do do l=lmax,0,-1 t1=j0-(2*l+1)*j1*xi j0=j1 j1=t1 ! check for overflow if (abs(j1) > rsc) then ! rescale t1=t1*rsci j0=j0*rsci j1=j1*rsci jl(l+1:lmax)=jl(l+1:lmax)*rsci end if jl(l)=j0 end do ! rescaling constant t1=sinh(x)/(x*j0) jl(0:lmax)=t1*jl(0:lmax) else ! for x >= 2*lmax recurse up jl(0)=sinh(x)*xi jl(1)=(jl(0)-cosh(x))*xi if (lmax == 1) return j0=jl(0) j1=jl(1) do l=2,lmax t1=(2*l-1)*j1*xi+j0 j0=j1 j1=t1 jl(l)=j1 end do end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/shankeli.f900000644000000000000000000000013214762655565014370 xustar0030 mtime=1741380469.282012715 30 atime=1741380468.039006217 30 ctime=1741380469.282012715 elk-10.4.9/src/shankeli.f900000644002504400250440000000351514762655565017116 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: shankeli ! !INTERFACE: subroutine shankeli(lmax,x,hl) ! !INPUT/OUTPUT PARAMETERS: ! lmax : maximum order of Hankel function (in,integer) ! x : real argument (in,real) ! hl : array of returned values (out,real(0:lmax)) ! !DESCRIPTION: ! Computes the spherical Hankel function of the first kind with imaginary ! argument, $\tilde{h}_l(x)=i^lh_l(ix)$, for real $x$ and ! $l=0\ldots l_{\rm max}$. The recurrence relation ! $$ \tilde{h}_{l+1}(x)=\frac{2l+1}{x}\tilde{h}_l(x)+\tilde{h}_{l-1}(x) $$ ! is used upwards. The starting values there are ! $\tilde{h}_0(x)=-e^{-x}/x$ and $\tilde{h}_1(x)=\tilde{h}_0(x)(1+1/x)$. ! For $x\ll 1$ we use the asymptotic form ! $$ \tilde{h}_l(x)\approx\frac{-(2l-1)!!}{(-x)^{l+1}}. $$ ! ! !REVISION HISTORY: ! Created April 2008 from sbessel routine (Lars Nordstrom) ! Changed name, September 2021 (JKD) !EOP !BOC implicit none ! arguments integer, intent(in) :: lmax real(8), intent(in) :: x real(8), intent(out) :: hl(0:lmax) ! local variables integer l real(8) xi,h0,h1,t1 if ((lmax < 0).or.(lmax > 50)) then write(*,*) write(*,'("Error(shankeli): lmax out of range : ",I8)') lmax write(*,*) stop end if if ((x <= 0.d0).or.(x > 1.d8)) then write(*,*) write(*,'("Error(shankeli): x out of range : ",G18.10)') x write(*,*) stop end if xi=1.d0/x hl(0)=-xi*exp(-x) if (lmax == 0) return ! treat x << 1 if (x < 1.d-8) then t1=-xi do l=1,lmax t1=t1*xi*dble(2*l-1) hl(l)=t1 end do return end if ! recurse up hl(1)=hl(0)*(1.d0+xi) if (lmax == 1) return h0=hl(0) h1=hl(1) do l=2,lmax t1=(2*l-1)*h1*xi+h0 h0=h1 h1=t1 hl(l)=h1 end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/genfdu.f900000644000000000000000000000013014762655565014040 xustar0029 mtime=1741380469.28301272 30 atime=1741380468.042006233 29 ctime=1741380469.28301272 elk-10.4.9/src/genfdu.f900000644002504400250440000001136614762655565016573 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genfdu ! !INTERFACE: subroutine genfdu(idu,u,j,f) ! !USES: use moddftu use modmpi ! !INPUT/OUTPUT PARAMETERS: ! idu : DFT+U entry (in,integer) ! u : parameter U (inout,real) ! j : parameter J (inout,real) ! f : Slater parameters (inout,real) ! !DESCRIPTION: ! Calculate the Slater parameters for DFT+$U$ calculation with different ! approaches, see {\it Phys. Rev. B} {\bf 80}, 035121 (2009). The relations ! among Slater and Racah parameters are from E. U. Condon and G. H. Shortley, ! {\it The Theory of Atomic Spectra}, The University Press, Cambridge (1935). ! ! !REVISION HISTORY: ! Created July 2008 (Francesco Cricchio) !EOP !BOC implicit none ! arguments integer, intent(in) :: idu real(8), intent(inout) :: u,j real(8), intent(inout) :: f(0:2*lmaxdm) ! local variables integer is,l,k,q real(8) ufix,r1,r2 real(8) a(3,3),v1(3),v2(3) ! automatic arrays real(8) e(0:lmaxdm) ! external functions real(8), external :: fyukawa,fyukawa0 is=isldu(1,idu) l=isldu(2,idu) if (l > 3) return ! load input parameters to calculate Slater integrals u=ujdu(1,idu) j=ujdu(2,idu) f(:)=fdu(:,idu) e(:)=edu(:,idu) if (inpdftu < 4) then ! F(0) = U for any l-shell if (inpdftu == 1) f(0)=u select case(l) case(0) ! s electrons only f(0)=u if (inpdftu == 3) then f(0)=e(0) u=f(0) end if case(1) ! p electrons if (inpdftu == 1) then ! F(2) = 5.0 * J f(2)=5.d0*j else if (inpdftu == 3) then ! F(0) = E(0) + J= E(0) + 5/3 * E(1) f(0)=e(0)+(5.d0/3.d0)*e(1) ! F(2) = 5 * J = 25/3 * E1, Eq. 101 f(2)=(25.d0/3.d0)*e(1) end if case(2) ! d electrons if (inpdftu == 1) then ! r1 = F(4)/F(2), see PRB 52, R5467 (1995) r1=0.625d0 f(2)=(14.d0*j)/(1.d0+r1) f(4)=f(2)*r1 else if (inpdftu == 3) then ! copy Racah parameters v1(1:3)=e(0:2) ! transformation matrix from Racah to Slater parameters ! obtained from inversion of Eq. 110-112, LN Notes 29-12-08 a(1,1)=1.d0 a(1,2)=1.4d0 a(1,3)=0.d0 a(2,1)=0.d0 a(2,2)=0.1428571428571428d0 a(2,3)=1.285714285714286d0 a(3,1)=0.d0 a(3,2)=2.8571428571428571d-2 a(3,3)=-0.1428571428571428d0 ! multiply transformation matrix by Racah parameters call r3mv(a,v1,v2) ! Slater parameters, Eq. 104-105, LN Notes 29-12-08 f(0)=v2(1) f(2)=49.d0*v2(2) f(4)=441.d0*v2(3) end if case(3) ! f electrons if (inpdftu == 1) then ! r2 = F(6)/F(2), r1 = F(4)/F(2), see PRB 50, 16861 (1994) r1=451.d0/675.d0 r2=1001.d0/2025.d0 f(2)=6435.d0*j/(286.d0+195.d0*r1+250.d0*r2) f(4)=f(2)*r1 f(6)=f(2)*r2 else if (inpdftu == 3) then ! F(0) = E(0) + 9/7 * E(1) , Eq. 119, LN Notes 29-12-08 f(0)=e(0)+(9.d0/7.d0)*e(1) ! copy Racah parameters v1(1:3)=e(1:3) ! transformation matrix from Racah to Slater parameters ! obtained from inversion of Eq. 120-122, LN Notes 29-12-08 a(1,1)=2.3809523809523808d-2 a(1,2)=3.404761904761904d0 a(1,3)=0.2619047619047619d0 a(2,1)=1.2987012987012984d-2 a(2,2)=-1.688311688311688d0 a(2,3)=5.1948051948051951d-2 a(3,1)=2.1645021645021645d-3 a(3,2)=7.5757575757575760d-2 a(3,3)=-1.5151515151515152d-2 ! multiply transformation matrix by Racah parameters call r3mv(a,v1,v2) ! Slater parameters, Eq. 115-117, LN Notes 29-12-08 f(2)=225.d0*v2(1) f(4)=1089.d0*v2(2) f(6)=(184041.d0/25.d0)*v2(3) end if end select else if (inpdftu >= 4) then ! define energies for Slater parameters call engyfdu(idu) ! calculate radial functions for Slater parameters call genfdufr(idu) if (inpdftu == 5) then ufix=udufix(idu) ! calculate the screening length λ corresponding to udufix ! lamdu0 is in/out and is initialized to 0 in init0 call findlambda(is,l,ufix,lamdu0(idu),lamdu(idu)) end if do q=0,l k=2*q if (lamdu(idu) < 1.d-2) then ! unscreened Slater parameters f(k)=fyukawa0(is,l,k) else ! screened Slater parameters f(k)=fyukawa(is,l,k,lamdu(idu)) end if end do end if ! calculate U and J from Slater integrals if (inpdftu /= 1) then u=f(0) select case(l) case(0) j=0.d0 case(1) ! J = 1/5 * F(2) j=(1.d0/5.d0)*f(2) case(2) ! J = 1/14 * ( F(2) + F(4) ), Eq. 106, LN Notes 29-12-08 j=(1.d0/14.d0)*(f(2)+f(4)) case(3) ! J= 2/45 * F(2) + 1/33 * F(4) + 50/1287 * F(6), Eq. 118, LN Notes 29-12-08 j=(2.d0/45.d0)*f(2)+(1.d0/33.d0)*f(4)+(50.d0/1287.d0)*f(6) end select end if ! save calculated parameters ! (except Racah parameters that are provided only as input) ujdu(1,idu)=u ujdu(2,idu)=j fdu(:,idu)=f(:) end subroutine !EOC elk-10.4.9/src/PaxHeaders/genfdufr.f900000644000000000000000000000013214762655565014372 xustar0030 mtime=1741380469.285012731 30 atime=1741380468.044006243 30 ctime=1741380469.285012731 elk-10.4.9/src/genfdufr.f900000644002504400250440000000307214762655565017116 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genfdufr ! !INTERFACE: subroutine genfdufr(idu) ! !USES: use modmain use moddftu ! !INPUT/OUTPUT PARAMETERS: ! idu : DFT+U entry (in,integer) ! !DESCRIPTION: ! Generates the radial functions used to calculate the Slater integrals ! through a Yukawa potential. ! ! !REVISION HISTORY: ! Created April 2008 from genapwfr (Francesco Cricchio) !EOP !BOC implicit none integer, intent(in) :: idu ! local variables integer is,ia,ias integer nr,nri,ir,nn,l real(8) t1 ! automatic arrays real(8) vr(nrmtmax),fr(nrmtmax) real(8) p0(nrmtmax),p1(nrmtmax),q0(nrmtmax),q1(nrmtmax) is=isldu(1,idu) l=isldu(2,idu) nr=nrmt(is) nri=nrmti(is) do ia=1,natoms(is) ias=idxas(ia,is) call rfmtlm(1,nr,nri,vsmt(:,ias),vr) vr(1:nr)=vr(1:nr)*y00 ! integrate the radial Schrodinger equation call rschrodint(solsc,l,efdu(l,ias),nr,rlmt(:,1,is),vr,nn,p0,p1,q0,q1) ! normalise radial functions fr(1:nr)=p0(1:nr)**2 t1=dot_product(wrmt(1:nr,is),fr(1:nr)) if (t1 < 1.d-20) then write(*,*) write(*,'("Error(genfdufr): degenerate radial functions")') write(*,'(" for species ",I4)') is write(*,'(" atom ",I4)') ia write(*,'(" and angular momentum ",I4)') l write(*,*) stop end if t1=1.d0/sqrt(abs(t1)) p0(1:nr)=t1*p0(1:nr) ! divide by r and store in global array do ir=1,nr fdufr(ir,l,ias)=p0(ir)/rsp(ir,is) end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/engyfdu.f900000644000000000000000000000013214762655565014233 xustar0030 mtime=1741380469.286012736 30 atime=1741380468.046006253 30 ctime=1741380469.286012736 elk-10.4.9/src/engyfdu.f900000644002504400250440000000306014762655565016754 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio, L. Nordstrom and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: engyfdu ! !INTERFACE: subroutine engyfdu(idu) ! !USES: use modmain use moddftu use modmpi ! !INPUT/OUTPUT PARAMETERS: ! idu : DFT+U entry (in,integer) ! !DESCRIPTION: ! Calculates the energies of radial functions to be used to calculate the ! Slater integrals. By convention those energies are chosen to be the ones at ! the center of the band. ! ! !REVISION HISTORY: ! Created April 2008 (F. Cricchio) !EOP !BOC implicit none integer, intent(in) :: idu ! local variables integer is,ia,ja,ias,jas integer nr,nri,nnf,l logical fnd ! automatic arrays real(8) vr(nrmtmax) nnf=0 is=isldu(1,idu) l=isldu(2,idu) nr=nrmt(is) nri=nrmti(is) do ia=1,natoms(is) ! perform calculation for only the first equivalent atom if (.not.tfeqat(ia,is)) cycle ias=idxas(ia,is) call rfmtlm(1,nr,nri,vsmt(:,ias),vr) vr(1:nr)=vr(1:nr)*y00 ! find the center of the band starting from -0.5 Ha efdu(l,ias)=-0.5d0 call findband(solsc,l,nrmt(is),rsp(1,is),vr,epsband,demaxbnd,efdu(l,ias),fnd) if (.not.fnd) nnf=nnf+1 ! copy to equivalent atoms do ja=1,natoms(is) if (eqatoms(ia,ja,is).and.(ia /= ja)) then jas=idxas(ja,is) efdu(l,jas)=efdu(l,ias) end if end do ! end loops over atoms and species end do if (mp_mpi.and.(nnf > 0)) then write(*,*) write(*,'("Warning(engyfdu): could not find ",I3," energies")') nnf end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/findlambda.f900000644000000000000000000000013214762655565014653 xustar0030 mtime=1741380469.287012741 30 atime=1741380468.048006264 30 ctime=1741380469.287012741 elk-10.4.9/src/findlambda.f900000644002504400250440000000700714762655565017401 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: findlambda ! !INTERFACE: subroutine findlambda(is,l,ufix,lambda0,lambda) use modmpi ! !INPUT/OUTPUT PARAMETERS: ! is : species type (in,integer) ! l : angular momentum (in,integer) ! ufix : fixed U (in,integer) ! lambda0 : starting value for screening length (inout,real) ! lambda : screening length corresponding to fixed U (out,real) ! !DESCRIPTION: ! Find the screening length corresponding to a fixed value of $U$ by using the ! half-interval method in the first few steps and then the more efficient ! secant method. For $U=0$ the code automatically sets the screening length to ! ${\rm lambdamax}=50$. This value is enough to get $F^{(k)}\sim 10^{-3}$ ! corresponding to $U\sim 0$ (that perfectly mimics a bare DFT calculation). ! ! !REVISION HISTORY: ! Created July 2009 (Francesco Cricchio) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,l real(8), intent(in) :: ufix real(8), intent(inout) :: lambda0 real(8), intent(out) :: lambda ! local variables ! max iterations in secant algorithm integer, parameter :: maxit=100 integer it,nit ! if ufix < umin, assume lambda=lambdamax real(8), parameter :: umin=1.d-4 ! if lambda < lambdamin, perform unscreened calculation real(8), parameter :: lambdamin=1.d-2 ! max value of lambda ! lambdamax=50 is enough to get F^(k)~1.d-3 corresponding to U~0 real(8), parameter :: lambdamax=50.d0 ! initial step for lambda real(8), parameter :: dl0=0.5d0 real(8) f,fp,lambdap,dl,tol ! external functions real(8), external :: fyukawa,fyukawa0 ! small U limit if (ufix < umin) then lambda=lambdamax if (mp_mpi) write(*,'("Info(findlambda): lambda set to lambdamax : ",& &G18.10)') lambdamax return end if ! first perform a search of lambda with half-interval method and low accuracy ! initialize values and search upward from lambda0 lambda=lambda0 dl=dl0 fp=1.d0 tol=1.d-1 nit=0 do it=1,maxit if (lambda < lambdamin) then ! unscreened Slater parameters f=fyukawa0(is,l,0)-ufix else ! screened Slater parameters f=fyukawa(is,l,0,lambda)-ufix end if if ((f*fp) < 0) dl=-0.5d0*dl lambdap=lambda lambda=lambda+dl fp=f nit=nit+1 if (abs(f) < tol) goto 10 end do 10 continue ! use the found value of lambda to continue the search with secant algorithm and ! higher accuracy tol=1.d-8 ! calculate F^(0)-ufix at lambdap value if (lambdap < lambdamin) then ! unscreened Slater parameters fp=fyukawa0(is,l,0)-ufix else ! screened Slater parameters fp=fyukawa(is,l,0,lambdap)-ufix end if ! start secant algorithm do it=1,maxit ! calculate F^(0)-ufix if (lambda < lambdamin) then ! unscreened Slater parameters f=fyukawa0(is,l,0)-ufix else ! screened Slater parameters f=fyukawa(is,l,0,lambda)-ufix end if ! if requested tolerance has been reached exit the loop if (abs(f) < tol) goto 20 ! update lambda with secant algorithm and roll values dl=-f*((lambda-lambdap)/(f-fp)) lambdap=lambda lambda=lambda+dl fp=f nit=nit+1 end do 20 continue if (nit >= maxit) then write(*,*) write(*,'("Error(findlambda): max number of iterations to obtain lambda & &reached")') write(*,*) stop else ! update initial value for lambda for the next iteration in the SC loop ! 0.5*dl0 is enough lambda0=lambda-0.5d0*dl0 if (mp_mpi) write(*,'("Info(findlambda): lambda obtained in ",I4,& &" iterations")') nit end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/vmatmtsc.f900000644000000000000000000000013214762655565014430 xustar0030 mtime=1741380469.289012752 30 atime=1741380468.050006274 30 ctime=1741380469.289012752 elk-10.4.9/src/vmatmtsc.f900000644002504400250440000000273114762655565017155 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vmatmtsc use modmain use moddftu implicit none ! local variables integer ispn,jspn,ias,lm ! automatic arrays complex(8) a(lmmaxo,lmmaxo),b(lmmaxo,lmmaxo),c(lmmaxo,lmmaxo) lm=min(lmmaxi,lmmaxdm) ! transform the muffin-tin potential matrix elements from a spherical harmonics ! basis to a mixed spherical harmonics/coordinates basis and store in global ! single-precision arrays do ias=1,natmtot if (any(tvmmt(0:lmaxdm,ias))) then do jspn=1,nspinor do ispn=1,nspinor ! inner part of muffin-tin a(1:lmmaxi,1:lmmaxi)=0.d0 a(1:lm,1:lm)=vmatmt(1:lm,ispn,1:lm,jspn,ias) call zgemm('N','N',lmmaxi,lmmaxi,lmmaxi,zone,a,lmmaxo,zfshti,lmmaxi, & zzero,b,lmmaxo) call zgemm('N','N',lmmaxi,lmmaxi,lmmaxi,zone,zbshti,lmmaxi,b,lmmaxo, & zzero,c,lmmaxo) vmatmti(1:lmmaxi,1:lmmaxi,ispn,jspn,ias)=c(1:lmmaxi,1:lmmaxi) ! outer part of muffin-tin a(:,:)=0.d0 a(1:lmmaxdm,1:lmmaxdm)=vmatmt(1:lmmaxdm,ispn,1:lmmaxdm,jspn,ias) call zgemm('N','N',lmmaxo,lmmaxo,lmmaxo,zone,a,lmmaxo,zfshto,lmmaxo, & zzero,b,lmmaxo) call zgemm('N','N',lmmaxo,lmmaxo,lmmaxo,zone,zbshto,lmmaxo,b,lmmaxo, & zzero,c,lmmaxo) vmatmto(:,:,ispn,jspn,ias)=c(:,:) end do end do end if end do end subroutine elk-10.4.9/src/PaxHeaders/genvmatmt.f900000644000000000000000000000013214762655565014574 xustar0030 mtime=1741380469.290012757 30 atime=1741380468.052006285 30 ctime=1741380469.290012757 elk-10.4.9/src/genvmatmt.f900000644002504400250440000000210414762655565017313 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genvmatmt !INTERFACE: subroutine genvmatmt ! !USES: use modmain use moddftu ! !DESCRIPTION: ! Calculate the DFT+$U$ potential matrix to be used in the second-variational ! step and/or the potential matrix used for fixed tensor moment calculations. ! See {\it Phys. Rev. B} {\bf 52}, 5467 (1995) and {\it Phys. Rev. B} ! {\bf 80}, 035121 (2009). ! ! !REVISION HISTORY: ! Created November 2007 (FC,FB,LN,JKD) ! Fixed bug for dftu=3, January 2021 (JKD) ! Cleaned up and removed options, September 2021 (JKD) !EOP !BOC implicit none ! zero the non-local muffin-tin potential for each atom vmatmt(:,:,:,:,:)=0.d0 ! add the DFT+U potential and calculate the corresponding energies if (dftu /= 0) call vmatmtdu ! add the fixed tensor moment potential if required if (ftmtype > 0) call vmatmtftm ! symmetrise the potential call symdmat(lmaxdm,lmmaxdm,vmatmt) end subroutine !EOC elk-10.4.9/src/PaxHeaders/vmatmtdu.f900000644000000000000000000000013214762655565014433 xustar0030 mtime=1741380469.292012768 30 atime=1741380468.054006295 30 ctime=1741380469.292012768 elk-10.4.9/src/vmatmtdu.f900000644002504400250440000001415114762655565017157 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vmatmtdu use modmain use moddftu use modtest implicit none ! local variables integer ispn,jspn integer is,ia,ias,idu integer l,m1,m2,m3,m4 integer ll,nm,lma,lmb integer lm1,lm2,lm3,lm4 real(8) u,j,n,n0 real(8) mg(3),mg0(3) real(8) v,edc,sm complex(8) zsm,z1,z2 ! automatic arrays real(8) vee(-lmaxdm:lmaxdm,-lmaxdm:lmaxdm,-lmaxdm:lmaxdm,-lmaxdm:lmaxdm) complex(8) dm(lmmaxdm,nspinor,lmmaxdm,nspinor) complex(8) dms(nspinor,nspinor) ! zero the DFT+U energy for each atom engyadu(:,:)=0.d0 do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) ll=l*(l+1)+1 nm=2*l+1 lma=l**2+1; lmb=lma+2*l ! calculate the Coulomb matrix elements call genveedu(idu,u,j,vee) if ((abs(u) < 1.d-10).and.(abs(j) < 1.d-10)) cycle ! begin loop over atoms do ia=1,natoms(is) ias=idxas(ia,is) ! copy the density matrix for this atom dm(:,:,:,:)=dmatmt(:,:,:,:,ias) ! spin-unpolarised: scale density matrix so that it represents one spin channel ! (thanks to Mike Bruckhoff for this) if (.not.spinpol) dm(:,:,:,:)=0.5d0*dm(:,:,:,:) ! trace of density matrix for each spin dms(:,:)=0.d0 do ispn=1,nspinor do jspn=1,nspinor zsm=0.d0 do lm1=lma,lmb zsm=zsm+dm(lm1,ispn,lm1,jspn) end do dms(ispn,jspn)=dms(ispn,jspn)+zsm end do end do ! trace over spin n=dble(dms(1,1)) if (spinpol) n=n+dble(dms(2,2)) n0=n/dble(nspinor*nm) ! magnetisation if (spinpol) then mg(:)=0.d0 mg(3)=dble(dms(1,1)-dms(2,2)) ! non-collinear terms if (ncmag) then mg(1)=dble(dms(1,2)+dms(2,1)) mg(2)=dble(zi*(dms(1,2)-dms(2,1))) end if mg0(:)=mg(:)/dble(nspinor*nm) end if !---------------------------------! ! around mean field (AFM) ! !---------------------------------! if (dftu == 2) then ! modify density matrices do lm1=lma,lmb if (spinpol) then dm(lm1,1,lm1,1)=dm(lm1,1,lm1,1)-(n0+mg0(3)) dm(lm1,2,lm1,2)=dm(lm1,2,lm1,2)-(n0-mg0(3)) ! non-collinear terms if (ncmag) then dm(lm1,1,lm1,2)=dm(lm1,1,lm1,2)-(mg0(1)-zi*mg0(2)) dm(lm1,2,lm1,1)=dm(lm1,2,lm1,1)-(mg0(1)+zi*mg0(2)) end if else ! spin-unpolarised case dm(lm1,1,lm1,1)=dm(lm1,1,lm1,1)-n0 end if end do end if !------------------------------------! ! DFT+U potential and energy ! !------------------------------------! ! begin loops over m1 and m2 do m1=-l,l lm1=ll+m1 do m2=-l,l lm2=ll+m2 ! begin loops over m3 and m4 do m3=-l,l lm3=ll+m3 do m4=-l,l lm4=ll+m4 v=vee(m1,m3,m2,m4) do ispn=1,nspinor do jspn=1,nspinor z1=dm(lm2,ispn,lm1,ispn)*dm(lm4,jspn,lm3,jspn) z2=dm(lm4,jspn,lm1,ispn)*dm(lm2,ispn,lm3,jspn) engyadu(ia,idu)=engyadu(ia,idu)+dble(z1-z2)*v vmatmt(lm1,ispn,lm2,ispn,ias)=vmatmt(lm1,ispn,lm2,ispn,ias) & +dm(lm4,jspn,lm3,jspn)*v vmatmt(lm1,ispn,lm4,jspn,ias)=vmatmt(lm1,ispn,lm4,jspn,ias) & -dm(lm2,ispn,lm3,jspn)*v end do end do ! end loops over m3 and m4 end do end do ! end loops over m1 and m2 end do end do ! multiply energy by factor 1/2 engyadu(ia,idu)=0.5d0*engyadu(ia,idu) !-----------------------------------------------------------------! ! fully localised limit (FLL) double counting corrections ! !-----------------------------------------------------------------! if (dftu == 1) then if (spinpol) then ! spin-polarised if (ncmag) then ! non-collinear case ! correction to the energy edc=0.5d0*u*n*(n-1.d0) edc=edc-0.5d0*j*dble(dms(1,1)*(dms(1,1)-1.d0)) edc=edc-0.5d0*j*dble(dms(2,2)*(dms(2,2)-1.d0)) edc=edc-0.5d0*j*dble(dms(1,2)*dms(2,1)) edc=edc-0.5d0*j*dble(dms(2,1)*dms(1,2)) ! correction to the potential do lm1=lma,lmb vmatmt(lm1,1,lm1,1,ias)=vmatmt(lm1,1,lm1,1,ias) & -u*(n-0.5d0)+j*(dms(1,1)-0.5d0) vmatmt(lm1,2,lm1,2,ias)=vmatmt(lm1,2,lm1,2,ias) & -u*(n-0.5d0)+j*(dms(2,2)-0.5d0) vmatmt(lm1,1,lm1,2,ias)=vmatmt(lm1,1,lm1,2,ias)+j*dms(1,2) vmatmt(lm1,2,lm1,1,ias)=vmatmt(lm1,2,lm1,1,ias)+j*dms(2,1) end do else ! collinear case ! correction to the energy edc=0.5d0*u*n*(n-1.d0) edc=edc-0.5d0*j*dble(dms(1,1)*(dms(1,1)-1.d0)) edc=edc-0.5d0*j*dble(dms(2,2)*(dms(2,2)-1.d0)) ! correction to the potential do lm1=lma,lmb vmatmt(lm1,1,lm1,1,ias)=vmatmt(lm1,1,lm1,1,ias) & -u*(n-0.5d0)+j*(dms(1,1)-0.5d0) vmatmt(lm1,2,lm1,2,ias)=vmatmt(lm1,2,lm1,2,ias) & -u*(n-0.5d0)+j*(dms(2,2)-0.5d0) end do end if else ! spin-unpolarised ! correction to the energy edc=0.5d0*u*n*(n-1.d0) edc=edc-0.5d0*j*n*(n-1.d0) ! correction to the potential do lm1=lma,lmb vmatmt(lm1,1,lm1,1,ias)=vmatmt(lm1,1,lm1,1,ias)-u*(n-0.5d0) & +j*(n-0.5d0) end do end if engyadu(ia,idu)=engyadu(ia,idu)-edc end if !---------------------------------------------------------! ! subtract DFT+U potential contribution to energy ! !---------------------------------------------------------! ! trace of dmatmt times vmatmt sm=0.d0 do ispn=1,nspinor do lm1=lma,lmb do jspn=1,nspinor do lm2=lma,lmb sm=sm+dble(dm(lm1,ispn,lm2,jspn)*vmatmt(lm2,jspn,lm1,ispn,ias)) end do end do end do end do engyadu(ia,idu)=engyadu(ia,idu)-sm ! end loop over atoms end do ! end loop over species end do ! write DFT+U energy for each atom to test file call writetest(800,'DFT+U energy for each atom',nv=natmmax*ndftu,tol=1.d-4, & rva=engyadu) ! write U and J parameters to test file call writetest(810,'U and J parameters',nv=2*ndftu,tol=1.d-4,rva=ujdu) end subroutine elk-10.4.9/src/PaxHeaders/vmatmtftm.f900000644000000000000000000000013214762655565014611 xustar0030 mtime=1741380469.293012773 30 atime=1741380468.056006306 30 ctime=1741380469.293012773 elk-10.4.9/src/vmatmtftm.f900000644002504400250440000000240714762655565017336 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 L. Nordstrom, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vmatmtftm use modmain use moddftu implicit none ! local variables integer is,ia,ias,i integer l,k,p,r,t real(8) t0,t1 ! automatic arrays real(8) wkpr(-lmmaxdm:lmmaxdm) complex(8) dm(lmmaxdm,2,lmmaxdm,2) ! loop over fixed tensor moment entries do i=1,ntmfix is=itmfix(1,i) ia=itmfix(2,i) ias=idxas(ia,is) l=itmfix(3,i) k=itmfix(4,i) p=itmfix(5,i) r=itmfix(6,i) t=itmfix(7,i) ! decompose density matrix in 3-index tensor moment components call dmtotm3(l,k,p,r,lmmaxdm,dmatmt(:,:,:,:,ias),wkpr) ! scale factor for conventional normalisation t0=sqrt(dble((2*l+1)*2)) ! take difference between current and target moment t1=wkpr(t)-wkprfix(i)/t0 wkpr(:)=0.d0 wkpr(t)=tauftm*t1 ! compute new density matrix call tm3todm(l,k,p,r,lmmaxdm,wkpr,dm) ! add to global FTM potential matrix vmftm(:,:,:,:,ias)=vmftm(:,:,:,:,ias)+dm(:,:,:,:) end do ! add to muffin-tin potential matrix (fix by Leon Kerber) do i=1,ntmfix is=itmfix(1,i) ia=itmfix(2,i) ias=idxas(ia,is) vmatmt(:,:,:,:,ias)=vmatmt(:,:,:,:,ias)+vmftm(:,:,:,:,ias) end do end subroutine elk-10.4.9/src/PaxHeaders/fyukawa.f900000644000000000000000000000013214762655565014241 xustar0030 mtime=1741380469.294012778 30 atime=1741380468.058006316 30 ctime=1741380469.294012778 elk-10.4.9/src/fyukawa.f900000644002504400250440000000425114762655565016765 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: fyukawa ! !INTERFACE: real(8) function fyukawa(is,l,k,lambda) ! !USES: use modmain use moddftu ! !INPUT/OUTPUT PARAMETERS: ! is : species type (in,integer) ! l : an angular momentum (in,integer) ! k : order of Slater parameter (in,integer) ! lambda : screening length of Yukawa potential (in,real) ! !DESCRIPTION: ! Calculates the Slater parameters using a screened Yukawa potential. See ! {\it Phys. Rev. B} {\bf 52}, 1421 (1995) and {\it Phys. Rev. B} {\bf 80}, ! 035121 (2009). ! ! !REVISION HISTORY: ! Created April 2008 (Lars Nordstrom) ! Modified and tested July 2008 (LN and FC) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,l,k real(8), intent(in) :: lambda ! local variables integer ias,nr,ir integer nr1,nr2,ir1,ir2 real(8) x,t1 ! automatic arrays real(8) bint(nrmtmax),cint(nrmtmax),fint(nrmtmax) real(8) blow(nrmtmax),bhigh(nrmtmax) real(8) clow(nrmtmax),chigh(nrmtmax) real(8) a(0:2*l,nrmtmax),b(0:2*l,nrmtmax) ias=idxas(1,is) nr=nrmt(is) ! (-1)**k factor takes care of the additional (-1)**k introduced by sbesseli(b) t1=lambda*dble((2*k+1)*(-1)**(k+1)) ! zero all quantities bint(1:nr)=0.d0 blow(1:nr)=0.d0 bhigh(1:nr)=0.d0 clow(1:nr)=0.d0 chigh(1:nr)=0.d0 a(:,1:nr)=0.d0 b(:,1:nr)=0.d0 ! calculate screened Slater parameters do ir=1,nr bint(ir)=(fdufr(ir,l,ias)*rsp(ir,is))**2 x=rsp(ir,is)*lambda ! spherical Bessel and Hankel functions with imaginary arguments call sbesseli(2*l,x,a(:,ir)) call shankeli(2*l,x,b(:,ir)) end do do ir=1,nr nr1=ir nr2=nr-ir+1 ! 1st term: r1 < r do ir1=1,nr1 ir2=ir1 blow(ir1)=bint(ir2)*a(k,ir2) end do ! integrate 1st term call fderiv(-1,nr1,rsp(1,is),blow,clow) ! 2nd term : r2 > r do ir1=1,nr2 ir2=ir1+ir-1 bhigh(ir1)=bint(ir2)*b(k,ir2) end do ! integrate 2nd term call fderiv(-1,nr2,rsp(ir,is),bhigh,chigh) ! sum of the two terms cint(ir)=bint(ir)*(b(k,ir)*clow(nr1)+a(k,ir)*chigh(nr2)) end do call fderiv(-1,nr,rsp(1,is),cint,fint) fyukawa=t1*fint(nr) end function !EOC elk-10.4.9/src/PaxHeaders/fyukawa0.f900000644000000000000000000000013214762655565014321 xustar0030 mtime=1741380469.296012788 30 atime=1741380468.060006327 30 ctime=1741380469.296012788 elk-10.4.9/src/fyukawa0.f900000644002504400250440000000331414762655565017044 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: fyukawa0 ! !INTERFACE: real(8) function fyukawa0(is,l,k) ! !USES: use modmain use moddftu ! !INPUT/OUTPUT PARAMETERS: ! is : species type (in,integer) ! l : an angular momentum (in,integer) ! k : order of Slater parameter (in,integer) ! !DESCRIPTION: ! Calculates the Slater parameters in the unscreened case. See {\it Phys. Rev. ! B} {\bf 52}, 1421 (1995) and {\it Phys. Rev. B} {\bf 80}, 035121 (2009). ! ! !REVISION HISTORY: ! Created April 2008 (LN) ! Modified and tested July 2008 (LN and FC) !EOP !BOC implicit none ! arguments integer, intent(in) :: is,l,k ! local variables integer, parameter :: nstart=1 integer ias,nr,ir integer ir1,ir2,nr1,nr2 real(8) x ! automatic arrays real(8) bint(nrmtmax),cint(nrmtmax),fint(nrmtmax) real(8) blow(nrmtmax),bhigh(nrmtmax) real(8) clow(nrmtmax),chigh(nrmtmax) real(8) ak(nrmtmax),bk(nrmtmax) ias=idxas(1,is) nr=nrmt(is) ak(1:nr)=0.d0 bk(1:nr)=0.d0 ! calculate unscreened Slater parameters do ir=1,nr bint(ir)=(fdufr(ir,l,ias)*rsp(ir,is))**2 x=rsp(ir,is)**k ak(ir)=x bk(ir)=1.d0/(x*rsp(ir,is)) end do do ir=nstart,nr nr1=ir-nstart+1 nr2=nr-ir+1 do ir1=1,nr1 ir2=ir1+nstart-1 blow(ir1)=bint(ir2)*ak(ir2) end do call fderiv(-1,nr1,rsp(nstart,is),blow,clow) do ir1=1,nr2 ir2=ir1+ir-1 bhigh(ir1)=bint(ir2)*bk(ir2) end do call fderiv(-1,nr2,rsp(ir,is),bhigh,chigh) cint(ir-nstart+1)=bint(ir)*(bk(ir)*clow(nr1)+ak(ir)*chigh(nr2)) end do nr1=nr-nstart+1 call fderiv(-1,nr1,rsp(nstart,is),cint,fint) fyukawa0=fint(nr1) end function !EOC elk-10.4.9/src/PaxHeaders/readdmatmt.f900000644000000000000000000000013214762655565014714 xustar0030 mtime=1741380469.297012794 30 atime=1741380468.062006337 30 ctime=1741380469.297012794 elk-10.4.9/src/readdmatmt.f900000644002504400250440000000362514762655565017444 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readdmatmt use modmain use moddftu implicit none ! local variables integer is,ia,ias,ispn,jspn,idu integer is_,ia_,ispn_,jspn_ integer l,ll,m1,m2,lm1,lm2 integer l_,m1_,m2_ real(8) a,b ! zero the density matrix dmatmt(:,:,:,:,:)=0.d0 ! read density matrix from DMATMT.OUT open(50,file='DMATMT'//trim(filext),form='FORMATTED') do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) ll=l*(l+1)+1 do ia=1,natoms(is) ias=idxas(ia,is) read(50,*) read(50,*) read(50,*) is_,ia_,l_ if ((is /= is_).or.(ia /= ia_).or.(l /= l_)) then write(*,*) write(*,'("Error(readdmatmt): differing is, ia or l")') write(*,'(" current : ",3I4)') is,ia,l write(*,'(" DMATMT.OUT : ",3I4)') is_,ia_,l_ write(*,*) stop end if do ispn=1,nspinor do jspn=1,nspinor read(50,*) read(50,*) ispn_,jspn_ if ((ispn /= ispn_).or.(jspn /= jspn_)) then write(*,*) write(*,'("Error(readdmatmt): differing ispn or jspn")') write(*,'(" current : ",2I4)') ispn,jspn write(*,'(" DMATMT.OUT : ",2I4)') ispn_,jspn_ write(*,*) stop end if do m1=-l,l lm1=ll+m1 do m2=-l,l lm2=ll+m2 read(50,*) m1_,m2_,a,b if ((m1 /= m1_).or.(m2 /= m2_)) then write(*,*) write(*,'("Error(readdmatmt): differing m1 or m2")') write(*,'(" current : ",2I6)') m1,m2 write(*,'(" DMATMT.OUT : ",2I6)') m1_,m2_ write(*,*) stop end if dmatmt(lm1,ispn,lm2,jspn,ias)=cmplx(a,b,8) end do end do end do end do end do end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/writetm.f900000644000000000000000000000013214762655565014265 xustar0030 mtime=1741380469.298012799 30 atime=1741380468.064006348 30 ctime=1741380469.298012799 elk-10.4.9/src/writetm.f900000644002504400250440000000143514762655565017012 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetm use modmain use moddftu implicit none if (dftu == 0) then write(*,*) write(*,'("Error(writetmdu): dftu = 0")') write(*,*) stop end if ! initialize universal variables call init0 call init1 ! read the potential from file call readstate ! read density matrix from file DMATMT.OUT call readdmatmt ! generate the DFT+U muffin-tin potential matrices call genvmatmt ! write tensor moments to TENSMOM.OUT file call writetm3 write(*,*) write(*,'("Info(writetm): tensor moment decomposition of density matrix")') write(*,'(" in the spherical basis written to TENSMOM.OUT")') end subroutine elk-10.4.9/src/PaxHeaders/writetm3.f900000644000000000000000000000013214762655565014350 xustar0030 mtime=1741380469.299012804 30 atime=1741380468.066006358 30 ctime=1741380469.299012804 elk-10.4.9/src/writetm3.f900000644002504400250440000000617014762655565017076 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 F. Bultmark, F. Cricchio and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writetm3 ! !INTERFACE: subroutine writetm3 ! !USES: use modmain use moddftu use modtest use modvars ! !DESCRIPTION: ! Decompose the density matrix into 3-index tensor moments and write to ! {\tt TENSMOM.OUT}. See {\it Phys. Rev. B} {\bf 80}, 035121 (2009) and ! {\it J. Phys.: Condens. Matter} {\bf 7} 9947 (1995). See also the routines ! {\tt tm2todm} and {\tt tm3todm}. ! ! !REVISION HISTORY: ! Created April 2008 (F. Cricchio and L. Nordstrom) ! Updated, December 2021 (JKD) !EOP !BOC implicit none ! local variables integer is,ia,ias,idu integer l,p,k,r,t real(8) ehx,sm,t0,t1 ! automatic arrays real(8) wkpr(-lmmaxdm:lmmaxdm) complex(8) zkpr(-lmmaxdm:lmmaxdm) complex(8) gamma(lmmaxdm,2,lmmaxdm,2) ! external functions real(8), external :: trzhmm wkpr(:)=0.d0 ! open TENSMOM.OUT file open(50,file='TENSMOM'//trim(filext),form='FORMATTED',action='WRITE') write(50,'("Density matrix decomposition in coupled tensor moments")') write(50,'("Components are in the spherical basis")') write(50,'(" (see Phys. Rev. B. 80, 035121 (2009))")') ! loop over DFT+U entries do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) ! scale factor for conventional normalisation t0=sqrt(dble((2*l+1)*2)) do ia=1,natoms(is) ias=idxas(ia,is) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),ia write(50,'(" l = ",I1)') l do k=0,2*l do p=0,1 do r=abs(k-p),k+p ! decompose density matrix in 3-index tensor moment components call dmtotm3(l,k,p,r,lmmaxdm,dmatmt(:,:,:,:,ias),wkpr) ! determine the contribution to muffin-tin Hartree + exchange energy call tm3todm(l,k,p,r,lmmaxdm,wkpr,gamma) ehx=0.5d0*trzhmm(lmmaxdm*2,gamma,vmatmt(:,:,:,:,ias)) ! write out tensor moment components and vector magnitude write(50,*) write(50,'(" k = ",I1,", p = ",I1,", r = ",I1)') k,p,r if (tm3old) then ! old complex convention call tm3rtoz(l,k,p,r,lmmaxdm,wkpr,zkpr) do t=-r,r write(50,'(" t = ",I2," : ",2F14.8)') t,zkpr(t) end do else ! new real convention sm=0.d0 do t=-r,r t1=t0*wkpr(t) write(50,'(" t = ",I2," : ",F14.8)') t,t1 sm=sm+t1**2 end do sm=sqrt(sm) write(50,'(" magnitude : ",F14.8)') sm end if write(50,'(" Hartree + exchange energy : ",F14.8)') ehx ! write to VARIABLES.OUT if required, but only on the last iteration if (wrtvars.and.tlast) then call writevars('wkpr',n1=is,n2=ia,n3=l,n4=k,n5=p,n6=r,nv=2*r+1, & rva=wkpr(-r:r)) end if end do end do end do ! end loop over atoms and species end do end do close(50) ! write last entry of tensor moment components to test file if required if (test) then call writetest(820,'Coupled tensor moments',nv=size(wkpr),tol=1.d-2,rva=wkpr) end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/gendmftm.f900000644000000000000000000000013214762655565014373 xustar0030 mtime=1741380469.301012814 30 atime=1741380468.068006368 30 ctime=1741380469.301012814 elk-10.4.9/src/gendmftm.f900000644002504400250440000000324314762655565017117 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma, E. K. U. Gross and L. Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gendmftm use modmain use moddftu implicit none ! local variables integer is,ia,ias,i integer l,k,p,r,t real(8) t0 ! automatic arrays real(8) wkpr(-lmmaxdm:lmmaxdm) complex(8) dm(lmmaxdm,2,lmmaxdm,2) ! allocate global array if (allocated(dmftm)) deallocate(dmftm) allocate(dmftm(lmmaxdm,2,lmmaxdm,2,natmtot)) ! zero the fixed tensor moment density matrices dmftm(:,:,:,:,:)=0.d0 do i=1,ntmfix is=itmfix(1,i) if (is > nspecies) then write(*,*) write(*,'("Error(gendmftm): invalid species number : ",I8)') is write(*,*) stop end if ia=itmfix(2,i) if (ia > natoms(is)) then write(*,*) write(*,'("Error(gendmftm): invalid atom number : ",I8)') ia write(*,'(" for species ",I4)') is write(*,*) stop end if ias=idxas(ia,is) l=itmfix(3,i) if (l > lmaxdm) then write(*,*) write(*,'("Error(gendmftm): l > lmaxdm ",2I8)') l,lmaxdm write(*,'(" for species ",I4," and atom ",I4)') is,ia write(*,*) stop end if ! generate the 3-index density matrix k=itmfix(4,i) p=itmfix(5,i) r=itmfix(6,i) t=itmfix(7,i) if (abs(t) > lmmaxdm) then write(*,*) write(*,'("Error(gendmftm): invalid t : ",I8)') t write(*,'(" for tensor moment entry ",I3)') i write(*,*) stop end if ! scale factor for conventional normalisation t0=sqrt(dble((2*l+1)*2)) wkpr(:)=0.d0 wkpr(t)=wkprfix(i)/t0 call tm3todm(l,k,p,r,lmmaxdm,wkpr,dm) dmftm(:,:,:,:,ias)=dmftm(:,:,:,:,ias)+dm(:,:,:,:) end do end subroutine elk-10.4.9/src/PaxHeaders/writeftm.f900000644000000000000000000000013014762655565014431 xustar0029 mtime=1741380469.30201282 30 atime=1741380468.070006379 29 ctime=1741380469.30201282 elk-10.4.9/src/writeftm.f900000644002504400250440000000216314762655565017157 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeftm use modmain use moddftu implicit none ! local variables integer is,ia,ias,i integer l,k,p,r,t real(8) t0 ! automatic arrays real(8) wkpr(-lmmaxdm:lmmaxdm) ! open FTM.OUT open(50,file='FTM.OUT',form='FORMATTED',action='WRITE') do i=1,ntmfix is=itmfix(1,i) ia=itmfix(2,i) ias=idxas(ia,is) l=itmfix(3,i) k=itmfix(4,i) p=itmfix(5,i) r=itmfix(6,i) t=itmfix(7,i) write(50,*) write(50,'("Species : ",I4," (",A,"), atom : ",I4)') is,trim(spsymb(is)),ia write(50,'(" l = ",I2)') l ! scale factor for conventional normalisation t0=sqrt(dble((2*l+1)*nspinor)) write(50,'(" k = ",I2,", p = ",I2,", r = ",I2,", t = ",I2)') k,p,r,t ! decompose density matrix in 3-index tensor moment components call dmtotm3(l,k,p,r,lmmaxdm,dmatmt(:,:,:,:,ias),wkpr) write(50,'(" tensor moment")') write(50,'(" current : ",G18.10)') t0*wkpr(t) write(50,'(" target : ",G18.10)') wkprfix(i) end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/writetdtm3.f900000644000000000000000000000013214762655565014700 xustar0030 mtime=1741380469.303012825 30 atime=1741380468.072006389 30 ctime=1741380469.303012825 elk-10.4.9/src/writetdtm3.f900000644002504400250440000000243014762655565017421 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 Leon Kerber, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetdtm3 use modmain use modtddft use moddftu implicit none ! local variables integer is,ia,ias,idu integer l,p,k,r,t,i real(8) t0 character(256) fname ! automatic arrays real(8) wkpr(-lmmaxdm:lmmaxdm) ! loop over DFT+U entries i=0 do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) ! scale factor for conventional normalisation t0=sqrt(dble((2*l+1)*2)) do ia=1,natoms(is) ias=idxas(ia,is) do k=0,2*l do p=0,1 do r=abs(k-p),k+p i=i+1 ! decompose density matrix in 3-index tensor moment components call dmtotm3(l,k,p,r,lmmaxdm,dmatmt(:,:,:,:,ias),wkpr) ! construct the filename write(fname,'("TMTD_S",I2.2,"_A",I3.3,"_L",I1,"_K",I1,"_P",I1,& &"_R",I1,".OUT")') is,ia,l,k,p,r if (itimes <= 1) then open(50,file=trim(fname),form='FORMATTED') else open(50,file=trim(fname),form='FORMATTED',position='APPEND') end if write(50,'(20G18.10)') times(itimes),(t0*(wkpr(t)-wkpr0(t,i)),t=-r,r) close(50) end do end do end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/genwkpr0.f900000644000000000000000000000013014762655565014325 xustar0030 mtime=1741380469.305012835 28 atime=1741380468.0740064 30 ctime=1741380469.305012835 elk-10.4.9/src/genwkpr0.f900000644002504400250440000000202514762655565017050 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 Leon Kerber, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genwkpr0 use modmain use modtddft use moddftu implicit none integer is,ia,ias,idu integer n,l,p,k,r,i ! determine the total number of tensor moments n=0 do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) do ia=1,natoms(is) do k=0,2*l do p=0,1 do r=abs(k-p),k+p n=n+1 end do end do end do end do end do ! allocate the t=0 tensor moment global array if (allocated(wkpr0)) deallocate(wkpr0) allocate(wkpr0(-lmmaxdm:lmmaxdm,n)) i=0 do idu=1,ndftu is=isldu(1,idu) l=isldu(2,idu) do ia=1,natoms(is) ias=idxas(ia,is) do k=0,2*l do p=0,1 do r=abs(k-p),k+p i=i+1 ! decompose density matrix in 3-index tensor moment components call dmtotm3(l,k,p,r,lmmaxdm,dmatmt(:,:,:,:,ias),wkpr0(:,i)) end do end do end do end do end do end subroutine elk-10.4.9/src/PaxHeaders/tm3rtoz.f900000644000000000000000000000013114762655565014213 xustar0030 mtime=1741380469.306012841 29 atime=1741380468.07600641 30 ctime=1741380469.306012841 elk-10.4.9/src/tm3rtoz.f900000644002504400250440000000241114762655565016734 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 Leon Kerber, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tm3rtoz(l,k,p,r,ld,wkpr,zkpr) use modmain implicit none ! arguments integer, intent(in) :: l,k,p,r,ld real(8), intent(in) :: wkpr(-ld:ld) complex(8), intent(out) :: zkpr(-ld:ld) ! local variables integer g,t real(8) a,b,t0,t1,t2 ! external functions real(8), external :: wigner3j,factn,factn2,factr ! old convention normalisation factors and phase factors g=k+p+r if (mod(g,2) == 0) then t0=1.d0/wigner3j(k,p,r,0,0,0) else t0=sqrt(factr(g+1,g-2*k)/(factn(g-2*p)*factn(g-2*r))) t0=t0*factn2(g-2*k)*factn2(g-2*p)*factn2(g-2*r)/factn2(g) end if t0=t0/sqrt(dble(2*r+1)) t0=t0*sqrt(factn(2*l-k)*factn(2*l+k+1))/factn(2*l) t0=t0*sqrt(factn(2+p)) if (mod(k+p,2) /= 0) t0=-t0 ! remove orthonormal convention normalisation factors t0=t0/sqrt(dble(2*k+1)) t0=t0/sqrt(dble(2*p+1)) t0=t0/2.d0 do t=-r,r t1=t0*(wkpr(t)+wkpr(-t)) t2=t0*(wkpr(t)-wkpr(-t)) if (mod(t,2) == 0) then a=t1 b=t2 else a=-t2 b=-t1 end if if ((k == r).and.(p == 1)) then if (mod(k,2) == 0) then b=-b else a=-a end if end if zkpr(t)=cmplx(a,b,8) end do end subroutine elk-10.4.9/src/PaxHeaders/rdmft.f900000644000000000000000000000013214762655565013706 xustar0030 mtime=1741380469.308012851 30 atime=1741380468.078006421 30 ctime=1741380469.308012851 elk-10.4.9/src/rdmft.f900000644002504400250440000000535314762655565016436 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmft ! !INTERFACE: subroutine rdmft ! !USES: use modmain use modrdm use modmpi ! !DESCRIPTION: ! Main routine for one-body reduced density matrix functional theory (RDMFT). ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! local variables character(64) str ! initialise global variables call init0 call init1 ! generate q-point set and gclq array call init2 ! read density and potentials from file call readstate ! Fourier transform Kohn-Sham potential to G-space call genvsig ! generate the core wavefunctions and densities call gencore ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! generate the spin-orbit coupling radial functions call gensocfr ! compute the kinetic energy of the core call energykncr ! generate the first- and second-variational eigenvectors and eigenvalues call genevfsv ! find the occupation numbers call occupy ! generate the kinetic matrix elements in the first-variational basis call genkmat(.true.,.false.) ! open information files (MPI master process only) if (mp_mpi) then open(60,file='RDM_INFO.OUT',form='FORMATTED') open(61,file='RDMN_ENERGY.OUT',form='FORMATTED') open(62,file='RDMC_ENERGY.OUT',form='FORMATTED') if (spinpol) then open(63,file='RDMN_MOMENT.OUT',form='FORMATTED') open(64,file='RDMC_MOMENT.OUT',form='FORMATTED') end if open(65,file='RDM_ENERGY.OUT',form='FORMATTED') ! write out general information to RDM_INFO.OUT call writeinfo(60) call writebox(60,"Self-consistent loop started") end if ! begin main RDMFT self-consistent loop do iscl=1,rdmmaxscl if (mp_mpi) then write(str,'("Loop number : ",I0)') iscl call writebox(60,trim(str)) flush(60) write(*,'("Info(rdmft): self-consistent loop number : ",I4)') iscl end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! minimisation over natural orbitals call rdmminc ! minimisation over occupation number call rdmminn ! compute the RDMFT 'eigenvalues' call rdmeval if (mp_mpi) then call rdmwriteengy(60) call writechg(60) if (spinpol) call writemom(60) call writeeval ! write out the total energy write(65,'(G18.10)') engytot flush(65) end if end do if (mp_mpi) then call writebox(60,"Self-consistent loop stopped") ! write density to STATE.OUT call writestate write(60,*) write(60,'("Wrote STATE.OUT")') ! close information files close(60) close(61) close(62) if (spinpol) then close(63) close(64) end if close(65) end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmwriteengy.f900000644000000000000000000000013214762655565015312 xustar0030 mtime=1741380469.309012856 30 atime=1741380468.080006431 30 ctime=1741380469.309012856 elk-10.4.9/src/rdmwriteengy.f900000644002504400250440000000206614762655565020040 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmwriteengy ! !INTERFACE: subroutine rdmwriteengy(fnum) ! !USES: use modmain use modrdm ! !INPUT/OUTPUT PARAMETERS: ! fnum : file number for writing output (in,integer) ! !DESCRIPTION: ! Writes all contributions to the total energy to file. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments integer, intent(in) :: fnum write(fnum,*) write(fnum,'("Energies :")') write(fnum,'(" electronic kinetic",T30,": ",G18.10)') engykn write(fnum,'(" core electron kinetic",T30,": ",G18.10)') engykncr write(fnum,'(" Coulomb",T30,": ",G18.10)') engyvcl write(fnum,'(" Madelung",T30,": ",G18.10)') engymad write(fnum,'(" exchange-correlation",T30,": ",G18.10)') engyx if (rdmtemp > 0.d0) then write(fnum,'(" entropy",T30,": ",G18.10)') rdmentrpy end if write(fnum,'(" total energy",T30,": ",G18.10)') engytot flush(fnum) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmminc.f900000644000000000000000000000013214762655565014223 xustar0030 mtime=1741380469.310012862 30 atime=1741380468.082006442 30 ctime=1741380469.310012862 elk-10.4.9/src/rdmminc.f900000644002504400250440000000261014762655565016744 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmminc ! !INTERFACE: subroutine rdmminc ! !USES: use modmain use modrdm use modmpi ! !DESCRIPTION: ! Minimizes the total energy with respect to the second-variational ! coefficients {\tt evecsv}. The steepest-descent algorithm is used. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! local variables integer it if (maxitc < 1) return ! begin iteration loop do it=1,maxitc if (mp_mpi) then write(*,'("Info(rdmminc): iteration ",I4," of ",I4)') it,maxitc end if ! generate the density and magnetisation call rhomag ! calculate the Coulomb potential call potcoul ! calculate Coulomb potential matrix elements call genvmat(vclmt,vclir,vclmat) ! calculate derivative of kinetic energy w.r.t. evecsv call rdmdkdc ! write the Coulomb matrix elements to file call writevcl1223 ! update evecsv, orthogonalise and write to file call rdmvaryc ! calculate the energy call rdmenergy ! write energy to file if (mp_mpi) then write(62,'(I6,G18.10)') it,engytot flush(62) end if ! end iteration loop end do if (mp_mpi) then write(60,*) write(60,'("Natural orbital minimisation done")') write(62,*) if (spinpol) write(64,*) end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmvaryc.f900000644000000000000000000000013214762655565014421 xustar0030 mtime=1741380469.312012872 30 atime=1741380468.084006452 30 ctime=1741380469.312012872 elk-10.4.9/src/rdmvaryc.f900000644002504400250440000000233314762655565017144 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmvaryc ! !INTERFACE: subroutine rdmvaryc ! !USES: use modmain use modrdm use modmpi ! !DESCRIPTION: ! Calculates new {\tt evecsv} from old by using the derivatives of the total ! energy w.r.t. {\tt evecsv}. A single step of steepest-descent is made. ! ! !REVISION HISTORY: ! Created 2009 (Sharma) !EOP !BOC implicit none ! local variables integer ik ! allocatable arrays complex(8), allocatable :: dedc(:,:,:),evecsv(:,:) ! compute the derivative w.r.t. evecsv allocate(dedc(nstsv,nstsv,nkpt)) call rdmdedc(dedc) allocate(evecsv(nstsv,nstsv)) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! get the eigenvectors from file call getevecsv(filext,ik,vkl(:,ik),evecsv) ! calculate new evecsv evecsv(:,:)=evecsv(:,:)-taurdmc*dedc(:,:,ik) ! othogonalise evecsv call unitary(nstsv,evecsv) ! write new evecsv to file call putevecsv(filext,ik,evecsv) ! end loop over k-points end do deallocate(dedc,evecsv) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmdedc.f900000644000000000000000000000013214762655565014174 xustar0030 mtime=1741380469.313012877 30 atime=1741380468.086006463 30 ctime=1741380469.313012877 elk-10.4.9/src/rdmdedc.f900000644002504400250440000000260614762655565016722 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmdedc ! !INTERFACE: subroutine rdmdedc(dedc) ! !USES: use modmain use modrdm use modomp ! !INPUT/OUTPUT PARAMETERS: ! dedc : energy derivative (out,complex(nstsv,nstsv,nkpt)) ! !DESCRIPTION: ! Calculates the derivative of the total energy w.r.t. the second-variational ! coefficients {\tt evecsv}. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments complex(8), intent(out) :: dedc(nstsv,nstsv,nkpt) ! local variables integer ik,ist,nthd ! allocatable arrays complex(8), allocatable :: evecsv(:,:),c(:,:) call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv,c,ist) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv),c(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! get the eigenvectors from file call getevecsv(filext,ik,vkl(:,ik),evecsv) ! kinetic and Coulomb potential contribution call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,vclmat(:,:,ik),nstsv, & zzero,c,nstsv) do ist=1,nstsv dedc(:,ist,ik)=occsv(ist,ik)*(dkdc(:,ist,ik)+c(:,ist)) end do end do !$OMP END DO deallocate(evecsv,c) !$OMP END PARALLEL call freethd(nthd) ! exchange-correlation contribution call rdmdexcdc(dedc) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmengyxc.f900000644000000000000000000000013214762655565014572 xustar0030 mtime=1741380469.314012883 30 atime=1741380468.088006473 30 ctime=1741380469.314012883 elk-10.4.9/src/rdmengyxc.f900000644002504400250440000000353114762655565017316 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rdmengyxc ! !INTERFACE: subroutine rdmengyxc ! !USES: use modmain use modrdm ! !DESCRIPTION: ! Calculates RDMFT exchange-correlation energy. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! local variables integer ik1,ik2,jk,iv(3) integer ist1,ist2 real(8) t1,t2,t3,t4 ! allocatable arays real(8), allocatable :: vcl1221(:,:,:) ! calculate the prefactor if (rdmxctype == 0) then engyx=0.d0 return else if (rdmxctype == 1) then ! Hartree-Fock functional t1=0.5d0/occmax else if (rdmxctype == 2) then ! Power functional if (spinpol) then t1=0.5d0 else t1=(0.25d0)**rdmalpha end if else write(*,*) write(*,'("Error(rdmengyxc): rdmxctype not defined : ",I8)') rdmxctype write(*,*) stop end if ! exchange-correlation energy engyx=0.d0 allocate(vcl1221(nstsv,nstsv,nkpt)) ! start loop over non-reduced k-points do ik1=1,nkptnr call getvcl1221(ik1,vcl1221) ! find the equivalent reduced k-point iv(:)=ivk(:,ik1) jk=ivkik(iv(1),iv(2),iv(3)) do ist1=1,nstsv ! start loop over reduced k-points do ik2=1,nkpt do ist2=1,nstsv ! Hartree-Fock functional if (rdmxctype == 1) then t2=t1*wkpt(ik2)*occsv(ist2,ik2)*occsv(ist1,jk) ! Power functional else if (rdmxctype == 2) then t3=occsv(ist2,ik2)*occsv(ist1,jk) t4=sum(abs(vkl(:,ik2)-vkl(:,ik1))) if ((ist2 == ist1).and.(t4 < epslat)) then t2=(0.5d0/occmax)*wkpt(ik2)*t3 else t2=t1*wkpt(ik2)*(t3**rdmalpha) end if end if engyx=engyx-t2*vcl1221(ist2,ist1,ik2) end do end do end do end do deallocate(vcl1221) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmminn.f900000644000000000000000000000013214762655565014236 xustar0030 mtime=1741380469.316012893 30 atime=1741380468.089006478 30 ctime=1741380469.316012893 elk-10.4.9/src/rdmminn.f900000644002504400250440000000307014762655565016760 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmminn ! !INTERFACE: subroutine rdmminn ! !USES: use modmain use modrdm use modmpi ! !DESCRIPTION: ! Minimizes the total energy w.r.t. occupation numbers. The steepest-descent ! algorithm is used. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! local variables integer it,n if (maxitn < 1) return ! write the Coulomb matrix elements to file call writevcl1221 ! calculate derivative of kinetic energy w.r.t. evecsv call rdmdkdc ! begin iteration loop do it=1,maxitn if (mp_mpi) then if (mod(it,10) == 0) then write(*,'("Info(rdmminn): iteration ",I4," of ",I4)') it,maxitn end if end if ! generate the density and magnetisation call rhomag ! calculate the Coulomb potential call potcoul ! calculate Coulomb potential matrix elements call genvmat(vclmt,vclir,vclmat) ! update occupation numbers and write to file (MPI master process only) if (mp_mpi) call rdmvaryn ! broadcast occupation numbers to all other processes n=nstsv*nkpt call mpi_bcast(occsv,n,mpi_double_precision,0,mpicom,ierror) ! calculate the energy call rdmenergy ! write energy to file if (mp_mpi) then write(61,'(I6,G18.10)') it,engytot flush(61) end if ! end iteration loop end do if (mp_mpi) then write(60,*) write(60,'("Occupation number minimisation done")') write(61,*) if (spinpol) write(63,*) end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmvaryn.f900000644000000000000000000000013214762655565014434 xustar0030 mtime=1741380469.317012898 30 atime=1741380468.091006489 30 ctime=1741380469.317012898 elk-10.4.9/src/rdmvaryn.f900000644002504400250440000000735414762655565017167 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rdmvaryn ! !INTERFACE: subroutine rdmvaryn ! !USES: use modmain use modrdm use modmpi ! !DESCRIPTION: ! Calculates new occupation numbers from old by using the derivatives of the ! total energy: $n_i^{\rm new} = n_i^{\rm old}-\tau \gamma_i$, where $\tau$ is ! chosen such that $0 \le n_i \le n_{\rm max}$ with ! $$ \gamma_i=\begin{cases} ! g_i(n_{\rm max}-n_i) & g_i > 0 \\ ! g_i n_i & g_i\le 0 \end{cases} $$ ! where $g_i=\partial E/\partial n_i-\kappa$, and $\kappa$ is chosen such that ! $\sum_i\gamma_i=0$. ! ! !REVISION HISTORY: ! Created 2009 (JKD,Sharma) !EOP !BOC implicit none ! local variables integer, parameter :: maxit=10000 integer it,ik,ist real(8), parameter :: eps=1.d-12 real(8) tau,sm,gs,gsp,dgs real(8) kapa,dkapa,t1 ! allocatable arrays real(8), allocatable :: dedn(:,:),gamma(:,:) ! add constant to occupation numbers for charge conservation sm=0.d0 do ik=1,nkpt do ist=1,nstsv sm=sm+wkpt(ik)*occsv(ist,ik) end do end do t1=(chgval-sm)/dble(nstsv) occsv(:,:)=occsv(:,:)+t1 ! redistribute charge so that occupation numbers are in the interval [0,occmax] sm=0.d0 do ik=1,nkpt do ist=1,nstsv if (occsv(ist,ik) > occmax) then sm=sm+wkpt(ik)*(occsv(ist,ik)-occmax) occsv(ist,ik)=occmax end if if (occsv(ist,ik) < 0.d0) then sm=sm+wkpt(ik)*occsv(ist,ik) occsv(ist,ik)=0.d0 end if end do end do do ist=1,nstsv do ik=1,nkpt if (sm > 0.d0) then t1=wkpt(ik)*(occmax-occsv(ist,ik)) t1=min(t1,sm) occsv(ist,ik)=occsv(ist,ik)+t1/wkpt(ik) sm=sm-t1 else t1=wkpt(ik)*occsv(ist,ik) t1=min(t1,-sm) occsv(ist,ik)=occsv(ist,ik)-t1/wkpt(ik) sm=sm+t1 end if end do end do allocate(dedn(nstsv,nkpt)) allocate(gamma(nstsv,nkpt)) ! get the derivatives call rdmdedn(dedn) ! find suitable value of kapa such that sum of gamma is 0 gsp=0.d0 kapa=0.d0 dkapa=0.1d0 do it=1,maxit gs=0.d0 sm=0.d0 do ik=1,nkpt do ist=1,nstsv t1=dedn(ist,ik)-kapa if (t1 > 0.d0) then gamma(ist,ik)=t1*(occmax-occsv(ist,ik)) else gamma(ist,ik)=t1*occsv(ist,ik) end if gs=gs+wkpt(ik)*gamma(ist,ik) sm=sm+wkpt(ik)*gamma(ist,ik)**2 end do end do sm=sqrt(sm) sm=max(sm,1.d0) t1=abs(gs)/sm if (t1 < eps) goto 10 if (it >= 2) then dgs=gs-gsp if (gs*dgs > 0.d0) dkapa=-dkapa if (gs*gsp < 0.d0) then dkapa=0.5d0*dkapa else dkapa=1.1d0*dkapa end if end if gsp=gs kapa=kapa+dkapa end do write(*,*) write(*,'("Error(rdmvaryn): could not find offset")') write(*,*) stop 10 continue ! write derivatives and occupation numbers to file call rdmwritededn(dedn) deallocate(dedn) ! normalize gamma if sum of squares is greater than 1 sm=0.d0 do ik=1,nkpt do ist=1,nstsv sm=sm+wkpt(ik)*gamma(ist,ik)**2 end do end do if (sm > 1.d0) then t1=1.d0/sqrt(sm) gamma(:,:)=t1*gamma(:,:) end if ! find step size which keeps occupation numbers in the interval [0,occmax] tau=taurdmn 20 continue if (abs(tau) < eps) goto 30 do ik=1,nkpt do ist=1,nstsv t1=occsv(ist,ik)+tau*gamma(ist,ik) if (gamma(ist,ik) > 0.d0) then if (t1 > occmax+eps) then tau=0.75d0*tau goto 20 end if end if if (gamma(ist,ik) < 0.d0) then if (t1 < -eps) then tau=0.75d0*tau goto 20 end if end if end do end do 30 continue ! update occupation numbers and write to file do ik=1,nkpt do ist=1,nstsv occsv(ist,ik)=occsv(ist,ik)+tau*gamma(ist,ik) end do call putoccsv(filext,ik,occsv(:,ik)) end do deallocate(gamma) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmdkdc.f900000644000000000000000000000013214762655565014202 xustar0030 mtime=1741380469.318012903 30 atime=1741380468.093006499 30 ctime=1741380469.318012903 elk-10.4.9/src/rdmdkdc.f900000644002504400250440000000206014762655565016722 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmdkdc ! !INTERFACE: subroutine rdmdkdc ! !USES: use modmain use modrdm use modomp ! !DESCRIPTION: ! Calculates the derivative of kinetic energy w.r.t. the second-variational ! coefficients {\tt evecsv}. ! ! !REVISION HISTORY: ! Created October 2008 (Sharma) !EOP !BOC implicit none ! local variables integer ik,nthd ! allocatable arrays complex(8), allocatable :: evecsv(:,:),kmat(:,:) call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv,kmat) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv),kmat(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt call getevecsv(filext,ik,vkl(:,ik),evecsv) call getkmat(ik,kmat) call zgemm('N','N',nstsv,nstsv,nstsv,zone,kmat,nstsv,evecsv,nstsv,zzero, & dkdc(:,:,ik),nstsv) end do !$OMP END DO deallocate(evecsv,kmat) !$OMP END PARALLEL call freethd(nthd) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmenergy.f900000644000000000000000000000013114762655565014565 xustar0030 mtime=1741380469.320012914 29 atime=1741380468.09500651 30 ctime=1741380469.320012914 elk-10.4.9/src/rdmenergy.f900000644002504400250440000000427114762655565017314 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2005-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmenergy ! !INTERFACE: subroutine rdmenergy ! !USES: use modmain use modrdm use modtest ! !DESCRIPTION: ! Calculates RDMFT total energy (free energy for finite temperatures). ! ! !REVISION HISTORY: ! Created 2008 (Sharma) ! Updated for free energy 2009 (Baldsiefen) !EOP !BOC implicit none ! local variables integer ik,ist,is,ias integer nr,nri,ir,i real(8) wo complex(8) z1 ! automatic arrays real(8) rfmt(npmtmax) ! allocatable arrays complex(8), allocatable :: evecsv(:,:) ! external functions real(8), external :: rfmtinp complex(8), external :: zdotc ! Coulomb energy from core states engyvcl=0.d0 do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) rfmt(1:npmt(is))=0.d0 i=1 if (spincore) then ! spin-polarised core do ir=1,nri rfmt(i)=rhocr(ir,ias,1)+rhocr(ir,ias,2) i=i+lmmaxi end do do ir=nri+1,nr rfmt(i)=rhocr(ir,ias,1)+rhocr(ir,ias,2) i=i+lmmaxo end do else ! spin-unpolarised core do ir=1,nri rfmt(i)=rhocr(ir,ias,1) i=i+lmmaxi end do do ir=nri+1,nr rfmt(i)=rhocr(ir,ias,1) i=i+lmmaxo end do end if engyvcl=engyvcl+rfmtinp(nr,nri,wr2mt(:,is),rfmt,vclmt(:,ias)) end do engykn=engykncr allocate(evecsv(nstsv,nstsv)) do ik=1,nkpt call getevecsv(filext,ik,vkl(:,ik),evecsv) do ist=1,nstsv wo=wkpt(ik)*occsv(ist,ik) ! Coulomb energy from valence states engyvcl=engyvcl+wo*dble(vclmat(ist,ist,ik)) ! kinetic energy from valence states z1=zdotc(nstsv,evecsv(:,ist),1,dkdc(:,ist,ik),1) engykn=engykn+wo*dble(z1) end do end do deallocate(evecsv) ! Madelung term engymad=0.d0 do ias=1,natmtot is=idxis(ias) engymad=engymad+0.5d0*spzn(is)*(vclmt(1,ias)-vcln(1,is))*y00 end do ! exchange-correlation energy call rdmengyxc ! total energy engytot=0.5d0*engyvcl+engymad+engykn+engyx if (rdmtemp > 0.d0) then call rdmentropy engytot=engytot-rdmtemp*rdmentrpy end if ! write total energy to test file call writetest(300,'RDMFT total energy',tol=1.d-6,rv=engytot) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmwritededn.f900000644000000000000000000000013114762655565015261 xustar0030 mtime=1741380469.321012919 29 atime=1741380468.09700652 30 ctime=1741380469.321012919 elk-10.4.9/src/rdmwritededn.f900000644002504400250440000000203714762655565020006 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU Lesser General Public ! License. See the file COPYING for license details. !BOP ! !ROUTINE: rdmwritededn ! !INTERFACE: subroutine rdmwritededn(dedn) ! !USES: use modmain use modrdm ! !INPUT/OUTPUT PARAMETERS: ! dedn : derivative of energy (in,real(nstsv,nkpt)) ! !DESCRIPTION: ! Writes the derivative of total energy with respect to occupation numbers to ! file {\tt RDM\_DEDN.OUT}. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments real(8), intent(in) :: dedn(nstsv,nkpt) ! local variables integer ik,ist open(50,file='RDM_DEDN.OUT',form='FORMATTED') write(50,'(I6," : nkpt")') nkpt write(50,'(I6," : nstsv")') nstsv do ik=1,nkpt write(50,*) write(50,'(I6,3G18.10," : k-point, vkl")') ik,vkl(:,ik) write(50,'(" (state, occupancy and derivative below)")') do ist=1,nstsv write(50,'(I6,4G18.10)') ist,occsv(ist,ik),-dedn(ist,ik) end do end do close(50) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmdedn.f900000644000000000000000000000013214762655565014207 xustar0030 mtime=1741380469.322012924 30 atime=1741380468.099006531 30 ctime=1741380469.322012924 elk-10.4.9/src/rdmdedn.f900000644002504400250440000000270014762655565016730 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmdedn ! !INTERFACE: subroutine rdmdedn(dedn) ! !USES: use modmain use modrdm use modomp ! !INPUT/OUTPUT PARAMETERS: ! dedn : free energy derivative (out,real(nstsv,nkpt)) ! !DESCRIPTION: ! Calculates the negative of the derivative of total free energy w.r.t. ! occupation numbers. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments real(8), intent(out) :: dedn(nstsv,nkpt) ! local variables integer ik,ist,nthd ! allocatable arrays complex(8), allocatable :: evecsv(:,:),c(:,:) call holdthd(nkpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv,c,ist) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv),c(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! get eigenvectors from file call getevecsv(filext,ik,vkl(:,ik),evecsv) ! kinetic and Coulomb potential contribution call zgemm('C','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,dkdc(:,:,ik),nstsv, & zzero,c,nstsv) do ist=1,nstsv dedn(ist,ik)=-(dble(c(ist,ist))+dble(vclmat(ist,ist,ik))) end do end do !$OMP END DO deallocate(evecsv,c) !$OMP END PARALLEL call freethd(nthd) ! add exchange correlation contribution call rdmdexcdn(dedn) ! add entropic contribution if needed if (rdmtemp > 0.d0) call rdmdtsdn(dedn) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmdexcdn.f900000644000000000000000000000013214762655565014542 xustar0030 mtime=1741380469.324012935 30 atime=1741380468.101006541 30 ctime=1741380469.324012935 elk-10.4.9/src/rdmdexcdn.f900000644002504400250440000000420314762655565017263 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmdexcdn ! !INTERFACE: subroutine rdmdexcdn(dedn) ! !USES: use modmain use modrdm ! !INPUT/OUTPUT PARAMETERS: ! dedn : energy derivative (inout,real(nstsv,nkpt)) ! !DESCRIPTION: ! Calculates the derivative of the exchange-correlation energy w.r.t. ! occupation numbers and adds the result to the total. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments real(8), intent(inout) :: dedn(nstsv,nkpt) ! local variables integer ik1,ik2,jk,iv(3) integer ist1,ist2 ! parameter for calculating the functional derivatives real(8), parameter :: eps=1.d-12 real(8) t1,t2,t3,t4 ! allocatable arays real(8), allocatable :: vcl1221(:,:,:) if (rdmxctype == 0) return ! calculate the prefactor if (rdmxctype == 1) then t1=1.d0/occmax ! Power functional else if (rdmxctype == 2) then if (spinpol) then t1=rdmalpha else t1=2.d0*rdmalpha*(0.25d0)**rdmalpha end if else write(*,*) write(*,'("Error(rdmdexcdn): rdmxctype not defined : ",I8)') rdmxctype write(*,*) stop end if allocate(vcl1221(nstsv,nstsv,nkpt)) ! start loop over non-reduced k-points do ik1=1,nkptnr ! get the Coulomb matrix elements call getvcl1221(ik1,vcl1221) ! find the equivalent reduced k-point iv(:)=ivk(:,ik1) jk=ivkik(iv(1),iv(2),iv(3)) ! loop over reduced k-points do ik2=1,nkpt do ist1=1,nstsv do ist2=1,nstsv ! Hartree-Fock functional if (rdmxctype == 1) then t2=t1*occsv(ist1,jk) ! Power functional else if (rdmxctype == 2) then t3=sum(abs(vkl(:,ik2)-vkl(:,ik1))) if ((ist2 == ist1).and.(t3 < epslat)) then t2=(1.d0/occmax)*occsv(ist1,jk) else t3=max(occsv(ist2,ik2),eps) t4=max(occsv(ist1,jk),eps) t2=t1*(t4**rdmalpha)/(t3**(1.d0-rdmalpha)) end if end if dedn(ist2,ik2)=dedn(ist2,ik2)+t2*vcl1221(ist2,ist1,ik2) end do end do end do end do deallocate(vcl1221) end subroutine !EOC elk-10.4.9/src/PaxHeaders/genvcl1223.f900000644000000000000000000000013014762655565014356 xustar0029 mtime=1741380469.32501294 30 atime=1741380468.104006557 29 ctime=1741380469.32501294 elk-10.4.9/src/genvcl1223.f900000644002504400250440000001170414762655565017105 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genvcl1223 ! !INTERFACE: subroutine genvcl1223(ikp,vcl1223) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ikp : k-point from non-reduced set (in,integer) ! vcl1223 : Coulomb matrix elements (out,complex(nstsv,nstsv,nstsv,nkpt)) ! !DESCRIPTION: ! Calculates Coulomb matrix elements of the type ! $$ V(1,2,2,3)=\int d^3r\,d^3r'\,\frac{\varphi_{i_1{\bf k}}^*({\bf r}) ! \varphi_{i_2{\bf k}'}({\bf r})\varphi_{i_2{\bf k}'}^*({\bf r}') ! \varphi_{i_3{\bf k}}({\bf r}')}{|{\bf r}-{\bf r}'|}. $$ ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments integer, intent(in) :: ikp complex(8), intent(out) :: vcl1223(nstsv,nstsv,nstsv,nkpt) ! local variables integer ik,ist1,ist2,ist3 integer iv(3),iq,ig real(8) vc(3) complex(8) z1 ! allocatable arrays real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqrmt(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:,:),crhoir(:,:) complex(4), allocatable :: cvclmt(:,:),cvclir(:) ! external functions complex(8), external :: zcfinp ! allocate local arrays allocate(vgqc(3,ngvc),gqc(ngvc),gclgq(ngvc)) allocate(jlgqrmt(0:lnpsd,ngvc,nspecies)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(ylmgq(lmmaxo,ngvc),sfacgq(ngvc,natmtot)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(crhomt(npcmtmax,natmtot,nstsv),crhoir(ngtc,nstsv)) allocate(cvclmt(npcmtmax,natmtot),cvclir(ngtc)) ! get the eigenvectors from file for non-reduced k-point ikp call getevecfv(filext,0,vkl(:,ikp),vgkl(:,:,1,ikp),evecfv) call getevecsv(filext,0,vkl(:,ikp),evecsv) ! find the matching coefficients call match(ngk(1,ikp),vgkc(:,:,1,ikp),gkc(:,1,ikp),sfacgk(:,:,1,ikp),apwalm) ! calculate the wavefunctions for all states of passed non-reduced k-point ikp call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ikp),igkig(:,1,ikp),& apwalm,evecfv,evecsv,wfmt2,ngtc,wfir2) ! start loop over reduced k-point set do ik=1,nkpt ! determine the q-vector iv(:)=ivk(:,ik)-ivk(:,ikp) iv(:)=modulo(iv(:),ngridk(:)) ! check if the q-point is in user-defined set iv(:)=iv(:)*ngridq(:) if (any(mod(iv(:),ngridk(:)) /= 0)) cycle iv(:)=iv(:)/ngridk(:) iq=ivqiq(iv(1),iv(2),iv(3)) vc(:)=vkc(:,ik)-vkc(:,ikp) do ig=1,ngvc ! determine the G+q-vectors vgqc(1:3,ig)=vgc(1:3,ig)+vc(1:3) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(.true.,lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! structure factors for G+q call gensfacgp(ngvc,vgqc,ngvc,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngvc,gqc,gclgq) ! compute the required spherical Bessel functions call genjlgprmt(lnpsd,ngvc,gqc,ngvc,jlgqrmt) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! calculate the wavefunctions for all states of the reduced k-point call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ik),igkig(:,1,ik),& apwalm,evecfv,evecsv,wfmt1,ngtc,wfir1) !----------------------------------------------! ! valence-valence-valence contribution ! !----------------------------------------------! do ist2=1,nstsv do ist1=1,nstsv ! calculate the complex overlap density for all states call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist2),wfir2(:,:,ist2), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt(:,:,ist1),crhoir(:,ist1)) end do do ist3=1,nstsv ! compute the Coulomb potential call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax, & crhomt(:,:,ist3),cvclmt) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gqc, & gclgq,ngvc,jlgqrmt,ylmgq,sfacgq,crhoir(:,ist3),npcmtmax,cvclmt,cvclir) cvclir(1:ngtc)=cvclir(1:ngtc)*cfrc(1:ngtc) do ist1=ist3,nstsv z1=zcfinp(crhomt(:,:,ist1),crhoir(:,ist1),cvclmt,cvclir) vcl1223(ist1,ist3,ist2,ik)=wqptnr*z1 end do end do end do ! calculate the lower diagonal do ist1=1,nstsv do ist3=1,ist1-1 vcl1223(ist3,ist1,1:nstsv,ik)=conjg(vcl1223(ist1,ist3,1:nstsv,ik)) end do end do ! end loop over reduced k-point set end do deallocate(vgqc,gqc,gclgq,jlgqrmt) deallocate(apwalm,evecfv,evecsv,ylmgq,sfacgq) deallocate(wfmt1,wfmt2,wfir1,wfir2) deallocate(crhomt,crhoir,cvclmt,cvclir) end subroutine !EOC elk-10.4.9/src/PaxHeaders/getvcl1221.f900000644000000000000000000000013214762655565014364 xustar0030 mtime=1741380469.326012945 30 atime=1741380468.106006567 30 ctime=1741380469.326012945 elk-10.4.9/src/getvcl1221.f900000644002504400250440000000173514762655565017114 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: getvcl1221 ! !INTERFACE: subroutine getvcl1221(ikp,vcl1221) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ikp : k-point from non-reduced set (in,integer) ! vcl1221 : Coulomb matrix elements (out,real(nstsv,nstsv,nkpt)) ! !DESCRIPTION: ! Retrieves Coulomb matrix elements of the type $V(1,2,2,1)$ from the file ! {\tt VCL1221.OUT}. ! ! !REVISION HISTORY: ! Created 2009 (Sharma) !EOP !BOC implicit none ! arguments integer, intent(in) :: ikp real(8), intent(out) :: vcl1221(nstsv,nstsv,nkpt) ! local variables integer recl ! determine record length inquire(iolength=recl) vcl1221 !$OMP CRITICAL(u260) open(260,file='VCL1221.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(260,rec=ikp) vcl1221 close(260) !$OMP END CRITICAL(u260) end subroutine !EOC elk-10.4.9/src/PaxHeaders/getvcl1223.f900000644000000000000000000000013214762655565014366 xustar0030 mtime=1741380469.328012956 30 atime=1741380468.108006578 30 ctime=1741380469.328012956 elk-10.4.9/src/getvcl1223.f900000644002504400250440000000175714762655565017122 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: getvcl1223 ! !INTERFACE: subroutine getvcl1223(ikp,vcl1223) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ikp : k-point from non-reduced set (in,integer) ! vcl1223 : Coulomb matrix elements (out,complex(nstsv,nstsv,nstsv,nkpt)) ! !DESCRIPTION: ! Retrieves Coulomb matrix elements of the type $V(1,2,2,3)$ from the file ! {\tt VCL1223.OUT}. ! ! !REVISION HISTORY: ! Created 2009 (Sharma) !EOP !BOC implicit none ! arguments integer, intent(in) :: ikp complex(8), intent(out) :: vcl1223(nstsv,nstsv,nstsv,nkpt) ! local variables integer recl ! determine record length inquire(iolength=recl) vcl1223 !$OMP CRITICAL(u262) open(262,file='VCL1223.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(262,rec=ikp) vcl1223 close(262) !$OMP END CRITICAL(u262) end subroutine !EOC elk-10.4.9/src/PaxHeaders/writevcl1221.f900000644000000000000000000000013214762655565014737 xustar0030 mtime=1741380469.329012961 30 atime=1741380468.110006588 30 ctime=1741380469.329012961 elk-10.4.9/src/writevcl1221.f900000644002504400250440000000300514762655565017457 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writevcl1221 ! !INTERFACE: subroutine writevcl1221 ! !USES: use modmain use modmpi use modomp ! !DESCRIPTION: ! Generates Coulomb matrix elements of the type $V(1,2,2,1)$ and outputs them ! to the file {\tt VCL1221.OUT}. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! allocatable arrays real(8), allocatable :: vcl1221(:,:,:) integer recl,ik,nthd ! determine record length for vcl1221 and open file allocate(vcl1221(nstsv,nstsv,nkpt)) inquire(iolength=recl) vcl1221 deallocate(vcl1221) open(260,file='VCL1221.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(vcl1221) & !$OMP NUM_THREADS(nthd) allocate(vcl1221(nstsv,nstsv,nkpt)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(writevcl1221_) write(*,'("Info(writevcl1221): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(writevcl1221_) ! calculate Coulomb matrix elements of the type V(1,2,2,1) call genvcl1221(ik,vcl1221) !$OMP CRITICAL(u260) write(260,rec=ik) vcl1221 !$OMP END CRITICAL(u260) end do !$OMP END DO deallocate(vcl1221) !$OMP END PARALLEL call freethd(nthd) close(260) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine !EOC elk-10.4.9/src/PaxHeaders/writevcl1223.f900000644000000000000000000000013214762655565014741 xustar0030 mtime=1741380469.330012966 30 atime=1741380468.112006599 30 ctime=1741380469.330012966 elk-10.4.9/src/writevcl1223.f900000644002504400250440000000417514762655565017472 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writevcl1223 ! !INTERFACE: subroutine writevcl1223 ! !USES: use modmain use modmpi use modomp ! !DESCRIPTION: ! Generates Coulomb matrix elements of the type $V(1,2,2,3)$ and outputs them ! to the file {\tt VCL1223.OUT}. Also writes the real diagonal of this matrix, ! $V(1,2,2,1)$, to {\tt VCL1221.OUT}. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! local variables integer ik,ist,recl,nthd ! allocatable arrays real(8), allocatable :: vcl1221(:,:,:) complex(8), allocatable :: vcl1223(:,:,:,:) ! determine record length for vcl1221 and open file allocate(vcl1221(nstsv,nstsv,nkpt)) inquire(iolength=recl) vcl1221 deallocate(vcl1221) open(260,file='VCL1221.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) ! determine record length for vcl1223 and open file allocate(vcl1223(nstsv,nstsv,nstsv,nkpt)) inquire(iolength=recl) vcl1223 deallocate(vcl1223) open(262,file='VCL1223.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(vcl1221,vcl1223,ist) & !$OMP NUM_THREADS(nthd) allocate(vcl1221(nstsv,nstsv,nkpt),vcl1223(nstsv,nstsv,nstsv,nkpt)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(writevcl1223_) write(*,'("Info(writevcl1223): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(writevcl1223_) ! calculate Coulomb matrix elements of the type V(1,2,2,3) call genvcl1223(ik,vcl1223) ! make a copy of the diagonal elements V(1,2,2,1) do ist=1,nstsv vcl1221(ist,:,:)=dble(vcl1223(ist,ist,:,:)) end do !$OMP CRITICAL(u260) write(260,rec=ik) vcl1221 !$OMP END CRITICAL(u260) !$OMP CRITICAL(u262) write(262,rec=ik) vcl1223 !$OMP END CRITICAL(u262) end do !$OMP END DO deallocate(vcl1221,vcl1223) !$OMP END PARALLEL call freethd(nthd) close(260) close(262) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmdexcdc.f900000644000000000000000000000013214762655565014527 xustar0030 mtime=1741380469.332012977 30 atime=1741380468.114006609 30 ctime=1741380469.332012977 elk-10.4.9/src/rdmdexcdc.f900000644002504400250440000000463714762655565017263 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmdexcdc ! !INTERFACE: subroutine rdmdexcdc(dedc) ! !USES: use modmain use modrdm ! !INPUT/OUTPUT PARAMETERS: ! dedc : energy derivative (inout,complex(nstsv,nstsv,nkpt)) ! !DESCRIPTION: ! Calculates the derivative of the exchange-correlation energy w.r.t. ! {\tt evecsv} and adds the result to the total. ! ! !REVISION HISTORY: ! Created 2008 (Sharma) !EOP !BOC implicit none ! arguments complex(8), intent(inout) :: dedc(nstsv,nstsv,nkpt) ! local variables integer ik1,ik2,jk,iv(3) integer ist1,ist2,ist3,ist4 real(8) t1,t2,t3 ! allocatable arrays complex(8), allocatable :: vcl1223(:,:,:,:),evecsv(:,:) if (rdmxctype == 0) return ! calculate the prefactor if (rdmxctype == 1) then ! Hartree-Fock functional t1=1.d0/occmax else if (rdmxctype == 2) then ! Power functional if (spinpol) then t1=1.d0 else t1=2.d0*(0.25d0)**rdmalpha end if else write(*,*) write(*,'("Error(rdmdexcdc): rdmxctype not defined : ",I8)') rdmxctype write(*,*) stop end if allocate(vcl1223(nstsv,nstsv,nstsv,nkpt)) allocate(evecsv(nstsv,nstsv)) ! start loop over non-reduced k-points do ik1=1,nkptnr ! get the Coulomb matrix elements call getvcl1223(ik1,vcl1223) ! find the equivalent reduced k-point iv(:)=ivk(:,ik1) jk=ivkik(iv(1),iv(2),iv(3)) ! start loop over reduced k-points do ik2=1,nkpt ! get the eigenvectors from file call getevecsv(filext,ik2,vkl(:,ik2),evecsv) do ist4=1,nstsv do ist3=1,nstsv do ist2=1,nstsv do ist1=1,nstsv if (rdmxctype == 1) then ! Hartree-Fock functional t2=t1*occsv(ist3,ik2)*occsv(ist4,jk) else if (rdmxctype == 2) then ! Power functional t3=sum(abs(vkl(:,ik2)-vkl(:,ik1))) if ((ist3 == ist4).and.(t3 < epslat)) then t2=(1.d0/occmax)*occsv(ist4,jk)**2 else t2=t1*(occsv(ist3,ik2)*occsv(ist4,jk))**rdmalpha end if end if dedc(ist2,ist3,ik2)=dedc(ist2,ist3,ik2)-t2*evecsv(ist2,ist1)* & vcl1223(ist1,ist3,ist4,ik2) end do end do end do end do ! end loop over reduced k-points end do ! end loop over non-reduced k-points end do deallocate(vcl1223,evecsv) end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmdtsdn.f900000644000000000000000000000013214762655565014411 xustar0030 mtime=1741380469.333012982 30 atime=1741380468.116006619 30 ctime=1741380469.333012982 elk-10.4.9/src/rdmdtsdn.f900000644002504400250440000000164014762655565017134 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 T. Baldsiefen, S. Sharma, J. K. Dewhurst and ! E. K. U. Gross. This file is distributed under the terms of the GNU Lesser ! General Public License. See the file COPYING for license details. !BOP ! !ROUTINE: rdmdtsdn ! !INTERFACE: subroutine rdmdtsdn(dedn) ! !USES: use modmain use modrdm ! !INPUT/OUTPUT PARAMETERS: ! dedn : energy derivative (inout,real(nstsv,nkpt)) ! !DESCRIPTION: ! Calculates the derivative of the entropic contribution to the free energy ! with respect to the occupation numbers and adds it to the total. ! ! !REVISION HISTORY: ! Created 2008 (Baldsiefen) !EOP !BOC implicit none ! arguments real(8), intent(inout) :: dedn(nstsv,nkpt) ! local variables integer ik,ist real(8) t1 do ik=1,nkpt do ist=1,nstsv t1=max(occsv(ist,ik),epsocc) t1=min(t1,occmax-epsocc) dedn(ist,ik)=dedn(ist,ik)-rdmtemp*kboltz*log(t1/(occmax-t1)) end do end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmentropy.f900000644000000000000000000000013114762655565014774 xustar0030 mtime=1741380469.334012987 29 atime=1741380468.11800663 30 ctime=1741380469.334012987 elk-10.4.9/src/rdmentropy.f900000644002504400250440000000156014762655565017521 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2008 T. Baldsiefen, S. Sharma, J. K. Dewhurst and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. !BOP ! !ROUTINE: rdmentropy ! !INTERFACE: subroutine rdmentropy ! !USES: use modmain use modrdm ! !DESCRIPTION: ! Calculates RDMFT entropy $S=-\sum_i n_i\log(n_i/n_{\rm max}) ! +(n_{\rm max}-n_i)\log(1-n_i/n_{\rm max})$, where $n_{\rm max}$ is the ! maximum allowed occupancy (1 or 2). ! ! !REVISION HISTORY: ! Created 2008 (Baldsiefen) !EOP !BOC implicit none ! local variables integer ik,ist real(8) t1 rdmentrpy=0.d0 do ik=1,nkpt do ist=1,nstsv t1=max(occsv(ist,ik),epsocc) t1=min(t1,occmax-epsocc) rdmentrpy=rdmentrpy-wkpt(ik)*(t1*log(t1/occmax) & +(occmax-t1)*log(1.d0-t1/occmax)) end do end do rdmentrpy=kboltz*rdmentrpy end subroutine !EOC elk-10.4.9/src/PaxHeaders/rdmeval.f900000644000000000000000000000013114762655565014223 xustar0030 mtime=1741380469.336012998 29 atime=1741380468.12000664 30 ctime=1741380469.336012998 elk-10.4.9/src/rdmeval.f900000644002504400250440000000165014762655565016750 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: rdmeval ! !INTERFACE: subroutine rdmeval ! !USES: use modmain use modrdm ! !DESCRIPTION: ! RDMFT eigenvalues are determined by calculating the derivative of the total ! energy with respect to the occupation number at half the maximum occupancy ! ($n_{\rm max}/2$). ! ! !REVISION HISTORY: ! Created 2009 (Sharma) !EOP !BOC implicit none ! local variables integer ik,ist real(8) t1 ! allocatable arrays real(8), allocatable :: dedn(:,:) allocate(dedn(nstsv,nkpt)) do ik=1,nkpt do ist=1,nstsv t1=occsv(ist,ik) occsv(ist,ik)=occmax/2.d0 call rdmdedn(dedn) evalsv(ist,ik)=-dedn(ist,ik) occsv(ist,ik)=t1 end do call putevalsv(filext,ik,evalsv(:,ik)) end do deallocate(dedn) end subroutine !EOC elk-10.4.9/src/PaxHeaders/genvcl1221.f900000644000000000000000000000013214762655565014356 xustar0030 mtime=1741380469.337013003 30 atime=1741380468.122006651 30 ctime=1741380469.337013003 elk-10.4.9/src/genvcl1221.f900000644002504400250440000001110714762655565017100 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genvcl1221 ! !INTERFACE: subroutine genvcl1221(ikp,vcl1221) ! !USES: use modmain ! !INPUT/OUTPUT PARAMETERS: ! ikp : k-point from non-reduced set (in,integer) ! vcl1221 : Coulomb matrix elements (out,real(nstsv,nstsv,nkpt)) ! !DESCRIPTION: ! Calculates the Coulomb matrix elements of the type $V(1,2,2,1)$. See the ! routine {\tt genvcl1223} for details. ! ! !REVISION HISTORY: ! Created June 2008 (Sharma) !EOP !BOC implicit none ! arguments integer, intent(in) :: ikp real(8), intent(out) :: vcl1221(nstsv,nstsv,nkpt) ! local variables integer ik,ist1,ist2 integer iv(3),iq,ig real(8) vc(3) complex(8) z1 ! allocatable arrays real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqrmt(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:),crhoir(:) complex(4), allocatable :: cvclmt(:,:),cvclir(:) ! external functions complex(8), external :: zcfinp ! allocate local arrays allocate(vgqc(3,ngvc),gqc(ngvc),gclgq(ngvc)) allocate(jlgqrmt(0:lnpsd,ngvc,nspecies)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(ylmgq(lmmaxo,ngvc),sfacgq(ngvc,natmtot)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(crhomt(npcmtmax,natmtot),crhoir(ngtc)) allocate(cvclmt(npcmtmax,natmtot),cvclir(ngtc)) ! get the eigenvectors from file for non-reduced k-point ikp call getevecfv(filext,0,vkl(:,ikp),vgkl(:,:,1,ikp),evecfv) call getevecsv(filext,0,vkl(:,ikp),evecsv) ! find the matching coefficients call match(ngk(1,ikp),vgkc(:,:,1,ikp),gkc(:,1,ikp),sfacgk(:,:,1,ikp),apwalm) ! calculate the wavefunctions for all states of passed non-reduced k-point ikp call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ikp),igkig(:,1,ikp),& apwalm,evecfv,evecsv,wfmt2,ngtc,wfir2) ! start loop over reduced k-point set do ik=1,nkpt ! determine the q-vector iv(1:3)=ivk(1:3,ik)-ivk(1:3,ikp) iv(1:3)=modulo(iv(1:3),ngridk(1:3)) ! check if the q-point is in user-defined set iv(1:3)=iv(1:3)*ngridq(1:3) if (any(mod(iv(1:3),ngridk(1:3)) /= 0)) cycle iv(1:3)=iv(1:3)/ngridk(1:3) iq=ivqiq(iv(1),iv(2),iv(3)) vc(1:3)=vkc(1:3,ik)-vkc(1:3,ikp) do ig=1,ngvc ! determine the G+q-vectors vgqc(1:3,ig)=vgc(1:3,ig)+vc(1:3) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(.true.,lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! structure factors for G+q call gensfacgp(ngvc,vgqc,ngvc,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngvc,gqc,gclgq) ! compute the required spherical Bessel functions call genjlgprmt(lnpsd,ngvc,gqc,ngvc,jlgqrmt) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! get the eigenvectors from file call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! calculate the wavefunctions for all states of the reduced k-point call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ik),igkig(:,1,ik),& apwalm,evecfv,evecsv,wfmt1,ngtc,wfir1) !----------------------------------------------! ! valence-valence-valence contribution ! !----------------------------------------------! do ist1=1,nstsv do ist2=1,nstsv ! calculate the complex overlap density call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist2),wfir2(:,:,ist2), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt,crhoir) ! compute the potential and G=0 coefficient of the density call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax,crhomt,cvclmt) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gqc, & gclgq,ngvc,jlgqrmt,ylmgq,sfacgq,crhoir,npcmtmax,cvclmt,cvclir) cvclir(1:ngtc)=cvclir(1:ngtc)*cfrc(1:ngtc) z1=zcfinp(crhomt,crhoir,cvclmt,cvclir) vcl1221(ist1,ist2,ik)=wqptnr*dble(z1) ! end loop over ist2 end do ! end loop over ist1 end do ! end loop over reduced k-point set end do deallocate(vgqc,gqc,gclgq,jlgqrmt) deallocate(apwalm,evecfv,evecsv,ylmgq,sfacgq) deallocate(wfmt1,wfmt2,wfir1,wfir2) deallocate(crhomt,crhoir,cvclmt,cvclir) end subroutine !EOC elk-10.4.9/src/PaxHeaders/gwdmat.f900000644000000000000000000000013214762655565014055 xustar0030 mtime=1741380469.338013008 30 atime=1741380468.124006661 30 ctime=1741380469.338013008 elk-10.4.9/src/gwdmat.f900000644002504400250440000000304014762655565016574 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gwdmat use modmain use modgw use modmpi use modomp implicit none ! local variables integer ik,lp,nthd ! initialise universal variables call init0 call init1 call init3 ! read Fermi energy from file call readfermi ! get the eigenvalues from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do ! determine the GW Fermi energy call gwefermi ! compute the GW density matrices and write the natural orbitals and occupation ! numbers to EVECSV.OUT and OCCSV.OUT, respectively call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call gwdmatk(ik) end do !$OMP END PARALLEL DO call freethd(nthd) ! broadcast occupation number array to every MPI process if (np_mpi > 1) then do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(occsv(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) end do end if if (mp_mpi) then ! write the occupation numbers to file do ik=1,nkpt call putoccsv(filext,ik,occsv(:,ik)) end do write(*,*) write(*,'("Info(gwdmat):")') write(*,'(" GW density matrices determined for each k-point")') write(*,*) write(*,'(" Natural orbitals and occupation numbers written to")') write(*,'(" EVECSV.OUT and OCCSV.OUT, respectively")') end if end subroutine elk-10.4.9/src/PaxHeaders/gwlocal.f900000644000000000000000000000013214762655565014222 xustar0030 mtime=1741380469.340013018 30 atime=1741380468.126006672 30 ctime=1741380469.340013018 elk-10.4.9/src/gwlocal.f900000644002504400250440000000364614762655565016755 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gwlocal(vmt,vir,bmt,bir) use modmain use modomp implicit none ! arguments real(8), intent(out) :: vmt(npcmtmax,natmtot),vir(ngtc) real(8), intent(out) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag) ! local variables integer idm,is,ias,nthd integer nrc,nrci,npc call holdthd(natmtot+1,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(ias,is) & !$OMP PRIVATE(nrc,nrci,npc,idm) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! convert exchange-correlation potential to a coarse radial mesh call rfmtftoc(nrc,nrci,vxcmt(:,ias),vmt(:,ias)) ! negate because V_xc should be removed from the self-energy vmt(1:npc,ias)=-vmt(1:npc,ias) ! convert to spherical coordinates call rbshtip(nrc,nrci,vmt(:,ias)) ! multiply by radial integration weights call rfcmtwr(nrc,nrci,wr2cmt(:,is),vmt(:,ias)) end do !$OMP END DO NOWAIT ! multiply -V_xc by the characteristic function and convert to coarse grid !$OMP SINGLE call rfirftoc(vxcir,vir) vir(1:ngtc)=-vir(1:ngtc) !$OMP END SINGLE NOWAIT ! do the same for B_xc in the spin-polarised case if (spinpol) then do idm=1,ndmag !$OMP DO SCHEDULE(DYNAMIC) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) call rfmtftoc(nrc,nrci,bxcmt(:,ias,idm),bmt(:,ias,idm)) bmt(1:npc,ias,idm)=-bmt(1:npc,ias,idm) call rbshtip(nrc,nrci,bmt(:,ias,idm)) call rfcmtwr(nrc,nrci,wr2cmt(:,is),bmt(:,ias,idm)) end do !$OMP END DO NOWAIT end do !$OMP SINGLE do idm=1,ndmag call rfirftoc(bxcir(:,idm),bir(:,idm)) bir(1:ngtc,idm)=-bir(1:ngtc,idm) end do !$OMP END SINGLE end if !$OMP END PARALLEL call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/genwgw.f900000644000000000000000000000013214762655565014070 xustar0030 mtime=1741380469.341013024 30 atime=1741380468.128006682 30 ctime=1741380469.341013024 elk-10.4.9/src/genwgw.f900000644002504400250440000000331014762655565016607 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine genwgw use modmain use modgw implicit none ! local variables integer ik,iw,jw,n real(8) de,t0,t1 t0=kboltz*tempk if (wmaxgw <= 0.d0) then ! read the Fermi energy from file call readfermi ! find the maximum eigenvalue range over all k-points do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do de=maxval(abs(evalsv(1:nstsv,1:nkpt)-efermi)) wmaxgw=abs(wmaxgw)*de end if ! number of Matsubara frequencies t1=pi*t0 nwgw=2*nint(wmaxgw/t1) nwgw=max(nwgw,2) call nfftifc(npfftw,1,nwgw) ! determine integer ranges for grid intwgw(1)=nwgw/2-nwgw+1 intwgw(2)=nwgw/2 if (allocated(iwfft)) deallocate(iwfft) allocate(iwfft(intwgw(1):intwgw(2))) if (allocated(wgw)) deallocate(wgw) allocate(wgw(intwgw(1):intwgw(2))) do iw=intwgw(1),intwgw(2) if (iw >= 0) then jw=iw else jw=nwgw+iw end if iwfft(iw)=jw+1 wgw(iw)=dble(iw)*t1 end do n=minval(abs(intwgw(1:2))) if (n == 0) then write(*,*) write(*,'("Error(genwgw): not enough Matsubara frequencies")') write(*,'("Increase wmaxgw")') write(*,*) stop end if if (mod(n,2) == 0) then nwbs=n nwfm=n-1 else nwfm=n nwbs=n-1 end if ! store the complex fermionic frequencies if (allocated(wfm)) deallocate(wfm) allocate(wfm(0:nwfm)) do iw=-nwfm,nwfm,2 jw=(iw+nwfm)/2 wfm(jw)=cmplx(0.d0,wgw(iw),8) end do ! store the complex response function frequencies nwrf=nwbs+1 if (allocated(wrf)) deallocate(wrf) allocate(wrf(nwrf)) do iw=-nwbs,nwbs,2 jw=(iw+nwbs)/2+1 wrf(jw)=cmplx(0.d0,wgw(iw),8) end do end subroutine elk-10.4.9/src/PaxHeaders/gwtails.f900000644000000000000000000000013214762655565014244 xustar0030 mtime=1741380469.343013034 30 atime=1741380468.130006693 30 ctime=1741380469.343013034 elk-10.4.9/src/gwtails.f900000644002504400250440000000432214762655565016767 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 A. Davydov, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: gwtails ! !INTERFACE: pure complex(8) function gwtails(ge) ! !USES: use modmain use modgw ! !INPUT/OUTPUT PARAMETERS: ! ge : Green's function at the Matsubara end points (in,complex(4)) ! !DESCRIPTION: ! Sums the tails of the Green's function over the Matsubara frequencies as ! part of the evaluation of the density matrix. Thus if the Green's function ! $G(ij{\bf k},\omega_n)$ has been determined numerically over all Fermionic ! Matsubara frequencies up to $\pm \omega_{N_{\rm F}}$, then the density ! matrix is approximated by ! $$ \gamma_{ij{\bf k}}=\frac{1}{\beta}\sum_{n\;{\rm odd}}^{\pm N_{\rm F}} ! \left[G(ij{\bf k},\omega_n)+\frac{a_2}{\omega_n^2} ! -\frac{a_4}{\omega_n^4}\right]+\frac{1}{\beta}\left[\frac{\beta}{2}a_1 ! -\frac{\beta^2}{4}a_2+\frac{\beta^4}{48}a_4\right], $$ ! where $a_1$, $a_2$ and $a_4$ are chosen so that the Green's function is ! equal to ! $$ g(z)=\frac{a_1}{z}+\frac{a_2}{z^2}+\frac{a_3}{z^3}+\frac{a_4}{z^4} $$ ! at the points $n\in \{-n_{\rm F}, -n_{\rm F}+2, n_{\rm F}-2, n_{\rm F}\}$. ! ! !REVISION HISTORY: ! Created April 2018 (A. Davydov) ! Increased Laurent series order to 4, December 2023 (JKD) !EOP !BOC implicit none ! arguments complex(8), intent(in) :: ge(4) ! local variables integer iw real(8) sm2,sm4,t1,t2,t3 real(8) c2,c3,c4,d2,d3,d4 complex(8) a1,a2,a4,z1,z2 ! π / β t1=pi*kboltz*tempk t2=1.d0/(8.d0*dble(nwfm-1)) t3=dble(nwfm) c2=t3**2 c3=c2*t3 c4=c3*t3 t3=dble(nwfm-2) d2=t3**2 d3=d2*t3 d4=d3*t3 ! determine the coefficients a1, a2 and a4 a1=(d3*(ge(2)-ge(3))+c3*(ge(4)-ge(1)))*t1*t2 a1=zi*a1 z1=ge(2)+ge(3) z2=ge(1)+ge(4) t3=t1**2 a2=(d4*z1-c4*z2)*t3*t2 t3=t3**2 a4=(d2*z1-c2*z2)*c2*d2*t3*t2 ! evaluate the sums analytically over all Matsubara frequencies t1=1.d0/(2.d0*kboltz*tempk) t2=t1**2 gwtails=a1*t1-a2*t2+a4*(t2**2)/3.d0 ! remove the contributions over the finite set of frequencies sm2=0.d0 sm4=0.d0 do iw=0,nwfm t1=aimag(wfm(iw))**2 sm2=sm2+1.d0/t1 sm4=sm4+1.d0/t1**2 end do gwtails=gwtails+sm2*a2-sm4*a4 end function !EOC elk-10.4.9/src/PaxHeaders/minf_nm.f900000644000000000000000000000013214762655565014215 xustar0030 mtime=1741380469.344013039 30 atime=1741380468.132006703 30 ctime=1741380469.344013039 elk-10.4.9/src/minf_nm.f900000644002504400250440000000402314762655565016736 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2007 J. K. Dewhurst and D. W. H. Rankin. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine minf_nm(id,rd,n,x,maxit,iter,eps) implicit none ! arguments integer, intent(in) :: id(*) real(8), intent(in) :: rd(*) integer, intent(in) :: n real(8), intent(inout) :: x(n,n+1) integer, intent(in) :: maxit integer, intent(out) :: iter real(8), intent(in) :: eps ! local variables integer i,j,il,iu ! Nelder-Mead parmeters real(8), parameter :: alpha=1.d0,gamma=2.d0 real(8), parameter :: beta=0.5d0,sigma=0.5d0 real(8) fr,fe,fc,sm,t1 ! automatic arrays real(8) f(n+1),xm(n),xr(n),xe(n),xc(n) ! external functions real(8), external :: fmin_nm if (n < 1) then write(*,*) write(*,'("Error(minf_nm): n < 1 : ",I8)') n write(*,*) stop end if ! evaluate the function at each vertex do i=1,n+1 f(i)=fmin_nm(id,rd,x(:,i)) end do iter=0 10 continue iter=iter+1 if (iter >= maxit) return ! find the lowest and highest vertex il=1 iu=1 do i=2,n+1 if (f(i) < f(il)) il=i if (f(i) > f(iu)) iu=i end do ! check for convergence if ((f(iu)-f(il)) < eps) return ! compute the mean of the n lowest vertices t1=1.d0/dble(n) do i=1,n sm=0.d0 do j=1,iu-1 sm=sm+x(i,j) end do do j=iu+1,n+1 sm=sm+x(i,j) end do xm(i)=t1*sm end do xr(:)=xm(:)+alpha*(xm(:)-x(:,iu)) fr=fmin_nm(id,rd,xr) if (f(il) > fr) goto 30 if ((f(il) <= fr).and.(fr < f(iu))) then ! reflection x(:,iu)=xr(:) f(iu)=fr goto 10 else goto 40 end if 30 continue xe(:)=xm(:)+gamma*(xr(:)-xm(:)) fe=fmin_nm(id,rd,xe) if (fr > fe) then ! expansion x(:,iu)=xe(:) f(iu)=fe else ! reflection x(:,iu)=xr(:) f(iu)=fr end if goto 10 40 continue xc(:)=xm(:)+beta*(x(:,iu)-xm(:)) fc=fmin_nm(id,rd,xc) if (fc < f(iu)) then ! contraction x(:,iu)=xc(:) f(iu)=fc goto 10 end if ! shrinkage do j=1,il-1 x(:,j)=x(:,il)+sigma*(x(:,j)-x(:,il)) f(j)=fmin_nm(id,rd,x(1,j)) end do do j=il+1,n+1 x(:,j)=x(:,il)+sigma*(x(:,j)-x(:,il)) f(j)=fmin_nm(id,rd,x(1,j)) end do goto 10 end subroutine elk-10.4.9/src/PaxHeaders/acpole.f900000644000000000000000000000013214762655565014035 xustar0030 mtime=1741380469.345013045 30 atime=1741380468.134006714 30 ctime=1741380469.345013045 elk-10.4.9/src/acpole.f900000644002504400250440000000262714762655565016566 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine acpole(zm,zwr,zr) use modmain use modgw implicit none ! arguments complex(8), intent(in) :: zm(0:nwfm),zwr(nwplot) complex(8), intent(out) :: zr(nwplot) ! local variables integer, parameter :: maxit=1000 integer iter,iw integer n,n2,i,j real(8), parameter :: eps=1.d-5 ! allocatable arrays real(8), allocatable :: x(:,:) ! external functions complex(8), external :: zfpole n=2*npole+1 n2=2*n allocate(x(n2,n2+1)) ! intialise simplex x(:,:)=0.d0 ! fit the constant x(1,2)=0.5d0 x(2,3)=0.5d0 call minf_nm(1,zm,n2,x,maxit,iter,eps) ! fit the constant and the first pole x(3,1)=1.d0 do i=1,6 x(i,i+1)=x(i,1)+0.1d0 end do call minf_nm(1,zm,n2,x,maxit,iter,eps) ! fit the remaining poles one-by-one i=7 do j=2,npole x(i,1)=1.d0 x(i,i+1)=x(i,1)+0.1d0 i=i+1 x(i,i+1)=0.1d0 i=i+1 x(i,i+1)=0.1d0 i=i+1 x(i,i+1)=0.1d0 i=i+1 call minf_nm(1,zm,n2,x,maxit,iter,eps) end do ! fit the constant and the first pole again do i=1,6 x(i,i+1)=x(i,1)+0.1d0 end do call minf_nm(1,zm,n2,x,maxit,iter,eps) ! fit everything together if (npole > 1) then do i=1,n2 x(i,i+1)=x(i,1)+0.1d0 end do call minf_nm(1,zm,n2,x,maxit,iter,eps) end if do iw=1,nwplot zr(iw)=zfpole(x(:,1),zwr(iw)) end do deallocate(x) end subroutine elk-10.4.9/src/PaxHeaders/gwrhomag.f900000644000000000000000000000013214762655565014405 xustar0030 mtime=1741380469.347013055 30 atime=1741380468.136006724 30 ctime=1741380469.347013055 elk-10.4.9/src/gwrhomag.f900000644002504400250440000000500314762655565017125 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gwrhomag use modmain use modgw use modmpi use modomp implicit none ! local variables integer ik,lp,nthd ! allocatable arrays real(8), allocatable :: vmt(:,:),vir(:) real(8), allocatable :: bmt(:,:,:),bir(:,:) complex(8), allocatable :: se(:,:,:) ! generate the momentum matrix elements call genpmat ! generate the inverse RPA response function call epsinv ! compute the matrix elements of -V_xc and -B_xc allocate(vmt(npcmtmax,natmtot),vir(ngtc)) if (spinpol) then allocate(bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag)) end if call gwlocal(vmt,vir,bmt,bir) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) if (mp_mpi) write(*,*) ! loop over reduced k-point set call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(se) & !$OMP NUM_THREADS(nthd) allocate(se(nstsv,nstsv,0:nwfm)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(gwrhomag_) write(*,'("Info(gwrhomag): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(gwrhomag_) ! determine the self-energy at the fermionic frequencies for current k-point call gwsefmk(ik,vmt,vir,bmt,bir,se) ! write the self-energy to file call putgwsefm(ik,se) end do !$OMP END DO deallocate(se) !$OMP END PARALLEL call freethd(nthd) deallocate(vmt,vir) if (spinpol) deallocate(bmt,bir) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! determine the GW Fermi energy call gwefermi ! compute the GW density matrices and write the natural orbitals and occupation ! numbers to EVECSV.OUT and OCCSV.OUT, respectively call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call gwdmatk(ik) end do !$OMP END PARALLEL DO call freethd(nthd) ! broadcast occupation number array to every MPI process if (np_mpi > 1) then do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(occsv(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) end do end if ! write the occupation numbers to file if (mp_mpi) then do ik=1,nkpt call putoccsv(filext,ik,occsv(:,ik)) end do end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! determine the density and magnetisation in the usual way call rhomag end subroutine elk-10.4.9/src/PaxHeaders/gwdmatk.f900000644000000000000000000000013014762655565014226 xustar0029 mtime=1741380469.34801306 30 atime=1741380468.138006734 29 ctime=1741380469.34801306 elk-10.4.9/src/gwdmatk.f900000644002504400250440000000523714762655565016761 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gwdmatk(ik) use modmain use modgw use modomp implicit none ! arguments integer, intent(in) :: ik ! local variables integer ist,jst,iw,i,nthd real(8) e,t1 complex(8) z1 ! automatic arrays complex(8) gs(nstsv),g(nstsv,nstsv),ge(4,nstsv,nstsv) complex(8) evecsv(nstsv,nstsv),d(nstsv,nstsv),a(nstsv,nstsv) ! allocatable arrays complex(8), allocatable :: se(:,:,:) ! external functions complex(8), external :: gwtails ! read the self-energy from file allocate(se(nstsv,nstsv,0:nwfm)) call getgwsefm(ik,se) ! zero the density matrix d(1:nstsv,1:nstsv)=0.d0 ! loop over fermionic Matsubara frequencies call holdthd(nwfm+1,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(gs,g,ist,jst,e,z1,i) & !$OMP REDUCTION(+:d) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do iw=0,nwfm ! compute the diagonal matrix G_s do ist=1,nstsv e=evalsv(ist,ik)-efermi gs(ist)=1.d0/(wfm(iw)-e) end do ! compute 1 - G_s Σ do ist=1,nstsv z1=-gs(ist) g(ist,1:nstsv)=z1*se(ist,1:nstsv,iw) g(ist,ist)=g(ist,ist)+1.d0 end do ! invert this matrix call zminv(nstsv,g) ! compute G = (1 - G_s Σ)⁻¹ G_s do jst=1,nstsv z1=gs(jst) g(1:nstsv,jst)=g(1:nstsv,jst)*z1 end do ! add to the density matrix d(1:nstsv,1:nstsv)=d(1:nstsv,1:nstsv)+g(1:nstsv,1:nstsv) ! store the Green's function at the end point frequencies i=0 if (iw == 0) i=1 if (iw == 1) i=2 if (iw == nwfm-1) i=3 if (iw == nwfm) i=4 if (i /= 0) ge(i,1:nstsv,1:nstsv)=g(1:nstsv,1:nstsv) end do !$OMP END PARALLEL DO call freethd(nthd) ! add the Matsubara tails analytically do jst=1,nstsv do ist=1,nstsv d(ist,jst)=d(ist,jst)+gwtails(ge(:,ist,jst)) end do end do ! multiply by 1/β t1=kboltz*tempk d(1:nstsv,1:nstsv)=t1*d(1:nstsv,1:nstsv) deallocate(se) ! make density matrix Hermitian do ist=1,nstsv do jst=1,ist-1 z1=0.5d0*(d(ist,jst)+conjg(d(jst,ist))) d(ist,jst)=z1 d(jst,ist)=conjg(z1) end do d(ist,ist)=dble(d(ist,ist)) end do ! diagonalise the density matrix for the natural orbitals and occupation numbers call eveqnzh(nstsv,nstsv,d,occsv(:,ik)) occsv(1:nstsv,ik)=occsv(1:nstsv,ik)*occmax ! get the second-variational eigenvectors from file call getevecsv(filext,ik,vkl(:,ik),evecsv) ! apply unitary transformation to the third-variational states so that they ! refer to the first-variational basis call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,d,nstsv,zzero,a,nstsv) ! write the density matrix to file as second-variational eigenvectors call putevecsv(filext,ik,a) end subroutine elk-10.4.9/src/PaxHeaders/gwefermi.f900000644000000000000000000000013114762655565014376 xustar0030 mtime=1741380469.350013071 29 atime=1741380468.14100675 30 ctime=1741380469.350013071 elk-10.4.9/src/gwefermi.f900000644002504400250440000000332014762655565017117 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 P. Elliott, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gwefermi use modmain use modgw use modmpi use modomp implicit none ! local variables logical done integer, parameter :: maxit=1000 integer ik,ist,it,nthd real(8) e0,e1,e,chg,chgk if (mp_mpi) then write(*,*) write(*,'("Info(gwefermi): finding the GW Fermi energy")') end if ! find minimum and maximum eigenvalues e0=evalsv(1,1) e1=e0 do ik=1,nkpt do ist=1,nstsv e=evalsv(ist,ik) if (e < e0) e0=e if (e > e1) e1=e end do end do done=.false. do it=1,maxit if (mp_mpi.and.(mod(it,10) == 0)) then write(*,'("Info(gwefermi): done ",I4," iterations")') it end if efermi=0.5d0*(e0+e1) chg=0.d0 ! begin parallel loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(chgk) REDUCTION(+:chg) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call gwchgk(ik,chgk) chg=chg+chgk end do !$OMP END PARALLEL DO call freethd(nthd) ! add charge from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,chg,1,mpi_double_precision,mpi_sum,mpicom, & ierror) end if if (chg < chgval) then e0=efermi else e1=efermi end if ! check for convergence if ((e1-e0) < 1.d-12) done=.true. ! broadcast done from master process to all other processes call mpi_bcast(done,1,mpi_logical,0,mpicom,ierror) if (done) return end do write(*,*) write(*,'("Warning(gwefermi): could not find GW Fermi energy")') end subroutine elk-10.4.9/src/PaxHeaders/dysonr.f900000644000000000000000000000013214762655565014110 xustar0030 mtime=1741380469.351013076 30 atime=1741380468.143006761 30 ctime=1741380469.351013076 elk-10.4.9/src/dysonr.f900000644002504400250440000000370414762655565016636 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine dysonr(ik,wr,sem,sf) use modmain use modgw use modomp implicit none ! arguments integer, intent(in) :: ik real(8), intent(in) :: wr(nwplot) complex(8), intent(in) :: sem(nstsv,nstsv,0:nwfm) real(8), intent(out) :: sf(nwplot) ! local variables integer ist,jst,iw,nthd real(8) w,e,sm,t1 complex(8) z1 ! allocatable arrays complex(8), allocatable :: ser(:,:,:),gs(:),g(:,:) allocate(ser(nstsv,nstsv,nwplot)) ser(1:nstsv,1:nstsv,1:nwplot)=0.d0 call holdthd(nstsv,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ist) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do jst=1,nstsv do ist=1,nstsv if (tsediag.and.(ist /= jst)) cycle ! perform numerical analytic continuation from the imaginary to the real axis call acgwse(ist,jst,sem,wr,ser) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! solve the Dyson equation for each frequency call holdthd(nwplot,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(gs,g,w,ist,jst) & !$OMP PRIVATE(e,t1,z1,sm) & !$OMP NUM_THREADS(nthd) allocate(gs(nstsv),g(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do iw=1,nwplot w=wr(iw) ! compute the diagonal matrix Gₛ do ist=1,nstsv e=evalsv(ist,ik)-efermi t1=sign(swidth,e) gs(ist)=1.d0/cmplx(w-e,t1,8) end do ! compute 1 - Gₛ Σ do ist=1,nstsv z1=-gs(ist) g(ist,1:nstsv)=z1*ser(ist,1:nstsv,iw) g(ist,ist)=g(ist,ist)+1.d0 end do ! invert this matrix call zminv(nstsv,g) ! compute G = (1 - Gₛ Σ)⁻¹ Gₛ do jst=1,nstsv z1=gs(jst) g(1:nstsv,jst)=g(1:nstsv,jst)*z1 end do ! determine the spectral function sm=0.d0 do ist=1,nstsv sm=sm+abs(aimag(g(ist,ist))) end do sf(iw)=sm*occmax/pi end do !$OMP END DO deallocate(gs,g) !$OMP END PARALLEL call freethd(nthd) deallocate(ser) end subroutine elk-10.4.9/src/PaxHeaders/gwsefm.f900000644000000000000000000000013214762655565014062 xustar0030 mtime=1741380469.352013081 30 atime=1741380468.145006771 30 ctime=1741380469.352013081 elk-10.4.9/src/gwsefm.f900000644002504400250440000000437114762655565016611 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gwsefm use modmain use modgw use modmpi use modomp implicit none ! local variables integer ik,nthd ! allocatable arrays real(8), allocatable :: vmt(:,:),vir(:) real(8), allocatable :: bmt(:,:,:),bir(:,:) complex(8), allocatable :: se(:,:,:) ! initialise universal variables call init0 call init1 call init2 call init3 ! read density and potentials from file call readstate ! generate the core wavefunctions and densities call gencore ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! write the momentum matrix elements in the second-variational basis to file call genpmat ! generate the inverse dielectric function and write to file call epsinv ! compute the matrix elements of -V_xc and -B_xc allocate(vmt(npcmtmax,natmtot),vir(ngtc)) if (spinpol) then allocate(bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag)) end if call gwlocal(vmt,vir,bmt,bir) if (mp_mpi) write(*,*) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! loop over reduced k-point set call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(se) & !$OMP NUM_THREADS(nthd) allocate(se(nstsv,nstsv,0:nwfm)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(gwsefm_) write(*,'("Info(gwsefm): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(gwsefm_) ! determine the self-energy at the fermionic frequencies for current k-point call gwsefmk(ik,vmt,vir,bmt,bir,se) ! write the self-energy to file call putgwsefm(ik,se) end do !$OMP END DO deallocate(se) !$OMP END PARALLEL call freethd(nthd) if (mp_mpi) then write(*,*) write(*,'("Info(gwsefm): GW self-energy at the fermionic frequencies & &written to GWSEFM.OUT")') end if deallocate(vmt,vir) if (spinpol) deallocate(bmt,bir) end subroutine elk-10.4.9/src/PaxHeaders/putgwsefm.f900000644000000000000000000000013214762655565014613 xustar0030 mtime=1741380469.354013092 30 atime=1741380468.147006781 30 ctime=1741380469.354013092 elk-10.4.9/src/putgwsefm.f900000644002504400250440000000157314762655565017343 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine putgwsefm(ik,se) use modmain use modgw use modramdisk implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: se(nstsv,nstsv,0:nwfm) ! local variables integer recl !$OMP CRITICAL(u280) ! write to RAM disk if required if (ramdisk) then call putrd('GWSEFM.OUT',ik,v1=vkl(1:3,ik),n1=nstsv,n2=nwfm, & nzv=nstsv*nstsv*(nwfm+1),zva=se) end if ! write to disk if required if (wrtdsk) then ! find the record length inquire(iolength=recl) vkl(1:3,ik),nstsv,nwfm,se open(280,file='GWSEFM.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(280,rec=ik) vkl(1:3,ik),nstsv,nwfm,se close(280) end if !$OMP END CRITICAL(u280) end subroutine elk-10.4.9/src/PaxHeaders/getgwsefm.f900000644000000000000000000000013214762655565014562 xustar0030 mtime=1741380469.355013097 30 atime=1741380468.149006792 30 ctime=1741380469.355013097 elk-10.4.9/src/getgwsefm.f900000644002504400250440000000313614762655565017307 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine getgwsefm(ik,se) use modmain use modgw use modramdisk implicit none ! arguments integer, intent(in) :: ik complex(8), intent(out) :: se(nstsv,nstsv,0:nwfm) ! local variables logical tgs integer recl,nstsv_,nwfm_ real(8) vkl_(3),t1 !$OMP CRITICAL(u280) ! read from RAM disk if required if (ramdisk) then call getrd('GWSEFM.OUT',ik,tgs,v1=vkl_,n1=nstsv_,n2=nwfm_, & nzv=nstsv*nstsv*(nwfm+1),zva=se) if (tgs) goto 10 end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,nwfm_,se open(280,file='GWSEFM.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(280,rec=ik) vkl_,nstsv_,nwfm_,se close(280) 10 continue !$OMP END CRITICAL(u280) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getgwsefm): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" GWSEFM.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getgwsefm): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" GWSEFM.OUT : ",I8)') nstsv_ write(*,*) stop end if if (nwfm /= nwfm_) then write(*,*) write(*,'("Error(getgwsefm): differing nwfm for k-point ",I8)') ik write(*,'(" current : ",I8)') nwfm write(*,'(" GWSEFM.OUT : ",I8)') nwfm_ write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/polefit.f900000644000000000000000000000013214762655565014234 xustar0030 mtime=1741380469.356013102 30 atime=1741380468.151006802 30 ctime=1741380469.356013102 elk-10.4.9/src/polefit.f900000644002504400250440000000101614762655565016754 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function polefit(zfm,c) use modgw implicit none ! arguments complex(8), intent(in) :: zfm(0:nwfm),c(2*npole+1) ! local variables integer iw complex(8) z1 ! external functions complex(8), external :: zfpole polefit=0.d0 do iw=0,nwfm z1=zfm(iw)-zfpole(c,wfm(iw)) polefit=polefit+dble(z1)**2+aimag(z1)**2 end do end function elk-10.4.9/src/PaxHeaders/gwchgk.f900000644000000000000000000000013214762655565014044 xustar0030 mtime=1741380469.357013107 30 atime=1741380468.153006813 30 ctime=1741380469.357013107 elk-10.4.9/src/gwchgk.f900000644002504400250440000000342314762655565016570 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 P. Elliott, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gwchgk(ik,chgk) use modmain use modgw use modomp implicit none ! arguments integer, intent(in) :: ik real(8), intent(out) :: chgk ! local variables integer ist,iw,i,nthd real(8) e complex(8) z1 ! automatic arrays complex(8) gs(nstsv),g(nstsv,nstsv),ge(4,nstsv) ! allocatable arrays complex(8), allocatable :: se(:,:,:) ! external functions complex(8), external :: gwtails ! read the self-energy from file allocate(se(nstsv,nstsv,0:nwfm)) call getgwsefm(ik,se) ! zero the charge chgk=0.d0 ! loop over fermionic Matsubara frequencies call holdthd(nwfm+1,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(gs,g,ist,e,z1,i) & !$OMP REDUCTION(+:chgk) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do iw=0,nwfm ! compute the diagonal matrix G_s do ist=1,nstsv e=evalsv(ist,ik)-efermi gs(ist)=1.d0/(wfm(iw)-e) end do ! compute 1 - G_s Σ do ist=1,nstsv z1=-gs(ist) g(ist,1:nstsv)=z1*se(ist,1:nstsv,iw) g(ist,ist)=g(ist,ist)+1.d0 end do ! invert this matrix call zminv(nstsv,g) ! take the trace of G = (1 - G_s Σ)⁻¹ G_s do ist=1,nstsv g(ist,ist)=g(ist,ist)*gs(ist) chgk=chgk+dble(g(ist,ist)) end do ! store the Green's function at the end point frequencies i=0 if (iw == 0) i=1 if (iw == 1) i=2 if (iw == nwfm-1) i=3 if (iw == nwfm) i=4 if (i /= 0) then do ist=1,nstsv ge(i,ist)=g(ist,ist) end do end if end do !$OMP END PARALLEL DO call freethd(nthd) ! add the Matsubara tails analytically do ist=1,nstsv chgk=chgk+dble(gwtails(ge(:,ist))) end do chgk=chgk*wkpt(ik)*occmax*kboltz*tempk deallocate(se) end subroutine elk-10.4.9/src/PaxHeaders/gwsefmk.f900000644000000000000000000000013214762655565014235 xustar0030 mtime=1741380469.359013118 30 atime=1741380468.155006823 30 ctime=1741380469.359013118 elk-10.4.9/src/gwsefmk.f900000644002504400250440000002275014762655565016765 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gwsefmk(ikp,vmt,vir,bmt,bir,se) use modmain use modgw use modomp implicit none ! arguments integer, intent(in) :: ikp real(8), intent(in) :: vmt(npcmtmax,natmtot),vir(ngtc) real(8), intent(in) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag) complex(8), intent(out) :: se(nstsv,nstsv,0:nwfm) ! local variables integer ik,jk,ist1,ist2,ist3 integer iv(3),iq,ig,jg integer iw,jw,it,nthd real(8) vl(3),vc(3),wo,t1,t2 complex(8) z1 complex(4) c1 ! automatic arrays integer(omp_lock_kind) lock(nwgw) real(8) vgqc(3,ngvc),gqc(ngvc),gclgq(ngvc) complex(8) zfgq(ngrf) complex(4) cvclmt(npcmtmax,natmtot),cvclir(ngtc) ! allocatable arrays real(8), allocatable :: jlgqr(:,:,:),jlgqrmt(:,:,:) complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(4), allocatable :: wfmt1(:,:,:,:),wfir1(:,:,:) complex(4), allocatable :: wfmt2(:,:,:,:),wfir2(:,:,:) complex(4), allocatable :: crhomt(:,:,:),crhoir(:,:) complex(8), allocatable :: epsi(:,:,:),v(:,:),gs(:,:) complex(4), allocatable :: crgq(:,:,:),stau(:,:,:),wc(:,:),cv(:) ! external functions complex(8), external :: zcfinp ! allocate local arrays allocate(jlgqr(njcmax,nspecies,ngrf),jlgqrmt(0:lnpsd,ngvc,nspecies)) allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) allocate(ylmgq(lmmaxo,ngvc),sfacgq(ngvc,natmtot)) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) allocate(wfmt1(npcmtmax,natmtot,nspinor,nstsv),wfir1(ngtc,nspinor,nstsv)) allocate(wfmt2(npcmtmax,natmtot,nspinor,nstsv),wfir2(ngtc,nspinor,nstsv)) allocate(crhomt(npcmtmax,natmtot,nstsv),crhoir(ngtc,nstsv)) allocate(epsi(ngrf,ngrf,nwrf),v(nstsv,nstsv),gs(nwgw,nstsv)) allocate(crgq(nstsv,ngrf,nstsv),stau(nstsv,nstsv,nwgw)) ! initialise the OpenMP locks do it=1,nwgw call omp_init_lock(lock(it)) end do ! get the eigenvectors from file for input reduced k-point call getevecfv(filext,ikp,vkl(:,ikp),vgkl(:,:,:,ikp),evecfv) call getevecsv(filext,ikp,vkl(:,ikp),evecsv) ! find the matching coefficients call match(ngk(1,ikp),vgkc(:,:,1,ikp),gkc(:,1,ikp),sfacgk(:,:,1,ikp),apwalm) ! calculate the wavefunctions for all states of the input k-point call genwfsv_sp(.false.,.true.,nstsv,[0],ngdgc,igfc,ngk(1,ikp),igkig(:,1,ikp), & apwalm,evecfv,evecsv,wfmt1,ngtc,wfir1) ! local -V_xc and -B_xc matrix elements if (spinpol) then call genvbmatk(vmt,vir,bmt,bir,ngk(1,ikp),igkig(:,1,ikp),wfmt1,ngtc,wfir1,v) else call genvmatk(vmt,vir,ngk(1,ikp),igkig(:,1,ikp),wfmt1,ngtc,wfir1,v) end if ! Fourier transform wavefunctions to real-space call cftwfir(ngk(1,ikp),igkig(:,1,ikp),wfir1) ! add the core Fock matrix elements call vclcore(wfmt1,v) ! zero the self-energy matrix elements in tau-space stau(1:nstsv,1:nstsv,1:nwgw)=0.e0 ! loop over non-reduced k-point set do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) ! determine the q-vector iv(1:3)=ivk(1:3,ikp)-ivk(1:3,ik) iv(1:3)=modulo(iv(1:3),ngridk(1:3)) ! check if the q-point is in user-defined set iv(1:3)=iv(1:3)*ngridq(1:3) if (any(mod(iv(1:3),ngridk(1:3)) /= 0)) cycle iv(1:3)=iv(1:3)/ngridk(1:3) iq=ivqiq(iv(1),iv(2),iv(3)) vl(1:3)=vkl(1:3,ikp)-vkl(1:3,ik) vc(1:3)=vkc(1:3,ikp)-vkc(1:3,ik) do ig=1,ngvc ! determine the G+q-vectors vgqc(1:3,ig)=vgc(1:3,ig)+vc(1:3) ! G+q-vector length gqc(ig)=sqrt(vgqc(1,ig)**2+vgqc(2,ig)**2+vgqc(3,ig)**2) ! spherical harmonics for G+q-vectors call genylmv(.true.,lmaxo,vgqc(:,ig),ylmgq(:,ig)) end do ! structure factors for G+q call gensfacgp(ngvc,vgqc,ngvc,sfacgq) ! generate the regularised Coulomb Green's function in G+q-space call gengclgq(.true.,iq,ngvc,gqc,gclgq) ! compute the required spherical Bessel functions call genjlgprmt(lnpsd,ngvc,gqc,ngvc,jlgqrmt) call genjlgpr(ngrf,gqc,jlgqr) ! find the matching coefficients call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! get the eigenvectors from file for non-reduced k-point call getevecfv(filext,0,vkl(:,ik),vgkl(:,:,1,ik),evecfv) call getevecsv(filext,0,vkl(:,ik),evecsv) ! calculate the wavefunctions for all states call genwfsv_sp(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ik),igkig(:,1,ik),& apwalm,evecfv,evecsv,wfmt2,ngtc,wfir2) call holdthd(nstsv,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(cvclmt,cvclir,zfgq) & !$OMP PRIVATE(ist1,ist2,ist3) & !$OMP PRIVATE(wo,z1,t1,iw) & !$OMP NUM_THREADS(nthd) ! determine the complex densities and Fourier transform to G+q-space do ist3=1,nstsv !$OMP DO SCHEDULE(DYNAMIC) do ist1=1,nstsv call gencrho(.true.,.true.,ngtc,wfmt2(:,:,:,ist3),wfir2(:,:,ist3), & wfmt1(:,:,:,ist1),wfir1(:,:,ist1),crhomt(:,:,ist1),crhoir(:,ist1)) call zftcf(ngrf,jlgqr,ylmgq,ngvc,sfacgq,crhomt(:,:,ist1),crhoir(:,ist1), & zfgq) crgq(ist1,1:ngrf,ist3)=conjg(zfgq(1:ngrf)) end do !$OMP END DO !--------------------------------------! ! valence Fock matrix elements ! !--------------------------------------! wo=wqptnr*occsv(ist3,jk)/occmax if (abs(wo) < epsocc) cycle !$OMP DO SCHEDULE(DYNAMIC) do ist2=1,nstsv ! calculate the Coulomb potential call gencvclmt(nrcmt,nrcmti,nrcmtmax,rlcmt,wprcmt,npcmtmax, & crhomt(:,:,ist2),cvclmt) call cpotcoul(nrcmt,nrcmti,npcmt,nrcmtmax,rlcmt,ngdgc,igfc,ngvc,gqc, & gclgq,ngvc,jlgqrmt,ylmgq,sfacgq,crhoir(:,ist2),npcmtmax,cvclmt,cvclir) cvclir(1:ngtc)=cvclir(1:ngtc)*cfrc(1:ngtc) do ist1=1,ist2 z1=zcfinp(crhomt(:,:,ist1),crhoir(:,ist1),cvclmt,cvclir) v(ist1,ist2)=v(ist1,ist2)-wo*z1 end do end do !$OMP END DO end do !-------------------------------------! ! correlation matrix elements ! !-------------------------------------! ! generate G_s in state and tau-space !$OMP DO SCHEDULE(DYNAMIC) do ist1=1,nstsv t1=efermi-evalsv(ist1,jk) gs(1:nwgw,ist1)=0.d0 do iw=-nwfm,nwfm,2 gs(iwfft(iw),ist1)=1.d0/cmplx(t1,wgw(iw),8) end do call zfftifc(1,nwgw,1,gs(:,ist1)) end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) ! get RPA inverse dielectric function from file ! this is the symmetric version: ϵ⁻¹ = 1 - v¹⸍² χ₀ v¹⸍² call getcfgq('EPSINV.OUT',vl,ngrf,nwrf,epsi) ! symmetrise the Coulomb Green's function gclgq(1:ngrf)=sqrt(gclgq(1:ngrf)) call holdthd(ngrf,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wc,cv,t1,t2,ig,iw,jw) & !$OMP PRIVATE(it,ist2,ist3,z1,c1) & !$OMP NUM_THREADS(nthd) allocate(wc(nwgw,ngrf),cv(nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do jg=1,ngrf ! if epsi is exactly zero then there is no entry for this particular G'+q-vector ! so we cycle to the next if (abs(epsi(jg,jg,1)) == 0.d0) cycle ! subtract one from ϵ⁻¹ to leave just the correlation part epsi(jg,jg,1:nwrf)=epsi(jg,jg,1:nwrf)-1.d0 ! compute the correlation part of the screened interaction W_c t1=gclgq(jg) do ig=1,ngrf t2=t1*gclgq(ig) wc(1:nwgw,ig)=0.e0 do iw=-nwbs,nwbs,2 jw=(iw+nwbs)/2+1 wc(iwfft(iw),ig)=t2*epsi(ig,jg,jw) end do ! Fourier transform W_c to tau-space call cfftifc(1,nwgw,1,wc(:,ig)) end do do it=1,nwgw do ist3=1,nstsv z1=gs(it,ist3) if (twdiag) then ! use only the diagonal elements of W_c c1=z1*wc(it,jg) cv(1:nstsv)=c1*crgq(1:nstsv,jg,ist3) else ! use the full W_c cv(1:nstsv)=0.e0 do ig=1,ngrf c1=z1*wc(it,ig) cv(1:nstsv)=cv(1:nstsv)+c1*crgq(1:nstsv,ig,ist3) end do end if call omp_set_lock(lock(it)) if (tsediag) then ! compute only the diagonal elements of the self-energy do ist2=1,nstsv c1=conjg(crgq(ist2,jg,ist3)) stau(ist2,ist2,it)=stau(ist2,ist2,it)+c1*cv(ist2) end do else ! compute the full self-energy matrix do ist2=1,nstsv c1=conjg(crgq(ist2,jg,ist3)) stau(1:nstsv,ist2,it)=stau(1:nstsv,ist2,it)+c1*cv(1:nstsv) end do end if call omp_unset_lock(lock(it)) end do end do end do !$OMP END DO deallocate(wc,cv) !$OMP END PARALLEL call freethd(nthd) ! end loop over k-points end do ! destroy the OpenMP locks do it=1,nwgw call omp_destroy_lock(lock(it)) end do ! Fourier transform the self-energy to frequency space, multiply by GW diagram ! prefactor and store in output array t1=-wqptnr*omega*kboltz*tempk call holdthd(nstsv,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(cv,ist1,iw,jw) & !$OMP NUM_THREADS(nthd) allocate(cv(nwgw)) !$OMP DO SCHEDULE(DYNAMIC) do ist2=1,nstsv do ist1=1,nstsv cv(1:nwgw)=stau(ist1,ist2,1:nwgw) call cfftifc(1,nwgw,-1,cv) do iw=-nwfm,nwfm,2 jw=(iw+nwfm)/2 se(ist1,ist2,jw)=t1*cv(iwfft(iw)) end do end do end do !$OMP END DO deallocate(cv) !$OMP END PARALLEL call freethd(nthd) ! add the local potential and Fock matrix elements to the self-energy for each ! Matsubara frequency call holdthd(nwfm+1,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ist1,ist2) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do iw=0,nwfm do ist2=1,nstsv do ist1=1,ist2 se(ist1,ist2,iw)=se(ist1,ist2,iw)+v(ist1,ist2) end do do ist1=ist2+1,nstsv se(ist1,ist2,iw)=se(ist1,ist2,iw)+conjg(v(ist2,ist1)) end do end do end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(jlgqr,jlgqrmt) deallocate(ylmgq,sfacgq,apwalm,evecfv,evecsv) deallocate(wfmt1,wfir1,wfmt2,wfir2) deallocate(crhomt,crhoir,epsi,v,gs,stau,crgq) end subroutine elk-10.4.9/src/PaxHeaders/gwspecf.f900000644000000000000000000000013214762655565014230 xustar0030 mtime=1741380469.361013128 30 atime=1741380468.158006839 30 ctime=1741380469.361013128 elk-10.4.9/src/gwspecf.f900000644002504400250440000000603114762655565016752 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine gwspecf use modmain use modgw use modmpi use modomp use modtest implicit none ! local variables integer ik,iw,nthd real(8) dw,w ! allocatable arrays real(8), allocatable :: wr(:),sft(:),sf(:) complex(8), allocatable :: se(:,:,:) ! initialise universal variables call init0 call init1 call init2 call init3 ! read Fermi energy from file call readfermi ! get the eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! real axis frequencies allocate(wr(nwplot)) dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot wr(iw)=dw*dble(iw-1)+wplot(1) end do ! allocate and zero the total spectral function allocate(sft(nwplot)) sft(1:nwplot)=0.d0 if (mp_mpi) write(*,*) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! loop over reduced k-point set call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(sf,se) & !$OMP NUM_THREADS(nthd) allocate(sf(nwplot),se(nstsv,nstsv,0:nwfm)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(gwspecf_1) write(*,'("Info(gwspecf): ",I6," of ",I6," k-points")') ik,nkpt !$OMP END CRITICAL(gwspecf_1) ! get the self-energy at the fermionic frequencies from file call getgwsefm(ik,se) ! solve the Dyson equation on the real axis call dysonr(ik,wr,se,sf) ! write the spectral function to file !$OMP CRITICAL(gwspecf_2) call writegwsf(ik,sf) !$OMP END CRITICAL(gwspecf_2) ! add to the total spectral function !$OMP CRITICAL(gwspecf_3) sft(1:nwplot)=sft(1:nwplot)+wkpt(ik)*sf(1:nwplot) !$OMP END CRITICAL(gwspecf_3) end do !$OMP END DO deallocate(sf,se) !$OMP END PARALLEL call freethd(nthd) ! add total spectral function from each process if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,sft,nwplot,mpi_double_precision,mpi_sum, & mpicom,ierror) end if ! write the total spectral function to file (MPI master process only) if (mp_mpi) then open(50,file='GWTSF.OUT',form='FORMATTED') dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot w=dw*dble(iw-1)+wplot(1) write(50,'(2G18.10)') w,sft(iw) end do close(50) write(*,*) write(*,'("Info(gw):")') write(*,'(" GW spectral functions and Kohn-Sham eigenvalues written to & &GWSF_Kkkkkkk.OUT")') write(*,'(" for all k-points")') write(*,*) write(*,'(" Total GW spectral function written to GWTSF.OUT")') write(*,*) write(*,'(" Fermi energy for the Kohn-Sham eigenvalues is at zero in plots")') write(*,'(" Fermi energy for the GW spectral function is undetermined")') write(*,*) write(*,'(" Spectral function units are states/Hartree/unit cell")') end if ! write the total GW spectral function to test file call writetest(610,'total GW spectral function',nv=nwplot,tol=5.d-2,rva=sft) deallocate(wr,sft) end subroutine elk-10.4.9/src/PaxHeaders/writegwsf.f900000644000000000000000000000013114762655565014612 xustar0030 mtime=1741380469.362013133 29 atime=1741380468.16000685 30 ctime=1741380469.362013133 elk-10.4.9/src/writegwsf.f900000644002504400250440000000154614762655565017343 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 A. Davydov, A. Sanna, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine writegwsf(ik,sf) use modmain use modgw implicit none ! arguments integer, intent(in) :: ik real(8), intent(in) :: sf(nwplot) ! local variables integer iw,ist real(8) dw,w,e character(256) fname write(fname,'("GWSF_K",I6.6,".OUT")') ik open(50,file=trim(fname),form='FORMATTED') ! write the GW spectral function dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot w=dw*dble(iw-1)+wplot(1) write(50,'(2G18.10)') w,sf(iw) end do write(50,*) ! write the Kohn-Sham eigenvalues for reference do ist=1,nstsv e=evalsv(ist,ik)-efermi write(50,'(2G18.10)') e,0.d0 write(50,'(2G18.10)') e,1.d0/swidth write(50,*) end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/acgwse.f900000644000000000000000000000013114762655565014042 xustar0030 mtime=1741380469.364013144 29 atime=1741380468.16200686 30 ctime=1741380469.364013144 elk-10.4.9/src/acgwse.f900000644002504400250440000000157614762655565016576 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine acgwse(ist,jst,sem,wr,ser) use modmain use modgw implicit none ! arguments integer ist,jst complex(8), intent(in) :: sem(nstsv,nstsv,0:nwfm) real(8), intent(in) :: wr(nwplot) complex(8), intent(out) :: ser(nstsv,nstsv,nwplot) ! automatic arrays complex(8) zm(0:nwfm),zwr(nwplot),zr(nwplot) zm(0:nwfm)=sem(ist,jst,0:nwfm) zwr(1:nwplot)=wr(1:nwplot) select case(actype) case(1) ! fit a multipole model call acpole(zm,zwr,zr) case(10) ! stabilised Pade approximant call pades(nspade,swidth,nwfm+1,wfm,zm,nwplot,zwr,zr) case default write(*,*) write(*,'("Error(acgwse): actype not defined : ",I8)') actype write(*,*) stop end select ser(ist,jst,1:nwplot)=zr(1:nwplot) end subroutine elk-10.4.9/src/PaxHeaders/fmin_nm.f900000644000000000000000000000013114762655565014214 xustar0030 mtime=1741380469.365013149 29 atime=1741380468.16400687 30 ctime=1741380469.365013149 elk-10.4.9/src/fmin_nm.f900000644002504400250440000000106514762655565016741 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2007 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. real(8) function fmin_nm(id,rd,x) implicit none ! arguments integer, intent(in) :: id(*) real(8), intent(in) :: rd(*),x(*) ! external functions real(8), external :: polefit select case(id(1)) case(1) fmin_nm=polefit(rd,x) case default write(*,*) write(*,'("Error(fmin_nm): function type not defined : ",I8)') id(1) write(*,*) stop end select end function elk-10.4.9/src/PaxHeaders/zfpole.f900000644000000000000000000000013214762655565014071 xustar0030 mtime=1741380469.366013154 30 atime=1741380468.166006881 30 ctime=1741380469.366013154 elk-10.4.9/src/zfpole.f900000644002504400250440000000076214762655565016620 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure complex(8) function zfpole(c,z) use modgw implicit none ! arguments complex(8), intent(in) :: c(*),z ! local variables integer i,j real(8) t1 complex(8) z1 zfpole=c(1) i=2 do j=1,npole z1=c(i)+z t1=abs(dble(z1))+abs(aimag(z1)) if (t1 > 1.d-8) zfpole=zfpole+c(i+1)/z1 i=i+2 end do end function elk-10.4.9/src/PaxHeaders/gwbandstr.f900000644000000000000000000000013214762655565014565 xustar0030 mtime=1741380469.368013165 30 atime=1741380468.168006891 30 ctime=1741380469.368013165 elk-10.4.9/src/gwbandstr.f900000644002504400250440000000541514762655565017314 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gwbandstr use modmain use modgw use modmpi use modomp implicit none ! local variables integer ip,iw real(8) dw ! allocatable arrays real(8), allocatable :: vmt(:,:),vir(:) real(8), allocatable :: bmt(:,:,:),bir(:,:) real(8), allocatable :: wr(:),sf(:) complex(8), allocatable :: se(:,:,:) ! store original parameters vkloff0(:)=vkloff(:) ! initialise universal variables call init0 call init1 call init2 call init3 ! read density and potentials from file call readstate ! generate the core wavefunctions and densities call gencore ! Fourier transform Kohn-Sham potential to G-space call genvsig ! generate k-points along a path for band structure plots call plotpt1d(bvec,nvp1d,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) ! compute the matrix elements of -V_xc and -B_xc allocate(vmt(npcmtmax,natmtot),vir(ngtc)) if (spinpol) then allocate(bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag)) end if call gwlocal(vmt,vir,bmt,bir) ! real axis frequencies allocate(wr(nwplot)) dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot wr(iw)=dw*dble(iw-1)+wplot(1) end do allocate(sf(nwplot),se(nstsv,nstsv,0:nwfm)) if (mp_mpi) then open(85,file='GWBAND.OUT',form='FORMATTED',action='WRITE') write(85,'(2I6," : grid size")') nwplot,npp1d end if ! loop over plot points along path do ip=ip01d,npp1d if (mp_mpi) then write(*,'("Info(gwbandstr): ",I6," of ",I6," plot points")') ip,npp1d end if ! reset the OpenMP thread variables call omp_reset ! change the k-point offset vkloff(:)=vplp1d(:,ip)*ngridk(:) ! generate the new k-point set call init1 ! determine the Kohn-Sham ground-state for this k-point offset call linengy call genapwlofr call gensocfr call genevfsv call occupy ! write the momentum matrix elements to file call genpmat ! generate the inverse dielectric function and write to file call epsinv ! determine the self-energy for the first k-point if (mp_mpi) then write(*,'("Info(gwbandstr): calculating self-energy for first k-point")') end if call gwsefmk(1,vmt,vir,bmt,bir,se) ! solve the Dyson equation on the real axis call dysonr(1,wr,se,sf) if (mp_mpi) then do iw=1,nwplot write(85,'(3G18.10)') dpp1d(ip),wr(iw),sf(iw) end do flush(85) end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end do deallocate(vmt,vir,wr,sf,se) if (spinpol) deallocate(bmt,bir) if (mp_mpi) then close(85) write(*,*) write(*,'("Info(gwbandstr):")') write(*,'(" GW spectral function band structure written to GWBAND.OUT")') end if ! restore original input parameters vkloff(:)=vkloff0(:) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/writeatdisp.f900000644000000000000000000000013014762655565015127 xustar0029 mtime=1741380469.36901317 30 atime=1741380468.170006902 29 ctime=1741380469.36901317 elk-10.4.9/src/writeatdisp.f900000644002504400250440000000133214762655565017652 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeatdisp use modmain use modtddft implicit none ! local variables integer is,ia real(8) vl(3) open(50,file='ATDISPL_TD.OUT',form='FORMATTED',position='APPEND') open(51,file='ATDISPC_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(I8,G18.10)') itimes,times(itimes) write(51,'(I8,G18.10)') itimes,times(itimes) do is=1,nspecies do ia=1,natoms(is) call r3mv(ainv,atdvc(:,0,ia,is),vl) write(50,'(2I4,3G18.10)') is,ia,vl(:) write(51,'(2I4,3G18.10)') is,ia,atdvc(:,0,ia,is) end do end do close(50) close(51) end subroutine elk-10.4.9/src/PaxHeaders/writetdforces.f900000644000000000000000000000013214762655565015456 xustar0030 mtime=1741380469.370013175 30 atime=1741380468.172006912 30 ctime=1741380469.370013175 elk-10.4.9/src/writetdforces.f900000644002504400250440000000136014762655565020200 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetdforces use modmain use modtddft implicit none ! local variables integer is,ia,ias ! write the total force on each atom open(50,file='FORCETOT_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(I8,G18.10)') itimes,times(itimes) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(2I4,3G18.10)') is,ia,forcetot(1:3,ias) end do end do close(50) ! write the maximum force magnitude over all atoms open(50,file='FORCEMAX_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(2G18.10)') times(itimes),forcemax close(50) end subroutine elk-10.4.9/src/PaxHeaders/readatdvc.f900000644000000000000000000000013214762655565014527 xustar0030 mtime=1741380469.372013186 30 atime=1741380468.174006923 30 ctime=1741380469.372013186 elk-10.4.9/src/readatdvc.f900000644002504400250440000000151514762655565017253 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readatdvc use modmain implicit none ! local variables integer is,ia,is_,ia_,ios open(50,file='ATDVC.OUT',form='FORMATTED',action='READ',status='OLD',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readatdvc): error opening ATDVC.OUT")') write(*,*) stop end if do is=1,nspecies do ia=1,natoms(is) read(50,*) is_,ia_,atdvc(:,:,ia,is) if ((is /= is_).or.(ia /= ia_)) then write(*,*) write(*,'("Error(readatdvc): species or atom number mismatch")') write(*,'(" internal : ",2I4)') is,ia write(*,'(" ATDVC.OUT : ",2I4)') is_,ia_ write(*,*) stop end if end do end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/writetdengy.f900000644000000000000000000000013214762655565015137 xustar0030 mtime=1741380469.373013191 30 atime=1741380468.176006933 30 ctime=1741380469.373013191 elk-10.4.9/src/writetdengy.f900000644002504400250440000000056714762655565017671 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetdengy use modmain use modtddft implicit none open(50,file='TOTENERGY_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(2G18.10)') times(itimes),engytot close(50) end subroutine elk-10.4.9/src/PaxHeaders/writemomtd.f900000644000000000000000000000013214762655565014765 xustar0030 mtime=1741380469.374013196 30 atime=1741380468.178006944 30 ctime=1741380469.374013196 elk-10.4.9/src/writemomtd.f900000644002504400250440000000202214762655565017503 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writemomtd use modmain use modtddft implicit none ! local variables integer is,ia,ias ! write the total spin moment open(50,file='MOMENT_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(4G18.10)') times(itimes),momtot(1:ndmag) close(50) ! write the total spin moment magnitude open(50,file='MOMENTM_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(2G18.10)') times(itimes),momtotm close(50) ! write muffin-tin moments open(50,file='MOMENTMT_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(G18.10)') times(itimes) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(2I4,3G18.10)') is,ia,mommt(1:ndmag,ias) end do end do write(50,*) close(50) ! write interstitial moment open(50,file='MOMENTIR_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(4G18.10)') times(itimes),momir(1:ndmag) close(50) end subroutine elk-10.4.9/src/PaxHeaders/tddftlr.f900000644000000000000000000000013214762655565014235 xustar0030 mtime=1741380469.376013207 30 atime=1741380468.180006954 30 ctime=1741380469.376013207 elk-10.4.9/src/tddftlr.f900000644002504400250440000002307014762655565016761 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tddftlr use modmain use modtddft use modtest use modmpi use modomp implicit none ! local variables logical tq0 integer, parameter :: maxit=500 integer iq,ik,isym integer nm,it,i,j,n integer iw,ioc,nthd real(8) v(3),t1,t2 complex(8) vfxcp,z1 character(256) fname ! allocatable arrays integer(omp_lock_kind), allocatable :: lock(:) real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqr(:,:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(8), allocatable :: vchi0(:,:,:),vfxc(:,:,:) complex(8), allocatable :: eps0(:,:,:),epsi(:,:,:),epsm(:,:,:) complex(8), allocatable :: zw(:),a(:,:) ! initialise global variables call init0 call init1 call init2 call init3 ! check q-vector is commensurate with k-point grid v(1:3)=dble(ngridk(1:3))*vecql(1:3) v(1:3)=abs(v(1:3)-nint(v(1:3))) if ((v(1) > epslat).or.(v(2) > epslat).or.(v(3) > epslat)) then write(*,*) write(*,'("Error(tddftlr): q-vector incommensurate with k-point grid")') write(*,'(" ngridk : ",3I6)') ngridk write(*,'(" vecql : ",3G18.10)') vecql write(*,*) stop end if ! find the equivalent reduced q-point call findqpt(vecql,isym,iq) ! check if q = 0 tq0=.false. if (sum(abs(vecql(:))) < epslat) tq0=.true. ! read density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! generate the G+q-vectors and related functions allocate(vgqc(3,ngrf),gqc(ngrf),jlgqr(njcmax,nspecies,ngrf)) allocate(ylmgq(lmmaxo,ngrf),sfacgq(ngrf,natmtot)) call gengqf(ngrf,vecqc,vgqc,gqc,jlgqr,ylmgq,sfacgq) deallocate(vgqc) ! generate the regularised Coulomb Green's function in G+q-space allocate(gclgq(ngrf)) call gengclgq(.true.,iq,ngrf,gqc,gclgq) gclgq(1:ngrf)=sqrt(gclgq(1:ngrf)) ! matrix sizes if (tq0) then ! for q = 0 the head is a 3 x 3 matrix and the wings are 3 x ngrf nm=ngrf+2 else ! otherwise the head is just G = G' = 0 and finite q nm=ngrf end if ! allocate local arrays allocate(vchi0(nm,nm,nwrf),vfxc(nm,nm,nwrf)) allocate(eps0(nm,nm,nwrf),epsi(nm,nm,nwrf)) ! initialise the OpenMP locks allocate(lock(nwrf)) do iw=1,nwrf call omp_init_lock(lock(iw)) end do ! compute v¹⸍² χ₀ v¹⸍² (the symmetric version of v χ₀) vchi0(1:nm,1:nm,1:nwrf)=0.d0 call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(tddftlr_) write(*,'("Info(tddftlr): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(tddftlr_) ! add to v¹⸍² χ₀ v¹⸍² call genvchi0(.true.,ik,lock,vecql,gclgq,jlgqr,ylmgq,sfacgq,nm,vchi0) end do !$OMP END PARALLEL DO call freethd(nthd) ! destroy the OpenMP locks do iw=1,nwrf call omp_destroy_lock(lock(iw)) end do deallocate(lock) ! add vchi0 from each process and redistribute if (np_mpi > 1) then n=nm*nm*nwrf call mpi_allreduce(mpi_in_place,vchi0,n,mpi_double_complex,mpi_sum,mpicom, & ierror) end if ! calculate symmetric ϵ_0 = 1 - v¹⸍² χ₀ v¹⸍² eps0(1:nm,1:nm,1:nwrf)=-vchi0(1:nm,1:nm,1:nwrf) do i=1,nm eps0(i,i,1:nwrf)=eps0(i,i,1:nwrf)+1.d0 end do ! initialise ϵ for use with the bootstrap functional if (any(fxctype(1) == [210,211])) then epsi(1:nm,1:nm,1:nwrf)=vchi0(1:nm,1:nm,1:nwrf) do i=1,nm epsi(i,i,1:nwrf)=epsi(i,i,1:nwrf)+1.d0 end do end if allocate(a(nm,nm)) vfxcp=0.d0 it=0 10 continue ! compute v χ₀ v⁻¹⸍² f_xc v⁻¹⸍² v χ₀ call genvfxc(tq0,.true.,gclgq,nm,vchi0,eps0,epsi,vfxc) ! begin loop over frequencies do iw=1,nwrf ! compute 1 - v¹⸍² χ₀ v¹⸍² - v⁻¹⸍² f_xc v⁻¹⸍² v χ₀ a(1:nm,1:nm)=eps0(1:nm,1:nm,iw)-vfxc(1:nm,1:nm,iw) ! invert this matrix call zminv(nm,a) ! left multiply by v¹⸍² χ₀ v¹⸍² call zgemm('N','N',nm,nm,nm,zone,vchi0(:,:,iw),nm,a,nm,zzero,epsi(:,:,iw),nm) ! compute ϵ⁻¹ = 1 + v¹⸍² χ v¹⸍² do i=1,nm epsi(i,i,iw)=1.d0+epsi(i,i,iw) end do end do if (fxctype(1) == 210) then ! self-consistent bootstrap f_xc it=it+1 if (it > maxit) then write(*,*) write(*,'("Error(tddftlr): bootstrap kernel failed to converge")') write(*,*) stop end if if (mp_mpi) then if (mod(it,10) == 0) then write(*,'("Info(tddftlr): done ",I4," bootstrap iterations")') it t1=dble(vfxc(1,1,1)) write(*,'(" head of matrix v⁻¹⸍² f_xc v⁻¹⸍² : ",G18.10)') t1 write(*,'(" multiplied by -4π gives α : ",G18.10)') -fourpi*t1 end if end if ! check for convergence t1=abs(vfxcp)-abs(vfxc(1,1,1)) vfxcp=vfxc(1,1,1) if (abs(t1) > 1.d-8) goto 10 else if (fxctype(1) == 211) then ! single iteration bootstrap it=it+1 if (it <= 1) goto 10 end if deallocate(gclgq,jlgqr) deallocate(ylmgq,sfacgq) deallocate(vchi0,vfxc) ! invert ϵ⁻¹ to find ϵ and store in array eps0 do iw=1,nwrf eps0(1:nm,1:nm,iw)=epsi(1:nm,1:nm,iw) call zminv(nm,eps0(:,:,iw)) end do if (mp_mpi) then ! write G = G' = 0 components to file if (tq0) then do ioc=1,noptcomp i=optcomp(1,ioc) j=optcomp(2,ioc) write(fname,'("EPSILON_TDDFT_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') write(fname,'("EPSINV_TDDFT_",2I1,".OUT")') i,j open(51,file=trim(fname),form='FORMATTED') do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(eps0(i,j,iw)) write(51,'(2G18.10)') dble(wrf(iw)),dble(epsi(i,j,iw)) end do write(50,*) write(51,*) do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(eps0(i,j,iw)) write(51,'(2G18.10)') dble(wrf(iw)),aimag(epsi(i,j,iw)) end do close(50) close(51) end do else open(50,file='EPSILON_TDDFT.OUT',form='FORMATTED') open(51,file='EPSINV_TDDFT.OUT',form='FORMATTED') do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(eps0(1,1,iw)) write(51,'(2G18.10)') dble(wrf(iw)),dble(epsi(1,1,iw)) end do write(50,*) write(51,*) do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(eps0(1,1,iw)) write(51,'(2G18.10)') dble(wrf(iw)),aimag(epsi(1,1,iw)) end do close(50) close(51) end if ! find the macroscopic part of ϵ by inverting the 3x3 head only if (tq0) then allocate(epsm(3,3,nwrf)) do iw=1,nwrf epsm(1:3,1:3,iw)=epsi(1:3,1:3,iw) call zminv(3,epsm(:,:,iw)) end do ! write out the macroscopic components do ioc=1,noptcomp i=optcomp(1,ioc) j=optcomp(2,ioc) write(fname,'("EPSM_TDDFT_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(epsm(i,j,iw)) end do write(50,*) do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(epsm(i,j,iw)) end do close(50) end do allocate(zw(nwrf)) ! output the Faraday angle parameters Δδ and Δβ do iw=2,nwrf zw(iw)=0.5d0*zi*epsm(1,2,iw)/sqrt(epsm(1,1,iw)) end do open(50,file='FARADAY.OUT',form='FORMATTED') do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(zw(iw)) end do write(50,*) do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(zw(iw)) end do close(50) ! output the Kerr angle do iw=2,nwrf zw(iw)=-epsm(1,2,iw)/(sqrt(epsm(1,1,iw))*(epsm(1,1,iw)-1.d0)) end do open(50,file='KERR_TDDFT.OUT',form='FORMATTED') do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(zw(iw))*180.d0/pi end do write(50,*) do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(zw(iw))*180.d0/pi end do close(50) ! output magnetic linear dichroism (MLD) spectrum t1=sin(thetamld)**2 t2=sin(2.d0*thetamld) do iw=2,nwrf z1=epsm(1,1,iw) zw(iw)=t2*epsm(1,2,iw)/((z1-1.d0)*(z1-(t1*(z1+1.d0)))) end do open(50,file='MLD.OUT',form='FORMATTED') do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(zw(iw)) end do write(50,*) do iw=2,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(zw(iw)) end do close(50) deallocate(epsm,zw) end if end if ! write inverse ϵ to test file call writetest(320,'inverse ϵ',nv=nm*nm*nwrf,tol=1.d-2,zva=epsi) deallocate(eps0,epsi,a) if (mp_mpi) then write(*,*) write(*,'("Info(tddftlr):")') if (tq0) then write(*,'(" Dielectric tensor written to EPSILON_TDDFT_ij.OUT")') write(*,'(" Inverse written to EPSINV_TDDFT_ij.OUT")') write(*,'(" Macroscopic part written to EPSM_TDDFT_ij.OUT")') write(*,'(" for components")') do ioc=1,noptcomp write(*,'(" i = ",I1,", j = ",I1)') optcomp(1:2,ioc) end do write(*,*) write(*,'(" Faraday angle parameters Δδ and Δβ written to FARADAY.OUT")') write(*,'(" MOKE Kerr angle written to KERR_TDDFT.OUT")') write(*,'(" Magnetic linear dichroism (MLD) spectrum written to MLD.OUT")') write(*,*) write(*,'(" Note that the q-vector is zero and therefore the head of the")') write(*,'(" tensor is a 3 x 3 matrix and the wings are 3 x ngrf matrices")') else write(*,'(" Dielectric tensor written to EPSILON_TDDFT.OUT")') write(*,'(" Inverse written to EPSINV_TDDFT.OUT")') write(*,'(" q-vector (lattice coordinates) : ")') write(*,'(3G18.10)') vecql write(*,'(" q-vector length : ",G18.10)') gqc(1) end if end if deallocate(gqc) end subroutine elk-10.4.9/src/PaxHeaders/genhmlt.f900000644000000000000000000000013214762655565014230 xustar0030 mtime=1741380469.378013217 30 atime=1741380468.182006965 30 ctime=1741380469.378013217 elk-10.4.9/src/genhmlt.f900000644002504400250440000000425614762655565016761 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genhmlt(ik,vmt,vir,bmt,bir,kmat,pmat,h) use modmain use modtddft use modmpi implicit none ! arguments integer, intent(in) :: ik real(8), intent(in) :: vmt(npcmtmax,natmtot),vir(ngtc) real(8), intent(in) :: bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag) complex(8), intent(in) :: kmat(nstsv,nstsv),pmat(nstsv,nstsv,3) complex(8), intent(out) :: h(nstsv,nstsv) ! local variables integer jst,i real(8) ca,t1 ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfgk(:,:,:) allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) ! get the ground-state eigenvectors from file for input k-point call getevecfv('.OUT',ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! calculate the wavefunctions for all states of the input k-point allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfgk(ngkmax,nspinor,nstsv)) call genwfsv_sp(.false.,.true.,nstsv,[0],ngridg,igfft,ngk(:,ik),igkig(:,:,ik), & apwalm,evecfv,evecsv,wfmt,ngkmax,wfgk) deallocate(apwalm,evecfv) ! Kohn-Sham potential and magnetic field matrix elements if (spinpol) then call genvbmatk(vmt,vir,bmt,bir,ngk(:,ik),igkig(:,:,ik),wfmt,ngkmax,wfgk,h) else call genvmatk(vmt,vir,ngk(:,ik),igkig(:,:,ik),wfmt,ngkmax,wfgk,h) end if deallocate(wfmt,wfgk) ! add the kinetic matrix elements in the second-variational basis do jst=1,nstsv h(1:jst,jst)=h(1:jst,jst)+kmat(1:jst,jst) end do ! coupling constant of the external A-field (-1/c) ca=-1.d0/solsc ! add the A-field matrix elements in the second-variational basis do i=1,3 t1=ca*afieldt(i,itimes) if (abs(t1) > 1.d-10) then do jst=1,nstsv h(1:jst,jst)=h(1:jst,jst)+t1*pmat(1:jst,jst,i) end do end if end do ! add the spin-polarised A-field if required if (tafspt) call genhafspt(evecsv,pmat,h) deallocate(evecsv) end subroutine elk-10.4.9/src/PaxHeaders/writetddos.f900000644000000000000000000000013214762655565014762 xustar0030 mtime=1741380469.379013222 30 atime=1741380468.184006975 30 ctime=1741380469.379013222 elk-10.4.9/src/writetddos.f900000644002504400250440000000457314762655565017515 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: writetddos ! !INTERFACE: subroutine writetddos ! !USES: use modmain use modtddft use modmpi ! !DESCRIPTION: ! Calculates the time-dependent density of states (DOS). This is defined as ! $$ {\rm DOS}(\omega,t)=\frac{\Omega}{(2\pi)^3}\int d^3k \sum_i ! \delta(\varepsilon_{i{\bf k}}-\omega) F_{i{\bf k}}(t), $$ ! where ! $$ F_{i{\bf k}}(t)=\sum_j f_{j{\bf k}}|\langle\varphi_{i{\bf k}}| ! \phi_{j{\bf k}}(t)\rangle|^2, $$ ! with occupation numbers $f_{j{\bf k}}$, ground-state orbitals ! $\varphi_{i{\bf k}}$ and time-dependent orbitals $\phi_{j{\bf k}}(t)$. ! ! !REVISION HISTORY: ! Created April 2015 (JKD) !EOP !BOC implicit none ! local variables integer ik,ist,jst,lp real(8) sm,t1 complex(8) z1 character(256) fext ! allocatable arrays real(8), allocatable :: occsvp(:,:) complex(8), allocatable :: evecsv(:,:),evecsvt(:,:) ! external functions complex(8), external :: zdotc ! file extension write(fext,'("_TS",I8.8,".OUT")') itimes allocate(occsvp(nstsv,nkpt)) allocate(evecsv(nstsv,nstsv),evecsvt(nstsv,nstsv)) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! read in ground-state eigenvectors call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! read in the time evolving eigenvectors call getevecsv('_TD.OUT',ik,vkl(:,ik),evecsvt) ! determine the time-dependent projected occupation numbers do ist=1,nstsv sm=0.d0 do jst=1,nstsv t1=occsv(jst,ik) if (abs(t1) < epsocc) cycle z1=zdotc(nstsv,evecsv(:,ist),1,evecsvt(:,jst),1) sm=sm+t1*(dble(z1)**2+aimag(z1)**2) end do occsvp(ist,ik)=sm end do ! write projected occupation numbers to file call putoccsv('P'//trim(fext),ik,occsvp(:,ik)) end do deallocate(evecsv,evecsvt) ! broadcast projected occupation numbers to every MPI process if (np_mpi > 1) then do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(occsvp(:,ik),nstsv,mpi_double_precision,lp,mpicom,ierror) end do end if if (mp_mpi) then ! compute the effective electronic temperature and write to file call tdtemp(occsvp) ! write the DOS to file call dos(fext,.true.,occsvp) end if deallocate(occsvp) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine !EOC elk-10.4.9/src/PaxHeaders/writeafpdt.f900000644000000000000000000000013214762655565014743 xustar0030 mtime=1741380469.380013227 30 atime=1741380468.187006991 30 ctime=1741380469.380013227 elk-10.4.9/src/writeafpdt.f900000644002504400250440000000264714762655565017476 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeafpdt use modmain use modtddft implicit none ! local variables integer its,i real(8) ed,t1 ! conversion factor of energy density to J/cm^2 real(8), parameter :: ced=ha_si/(100.d0*br_si)**2 ! allocatable arrays real(8), allocatable :: f(:),g(:),pd(:) ! external functions real(8), external :: splint ! read time-dependent A-field from file call readafieldt ! allocate local arrays allocate(f(ntimes),g(ntimes),pd(ntimes)) ! compute the power density at each time step pd(:)=0.d0 do i=1,3 f(:)=afieldt(i,:) call fderiv(1,ntimes,times,f,g) pd(:)=pd(:)+g(:)**2 end do t1=1.d0/(8.d0*pi*solsc) pd(:)=t1*pd(:) ! write the power density to file open(50,file='AFPDT.OUT',form='FORMATTED') do its=1,ntimes write(50,'(2G18.10)') times(its),pd(its) end do close(50) ! integrate power density to find the total energy density ed=splint(ntimes,times,pd) open(50,file='AFTED.OUT',form='FORMATTED') write(50,*) write(50,'("Total energy density : ",G18.10)') ed write(50,'(" in J/cm² : ",G18.10)') ed*ced close(50) write(*,*) write(*,'("Info(writeafpdt):")') write(*,'(" Power density of A-field written to AFPDT.OUT")') write(*,'(" Total energy density of A-field written to AFTED.OUT")') deallocate(f,g,pd) end subroutine elk-10.4.9/src/PaxHeaders/readafindt.f900000644000000000000000000000013214762655565014673 xustar0030 mtime=1741380469.382013238 30 atime=1741380468.189007001 30 ctime=1741380469.382013238 elk-10.4.9/src/readafindt.f900000644002504400250440000000101414762655565017411 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Peter Elliott, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readafindt use modtddft implicit none ! local variables integer ios open(50,file='AFINDT.OUT',form='FORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readafindt): error opening AFINDT.OUT")') write(*,*) stop end if read(50,*) afindt(:,:) close(50) end subroutine elk-10.4.9/src/PaxHeaders/genvfxc.f900000644000000000000000000000013214762655565014232 xustar0030 mtime=1741380469.383013243 30 atime=1741380468.191007012 30 ctime=1741380469.383013243 elk-10.4.9/src/genvfxc.f900000644002504400250440000000342714762655565016762 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2011 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genvfxc(tq0,t3hw,gclgq,nm,vchi0,eps0,epsi,vfxc) use modmain use modtddft implicit none ! arguments logical, intent(in) :: tq0,t3hw real(8), intent(in) :: gclgq(ngrf) integer, intent(in) :: nm complex(8), intent(in) :: vchi0(nm,nm,nwrf) complex(8), intent(in) :: eps0(nm,nm,nwrf) complex(8), intent(in) :: epsi(nm,nm,nwrf) complex(8), intent(out) :: vfxc(nm,nm,nwrf) ! local variables integer iw,i,j complex(8) z1 ! allocatable arrays complex(8), allocatable :: a(:,:) ! compute v⁻¹⸍² f_xc v⁻¹⸍² select case(fxctype(1)) case(0,1) ! RPA vfxc(1:nm,1:nm,1:nwrf)=0.d0 return case(3) ! ALDA if (tq0.and.t3hw) then call genvfxcg(gclgq,nm,vfxc(3,3,1)) ! the head and wings are zero vfxc(1:3,1:nm,1:nwrf)=0.d0 vfxc(4:,1:3,1:nwrf)=0.d0 else call genvfxcg(gclgq,nm,vfxc) end if case(200) ! long-range contribution with dynamic correlations vfxc(1:nm,1:nm,1:nwrf)=0.d0 do i=1,nm vfxc(i,i,1:nwrf)=-(fxclrc(1)+fxclrc(2)*dble(wrf(1:nwrf))**2)/fourpi end do case(210,211) ! bootstrap vfxc(1:nm,1:nm,1:nwrf)=0.d0 if (tq0.and.t3hw) then z1=(eps0(1,1,1)+eps0(2,2,1)+eps0(3,3,1))/3.d0 else z1=eps0(1,1,1) end if z1=-1.d0/(z1-1.d0) do j=1,nm do i=1,nm vfxc(i,j,1:nwrf)=z1*epsi(i,j,1) end do end do case default write(*,*) write(*,'("Error(genvfxc): fxctype not defined : ",3I8)') fxctype write(*,*) stop end select ! right multiply by v¹⸍² χ₀ v¹⸍² allocate(a(nm,nm)) do iw=1,nwrf a(1:nm,1:nm)=vfxc(1:nm,1:nm,iw) call zgemm('N','N',nm,nm,nm,zone,a,nm,vchi0(:,:,iw),nm,zzero,vfxc(:,:,iw),nm) end do deallocate(a) end subroutine elk-10.4.9/src/PaxHeaders/genfxcr.f900000644000000000000000000000013214762655565014226 xustar0030 mtime=1741380469.384013248 30 atime=1741380468.193007022 30 ctime=1741380469.384013248 elk-10.4.9/src/genfxcr.f900000644002504400250440000000625414762655565016757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genfxcr(tsh,fxcmt,fxcir) use modmain use modtddft use modfxcifc implicit none ! arguments logical, intent(in) :: tsh real(8), intent(out) :: fxcmt(npmtmax,natmtot),fxcir(ngtot) ! local variables integer idm,is,ias integer nr,nri,ir,np,i,n real(8) t1 real(8), allocatable :: rho(:),rhoup(:),rhodn(:),mag(:,:) real(8), allocatable :: fxc(:),fxcuu(:),fxcud(:),fxcdd(:) ! number of independent spin components n=npmtmax allocate(rho(n),fxc(n)) if (spinpol) then allocate(mag(n,3)) n=max(n,ngtot) allocate(rhoup(n),rhodn(n)) allocate(fxcuu(n),fxcud(n),fxcdd(n)) end if !---------------------------! ! muffin-tin kernel ! !---------------------------! do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) np=npmt(is) ! compute the density in spherical coordinates call rbsht(nr,nri,rhomt(:,ias),rho) if (spinpol) then !------------------------! ! spin-polarised ! !------------------------! ! magnetisation in spherical coordinates do idm=1,ndmag call rbsht(nr,nri,magmt(:,ias,idm),mag(:,idm)) end do if (ncmag) then ! non-collinear (use Kubler's trick) do i=1,np ! compute rhoup=(rho+|m|)/2 and rhodn=(rho-|m|)/2 t1=sqrt(mag(i,1)**2+mag(i,2)**2+mag(i,3)**2) rhoup(i)=0.5d0*(rho(i)+t1) rhodn(i)=0.5d0*(rho(i)-t1) end do else ! collinear do i=1,np ! compute rhoup=(rho+m_z)/2 and rhodn=(rho-m_z)/2 rhoup(i)=0.5d0*(rho(i)+mag(i,1)) rhodn(i)=0.5d0*(rho(i)-mag(i,1)) end do end if ! compute fxc call fxcifc(fxctype,n=np,rhoup=rhoup,rhodn=rhodn,fxcuu=fxcuu,fxcud=fxcud, & fxcdd=fxcdd) ! form the scalar quantity dv/drho do i=1,np fxc(i)=0.25d0*(fxcuu(i)+2.d0*fxcud(i)+fxcdd(i)) end do else !--------------------------! ! spin-unpolarised ! !--------------------------! call fxcifc(fxctype,n=np,rho=rho,fxc=fxc) end if if (tsh) then ! convert fxc to spherical harmonics if required call rfsht(nr,nri,fxc,fxcmt(:,ias)) else fxcmt(1:np,ias)=fxc(1:np) end if end do !-----------------------------! ! interstitial kernel ! !-----------------------------! if (spinpol) then !------------------------! ! spin-polarised ! !------------------------! if (ncmag) then ! non-collinear do ir=1,ngtot t1=sqrt(magir(ir,1)**2+magir(ir,2)**2+magir(ir,3)**2) rhoup(ir)=0.5d0*(rhoir(ir)+t1) rhodn(ir)=0.5d0*(rhoir(ir)-t1) end do else ! collinear do ir=1,ngtot rhoup(ir)=0.5d0*(rhoir(ir)+magir(ir,1)) rhodn(ir)=0.5d0*(rhoir(ir)-magir(ir,1)) end do end if ! compute fxc call fxcifc(fxctype,n=ngtot,rhoup=rhoup,rhodn=rhodn,fxcuu=fxcuu,fxcud=fxcud, & fxcdd=fxcdd) do ir=1,ngtot fxcir(ir)=0.25d0*(fxcuu(ir)+2.d0*fxcud(ir)+fxcdd(ir)) end do else !--------------------------! ! spin-unpolarised ! !--------------------------! call fxcifc(fxctype,n=ngtot,rho=rhoir,fxc=fxcir) end if deallocate(rho,fxc) if (spinpol) then deallocate(mag,rhoup,rhodn) deallocate(fxcuu,fxcud,fxcdd) end if end subroutine elk-10.4.9/src/PaxHeaders/tdtemp.f900000644000000000000000000000013214762655565014067 xustar0030 mtime=1741380469.385013254 30 atime=1741380468.195007032 30 ctime=1741380469.385013254 elk-10.4.9/src/tdtemp.f900000644002504400250440000000241014762655565016606 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tdtemp(occsvp) use modmain use modtddft implicit none ! arguments real(8), intent(in) :: occsvp(nstsv,nkpt) ! local variables integer, parameter :: maxit=1000 integer ik,ist,it real(8), parameter :: eps=1.d-6 real(8) sw,dsw,sm,sp real(8) x,t1,t2,t3 ! external functions real(8), external :: sdelta_fd,stheta_fd ! initial smearing width sw=1.d-6 ! initial smearing width step size dsw=1.d-6 sp=0.d0 do it=1,maxit t1=1.d0/sw sm=0.d0 do ik=1,nkpt do ist=1,nstsv x=(efermi-evalsv(ist,ik))*t1 t2=occmax*stheta_fd(x) t3=sdelta_fd(x)*x*t1 sm=sm+(occsvp(ist,ik)-t2)*t3 end do end do if ((sm*sp) < 0.d0) then dsw=-0.5d0*dsw if (abs(dsw) < eps) goto 10 else dsw=1.5d0*dsw end if sp=sm sw=sw+dsw if ((sw < 0.d0).or.(sw > 1.d6)) exit end do write(*,*) write(*,'("Warning(tdtemp): could not estimate effective temperature")') return 10 continue ! write effective temperature to file t1=sw/kboltz open(50,file='TDTEMP.OUT',form='FORMATTED',position='APPEND') write(50,'(2G18.10)') times(itimes),t1 close(50) end subroutine elk-10.4.9/src/PaxHeaders/writetdlsj.f900000644000000000000000000000013214762655565014765 xustar0030 mtime=1741380469.387013264 30 atime=1741380468.197007043 30 ctime=1741380469.387013264 elk-10.4.9/src/writetdlsj.f900000644002504400250440000000215014762655565017505 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetdlsj use modmain use modtddft use modmpi implicit none ! local variables integer is,ia,ias real(8) xl(3),xs(3) character(256) fext ! allocatable arrays complex(8), allocatable :: dmat(:,:,:,:,:) allocate(dmat(lmmaxo,nspinor,lmmaxo,nspinor,natmtot)) ! generate the density matrix in each muffin-tin call gendmat(.false.,.false.,0,lmaxo,lmmaxo,dmat) if (mp_mpi) then write(fext,'("_TS",I8.8,".OUT")') itimes open(50,file='LSJ'//trim(fext),form='FORMATTED') do is=1,nspecies write(50,*) write(50,'("Species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) ! calculate the expectation value of L and S call dmatls(dmat(:,:,:,:,ias),xl,xs) write(50,'(" atom : ",I4)') ia write(50,'(" L : ",3G18.10)') xl(:) write(50,'(" S : ",3G18.10)') xs(:) write(50,'(" J : ",3G18.10)') xl(:)+xs(:) end do end do close(50) end if end subroutine elk-10.4.9/src/PaxHeaders/genspfxcr.f900000644000000000000000000000013214762655565014571 xustar0030 mtime=1741380469.388013269 30 atime=1741380468.199007053 30 ctime=1741380469.388013269 elk-10.4.9/src/genspfxcr.f900000644002504400250440000001204014762655565017310 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genspfxcr(tsh,fxcmt,fxcir) use modmain use modtddft use modfxcifc implicit none ! arguments logical, intent(in) :: tsh real(8), intent(out) :: fxcmt(npmtmax,natmtot,4,4),fxcir(ngtot,4,4) ! local variables integer idm,is,ias integer nr,nri,ir,np,i,j,n real(8) t1 ! allocatable arrays real(8), allocatable :: rho(:),rhoup(:),rhodn(:) real(8), allocatable :: mag(:,:),magu(:,:),magm(:) real(8), allocatable :: bxc(:,:),bxcp(:) real(8), allocatable :: fxcuu(:),fxcud(:),fxcdd(:) real(8), allocatable :: fxc(:,:,:) if (.not.spinpol) then write(*,*) write(*,'("Error(genspfxcr): spin-unpolarised calculation")') write(*,*) stop end if ! allocate local arrays n=npmtmax allocate(rho(n),mag(n,ndmag)) allocate(bxc(n,ndmag),fxc(n,4,4)) n=max(n,ngtot) allocate(rhoup(n),rhodn(n)) allocate(magu(3,n),magm(n),bxcp(n)) allocate(fxcuu(n),fxcud(n),fxcdd(n)) !---------------------------! ! muffin-tin kernel ! !---------------------------! do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) np=npmt(is) ! compute the density in spherical coordinates call rbsht(nr,nri,rhomt(:,ias),rho) do idm=1,ndmag ! magnetisation in spherical coordinates call rbsht(nr,nri,magmt(:,ias,idm),mag(:,idm)) ! B_xc in spherical coordinates call rbsht(nr,nri,bxcmt(:,ias,idm),bxc(:,idm)) end do if (ncmag) then ! non-collinear (use Kubler's trick) do i=1,np ! compute |m| magm(i)=sqrt(mag(i,1)**2+mag(i,2)**2+mag(i,3)**2) ! compute rhoup=(rho+|m|)/2 and rhodn=(rho-|m|)/2 rhoup(i)=0.5d0*(rho(i)+magm(i)) rhodn(i)=0.5d0*(rho(i)-magm(i)) ! unit vector m/|m| t1=1.d0/(magm(i)+1.d-8) magu(1,i)=t1*mag(i,1) magu(2,i)=t1*mag(i,2) magu(3,i)=t1*mag(i,3) ! compute B_xc.(m/|m|) bxcp(i)=bxc(i,1)*magu(1,i)+bxc(i,2)*magu(2,i)+bxc(i,3)*magu(3,i) end do else ! collinear do i=1,np ! compute |m| = |m_z| magm(i)=abs(mag(i,1)) ! compute rhoup=(rho+|m|)/2 and rhodn=(rho-|m|)/2 rhoup(i)=0.5d0*(rho(i)+magm(i)) rhodn(i)=0.5d0*(rho(i)-magm(i)) ! unit vector m/|m| magu(1,i)=0.d0 magu(2,i)=0.d0 if (mag(i,1) > 0.d0) then magu(3,i)=1.d0 else magu(3,i)=-1.d0 end if ! compute B_xc.(m/|m|) bxcp(i)=bxc(i,1)*magu(3,i) end do end if ! compute f_xc in U(2) x U(2) basis call fxcifc(fxctype,n=np,rhoup=rhoup,rhodn=rhodn,fxcuu=fxcuu,fxcud=fxcud, & fxcdd=fxcdd) ! transform f_xc to O(1) x O(3) basis (upper triangular part) call tfm2213(np,fxcuu,fxcud,fxcdd,magu,magm,bxcp,npmtmax,fxc) do i=1,4 do j=i,4 if (tsh) then ! convert to spherical harmonics if required call rfsht(nr,nri,fxc(:,i,j),fxcmt(:,ias,i,j)) else fxcmt(1:np,ias,i,j)=fxc(1:np,i,j) end if end do end do end do !-----------------------------! ! interstitial kernel ! !-----------------------------! if (ncmag) then ! non-collinear do ir=1,ngtot magm(ir)=sqrt(magir(ir,1)**2+magir(ir,2)**2+magir(ir,3)**2) rhoup(ir)=0.5d0*(rhoir(ir)+magm(ir)) rhodn(ir)=0.5d0*(rhoir(ir)-magm(ir)) t1=1.d0/(magm(ir)+1.d-8) magu(1,ir)=t1*magir(ir,1) magu(2,ir)=t1*magir(ir,2) magu(3,ir)=t1*magir(ir,3) ! compute B_xc.(m/|m|) bxcp(ir)=bxcir(ir,1)*magu(1,ir) & +bxcir(ir,2)*magu(2,ir) & +bxcir(ir,3)*magu(3,ir) end do else ! collinear do ir=1,ngtot magm(ir)=abs(magir(ir,1)) rhoup(ir)=0.5d0*(rhoir(ir)+magm(ir)) rhodn(ir)=0.5d0*(rhoir(ir)-magm(ir)) magu(1,ir)=0.d0 magu(2,ir)=0.d0 if (magir(ir,1) > 0.d0) then magu(3,ir)=1.d0 else magu(3,ir)=-1.d0 end if ! compute B_xc.(m/|m|) bxcp(ir)=bxcir(ir,1)*magu(3,ir) end do end if ! compute f_xc in U(2) x U(2) basis call fxcifc(fxctype,n=ngtot,rhoup=rhoup,rhodn=rhodn,fxcuu=fxcuu,fxcud=fxcud, & fxcdd=fxcdd) ! transform f_xc to O(1) x O(3) basis call tfm2213(ngtot,fxcuu,fxcud,fxcdd,magu,magm,bxcp,ngtot,fxcir) deallocate(rho,mag,bxc,fxc) deallocate(rhoup,rhodn) deallocate(magu,magm,bxcp) deallocate(fxcuu,fxcud,fxcdd) return contains pure subroutine tfm2213(n,fxcuu,fxcud,fxcdd,magu,magm,bxcp,ld,fxc) implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: fxcuu(n),fxcud(n),fxcdd(n) real(8), intent(in) :: magu(3,n),magm(n),bxcp(n) integer, intent(in) :: ld real(8), intent(out) :: fxc(ld,4,4) ! local variables integer i real(8) t1,t2 do i=1,n ! charge-charge fxc(i,1,1)=0.25d0*(fxcuu(i)+2.d0*fxcud(i)+fxcdd(i)) ! charge-spin t1=0.25d0*(fxcuu(i)-fxcdd(i)) fxc(i,1,2)=t1*magu(1,i) fxc(i,1,3)=t1*magu(2,i) fxc(i,1,4)=t1*magu(3,i) ! spin-spin if (magm(i) > 1.d-14) then t1=bxcp(i)/magm(i) else t1=0.d0 end if t2=0.25d0*(fxcuu(i)-2.d0*fxcud(i)+fxcdd(i))-t1 fxc(i,2,2)=t2*magu(1,i)*magu(1,i)+t1 fxc(i,2,3)=t2*magu(1,i)*magu(2,i) fxc(i,2,4)=t2*magu(1,i)*magu(3,i) fxc(i,3,3)=t2*magu(2,i)*magu(2,i)+t1 fxc(i,3,4)=t2*magu(2,i)*magu(3,i) fxc(i,4,4)=t2*magu(3,i)*magu(3,i)+t1 end do end subroutine end subroutine elk-10.4.9/src/PaxHeaders/genvfxcg.f900000644000000000000000000000013214762655565014401 xustar0030 mtime=1741380469.389013275 30 atime=1741380468.201007064 30 ctime=1741380469.389013275 elk-10.4.9/src/genvfxcg.f900000644002504400250440000000240614762655565017125 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2012 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genvfxcg(gclgq,nm,vfxc) use modmain implicit none ! arguments real(8), intent(in) :: gclgq(ngrf) integer, intent(in) :: nm complex(8), intent(out) :: vfxc(nm,nm,nwrf) ! local variables integer ig,jg,kg,i1,i2,i3 complex(8) z1 ! allocatable arrays real(8), allocatable :: fxcmt(:,:),fxcir(:) complex(8), allocatable :: fxcg(:) allocate(fxcmt(npmtmax,natmtot),fxcir(ngtot)) allocate(fxcg(ngvec)) ! generate the kernel f_xc in real-space call genfxcr(.true.,fxcmt,fxcir) ! Fourier transform the kernel to G-space call zftrf(ngvec,ivg,vgc,fxcmt,fxcir,fxcg) do ig=1,ngrf do jg=1,ngrf i1=ivg(1,ig)-ivg(1,jg) i2=ivg(2,ig)-ivg(2,jg) i3=ivg(3,ig)-ivg(3,jg) if ((i1 >= intgv(1,1)).and.(i1 <= intgv(2,1)).and. & (i2 >= intgv(1,2)).and.(i2 <= intgv(2,2)).and. & (i3 >= intgv(1,3)).and.(i3 <= intgv(2,3))) then kg=ivgig(i1,i2,i3) if (kg <= ngvec) then z1=fxcg(kg)/(gclgq(ig)*gclgq(jg)) vfxc(ig,jg,1:nwrf)=z1 else vfxc(ig,jg,1:nwrf)=0.d0 end if end if end do end do deallocate(fxcmt,fxcir,fxcg) end subroutine elk-10.4.9/src/PaxHeaders/tddftsplr.f900000644000000000000000000000013214762655565014600 xustar0030 mtime=1741380469.391013285 30 atime=1741380468.203007074 30 ctime=1741380469.391013285 elk-10.4.9/src/tddftsplr.f900000644002504400250440000002052514762655565017326 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tddftsplr use modmain use modtest use modmpi use modomp implicit none ! local variables integer ik,isym,iq,iw integer ig,jg,i,j,n integer nthd real(8) v(3) complex(8) a(4,4),b(4,4),z1 character(256) fname ! allocatable arrays integer(omp_lock_kind), allocatable :: lock(:) real(8), allocatable :: vgqc(:,:),gqc(:),gclgq(:),jlgqr(:,:,:) complex(8), allocatable :: ylmgq(:,:),sfacgq(:,:) complex(8), allocatable :: chi(:,:,:,:,:),chit(:),fxc(:,:,:,:) complex(8), allocatable :: c(:,:),d(:,:,:,:) if (.not.spinpol) then write(*,*) write(*,'("Error(tddftsplr): spin-unpolarised calculation")') write(*,*) stop end if ! initialise global variables call init0 call init1 call init2 call init3 ! check q-vector is commensurate with k-point grid v(1:3)=dble(ngridk(1:3))*vecql(1:3) v(1:3)=abs(v(1:3)-nint(v(1:3))) if ((v(1) > epslat).or.(v(2) > epslat).or.(v(3) > epslat)) then write(*,*) write(*,'("Error(tddftsplr): q-vector incommensurate with k-point grid")') write(*,'(" ngridk : ",3I6)') ngridk write(*,'(" vecql : ",3G18.10)') vecql write(*,*) stop end if ! find the equivalent reduced q-point call findqpt(vecql,isym,iq) ! read density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW radial functions call genapwfr ! generate the local-orbital radial functions call genlofr ! get the eigenvalues and occupation numbers from file do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) call getoccsv(filext,ik,vkl(:,ik),occsv(:,ik)) end do ! generate the G+q-vectors and related functions allocate(vgqc(3,ngrf),gqc(ngrf),jlgqr(njcmax,nspecies,ngrf)) allocate(ylmgq(lmmaxo,ngrf),sfacgq(ngrf,natmtot)) call gengqf(ngrf,vecqc,vgqc,gqc,jlgqr,ylmgq,sfacgq) deallocate(vgqc) ! initialise the OpenMP locks allocate(lock(nwrf)) do iw=1,nwrf call omp_init_lock(lock(iw)) end do ! compute χ₀ allocate(chi(ngrf,4,ngrf,4,nwrf)) chi(:,:,:,:,:)=0.d0 call holdthd(nkptnr/np_mpi,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ik=1,nkptnr ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(tddftsplr_) write(*,'("Info(tddftsplr): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(tddftsplr_) call genspchi0(ik,lock,vecql,jlgqr,ylmgq,sfacgq,chi) end do !$OMP END PARALLEL DO call freethd(nthd) ! destroy the OpenMP locks do iw=1,nwrf call omp_destroy_lock(lock(iw)) end do deallocate(lock) ! add χ₀ from each process and redistribute if (np_mpi > 1) then n=ngrf*4*ngrf*4*nwrf call mpi_allreduce(mpi_in_place,chi,n,mpi_double_complex,mpi_sum,mpicom, & ierror) end if ! transform χ₀ from 2x2 to 1x3 basis do iw=1,nwrf do ig=1,ngrf do jg=1,ngrf a(1:4,1:4)=chi(ig,1:4,jg,1:4,iw) call tfm2213(a,b) chi(ig,1:4,jg,1:4,iw)=b(1:4,1:4) end do end do end do ! generate transverse χ₀ for the collinear case if (.not.ncmag) then allocate(chit(nwrf)) do iw=1,nwrf a(1:4,1:4)=chi(1,1:4,1,1:4,iw) call tfm13t(a,b) chit(iw)=b(2,2) end do end if ! write χ₀ to file if (mp_mpi) then ! write χ₀ to file in 1x3 basis do i=1,4 do j=1,4 write(fname,'("CHI0_",2I1,".OUT")') i-1,j-1 open(50,file=trim(fname),form='FORMATTED',action='WRITE') do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(chi(1,i,1,j,iw)) end do write(50,*) do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(chi(1,i,1,j,iw)) end do close(50) end do end do ! write transverse χ₀ for collinear case if (.not.ncmag) then open(50,file='CHI0_T.OUT',form='FORMATTED',action='WRITE') do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(chit(iw)) end do write(50,*) do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(chit(iw)) end do close(50) end if end if ! compute f_xc in G-space allocate(fxc(ngrf,4,ngrf,4)) call genspfxcg(fxc) ! generate the Coulomb Green's function in G+q-space regularised for q = 0 allocate(gclgq(ngrf)) call gengclgq(.true.,iq,ngrf,gqc,gclgq) ! add the regularised Coulomb interaction to f_xc to give f_Hxc do ig=1,ngrf fxc(ig,1,ig,1)=fxc(ig,1,ig,1)+gclgq(ig) end do deallocate(gclgq) ! matrix size n=4*ngrf allocate(c(n,n),d(ngrf,4,ngrf,4)) ! loop over frequencies do iw=1,nwrf ! multiply f_Hxc by -χ₀ from the left z1=-1.d0 call zgemm('N','N',n,n,n,z1,chi(:,:,:,:,iw),n,fxc,n,zzero,c,n) ! add the identity do i=1,n c(i,i)=c(i,i)+1.d0 end do ! invert the matrix call zminv(n,c) ! multiply by χ₀ on the right and store in χ call zgemm('N','N',n,n,n,zone,c,n,chi(:,:,:,:,iw),n,zzero,d,n) chi(:,:,:,:,iw)=d(:,:,:,:) end do deallocate(c,d) ! generate transverse χ for the collinear case if (.not.ncmag) then do iw=1,nwrf a(1:4,1:4)=chi(1,1:4,1,1:4,iw) call tfm13t(a,b) chit(iw)=b(2,2) end do end if if (mp_mpi) then ! write the complete χ matrix if required if (task == 331) then open(120,file='CHI.OUT',form='UNFORMATTED',action='WRITE') write(120) chi close(120) end if ! write χ for G = G' = 0 in the 1x3 basis do i=1,4 do j=1,4 write(fname,'("CHI_",2I1,".OUT")') i-1,j-1 open(50,file=trim(fname),form='FORMATTED',action='WRITE') do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(chi(1,i,1,j,iw)) end do write(50,*) do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(chi(1,i,1,j,iw)) end do close(50) end do end do ! write transverse χ for collinear case if (.not.ncmag) then open(50,file='CHI_T.OUT',form='FORMATTED',action='WRITE') do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),dble(chit(iw)) end do write(50,*) do iw=1,nwrf write(50,'(2G18.10)') dble(wrf(iw)),aimag(chit(iw)) end do close(50) end if write(*,*) write(*,'("Info(tddftsplr):")') write(*,'(" Spin-dependent response function χ_ij(G,G'',q,w) written to & &CHI_ij.OUT")') write(*,'(" for i,j = 0-3; G = G'' = 0; and all wplot frequencies")') write(*,'(" q-vector (lattice coordinates) : ")') write(*,'(3G18.10)') vecql write(*,'(" q-vector length : ",G18.10)') gqc(1) write(*,*) write(*,'(" The elements of χ labeled by (i,j) form the 4x4 matrix :")') write(*,*) write(*,'(" ⎛_|_ _ _⎞")') write(*,'(" χ(G,G'',q,w) = ⎜ | ⎟")') write(*,'(" ⎜ | ⎟")') write(*,'(" ⎝ | ⎠")') write(*,*) write(*,'(" (0,0) is the charge-charge response dρ/dv")') write(*,'(" (0,1-3) is the charge-magnetisation response dρ/dB")') write(*,'(" (1-3,0) is the magnetisation-charge response dm/v")') write(*,'(" (1-3,1-3) is the magnetisation-magnetisation response dm/dB")') write(*,*) write(*,'(" Non-interacting Kohn-Sham response function written to & &CHI0_ij.OUT")') if (.not.ncmag) then write(*,*) write(*,'(" Transverse components corresponding to m_± = m_x ± im_y")') write(*,'(" written to CHI_T.OUT and CHI0_T.OUT")') end if if (task == 331) then write(*,*) write(*,'(" Complete response function for all G, G'' written to binary & &file CHI.OUT")') write(*,'(" (array index ordering changed from version 4.5.16 onwards)")') end if end if ! write transverse response to test file call writetest(330,'transverse response function',nv=nwrf,tol=1.d-2,zva=chit) deallocate(gqc,ylmgq,sfacgq,chi,fxc) if (.not.ncmag) deallocate(chit) return contains pure subroutine tfm2213(a,b) implicit none ! arguments complex(8), intent(in) :: a(4,4) complex(8), intent(out) :: b(4,4) ! local variables integer i,j complex(8) c(4,4) do i=1,4 c(i,1)=a(i,1)+a(i,4) c(i,2)=a(i,2)+a(i,3) c(i,3)=zmi*(a(i,2)-a(i,3)) c(i,4)=a(i,1)-a(i,4) end do do j=1,4 b(1,j)=c(1,j)+c(4,j) b(2,j)=c(2,j)+c(3,j) b(3,j)=zi*(c(2,j)-c(3,j)) b(4,j)=c(1,j)-c(4,j) end do end subroutine pure subroutine tfm13t(a,b) implicit none ! arguments complex(8), intent(in) :: a(4,4) complex(8), intent(out) :: b(4,4) ! local variables integer i,j complex(8) c(4,4),z1 do i=1,4 c(i,1)=a(i,1) z1=a(i,3) c(i,2)=a(i,2)+zmi*z1 c(i,3)=a(i,2)+zi*z1 c(i,4)=a(i,4) end do do j=1,4 b(1,j)=c(1,j) z1=c(3,j) b(2,j)=c(2,j)+zi*z1 b(3,j)=c(2,j)+zmi*z1 b(4,j)=c(4,j) end do end subroutine end subroutine elk-10.4.9/src/PaxHeaders/genspfxcg.f900000644000000000000000000000013014762655565014554 xustar0029 mtime=1741380469.39201329 30 atime=1741380468.205007085 29 ctime=1741380469.39201329 elk-10.4.9/src/genspfxcg.f900000644002504400250440000000240414762655565017300 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2013 S. Sharma, J. K. Dewhurst and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genspfxcg(fxc) use modmain implicit none ! arguments complex(8), intent(out) :: fxc(ngrf,4,ngrf,4) ! local variables integer ig,jg,kg integer iv(3),i,j complex(8) z1 ! allocatable arrays real(8), allocatable :: fxcmt(:,:,:,:),fxcir(:,:,:) complex(8), allocatable :: fxcg(:) allocate(fxcmt(npmtmax,natmtot,4,4),fxcir(ngtot,4,4)) allocate(fxcg(ngvec)) ! generate the kernel f_xc in real-space call genspfxcr(.true.,fxcmt,fxcir) ! Fourier transform the kernel to G-space do i=1,4 do j=i,4 call zftrf(ngvec,ivg,vgc,fxcmt(:,:,i,j),fxcir(:,i,j),fxcg) do ig=1,ngrf do jg=1,ngrf iv(1:3)=ivg(1:3,ig)-ivg(1:3,jg) if ((iv(1) >= intgv(1,1)).and.(iv(1) <= intgv(2,1)).and. & (iv(2) >= intgv(1,2)).and.(iv(2) <= intgv(2,2)).and. & (iv(3) >= intgv(1,3)).and.(iv(3) <= intgv(2,3))) then kg=ivgig(iv(1),iv(2),iv(3)) if (kg > ngvec) cycle z1=fxcg(kg) fxc(ig,i,jg,j)=z1 fxc(jg,j,ig,i)=conjg(z1) end if end do end do end do end do deallocate(fxcmt,fxcir,fxcg) end subroutine elk-10.4.9/src/PaxHeaders/genafieldt.f900000644000000000000000000000013214762655565014674 xustar0030 mtime=1741380469.393013296 30 atime=1741380468.207007095 30 ctime=1741380469.393013296 elk-10.4.9/src/genafieldt.f900000644002504400250440000001567014762655565017427 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: genafieldt ! !INTERFACE: subroutine genafieldt ! !USES: use modmain use modtddft ! !DESCRIPTION: ! Generates a time-dependent vector potential, ${\bf A}(t)$, representing a ! laser pulse and stores it in {\tt AFIELDT.OUT}. The vector potential is ! constructed from a sum of sinusoidal waves, each modulated with a Gaussian ! envelope function: ! $$ {\bf A}(t)={\bf A}_0 ! \frac{e^{-(t-t_0)^2/2\sigma^2}}{\sigma\sqrt{2\pi}} ! \sin(\omega(t-t_0)+\phi). $$ ! Seven real numbers have to be specified for each pulse, namely the vector ! amplitude ${\bf A}_0$, peak time $t_0$, full-width at half-maximum ! $d=2\sqrt{2\ln 2}\sigma$, frequency $\omega$ and phase $\phi$. ! ! !REVISION HISTORY: ! Created May 2012 (K. Krieger) ! Modified, January 2014 (S. Sharma) ! Modified, February 2014 (JKD) ! Added spin-dependent A-fields, January 2023 (E. Harris-Lee) !EOP !BOC implicit none ! local variables integer its,i,j real(8) av0(3),t0,d,w,phi,rc real(8) ft,ppd,s,t real(8) av(3),s0,sv(3) real(8) t1,t2,t3,t4 ! conversion factor of power density to W/cm^2 real(8), parameter :: cpd=ha_si/(t_si*(100.d0*br_si)**2) ! generate the time step grid call gentimes open(50,file='TD_INFO.OUT',form='FORMATTED') write(50,*) write(50,'("(All units are atomic unless otherwise specified)")') write(50,*) write(50,'("1 atomic unit of time is ",G18.10," attoseconds")') t_si*1.d18 write(50,*) write(50,'("Total simulation time : ",G18.10)') tstime write(50,'(" in attoseconds : ",G18.10)') tstime*t_si*1.d18 write(50,*) write(50,'("Time step length : ",G18.10)') dtimes write(50,'(" in attoseconds : ",G18.10)') dtimes*t_si*1.d18 write(50,*) write(50,'("Number of time steps : ",I8)') ntimes write(50,*) write(50,'("Number of laser pulses : ",I6)') npulse write(50,'("Number of ramps : ",I6)') nramp write(50,'("Number of steps : ",I6)') nstep ! allocate and zero time-dependent A-field array if (allocated(afieldt)) deallocate(afieldt) allocate(afieldt(3,ntimes)) afieldt(1:3,1:ntimes)=0.d0 ! allocate and zero spin- and time-dependent A-field array if (tafspt) then if (allocated(afspt)) deallocate(afspt) allocate(afspt(3,3,ntimes)) afspt(1:3,1:3,1:ntimes)=0.d0 end if !----------------------! ! laser pulses ! !----------------------! do i=1,npulse ! vector amplitude av0(1:3)=pulse(1:3,i) ! frequency w=pulse(4,i) ! phase phi=pulse(5,i) ! chirp rate rc=pulse(6,i) ! peak time t0=pulse(7,i) ! full-width at half-maximum d=pulse(8,i) ! Gaussian sigma s=d/(2.d0*sqrt(2.d0*log(2.d0))) ! write information to TD_INFO.OUT write(50,*) write(50,'("Pulse : ",I6)') i write(50,'(" vector amplitude : ",3G18.10)') av0(:) write(50,'(" laser frequency : ",G18.10)') w write(50,'(" in eV : ",G18.10)') w*ha_ev write(50,'(" laser wavelength (Angstroms) : ",G18.10)') 1.d10/(w*ha_im) write(50,'(" phase (degrees) : ",G18.10)') phi write(50,'(" chirp rate : ",G18.10)') rc write(50,'(" peak time : ",G18.10)') t0 write(50,'(" full-width at half-maximum : ",G18.10)') d write(50,'(" Gaussian σ = FWHM / 2√(2ln2) : ",G18.10)') s t1=av0(1)**2+av0(2)**2+av0(3)**2 ppd=t1*(w**2)/(8.d0*pi*solsc) write(50,'(" peak laser power density : ",G18.10)') ppd write(50,'(" in W/cm² : ",G18.10)') ppd*cpd if (tafspt) then s0=pulse(9,i) sv(1:3)=pulse(10:12,i) write(50,'(" spin components for σ_0, σ_x, σ_y, σ_z : ")') write(50,'(4G18.10)') s0,sv(:) end if ! loop over time steps do its=1,ntimes t=times(its) t1=t-t0 t2=-0.5d0*(t1/s)**2 t3=w*t1+phi*pi/180.d0+0.5d0*rc*t**2 ft=exp(t2)*sin(t3) if (abs(ft) < 1.d-20) ft=0.d0 av(1:3)=ft*av0(1:3) ! spin-dependent vector potential if (tafspt) then do j=1,3 afspt(1:3,j,its)=afspt(1:3,j,its)+av(1:3)*sv(j) end do av(1:3)=s0*av(1:3) end if afieldt(1:3,its)=afieldt(1:3,its)+av(1:3) end do end do !---------------! ! ramps ! !---------------! do i=1,nramp ! vector amplitude av0(1:3)=ramp(1:3,i) ! ramp start time t0=ramp(4,i) ! linear coefficient t1=ramp(5,i) ! quadratic coefficient t2=ramp(6,i) ! cubic coefficient t3=ramp(7,i) ! quartic coefficient t4=ramp(8,i) ! write information to TD_INFO.OUT write(50,*) write(50,'("Ramp : ",I6)') i write(50,'(" vector amplitude : ",3G18.10)') av0(:) write(50,'(" ramp start time : ",G18.10)') t0 write(50,'(" coefficients : ",4G18.10)') t1,t2,t3,t4 if (tafspt) then s0=ramp(9,i) sv(1:3)=ramp(10:12,i) write(50,'(" spin components for σ_0, σ_x, σ_y, σ_z : ")') write(50,'(4G18.10)') s0,sv(:) end if ! loop over time steps do its=1,ntimes t=times(its)-t0 if (t > 0.d0) then ft=t*(t1+t*(t2+t*(t3+t*t4))) av(1:3)=ft*av0(1:3) if (tafspt) then do j=1,3 afspt(1:3,j,its)=afspt(1:3,j,its)+av(1:3)*sv(j) end do av(1:3)=s0*av(1:3) end if afieldt(1:3,its)=afieldt(1:3,its)+av(1:3) end if end do end do !---------------! ! steps ! !---------------! do i=1,nstep ! vector amplitude av(1:3)=step(1:3,i) ! step start time t0=step(4,i)-1.d-14 ! step stop time t1=step(5,i) ! write information to TD_INFO.OUT write(50,*) write(50,'("Step : ",I6)') i write(50,'(" vector amplitude : ",3G18.10)') av(:) write(50,'(" step start and stop times : ",2G18.10)') t0,t1 if (tafspt) then s0=step(6,i) sv(1:3)=step(7:9,i) write(50,'(" spin components for σ_0, σ_x, σ_y, σ_z : ")') write(50,'(4G18.10)') s0,sv(:) end if ! loop over time steps do its=1,ntimes t=times(its) if (t > t1) exit if (t >= t0) then afieldt(1:3,its)=afieldt(1:3,its)+av(1:3) if (tafspt) then do j=1,3 afspt(1:3,j,its)=afspt(1:3,j,its)+av(1:3)*sv(j) end do end if end if end do end do close(50) ! write the vector potential to AFIELDT.OUT open(50,file='AFIELDT.OUT',form='FORMATTED') write(50,'(I8," : number of time steps")') ntimes do its=1,ntimes write(50,'(I8,4G18.10)') its,times(its),afieldt(:,its) end do close(50) ! write the spin-dependent vector potential to AFSPT.OUT if (tafspt) then open(50,file='AFSPT.OUT',form='FORMATTED') write(50,'(I8," : number of time steps")') ntimes do its=1,ntimes write(50,'(I8,10G18.10)') its,times(its),afspt(:,:,its) end do close(50) end if write(*,*) write(*,'("Info(genafieldt):")') write(*,'(" Time-dependent A-field written to AFIELDT.OUT")') if (tafspt) then write(*,'(" Time- and spin-dependent A-field written to AFSPT.OUT")') end if write(*,'(" Laser pulse, ramp and step parameters written to TD_INFO.OUT")') write(*,*) write(*,'(" 1 atomic unit of time is ",G18.10," attoseconds")') t_si*1.d18 write(*,'(" Total simulation time : ",G18.10)') tstime write(*,'(" in attoseconds : ",G18.10)') tstime*t_si*1.d18 deallocate(times,afieldt) end subroutine !EOC elk-10.4.9/src/PaxHeaders/writetddft.f900000644000000000000000000000013214762655565014752 xustar0030 mtime=1741380469.395013306 30 atime=1741380468.210007111 30 ctime=1741380469.395013306 elk-10.4.9/src/writetddft.f900000644002504400250440000001107214762655565017475 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetddft use modmain use modtddft use moddftu use moddelf implicit none ! local variables integer is,ia,ias character(32) fext ! allocatable arrays real(8), allocatable :: rvfmt(:,:,:),rvfir(:,:) ! file extension write(fext,'("_TS",I8.8,".OUT")') itimes ! delete files at first time step if (itimes <= 1) then call delfile('TOTENERGY_TD.OUT') call delfile('CHARGEMT_TD.OUT') call delfile('CHARGEIR_TD.OUT') if (spinpol) then call delfile('MOMENT_TD.OUT') call delfile('MOMENTM_TD.OUT') call delfile('MOMENTMT_TD.OUT') call delfile('MOMENTIR_TD.OUT') end if call delfile('JTOT_TD.OUT') call delfile('JTOTM_TD.OUT') if (tddos) call delfile('TDTEMP.OUT') if (tdlsj) call delfile('TDLSJ.OUT') if (tforce) call delfile('FORCETOT_TD.OUT') if (tatdisp) then call delfile('ATDISPL_TD.OUT') call delfile('ATDISPC_TD.OUT') end if if (tafindt) call delfile('AFIND_TD.OUT') end if ! total energy call writetdengy ! muffin-tin charges open(50,file='CHARGEMT_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(G18.10)') times(itimes) do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(2I4,G18.10)') is,ia,chgmt(ias) end do end do write(50,*) close(50) ! interstitial charge open(50,file='CHARGEIR_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(2G18.10)') times(itimes),chgir close(50) ! write spin moments to file if required if (spinpol) call writemomtd ! total current open(50,file='JTOT_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(4G18.10)') times(itimes),jtot(:) close(50) ! total current magnitude open(50,file='JTOTM_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(4G18.10)') times(itimes),jtotm close(50) ! write the time-dependent atomic forces if (tforce.and.ttsforce) then call writetdforces open(50,file='FORCES'//trim(fext),form='FORMATTED',action='WRITE') call writeforces(50) close(50) end if ! write the time-dependent atomic displacements if (tatdisp.and.ttsforce) call writeatdisp ! write the time-dependent induced A-field if (tafindt) then open(50,file='AFIND_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(4G18.10)') times(itimes),afindt(:,0) close(50) end if ! write optional quantities if (.not.ttswrite) return ! charge density in 1D if (tdrho1d) then open(50,file='RHO1D'//trim(fext),form='FORMATTED',action='WRITE') open(51,file='RHOLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,1,rhomt,rhoir) close(50) close(51) end if ! charge density in 2D if (tdrho2d) then open(50,file='RHO2D'//trim(fext),form='FORMATTED',action='WRITE') call plot2d(.false.,50,1,rhomt,rhoir) close(50) end if ! charge density in 3D if (tdrho3d) then open(50,file='RHO3D'//trim(fext),form='FORMATTED',action='WRITE') call plot3d(50,1,rhomt,rhoir) close(50) end if ! magnetisation in 1D, 2D or 3D if ((tdmag1d.or.tdmag2d.or.tdmag3d).and.(spinpol)) then allocate(rvfmt(npmtmax,natmtot,3),rvfir(ngtot,3)) if (ncmag) then ! non-collinear rvfmt(:,:,:)=magmt(:,:,:) rvfir(:,:)=magir(:,:) else ! collinear rvfmt(:,:,1:2)=0.d0 rvfir(:,1:2)=0.d0 rvfmt(:,:,3)=magmt(:,:,1) rvfir(:,3)=magir(:,1) end if if (tdmag1d) then open(50,file='MAG1D'//trim(fext),form='FORMATTED',action='WRITE') open(51,file='MAGLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,3,rvfmt,rvfir) close(50) close(51) end if if (tdmag2d) then open(50,file='MAG2D'//trim(fext),form='FORMATTED',action='WRITE') call plot2d(.true.,50,3,rvfmt,rvfir) close(50) end if if (tdmag3d) then open(50,file='MAG3D'//trim(fext),form='FORMATTED',action='WRITE') call plot3d(50,3,rvfmt,rvfir) close(50) end if deallocate(rvfmt,rvfir) end if ! gauge-invariant current density in 1D if (tdjr1d) then open(50,file='JR1D'//trim(fext),form='FORMATTED',action='WRITE') open(51,file='JRLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,3,jrmt,jrir) close(50) close(51) end if ! gauge-invariant current density in 2D if (tdjr2d) then open(50,file='JR2D'//trim(fext),form='FORMATTED',action='WRITE') call plot2d(.true.,50,3,jrmt,jrir) close(50) end if ! gauge-invariant current density in 3D if (tdjr3d) then open(50,file='JR3D'//trim(fext),form='FORMATTED',action='WRITE') call plot3d(50,3,jrmt,jrir) close(50) end if ! calculate and write tensor moments if (dftu /= 0) then if (tmwrite) call writetdtm3 end if end subroutine elk-10.4.9/src/PaxHeaders/dielectric_tdrt.f900000644000000000000000000000013214762655565015736 xustar0030 mtime=1741380469.397013316 30 atime=1741380468.212007121 30 ctime=1741380469.397013316 elk-10.4.9/src/dielectric_tdrt.f900000644002504400250440000000667314762655565020474 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine dielectric_tdrt use modmain use modtddft implicit none ! local variables integer iw,i,j real(8) w1,w2,t0,t1 complex(8) eta,z1,z2 character(256) fname ! allocatable arrays real(8), allocatable :: w(:),wt(:),jt(:,:) complex(8), allocatable :: ew(:,:),jw(:,:),eps(:) ! initialise global variables call init0 call init1 ! generate energy grid (always non-negative) allocate(w(nwplot)) w1=max(wplot(1),0.d0) w2=max(wplot(2),w1) t1=(w2-w1)/dble(nwplot) do iw=1,nwplot w(iw)=w1+t1*dble(iw-1) end do ! i divided by the complex relaxation time eta=cmplx(0.d0,swidth,8) ! determine the weights for the spline integration allocate(wt(ntimes)) call wsplint(ntimes,times,wt) ! compute the electric field from E = -1/c dA/dt and Fourier transform allocate(ew(nwplot,3)) t0=-1.d0/solsc do i=1,3 if (task == 480) then ! Fourier transform A(t) numerically to obtain A(ω) call zftft(w,wt,3,afieldt(i,1),ew(:,i)) ! take the time derivative E(t)=-1/c dA(t)/dt analytically to get E(ω) ew(:,i)=t0*zmi*w(:)*ew(:,i) ! filter the high-frequency components from E(ω) with a Lorentzian convolution call zlrzncnv(nwplot,swidth,w,ew(:,i)) else ! analytic Fourier transform of E(t) assumed to be a delta function at t=0 t1=t0*afieldt(i,1) ew(:,i)=t1 end if end do ! read in the total current from file allocate(jt(3,ntimes)) call readjtot(jt) ! divide by the unit cell volume jt(:,:)=jt(:,:)/omega ! set the constant part of J(t) to zero if required; this effectively removes ! the Drude term if (jtconst0) then do i=1,3 t1=dot_product(wt(:),jt(i,:)) t1=t1/times(ntimes) jt(i,1:ntimes)=jt(i,1:ntimes)-t1 end do end if ! Fourier transform the current allocate(jw(nwplot,3)) do i=1,3 call zftft(w,wt,3,jt(i,1),jw(:,i)) ! filter the high-frequency components from J(ω) with a Lorentzian convolution call zlrzncnv(nwplot,swidth,w,jw(:,i)) end do deallocate(wt,jt) ! compute the dielectric function and write to file allocate(eps(nwplot)) do i=1,3 do j=1,3 do iw=1,nwplot z1=jw(iw,i) z2=ew(iw,j) t1=abs(dble(z2))+abs(aimag(z2)) if (t1 > 1.d-8) then z1=z1/z2 else z1=0.d0 end if z1=fourpi*zi*z1/(w(iw)+eta) if (i == j) z1=z1+1.d0 eps(iw)=z1 end do ! filter the high-frequency components of ϵ call zlrzncnv(nwplot,2.d0*swidth,w,eps) write(fname,'("EPSILON_TDRT_",2I1,".OUT")') i,j open(50,file=trim(fname),form='FORMATTED') do iw=1,nwplot write(50,'(2G18.10)') w(iw),dble(eps(iw)) end do write(50,*) do iw=1,nwplot write(50,'(2G18.10)') w(iw),aimag(eps(iw)) end do close(50) end do end do ! write Fourier transform of total current to file open(50,file='JTOTW.OUT',form='FORMATTED') do i=1,3 do iw=1,nwplot write(50,'(3G18.10)') w(iw),jw(iw,i) end do write(50,*) end do close(50) write(*,*) write(*,'("Info(dielectric_tdrt):")') write(*,'(" dielectric tensor determined from real-time evolution")') write(*,'(" written to EPSILON_TDRT_ij.OUT for components i,j = 1,2,3")') write(*,*) write(*,'(" (Note that only those components which are not orthogonal to the")') write(*,'(" applied A-field will be calculated correctly)")') write(*,*) write(*,'(" Fourier transform of total current J(ω) written to JTOTW.OUT")') deallocate(w,ew,jw,eps) end subroutine elk-10.4.9/src/PaxHeaders/readjtot.f900000644000000000000000000000013214762655565014406 xustar0030 mtime=1741380469.398013322 30 atime=1741380468.214007132 30 ctime=1741380469.398013322 elk-10.4.9/src/readjtot.f900000644002504400250440000000172714762655565017137 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readjtot(jt) use modmain use modtddft implicit none ! arguments real(8), intent(out) :: jt(3,ntimes) ! local variables integer its,ios real(8) times_,t1 open(50,file='JTOT_TD.OUT',form='FORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readjtot): error opening JTOT_TD.OUT")') write(*,*) stop end if do its=1,ntimes-1 read(50,*) times_,jt(:,its) t1=abs(times(its)-times_) if (t1 > 1.d-10) then write(*,*) write(*,'("Error(readjtot): time step mismatch for step number ",I8)') its write(*,'(" internal : ",G18.10)') times(its) write(*,'(" JTOT_TD.OUT : ",G18.10)') times_ write(*,*) stop end if end do close(50) ! set current at last time step jt(:,ntimes)=jt(:,ntimes-1) end subroutine elk-10.4.9/src/PaxHeaders/afindtstep.f900000644000000000000000000000013214762655565014733 xustar0030 mtime=1741380469.399013327 30 atime=1741380468.216007142 30 ctime=1741380469.399013327 elk-10.4.9/src/afindtstep.f900000644002504400250440000000330014762655565017451 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Peter Elliott, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: afindtstep ! !INTERFACE: subroutine afindtstep ! !USES: use modmain use modtddft use modmpi ! !DESCRIPTION: ! Performs a time step of the macroscopic Maxwell equation and updates the ! induced vector potential ${\bf A}(t)$. In practice, a more general damped ! Proca equation is solved: ! $$ a_0{\bf A}+a_1\dot{\bf A}+a_2\ddot{\bf A}= ! \frac{4\pi c}{\Omega}{\bf J}, $$ ! where $\Omega$ is the unit cell volume, ${\bf J}$ is the total current ! across the unit cell, and the parameters $a_i$, $i=0,1,2$ are stored in the ! array {\tt afindpm}. This generalisation allows for both a mass and damping ! term, however the default values of $a_0=a_1=0$ and $a_2=1$ recover the ! physical Maxwell equation. ! ! !REVISION HISTORY: ! Created January 2020 (P. Elliott) ! Added mass and damping terms, December 2022 (JKD) !EOP !BOC implicit none ! local variables integer i real(8) dt,t1,t2,t3 ! time step length dt=times(itimes+1)-times(itimes) ! add to the time derivative of the induced A-field t1=fourpi*solsc/omega t2=dt/afindpm(2) do i=1,3 t3=t1*jtot(i)-afindpm(1)*afindt(i,1)-afindpm(0)*afindt(i,0) afindt(i,1)=afindt(i,1)+t2*t3 end do ! add to the induced A-field afindt(1:3,0)=afindt(1:3,0)+afindt(1:3,1)*dt ! add to the total A-field afieldt(1:3,itimes+1)=afieldt(1:3,itimes+1)+afindt(1:3,0) ! write the induced A-field and its time derivative to file if (mp_mpi) then open(50,file='AFINDT.OUT',form='FORMATTED') write(50,'(6G18.10)') afindt(:,:) close(50) end if end subroutine !EOC elk-10.4.9/src/PaxHeaders/genefieldt.f900000644000000000000000000000013214762655565014700 xustar0030 mtime=1741380469.401013337 30 atime=1741380468.218007153 30 ctime=1741380469.401013337 elk-10.4.9/src/genefieldt.f900000644002504400250440000000117114762655565017422 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Peter Elliott, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genefieldt use modmain use modtddft implicit none ! local variables integer, parameter :: npm=8 integer np,it,i real(8) t0 ! automatic arrays real(8) ya(npm) ! external functions real(8), external :: polynm ! determine the electric field at the current time step t0=-1.d0/solsc np=min(npm,itimes) it=itimes-np+1 do i=1,3 ya(1:np)=afieldt(i,it:itimes) efieldt(i)=t0*polynm(1,np,times(it),ya,times(itimes)) end do end subroutine elk-10.4.9/src/PaxHeaders/energytd.f900000644000000000000000000000013214762655565014413 xustar0030 mtime=1741380469.402013343 30 atime=1741380468.220007163 30 ctime=1741380469.402013343 elk-10.4.9/src/energytd.f900000644002504400250440000000201514762655565017133 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine energytd use modmain use modtddft implicit none ! local variables integer is,ias real(8) ca,engya,t1,t2 ! external functions real(8), external :: rfinp ! Coulomb potential energy engyvcl=rfinp(rhomt,rhoir,vclmt,vclir) ! Madelung term engymad=0.d0 do ias=1,natmtot is=idxis(ias) engymad=engymad+0.5d0*spzn(is)*(vclmt(1,ias)-vcln(1,is))*y00 end do ! exchange and correlation energy engyx=rfinp(rhomt,rhoir,exmt,exir) engyc=rfinp(rhomt,rhoir,ecmt,ecir) ! vector potential contributions to energy ca=-1.d0/solsc ! coupling term -1/c A(t)⋅J(t) engya=ca*dot_product(afieldt(1:3,itimes),jtot(1:3)) ! constant term 1/2c² A²(t)Q where Q is the 'dynamic' charge ca=0.5d0/solsc**2 t1=sum(afieldt(1:3,itimes)**2) t2=sum(chgstot(1:3))/3.d0 engya=engya+ca*t1*(chgtot-t2) ! total energy engytot=engykn+0.5d0*engyvcl+engymad+engyx+engyc+engya end subroutine elk-10.4.9/src/PaxHeaders/engyknk.f900000644000000000000000000000013214762655565014240 xustar0030 mtime=1741380469.404013353 30 atime=1741380468.222007174 30 ctime=1741380469.404013353 elk-10.4.9/src/engyknk.f900000644002504400250440000000216614762655565016767 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine engyknk(ik,kmat,evecsv,evecsvt) use modmain use modtddft implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: kmat(nstsv,nstsv) complex(8), intent(in) :: evecsv(nstsv,nstsv),evecsvt(nstsv,nstsv) ! local variables integer ist real(8) wo,t1 ! allocatable arrays complex(8), allocatable :: a(:,:),b(:,:) ! external functions real(8), external :: ddot allocate(a(nstsv,nstsv),b(nstsv,nstsv)) ! form the kinetic operator matrix elements in the first-variational basis call zgemm('N','C',nstsv,nstsv,nstsv,zone,kmat,nstsv,evecsv,nstsv,zzero,a,nstsv) call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,a,nstsv,zzero,b,nstsv) ! add to the kinetic energy call zgemm('N','N',nstsv,nstsv,nstsv,zone,b,nstsv,evecsvt,nstsv,zzero,a,nstsv) do ist=1,nstsv wo=occsv(ist,ik) if (abs(wo) < epsocc) cycle wo=wo*wkpt(ik) t1=ddot(2*nstsv,evecsvt(:,ist),1,a(:,ist),1) !$OMP ATOMIC engykn=engykn+wo*t1 end do deallocate(a,b) end subroutine elk-10.4.9/src/PaxHeaders/readforcet.f900000644000000000000000000000013214762655565014710 xustar0030 mtime=1741380469.405013358 30 atime=1741380468.224007184 30 ctime=1741380469.405013358 elk-10.4.9/src/readforcet.f900000644002504400250440000000336314762655565017437 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readforcet use modmain use modtddft implicit none ! local variables integer ios,its,its_ integer is,ia,ias,is_,ia_ real(8) times_,t1 ! allocate and zero the time-dependent force array if (allocated(forcet)) deallocate(forcet) allocate(forcet(3,natmtot,ntimes)) forcet(:,:,:)=0.d0 ! read in the time-dependent total atomic forces open(50,file='FORCETOT_TD.OUT',form='FORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readforcet): error opening FORCETOT_TD.OUT")') write(*,*) stop end if do its=1,ntimes-1,ntsforce read(50,*) its_,times_ if (its /= its_) then write(*,*) write(*,'("Error(readforcet): time step number mismatch")') write(*,'(" internal : ",I8)') its write(*,'(" FORCETOT_TD.OUT : ",I8)') its_ write(*,*) stop end if t1=abs(times(its)-times_) if (t1 > 1.d-10) then write(*,*) write(*,'("Error(readforcet): time step mismatch for step number ",I8)') its write(*,'(" internal : ",G18.10)') times(its) write(*,'(" FORCETOT_TD.OUT : ",G18.10)') times_ stop end if do is=1,nspecies do ia=1,natoms(is) ias=idxas(ia,is) read(50,*) is_,ia_,forcet(:,ias,its) if ((is /= is_).or.(ia /= ia_)) then write(*,*) write(*,'("Error(readforcet): species or atom number mismatch for time & &step number ",I8)') its write(*,'(" internal : ",2I4)') is,ia write(*,'(" FORCETOT_TD.OUT : ",2I4)') is_,ia_ write(*,*) stop end if end do end do end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/tdrestart.f900000644000000000000000000000013214762655565014606 xustar0030 mtime=1741380469.406013363 30 atime=1741380468.226007195 30 ctime=1741380469.406013363 elk-10.4.9/src/tdrestart.f900000644002504400250440000000141214762655565017326 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Peter Elliott, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tdrestart use modmain use modtddft use moddftu implicit none ! last time step for which the eigenvectors were written to file call readtimes ! generate the density and magnetisation call rhomag ! compute the time-dependent Kohn-Sham potential and magnetic field call potkst ! DFT+U if (dftu /= 0) then call gendmatmt call genvmatmt end if ! read in the induced A-field and its time derivative if (tafindt) call readafindt ! read in the atomic displacements and velocities if (tatdisp) trdatdv=.true. ! begin TDDFT loop with next time step itimes0=itimes0+1 end subroutine elk-10.4.9/src/PaxHeaders/writeatdvc.f900000644000000000000000000000013214762655565014746 xustar0030 mtime=1741380469.408013374 30 atime=1741380468.228007205 30 ctime=1741380469.408013374 elk-10.4.9/src/writeatdvc.f900000644002504400250440000000101714762655565017467 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeatdvc use modmain implicit none ! local variables integer is,ia ! write the atomic displacements and velocities in Cartesian coordinates to file open(50,file='ATDVC.OUT',form='FORMATTED',action='WRITE') do is=1,nspecies do ia=1,natoms(is) write(50,'(2I4,6G18.10)') is,ia,atdvc(:,:,ia,is) end do end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/rhostatic.f900000644000000000000000000000013214762655565014572 xustar0030 mtime=1741380469.409013379 30 atime=1741380468.230007215 30 ctime=1741380469.409013379 elk-10.4.9/src/rhostatic.f900000644002504400250440000000550314762655565017317 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhostatic use modmain use modtddft use modmpi implicit none ! local variables integer is,ia,ias,np,i real(8) t0,t1 ! allocatable arrays real(8), allocatable :: jrmt0(:,:,:),jrir0(:,:) ! external functions real(8), external :: rfmtint,rfint ! store original parameters maxscl0=maxscl afieldc0(:)=afieldc(:) tforce0=tforce tjr0=tjr ! initialise global variables call init0 ! only one self-consistent loop required maxscl=1 ! read potential from STATE.OUT trdstate=.true. ! calculate current density with zero A-field tjr=.true. afieldc(:)=0.d0 ! switch off forces tforce=.false. ! run the ground-state calculation call gndstate ! store the current density allocate(jrmt0(npmtmax,natmtot,3),jrir0(ngtot,3)) do i=1,3 call rfcopy(jrmt(:,:,i),jrir(:,i),jrmt0(:,:,i),jrir0(:,i)) end do ! allocate static density and charge global arrays if (allocated(rhosmt)) deallocate(rhosmt) allocate(rhosmt(npmtmax,natmtot,3)) if (allocated(rhosir)) deallocate(rhosir) allocate(rhosir(ngtot,3)) if (allocated(chgsmt)) deallocate(chgsmt) allocate(chgsmt(natmtot,3)) ! magnitude of applied external A-field t0=0.75d0*solsc t1=solsc/t0 ! loop over three directions do i=1,3 afieldc(:)=0.d0 afieldc(i)=t0 ! run the ground-state calculation call gndstate ! muffin-tin static density do ias=1,natmtot is=idxis(ias) np=npmt(is) rhosmt(1:np,ias,i)=rhomt(1:np,ias)+t1*(jrmt0(1:np,ias,i)-jrmt(1:np,ias,i)) ! compute the muffin-tin static charge chgsmt(ias,i)=rfmtint(nrmt(is),nrmti(is),wr2mt(:,is),rhosmt(:,ias,i)) end do ! interstitial static density rhosir(1:ngtot,i)=rhoir(1:ngtot)+t1*(jrir0(1:ngtot,i)-jrir(1:ngtot,i)) ! compute the static charge chgstot(i)=rfint(rhosmt(:,:,i),rhosir(:,i)) end do if (mp_mpi) then ! write static density and charges to binary file open(100,file='RHOSTAT.OUT',form='UNFORMATTED',action='WRITE') write(100) natmtot write(100) npmtmax write(100) ngtot write(100) rhosmt,rhosir write(100) chgsmt write(100) chgstot close(100) ! write static charges to text file open(50,file='CHGSTAT.OUT',form='FORMATTED',action='WRITE') write(50,'("Muffin-tin static charges :")') do is=1,nspecies write(50,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) write(50,'(" core charge",T25,": ",G18.10)') chgcr(is) do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(" atom ",I4,T25,": ",3G18.10)') ia,chgsmt(ias,:) end do end do write(50,*) write(50,'("Total static charge",T25,": ",3G18.10)') chgstot(:) close(50) end if deallocate(jrmt0,jrir0) ! restore original input parameters maxscl=maxscl0 afieldc(:)=afieldc0(:) tforce=tforce0 tjr=tjr0 ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/jtotk.f900000644000000000000000000000013214762655565013725 xustar0030 mtime=1741380469.410013384 30 atime=1741380468.232007226 30 ctime=1741380469.410013384 elk-10.4.9/src/jtotk.f900000644002504400250440000000223614762655565016452 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine jtotk(ik,pmat,evecsv,evecsvt) use modmain implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: pmat(nstsv,nstsv,3) complex(8), intent(in) :: evecsv(nstsv,nstsv),evecsvt(nstsv,nstsv) ! local variables integer ist,l real(8) wo,t1 ! allocatable arrays complex(8), allocatable :: a(:,:),b(:,:) ! external functions real(8), external :: ddot allocate(a(nstsv,nstsv),b(nstsv,nstsv)) do l=1,3 ! form the momentum operator matrix elements in the first-variational basis call zgemm('N','C',nstsv,nstsv,nstsv,zone,pmat(:,:,l),nstsv,evecsv,nstsv, & zzero,a,nstsv) call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,a,nstsv,zzero,b,nstsv) ! add to the total current call zgemm('N','N',nstsv,nstsv,nstsv,zone,b,nstsv,evecsvt,nstsv,zzero,a,nstsv) do ist=1,nstsv wo=occsv(ist,ik) if (abs(wo) < epsocc) cycle wo=wo*wkpt(ik) t1=ddot(2*nstsv,evecsvt(:,ist),1,a(:,ist),1) !$OMP ATOMIC jtot(l)=jtot(l)+wo*t1 end do end do deallocate(a,b) end subroutine elk-10.4.9/src/PaxHeaders/rhosplot.f900000644000000000000000000000013214762655565014444 xustar0030 mtime=1741380469.412013395 30 atime=1741380468.234007236 30 ctime=1741380469.412013395 elk-10.4.9/src/rhosplot.f900000644002504400250440000000223114762655565017164 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhosplot use modmain use modtddft implicit none ! local variables integer is,ias,ispn integer nr,nri,iro,ir,i ! determine the static density and charge call rhostatic ! remove the core charge density do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 do ispn=1,nspncr i=1 do ir=1,nri rhosmt(i,ias,:)=rhosmt(i,ias,:)-rhocr(ir,ias,ispn) i=i+lmmaxi end do do ir=iro,nr rhosmt(i,ias,:)=rhosmt(i,ias,:)-rhocr(ir,ias,ispn) i=i+lmmaxo end do end do end do ! produce 1D plot of the static density open(50,file='RHOS1D.OUT',form='FORMATTED',action='WRITE') open(51,file='RHOSLINES.OUT',form='FORMATTED',action='WRITE') call plot1d(50,51,3,rhosmt,rhosir) close(50) close(51) write(*,*) write(*,'("Info(rhosplot):")') write(*,'(" 1D static density plot written to RHOS1D.OUT")') write(*,'(" vertex location lines written to RHOSLINES.OUT")') write(*,*) write(*,'(" The core density is not included in the plot")') end subroutine elk-10.4.9/src/PaxHeaders/bornecdyn.f900000644000000000000000000000012614762655565014560 xustar0028 mtime=1741380469.4130134 30 atime=1741380468.236007247 28 ctime=1741380469.4130134 elk-10.4.9/src/bornecdyn.f900000644002504400250440000000654114762655565017305 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine bornecdyn use modmain use modphonon use modtddft use modmpi use modtest implicit none ! local variables integer its,iw,i real(8) vc(3),w1,w2,t0,t1,t2 character(256) fext ! allocatable arrays real(8), allocatable :: w(:),wt(:),jt(:,:) real(8), allocatable :: f1(:),f2(:) complex(8), allocatable :: becw(:,:) ! initialise universal variables call init0 ! store original parameters atposl0(:,:,:)=atposl(:,:,:) atposc0(:,:,:)=atposc(:,:,:) afieldc0(:)=afieldc(:) tshift0=tshift ! no shifting of atomic basis allowed tshift=.false. ! generate the time step grid call gentimes ! allocate local arrays allocate(w(nwplot),wt(ntimes),jt(3,ntimes)) allocate(f1(ntimes),f2(ntimes),becw(nwplot,3)) ! generate frequency grid (always non-negative) w1=max(wplot(1),0.d0) w2=max(wplot(2),w1) t1=(w2-w1)/dble(nwplot) do iw=1,nwplot w(iw)=w1+t1*dble(iw-1) end do ! determine the weights for the spline integration call wsplint(ntimes,times,wt) ! generate a zero A-field and write to file npulse=0 nramp=0 if (mp_mpi) call genafieldt ! initial ground-state run should start from atomic densities trdstate=.false. ! begin new Born effective charge task 10 continue call bectask(80,fext) ! if nothing more to do then restore original input parameters and return if (isph == 0) then filext='.OUT' atposl(:,:,:)=atposl0(:,:,:) afieldc(:)=afieldc0(:) tshift=tshift0 trdatdv=.false. deallocate(w,wt,jt,f1,f2,becw) return end if if (mp_mpi) then write(*,'("Info(bornecdyn): working on ",A)') 'BEC'//trim(fext) end if ! break the crystal symmetry for the displaced atom atposl(:,:,:)=atposl0(:,:,:) atposc(:,:,:)=atposc0(:,:,:) vc(:)=atposc(:,iaph,isph) vc(ipph)=vc(ipph)-0.5d0*deltaph call r3mv(ainv,vc,atposl(:,iaph,isph)) ! apply a small static A-field afieldc(:)=0.d0 afieldc(ipph)=1.d-4 ! run the ground-state calculation call gndstate ! subsequent calculations will read in the previous potential trdstate=.true. ! write zero atomic forces to file if (mp_mpi) call becforce ! write displacement to file atdvc(:,:,:,:)=0.d0 atdvc(ipph,0,iaph,isph)=deltaph if (mp_mpi) call writeatdvc trdatdv=.true. ! run the time evolution calculation with Ehrenfest dynamics task=462 call tddft task=478 ! read in the total current from file call readjtot(jt) ! filter the high-frequency components from the current do its=1,ntimes t1=exp(-swidth*times(its)) jt(:,its)=t1*jt(:,its) end do ! compute the dynamical BEC from the Fourier transformed current t0=1.d0/(deltaph*cos(tdphi)) do i=1,3 call zftft(w,wt,3,jt(i,1),becw(:,i)) becw(:,i)=t0*becw(:,i) end do ! static and nuclear charge t1=sum(chgsmt(iasph,1:3))/3.d0+spzn(isph) ! write Born effective charge matrix row to file if (mp_mpi) then do i=1,3 if (i == ipph) then t2=t1 else t2=0.d0 end if do iw=1,nwplot write(80,'(2G18.10)') w(iw),dble(becw(iw,i))+t2 end do write(80,*) do iw=1,nwplot write(80,'(2G18.10)') w(iw),aimag(becw(iw,i)) end do write(80,*) end do close(80) end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! write test file if required and return if (test) then call writetest(478,'dynamical Born effective charge',nv=nwplot,tol=1.d-2, & zva=becw) return end if goto 10 end subroutine elk-10.4.9/src/PaxHeaders/becforce.f900000644000000000000000000000013214762655565014342 xustar0030 mtime=1741380469.415013411 30 atime=1741380468.238007257 30 ctime=1741380469.415013411 elk-10.4.9/src/becforce.f900000644002504400250440000000115314762655565017064 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine becforce use modmain use modphonon use modtddft implicit none integer its,is,ia ! generate the time step grid call gentimes ! write zero force to file for all time steps open(50,file='FORCETOT_TD.OUT',form='FORMATTED') do its=1,ntimes,ntsforce write(50,'(I8,G18.10)') its,times(its) do is=1,nspecies do ia=1,natoms(is) write(50,'(2I4,3G18.10)') is,ia,0.d0,0.d0,0.d0 end do end do end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/tdinit.f900000644000000000000000000000013214762655565014065 xustar0030 mtime=1741380469.416013416 30 atime=1741380468.240007268 30 ctime=1741380469.416013416 elk-10.4.9/src/tdinit.f900000644002504400250440000000674114762655565016617 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tdinit use modmain use modtddft use moddftu use modmpi use modomp use modramdisk implicit none ! local variables integer ik ! allocatable arrays real(8), allocatable :: evalfv(:,:) complex(8), allocatable :: evecfv(:,:,:),evecsv(:,:) ! flag for starting at t=0 or a restart tdt0=((task == 460).or.(task == 462)) ! determine the static density and charge and write to file if (tdt0) call rhostatic ! store original parameters tforce0=tforce tfav00=tfav0 tjr0=tjr ! currents should be calculated with forces if (tforce) tjr=.true. ! average force can be non-zero (allow for translation of atomic basis) tfav0=.false. ! ensure eigenvectors are written to disk during initialisation wrtdsk0=wrtdsk wrtdsk=.true. ! initialise global variables call init0 call init1 ! read the charge density and potentials from file call readstate call genvsig call gencore call energykncr call linengy call genapwlofr call gensocfr if (tdt0) then ! generate eigenvalues and eigenvectors only at t=0 (not for the restart) for ! the k-point set reduced with the symmetries which leave A(t) invariant for all ! time steps call genevfsv else ! only read in the second-variational eigenvalues for restarts call readevalsv ! read in the static density and charge call readrhos end if ! compute the occupation numbers call occupy ! DFT+U if (dftu /= 0) then call gendmatmt call genvmatmt call vmatmtsc if (tmwrite) call genwkpr0 end if ! generate the kinetic matrix elements in the second-variational basis call genkmat(.false.,.false.) ! write the momentum matrix elements in the second-variational basis call genpmat ! copy EVALFV.OUT, EVECFV.OUT, OCCSV.OUT and EVECSV.OUT to _TD.OUT extension if (tdt0) then allocate(evalfv(nstfv,nspnfv),evecfv(nmatmax,nstfv,nspnfv)) allocate(evecsv(nstsv,nstsv)) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle call getevalfv('.OUT',ik,vkl(:,ik),evalfv) call putevalfv('_TD.OUT',ik,evalfv) call getevecfv('.OUT',ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call putevecfv('_TD.OUT',ik,evecfv) call putoccsv('_TD.OUT',ik,occsv(:,ik)) call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! randomise eigenvectors at t=0 if required call rndevsv(rndevt0,evecsv) call putevecsv('_TD.OUT',ik,evecsv) end do deallocate(evalfv,evecfv,evecsv) end if ! set global file extension filext='_TD.OUT' ! output the new k-point set to file if (mp_mpi) call writekpts ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! Ehrenfest dynamics if ((task == 462).or.(task == 463)) then ! forces should not be calculated tforce=.false. ! enable small amplitude displacements tatdisp=.true. ! zero the displacements and velocities atdvc(:,:,:,:)=0.d0 ! generate the gradient of the nucleus and static density Coulomb potential call gengvnsmt end if if (tdt0) then ! start from t=0 itimes0=1 else ! restart if required call tdrestart end if ! deallocate the static density if not required if (.not.tjr) deallocate(rhosmt,rhosir) ! read the forces calculated during the previous TDDFT run if (tatdisp) call readforcet ! read the atomic displacements and velocities if (trdatdv) call readatdvc wrtdsk=wrtdsk0 ! make the time-dependent Kohn-Sham orbitals strictly orthogonal after each ! time step for complex time evolution if (tdphi /= 0.d0) ntsorth=1 end subroutine elk-10.4.9/src/PaxHeaders/readrhos.f900000644000000000000000000000013214762655565014401 xustar0030 mtime=1741380469.417013421 30 atime=1741380468.242007278 30 ctime=1741380469.417013421 elk-10.4.9/src/readrhos.f900000644002504400250440000000277714762655565017140 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readrhos use modmain use modtddft implicit none integer ios integer natmtot_,npmtmax_,ngtot_ ! allocate static density and charge global arrays if (allocated(rhosmt)) deallocate(rhosmt) allocate(rhosmt(npmtmax,natmtot,3)) if (allocated(rhosir)) deallocate(rhosir) allocate(rhosir(ngtot,3)) if (allocated(chgsmt)) deallocate(chgsmt) allocate(chgsmt(natmtot,3)) open(100,file='RHOSTAT.OUT',form='UNFORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readrhos): error opening RHOSTAT.OUT")') write(*,*) stop end if read(100) natmtot_ if (natmtot /= natmtot_) then write(*,*) write(*,'("Error(readrhos): differing natmtot")') write(*,'(" current : ",I6)') natmtot write(*,'(" RHOSTAT.OUT : ",I6)') natmtot_ write(*,*) stop end if read(100) npmtmax_ if (npmtmax /= npmtmax_) then write(*,*) write(*,'("Error(readrhos): differing npmtmax")') write(*,'(" current : ",I6)') npmtmax write(*,'(" RHOSTAT.OUT : ",I6)') npmtmax_ write(*,*) stop end if read(100) ngtot_ if (ngtot /= ngtot_) then write(*,*) write(*,'("Error(readrhos): differing ngtot")') write(*,'(" current : ",I8)') ngtot write(*,'(" RHOSTAT.OUT : ",I8)') ngtot_ write(*,*) stop end if read(100) rhosmt,rhosir read(100) chgsmt read(100) chgstot close(100) end subroutine elk-10.4.9/src/PaxHeaders/gengvnsmt.f900000644000000000000000000000013214762655565014602 xustar0030 mtime=1741380469.419013431 30 atime=1741380468.244007289 30 ctime=1741380469.419013431 elk-10.4.9/src/gengvnsmt.f900000644002504400250440000000270514762655565017330 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gengvnsmt use modmain use modtddft implicit none ! local variables integer is,ias integer nr,nri,iro integer np,i0,i1 ! allocatable arrays real(8), allocatable :: rfmt(:) complex(8), allocatable :: zrhomt(:),zvclmt(:) ! allocate local arrays allocate(rfmt(npmtmax),zrhomt(npmtmax),zvclmt(npmtmax)) ! allocate global array if (allocated(gvnsmt)) deallocate(gvnsmt) allocate(gvnsmt(npmtmax,3,natmtot)) ! loop over atoms do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) iro=nri+1 np=npmt(is) ! take the average of the static density over the three directions rfmt(1:np)=(1.d0/3.d0) & *(rhosmt(1:np,ias,1)+rhosmt(1:np,ias,2)+rhosmt(1:np,ias,3)) ! convert to complex spherical harmonics expansion call rtozfmt(nr,nri,rfmt,zrhomt) ! solve Poisson's equation in the muffin-tin call zpotclmt(nr,nri,nrmtmax,rlmt(:,:,is),wprmt(:,:,is),zrhomt,zvclmt) ! add the nuclear Coulomb potential i1=lmmaxi*(nri-1)+1 zvclmt(1:i1:lmmaxi)=zvclmt(1:i1:lmmaxi)+vcln(1:nri,is) i0=i1+lmmaxi i1=lmmaxo*(nr-iro)+i0 zvclmt(i0:i1:lmmaxo)=zvclmt(i0:i1:lmmaxo)+vcln(iro:nr,is) ! compute the gradient of the potential and store in global array call gradzfmt(nr,nri,rlmt(:,-1,is),wcrmt(:,:,is),zvclmt,npmtmax, & gvnsmt(:,:,ias)) end do deallocate(rfmt,zrhomt,zvclmt) end subroutine elk-10.4.9/src/PaxHeaders/genhafspt.f900000644000000000000000000000013214762655565014551 xustar0030 mtime=1741380469.420013437 30 atime=1741380468.246007299 30 ctime=1741380469.420013437 elk-10.4.9/src/genhafspt.f900000644002504400250440000000274314762655565017301 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 E. Harris-Lee, S. Sharma and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genhafspt(evecsv,pmat,h) use modmain use modtddft implicit none ! arguments complex(8), intent(in) :: evecsv(nstsv,nstsv),pmat(nstsv,nstsv,3) complex(8), intent(inout) :: h(nstsv,nstsv) ! local variables integer jst,i,j,l real(8) ca,v(3) complex(8) zm(2,2) ! allocatable arrays complex(8), allocatable :: smat(:,:,:,:) allocate(smat(nstsv,nstsv,2,2)) ! generate the spin operator matrix elements in the second-variational basis call gensmatk(evecsv,smat) ! coupling constant of the external spin-polarised A-field (-1/c) ca=-1.d0/solsc ! add the spin-current operator to the Hamiltonian do l=1,3 v(:)=ca*afspt(l,:,itimes) zm(1,1)=v(3) zm(1,2)=cmplx(v(1),-v(2),8) zm(2,1)=cmplx(v(1),v(2),8) zm(2,2)=-v(3) do j=1,2 do i=1,2 call zhemm('L','U',nstsv,nstsv,zm(i,j),pmat(:,:,l),nstsv,smat(:,:,i,j), & nstsv,zone,h,nstsv) end do end do end do ! add effective magnetic field to Hamiltonian if required (E. Harris-Lee) if (tbaspat) then call r3mtv(afspt(:,:,itimes),afieldt(:,itimes),v) v(:)=(ca**2)*v(:) zm(1,1)=v(3) zm(1,2)=cmplx(v(1),-v(2),8) zm(2,1)=cmplx(v(1),v(2),8) zm(2,2)=-v(3) do j=1,2 do i=1,2 do jst=1,nstsv h(1:jst,jst)=h(1:jst,jst)+zm(i,j)*smat(1:jst,jst,i,j) end do end do end do end if deallocate(smat) end subroutine elk-10.4.9/src/PaxHeaders/writeaxsf.f900000644000000000000000000000013214762655565014606 xustar0030 mtime=1741380469.421013442 30 atime=1741380468.248007309 30 ctime=1741380469.421013442 elk-10.4.9/src/writeaxsf.f900000644002504400250440000000163314762655565017333 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeaxsf use modmain use modtddft implicit none ! local variables integer is,ia ! write header at first time step if (itimes <= 1) then open(50,file='crystal.axsf',form='FORMATTED') write(50,'("ANIMSTEPS ",I8)') (ntimes-2)/ntsforce+1 write(50,'("CRYSTAL")') write(50,'("PRIMVEC")') write(50,'(3G18.10)') avec(:,1)*br_ang write(50,'(3G18.10)') avec(:,2)*br_ang write(50,'(3G18.10)') avec(:,3)*br_ang close(50) end if open(50,file='crystal.axsf',form='FORMATTED',position='APPEND') write(50,*) write(50,'("PRIMCOORD ",I8)') (itimes-1)/ntsforce+1 write(50,'(2I8)') natmtot,1 do is=1,nspecies do ia=1,natoms(is) write(50,'(A,3G18.10)') trim(spsymb(is)),atposc(:,ia,is)*br_ang end do end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/atptstep.f900000644000000000000000000000013114762655565014435 xustar0030 mtime=1741380469.422013447 29 atime=1741380468.25000732 30 ctime=1741380469.422013447 elk-10.4.9/src/atptstep.f900000644002504400250440000000163614762655565017166 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine atptstep(ft) use modmain use modtddft use modmpi implicit none ! arguments real(8), intent(in) :: ft(3,natmtot) ! local variables integer itn,is,ia,ias real(8) dt,t1,t2 ! next time step when the forces will be calculated itn=itimes+ntsforce if (itn > ntimes) return ! time step length dt=times(itn)-times(itimes) do is=1,nspecies t1=1.d0-atdfc*dt if (t1 < 0.d0) t1=0.d0 t2=dt/spmass(is) do ia=1,natoms(is) ias=idxas(ia,is) ! add to the atomic velocities atdvc(1:3,1,ia,is)=t1*atdvc(1:3,1,ia,is)+t2*ft(1:3,ias) ! add to the atomic displacements atdvc(1:3,0,ia,is)=atdvc(1:3,0,ia,is)+atdvc(1:3,1,ia,is)*dt end do end do ! write the atomic displacements and velocities to file if (mp_mpi) call writeatdvc end subroutine elk-10.4.9/src/PaxHeaders/potkst.f900000644000000000000000000000013114762655565014115 xustar0030 mtime=1741380469.424013458 29 atime=1741380468.25200733 30 ctime=1741380469.424013458 elk-10.4.9/src/potkst.f900000644002504400250440000000053314762655565016641 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potkst use modmain use modtddft implicit none ! adiabatic approximation to the exchange-correlation potential call potks(.true.) end subroutine elk-10.4.9/src/PaxHeaders/tdbackup.f900000644000000000000000000000013214762655565014367 xustar0030 mtime=1741380469.425013463 30 atime=1741380468.254007341 30 ctime=1741380469.425013463 elk-10.4.9/src/tdbackup.f900000644002504400250440000000207714762655565017117 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tdbackup use modmain use modtddft use modmpi use modramdisk implicit none ! local variables integer ik ! allocatable arrays complex(8), allocatable :: evecsvt(:,:) if (ntsbackup < 1) return if (mod(itimes-1,ntsbackup) /= 0) return ! ensure eigenvectors are written to disk wrtdsk0=wrtdsk wrtdsk=.true. allocate(evecsvt(nstsv,nstsv)) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! read in time-dependent Kohn-Sham eigenvectors call getevecsv(filext,ik,vkl(:,ik),evecsvt) ! write eigenvectors to backup file call putevecsv('_TD_BACKUP.OUT',ik,evecsvt) end do deallocate(evecsvt) ! write the time step backup file if (mp_mpi) then open(50,file='TIMESTEP_BACKUP.OUT',form='FORMATTED') write(50,'(I8,G18.10)') itimes,times(itimes) close(50) end if wrtdsk=wrtdsk0 ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/writetimes.f900000644000000000000000000000013214762655565014766 xustar0030 mtime=1741380469.426013468 30 atime=1741380468.256007351 30 ctime=1741380469.426013468 elk-10.4.9/src/writetimes.f900000644002504400250440000000057514762655565017517 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetimes use modmain use modtddft implicit none open(50,file='TIMESTEP.OUT',form='FORMATTED') write(50,'(I8,G18.10)') itimes,times(itimes) close(50) end subroutine elk-10.4.9/src/PaxHeaders/readtimes.f900000644000000000000000000000013214762655565014547 xustar0030 mtime=1741380469.428013478 30 atime=1741380468.259007367 30 ctime=1741380469.428013478 elk-10.4.9/src/readtimes.f900000644002504400250440000000211514762655565017270 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readtimes use modmain use modtddft implicit none ! local variables integer ios real(8) times_,t1 open(50,file='TIMESTEP.OUT',form='FORMATTED',status='OLD',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readtimes): error opening TIMESTEP.OUT")') write(*,*) stop end if read(50,*,iostat=ios) itimes0,times_ if (ios /= 0) then write(*,*) write(*,'("Error(readtimes): error reading time step from TIMESTEP.OUT")') write(*,*) stop end if if ((itimes0 < 1).or.(itimes0 > ntimes)) then write(*,*) write(*,'("Error(readtimes): invalid itimes : ",I8)') itimes0 write(*,*) stop end if t1=abs(times(itimes0)-times_) if (t1 > 1.d-8) then write(*,*) write(*,'("Error(readtimes): differing time step")') write(*,'(" current : ",G18.10)') times(itimes0) write(*,'(" TIMESTEP.OUT : ",G18.10)') times_ write(*,*) stop end if close(50) end subroutine elk-10.4.9/src/PaxHeaders/gentimes.f900000644000000000000000000000013214762655565014405 xustar0030 mtime=1741380469.429013484 30 atime=1741380468.260007372 30 ctime=1741380469.429013484 elk-10.4.9/src/gentimes.f900000644002504400250440000000117714762655565017135 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gentimes use modmain use modtddft implicit none ! local variables integer its if (tstime < dtimes) then write(*,*) write(*,'("Error(gentimes): tstime < dtimes : ",2G18.10)') tstime,dtimes write(*,*) stop end if ! number of time steps ntimes=nint(tstime/dtimes)+1 ! generate the time step array if (allocated(times)) deallocate(times) allocate(times(ntimes)) do its=1,ntimes times(its)=dble(its-1)*dtimes end do end subroutine elk-10.4.9/src/PaxHeaders/readafieldt.f900000644000000000000000000000013214762655565015036 xustar0030 mtime=1741380469.430013489 30 atime=1741380468.262007383 30 ctime=1741380469.430013489 elk-10.4.9/src/readafieldt.f900000644002504400250440000000475414762655565017572 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readafieldt use modmain use modtddft implicit none ! local variables integer ios,ntimes_,its,its_ real(8) times_,t1 ! generate the time step grid call gentimes ! read in the time-dependent vector potential open(50,file='AFIELDT.OUT',form='FORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readafieldt): error opening AFIELDT.OUT")') write(*,*) stop end if read(50,*) ntimes_ if (ntimes_ < 1) then write(*,*) write(*,'("Error(readafieldt): ntimes < 1 : ",I8)') ntimes_ write(*,*) stop end if ntimes=min(ntimes,ntimes_) if (allocated(afieldt)) deallocate(afieldt) allocate(afieldt(3,ntimes)) do its=1,ntimes read(50,*) its_,times_,afieldt(:,its) if (its /= its_) then write(*,*) write(*,'("Error(readafieldt): time step number mismatch")') write(*,'(" internal : ",I8)') its write(*,'(" AFIELDT.OUT : ",I8)') its_ write(*,*) stop end if t1=abs(times(its)-times_) if (t1 > 1.d-10) then write(*,*) write(*,'("Error(readafieldt): time step mismatch for step number ",& &I8)') its write(*,'(" internal : ",G18.10)') times(its) write(*,'(" AFIELDT.OUT : ",G18.10)') times_ stop end if end do close(50) if (.not.tafspt) return open(50,file='AFSPT.OUT',form='FORMATTED',action='READ',status='OLD',iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readafieldt): error opening AFSPT.OUT")') write(*,*) stop end if read(50,*) ntimes_ if (ntimes /= ntimes_) then write(*,*) write(*,'("Error(readafieldt): differing ntimes")') write(*,'(" internal : ",I8)') ntimes write(*,'(" AFSPT.OUT : ",I8)') ntimes_ write(*,*) stop end if if (allocated(afspt)) deallocate(afspt) allocate(afspt(3,3,ntimes)) do its=1,ntimes read(50,*) its_,times_,afspt(:,:,its) if (its /= its_) then write(*,*) write(*,'("Error(readafieldt): time step number mismatch")') write(*,'(" internal : ",I8)') its write(*,'(" AFSPT.OUT : ",I8)') its_ write(*,*) stop end if t1=abs(times(its)-times_) if (t1 > 1.d-10) then write(*,*) write(*,'("Error(readafieldt): time step mismatch for step number ",& &I8)') its write(*,'(" internal : ",G18.10)') times(its) write(*,'(" AFSPT.OUT : ",G18.10)') times_ stop end if end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/genjr.f900000644000000000000000000000013214762655565013677 xustar0030 mtime=1741380469.432013499 30 atime=1741380468.264007393 30 ctime=1741380469.432013499 elk-10.4.9/src/genjr.f900000644002504400250440000000154114762655565016422 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genjr use modmain use modtddft implicit none ! local variables integer is,ias,np,l real(8) ca,t1 ! generate the paramagnetic current call genjpr ! add the diamagnetic term if a time-dependent A-field is present if (tafieldt) then ! coupling constant of the external A-field (-1/c) ca=-1.d0/solsc ! muffin-tin part do l=1,3 t1=ca*afieldt(l,itimes) do ias=1,natmtot is=idxis(ias) np=npmt(is) jrmt(1:np,ias,l)=jrmt(1:np,ias,l)+t1*(rhomt(1:np,ias)-rhosmt(1:np,ias,l)) end do end do ! interstitial part do l=1,3 t1=ca*afieldt(l,itimes) jrir(1:ngtot,l)=jrir(1:ngtot,l)+t1*(rhoir(1:ngtot)-rhosir(1:ngtot,l)) end do end if end subroutine elk-10.4.9/src/PaxHeaders/tddft.f900000644000000000000000000000013214762655565013677 xustar0030 mtime=1741380469.433013505 30 atime=1741380468.266007404 30 ctime=1741380469.433013505 elk-10.4.9/src/tddft.f900000644002504400250440000000572414762655565016431 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tddft use modmain use modtddft use moddftu use modmpi use modomp use modramdisk use modtest implicit none if (tshift) then write(*,*) write(*,'("Error(tddft): use tshift = .false. for the ground-state run")') write(*,*) stop end if ! initialise TDDFT variables call tdinit ! set the stop signal to .false. tstop=.false. !---------------------------------! ! main loop over time steps ! !---------------------------------! if (mp_mpi) write(*,*) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) do itimes=itimes0,ntimes-1 if (mp_mpi) then write(*,'("Info(tddft): time step ",I8," of ",I8,", t = ",G18.10)') & itimes,ntimes-1,times(itimes) end if ! reset the OpenMP thread variables call omp_reset ! check for STOP file call checkstop ! write all files on last loop if ((itimes == ntimes-1).or.tstop) wrtdsk=.true. ! flag for writing observables at this time step ttswrite=.false. if (ntswrite(1) > 0) then if (mod(itimes-1,ntswrite(1)) == 0) then if ((itimes == 1).or.(itimes >= ntswrite(2))) ttswrite=.true. end if end if ! flag for calculating forces at this time step ttsforce=(mod(itimes-1,ntsforce) == 0) ! evolve the wavefunctions across a single time step call timestep ! generate the density and magnetisation at current time step call rhomag ! compute the gauge-invariant current j(r) if required if (tjr) call genjr ! time step the induced A-field if (tafindt) call afindtstep ! calculate the electric field call genefieldt ! compute the time-dependent Kohn-Sham potential and magnetic field call potkst ! add the fixed spin moment effective field if required call addbfsm ! DFT+U if (dftu /= 0) then call gendmatmt call genvmatmt call vmatmtsc end if ! compute the total energy call energytd ! calculate the atomic forces if required if (tforce.and.ttsforce) call force ! time step the atomic positions for Ehrenfest dynamics using forces calculated ! during the previous TDDFT run if (tatdisp.and.ttsforce) call atptstep(forcet(:,:,itimes)) ! write general TDDFT output if (mp_mpi) call writetddft ! write optional TDDFT output if (ttswrite) then ! write time-dependent DOS if (tddos) call writetddos ! write muffin-tin L, S and J if required if (tdlsj) call writetdlsj ! write the k-point dependent total current if (tdjtk) call writetdjtk ! write the k-point dependent excited density and magnetisation if (tdxrmk) call writexrmk end if if (tstop) exit end do filext='.OUT' ! restore original input parameters tforce=tforce0 tfav0=tfav00 tjr=tjr0 tatdisp=.false. ! write the total current of the last step to test file call writetest(460,'total current of last time step',nv=3,tol=5.d-4,rva=jtot) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/timestep.f900000644000000000000000000000013214762655565014424 xustar0030 mtime=1741380469.435013515 30 atime=1741380468.269007419 30 ctime=1741380469.435013515 elk-10.4.9/src/timestep.f900000644002504400250440000001125114762655565017146 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2014 K. Krieger, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine timestep use modmain use modtddft use modmpi use modomp implicit none ! local variables integer ik,i,nthd real(8) ca,dt,t1 complex(8) z1,z2 ! automatic arrays real(8) w(nstsv) ! allocatable arrays real(8), allocatable :: vmt(:,:),vir(:),bmt(:,:,:),bir(:,:) complex(8), allocatable :: evecsv(:,:),evectv(:,:),evecsvt(:,:) complex(8), allocatable :: kmat(:,:),pmat(:,:,:) complex(8), allocatable :: a(:,:),b(:,:),c(:,:) if (itimes >= ntimes) then write(*,*) write(*,'("Error(timestep): itimes >= ntimes : ",2I8)') itimes,ntimes write(*,*) stop end if allocate(vmt(npcmtmax,natmtot),vir(ngtc)) if (spinpol) then allocate(bmt(npcmtmax,natmtot,ndmag),bir(ngtc,ndmag)) end if ! generate the Kohn-Sham potential and magnetic field in spherical coordinates ! and multiply by the radial integration weights; also multiply the interstitial ! potential with the characteristic function call vblocal(vmt,vir,bmt,bir) ! time step length dt=times(itimes+1)-times(itimes) ! zero the kinetic energy engykn=0.d0 ! zero the total current jtot(1:3)=0.d0 ! loop over k-points call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv,evectv,evecsvt) & !$OMP PRIVATE(kmat,pmat,w,a,b,c) & !$OMP PRIVATE(i,t1,z1,z2) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv),evectv(nstsv,nstsv),evecsvt(nstsv,nstsv)) allocate(kmat(nstsv,nstsv),pmat(nstsv,nstsv,3)) allocate(a(nstsv,nstsv),b(nstsv,nstsv),c(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! get the kinetic matrix elements from file call getkmat(ik,kmat) ! get the momentum matrix elements from file call getpmat(vkl(:,ik),pmat) ! generate the Hamiltonian matrix in the ground-state second-variational basis call genhmlt(ik,vmt,vir,bmt,bir,kmat,pmat,evectv) ! diagonalise the Hamiltonian to get third-variational eigenvectors if (spinpol.and.(.not.ncmag)) then ! collinear case requires block diagonalisation call eveqnzh(nstfv,nstsv,evectv,w) evectv(nstfv+1:nstsv,1:nstfv)=0.d0 evectv(1:nstfv,nstfv+1:nstsv)=0.d0 i=nstfv+1 call eveqnzh(nstfv,nstsv,evectv(i,i),w(i)) else ! non-collinear or spin-unpolarised: full diagonalisation call eveqnzh(nstsv,nstsv,evectv,w) end if ! read in ground-state eigenvectors call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! convert third-variational eigenvectors to first-variational basis call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,evectv,nstsv,zzero,a, & nstsv) ! time propagate instantaneous eigenvectors across one time step if (tdphi == 0.d0) then ! real time evolution do i=1,nstsv t1=-w(i)*dt z1=cmplx(cos(t1),sin(t1),8) b(1:nstsv,i)=z1*a(1:nstsv,i) end do else ! complex time evolution z2=cmplx(sin(tdphi),cos(tdphi),8) do i=1,nstsv t1=-w(i)*dt z1=exp(t1*z2) b(1:nstsv,i)=z1*a(1:nstsv,i) end do end if ! read in time-dependent Kohn-Sham eigenvectors (first-variational basis) call getevecsv(filext,ik,vkl(:,ik),evecsvt) ! apply time evolution operator call zgemm('C','N',nstsv,nstsv,nstsv,zone,a,nstsv,evecsvt,nstsv,zzero,c,nstsv) call zgemm('N','N',nstsv,nstsv,nstsv,zone,b,nstsv,c,nstsv,zzero,evecsvt,nstsv) ! orthonormalise the eigenvectors if required if (ntsorth > 0) then if (mod(itimes-1,ntsorth) == 0) call unitary(nstsv,evecsvt) end if ! add to the kinetic energy call engyknk(ik,kmat,evecsv,evecsvt) ! add to the total current call jtotk(ik,pmat,evecsv,evecsvt) ! write the new eigenvectors to file call putevecsv(filext,ik,evecsvt) end do !$OMP END DO deallocate(evecsv,evectv,evecsvt) deallocate(kmat,pmat,a,b,c) !$OMP END PARALLEL call freethd(nthd) deallocate(vmt,vir) if (spinpol) deallocate(bmt,bir) ! add the kinetic energy and total current from each process and redistribute if (np_mpi > 1) then call mpi_allreduce(mpi_in_place,engykn,1,mpi_double_precision,mpi_sum,mpicom,& ierror) call mpi_allreduce(mpi_in_place,jtot,3,mpi_double_precision,mpi_sum,mpicom, & ierror) end if ! add the core kinetic energy engykn=engykn+engykncr ! coupling constant of the external A-field (-1/c) ca=-1.d0/solsc ! add the diamagnetic current to total jtot(1:3)=jtot(1:3)+ca*afieldt(1:3,itimes)*(chgtot-chgstot(1:3)) ! symmetrise the vector call symvec(jtot) ! total current magnitude jtotm=norm2(jtot(1:3)) ! write the time step to file if (mp_mpi) call writetimes ! backup existing time-dependent Kohn-Sham eigenvectors if required call tdbackup ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/writetdjtk.f900000644000000000000000000000013014762655565014763 xustar0029 mtime=1741380469.43601352 30 atime=1741380468.272007435 29 ctime=1741380469.43601352 elk-10.4.9/src/writetdjtk.f900000644002504400250440000000516214762655565017513 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2023 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writetdjtk use modmain use modtddft use modmpi use modomp implicit none ! local variables integer ik,ist,l,lp,nthd real(8) ca,t1,t2 complex(8) z1 character(32) fext ! allocatable arrays real(8), allocatable :: jtk(:,:) complex(8), allocatable :: evecsv(:,:),evecsvt(:,:) complex(8), allocatable :: pmat(:,:,:),a(:,:),b(:,:) ! external functions complex(8), external :: zdotc ! coupling constant of the external A-field (-1/c) ca=-1.d0/solsc allocate(jtk(3,nkpt)) jtk(:,:)=0.d0 call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv,evecsvt,pmat) & !$OMP PRIVATE(a,b,l,t1,t2,ist,z1) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv),evecsvt(nstsv,nstsv)) allocate(pmat(nstsv,nstsv,3),a(nstsv,nstsv),b(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! get the momentum matrix elements from file call getpmat(vkl(:,ik),pmat) ! read in ground-state eigenvectors call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! read in time-dependent Kohn-Sham eigenvectors (first-variational basis) call getevecsv(filext,ik,vkl(:,ik),evecsvt) do l=1,3 ! form the momentum operator matrix elements in the first-variational basis call zgemm('N','C',nstsv,nstsv,nstsv,zone,pmat(:,:,l),nstsv,evecsv,nstsv, & zzero,a,nstsv) call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,a,nstsv,zzero,b, & nstsv) call zgemm('N','N',nstsv,nstsv,nstsv,zone,b,nstsv,evecsvt,nstsv,zzero,a, & nstsv) ! add to the total current for this k-point (including diamagnetic contribution) t1=ca*afieldt(l,itimes) do ist=1,nstsv t2=occsv(ist,ik) if (abs(t2) > epsocc) then z1=zdotc(nstsv,evecsvt(:,ist),1,a(:,ist),1) jtk(l,ik)=jtk(l,ik)+t2*(dble(z1)+t1) end if end do end do end do !$OMP END DO deallocate(evecsv,evecsvt,pmat,a,b) !$OMP END PARALLEL call freethd(nthd) ! broadcast current array to every MPI process if (np_mpi > 1) then do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(jtk(:,ik),3,mpi_double_precision,lp,mpicom,ierror) end do end if ! write k-point dependent total current to file if (mp_mpi) then ! file extension write(fext,'("_TS",I8.8,".OUT")') itimes open(50,file='JTOTK'//trim(fext),form='FORMATTED',action='WRITE') do ik=1,nkpt write(50,'(I6,6G18.10)') ik,vkl(:,ik),jtk(:,ik) end do close(50) end if deallocate(jtk) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/writexrmk.f900000644000000000000000000000013214762655565014626 xustar0030 mtime=1741380469.437013525 30 atime=1741380468.274007445 30 ctime=1741380469.437013525 elk-10.4.9/src/writexrmk.f900000644002504400250440000000625114762655565017354 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 Peter Elliott, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writexrmk use modmain use modtddft use modmpi use modomp use moddelf implicit none ! local variables integer ik,ist,jst,i integer lp,nthd real(8) xchg,t1,t2 complex(8) z1 ! automatic arrays real(8) xrk(nkpt),xmk(ndmag,nkpt) complex(8) zv(nstsv) character(32) fext ! allocatable arrays complex(8), allocatable :: evecsv(:,:),evecsvt(:,:) ! external functions complex(8), external :: zdotc call holdthd(nkpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecsv,evecsvt,zv) & !$OMP PRIVATE(ist,jst,z1,i,t1,t2) & !$OMP NUM_THREADS(nthd) allocate(evecsv(nstsv,nstsv),evecsvt(nstsv,nstsv)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkpt ! distribute among MPI processes if (mod(ik-1,np_mpi) /= lp_mpi) cycle ! read in ground-state eigenvectors call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! read in time-dependent Kohn-Sham eigenvectors (first-variational basis) call getevecsv(filext,ik,vkl(:,ik),evecsvt) ! zero the excited density and magnetisation xrk(ik)=0.d0 if (spinpol) xmk(1:ndmag,ik)=0.d0 do ist=1,nstsv if (evalsv(ist,ik) > efermi) cycle ! project time-dependent Kohn-Sham state onto ground-state conduction bands zv(1:nstsv)=0.d0 do jst=1,nstsv if (evalsv(jst,ik) < efermi) cycle z1=zdotc(nstsv,evecsv(:,jst),1,evecsvt(:,ist),1) zv(1:nstsv)=zv(1:nstsv)+z1*evecsv(1:nstsv,jst) end do ! calculate the excited density and magnetisation if (spinpol) then i=nstfv+1 t1=dble(zdotc(nstfv,zv,1,zv,1)) t2=dble(zdotc(nstfv,zv(i),1,zv(i),1)) xrk(ik)=t1+t2 xmk(ndmag,ik)=xmk(ndmag,ik)+t1-t2 if (ncmag) then z1=zdotc(nstfv,zv,1,zv(i),1) xmk(1,ik)=xmk(1,ik)+2.d0*dble(z1) xmk(2,ik)=xmk(2,ik)+2.d0*aimag(z1) end if else xrk(ik)=xrk(ik)+occmax*dble(zdotc(nstsv,zv,1,zv,1)) end if end do end do !$OMP END DO deallocate(evecsv,evecsvt) !$OMP END PARALLEL call freethd(nthd) ! broadcast arrays to every MPI process if (np_mpi > 1) then do ik=1,nkpt lp=mod(ik-1,np_mpi) call mpi_bcast(xrk(ik),1,mpi_double_precision,lp,mpicom,ierror) call mpi_bcast(xmk(:,ik),3,mpi_double_precision,lp,mpicom,ierror) end do end if ! compute the excited charge xchg=sum(wkpt(1:nkpt)*xrk(1:nkpt)) if (mp_mpi) then ! file extension write(fext,'("_TS",I8.8,".OUT")') itimes ! write k-point dependent excited density to file open(50,file='XRHOK'//trim(fext),form='FORMATTED',action='WRITE') do ik=1,nkpt write(50,'(I6,4G18.10)') ik,vkl(:,ik),xrk(ik) end do close(50) ! write k-point dependent excited magnetisation to file if (spinpol) then open(50,file='XMAGK'//trim(fext),form='FORMATTED',action='WRITE') do ik=1,nkpt write(50,'(I6,6G18.10)') ik,vkl(:,ik),xmk(:,ik) end do close(50) end if ! write the excited charge to file if (itimes <= 1) call delfile('XCHARGE_TD.OUT') open(50,file='XCHARGE_TD.OUT',form='FORMATTED',position='APPEND') write(50,'(2G18.10)') times(itimes),xchg close(50) end if ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/zftft.f900000644000000000000000000000013214762655565013727 xustar0030 mtime=1741380469.439013536 30 atime=1741380468.276007456 30 ctime=1741380469.439013536 elk-10.4.9/src/zftft.f900000644002504400250440000000165114762655565016454 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2025 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zftft(w,wt,ld,ft,fw) use modmain use modtddft use modomp implicit none ! arguments real(8), intent(in) :: w(nwplot),wt(ntimes) integer, intent(in) :: ld real(8), intent(in) :: ft(ld,ntimes) complex(8), intent(out) :: fw(nwplot) ! local variables integer iw,its,nthd real(8) t1,t2 ! automatic arrays real(8) f1(ntimes),f2(ntimes) call holdthd(nwplot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(f1,f2,its,t1,t2) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do iw=1,nwplot do its=1,ntimes t1=ft(1,its) t2=w(iw)*times(its) f1(its)=t1*cos(t2) f2(its)=t1*sin(t2) end do t1=dot_product(wt(:),f1(:)) t2=dot_product(wt(:),f2(:)) fw(iw)=cmplx(t1,t2,8) end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/writeefieldw.f900000644000000000000000000000013214762655565015264 xustar0030 mtime=1741380469.440013541 30 atime=1741380468.278007466 30 ctime=1741380469.440013541 elk-10.4.9/src/writeefieldw.f900000644002504400250440000000276714762655565020022 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeefieldw use modmain use modtddft implicit none ! local variables integer iw,i real(8) w1,w2,t0,t1 ! allocatable arrays real(8), allocatable :: w(:),wt(:) complex(8), allocatable :: ew(:,:) ! read time-dependent A-field from file call readafieldt ! generate energy grid (always non-negative) allocate(w(nwplot)) w1=max(wplot(1),0.d0) w2=max(wplot(2),w1) t1=(w2-w1)/dble(nwplot) do iw=1,nwplot w(iw)=w1+t1*dble(iw-1) end do ! determine the weights for the spline integration allocate(wt(ntimes)) call wsplint(ntimes,times,wt) ! compute the electric field from E = -1/c dA/dt and Fourier transform allocate(ew(nwplot,3)) t0=-1.d0/solsc do i=1,3 ! Fourier transform A(t) numerically to obtain A(ω) call zftft(w,wt,3,afieldt(i,1),ew(:,i)) ! take the time derivative E(t)=-1/c dA(t)/dt analytically to get E(ω) ew(:,i)=t0*zmi*w(:)*ew(:,i) ! filter the high-frequency components from E(ω) with a Lorentzian convolution call zlrzncnv(nwplot,swidth,w,ew(:,i)) end do ! write Fourier transform of electric field to file open(50,file='EFIELDW.OUT',form='FORMATTED') do i=1,3 do iw=1,nwplot write(50,'(3G18.10)') w(iw),ew(iw,i) end do write(50,*) end do close(50) write(*,*) write(*,'("Info(writeefieldw):")') write(*,'(" Fourier transform of electric field E(ω) written to EFIELDW.OUT")') deallocate(w,wt,ew) end subroutine elk-10.4.9/src/PaxHeaders/writestulr.f900000644000000000000000000000013214762655565015016 xustar0030 mtime=1741380469.442013552 30 atime=1741380468.280007477 30 ctime=1741380469.442013552 elk-10.4.9/src/writestulr.f900000644002504400250440000000311414762655565017537 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writestulr use modmain use modulr implicit none ! local variables integer ifq,idm open(100,file='STATE_ULR.OUT',form='UNFORMATTED',action='WRITE') write(100) version write(100) natmtot write(100) npcmtmax write(100) ngtc write(100) ngtot write(100) ndmag write(100) fsmtype write(100) nqpt write(100) nfqrz write(100) ivq write(100) iqrzf write(100) efermi ! write the ultra long-range density in Q-space do ifq=1,nfqrz write(100) rhoqmt(:,:,ifq) write(100) rhoqir(:,ifq) end do ! write the Kohn-Sham effective potential in Q-space do ifq=1,nfqrz write(100) vsqmt(:,:,ifq) write(100) vsqir(:,ifq) end do ! write the external Coulomb potential in Q-space do ifq=1,nfqrz write(100) vclq(ifq) end do if (spinpol) then ! write the magnetisation in Q-space do ifq=1,nfqrz do idm=1,ndmag write(100) magqmt(:,:,idm,ifq) write(100) magqir(:,idm,ifq) end do end do ! write the Kohn-Sham effective magnetic field in Q-space do ifq=1,nfqrz do idm=1,ndmag write(100) bsqmt(:,:,idm,ifq) write(100) bsqir(:,idm,ifq) end do end do ! write the external magnetic fields in Q-space do ifq=1,nfqrz do idm=1,ndmag write(100) bfcq(idm,ifq) write(100) bfcmtq(:,idm,ifq) end do end do ! write fixed spin moment magnetic fields if (fsmtype /= 0) then write(100) bfsmc write(100) bfsmcmt end if end if close(100) end subroutine elk-10.4.9/src/PaxHeaders/potcoulu.f900000644000000000000000000000013214762655565014444 xustar0030 mtime=1741380469.443013557 30 atime=1741380468.283007493 30 ctime=1741380469.443013557 elk-10.4.9/src/potcoulu.f900000644002504400250440000000505114762655565017167 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potcoulu use modmain use modulr use modmpi use modomp implicit none ! local variables integer ifq,is,ias integer nr,nri,ir integer nrc,nrci,i integer n,lp,nthd ! allocatable arrays complex(8), allocatable :: zrhomt(:,:),zrhoir(:),zvclmt(:,:) call holdthd(nfqrz/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(zrhomt,zrhoir,zvclmt) & !$OMP PRIVATE(ias,is,nr,nri) & !$OMP PRIVATE(i,ir,nrc,nrci) & !$OMP NUM_THREADS(nthd) allocate(zrhomt(npmtmax,natmtot),zrhoir(ngtot)) allocate(zvclmt(npmtmax,natmtot)) !$OMP DO SCHEDULE(DYNAMIC) do ifq=1,nfqrz ! distribute among MPI processes if (mod(ifq-1,np_mpi) /= lp_mpi) cycle ! convert the complex muffin-tin density from coarse to fine radial mesh do ias=1,natmtot is=idxis(ias) zrhomt(1:npcmt(is),ias)=rhoqmt(1:npcmt(is),ias,ifq) end do call zfmtctof(zrhomt) ! solve the complex Poisson's equation in the muffin-tins call genzvclmt(nrmt,nrmti,nrmtmax,rlmt,wprmt,npmtmax,zrhomt,zvclmt) ! add the nuclear monopole potentials for Q=0 if (ifq == 1) then do ias=1,natmtot is=idxis(ias) nr=nrmt(is) nri=nrmti(is) i=1 do ir=1,nri zvclmt(i,ias)=zvclmt(i,ias)+vcln(ir,is) i=i+lmmaxi end do do ir=nri+1,nr zvclmt(i,ias)=zvclmt(i,ias)+vcln(ir,is) i=i+lmmaxo end do end do end if ! convert the interstitial density from coarse to fine grid call zfirctof(rhoqir(:,ifq),zrhoir) ! solve Poisson's equation in the entire unit cell call zpotcoul(0,nrmt,nrmti,npmt,nrmtmax,rlmt,ngridg,igfft,ngvec,gqc(:,ifq), & gclgq(:,ifq),ngvec,jlgqrmt(:,:,:,ifq),ylmgq(:,:,ifq),sfacgq(:,:,ifq),zrhoir,& npmtmax,zvclmt,vsqir(:,ifq)) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) ! convert from fine to coarse radial mesh call zfmtftoc(nrc,nrci,zvclmt(:,ias),vsqmt(:,ias,ifq)) ! convert to spherical coordinates call zbshtip(nrc,nrci,vsqmt(:,ias,ifq)) end do end do !$OMP END DO deallocate(zrhomt,zrhoir,zvclmt) !$OMP END PARALLEL call freethd(nthd) ! broadcast potentials to every MPI process if (np_mpi > 1) then n=npcmtmax*natmtot do ifq=1,nfqrz lp=mod(ifq-1,np_mpi) call mpi_bcast(vsqmt(:,:,ifq),n,mpi_double_complex,lp,mpicom,ierror) end do do ifq=1,nfqrz lp=mod(ifq-1,np_mpi) call mpi_bcast(vsqir(:,ifq),ngtot,mpi_double_complex,lp,mpicom,ierror) end do end if end subroutine elk-10.4.9/src/PaxHeaders/initulr.f900000644000000000000000000000013214762655565014260 xustar0030 mtime=1741380469.444013562 30 atime=1741380468.285007503 30 ctime=1741380469.444013562 elk-10.4.9/src/initulr.f900000644002504400250440000001244614762655565017011 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine initulr use modmain use modulr use modomp implicit none ! local variables integer ik0,ik,ist,jst integer iq,jq,ifq,ig integer n,i,i1,i2,i3,nthd real(8) t1 ! allocatable arrays integer, allocatable :: idx(:) real(8), allocatable :: jlgqr(:,:) ! allocate long-range density and magnetisation arrays if (allocated(rhormt)) deallocate(rhormt) allocate(rhormt(npcmtmax,natmtot,nqpt)) if (allocated(rhorir)) deallocate(rhorir) allocate(rhorir(ngtc,nqpt)) if (allocated(magrmt)) deallocate(magrmt) if (allocated(magrir)) deallocate(magrir) if (spinpol) then allocate(magrmt(npcmtmax,natmtot,ndmag,nqpt)) allocate(magrir(ngtc,ndmag,nqpt)) end if if (allocated(rhoqmt)) deallocate(rhoqmt) allocate(rhoqmt(npcmtmax,natmtot,nfqrz)) if (allocated(rhoqir)) deallocate(rhoqir) allocate(rhoqir(ngtc,nfqrz)) if (allocated(chgmtru)) deallocate(chgmtru) allocate(chgmtru(natmtot,nqpt)) if (allocated(magqmt)) deallocate(magqmt) if (allocated(magqir)) deallocate(magqir) if (allocated(mommtru)) deallocate(mommtru) if (allocated(momirru)) deallocate(momirru) if (allocated(momtotru)) deallocate(momtotru) if (spinpol) then allocate(magqmt(npcmtmax,natmtot,ndmag,nfqrz)) allocate(magqir(ngtc,ndmag,nfqrz)) allocate(mommtru(ndmag,natmtot,nqpt)) allocate(momirru(ndmag,nqpt)) allocate(momtotru(ndmag,nqpt)) end if ! allocate Q-dependent potential and magnetic field arrays if (allocated(vclq)) deallocate(vclq) allocate(vclq(nfqrz)) if (allocated(bfcq)) deallocate(bfcq) if (allocated(bfcmtq)) deallocate(bfcmtq) if (allocated(bdipq)) deallocate(bdipq) if (spinpol) then allocate(bfcq(ndmag,nfqrz)) allocate(bfcmtq(natmtot,ndmag,nfqrz)) if (tbdipu) allocate(bdipq(ndmag,nfqrz)) end if ! combined target array for Kohn-Sham potential and magnetic field if (allocated(vsbsq)) deallocate(vsbsq) n=(npcmtmax*natmtot+ngtot)*nfqrz if (spinpol) n=n*(1+ndmag) allocate(vsbsq(n)) ! zero the array vsbsq(1:n)=0.d0 ! associate pointer arrays with target vsqmt(1:npcmtmax,1:natmtot,1:nfqrz) => vsbsq(1:) i=npcmtmax*natmtot*nfqrz+1 vsqir(1:ngtot,1:nfqrz) => vsbsq(i:) if (spinpol) then i=i+ngtot*nfqrz bsqmt(1:npcmtmax,1:natmtot,1:ndmag,1:nfqrz) => vsbsq(i:) i=i+npcmtmax*natmtot*ndmag*nfqrz bsqir(1:ngtot,1:ndmag,1:nfqrz) => vsbsq(i:) end if ! G+Q-vector arrays if (allocated(vgqc)) deallocate(vgqc) allocate(vgqc(3,ngvec,nfqrz)) if (allocated(gqc)) deallocate(gqc) allocate(gqc(ngvec,nfqrz)) if (allocated(ylmgq)) deallocate(ylmgq) allocate(ylmgq(lmmaxo,ngvec,nfqrz)) if (allocated(sfacgq)) deallocate(sfacgq) allocate(sfacgq(ngvec,natmtot,nfqrz)) if (allocated(gclq)) deallocate(gclq) allocate(gclq(nqpt)) if (allocated(gclgq)) deallocate(gclgq) allocate(gclgq(ngvec,nfqrz)) if (allocated(jlgqrmt)) deallocate(jlgqrmt) allocate(jlgqrmt(0:lnpsd,ngvec,nspecies,nfqrz)) if (allocated(expqmt)) deallocate(expqmt) allocate(expqmt(npcmtmax,natmtot,nqpt)) call holdthd(nfqrz,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(jlgqr,iq,ig,t1) & !$OMP PRIVATE(i1,i2,i3,jq) & !$OMP NUM_THREADS(nthd) allocate(jlgqr(njcmax,nspecies)) !$OMP DO SCHEDULE(DYNAMIC) do ifq=1,nfqrz iq=iqrzf(ifq) do ig=1,ngvec ! determine the G+Q-vectors vgqc(1:3,ig,ifq)=vgc(1:3,ig)+vqc(1:3,iq) ! G+Q-vector length gqc(ig,ifq)=sqrt(vgqc(1,ig,ifq)**2+vgqc(2,ig,ifq)**2+vgqc(3,ig,ifq)**2) ! spherical harmonics for G+Q-vectors call genylmv(.true.,lmaxo,vgqc(:,ig,ifq),ylmgq(:,ig,ifq)) end do ! generate the spherical Bessel functions j_l(|G+Q|r) call genjlgpr(1,gqc(1,ifq),jlgqr) ! structure factors for G+Q-vectors call gensfacgp(ngvec,vgqc(:,:,ifq),ngvec,sfacgq(:,:,ifq)) ! generate the Coulomb Green's function in Q-space with small Q cut-off t1=sqrt(vqc(1,iq)**2+vqc(2,iq)**2+vqc(3,iq)**2) if (t1 > q0cut+epslat) then gclq(iq)=fourpi/t1**2 else gclq(iq)=0.d0 end if ! generate the Coulomb Green's function in G+Q-space call gengclgq(.true.,iq,ngvec,gqc(:,ifq),gclgq(:,ifq)) ! compute the spherical Bessel functions j_l(|G+Q|R_mt) call genjlgprmt(lnpsd,ngvec,gqc(:,ifq),ngvec,jlgqrmt(:,:,:,ifq)) ! generate phase factor functions exp(iQ.r) in each muffin-tin call genexpmt(1,jlgqr,ylmgq(:,:,ifq),ngvec,sfacgq(:,:,ifq),expqmt(:,:,iq)) ! store the phase factor function for -Q i1=-ivq(1,iq); i2=-ivq(2,iq); i3=-ivq(3,iq) if ((i1 >= intq(1,1)).and.(i1 <= intq(2,1)).and. & (i2 >= intq(1,2)).and.(i2 <= intq(2,2)).and. & (i3 >= intq(1,3)).and.(i3 <= intq(2,3)).and.(ifq > 1)) then jq=ivqiq(i1,i2,i3) expqmt(:,:,jq)=conjg(expqmt(:,:,iq)) end if end do !$OMP END DO deallocate(jlgqr) !$OMP END PARALLEL call freethd(nthd) ! number of long-range states nstulr=nstsv*nkpa ! allocate eigenvalue array if (allocated(evalu)) deallocate(evalu) allocate(evalu(nstulr,nkpt0)) ! allocate the occupation number array if (allocated(occulr)) deallocate(occulr) allocate(occulr(nstulr,nkpt0)) ! initialise the occupation numbers allocate(idx(nstulr)) do ik0=1,nkpt0 ik=(ik0-1)*nkpa+1 call sortidx(nstulr,occsv(1,ik),idx) do ist=1,nstulr i=idx(nstulr-ist+1)-1 ik=(ik0-1)*nkpa+i/nstsv+1 jst=mod(i,nstsv)+1 occulr(ist,ik0)=occsv(jst,ik) end do end do deallocate(idx) ! zero the timing variables timemat=0.d0 timesv=0.d0 timerho=0.d0 timepot=0.d0 end subroutine elk-10.4.9/src/PaxHeaders/rfzfftq.f900000644000000000000000000000013214762655565014254 xustar0030 mtime=1741380469.446013573 30 atime=1741380468.287007514 30 ctime=1741380469.446013573 elk-10.4.9/src/rfzfftq.f900000644002504400250440000000376514762655565017011 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rfzfftq(sgn,nf,ngt,rfmt,rfir,zfmt,zfir) use modmain use modomp implicit none ! arguments integer, intent(in) :: sgn,nf,ngt real(8), intent(inout) :: rfmt(npcmtmax,natmtot,nf,nqpt) real(8), intent(inout) :: rfir(ngt,nf,nqpt) complex(8), intent(inout) :: zfmt(npcmtmax,natmtot,nf,nfqrz) complex(8), intent(inout) :: zfir(ngt,nf,nfqrz) ! local variables integer jf,is,ias,npc,i,nthd ! automatic arrays real(8) r(nqpt) complex(8) z(nfqrz) call holdthd(npcmtmax+ngt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(r,z,jf,ias,is,npc,i) & !$OMP NUM_THREADS(nthd) if (sgn == -1) then ! loop over the number of functions do jf=1,nf ! Fourier transform the muffin-tin function do ias=1,natmtot is=idxis(ias) npc=npcmt(is) !$OMP DO SCHEDULE(DYNAMIC) do i=1,npc r(1:nqpt)=rfmt(i,ias,jf,1:nqpt) call rzfftifc(3,ngridq,-1,r,z) zfmt(i,ias,jf,1:nfqrz)=z(1:nfqrz) end do !$OMP END DO NOWAIT end do ! Fourier transform the interstitial function !$OMP DO SCHEDULE(DYNAMIC) do i=1,ngt r(1:nqpt)=rfir(i,jf,1:nqpt) call rzfftifc(3,ngridq,-1,r,z) zfir(i,jf,1:nfqrz)=z(1:nfqrz) end do !$OMP END DO NOWAIT ! end loop over number of functions end do else ! loop over the number of functions do jf=1,nf do ias=1,natmtot is=idxis(ias) npc=npcmt(is) !$OMP DO SCHEDULE(DYNAMIC) do i=1,npc z(1:nfqrz)=zfmt(i,ias,jf,1:nfqrz) call rzfftifc(3,ngridq,1,r,z) rfmt(i,ias,jf,1:nqpt)=r(1:nqpt) end do !$OMP END DO NOWAIT end do !$OMP DO SCHEDULE(DYNAMIC) do i=1,ngt z(1:nfqrz)=zfir(i,jf,1:nfqrz) call rzfftifc(3,ngridq,1,r,z) rfir(i,jf,1:nqpt)=r(1:nqpt) end do !$OMP END DO NOWAIT ! end loop over number of functions end do end if !$OMP END PARALLEL call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/gndstulr.f900000644000000000000000000000013214762655565014434 xustar0030 mtime=1741380469.447013578 30 atime=1741380468.289007524 30 ctime=1741380469.447013578 elk-10.4.9/src/gndstulr.f900000644002504400250440000001655514762655565017172 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine gndstulr use modmain use modulr use modmpi use modomp implicit none ! local variables logical twrite integer ik0,ir,lp,nthd integer nmix,nwork,n real(8) dv character(64) str ! allocatable arrays integer(omp_lock_kind), allocatable :: lock(:) real(8), allocatable :: work(:) complex(8), allocatable :: evecu(:,:) if (xctype(1) < 0) then write(*,*) write(*,'("Error(gndstulr): ultra long-range does not work with OEP")') write(*,*) stop end if if (spincore) then write(*,*) write(*,'("Error(gndstulr): ultra long-range does not work with & &spin-polarised cores")') write(*,*) stop end if ! no k-point reduction reducek0=reducek reducek=0 ! initialise global variables call init0 call init1 ! write the kappa-points to file call writekpa ! write the k+kappa-points to file call writekpts ! read the regular Kohn-Sham potential from file call readstate ! generate the first- and second-variational eigenvectors and eigenvalues for ! the k+kappa-point set call genvsig call gencore call linengy call genapwlofr call gensocfr call genevfsv call occupy ! initialise the ultra long-range variables call initulr if (task == 700) then ! initialise the long-range Kohn-Sham potential and magnetic field call potuinit else ! read in the potential and density from STATE_ULR.OUT call readstulr end if ! initialise the external Coulomb potential call vclqinit ! size of mixing vector (complex array) nmix=2*size(vsbsq) ! determine the size of the mixer work array nwork=-1 call mixerifc(mixtype,nmix,vsbsq,dv,nwork,work) allocate(work(nwork)) ! initialise the mixer iscl=0 call mixerifc(mixtype,nmix,vsbsq,dv,nwork,work) ! initialise the OpenMP locks allocate(lock(nqpt)) do ir=1,nqpt call omp_init_lock(lock(ir)) end do ! set last self-consistent loop flag tlast=.false. ! begin the self-consistent loop if (mp_mpi) then ! open ULR_INFO.OUT file open(60,file='ULR_INFO.OUT',form='FORMATTED') ! open RMSDVS.OUT open(65,file='RMSDVS.OUT',form='FORMATTED') call writeinfou(60) call writebox(60,"Self-consistent loop started") end if do iscl=1,maxscl if (mp_mpi) then write(str,'("Loop number : ",I0)') iscl call writebox(60,trim(str)) end if if (iscl >= maxscl) then if (mp_mpi) then write(60,*) write(60,'("Reached self-consistent loops maximum")') end if write(*,*) write(*,'("Warning(gndstulr): failed to reach self-consistency after ",I4,& &" loops")') iscl tlast=.true. end if ! reset the OpenMP thread variables call omp_reset ! apply required local operations to the potential and magnetic field call vblocalu ! zero the density and magnetisation rhormt(:,:,:)=0.d0 rhorir(:,:)=0.d0 if (spinpol) then magrmt(:,:,:,:)=0.d0 magrir(:,:,:)=0.d0 end if ! loop over original k-points call holdthd(nkpt0/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecu) & !$OMP NUM_THREADS(nthd) allocate(evecu(nstulr,nstulr)) !$OMP DO SCHEDULE(DYNAMIC) do ik0=1,nkpt0 ! distribute among MPI processes if (mod(ik0-1,np_mpi) /= lp_mpi) cycle ! solve the ultra long-range eigenvalue equation call eveqnulr(ik0,evecu) ! write the eigenvalues to file call putevalu(ik0) ! add to the density, magnetisation and current call rhomaguk(ik0,lock,evecu) end do !$OMP END DO deallocate(evecu) !$OMP END PARALLEL call freethd(nthd) if (np_mpi > 1) then ! broadcast eigenvalue array to every process do ik0=1,nkpt0 lp=mod(ik0-1,np_mpi) call mpi_bcast(evalu(:,ik0),nstulr,mpi_double_precision,lp,mpicom,ierror) end do ! add densities from each process and redistribute n=npcmtmax*natmtot*nqpt call mpi_allreduce(mpi_in_place,rhormt,n,mpi_double_precision,mpi_sum, & mpicom,ierror) n=ngtc*nqpt call mpi_allreduce(mpi_in_place,rhorir,n,mpi_double_precision,mpi_sum, & mpicom,ierror) if (spinpol) then n=npcmtmax*natmtot*ndmag*nqpt call mpi_allreduce(mpi_in_place,magrmt,n,mpi_double_precision,mpi_sum, & mpicom,ierror) n=ngtc*ndmag*nqpt call mpi_allreduce(mpi_in_place,magrir,n,mpi_double_precision,mpi_sum, & mpicom,ierror) end if end if ! find the occupation numbers and Fermi energy call occupyulr ! synchronise MPI processes call mpi_barrier(mpicom,ierror) ! add the core density call rhocoreu ! perform partial Fourier transform to Q-space call rhomagq ! determine the muffin-tin and interstitial charges and moments call chargeu call momentu ! compute the ultra long-range Kohn-Sham potential call potksu ! mix the old potential and field with the new call mixerifc(mixtype,nmix,vsbsq,dv,nwork,work) ! multiply the RMS change in potential by the number of Q-points dv=dv*dble(nfqrz) ! calculate and add the fixed spin moment effective field (after mixing) call bfieldfsm call addbfsmu if (mp_mpi) then ! write eigenvalues to file call writeevalu ! output energy components call writeengyu(60) ! output charges call writechg(60) ! write muffin-tin charges for each R-vector call writechgrmt if (spinpol) then ! output moments call writemom(60) ! write muffin-tin, interstitial and total moments for each R-vector call writemomru ! write the moments for each Q-vector call writemomqu end if ! output effective fields for fixed spin moment calculations if (fsmtype /= 0) call writefsm(60) ! check for existence of the WRITE file call checkwrite(twrite) ! check self-consistent loop number modulo nwrite if (nwrite >= 1) then if (mod(iscl,nwrite) == 0) twrite=.true. end if ! write STATE_ULR.OUT file if required if (twrite) then call writestulr write(60,*) write(60,'("Wrote STATE_ULR.OUT")') end if end if ! exit self-consistent loop if required if (tlast) goto 10 ! check for convergence if (iscl >= 2) then if (mp_mpi) then write(60,*) write(60,'("RMS change in Kohn-Sham potential (target) : ",G18.10," (",& &G18.10,")")') dv,epspot flush(60) write(65,'(G18.10)') dv flush(65) end if if (dv < epspot) then if (mp_mpi) then write(60,*) write(60,'("Convergence targets achieved")') end if tlast=.true. end if end if ! check for STOP file call checkstop if (tstop) tlast=.true. ! broadcast tlast from master process to all other processes call mpi_bcast(tlast,1,mpi_logical,0,mpicom,ierror) ! reset the OpenMP thread variables call omp_reset end do 10 continue if (mp_mpi) then ! output timing information write(60,*) write(60,'("Timings (CPU seconds) :")') write(60,'(" Hamiltonian matrix set up",T40,": ",F12.2)') timemat write(60,'(" eigenvalue equation",T40,": ",F12.2)') timesv write(60,'(" charge density calculation",T40,": ",F12.2)') timerho write(60,'(" potential calculation",T40,": ",F12.2)') timepot call writebox(60,"Self-consistent loop stopped") if (maxscl > 1) then call writestulr write(60,*) write(60,'("Wrote STATE_ULR.OUT")') end if ! close the ULR_INFO.OUT file close(60) ! close the RMSDVS.OUT file close(65) end if ! destroy the OpenMP locks do ir=1,nqpt call omp_destroy_lock(lock(ir)) end do deallocate(lock,work) ! restore original parameters reducek=reducek0 ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/rhomagq.f900000644000000000000000000000013214762655565014230 xustar0030 mtime=1741380469.449013588 30 atime=1741380468.291007534 30 ctime=1741380469.449013588 elk-10.4.9/src/rhomagq.f900000644002504400250440000000242714762655565016757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhomagq use modmain use modulr use modomp implicit none ! local variables integer ifq,idm,is,ias,nthd ! partial Fourier transform of density to Q-space call rfzfftq(-1,1,ngtc,rhormt,rhorir,rhoqmt,rhoqir) ! convert density to spherical harmonics call holdthd(nfqrz,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ias,is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ifq=1,nfqrz do ias=1,natmtot is=idxis(ias) call zfshtip(nrcmt(is),nrcmti(is),rhoqmt(:,ias,ifq)) end do end do !$OMP END PARALLEL DO call freethd(nthd) if (.not.spinpol) return ! partial Fourier transform of magnetisation to Q-space call rfzfftq(-1,ndmag,ngtc,magrmt,magrir,magqmt,magqir) ! convert magnetisation to spherical harmonics call holdthd(nfqrz,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(idm,ias,is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ifq=1,nfqrz do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call zfshtip(nrcmt(is),nrcmti(is),magqmt(:,ias,idm,ifq)) end do end do end do !$OMP END PARALLEL DO call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/potksu.f900000644000000000000000000000013214762655565014117 xustar0030 mtime=1741380469.450013593 30 atime=1741380468.293007545 30 ctime=1741380469.450013593 elk-10.4.9/src/potksu.f900000644002504400250440000000137614762655565016650 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potksu use modmain use modulr implicit none ! local variables real(8) ts0,ts1 call timesec(ts0) ! compute the ultra long-range Coulomb potential call potcoulu ! compute the ultra long-range dipole-dipole magnetic field if required if (tbdipu) call bdipoleu ! compute the ultra long-range exchange-correlation potential and fields call potxcu ! reduce the external magnetic field if required if (reducebf < 1.d0) then bfcq(:,:)=bfcq(:,:)*reducebf bfcmtq(:,:,:)=bfcmtq(:,:,:)*reducebf end if call timesec(ts1) timepot=timepot+ts1-ts0 end subroutine elk-10.4.9/src/PaxHeaders/writeevalu.f900000644000000000000000000000013214762655565014761 xustar0030 mtime=1741380469.451013599 30 atime=1741380468.295007555 30 ctime=1741380469.451013599 elk-10.4.9/src/writeevalu.f900000644002504400250440000000136714762655565017512 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeevalu use modmain use modulr implicit none ! local variables integer ik0,ik,ist ! write out the valence eigenvalues open(50,file='EIGVALU.OUT',form='FORMATTED') write(50,'(I6," : nkpt0")') nkpt0 write(50,'(I6," : nstulr")') nstulr do ik0=1,nkpt0 ! central k-point ik=(ik0-1)*nkpa+1 write(50,*) write(50,'(I6,3G18.10," : k-point, vkl")') ik0,vkl(:,ik) write(50,'(" (state, eigenvalue and occupancy below)")') do ist=1,nstulr write(50,'(I6,2G18.10)') ist,evalu(ist,ik0),occulr(ist,ik0) end do end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/genhmlu.f900000644000000000000000000000013214762655565014231 xustar0030 mtime=1741380469.453013609 30 atime=1741380468.298007571 30 ctime=1741380469.453013609 elk-10.4.9/src/genhmlu.f900000644002504400250440000000766614762655565016772 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genhmlu(ik0,h) use modmain use modulr use modomp implicit none ! arguments integer, intent(in) :: ik0 complex(8), intent(out) :: h(nstulr,nstulr) ! local variables integer ik,ist,jst,ispn,idm,nthd integer ikpa,jkpa,iq,ifq,ngk0,igk integer i1,i2,i3,j1,j2,j3,i,j ! automatic arrays complex(8) zvir(ngtc),zbir(ngtc,ndmag),vmat(nstsv,nstsv) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfir(:,:,:),wfgk(:,:,:) complex(8), allocatable :: hdb(:,:,:) ! central k-point ik=(ik0-1)*nkpa+1 ! number of G+k-vectors for central k-point ngk0=ngk(1,ik) ! get the ground-state eigenvectors from file for central k-point allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) call getevecfv('.OUT',ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) call match(ngk0,vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! calculate the wavefunctions for all states of the central k-point allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfgk(ngk0,nspinor,nstsv)) call genwfsv_sp(.false.,.true.,nstsv,[0],ngridg,igfft,ngk0,igkig(:,1,ik), & apwalm,evecfv,evecsv,wfmt,ngk0,wfgk) deallocate(apwalm,evecfv,evecsv) ! determine the interstitial wavefunctions in real-space (without 1/sqrt(omega)) allocate(wfir(ngtc,nspinor,nstsv)) call holdthd(nstsv,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ispn,igk) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ist=1,nstsv do ispn=1,nspinor wfir(1:ngtc,ispn,ist)=0.e0 do igk=1,ngk0 wfir(igfc(igkig(igk,1,ik)),ispn,ist)=wfgk(igk,ispn,ist) end do call cfftifc(3,ngdgc,1,wfir(:,ispn,ist)) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! generate the matrix elements for all Q-vectors call holdthd(nfqrz,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(zvir,zbir,vmat) & !$OMP PRIVATE(iq,idm,ikpa,jkpa,j1,j2,j3) & !$OMP PRIVATE(jst,i,j,i1,i2,i3) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ifq=1,nfqrz iq=iqrzf(ifq) ! multiply long-range interstitial potential by characteristic function and ! convert to coarse grid call zfirftoc(vsqir(:,ifq),zvir) if (spinpol) then ! convert interstitial magnetic field to coarse grid do idm=1,ndmag call zfirftoc(bsqir(:,idm,ifq),zbir(:,idm)) end do ! calculate matrix elements for this Q-vector call genzvbmatk(vsqmt(:,:,ifq),zvir,bsqmt(:,:,:,ifq),zbir,ngk0, & igkig(:,1,ik),wfmt,wfir,wfgk,vmat) else call genzvmatk(vsqmt(:,:,ifq),zvir,ngk0,igkig(:,1,ik),wfmt,wfir,wfgk,vmat) end if do jkpa=1,nkpa j1=ivq(1,jkpa); j2=ivq(2,jkpa); j3=ivq(3,jkpa) do jst=1,nstsv j=(jkpa-1)*nstsv+jst do ikpa=1,jkpa-1 i=(ikpa-1)*nstsv+1 i1=ivq(1,ikpa)-j1; i2=ivq(2,ikpa)-j2; i3=ivq(3,ikpa)-j3 if (ivqiq(i1,i2,i3) == iq) then ! copy matrix elements for kappa_i - kappa_j in Q-point set h(i:i+nstsv-1,j)=vmat(1:nstsv,jst) else if (ivqiq(-i1,-i2,-i3) == iq) then ! otherwise use conjugate transpose h(i:i+nstsv-1,j)=conjg(vmat(jst,1:nstsv)) end if end do ! copy only the upper triangular part for Q=0 if (ifq == 1) then i=(jkpa-1)*nstsv+1 h(i:i+jst-1,j)=vmat(1:jst,jst) end if end do end do end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(wfmt,wfir,wfgk) ! add the second-variational eigenvalues of k+kappa to the diagonal but in the ! basis of the states at k do ist=1,nstsv h(ist,ist)=h(ist,ist)+evalsv(ist,ik) end do allocate(hdb(nstsv,nstsv,2:nkpa)) call hdbulrk(ik0,hdb) do ikpa=2,nkpa i=(ikpa-1)*nstsv+1 do jst=1,nstsv j=i+jst-1 h(i:i+jst-1,j)=h(i:i+jst-1,j)+hdb(1:jst,jst,ikpa) end do end do deallocate(hdb) end subroutine elk-10.4.9/src/PaxHeaders/hdbulrk.f900000644000000000000000000000013014762655565014223 xustar0029 mtime=1741380469.45501362 30 atime=1741380468.300007581 29 ctime=1741380469.45501362 elk-10.4.9/src/hdbulrk.f900000644002504400250440000000513114762655565016747 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine hdbulrk(ik0,hdb) use modmain use modulr implicit none ! arguments integer, intent(in) :: ik0 complex(8), intent(out) :: hdb(nstsv,nstsv,2:nkpa) ! local variables integer ik,ikk,ikpa,ist real(8) t1 ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(8), allocatable :: wfmtk(:,:,:,:),wfgkk(:,:,:) complex(8), allocatable :: ok(:,:),b(:,:) ! central k-point ik=(ik0-1)*nkpa+1 ! get the ground-state eigenvectors from file for central k-point allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) call getevecfv('.OUT',ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv('.OUT',ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) call match(ngk(1,ik),vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) ! calculate the wavefunctions for all states of the central k-point allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfir(ngtc,nspinor,nstsv)) call genwfsv(.false.,.false.,nstsv,[0],ngdgc,igfc,ngk(1,ik),igkig(:,1,ik), & apwalm,evecfv,evecsv,wfmt,ngtc,wfir) ! compute the diagonal blocks of the ultra long-range Hamiltonian in the basis ! of the states at the central k-point allocate(wfmtk(npcmtmax,natmtot,nspinor,nstsv),wfgkk(ngkmax,nspinor,nstsv)) allocate(ok(nstsv,nstsv),b(nstsv,nstsv)) do ikpa=2,nkpa ikk=(ik0-1)*nkpa+ikpa call getevecfv('.OUT',ikk,vkl(:,ikk),vgkl(:,:,:,ikk),evecfv) call getevecsv('.OUT',ikk,vkl(:,ikk),evecsv) call match(ngk(1,ikk),vgkc(:,:,1,ikk),gkc(:,1,ikk),sfacgk(:,:,1,ikk),apwalm) call genwfsv(.false.,.true.,nstsv,[0],ngdgc,igfc,ngk(:,ikk),igkig(:,:,ikk), & apwalm,evecfv,evecsv,wfmtk,ngkmax,wfgkk) ! compute the overlap matrix between the states at k and k+kappa call genolpq(nstsv,expqmt(:,:,ikpa),ngk(:,ikk),igkig(:,:,ikk),wfmt,wfir, & wfmtk,wfgkk,ok) ! use singular value decompostion to make the matrix strictly unitary call unitary(nstsv,ok) ! apply the overlap matrix from the right to the eigenvalues at k+kappa do ist=1,nstsv t1=evalsv(ist,ikk) b(ist,1:nstsv)=t1*ok(ist,1:nstsv) end do ! apply the conjugate transpose of the overlap matrix from the left to form the ! Hamiltonian matrix in the basis of states at k call zgemm('C','N',nstsv,nstsv,nstsv,zone,ok,nstsv,b,nstsv,zzero, & hdb(:,:,ikpa),nstsv) end do deallocate(apwalm,evecfv,evecsv) deallocate(wfmt,wfir,wfmtk,wfgkk) deallocate(ok,b) end subroutine elk-10.4.9/src/PaxHeaders/writekpa.f900000644000000000000000000000013214762655565014420 xustar0030 mtime=1741380469.456013625 30 atime=1741380468.302007592 30 ctime=1741380469.456013625 elk-10.4.9/src/writekpa.f900000644002504400250440000000077114762655565017147 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writekpa use modmain use modulr implicit none ! local variables integer ikpa open(50,file='KAPPA.OUT',form='FORMATTED') write(50,'(I6," : nkpa; kappa-point, vector in unit cell reciprocal lattice & &coordinates below")') nkpa do ikpa=1,nkpa write(50,'(I6,3G18.10)') ikpa,vql(:,ikpa) end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/genzvmatk.f900000644000000000000000000000013014762655565014576 xustar0029 mtime=1741380469.45701363 30 atime=1741380468.304007602 29 ctime=1741380469.45701363 elk-10.4.9/src/genzvmatk.f900000644002504400250440000000434514762655565017330 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genzvmatk(zvmt,zvir,ngp,igpig,wfmt,wfir,wfgp,vmat) use modmain use modomp implicit none ! arguments ! the potential is multiplied by the radial integration weights in the ! muffin-tin and by the characteristic function in the interstitial region complex(8), intent(in) :: zvmt(npcmtmax,natmtot),zvir(ngtc) integer, intent(in) :: ngp,igpig(ngp) complex(4), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nstsv) ! note that wfir does not have a 1/sqrt(omega) prefactor complex(4), intent(in) :: wfir(ngtc,nspinor,nstsv),wfgp(ngp,nspinor,nstsv) complex(8), intent(out) :: vmat(nstsv,nstsv) ! local variables integer ist,jst,ispn,nthd integer is,ias,npc,igp ! automatic arrays complex(4) wfmt1(npcmtmax),wfir1(ngtc),c(ngp) ! external functions complex(4), external :: cdotc ! zero the matrix elements vmat(1:nstsv,1:nstsv)=0.d0 call holdthd(nstsv,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfmt1,wfir1,c) & !$OMP PRIVATE(ist,jst,ispn) & !$OMP PRIVATE(ias,is,npc,igp) & !$OMP NUM_THREADS(nthd) !-------------------------! ! muffin-tin part ! !-------------------------! !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) npc=npcmt(is) ! apply complex potential to wavefunction wfmt1(1:npc)=zvmt(1:npc,ias)*wfmt(1:npc,ias,ispn,jst) ! compute the inner products do ist=1,nstsv vmat(ist,jst)=vmat(ist,jst)+cdotc(npc,wfmt(:,ias,ispn,ist),1,wfmt1,1) end do end do end do end do !$OMP END DO !---------------------------! ! interstitial part ! !---------------------------! !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv do ispn=1,nspinor ! apply potential to wavefunction wfir1(1:ngtc)=zvir(1:ngtc)*wfir(1:ngtc,ispn,jst) ! Fourier transform to G+p-space call cfftifc(3,ngdgc,-1,wfir1) do igp=1,ngp c(igp)=wfir1(igfc(igpig(igp))) end do do ist=1,nstsv ! compute inner product vmat(ist,jst)=vmat(ist,jst)+cdotc(ngp,wfgp(:,ispn,ist),1,c,1) end do end do end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) end subroutine elk-10.4.9/src/PaxHeaders/genzvbmatk.f900000644000000000000000000000013014762655565014740 xustar0029 mtime=1741380469.45901364 30 atime=1741380468.306007613 29 ctime=1741380469.45901364 elk-10.4.9/src/genzvbmatk.f900000644002504400250440000000726714762655565017500 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genzvbmatk(zvmt,zvir,zbmt,zbir,ngp,igpig,wfmt,wfir,wfgp,vbmat) use modmain use modomp implicit none ! arguments ! the potential and field are multiplied by the radial integration weights in ! the muffin-tin and by the characteristic function in the interstitial region complex(8), intent(in) :: zvmt(npcmtmax,natmtot),zvir(ngtc) complex(8), intent(in) :: zbmt(npcmtmax,natmtot,ndmag),zbir(ngtc,ndmag) integer, intent(in) :: ngp,igpig(ngp) complex(4), intent(in) :: wfmt(npcmtmax,natmtot,nspinor,nstsv) ! note that wfir does not have a 1/sqrt(omega) prefactor complex(4), intent(in) :: wfir(ngtc,nspinor,nstsv) complex(4), intent(in) :: wfgp(ngp,nspinor,nstsv) complex(8), intent(out) :: vbmat(nstsv,nstsv) ! local variables integer ist,jst,ispn,nthd integer is,ias,npc,igp ! automatic arrays complex(4) wfmt1(npcmtmax,nspinor),wfir1(ngtc,nspinor),c(ngp) ! external functions complex(4), external :: cdotc ! zero the matrix elements vbmat(1:nstsv,1:nstsv)=0.d0 call holdthd(nstsv,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(wfmt1,wfir1,c) & !$OMP PRIVATE(ist,jst,ias,is) & !$OMP PRIVATE(npc,ispn,igp) & !$OMP NUM_THREADS(nthd) !-------------------------! ! muffin-tin part ! !-------------------------! !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv do ias=1,natmtot is=idxis(ias) npc=npcmt(is) ! apply local potential and magnetic field to spinor wavefunction if (ncmag) then ! non-collinear case call zvbmk1(npc,zvmt(:,ias),zbmt(:,ias,1),zbmt(:,ias,2),zbmt(:,ias,3), & wfmt(:,ias,1,jst),wfmt(:,ias,2,jst),wfmt1,wfmt1(:,2)) else ! collinear case call zvbmk2(npc,zvmt(:,ias),zbmt(:,ias,1),wfmt(:,ias,1,jst), & wfmt(:,ias,2,jst),wfmt1,wfmt1(:,2)) end if ! compute the inner products do ist=1,nstsv vbmat(ist,jst)=vbmat(ist,jst) & +cdotc(npc,wfmt(:,ias,1,ist),1,wfmt1,1) & +cdotc(npc,wfmt(:,ias,2,ist),1,wfmt1(:,2),1) end do end do end do !$OMP END DO !---------------------------! ! interstitial part ! !---------------------------! !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nstsv ! apply local potential and magnetic field to spinor wavefunction if (ncmag) then ! non-collinear case call zvbmk1(ngtc,zvir,zbir,zbir(:,2),zbir(:,3),wfir(:,1,jst), & wfir(:,2,jst),wfir1,wfir1(:,2)) else ! collinear case call zvbmk2(ngtc,zvir,zbir,wfir(:,1,jst),wfir(:,2,jst),wfir1,wfir1(:,2)) end if do ispn=1,nspinor ! Fourier transform to G+p-space call cfftifc(3,ngdgc,-1,wfir1(:,ispn)) do igp=1,ngp c(igp)=wfir1(igfc(igpig(igp)),ispn) end do do ist=1,nstsv vbmat(ist,jst)=vbmat(ist,jst)+cdotc(ngp,wfgp(:,ispn,ist),1,c,1) end do end do end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) return contains pure subroutine zvbmk1(n,zv,zb1,zb2,zb3,wf11,wf12,wf21,wf22) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: zv(n),zb1(n),zb2(n),zb3(n) complex(4), intent(in) :: wf11(n),wf12(n) complex(4), intent(out) :: wf21(n),wf22(n) ! local variables integer i complex(8) z1 do i=1,n z1=zi*zb2(i) wf21(i)=(zv(i)+zb3(i))*wf11(i)+(zb1(i)-z1)*wf12(i) wf22(i)=(zv(i)-zb3(i))*wf12(i)+(zb1(i)+z1)*wf11(i) end do end subroutine pure subroutine zvbmk2(n,zv,zb,wf11,wf12,wf21,wf22) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: zv(n),zb(n) complex(4), intent(in) :: wf11(n),wf12(n) complex(4), intent(out) :: wf21(n),wf22(n) ! local variables integer i do i=1,n wf21(i)=(zv(i)+zb(i))*wf11(i) wf22(i)=(zv(i)-zb(i))*wf12(i) end do end subroutine end subroutine elk-10.4.9/src/PaxHeaders/chargeu.f900000644000000000000000000000013214762655565014210 xustar0030 mtime=1741380469.460013646 30 atime=1741380468.308007623 30 ctime=1741380469.460013646 elk-10.4.9/src/chargeu.f900000644002504400250440000000207514762655565016736 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine chargeu use modmain use modulr use modtest implicit none ! local variables integer ifq,is,ias integer nrc,nrci real(8) t1 ! automatic arrays real(8) rfft(nqpt) complex(8) zfft(nfqrz) ! external functions real(8), external :: ddot complex(8), external :: zfmtint ! calculate muffin-tin charges chgmttot=0.d0 do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) do ifq=1,nfqrz zfft(ifq)=zfmtint(nrc,nrci,wr2cmt(:,is),rhoqmt(:,ias,ifq)) end do chgmt(ias)=dble(zfft(1)) chgmttot=chgmttot+chgmt(ias) call rzfftifc(3,ngridq,1,rfft,zfft) chgmtru(ias,:)=rfft(:) end do ! calculate interstitial charge t1=ddot(ngtc,rhoqir(:,1),2,cfrc,1) chgir=t1*omega/dble(ngtc) ! total calculated charge chgcalc=chgmttot+chgir ! write muffin-tin charges to file call writetest(730,'ULR muffin-tin charges',nv=natmtot*nqpt,tol=5.d-5, & rva=chgmtru) end subroutine elk-10.4.9/src/PaxHeaders/momentu.f900000644000000000000000000000013214762655565014256 xustar0030 mtime=1741380469.462013656 30 atime=1741380468.310007634 30 ctime=1741380469.462013656 elk-10.4.9/src/momentu.f900000644002504400250440000000305214762655565017000 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine momentu use modmain use modulr use modtest implicit none ! local variables integer idm,is,ias integer nrc,nrci,ifq,ir real(8) t1 ! automatic arrays real(8) rfft(nqpt) complex(8) zfft(nfqrz) ! external functions complex(8), external :: zfmtint if (.not.spinpol) return ! calculate muffin-tin moments mommttot(:)=0.d0 do idm=1,ndmag do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) do ifq=1,nfqrz zfft(ifq)=zfmtint(nrc,nrci,wr2cmt(:,is),magqmt(:,ias,idm,ifq)) end do mommt(idm,ias)=dble(zfft(1)) mommttot(idm)=mommttot(idm)+mommt(idm,ias) call rzfftifc(3,ngridq,1,rfft,zfft) mommtru(idm,ias,1:nqpt)=rfft(1:nqpt) end do end do ! find the interstitial and total moments t1=omega/dble(ngtc) do idm=1,ndmag do ifq=1,nfqrz zfft(ifq)=sum(magqir(1:ngtc,idm,ifq)*cfrc(1:ngtc)) end do momir(idm)=t1*dble(zfft(1)) momtot(idm)=mommttot(idm)+momir(idm) call rzfftifc(3,ngridq,1,rfft,zfft) do ir=1,nqpt momirru(idm,ir)=t1*rfft(ir) momtotru(idm,ir)=sum(mommtru(idm,1:natmtot,ir))+momirru(idm,ir) end do end do ! total moment magnitude if (ncmag) then momtotm=sqrt(momtot(1)**2+momtot(2)**2+momtot(3)**2) else momtotm=abs(momtot(1)) end if ! write the muffin-tin moments to test file call writetest(770,'ULR muffin-tin moments',nv=ndmag*natmtot*nqpt,tol=2.d-2, & rva=mommtru) end subroutine elk-10.4.9/src/PaxHeaders/rhomaguk.f900000644000000000000000000000013214762655565014407 xustar0030 mtime=1741380469.463013661 30 atime=1741380468.312007644 30 ctime=1741380469.463013661 elk-10.4.9/src/rhomaguk.f900000644002504400250440000001256214762655565017137 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhomaguk(ik0,lock,evecu) use modmain use modulr use modomp implicit none ! arguments integer, intent(in) :: ik0 integer(omp_lock_kind), intent(inout) :: lock(nqpt) complex(8), intent(in) :: evecu(nstulr,nstulr) ! local variables integer ik,ikpa,jkpa integer nst,ist,jst,i,j integer ngk0,is,ias integer npc,ir,nthd real(8) ts0,ts1 real(4) wo ! automatic arrays integer idx(nstsv) complex(8) zfft(nqpt) ! allocatable arrays complex(8), allocatable :: apwalm(:,:,:,:),evecfv(:,:),evecsv(:,:) complex(8), allocatable :: evectv(:,:,:),evecsvt(:,:) complex(4), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) call timesec(ts0) ! central k-point ik=(ik0-1)*nkpa+1 ! number of G+k-vectors for central k-point ngk0=ngk(1,ik) ! get the eigenvectors from file allocate(evecfv(nmatmax,nstfv),evecsv(nstsv,nstsv)) call getevecfv(filext,ik,vkl(:,ik),vgkl(:,:,:,ik),evecfv) call getevecsv(filext,ik,vkl(:,ik),evecsv) ! find the matching coefficients allocate(apwalm(ngkmax,apwordmax,lmmaxapw,natmtot)) call match(ngk0,vgkc(:,:,1,ik),gkc(:,1,ik),sfacgk(:,:,1,ik),apwalm) allocate(evectv(nstsv,nstsv,nqpt)) call holdthd(nqpt,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(zfft,evecsvt,wfmt,wfir) & !$OMP PRIVATE(ikpa,jkpa,ist,jst,i,j) & !$OMP PRIVATE(ir,wo,ias,is,npc) & !$OMP NUM_THREADS(nthd) allocate(evecsvt(nstsv,nstsv)) allocate(wfmt(npcmtmax,natmtot,nspinor,nstsv),wfir(ngtc,nspinor,nstsv)) ! loop over long-range states in subsets of size nstsv do jkpa=1,nkpa ! number of and index to occupied states in subset !$OMP SINGLE nst=0 do jst=1,nstsv j=(jkpa-1)*nstsv+jst if (abs(occulr(j,ik0)) < epsocc) cycle nst=nst+1 idx(nst)=jst end do !$OMP END SINGLE if (nst == 0) cycle !$OMP DO SCHEDULE(DYNAMIC) do jst=1,nst j=(jkpa-1)*nstsv+idx(jst) do ist=1,nstsv zfft(1:nqpt)=0.d0 do ikpa=1,nkpa i=(ikpa-1)*nstsv+ist ! store the long-range state in FFT Q-space zfft(iqfft(ikpa))=evecu(i,j) end do ! Fourier transform to R-space call zfftifc(3,ngridq,1,zfft) evectv(ist,jst,1:nqpt)=zfft(1:nqpt) end do end do !$OMP END DO ! parallel loop over R-points !$OMP DO SCHEDULE(DYNAMIC) do ir=1,nqpt ! convert third-variational states to second-variational states call zgemm('N','N',nstsv,nstsv,nstsv,zone,evecsv,nstsv,evectv(:,:,ir), & nstsv,zzero,evecsvt,nstsv) ! generate the wavefunctions in single-precision call genwfsv_sp(.false.,.false.,nst,idx,ngdgc,igfc,ngk0,igkig(:,1,ik), & apwalm,evecfv,evecsvt,wfmt,ngtc,wfir) ! loop over second-variational states do jst=1,nst j=(jkpa-1)*nstsv+idx(jst) wo=occulr(j,ik0)*wkpt(ik) ! add to the density and magnetisation call omp_set_lock(lock(ir)) ! muffin-tin part do ias=1,natmtot is=idxis(ias) npc=npcmt(is) if (spinpol) then if (ncmag) then call rmk1(npc,wo,wfmt(:,ias,1,jst),wfmt(:,ias,2,jst), & rhormt(:,ias,ir),magrmt(:,ias,1,ir),magrmt(:,ias,2,ir), & magrmt(:,ias,3,ir)) else call rmk2(npc,wo,wfmt(:,ias,1,jst),wfmt(:,ias,2,jst), & rhormt(:,ias,ir),magrmt(:,ias,1,ir)) end if else call rmk3(npc,wo,wfmt(:,ias,1,jst),rhormt(:,ias,ir)) end if end do ! interstitial part if (spinpol) then if (ncmag) then call rmk1(ngtc,wo,wfir(:,1,jst),wfir(:,2,jst),rhorir(:,ir), & magrir(:,1,ir),magrir(:,2,ir),magrir(:,3,ir)) else call rmk2(ngtc,wo,wfir(:,1,jst),wfir(:,2,jst),rhorir(:,ir), & magrir(:,1,ir)) end if else call rmk3(ngtc,wo,wfir(:,1,jst),rhorir(:,ir)) end if call omp_unset_lock(lock(ir)) end do ! end parallel loop over R-points end do !$OMP END DO end do deallocate(evecsvt,wfmt,wfir) !$OMP END PARALLEL call freethd(nthd) deallocate(apwalm,evecfv,evecsv,evectv) call timesec(ts1) !$OMP ATOMIC timerho=timerho+ts1-ts0 return contains pure subroutine rmk1(n,wo,wf1,wf2,rho,mag1,mag2,mag3) implicit none ! arguments integer, intent(in) :: n real(4), intent(in) :: wo complex(4), intent(in) :: wf1(n),wf2(n) real(8), intent(inout) :: rho(n),mag1(n),mag2(n),mag3(n) ! local variables integer i real(4) wo2,t1,t2 real(4) a1,b1,a2,b2 wo2=2.e0*wo !$OMP SIMD PRIVATE(a1,b1,a2,b2,t1,t2) SIMDLEN(8) do i=1,n a1=real(wf1(i)); b1=aimag(wf1(i)) a2=real(wf2(i)); b2=aimag(wf2(i)) t1=a1**2+b1**2; t2=a2**2+b2**2 mag1(i)=mag1(i)+wo2*(a1*a2+b1*b2) mag2(i)=mag2(i)+wo2*(a1*b2-b1*a2) mag3(i)=mag3(i)+wo*(t1-t2) rho(i)=rho(i)+wo*(t1+t2) end do end subroutine pure subroutine rmk2(n,wo,wf1,wf2,rho,mag) implicit none ! arguments integer, intent(in) :: n real(4), intent(in) :: wo complex(4), intent(in) :: wf1(n),wf2(n) real(8), intent(inout) :: rho(n),mag(n) ! local variables integer i real(4) t1,t2 !$OMP SIMD PRIVATE(t1,t2) SIMDLEN(8) do i=1,n t1=real(wf1(i))**2+aimag(wf1(i))**2 t2=real(wf2(i))**2+aimag(wf2(i))**2 mag(i)=mag(i)+wo*(t1-t2) rho(i)=rho(i)+wo*(t1+t2) end do end subroutine pure subroutine rmk3(n,wo,wf,rho) implicit none ! arguments integer, intent(in) :: n real(4), intent(in) :: wo complex(4), intent(in) :: wf(n) real(8), intent(inout) :: rho(n) rho(1:n)=rho(1:n)+wo*(real(wf(1:n))**2+aimag(wf(1:n))**2) end subroutine end subroutine elk-10.4.9/src/PaxHeaders/writeengyu.f900000644000000000000000000000013214762655565014774 xustar0030 mtime=1741380469.465013672 30 atime=1741380468.314007655 30 ctime=1741380469.465013672 elk-10.4.9/src/writeengyu.f900000644002504400250440000000063714762655565017524 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeengyu(fnum) use modmain use modulr implicit none ! arguments integer, intent(in) :: fnum write(fnum,*) write(fnum,'("Energies :")') write(fnum,'(" Fermi",T30,": ",G22.12)') efermi end subroutine elk-10.4.9/src/PaxHeaders/rhocoreu.f900000644000000000000000000000013214762655565014420 xustar0030 mtime=1741380469.466013677 30 atime=1741380468.316007665 30 ctime=1741380469.466013677 elk-10.4.9/src/rhocoreu.f900000644002504400250440000000230214762655565017137 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhocoreu use modmain use modulr use modomp implicit none ! local variables integer is,ias,ir,i integer nrc,nrci,irc integer npc,n,nthd real(8) t1 ! allocatable arrays real(8), allocatable :: rfmt(:,:) ! generate the core density in spherical coordinates allocate(rfmt(npcmtmax,natmtot)) do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) n=lmmaxi-1 ir=1 i=1 do irc=1,nrci t1=rhocr(ir,ias,1)*y00 rfmt(i:i+n,ias)=t1 ir=ir+lradstp i=i+lmmaxi end do n=lmmaxo-1 do irc=nrci+1,nrc t1=rhocr(ir,ias,1)*y00 rfmt(i:i+n,ias)=t1 ir=ir+lradstp i=i+lmmaxo end do end do ! add to the ultra long-range density call holdthd(nqpt,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ias,is,npc) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ir=1,nqpt do ias=1,natmtot is=idxis(ias) npc=npcmt(is) rhormt(1:npc,ias,ir)=rhormt(1:npc,ias,ir)+rfmt(1:npc,ias) end do end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(rfmt) end subroutine elk-10.4.9/src/PaxHeaders/writeinfou.f900000644000000000000000000000013214762655565014765 xustar0030 mtime=1741380469.467013682 30 atime=1741380468.318007676 30 ctime=1741380469.467013682 elk-10.4.9/src/writeinfou.f900000644002504400250440000000321114762655565017504 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeinfou(fnum) use modmain use modulr implicit none ! arguments integer fnum ! local variables real(8) t1 call writebox(fnum,"Ultra long-range calculation") write(fnum,*) write(fnum,'("Ultracell lattice vectors :")') write(fnum,'(3G18.10)') avecu(1,1),avecu(2,1),avecu(3,1) write(fnum,'(3G18.10)') avecu(1,2),avecu(2,2),avecu(3,2) write(fnum,'(3G18.10)') avecu(1,3),avecu(2,3),avecu(3,3) write(fnum,*) write(fnum,'("Ultracell reciprocal lattice vectors :")') write(fnum,'(3G18.10)') bvecu(1,1),bvecu(2,1),bvecu(3,1) write(fnum,'(3G18.10)') bvecu(1,2),bvecu(2,2),bvecu(3,2) write(fnum,'(3G18.10)') bvecu(1,3),bvecu(2,3),bvecu(3,3) write(fnum,*) write(fnum,'("Ultracell volume : ",G18.10)') omegau write(fnum,'("Ultracell Brillouin zone volume : ",G18.10)') omegabzu write(fnum,*) t1=omegau/omega write(fnum,'("Ratio of ultracell to unit cell volume : ",G18.10)') t1 t1=t1*dble(natmtot) write(fnum,'("Number of atoms in ultracell : ",I16)') nint(t1,8) write(fnum,*) write(fnum,'("kappa-point grid : ",3I6)') ngridkpa write(fnum,'("Q-point grid : ",3I6)') ngridq write(fnum,*) write(fnum,'("Small Q-vector cut-off : ",G18.10)') q0cut if (fsmtype /= 0) then write(fnum,*) write(fnum,'("Fixed spin moment (FSM) calculation, type : ",I4)') fsmtype if (fsmtype < 0) then write(fnum,'(" only moment direction is fixed")') end if end if write(fnum,*) write(fnum,'("Hamiltonian matrix size : ",I8)') nstulr flush(fnum) end subroutine elk-10.4.9/src/PaxHeaders/genkpakq.f900000644000000000000000000000013214762655565014373 xustar0030 mtime=1741380469.469013693 30 atime=1741380468.320007686 30 ctime=1741380469.469013693 elk-10.4.9/src/genkpakq.f900000644002504400250440000001065714762655565017126 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genkpakq use modmain use modulr implicit none ! local variables integer i1,i2,i3,j1,j2,j3 integer ikpa,ik0,ik integer n1,iq,ifq,ir real(8) v(3) ! allocatable arrays real(8), allocatable :: vkl0(:,:),vkc0(:,:),wkpt0(:) ! find next largest FFT-compatible Q-point grid size call nfftifc(npfftq,3,ngridq) ! total number of Q-points nqpt=ngridq(1)*ngridq(2)*ngridq(3) ! number of complex FFT elements for real-complex transforms n1=ngridq(1)/2+1 nfqrz=n1*ngridq(2)*ngridq(3) ! integer grid intervals for the Q-points intq(1,1:3)=ngridq(1:3)/2-ngridq(1:3)+1 intq(2,1:3)=ngridq(1:3)/2 ! kappa-point grid should be half the Q-point grid ngridkpa(1:3)=(ngridq(1:3)+1)/2 ! number of kappa-points nkpa=ngridkpa(1)*ngridkpa(2)*ngridkpa(3) ! integer grid intervals for the kappa-points intkpa(1,1:3)=ngridkpa(1:3)/2-ngridkpa(1:3)+1 intkpa(2,1:3)=ngridkpa(1:3)/2 ! allocate global Q-point arrays if (allocated(ivq)) deallocate(ivq) allocate(ivq(3,nqpt)) if (allocated(ivqiq)) deallocate(ivqiq) allocate(ivqiq(intq(1,1):intq(2,1),intq(1,2):intq(2,2),intq(1,3):intq(2,3))) if (allocated(iqfft)) deallocate(iqfft) allocate(iqfft(nqpt)) if (allocated(ifqrz)) deallocate(ifqrz) allocate(ifqrz(nqpt)) if (allocated(iqrzf)) deallocate(iqrzf) allocate(iqrzf(nfqrz)) if (allocated(vql)) deallocate(vql) allocate(vql(3,nqpt)) if (allocated(vqc)) deallocate(vqc) allocate(vqc(3,nqpt)) ! store the kappa-points as the first nkpa entries in the Q-point arrays iq=0 do i1=intkpa(1,1),intkpa(2,1) do i2=intkpa(1,2),intkpa(2,2) do i3=intkpa(1,3),intkpa(2,3) iq=iq+1 ivq(1,iq)=i1 ivq(2,iq)=i2 ivq(3,iq)=i3 end do end do end do ! store the remaining Q-points do i1=intq(1,1),intq(2,1) do i2=intq(1,2),intq(2,2) do i3=intq(1,3),intq(2,3) if ((i1 < intkpa(1,1)).or.(i1 > intkpa(2,1)).or. & (i2 < intkpa(1,2)).or.(i2 > intkpa(2,2)).or. & (i3 < intkpa(1,3)).or.(i3 > intkpa(2,3))) then iq=iq+1 ivq(1,iq)=i1 ivq(2,iq)=i2 ivq(3,iq)=i3 end if end do end do end do ! ensure the first point is the zero vector do iq=1,nkpa if ((ivq(1,iq) == 0).and.(ivq(2,iq) == 0).and.(ivq(3,iq) == 0)) then ivq(1:3,iq)=ivq(1:3,1) ivq(1:3,1)=0 exit end if end do do iq=1,nqpt i1=ivq(1,iq); i2=ivq(2,iq); i3=ivq(3,iq) ! map from (i1,i2,i3) to Q-vector index ivqiq(i1,i2,i3)=iq ! Q-vector in Cartesian coordinates vqc(1:3,iq)=dble(i1)*bvecu(1:3,1) & +dble(i2)*bvecu(1:3,2) & +dble(i3)*bvecu(1:3,3) ! Q-vector in (unit cell) lattice coordinates call r3mv(binv,vqc(:,iq),vql(:,iq)) where(abs(vql(1:3,iq)) < epslat) vql(1:3,iq)=0.d0 end do ! set up Fourier transform index do iq=1,nqpt i1=ivq(1,iq); i2=ivq(2,iq); i3=ivq(3,iq) if (i1 >= 0) then j1=i1 else j1=ngridq(1)+i1 end if if (i2 >= 0) then j2=i2 else j2=ngridq(2)+i2 end if if (i3 >= 0) then j3=i3 else j3=ngridq(3)+i3 end if iqfft(iq)=j3*ngridq(2)*ngridq(1)+j2*ngridq(1)+j1+1 ! map from q-point index to real-complex FFT index and vice versa if (i1 >= 0) then ifq=j3*ngridq(2)*n1+j2*n1+j1+1 ifqrz(iq)=ifq iqrzf(ifq)=iq end if end do ! store the R-vectors in Cartesian coordinates spanning the ultracell if (allocated(vrcu)) deallocate(vrcu) allocate(vrcu(3,nqpt)) ir=0 do i3=0,ngridq(3)-1 v(3)=dble(i3)/dble(ngridq(3)) do i2=0,ngridq(2)-1 v(2)=dble(i2)/dble(ngridq(2)) do i1=0,ngridq(1)-1 v(1)=dble(i1)/dble(ngridq(1)) ir=ir+1 call r3mv(avecu,v,vrcu(:,ir)) end do end do end do ! allocate the k-point weight array for band structure calculation if (task == 720) then if (allocated(wkpt)) deallocate(wkpt) allocate(wkpt(nkpt)) wkpt(1:nkpt)=1.d0 end if ! store the existing k-point and weight arrays allocate(vkl0(3,nkpt),vkc0(3,nkpt),wkpt0(nkpt)) vkl0(1:3,1:nkpt)=vkl(1:3,1:nkpt) vkc0(1:3,1:nkpt)=vkc(1:3,1:nkpt) wkpt0(1:nkpt)=wkpt(1:nkpt) ! number of k+kappa-points nkpt0=nkpt nkpt=nkpt0*nkpa ! deallocate and reallocate k-point and weight arrays deallocate(vkl,vkc,wkpt) allocate(vkl(3,nkpt),vkc(3,nkpt),wkpt(nkpt)) ik=0 do ik0=1,nkpt0 do ikpa=1,nkpa ik=ik+1 vkl(1:3,ik)=vkl0(1:3,ik0)+vql(1:3,ikpa) vkc(1:3,ik)=vkc0(1:3,ik0)+vqc(1:3,ikpa) wkpt(ik)=wkpt0(ik0)/dble(nkpa) end do end do deallocate(vkl0,vkc0,wkpt0) end subroutine elk-10.4.9/src/PaxHeaders/eveqnulr.f900000644000000000000000000000013214762655565014433 xustar0030 mtime=1741380469.470013698 30 atime=1741380468.322007696 30 ctime=1741380469.470013698 elk-10.4.9/src/eveqnulr.f900000644002504400250440000000126214762655565017156 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2016 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine eveqnulr(ik0,evecu) use modmain use modulr implicit none ! arguments integer, intent(in) :: ik0 complex(8), intent(out) :: evecu(nstulr,nstulr) ! local variables real(8) ts0,ts1 ! generate the ultra long-range Hamiltonian call timesec(ts0) call genhmlu(ik0,evecu) call timesec(ts1) !$OMP ATOMIC timemat=timemat+ts1-ts0 ! find the eigenvalues and vectors call timesec(ts0) call eveqnzh(nstulr,nstulr,evecu,evalu(:,ik0)) call timesec(ts1) !$OMP ATOMIC timesv=timesv+ts1-ts0 end subroutine elk-10.4.9/src/PaxHeaders/vclqinit.f900000644000000000000000000000013214762655565014423 xustar0030 mtime=1741380469.472013709 30 atime=1741380468.324007707 30 ctime=1741380469.472013709 elk-10.4.9/src/vclqinit.f900000644002504400250440000000114014762655565017141 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vclqinit use modmain use modulr implicit none ! zero the external Coulomb potential in Q-space vclq(1:nfqrz)=0.d0 if (trdvclr) then ! read the external Coulomb potential from file if required call readvclr else ! determine the external Coulomb potential from the constant electric field call potefieldu ! write the external Coulomb potential to file call writevclr end if end subroutine elk-10.4.9/src/PaxHeaders/writemomru.f900000644000000000000000000000013214762655565015004 xustar0030 mtime=1741380469.473013714 30 atime=1741380468.326007717 30 ctime=1741380469.473013714 elk-10.4.9/src/writemomru.f900000644002504400250440000000172114762655565017527 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writemomru use modmain use modulr implicit none ! local variables integer is,ia,ias,ir open(50,file='MOMENTRU.OUT',form='FORMATTED') do ir=1,nqpt write(50,*) write(50,'("R-point number ",I6," of ",I6)') ir,nqpt write(50,'("R-point (Cartesian coordinates) :")') write(50,'(3G18.10)') vrcu(:,ir) write(50,'("Moments :")') write(50,'(" interstitial",T30,": ",3G18.10)') momirru(1:ndmag,ir) write(50,'(" muffin-tins")') do is=1,nspecies write(50,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(" atom ",I4,T30,": ",3G18.10)') ia,mommtru(1:ndmag,ias,ir) end do end do write(50,'(" total moment",T30,": ",3G18.10)') momtotru(1:ndmag,ir) end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/writechgrmt.f900000644000000000000000000000013214762655565015131 xustar0030 mtime=1741380469.474013719 30 atime=1741380468.328007728 30 ctime=1741380469.474013719 elk-10.4.9/src/writechgrmt.f900000644002504400250440000000131314762655565017651 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writechgrmt use modmain use modulr implicit none ! local variables integer is,ia,ias,ir open(50,file='CHGMTRU.OUT',form='FORMATTED') do ir=1,nqpt write(50,*) write(50,'("R-point (Cartesian coordinates) :")') write(50,'(3G18.10)') vrcu(:,ir) do is=1,nspecies write(50,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(" atom ",I4,T30,": ",G18.10)') ia,chgmtru(ias,ir) end do end do end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/vblocalu.f900000644000000000000000000000013214762655565014401 xustar0030 mtime=1741380469.476013729 30 atime=1741380468.330007738 30 ctime=1741380469.476013729 elk-10.4.9/src/vblocalu.f900000644002504400250440000000372114762655565017126 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine vblocalu use modmain use modulr use modomp implicit none ! local variables integer ifq,idm,is,ias integer nrc,nrci,npc,nthd ! automatic arrays real(8) rfmt1(npcmtmax),rfmt2(npcmtmax) ! subtract the normal Kohn-Sham potential for Q=0 do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) call rfmtftoc(nrc,nrci,vsmt(:,ias),rfmt1) call rbsht(nrc,nrci,rfmt1,rfmt2) vsqmt(1:npc,ias,1)=vsqmt(1:npc,ias,1)-rfmt2(1:npc) end do vsqir(1:ngtot,1)=vsqir(1:ngtot,1)-vsir(1:ngtot) call holdthd(2*nfqrz,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(ias,is,nrc,nrci) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ifq=1,nfqrz do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) ! multiply the muffin-tin potential by the radial integration weights call zfcmtwr(nrc,nrci,wr2cmt(:,is),vsqmt(:,ias,ifq)) end do end do !$OMP END PARALLEL DO call freethd(nthd) if (.not.spinpol) return ! subtract the normal Kohn-Sham magnetic field for Q=0 in the muffin-tins do idm=1,ndmag do ias=1,natmtot is=idxis(ias) npc=npcmt(is) bsqmt(1:npc,ias,idm,1)=bsqmt(1:npc,ias,idm,1)-bsmt(1:npc,ias,idm) end do end do call holdthd(2*nfqrz,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(idm,ias,is,nrc,nrci) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ifq=1,nfqrz do idm=1,ndmag do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) ! multiply the muffin-tin field by the radial integration weights call zfcmtwr(nrc,nrci,wr2cmt(:,is),bsqmt(:,ias,idm,ifq)) end do end do end do !$OMP END PARALLEL DO call freethd(nthd) ! subtract the normal Kohn-Sham magnetic field for Q=0 in the interstitial do idm=1,ndmag bsqir(1:ngtot,idm,1)=bsqir(1:ngtot,idm,1)-bsir(1:ngtot,idm) end do end subroutine elk-10.4.9/src/PaxHeaders/addbfsmu.f900000644000000000000000000000013214762655565014357 xustar0030 mtime=1741380469.477013735 30 atime=1741380468.332007749 30 ctime=1741380469.477013735 elk-10.4.9/src/addbfsmu.f900000644002504400250440000000165514762655565017110 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine addbfsmu use modmain use modulr implicit none ! local variables integer idm,is,ias,npc real(8) t1 ! add the global fixed spin moment B-field to the Kohn-Sham field if ((abs(fsmtype) == 1).or.(abs(fsmtype) == 3)) then do idm=1,ndmag t1=bfsmc(idm) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) bsqmt(1:npc,ias,idm,1)=bsqmt(1:npc,ias,idm,1)+t1 end do bsqir(1:ngtot,idm,1)=bsqir(1:ngtot,idm,1)+t1 end do end if ! add the muffin-tin fields if ((abs(fsmtype) == 2).or.(abs(fsmtype) == 3)) then do idm=1,ndmag do ias=1,natmtot is=idxis(ias) npc=npcmt(is) t1=bfsmcmt(idm,ias) bsqmt(1:npc,ias,idm,1)=bsqmt(1:npc,ias,idm,1)+t1 end do end do end if end subroutine elk-10.4.9/src/PaxHeaders/occupyulr.f900000644000000000000000000000013014762655565014615 xustar0029 mtime=1741380469.47801374 30 atime=1741380468.334007759 29 ctime=1741380469.47801374 elk-10.4.9/src/occupyulr.f900000644002504400250440000000261114762655565017341 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine occupyulr use modmain use modulr implicit none ! local variables integer, parameter :: maxit=1000 integer ik0,ik,ist,it real(8) e0,e1,e real(8) chg,x,t1 ! external functions real(8), external :: stheta ! find minimum and maximum eigenvalues e0=evalu(1,1) e1=e0 do ik0=1,nkpt0 do ist=1,nstulr e=evalu(ist,ik0) if (e < e0) e0=e if (e > e1) e1=e end do end do if (e0 < e0min) then write(*,*) write(*,'("Warning(occupyulr): minimum eigenvalue less than minimum & &linearisation energy : ",2G18.10)') e0,e0min write(*,'(" for s.c. loop ",I5)') iscl end if t1=1.d0/swidth ! determine the Fermi energy using the bisection method do it=1,maxit efermi=0.5d0*(e0+e1) chg=0.d0 do ik0=1,nkpt0 ! central k-point ik=(ik0-1)*nkpa+1 do ist=1,nstulr e=evalu(ist,ik0) if (e < e0min) then occulr(ist,ik0)=0.d0 else x=(efermi-e)*t1 occulr(ist,ik0)=occmax*stheta(stype,x) chg=chg+wkpt(ik)*occulr(ist,ik0) end if end do end do if (chg < chgval) then e0=efermi else e1=efermi end if if ((e1-e0) < 1.d-12) return end do write(*,*) write(*,'("Warning(occupyulr): could not find Fermi energy")') end subroutine elk-10.4.9/src/PaxHeaders/writevclr.f900000644000000000000000000000013014762655565014611 xustar0029 mtime=1741380469.48001375 30 atime=1741380468.337007775 29 ctime=1741380469.48001375 elk-10.4.9/src/writevclr.f900000644002504400250440000000144414762655565017340 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writevclr use modmain use modulr implicit none ! local variables integer i1,i2,i3,ir ! allocatable arrays real(8), allocatable :: vclr(:) allocate(vclr(nqpt)) ! Fourier transform external Coulomb potential from Q-space to real-space call rzfftifc(3,ngridq,1,vclr,vclq) ! write the real-space potential to file open(50,file='VCLR.OUT',form='FORMATTED') write(50,'(3I6," : grid size")') ngridq ir=0 do i3=1,ngridq(3) do i2=1,ngridq(2) do i1=1,ngridq(1) ir=ir+1 write(50,'(3I6,G18.10)') i1,i2,i3,vclr(ir) end do end do end do close(50) deallocate(vclr) end subroutine elk-10.4.9/src/PaxHeaders/potxcu.f900000644000000000000000000000013214762655565014114 xustar0030 mtime=1741380469.481013755 30 atime=1741380468.339007785 30 ctime=1741380469.481013755 elk-10.4.9/src/potxcu.f900000644002504400250440000001173414762655565016644 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potxcu use modmain use modulr use modmpi use modomp implicit none ! local variables integer ifq,idm,is,ias integer ir,npc,n,lp,nthd complex(8) z1,z2 ! allocatable arrays real(8), allocatable :: vxcrmt(:,:,:),vxcrir(:,:) real(8), allocatable :: bxcrmt(:,:,:,:),bxcrir(:,:,:) real(8), allocatable :: rhomt_(:,:),rhoir_(:) real(8), allocatable :: magmt_(:,:,:),magir_(:,:) real(8), allocatable :: vxcmt_(:,:),bxcmt_(:,:,:) complex(8), allocatable :: vxcqmt(:,:,:),vxcqir(:,:) allocate(vxcrmt(npcmtmax,natmtot,nqpt),vxcrir(ngtot,nqpt)) if (spinpol) then allocate(bxcrmt(npcmtmax,natmtot,ndmag,nqpt)) allocate(bxcrir(ngtot,ndmag,nqpt)) end if call holdthd(nqpt/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(rhomt_,rhoir_,vxcmt_) & !$OMP PRIVATE(magmt_,magir_,bxcmt_) & !$OMP PRIVATE(ias,is,idm) & !$OMP NUM_THREADS(nthd) allocate(rhomt_(npmtmax,natmtot),rhoir_(ngtot)) allocate(vxcmt_(npmtmax,natmtot)) if (spinpol) then allocate(magmt_(npmtmax,natmtot,ndmag),magir_(ngtot,ndmag)) allocate(bxcmt_(npmtmax,natmtot,ndmag)) end if !$OMP DO SCHEDULE(DYNAMIC) do ir=1,nqpt ! distribute among MPI processes if (mod(ir-1,np_mpi) /= lp_mpi) cycle ! convert muffin-tin density and magnetisation from coarse to fine radial mesh do ias=1,natmtot is=idxis(ias) rhomt_(1:npcmt(is),ias)=rhormt(1:npcmt(is),ias,ir) end do call rfmtctof(rhomt_) do idm=1,ndmag do ias=1,natmtot is=idxis(ias) magmt_(1:npcmt(is),ias,idm)=magrmt(1:npcmt(is),ias,idm,ir) end do call rfmtctof(magmt_(:,:,idm)) end do ! convert interstitial density and magnetisation from coarse to fine grid call rfirctof(rhorir(:,ir),rhoir_) do idm=1,ndmag call rfirctof(magrir(:,idm,ir),magir_(:,idm)) end do ! calculate the exchange-correlation potential and magnetic field call potxc(.false.,xctype,rhomt_,rhoir_,magmt_,magir_,taumt,tauir,exmt,exir, & ecmt,ecir,vxcmt_,vxcrir(:,ir),bxcmt_,bxcrir(:,:,ir),wxcmt,wxcir) ! convert muffin-tin potential and field from fine to coarse radial mesh do ias=1,natmtot is=idxis(ias) call rfmtftoc(nrcmt(is),nrcmti(is),vxcmt_(:,ias),vxcrmt(:,ias,ir)) end do do idm=1,ndmag do ias=1,natmtot is=idxis(ias) call rfmtftoc(nrcmt(is),nrcmti(is),bxcmt_(:,ias,idm),bxcrmt(:,ias,idm,ir)) end do end do end do !$OMP END DO deallocate(rhomt_,rhoir_,vxcmt_) if (spinpol) deallocate(magmt_,magir_,bxcmt_) !$OMP END PARALLEL call freethd(nthd) ! broadcast potentials and fields to every MPI process if (np_mpi > 1) then n=npcmtmax*natmtot do ir=1,nqpt lp=mod(ir-1,np_mpi) call mpi_bcast(vxcrmt(:,:,ir),n,mpi_double_precision,lp,mpicom,ierror) end do do ir=1,nqpt lp=mod(ir-1,np_mpi) call mpi_bcast(vxcrir(:,ir),ngtot,mpi_double_precision,lp,mpicom,ierror) end do if (spinpol) then n=npcmtmax*natmtot*ndmag do ir=1,nqpt lp=mod(ir-1,np_mpi) call mpi_bcast(bxcrmt(:,:,:,ir),n,mpi_double_precision,lp,mpicom,ierror) end do n=ngtot*ndmag do ir=1,nqpt lp=mod(ir-1,np_mpi) call mpi_bcast(bxcrir(:,:,ir),n,mpi_double_precision,lp,mpicom,ierror) end do end if end if allocate(vxcqmt(npcmtmax,natmtot,nfqrz),vxcqir(ngtot,nfqrz)) ! Fourier transform exchange-correlation potential to Q-space call rfzfftq(-1,1,ngtot,vxcrmt,vxcrir,vxcqmt,vxcqir) deallocate(vxcrmt,vxcrir) ! add V_xc and external Coulomb potential to Kohn-Sham potential call holdthd(2*nfqrz,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(z1,ias,is,npc) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ifq=1,nfqrz z1=vclq(ifq) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) vsqmt(1:npc,ias,ifq)=vsqmt(1:npc,ias,ifq)+vxcqmt(1:npc,ias,ifq)+z1 end do end do !$OMP END DO NOWAIT !$OMP DO SCHEDULE(DYNAMIC) do ifq=1,nfqrz z1=vclq(ifq) vsqir(1:ngtot,ifq)=vsqir(1:ngtot,ifq)+vxcqir(1:ngtot,ifq)+z1 end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) deallocate(vxcqmt,vxcqir) if (spinpol) then ! Fourier transform the exchange-correlation magnetic field to Q-space call rfzfftq(-1,ndmag,ngtot,bxcrmt,bxcrir,bsqmt,bsqir) deallocate(bxcrmt,bxcrir) ! add external magnetic fields call holdthd(2*nfqrz,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(idm,z1,z2,ias,is,npc) & !$OMP NUM_THREADS(nthd) !$OMP DO SCHEDULE(DYNAMIC) do ifq=1,nfqrz do idm=1,ndmag z1=bfcq(idm,ifq) if (tbdipu) z1=z1+bdipq(idm,ifq) do ias=1,natmtot is=idxis(ias) npc=npcmt(is) z2=z1+bfcmtq(ias,idm,ifq) bsqmt(1:npc,ias,idm,ifq)=bsqmt(1:npc,ias,idm,ifq)+z2 end do end do end do !$OMP END DO NOWAIT !$OMP DO SCHEDULE(DYNAMIC) do ifq=1,nfqrz do idm=1,ndmag z1=bfcq(idm,ifq) if (tbdipu) z1=z1+bdipq(idm,ifq) bsqir(1:ngtot,idm,ifq)=bsqir(1:ngtot,idm,ifq)+z1 end do end do !$OMP END DO !$OMP END PARALLEL call freethd(nthd) end if end subroutine elk-10.4.9/src/PaxHeaders/zfplot.f900000644000000000000000000000013214762655565014110 xustar0030 mtime=1741380469.483013766 30 atime=1741380468.341007796 30 ctime=1741380469.483013766 elk-10.4.9/src/zfplot.f900000644002504400250440000001014314762655565016631 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zfplot(np,vpl,zfmt,zfir,fp) use modmain use modomp implicit none ! arguments integer, intent(in) :: np real(8), intent(in) :: vpl(3,np) complex(8), intent(in) :: zfmt(npcmtmax,natmtot),zfir(ngtot) complex(8), intent(out) :: fp(np) ! local variables integer ias,is,ip,nthd ! allocatable arrays complex(8), allocatable :: zfmt1(:,:,:),zfft(:) ! unpack the muffin-tin function allocate(zfmt1(lmmaxo,nrcmtmax,natmtot)) call holdthd(natmtot,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(is) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ias=1,natmtot is=idxis(ias) call zfmtpack(.false.,nrcmt(is),nrcmti(is),zfmt(:,ias),zfmt1(:,:,ias)) end do !$OMP END PARALLEL DO call freethd(nthd) ! Fourier transform rfir to G-space allocate(zfft(ngtot)) zfft(1:ngtot)=zfir(1:ngtot) call zfftifc(3,ngridg,-1,zfft) ! begin loop over all points call holdthd(np,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ip=1,np call zfip(ip) end do !$OMP END PARALLEL DO call freethd(nthd) deallocate(zfmt1,zfft) return contains subroutine zfip(ip) implicit none ! arguments integer, intent(in) :: ip ! local variables integer is,ia,ias,nrc,nrci integer irc0,irc,lmax,l,m,lm integer ig,ifg,i1,i2,i3,i,j real(8) rmt2,r,ya1(4),ya2(4),t1,t2 real(8) v1(3),v2(3),v3(3),v4(3),v5(3) complex(8) z1 ! automatic arrays complex(8) ylm(lmmaxo) v2(:)=vpl(:,ip) call r3frac(epslat,v2) ! convert point to Cartesian coordinates call r3mv(avec,v2,v1) ! check if point is in a muffin-tin do is=1,nspecies nrc=nrcmt(is) nrci=nrcmti(is) rmt2=rmt(is)**2 do ia=1,natoms(is) ias=idxas(ia,is) v2(1:3)=v1(1:3)-atposc(1:3,ia,is) do i1=-1,1 v3(1:3)=v2(1:3)+dble(i1)*avec(1:3,1) do i2=-1,1 v4(1:3)=v3(1:3)+dble(i2)*avec(1:3,2) do i3=-1,1 v5(1:3)=v4(1:3)+dble(i3)*avec(1:3,3) t1=v5(1)**2+v5(2)**2+v5(3)**2 if (t1 < rmt2) then r=sqrt(t1) call genylmv(.false.,lmaxo,v5,ylm) do irc=1,nrc if (rcmt(irc,is) >= r) then if (irc <= 3) then irc0=1 else if (irc > nrc-2) then irc0=nrc-3 else irc0=irc-2 end if r=max(r,rcmt(1,is)) if (irc0 <= nrci) then lmax=lmaxi else lmax=lmaxo end if z1=0.d0 lm=0 do l=0,lmax do m=-l,l lm=lm+1 do j=1,4 i=irc0+j-1 ya1(j)=dble(zfmt1(lm,i,ias)) ya2(j)=aimag(zfmt1(lm,i,ias)) end do t1=poly4(rcmt(irc0,is),ya1,r) t2=poly4(rcmt(irc0,is),ya2,r) z1=z1+cmplx(t1,t2,8)*ylm(lm) end do end do goto 10 end if end do end if end do end do end do end do end do ! otherwise use direct Fourier transform of interstitial function z1=0.d0 do ig=1,ngvec ifg=igfft(ig) t1=vgc(1,ig)*v1(1)+vgc(2,ig)*v1(2)+vgc(3,ig)*v1(3) z1=z1+zfft(ifg)*cmplx(cos(t1),sin(t1),8) end do 10 continue fp(ip)=z1 end subroutine pure real(8) function poly4(xa,ya,x) implicit none ! arguments real(8), intent(in) :: xa(4),ya(4),x ! local variables real(8) x0,x1,x2,x3,y0,y1,y2,y3 real(8) c1,c2,c3,t0,t1,t2,t3,t4,t5,t6 ! evaluate the polynomial coefficients x0=xa(1) x1=xa(2)-x0; x2=xa(3)-x0; x3=xa(4)-x0 t4=x1-x2; t5=x1-x3; t6=x2-x3 y0=ya(1) y1=ya(2)-y0; y2=ya(3)-y0; y3=ya(4)-y0 t1=x1*x2*y3; t2=x2*x3*y1; t3=x1*x3 t0=1.d0/(x2*t3*t4*t5*t6) t3=t3*y2 c3=t1*t4+t2*t6-t3*t5 t4=x1**2; t5=x2**2; t6=x3**2 c2=t1*(t5-t4)+t2*(t6-t5)+t3*(t4-t6) c1=t1*(x2*t4-x1*t5)+t2*(x3*t5-x2*t6)+t3*(x1*t6-x3*t4) t1=x-x0 ! evaluate the polynomial poly4=y0+t0*t1*(c1+t1*(c2+c3*t1)) end function end subroutine elk-10.4.9/src/PaxHeaders/readstulr.f900000644000000000000000000000013214762655565014577 xustar0030 mtime=1741380469.484013771 30 atime=1741380468.343007806 30 ctime=1741380469.484013771 elk-10.4.9/src/readstulr.f900000644002504400250440000001236714762655565017332 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readstulr use modmain use modulr implicit none ! local variables integer iq,jq,ifq,jfq integer idm,i1,i2,i3 integer version_(3),ios integer natmtot_,npcmtmax_,ngtc_,ngtot_ integer ndmag_,fsmtype_,nqpt_,nfqrz_ complex(8) z1 ! automatic arrays complex(8) zv(natmtot) ! allocatable arrays integer, allocatable :: ivq_(:,:),iqrzf_(:),map(:) complex(8), allocatable :: zfmt(:,:),zfir(:) open(100,file='STATE_ULR.OUT',form='UNFORMATTED',action='READ',status='OLD', & iostat=ios) if (ios /= 0) then write(*,*) write(*,'("Error(readstulr): error opening STATE_ULR.OUT")') write(*,*) stop end if read(100) version_ if (version_(1) < 10) then write(*,*) write(*,'("Error(readstulr): unable to read STATE_ULR.OUT from versions & &earlier than 10.0.0")') write(*,*) stop end if if ((version(1) /= version_(1)).or.(version(2) /= version_(2)).or. & (version(3) /= version_(3))) then write(*,*) write(*,'("Warning(readstulr): different versions")') write(*,'(" current : ",I0,".",I0,".",I0)') version write(*,'(" STATE_ULR.OUT : ",I0,".",I0,".",I0)') version_ end if read(100) natmtot_ if (natmtot /= natmtot_) then write(*,*) write(*,'("Error(readstulr): differing natmtot")') write(*,'(" current : ",I6)') natmtot write(*,'(" STATE_ULR.OUT : ",I6)') natmtot_ write(*,*) stop end if read(100) npcmtmax_ if (npcmtmax /= npcmtmax_) then write(*,*) write(*,'("Error(readstulr): differing npcmtmax")') write(*,'(" current : ",I6)') npcmtmax write(*,'(" STATE_ULR.OUT : ",I6)') npcmtmax_ write(*,*) stop end if read(100) ngtc_ if (ngtc /= ngtc_) then write(*,*) write(*,'("Error(readstulr): differing ngtc")') write(*,'(" current : ",I8)') ngtc write(*,'(" STATE_ULR.OUT : ",I8)') ngtc_ write(*,*) stop end if read(100) ngtot_ if (ngtot /= ngtot_) then write(*,*) write(*,'("Error(readstulr): differing ngtot")') write(*,'(" current : ",I8)') ngtot write(*,'(" STATE_ULR.OUT : ",I8)') ngtot_ write(*,*) stop end if read(100) ndmag_ if (ndmag /= ndmag_) then write(*,*) write(*,'("Error(readstulr): differing ndmag")') write(*,'(" current : ",I1)') ndmag write(*,'(" STATE_ULR.OUT : ",I1)') ndmag_ write(*,*) stop end if read(100) fsmtype_ if (fsmtype /= fsmtype_) then write(*,*) write(*,'("Error(readstulr): differing fsmtype")') write(*,'(" current : ",I4)') fsmtype write(*,'(" STATE_ULR.OUT : ",I4)') fsmtype_ write(*,*) stop end if read(100) nqpt_ if (nqpt_ < 1) then write(*,*) write(*,'("Error(readstulr): nqpt_ < 1 : ",I8)') nqpt_ write(*,*) stop end if read(100) nfqrz_ if (nfqrz_ < 1) then write(*,*) write(*,'("Error(readstulr): nfqrz_ < 1 : ",I8)') nfqrz_ write(*,*) stop end if allocate(ivq_(3,nqpt_),iqrzf_(nfqrz_),map(nfqrz_)) read(100) ivq_ read(100) iqrzf_ read(100) efermi ! generate map from old Q-vector grid to new map(:)=0 do ifq=1,nfqrz_ iq=iqrzf_(ifq) i1=ivq_(1,iq); i2=ivq_(2,iq); i3=ivq_(3,iq) if ((i1 >= intq(1,1)).and.(i1 <= intq(2,1)).and. & (i2 >= intq(1,2)).and.(i2 <= intq(2,2)).and. & (i3 >= intq(1,3)).and.(i3 <= intq(2,3))) then jq=ivqiq(i1,i2,i3) jfq=ifqrz(jq) map(ifq)=jfq end if end do deallocate(ivq_,iqrzf_) allocate(zfmt(npcmtmax,natmtot),zfir(ngtot)) ! read the Q-space density rhoqmt(:,:,:)=0.d0 rhoqir(:,:)=0.d0 do ifq=1,nfqrz_ jfq=map(ifq) if (jfq > 0) then read(100) rhoqmt(:,:,jfq) read(100) rhoqir(:,jfq) else read(100) zfmt read(100) zfir(1:ngtc) end if end do ! read the Q-space Kohn-Sham potential vsqmt(:,:,:)=0.d0 vsqir(:,:)=0.d0 do ifq=1,nfqrz_ jfq=map(ifq) if (jfq > 0) then read(100) vsqmt(:,:,jfq) read(100) vsqir(:,jfq) else read(100) zfmt read(100) zfir end if end do ! read the external Coulomb potential in Q-space vclq(:)=0.d0 do ifq=1,nfqrz_ jfq=map(ifq) if (jfq > 0) then read(100) vclq(jfq) else read(100) z1 end if end do if (spinpol) then ! read the Q-space magnetisation density magqmt(:,:,:,:)=0.d0 magqir(:,:,:)=0.d0 do ifq=1,nfqrz_ jfq=map(ifq) if (jfq > 0) then do idm=1,ndmag read(100) magqmt(:,:,idm,jfq) read(100) magqir(:,idm,jfq) end do else do idm=1,ndmag read(100) zfmt read(100) zfir(1:ngtc) end do end if end do bsqmt(:,:,:,:)=0.d0 bsqir(:,:,:)=0.d0 do ifq=1,nfqrz_ jfq=map(ifq) if (jfq > 0) then do idm=1,ndmag read(100) bsqmt(:,:,idm,jfq) read(100) bsqir(:,idm,jfq) end do else do idm=1,ndmag read(100) zfmt read(100) zfir end do end if end do ! read the external magnetic fields in Q-space bfcq(:,:)=0.d0 bfcmtq(:,:,:)=0.d0 do ifq=1,nfqrz_ jfq=map(ifq) if (jfq > 0) then do idm=1,ndmag read(100) bfcq(idm,jfq) read(100) bfcmtq(:,idm,jfq) end do else do idm=1,ndmag read(100) z1 read(100) zv end do end if end do ! read fixed spin moment effective fields if (fsmtype /= 0) then read(100) bfsmc read(100) bfsmcmt end if end if close(100) deallocate(map,zfmt,zfir) end subroutine elk-10.4.9/src/PaxHeaders/potefieldu.f900000644000000000000000000000013214762655565014732 xustar0030 mtime=1741380469.485013776 30 atime=1741380468.345007817 30 ctime=1741380469.485013776 elk-10.4.9/src/potefieldu.f900000644002504400250440000000142314762655565017454 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potefieldu use modmain use modulr implicit none ! local variables integer ir real(8) v0,v(3) ! allocatable arrays real(8), allocatable :: rfft(:) if (sum(abs(efielduc(:))) < epslat) return allocate(rfft(nqpt)) ! constant added to potential so that it is zero at the ultracell center v(:)=0.5d0*(avecu(:,1)+avecu(:,2)+avecu(:,3)) v0=dot_product(efielduc(:),v(:)) ! calculate the potential in real-space do ir=1,nqpt rfft(ir)=v0-dot_product(efielduc(:),vrcu(:,ir)) end do ! Fourier transform to Q-space call rzfftifc(3,ngridq,-1,rfft,vclq) deallocate(rfft) end subroutine elk-10.4.9/src/PaxHeaders/potuinit.f900000644000000000000000000000013214762655565014445 xustar0030 mtime=1741380469.487013787 30 atime=1741380468.347007827 30 ctime=1741380469.487013787 elk-10.4.9/src/potuinit.f900000644002504400250440000000436414762655565017176 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potuinit use modmain use modulr use modrandom use modomp implicit none ! local variables integer ifq,idm,is,ias integer nrc,nrci,npc real(8) cb,t1 ! automatic arrays real(8) rfmt(npcmtmax) ! set the Q=0 muffin-tin potential equal to that of the normal ground-state do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) call rfmtftoc(nrc,nrci,vsmt(:,ias),rfmt) call rbshtip(nrc,nrci,rfmt) vsqmt(1:npc,ias,1)=rfmt(1:npc) end do ! zero the muffin-tin potential for non-zero Q do ifq=2,nfqrz do ias=1,natmtot is=idxis(ias) vsqmt(1:npcmt(is),ias,ifq)=0.d0 end do end do ! repeat for the interstitial potential vsqir(1:ngtot,1)=vsir(1:ngtot) vsqir(1:ngtot,2:nfqrz)=0.d0 if (.not.spinpol) return ! set the Q=0 muffin-tin magnetic field equal to that of the normal ground-state do idm=1,ndmag do ias=1,natmtot is=idxis(ias) npc=npcmt(is) bsqmt(1:npc,ias,idm,1)=bsmt(1:npc,ias,idm) end do end do ! zero the magnetic field for non-zero Q do ifq=2,nfqrz do idm=1,ndmag do ias=1,natmtot is=idxis(ias) bsqmt(1:npcmt(is),ias,idm,ifq)=0.d0 end do end do end do ! repeat for the interstitial magnetic field bsqir(1:ngtot,1:ndmag,1)=bsir(1:ngtot,1:ndmag) bsqir(1:ngtot,1:ndmag,2:nfqrz)=0.d0 ! coupling constant of the external field (g_e/4c) cb=gfacte/(4.d0*solsc) ! initialise the external magnetic fields if (abs(rndbfcu) > 0.d0) then t1=cb*rndbfcu do ifq=1,nfqrz do idm=1,ndmag bfcq(idm,ifq)=t1*cmplx(randomu()-0.5d0,randomu()-0.5d0,8) do ias=1,natmtot bfcmtq(ias,idm,ifq)=t1*cmplx(randomu()-0.5d0,randomu()-0.5d0,8) end do end do end do bfcq(1:ndmag,1)=dble(bfcq(1:ndmag,1)) bfcmtq(1:natmtot,1:ndmag,1)=dble(bfcmtq(1:natmtot,1:ndmag,1)) else bfcq(1:ndmag,1:nfqrz)=0.d0 bfcmtq(1:natmtot,1:ndmag,1:nfqrz)=0.d0 end if ! add the global external magnetic field do idm=1,ndmag if (ncmag) then t1=cb*bfielduc(idm) else t1=cb*bfielduc(3) end if bfcq(idm,1)=bfcq(idm,1)+t1 bfcmtq(1:natmtot,idm,1)=bfcmtq(1:natmtot,idm,1)+t1 end do end subroutine elk-10.4.9/src/PaxHeaders/readvclr.f900000644000000000000000000000013214762655565014374 xustar0030 mtime=1741380469.488013792 30 atime=1741380468.349007838 30 ctime=1741380469.488013792 elk-10.4.9/src/readvclr.f900000644002504400250440000000237414762655565017124 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine readvclr use modmain use modulr implicit none ! local variables integer i1,i2,i3,ir integer ngridq_(3),i1_,i2_,i3_ ! automatic arrays real(8) vclr(nqpt) ! read the real-space external Coulomb potential from file open(50,file='VCLR.OUT',form='FORMATTED') read(50,*) ngridq_(1:3) if (any(ngridq(1:3) /= ngridq_(1:3))) then write(*,*) write(*,'("Error(readvclr): differing ngridq")') write(*,'(" current : ",3I6)') ngridq write(*,'(" VCLR.OUT : ",3I6)') ngridq_ write(*,*) stop end if ir=0 do i3=1,ngridq(3) do i2=1,ngridq(2) do i1=1,ngridq(1) ir=ir+1 read(50,*) i1_,i2_,i3_,vclr(ir) if ((i1 /= i1_).or.(i2 /= i2_).or.(i3 /= i3_)) then write(*,*) write(*,'("Error(readvclr): differing i1, i2 or i3")') write(*,'(" current : ",3I6)') i1,i2,i3 write(*,'(" VCLR.OUT : ",3I6)') i1_,i2_,i3_ write(*,*) stop end if end do end do end do close(50) ! Fourier transform external Coulomb potential from real-space to Q-space call rzfftifc(3,ngridq,-1,vclr,vclq) end subroutine elk-10.4.9/src/PaxHeaders/plotu1d.f900000644000000000000000000000013214762655565014162 xustar0030 mtime=1741380469.489013797 30 atime=1741380468.351007848 30 ctime=1741380469.489013797 elk-10.4.9/src/plotu1d.f900000644002504400250440000000236314762655565016710 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine plotu1d(fnum1,fnum2,nf,zfmt,zfir) use modmain implicit none ! arguments integer, intent(in) :: fnum1,fnum2,nf complex(8), intent(in) :: zfmt(npcmtmax,natmtot,nf,nfqrz) complex(8), intent(in) :: zfir(ngtot,nf,nfqrz) ! local variables integer jf,ip,iv real(8) fmin,fmax,t1 ! allocatable arrays real(8), allocatable :: fp(:,:) if ((nf < 1).or.(nf > 4)) then write(*,*) write(*,'("Error(plotu1d): invalid number of functions : ",I8)') nf write(*,*) stop end if allocate(fp(npp1d,nf)) ! connect the 1D plotting vertices call plotpt1d(avec,nvp1d,npp1d,vvlp1d,vplp1d,dvp1d,dpp1d) ! evaluate function at each point call plotulr(npp1d,vplp1d,nf,zfmt,zfir,fp) do ip=ip01d,npp1d ! write the point distances and function to file write(fnum1,'(5G18.10)') dpp1d(ip),(fp(ip,jf),jf=1,nf) end do ! write the vertex location lines fmin=minval(fp(:,:)) fmax=maxval(fp(:,:)) t1=0.5d0*(fmax-fmin) fmin=fmin-t1 fmax=fmax+t1 do iv=1,nvp1d write(fnum2,'(2G18.10)') dvp1d(iv),fmin write(fnum2,'(2G18.10)') dvp1d(iv),fmax write(fnum2,*) end do deallocate(fp) end subroutine elk-10.4.9/src/PaxHeaders/plotu2d.f900000644000000000000000000000013214762655565014163 xustar0030 mtime=1741380469.491013808 30 atime=1741380468.353007858 30 ctime=1741380469.491013808 elk-10.4.9/src/plotu2d.f900000644002504400250440000000236214762655565016710 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine plotu2d(tproj,fnum,nf,zfmt,zfir) use modmain implicit none ! arguments logical, intent(in) :: tproj integer, intent(in) :: fnum,nf complex(8), intent(in) :: zfmt(npcmtmax,natmtot,nf,nfqrz) complex(8), intent(in) :: zfir(ngtot,nf,nfqrz) ! local variables integer np,jf,ip real(8) vpnl(3) ! allocatable arrays real(8), allocatable :: vpl(:,:),vppc(:,:),fp(:,:) if ((nf < 1).or.(nf > 4)) then write(*,*) write(*,'("Error(plotu2d): invalid number of functions : ",I8)') nf write(*,*) stop end if ! allocate local arrays np=np2d(1)*np2d(2) allocate(vpl(3,np),vppc(2,np),fp(np,nf)) ! generate the 2D plotting points call plotpt2d(avec,ainv,vpnl,vpl,vppc) ! evaluate the functions at the grid points call plotulr(np,vpl,nf,zfmt,zfir,fp) ! project the vector function onto the 2D plotting plane if required if (tproj.and.(nf == 3)) then call proj2d(np,fp) end if ! write the functions to file write(fnum,'(2I6," : grid size")') np2d(:) do ip=1,np write(fnum,'(6G18.10)') vppc(1,ip),vppc(2,ip),(fp(ip,jf),jf=1,nf) end do deallocate(vpl,vppc,fp) end subroutine elk-10.4.9/src/PaxHeaders/plotu3d.f900000644000000000000000000000013214762655565014164 xustar0030 mtime=1741380469.492013813 30 atime=1741380468.355007869 30 ctime=1741380469.492013813 elk-10.4.9/src/plotu3d.f900000644002504400250440000000212114762655565016702 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine plotu3d(fnum,nf,zfmt,zfir) use modmain implicit none ! arguments integer, intent(in) :: fnum,nf complex(8), intent(in) :: zfmt(npcmtmax,natmtot,nf,nfqrz) complex(8), intent(in) :: zfir(ngtot,nf,nfqrz) ! local variables integer np,jf,ip real(8) v1(3) ! allocatable arrays real(8), allocatable :: vpl(:,:),fp(:,:) if ((nf < 1).or.(nf > 4)) then write(*,*) write(*,'("Error(plotu3d): invalid number of functions : ",I8)') nf write(*,*) stop end if ! total number of plot points np=np3d(1)*np3d(2)*np3d(3) ! allocate local arrays allocate(vpl(3,np),fp(np,nf)) ! generate the 3D plotting points call plotpt3d(vpl) ! evaluate the functions at the grid points call plotulr(np,vpl,nf,zfmt,zfir,fp) ! write functions to file write(fnum,'(3I6," : grid size")') np3d(:) do ip=1,np call r3mv(avec,vpl(:,ip),v1) write(fnum,'(7G18.10)') v1(:),(fp(ip,jf),jf=1,nf) end do deallocate(vpl,fp) end subroutine elk-10.4.9/src/PaxHeaders/plotulr.f900000644000000000000000000000013214762655565014273 xustar0030 mtime=1741380469.493013818 30 atime=1741380468.357007879 30 ctime=1741380469.493013818 elk-10.4.9/src/plotulr.f900000644002504400250440000000254214762655565017020 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 T. Mueller, J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine plotulr(np,vpl,nf,zfmt,zfir,fp) use modmain use modulr use modomp implicit none ! arguments integer, intent(in) :: np real(8), intent(in) :: vpl(3,np) integer, intent(in) :: nf complex(8), intent(in) :: zfmt(npcmtmax,natmtot,nf,nfqrz) complex(8), intent(in) :: zfir(ngtot,nf,nfqrz) real(8), intent(out) :: fp(np,nf) ! local variables integer iq,ifq0,ifq integer jf,ip real(8) sm,t1 complex(8) z1 ! allocatable arrays complex(8), allocatable :: fpq(:,:) allocate(fpq(np,nfqrz)) ! include or exclude the Q=0 component as required if (tplotq0) then ifq0=1 else ifq0=2 end if ! loop over the number of functions do jf=1,nf ! loop over real-complex FFT points do ifq=ifq0,nfqrz ! evaluate the complex function at all the plot points call zfplot(np,vpl,zfmt(:,:,jf,ifq),zfir(:,jf,ifq),fpq(:,ifq)) end do do ip=1,np sm=0.d0 do ifq=ifq0,nfqrz iq=iqrzf(ifq) ! multiply complex function by phase factor exp(iQ.r) t1=twopi*dot_product(vql(:,iq),vpl(:,ip)) z1=cmplx(cos(t1),sin(t1),8) t1=dble(fpq(ip,ifq)*z1) if (ifq > 1) t1=t1*2.d0 sm=sm+t1 end do fp(ip,jf)=sm end do end do deallocate(fpq) end subroutine elk-10.4.9/src/PaxHeaders/potuplot.f900000644000000000000000000000013114762655565014457 xustar0030 mtime=1741380469.495013829 29 atime=1741380468.35900789 30 ctime=1741380469.495013829 elk-10.4.9/src/potuplot.f900000644002504400250440000000302014762655565017175 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine potuplot use modmain use modulr implicit none ! local variables integer ifq,ias,is ! initialise universal variables call init0 call init1 ! initialise the ultra long-range variables call initulr ! read in the Kohn-Sham potential from STATE_ULR.OUT call readstulr ! convert potential to spherical harmonics do ifq=1,nfqrz do ias=1,natmtot is=idxis(ias) call zfshtip(nrcmt(is),nrcmti(is),vsqmt(:,ias,ifq)) end do end do ! write the density plot to file select case(task) case(741) open(50,file='VSU1D.OUT',form='FORMATTED') open(51,file='VSULINES.OUT',form='FORMATTED') call plotu1d(50,51,1,vsqmt,vsqir) close(50) close(51) write(*,*) write(*,'("Info(potuplot):")') write(*,'(" 1D ultra long-range Kohn-Sham potential plot written to & &VSU1D.OUT")') write(*,'(" vertex location lines written to VSULINES.OUT")') case(742) open(50,file='VSU2D.OUT',form='FORMATTED') call plotu2d(.false.,50,1,vsqmt,vsqir) open(50) write(*,*) write(*,'("Info(potuplot):")') write(*,'(" 2D ultra long-range Kohn-Sham potential plot written to & &VSU2D.OUT")') case(743) open(50,file='VSU3D.OUT',form='FORMATTED') call plotu3d(50,1,vsqmt,vsqir) close(50) write(*,*) write(*,'("Info(potuplot):")') write(*,'(" 3D ultra long-range Kohn-Sham potential plot written to & &VSU3D.OUT")') end select end subroutine elk-10.4.9/src/PaxHeaders/rhouplot.f900000644000000000000000000000013014762655565014444 xustar0030 mtime=1741380469.496013834 28 atime=1741380468.3610079 30 ctime=1741380469.496013834 elk-10.4.9/src/rhouplot.f900000644002504400250440000000325614762655565017176 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine rhouplot use modmain use modulr use modomp implicit none ! local variables integer ifq,nthd ! allocatable arrays complex(8), allocatable :: rhoqir_(:,:) ! initialise universal variables call init0 call init1 ! initialise the ultra long-range variables call initulr ! read in the density from STATE_ULR.OUT call readstulr ! convert interstitial density from coarse to fine grid allocate(rhoqir_(ngtot,nfqrz)) call holdthd(nfqrz,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ifq=1,nfqrz call zfirctof(rhoqir(:,ifq),rhoqir_(:,ifq)) end do !$OMP END PARALLEL DO call freethd(nthd) ! write the density plot to file select case(task) case(731) open(50,file='RHOU1D.OUT',form='FORMATTED') open(51,file='RHOULINES.OUT',form='FORMATTED') call plotu1d(50,51,1,rhoqmt,rhoqir_) close(50) close(51) write(*,*) write(*,'("Info(rhouplot):")') write(*,'(" 1D ultra long-range density plot written to RHOU1D.OUT")') write(*,'(" vertex location lines written to RHOULINES.OUT")') case(732) open(50,file='RHOU2D.OUT',form='FORMATTED') call plotu2d(.false.,50,1,rhoqmt,rhoqir_) close(50) write(*,*) write(*,'("Info(rhouplot): 2D ultra long-range density plot written to & &RHOU2D.OUT")') case(733) open(50,file='RHOU3D.OUT',form='FORMATTED') call plotu3d(50,1,rhoqmt,rhoqir_) close(50) write(*,*) write(*,'("Info(rhouplot): 3D ultra long-range density plot written to & &RHOU3D.OUT")') end select deallocate(rhoqir_) end subroutine elk-10.4.9/src/PaxHeaders/maguplot.f900000644000000000000000000000013214762655565014422 xustar0030 mtime=1741380469.497013839 30 atime=1741380468.364007916 30 ctime=1741380469.497013839 elk-10.4.9/src/maguplot.f900000644002504400250440000000410114762655565017140 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine maguplot use modmain use modulr use modomp implicit none ! local variables integer ifq,idm,nthd ! allocatable arrays complex(8), allocatable :: magqir_(:,:,:) ! initialise universal variables call init0 call init1 if (.not.spinpol) then write(*,*) write(*,'("Error(maguplot): spin-unpolarised calculation")') write(*,*) stop end if ! initialise the ultra long-range variables call initulr ! read in the magnetisation from STATE_ULR.OUT call readstulr ! convert interstitial magnetisation from coarse to fine grid allocate(magqir_(ngtot,ndmag,nfqrz)) call holdthd(nfqrz,nthd) !$OMP PARALLEL DO DEFAULT(SHARED) & !$OMP PRIVATE(idm) & !$OMP SCHEDULE(DYNAMIC) & !$OMP NUM_THREADS(nthd) do ifq=1,nfqrz do idm=1,ndmag call zfirctof(magqir(:,idm,ifq),magqir_(:,idm,ifq)) end do end do !$OMP END PARALLEL DO call freethd(nthd) ! write the magnetisation plot to file select case(task) case(771) open(50,file='MAGU1D.OUT',form='FORMATTED') open(51,file='MAGULINES.OUT',form='FORMATTED') call plotu1d(50,51,ndmag,magqmt,magqir_) close(50) close(51) write(*,*) write(*,'("Info(maguplot):")') write(*,'(" 1D ultra long-range magnetisation plot written to MAGU1D.OUT")') write(*,'(" vertex location lines written to MAGULINES.OUT")') case(772) open(50,file='MAGU2D.OUT',form='FORMATTED') call plotu2d(.true.,50,ndmag,magqmt,magqir_) close(50) write(*,*) write(*,'("Info(maguplot): 2D ultra long-range magnetisation plot written to & &MAGU2D.OUT")') if (ndmag == 3) then write(*,'(" Note that the 3D vector field has been locally projected")') write(*,'(" onto the 2D plotting plane axes")') end if case(773) open(50,file='MAGU3D.OUT',form='FORMATTED') call plotu3d(50,ndmag,magqmt,magqir_) close(50) write(*,*) write(*,'("Info(maguplot): 3D ultra long-range magnetisation plot written to & &MAGU3D.OUT")') end select deallocate(magqir_) end subroutine elk-10.4.9/src/PaxHeaders/bandstrulr.f900000644000000000000000000000013014762655565014750 xustar0029 mtime=1741380469.49901385 30 atime=1741380468.365007921 29 ctime=1741380469.49901385 elk-10.4.9/src/bandstrulr.f900000644002504400250440000000534414762655565017502 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 Wenhan Chen, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine bandstrulr use modmain use modulr use modmpi use modomp implicit none ! local variables integer ik0,ist,iv,lp,nthd real(8) emin,emax ! allocatable arrays real(8), allocatable :: dk(:,:) complex(8), allocatable :: evecu(:,:) ! initialise global variables call init0 call init1 call readstate call genvsig call gencore call linengy call genapwlofr call gensocfr call genevfsv call occupy call initulr ! read in the potential STATE_ULR.OUT call readstulr ! initialise the external Coulomb potential call vclqinit ! apply required local operations to the potential and magnetic field call vblocalu allocate(dk(nstulr,nkpt0)) ! loop over original k-points call holdthd(nkpt0/np_mpi,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(evecu) & !$OMP NUM_THREADS(nthd) allocate(evecu(nstulr,nstulr)) !$OMP DO SCHEDULE(DYNAMIC) do ik0=1,nkpt0 ! distribute among MPI processes if (mod(ik0-1,np_mpi) /= lp_mpi) cycle !$OMP CRITICAL(bandstrulr_) write(*,'("Info(bandstrulr): ",I6," of ",I6," k-points")') ik0,nkpt0 !$OMP END CRITICAL(bandstrulr_) ! solve the ultra long-range eigenvalue equation call eveqnulr(ik0,evecu) ! determine reciprocal space distance from central k-point call dkevulr(evecu,dk(:,ik0)) end do !$OMP END DO deallocate(evecu) !$OMP END PARALLEL call freethd(nthd) ! broadcast arrays to every process if (np_mpi > 1) then do ik0=1,nkpt0 lp=mod(ik0-1,np_mpi) call mpi_bcast(evalu(:,ik0),nstulr,mpi_double_precision,lp,mpicom,ierror) call mpi_bcast(dk(:,ik0),nstulr,mpi_double_precision,lp,mpicom,ierror) end do end if ! subtract the Fermi energy evalu(:,:)=evalu(:,:)-efermi ! find the minimum and maximum eigenvalues emin=minval(evalu(:,:)) emax=maxval(evalu(:,:)) if (mp_mpi) then ! output the band structure open(50,file='BANDULR.OUT',form='FORMATTED',action='WRITE') do ist=1,nstulr do ik0=1,nkpt0 write(50,'(3G18.10)') dpp1d(ik0),evalu(ist,ik0),dk(ist,ik0) end do write(50,*) end do close(50) ! output the vertex location lines open(50,file='BANDLINES.OUT',form='FORMATTED',action='WRITE') do iv=1,nvp1d write(50,'(2G18.10)') dvp1d(iv),emin write(50,'(2G18.10)') dvp1d(iv),emax write(50,*) end do close(50) write(*,*) write(*,'("Info(bandstrulr):")') write(*,'(" Ultra long-range band structure plot written to BANDULR.OUT")') write(*,'(" Reciprocal space distance from central k-point written in third & &column")') write(*,*) write(*,'(" Vertex location lines written to BANDLINES.OUT")') end if deallocate(dk) ! synchronise MPI processes call mpi_barrier(mpicom,ierror) end subroutine elk-10.4.9/src/PaxHeaders/bdipoleu.f900000644000000000000000000000013014762655565014373 xustar0029 mtime=1741380469.50101386 30 atime=1741380468.367007932 29 ctime=1741380469.50101386 elk-10.4.9/src/bdipoleu.f900000644002504400250440000000220614762655565017117 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 Wenhan Chen, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine bdipoleu use modmain use modulr implicit none ! local variables integer idm,iq,ifq real(8) cb,t1 complex(8) zv(3),z1 ! automatic arrays real(8) rfft(nqpt) complex(8) zvq(nfqrz,3) if (.not.ncmag) then write(*,*) write(*,'("Error(bdipoleu): non-collinear magnetism required for inclusion & &of the dipole field")') write(*,*) stop end if ! prefactor for the electron spin dipole magnetic field cb=gfacte/(4.d0*solsc) ! Fourier transform the R-dependent magnetisation to Q-space do idm=1,3 rfft(1:nqpt)=momtotru(idm,1:nqpt)/omega call rzfftifc(3,ngridq,-1,rfft,zvq(:,idm)) end do do ifq=1,nfqrz iq=iqrzf(ifq) ! compute B(Q) = 4π (gₛ/4c)² [ m(Q) - Q (Q⋅m(Q))/Q² ] zv(1:3)=zvq(ifq,1:3) if (iq > 1) then z1=vqc(1,iq)*zv(1)+vqc(2,iq)*zv(2)+vqc(3,iq)*zv(3) t1=vqc(1,iq)**2+vqc(2,iq)**2+vqc(3,iq)**2 z1=z1/t1 zv(1:3)=zv(1:3)-z1*vqc(:,iq) end if t1=bdipscf*fourpi*cb**2 bdipq(1:3,ifq)=t1*zv(1:3) end do end subroutine elk-10.4.9/src/PaxHeaders/writedosu.f900000644000000000000000000000013214762655565014617 xustar0030 mtime=1741380469.502013865 30 atime=1741380468.369007942 30 ctime=1741380469.502013865 elk-10.4.9/src/writedosu.f900000644002504400250440000000313714762655565017345 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 Wenhan Chen, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writedosu use modmain use modulr implicit none ! local variables integer nsk(3),ik0,iw real(8) dw ! allocatable arrays real(8), allocatable :: w(:),f(:,:),g(:) ! no k-point reduction reducek0=reducek reducek=0 ! initialise global variables call init0 call init1 call initulr ! read in the Fermi energy from STATE_ULR.OUT call readstulr ! get the ULR eigenvalues from file do ik0=1,nkpt0 call getevalu(ik0) end do ! subtract the Fermi energy evalu(1:nstulr,1:nkpt0)=evalu(1:nstulr,1:nkpt0)-efermi ! generate frequency grid allocate(w(nwplot)) dw=(wplot(2)-wplot(1))/dble(nwplot) do iw=1,nwplot w(iw)=dw*dble(iw-1)+wplot(1) end do ! number of subdivisions used for interpolation in the Brillouin zone nsk(:)=max(ngrkf/ngridk(:),1) ! integrate over the Brillouin zone allocate(f(nstulr,nkpt0),g(nwplot)) ! normalise DOS to the unit cell f(1:nstulr,1:nkpt0)=1.d0/dble(nkpa) call brzint(nswplot,ngridk,nsk,ivkik,nwplot,wplot,nstulr,nstulr,evalu,f,g) ! write total DOS to file open(50,file='TDOSULR.OUT',form='FORMATTED',action='WRITE') do iw=1,nwplot write(50,'(2G18.10)') w(iw),g(iw) end do close(50) write(*,*) write(*,'("Info(writedosu):")') write(*,'(" Ultra long-range total density of states written to TDOSULR.OUT")') write(*,*) write(*,'(" Fermi energy is at zero in plot")') write(*,*) write(*,'(" DOS units are states/Hartree/unit cell")') deallocate(w,f,g) ! restore original parameters reducek=reducek0 end subroutine elk-10.4.9/src/PaxHeaders/putevalu.f900000644000000000000000000000013214762655565014437 xustar0030 mtime=1741380469.503013871 30 atime=1741380468.372007958 30 ctime=1741380469.503013871 elk-10.4.9/src/putevalu.f900000644002504400250440000000121114762655565017154 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 Wenhan Chen, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevalu(ik0) use modmain use modulr implicit none ! arguments integer, intent(in) :: ik0 ! local variables integer ik,recl ! central k-point ik=(ik0-1)*nkpa+1 ! find the record length inquire(iolength=recl) vkl(1:3,ik),nstulr,evalu(1:nstulr,ik0) !$OMP CRITICAL(u304) open(304,file='EVALU.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(304,rec=ik0) vkl(1:3,ik),nstulr,evalu(1:nstulr,ik0) close(304) !$OMP END CRITICAL(u304) end subroutine elk-10.4.9/src/PaxHeaders/getevalu.f900000644000000000000000000000013214762655565014406 xustar0030 mtime=1741380469.505013881 30 atime=1741380468.374007968 30 ctime=1741380469.505013881 elk-10.4.9/src/getevalu.f900000644002504400250440000000224714762655565017135 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 Wenhan Chen, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getevalu(ik0) use modmain use modulr implicit none ! arguments integer, intent(in) :: ik0 ! local variables integer ik,recl,nstulr_ real(8) vkl_(3),t1 ! central k-point ik=(ik0-1)*nkpa+1 ! find the record length inquire(iolength=recl) vkl_,nstulr_,evalu(1:nstulr,ik0) !$OMP CRITICAL(u304) open(304,file='EVALU.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(304,rec=ik0) vkl_,nstulr_,evalu(1:nstulr,ik0) close(304) !$OMP END CRITICAL(u304) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevalu): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVALU.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstulr /= nstulr_) then write(*,*) write(*,'("Error(getevalu): differing nstulr for central k-point ",I8)') ik0 write(*,'(" current : ",I8)') nstulr write(*,'(" EVALU.OUT : ",I8)') nstulr_ write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/dkevulr.f900000644000000000000000000000013214762655565014246 xustar0030 mtime=1741380469.506013886 30 atime=1741380468.376007979 30 ctime=1741380469.506013886 elk-10.4.9/src/dkevulr.f900000644002504400250440000000125114762655565016767 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2025 Wenhan Chen, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. pure subroutine dkevulr(evecu,dk) use modmain use modulr implicit none ! arguments complex(8), intent(in) :: evecu(nstulr,nstulr) real(8), intent(out) :: dk(nstulr) ! local variables integer ikpa,ist,jst,i real(8) v(3),sm do jst=1,nstulr v(:)=0.d0 do ikpa=1,nkpa sm=0.d0 do ist=1,nstsv i=(ikpa-1)*nstsv+ist sm=sm+evecu(i,jst)%re**2+evecu(i,jst)%im**2 end do v(1:3)=v(1:3)+sm*vqc(1:3,ikpa) end do dk(jst)=sqrt(v(1)**2+v(2)**2+v(3)**2) end do end subroutine elk-10.4.9/src/PaxHeaders/writemomqu.f900000644000000000000000000000013214762655565015003 xustar0030 mtime=1741380469.507013891 30 atime=1741380468.378007989 30 ctime=1741380469.507013891 elk-10.4.9/src/writemomqu.f900000644002504400250440000000332514762655565017530 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2025 Wenhan Chen, J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writemomqu use modmain use modulr implicit none ! local variables integer idm,is,ia,ias,iq,ifq ! automatic arrays complex(8) zfft(nqpt),mmtqu(ndmag,natmtot,nqpt) complex(8) mirqu(ndmag,nqpt),mtotqu(ndmag,nqpt) do idm=1,ndmag ! muffin-tin moments do ias=1,natmtot is=idxis(ias) zfft(1:nqpt)=mommtru(idm,ias,1:nqpt) call zfftifc(3,ngridq,-1,zfft) mmtqu(idm,ias,1:nqpt)=zfft(1:nqpt) end do ! interstitial moment zfft(1:nqpt)=momirru(idm,1:nqpt) call zfftifc(3,ngridq,-1,zfft) mirqu(idm,1:nqpt)=zfft(1:nqpt) ! total moment zfft(1:nqpt)=momtotru(idm,1:nqpt) call zfftifc(3,ngridq,-1,zfft) mtotqu(idm,1:nqpt)=zfft(1:nqpt) end do open(50,file='MOMENTQU.OUT',form='FORMATTED') do iq=1,nqpt ifq=iqfft(iq) write(50,*) write(50,'("Q-point number ",I6," of ",I6)') iq,nqpt write(50,'("Q-point (lattice coordinates) :")') write(50,'(3G18.10)') vql(:,iq) write(50,'("Q-point (Cartesian coordinates) :")') write(50,'(3G18.10)') vqc(:,iq) write(50,'("Moments (complex):")') write(50,'(" interstitial :")') do idm=1,ndmag write(50,'(2G18.10)') mirqu(idm,ifq) end do write(50,'(" muffin-tins")') do is=1,nspecies write(50,'(" species : ",I4," (",A,")")') is,trim(spsymb(is)) do ia=1,natoms(is) ias=idxas(ia,is) write(50,'(" atom ",I4," :")') ia do idm=1,ndmag write(50,'(2G18.10)') mmtqu(idm,ias,ifq) end do end do end do write(50,'(" total moment :")') do idm=1,ndmag write(50,'(2G18.10)') mtotqu(idm,ifq) end do end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/initw90.f900000644000000000000000000000012714762655565014101 xustar0030 mtime=1741380469.509013902 27 atime=1741380468.380008 30 ctime=1741380469.509013902 elk-10.4.9/src/initw90.f900000644002504400250440000000312114762655565016614 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin and Lars Nordstrom. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. !BOP ! !ROUTINE: initw90 ! !INTERFACE: subroutine initw90 ! !USES: use modmain use modw90 ! !DESCRIPTION: ! Initialises global variables for the Wannier90 interface. ! ! !REVISION HISTORY: ! Created November 2018 (Arsenii Gerasimov) !EOP !BOC implicit none ! local variables integer ik,ist,i ! initialise universal variables call init0 call init1 if (num_bands > nstsv) then write(*,*) write(*,'("Error(initw90): num_bands > nstsv : ",2I8)') num_bands,nstsv write(*,*) stop end if ! if num_bands is not positive then assume all states are used if (num_bands < 1) then if (allocated(idxw90)) deallocate(idxw90) allocate(idxw90(nstsv)) do ist=1,nstsv idxw90(ist)=ist end do num_bands=nstsv end if ! check that each state index is in range do i=1,num_bands ist=idxw90(i) if ((ist < 1).or.(ist > nstsv)) then write(*,*) write(*,'("Error(initw90): state index out of range : ",I8)') ist write(*,*) stop end if end do ! set the number of Wannier functions if (num_wann < 1) then num_wann=num_bands+num_wann num_wann=max(num_wann,1) end if ! read density and potentials from file call readstate ! find the new linearisation energies call linengy ! generate the APW and local-orbital radial functions and integrals call genapwlofr ! read in the second-variational eigenvalues do ik=1,nkpt call getevalsv(filext,ik,vkl(:,ik),evalsv(:,ik)) end do end subroutine !EOC elk-10.4.9/src/PaxHeaders/writew90.f900000644000000000000000000000013114762655565014263 xustar0030 mtime=1741380469.510013907 29 atime=1741380468.38200801 30 ctime=1741380469.510013907 elk-10.4.9/src/writew90.f900000644002504400250440000000122714762655565017010 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin ! and Lars Nordstrom. This file is distributed under the terms of the GNU ! General Public License. See the file COPYING for license details. subroutine writew90 use modmain use modw90 implicit none ! initialise universal and Wannier90 variables call initw90 ! write the .win file call writew90win ! write the .eig file call writew90eig ! call the Wannier90 setup routine call setupw90 ! write the .amn file call writew90amn ! write the .mmn file call writew90mmn ! write the .spn file call writew90spn ! write the UNK files if required if (wrtunk) call writew90unk end subroutine elk-10.4.9/src/PaxHeaders/writew90win.f900000644000000000000000000000013214762655565015002 xustar0030 mtime=1741380469.511013912 30 atime=1741380468.384008021 30 ctime=1741380469.511013912 elk-10.4.9/src/writew90win.f900000644002504400250440000000404614762655565017530 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin ! and Lars Nordstrom. This file is distributed under the terms of the GNU ! General Public License. See the file COPYING for license details. !BOP ! !ROUTINE: writew90win ! !INTERFACE: subroutine writew90win ! !USES: use modmain use modw90 ! !DESCRIPTION: ! Writes out a template {\tt seedname.win} file with the Wannier90 input ! parameters. Uses {\tt wannier} and {\tt wannierExtra} blocks. ! ! !REVISION HISTORY: ! Created January 2015 (Manh Duc Le) ! Modified, August 2018 (Arsenii Gerasimov) ! Modified, February 2019 (JKD) !EOP !BOC implicit none ! local variables integer ik,is,ia,i character(256) fname fname=trim(seedname)//'.win' open(50,file=trim(fname),action='WRITE',form='FORMATTED') ! write the number of Wannier functions and bands write(50,'("length_unit = bohr")') write(50,'("num_wann = ",I8)') num_wann write(50,'("num_bands = ",I8)') num_bands write(50,'("num_iter = ",I8)') num_iter write(50,'("dis_num_iter = ",I8)') dis_num_iter write(50,*) write(50,'("trial_step = ",G18.10)') trial_step ! write spinors if required if (spinpol) then write(50,*) write(50,'("spinors = true")') write(50,'("spn_formatted = true")') end if ! write lattice vectors write(50,*) write(50,'("begin unit_cell_cart")') write(50,'("bohr")') write(50,'(3G18.10)') avec(:,1) write(50,'(3G18.10)') avec(:,2) write(50,'(3G18.10)') avec(:,3) write(50,'("end unit_cell_cart")') ! writes atomic positions write(50,*) write(50,'("begin atoms_frac")') do is=1,nspecies do ia=1,natoms(is) write(50,'(A5,3G18.10)') trim(spsymb(is)),atposl(:,ia,is) end do end do write(50,'("end atoms_frac")') ! write the list of k-points write(50,*) write(50,'("mp_grid = ",3I6)') ngridk write(50,*) write(50,'("begin kpoints")') do ik=1,nkptnr write(50,'(3G18.10)') vkl(:,ik) end do write(50,'("end kpoints")') write(50,*) ! write the extra lines do i=1,nxlwin write(50,'(A)') trim(xlwin(i)) end do close(50) write(*,*) write(*,'("Info(writew90win): created file ",A)') trim(fname) end subroutine !EOC elk-10.4.9/src/PaxHeaders/writew90eig.f900000644000000000000000000000013214762655565014751 xustar0030 mtime=1741380469.513013923 30 atime=1741380468.386008031 30 ctime=1741380469.513013923 elk-10.4.9/src/writew90eig.f900000644002504400250440000000141714762655565017476 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin ! and Lars Nordstrom. This file is distributed under the terms of the GNU ! General Public License. See the file COPYING for license details. subroutine writew90eig use modmain use modw90 implicit none ! local variables integer ik,jk,ist,i real(8) t1 character(256) fname fname=trim(seedname)//'.eig' open(50,file=trim(fname),action='WRITE',form='FORMATTED') ! loop over non-reduced k-points do ik=1,nkptnr ! equivalent reduced k-point jk=ivkik(ivk(1,ik),ivk(2,ik),ivk(3,ik)) do i=1,num_bands ist=idxw90(i) t1=evalsv(ist,jk)-efermi write(50,'(2I6,G18.10)') i,ik,t1*ha_ev end do end do close(50) write(*,*) write(*,'("Info(writew90eig): created file ",A)') trim(fname) end subroutine elk-10.4.9/src/PaxHeaders/setupw90.f900000644000000000000000000000013214762655565014272 xustar0030 mtime=1741380469.514013928 30 atime=1741380468.388008042 30 ctime=1741380469.514013928 elk-10.4.9/src/setupw90.f900000644002504400250440000000355714762655565017026 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin ! and Lars Nordstrom. This file is distributed under the terms of the GNU ! General Public License. See the file COPYING for license details. subroutine setupw90 use modmain use modw90 implicit none ! local variables integer is,ia,ias real(8) real_lattice(3,3),recip_lattice(3,3) ! allocatable arrays integer, allocatable :: proj_l(:),proj_m(:),proj_radial(:),proj_s(:) integer, allocatable :: exclude_bands(:) real(8), allocatable :: atoms_cart(:,:),proj_site(:,:) real(8), allocatable :: proj_z(:,:),proj_x(:,:) real(8), allocatable :: proj_zona(:),proj_s_qaxis(:,:) character(256), allocatable :: atom_symbols(:) ! allocate global arrays if (allocated(nnlist)) deallocate(nnlist) allocate(nnlist(nkptnr,num_nnmax)) if (allocated(nncell)) deallocate(nncell) allocate(nncell(3,nkptnr,num_nnmax)) ! allocate local arrays allocate(proj_l(num_bands),proj_m(num_bands)) allocate(proj_radial(num_bands),proj_s(num_bands)) allocate(exclude_bands(num_bands)) allocate(atoms_cart(3,natmtot),proj_site(3,num_bands)) allocate(proj_z(3,num_bands),proj_x(3,num_bands)) allocate(proj_zona(num_bands),proj_s_qaxis(3,num_bands)) allocate(atom_symbols(natmtot)) real_lattice=br_ang*transpose(avec) recip_lattice=(1.d0/br_ang)*transpose(bvec) do ias=1,natmtot is=idxis(ias) ia=idxia(ias) atom_symbols(ias)=trim(spsymb(is)) atoms_cart(:,ias)=br_ang*atposc(:,ia,is) end do call wannier_setup(seedname,ngridk,nkptnr,real_lattice,recip_lattice,vkl, & num_bands,natmtot,atom_symbols,atoms_cart,.false.,spinpol,nntot,nnlist, & nncell,num_bands,num_wann,proj_site,proj_l,proj_m,proj_radial,proj_z,proj_x, & proj_zona,exclude_bands,proj_s,proj_s_qaxis) deallocate(proj_l,proj_m) deallocate(proj_radial,proj_s,exclude_bands) deallocate(atoms_cart,proj_site,proj_z,proj_x) deallocate(proj_zona,proj_s_qaxis,atom_symbols) end subroutine elk-10.4.9/src/PaxHeaders/writew90mmn.f900000644000000000000000000000013214762655565014774 xustar0030 mtime=1741380469.516013939 30 atime=1741380468.390008052 30 ctime=1741380469.516013939 elk-10.4.9/src/writew90mmn.f900000644002504400250440000000501114762655565017513 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin ! and Lars Nordstrom. This file is distributed under the terms of the GNU ! General Public License. See the file COPYING for license details. subroutine writew90mmn use modmain use modw90 implicit none ! local variables integer ik,jk,ist,jst,i integer ngp(nspnfv),ngpq(nspnfv) real(8) vl(3),vc(3),q,vkql(3) character(256) fname ! automatic arrays complex(8) ylmq(lmmaxo),sfacq(natmtot) ! allocatable arrays integer, allocatable :: igpig(:,:),igpqig(:,:) real(8), allocatable :: jlqr(:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfir(:,:,:) complex(8), allocatable :: wfmtq(:,:,:,:),wfgpq(:,:,:) complex(8), allocatable :: expqmt(:,:),oq(:,:) ! allocate local arrays allocate(igpig(ngkmax,nspnfv),igpqig(ngkmax,nspnfv)) allocate(jlqr(njcmax,nspecies)) allocate(wfmt(npcmtmax,natmtot,nspinor,num_bands)) allocate(wfir(ngtc,nspinor,num_bands)) allocate(wfmtq(npcmtmax,natmtot,nspinor,num_bands)) allocate(wfgpq(ngkmax,nspinor,num_bands)) allocate(expqmt(npcmtmax,natmtot)) allocate(oq(num_bands,num_bands)) fname=trim(seedname)//'.mmn' open(50,file=trim(fname),action='WRITE',form='FORMATTED') write(50,'("Generated by Elk version ",I0,".",I0,".",I0)') version write(50,'(3I8)') num_bands,nkptnr,nntot do ik=1,nkptnr call genwfsvp(.false.,.false.,num_bands,idxw90,ngdgc,igfc,vkl(:,ik),ngp, & igpig,wfmt,ngtc,wfir) do i=1,nntot jk=nnlist(ik,i) ! q-vector in lattice coordinates vl(:)=dble(nncell(:,ik,i))+vkl(:,jk)-vkl(:,ik) ! q-vector in Cartesian coordinates call r3mv(bvec,vl,vc) ! q-vector length q=sqrt(vc(1)**2+vc(2)**2+vc(3)**2) ! generate phase factor function exp(iq.r) in the muffin-tins call genjlgpr(1,q,jlqr) call genylmv(.true.,lmaxo,vc,ylmq) call gensfacgp(1,vc,1,sfacq) call genexpmt(1,jlqr,ylmq,1,sfacq,expqmt) ! k+q-vector in lattice coordinates vkql(:)=vkl(:,ik)+vl(:) ! generate the wavefunctions at k+q call genwfsvp(.false.,.true.,num_bands,idxw90,ngdgc,igfc,vkql,ngpq,igpqig, & wfmtq,ngkmax,wfgpq) ! determine the overlap matrix call genolpq(num_bands,expqmt,ngpq,igpqig,wfmt,wfir,wfmtq,wfgpq,oq) ! write overlap matrix to file write(50,'(5I8)') ik,jk,nncell(:,ik,i) do jst=1,num_bands do ist=1,num_bands write(50,'(2G18.10)') dble(oq(jst,ist)),-aimag(oq(jst,ist)) end do end do end do end do close(50) write(*,*) write(*,'("Info(writew90mmn): created file ",A)') trim(fname) deallocate(igpig,igpqig,jlqr) deallocate(wfmt,wfir,wfmtq,wfgpq) deallocate(expqmt,oq) end subroutine elk-10.4.9/src/PaxHeaders/writew90spn.f900000644000000000000000000000013214762655565015005 xustar0030 mtime=1741380469.517013944 30 atime=1741380468.392008062 30 ctime=1741380469.517013944 elk-10.4.9/src/writew90spn.f900000644002504400250440000000247514762655565017537 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2015 Manh Duc Le, 2017-18 Arsenii Gerasimov, Yaroslav Kvashnin ! and Lars Nordstrom. This file is distributed under the terms of the GNU ! General Public License. See the file COPYING for license details. subroutine writew90spn use modmain use modw90 implicit none ! local variables integer ik,ist,jst,i,j complex(8) z1 character(256) fname ! allocatable arrays complex(8), allocatable :: evecsv(:,:),smat(:,:,:,:) if (.not.spinpol) return fname=trim(seedname)//'.spn' open(50,file=trim(fname),action='WRITE',form='FORMATTED') write(50,'("Generated by Elk version ",I0,".",I0,".",I0)') version write(50,'(3I8)') num_bands,nkptnr allocate(evecsv(nstsv,nstsv),smat(nstsv,nstsv,2,2)) do ik=1,nkptnr ! generate the spin operator matrix elements ! (note that this is *not* a density matrix) call getevecsv(filext,0,vkl(:,ik),evecsv) call gensmatk(evecsv,smat) do j=1,num_bands jst=idxw90(j) do i=1,j ist=idxw90(i) z1=smat(ist,jst,1,2)+smat(ist,jst,2,1) write(50,'(2G18.10)') z1 z1=smat(ist,jst,1,2)-smat(ist,jst,2,1) z1=zmi*z1 write(50,'(2G18.10)') z1 z1=smat(ist,jst,1,1)-smat(ist,jst,2,2) write(50,'(2G18.10)') z1 end do end do end do deallocate(evecsv,smat) close(50) write(*,*) write(*,'("Info(writew90spn): created file ",A)') trim(fname) end subroutine elk-10.4.9/src/PaxHeaders/writew90amn.f900000644000000000000000000000013214762655565014760 xustar0030 mtime=1741380469.518013949 30 atime=1741380468.394008073 30 ctime=1741380469.518013949 elk-10.4.9/src/writew90amn.f900000644002504400250440000000142614762655565017505 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writew90amn use modmain use modw90 use modrandom implicit none ! local variables integer ik,ist,i real(8) a,b character(256) fname fname=trim(seedname)//'.amn' open(50,file=trim(fname),action='WRITE',form='FORMATTED') write(50,'("Generated by Elk version ",I0,".",I0,".",I0)') version write(50,'(3I6)') num_bands,nkptnr,num_wann do ik=1,nkptnr do i=1,num_wann do ist=1,num_bands a=0.5d0-randomu() b=0.5d0-randomu() write(50,'(3I8,2G18.10)') ist,i,ik,a,b end do end do end do close(50) write(*,*) write(*,'("Info(writew90amn): created file ",A)') trim(fname) end subroutine elk-10.4.9/src/PaxHeaders/writew90unk.f900000644000000000000000000000013214762655565015002 xustar0030 mtime=1741380469.520013959 30 atime=1741380468.396008083 30 ctime=1741380469.520013959 elk-10.4.9/src/writew90unk.f900000644002504400250440000000715114762655565017530 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writew90unk use modmain use modw90 use modomp implicit none ! local variables integer ispn,ik,ist,nthd integer is,ias,nrc,nrci,npc integer np,ngp,iu,i real(8) vc(3),kc character(256) fname ! automatic arrays complex(8) ylmk(lmmaxo),sfack(natmtot) ! allocatable arrays integer, allocatable :: igpig(:,:) real(8), allocatable :: vpl(:,:),jlkr(:,:) real(8), allocatable :: wfmta(:,:),wfmtb(:,:) real(8), allocatable :: wfira(:),wfirb(:) real(8), allocatable :: wfa(:,:,:),wfb(:,:,:) complex(8), allocatable :: wfmt(:,:,:,:),wfir(:,:,:),expmt(:,:) ! total number of plot points np=np3d(1)*np3d(2)*np3d(3) ! generate the 3D plotting points allocate(vpl(3,np)) call plotpt3d(vpl) ! parallel loop over non-reduced k-points call holdthd(nkptnr,nthd) !$OMP PARALLEL DEFAULT(SHARED) & !$OMP PRIVATE(igpig,jlkr,wfmta,wfmtb) & !$OMP PRIVATE(wfira,wfirb,wfa,wfb) & !$OMP PRIVATE(wfmt,wfir,ylmk,sfack,expmt) & !$OMP PRIVATE(ngp,vc,kc,ist,ispn,ias,is) & !$OMP PRIVATE(nrc,nrci,npc,fname,iu,i) & !$OMP NUM_THREADS(nthd) allocate(igpig(ngkmax,nspnfv)) allocate(jlkr(njcmax,nspecies)) allocate(wfmta(npmtmax,natmtot),wfmtb(npmtmax,natmtot)) allocate(wfira(ngtot),wfirb(ngtot)) allocate(wfa(np,nspinor,num_bands),wfb(np,nspinor,num_bands)) allocate(wfmt(npcmtmax,natmtot,nspinor,num_bands)) allocate(wfir(ngtot,nspinor,num_bands)) allocate(expmt(npcmtmax,natmtot)) !$OMP DO SCHEDULE(DYNAMIC) do ik=1,nkptnr !$OMP CRITICAL(writew90unk_) write(*,'("Info(writew90unk): ",I6," of ",I6," k-points")') ik,nkptnr !$OMP END CRITICAL(writew90unk_) ! generate the second-variational wavefunctions call genwfsvp(.false.,.false.,num_bands,idxw90,ngridg,igfft,vkl(:,ik),ngp, & igpig,wfmt,ngtot,wfir) ! generate the phase factor function exp(-ik.r) in the muffin-tins vc(:)=-vkc(:,ik) kc=sqrt(vc(1)**2+vc(2)**2+vc(3)**2) call genjlgpr(1,kc,jlkr) call genylmv(.true.,lmaxo,vc,ylmk) call gensfacgp(1,vc,1,sfack) call genexpmt(1,jlkr,ylmk,1,sfack,expmt) ! split the wavefunctions into real and imaginary parts do ist=1,num_bands do ispn=1,nspinor do ias=1,natmtot is=idxis(ias) nrc=nrcmt(is) nrci=nrcmti(is) npc=npcmt(is) ! remove the explicit phase exp(ik.r) from the muffin-tin wavefunction wfmt(1:npc,ias,ispn,ist)=wfmt(1:npc,ias,ispn,ist)*expmt(1:npc,ias) wfmta(1:npc,ias)=dble(wfmt(1:npc,ias,ispn,ist)) call rfshtip(nrc,nrci,wfmta(:,ias)) wfmtb(1:npc,ias)=aimag(wfmt(1:npc,ias,ispn,ist)) call rfshtip(nrc,nrci,wfmtb(:,ias)) end do call rfmtctof(wfmta) call rfmtctof(wfmtb) wfira(:)=dble(wfir(:,ispn,ist)) wfirb(:)=aimag(wfir(:,ispn,ist)) ! generate the wavefunctions on a regular grid call rfplot(np,vpl,wfmta,wfira,wfa(:,ispn,ist)) call rfplot(np,vpl,wfmtb,wfirb,wfb(:,ispn,ist)) end do end do if (spinpol) then write(fname,'("UNK",I5.5,".NC")') ik else write(fname,'("UNK",I5.5,".1")') ik end if open(newunit=iu,file=trim(fname),form='UNFORMATTED',action='WRITE') write(iu) np3d(1),np3d(2),np3d(3),ik,num_bands do ist=1,num_bands write(iu) (cmplx(wfa(i,1,ist),wfb(i,1,ist),8),i=1,np) if (spinpol) then write(iu) (cmplx(wfa(i,2,ist),wfb(i,2,ist),8),i=1,np) end if end do close(iu) end do !$OMP END DO deallocate(igpig,jlkr) deallocate(wfmta,wfmtb,wfira,wfirb) deallocate(wfa,wfb,wfmt,wfir,expmt) !$OMP END PARALLEL call freethd(nthd) write(*,*) write(*,'("Info(writew90unk): created the UNKkkkkk.s files")') deallocate(vpl) end subroutine elk-10.4.9/src/PaxHeaders/dmatuv.f900000644000000000000000000000013214762655565014072 xustar0030 mtime=1741380469.521013965 30 atime=1741380468.398008094 30 ctime=1741380469.521013965 elk-10.4.9/src/dmatuv.f900000644002504400250440000000157614762655565016625 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine dmatuv(n,ef,e,u,v,dvv,duv,vn) use modmain implicit none ! arguments integer, intent(in) :: n real(8), intent(in) :: ef,e(n) complex(8), intent(in) :: u(n,n),v(n,n) complex(8), intent(out) :: dvv(n,n),duv(n,n) real(8), intent(out) :: vn(n) ! local variables integer i ! external functions real(8), external :: dznrm2 ! normal fermionic density matrix VV† call zgemm('N','C',n,n,n,(1.d0,0.d0),v,n,v,n,(0.d0,0.d0),dvv,n) do i=1,n ! store the V-norm vn(i)=dznrm2(n,v(:,i),1)**2 ! subtract unperturbed density matrix if (e(i) <= ef) dvv(i,i)=dvv(i,i)-1.d0 end do ! anomalous density matrix UV† call zgemm('N','C',n,n,n,(1.d0,0.d0),u,n,v,n,(0.d0,0.d0),duv,n) end subroutine elk-10.4.9/src/PaxHeaders/dmatwx.f900000644000000000000000000000013014762655565014074 xustar0029 mtime=1741380469.52201397 30 atime=1741380468.400008104 29 ctime=1741380469.52201397 elk-10.4.9/src/dmatwx.f900000644002504400250440000000135214762655565016621 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine dmatwx(n,w,x,dxx,dwx,xn) implicit none ! arguments integer, intent(in) :: n complex(8), intent(in) :: w(n,n),x(n,n) complex(8), intent(out) :: dxx(n,n),dwx(n,n) real(8), intent(out) :: xn(n) ! local variables integer i real(8), external :: dznrm2 ! normal bosonic density matrix XX† call zgemm('N','C',n,n,n,(1.d0,0.d0),x,n,x,n,(0.d0,0.d0),dxx,n) ! store the X-norm do i=1,n xn(i)=dznrm2(n,x(:,i),1)**2 end do ! anomalous density matrix -WX† call zgemm('N','C',n,n,n,(-1.d0,0.d0),w,n,x,n,(0.d0,0.d0),dwx,n) end subroutine elk-10.4.9/src/PaxHeaders/eveqnuv.f900000644000000000000000000000013014762655565014261 xustar0029 mtime=1741380469.52401398 30 atime=1741380468.402008115 29 ctime=1741380469.52401398 elk-10.4.9/src/eveqnuv.f900000644002504400250440000000167614762655565017017 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine eveqnuv(n,au,bv,w) implicit none ! arguments integer, intent(in) :: n complex(8), intent(inout) :: au(n,n),bv(n,n) real(8), intent(out) :: w(n) ! local variables integer n2,i,j ! allocatable arrays real(8), allocatable :: w2(:) complex(8), allocatable :: h(:,:) n2=2*n ! setup the fermionic Bogoliubov Hamiltonian allocate(w2(n2),h(n2,n2)) do j=1,n do i=1,j h(i,j)=au(i,j) h(n+i,n+j)=-au(i,j) end do end do do j=1,n do i=1,n h(i,n+j)=bv(i,j) end do end do ! find the eigenvalues and eigenvectors call eveqnzh(n2,n2,h,w2) ! copy to output arrays do i=1,n ! choose the positive eigenvalues j=n+i w(i)=w2(j) call zcopy(n,h(1,j),1,au(1,i),1) call zcopy(n,h(n+1,j),1,bv(1,i),1) end do deallocate(w2,h) end subroutine elk-10.4.9/src/PaxHeaders/eveqnwxy.f900000644000000000000000000000013214762655565014460 xustar0030 mtime=1741380469.525013986 30 atime=1741380468.404008125 30 ctime=1741380469.525013986 elk-10.4.9/src/eveqnwxy.f900000644002504400250440000000307314762655565017205 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine eveqnwxy(n,p,dw,ex,fy,w) implicit none ! arguments integer, intent(in) :: n,p complex(8), intent(inout) :: dw(n,n),ex(n,n),fy(n) real(8), intent(out) :: w(n) ! local variables integer n2,i,j real(8) t1,t2 ! allocatable arrays integer, allocatable :: idx(:) real(8), allocatable :: r(:) complex(8), allocatable :: w2(:),h(:,:) complex(8), allocatable :: x(:),a(:,:) ! external functions real(8), external :: dznrm2 n2=2*n ! setup the bosonic Bogoliubov Hamiltonian allocate(w2(n2),h(n2,n2)) do j=1,n do i=1,n h(i,j)=dw(i,j) h(n+i,n+j)=-dw(i,j) h(i,n+j)=-ex(i,j) h(n+i,j)=ex(i,j) end do end do ! find the eigenvalues and right eigenvectors call eveqnzg(n2,n2,h,w2) ! select the eigenpairs corresponding to W†W - X†X = I allocate(idx(n2),r(n2)) do j=1,n2 t1=dznrm2(n,h(1,j),1)**2 t2=dznrm2(n,h(n+1,j),1)**2 r(j)=t1-t2 end do call sortidx(n2,r,idx) ! pseudo-normalise the eigenvectors and store in output arrays do i=1,n j=idx(n+i) t1=abs(r(j))+1.d-8 t1=(1.d0-(1.d0-t1)**p)/sqrt(t1) w(i)=dble(w2(j)) dw(1:n,i)=t1*h(1:n,j) ex(1:n,i)=t1*h(n+1:n2,j) end do deallocate(idx,r,w2,h) ! solve for the vector y allocate(x(n),a(n,n)) a(:,:)=dw(:,:)-ex(:,:) x(:)=fy(:) call zgemv('T',n,n,(1.d0,0.d0),a,n,x,1,(0.d0,0.d0),fy,1) do i=1,n if (w(i) > 1.d-6) then fy(i)=fy(i)/w(i) else fy(i)=0.d0 end if end do deallocate(x,a) end subroutine elk-10.4.9/src/PaxHeaders/writeevaluv.f900000644000000000000000000000013214762655565015147 xustar0030 mtime=1741380469.526013991 30 atime=1741380468.406008136 30 ctime=1741380469.526013991 elk-10.4.9/src/writeevaluv.f900000644002504400250440000000137014762655565017672 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine writeevaluv use modmain use modbog implicit none ! local variables integer ik,ist real(8) e ! write out the fermionic eigenvalues open(50,file='EIGVALUV.OUT',form='FORMATTED',action='WRITE') write(50,'(I6," : nkpt")') nkpt write(50,'(I6," : nstsv")') nstsv do ik=1,nkpt write(50,*) write(50,'(I6,3G18.10," : k-point, vkl")') ik,vkl(:,ik) write(50,'(" (state, eigenvalue, V-norm below)")') do ist=1,nstsv e=evaluv(ist,ik) if (vnorm(ist,ik) > 0.5d0) e=-e write(50,'(I6,2G18.10)') ist,e,vnorm(ist,ik) end do write(50,*) end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/occupyuv.f900000644000000000000000000000013214762655565014447 xustar0030 mtime=1741380469.528014001 30 atime=1741380468.408008146 30 ctime=1741380469.528014001 elk-10.4.9/src/occupyuv.f900000644002504400250440000000305714762655565017176 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine occupyuv use modmain use modbog use modmpi implicit none integer ik,ist real(8) chg,w,vn real(8) e0,e1,e,t1 ! determine the total charge and fermionic anomalous correlation entropy chg=0.d0 face=0.d0 do ik=1,nkpt w=wkpt(ik) do ist=1,nstsv vn=vnorm(ist,ik) chg=chg+w*vn if ((vn > 0.d0).and.(vn < 1.d0)) then face=face+w*(vn*log(vn)+(1.d0-vn)*log(1.d0-vn)) end if end do end do chg=occmax*chg face=-occmax*face ! adjust the Fermi energy efermi=efermi+tauefm*(chgval-chg) if (mp_mpi) then if (abs(chg-chgval) > epschg) then write(*,*) write(*,'("Warning(occupyuv): incorrect charge : ",2G18.10)') chg,chgval end if end if ! estimate the indirect band gap e0=-1.d8 e1=1.d8 ikgap(1)=1 ikgap(2)=1 do ist=1,nstsv do ik=1,nkpt e=evaluv(ist,ik) if (vnorm(ist,ik) > 0.5d0) e=-e if (e <= 0.d0) then if (e > e0) then e0=e ikgap(1)=ik end if else if (e < e1) then e1=e ikgap(2)=ik end if end if end do end do bandgap(1)=e1-e0 ! estimate the direct band gap e=1.d8 ikgap(3)=1 do ik=1,nkpt e0=-1.d8 e1=1.d8 do ist=1,nstsv t1=evaluv(ist,ik) if (vnorm(ist,ik) > 0.5d0) t1=-t1 if (t1 <= 0.d0) then if (t1 > e0) e0=t1 else if (t1 < e1) e1=t1 end if end do t1=e1-e0 if (t1 < e) then e=t1 ikgap(3)=ik end if end do bandgap(2)=e end subroutine elk-10.4.9/src/PaxHeaders/putevaluv.f900000644000000000000000000000013214762655565014625 xustar0030 mtime=1741380469.529014006 30 atime=1741380468.410008156 30 ctime=1741380469.529014006 elk-10.4.9/src/putevaluv.f900000644002504400250440000000113114762655565017343 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevaluv(ik,evaluvp) use modmain implicit none ! arguments integer, intent(in) :: ik real(8), intent(in) :: evaluvp(nstsv) ! local variables integer recl ! find the record length inquire(iolength=recl) vkl(:,ik),nstsv,evaluvp !$OMP CRITICAL(u320) open(320,file='EVALUV.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(320,rec=ik) vkl(:,ik),nstsv,evaluvp close(320) !$OMP END CRITICAL(u320) end subroutine elk-10.4.9/src/PaxHeaders/getevaluv.f900000644000000000000000000000013214762655565014574 xustar0030 mtime=1741380469.530014012 30 atime=1741380468.412008167 30 ctime=1741380469.530014012 elk-10.4.9/src/getevaluv.f900000644002504400250440000000216314762655565017320 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getevaluv(ik,evaluvp) use modmain implicit none ! arguments integer, intent(in) :: ik real(8), intent(out) :: evaluvp(nstsv) ! local variables integer recl,nstsv_ real(8) vkl_(3),t1 ! find the record length inquire(iolength=recl) vkl_,nstsv_,evaluvp !$OMP CRITICAL(u320) open(320,file='EVALUV.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(320,rec=ik) vkl_,nstsv_,evaluvp close(320) !$OMP END CRITICAL(u320) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevaluv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVALUV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getevaluv): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" EVALUV.OUT : ",I8)') nstsv_ write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/putevecuv.f900000644000000000000000000000013214762655565014620 xustar0030 mtime=1741380469.532014022 30 atime=1741380468.414008177 30 ctime=1741380469.532014022 elk-10.4.9/src/putevecuv.f900000644002504400250440000000117714762655565017350 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine putevecuv(ik,evecu,evecv) use modmain implicit none ! arguments integer, intent(in) :: ik complex(8), intent(in) :: evecu(nstsv,nstsv),evecv(nstsv,nstsv) ! local variables integer recl ! find the record length inquire(iolength=recl) vkl(:,ik),nstsv,evecu,evecv !$OMP CRITICAL(u322) open(322,file='EVECUV.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(322,rec=ik) vkl(:,ik),nstsv,evecu,evecv close(322) !$OMP END CRITICAL(u322) end subroutine elk-10.4.9/src/PaxHeaders/getevecuv.f900000644000000000000000000000013214762655565014567 xustar0030 mtime=1741380469.533014027 30 atime=1741380468.416008188 30 ctime=1741380469.533014027 elk-10.4.9/src/getevecuv.f900000644002504400250440000000247314762655565017317 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2019 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine getevecuv(ikp,vpl,u,v) use modmain implicit none ! arguments integer, intent(in) :: ikp real(8), intent(in) :: vpl(3) complex(8), intent(out) :: u(nstsv,nstsv),v(nstsv,nstsv) ! local variables integer isym,ik integer recl,nstsv_ real(8) vkl_(3),t1 if (ikp > 0) then ik=ikp else ! find the equivalent k-point number and symmetry which rotates vkl to vpl call findkpt(vpl,isym,ik) end if ! find the record length inquire(iolength=recl) vkl_,nstsv_,u,v !$OMP CRITICAL(u322) open(322,file='EVECUV.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(322,rec=ik) vkl_,nstsv_,u,v close(322) !$OMP END CRITICAL(u322) t1=abs(vkl(1,ik)-vkl_(1))+abs(vkl(2,ik)-vkl_(2))+abs(vkl(3,ik)-vkl_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevecuv): differing vectors for k-point ",I8)') ik write(*,'(" current : ",3G18.10)') vkl(:,ik) write(*,'(" EVECUV.OUT : ",3G18.10)') vkl_ write(*,*) stop end if if (nstsv /= nstsv_) then write(*,*) write(*,'("Error(getevecuv): differing nstsv for k-point ",I8)') ik write(*,'(" current : ",I8)') nstsv write(*,'(" EVECUV.OUT : ",I8)') nstsv_ write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/putevecwxy.f900000644000000000000000000000013214762655565015015 xustar0030 mtime=1741380469.534014033 30 atime=1741380468.418008198 30 ctime=1741380469.534014033 elk-10.4.9/src/putevecwxy.f900000644002504400250440000000122614762655565017540 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine putevecwxy(iq,w,x,y) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq complex(8), intent(in) :: w(nbph,nbph),x(nbph,nbph),y(nbph) ! local variables integer recl ! find the record length inquire(iolength=recl) vql(:,iq),nbph,w,x,y !$OMP CRITICAL(u332) open(332,file='EVECWXY.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(332,rec=iq) vql(:,iq),nbph,w,x,y close(332) !$OMP END CRITICAL(u332) end subroutine elk-10.4.9/src/PaxHeaders/getevecwxy.f900000644000000000000000000000013214762655565014764 xustar0030 mtime=1741380469.536014043 30 atime=1741380468.420008209 30 ctime=1741380469.536014043 elk-10.4.9/src/getevecwxy.f900000644002504400250440000000226014762655565017506 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine getevecwxy(iq,w,x,y) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq complex(8), intent(out) :: w(nbph,nbph),x(nbph,nbph),y(nbph) ! local variables integer recl,nbph_ real(8) vql_(3),t1 ! find the record length inquire(iolength=recl) vql_,nbph_,w,x,y !$OMP CRITICAL(u332) open(332,file='EVECWXY.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(332,rec=iq) vql_,nbph_,w,x,y close(332) !$OMP END CRITICAL(u332) t1=abs(vql(1,iq)-vql_(1))+abs(vql(2,iq)-vql_(2))+abs(vql(3,iq)-vql_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevecwxy): differing vectors for q-point ",I8)') iq write(*,'(" current : ",3G18.10)') vql(:,iq) write(*,'(" EVECWXY.OUT : ",3G18.10)') vql_ write(*,*) stop end if if (nbph /= nbph_) then write(*,*) write(*,'("Error(getevecwxy): differing nbph for q-point ",I8)') iq write(*,'(" current : ",I8)') nbph write(*,'(" EVECWXY.OUT : ",I8)') nbph_ write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/putevalwx.f900000644000000000000000000000013214762655565014631 xustar0030 mtime=1741380469.537014048 30 atime=1741380468.422008219 30 ctime=1741380469.537014048 elk-10.4.9/src/putevalwx.f900000644002504400250440000000120314762655565017347 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine putevalwx(iq,evalwxp) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq real(8), intent(in) :: evalwxp(nbph) ! local variables integer recl ! find the record length inquire(iolength=recl) vql(:,iq),nbph,evalwxp !$OMP CRITICAL(u330) open(330,file='EVALWX.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) write(330,rec=iq) vql(:,iq),nbph,evalwxp close(330) !$OMP END CRITICAL(u330) end subroutine elk-10.4.9/src/PaxHeaders/getevalwx.f900000644000000000000000000000013114762655565014577 xustar0030 mtime=1741380469.538014053 29 atime=1741380468.42400823 30 ctime=1741380469.538014053 elk-10.4.9/src/getevalwx.f900000644002504400250440000000222714762655565017325 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2020 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine getevalwx(iq,evalwxp) use modmain use modphonon implicit none ! arguments integer, intent(in) :: iq real(8), intent(out) :: evalwxp(nbph) ! local variables integer recl,nbph_ real(8) vql_(3),t1 ! find the record length inquire(iolength=recl) vql_,nbph_,evalwxp !$OMP CRITICAL(u330) open(330,file='EVALWX.OUT',form='UNFORMATTED',access='DIRECT',recl=recl) read(330,rec=iq) vql_,nbph_,evalwxp close(330) !$OMP END CRITICAL(u330) t1=abs(vql(1,iq)-vql_(1))+abs(vql(2,iq)-vql_(2))+abs(vql(3,iq)-vql_(3)) if (t1 > epslat) then write(*,*) write(*,'("Error(getevalwx): differing vectors for q-point ",I8)') iq write(*,'(" current : ",3G18.10)') vql(:,iq) write(*,'(" EVALWX.OUT : ",3G18.10)') vql_ write(*,*) stop end if if (nbph /= nbph_) then write(*,*) write(*,'("Error(getevalwx): differing nbph for q-point ",I8)') iq write(*,'(" current : ",I8)') nbph write(*,'(" EVALWX.OUT : ",I8)') nbph_ write(*,*) stop end if end subroutine elk-10.4.9/src/PaxHeaders/aceplot.f900000644000000000000000000000013114762655565014220 xustar0030 mtime=1741380469.539014059 29 atime=1741380468.42600824 30 ctime=1741380469.539014059 elk-10.4.9/src/aceplot.f900000644002504400250440000000367614762655565016757 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine aceplot use modmain use modphonon use modbog implicit none ! local variables integer ik,jk,iq,jq integer i1,i2,i3,ist,i real(8) ace,vn,xn ! initialise universal variables call init0 call init1 call init2 call initeph !----------------------------------------------------------! ! plot the fermionic anomalous correlation entropy ! !----------------------------------------------------------! open(50,file='FACE3D.OUT',form='FORMATTED',action='WRITE') write(50,'(3I6," : grid size")') ngridk(:) do i3=0,ngridk(3)-1 do i2=0,ngridk(2)-1 do i1=0,ngridk(1)-1 ik=ivkiknr(i1,i2,i3) jk=ivkik(i1,i2,i3) ace=0.d0 do ist=1,nstsv vn=vnorm(ist,jk) if ((vn > 0.d0).and.(vn < 1.d0)) then ace=ace+vn*log(vn)+(1.d0-vn)*log(1.d0-vn) end if end do ace=-occmax*ace write(50,'(4G18.10)') vkc(:,ik),ace end do end do end do close(50) !--------------------------------------------------------! ! plot the bosonic anomalous correlation entropy ! !--------------------------------------------------------! open(50,file='BACE3D.OUT',form='FORMATTED',action='WRITE') write(50,'(3I6," : grid size")') ngridq(:) do i3=0,ngridq(3)-1 do i2=0,ngridq(2)-1 do i1=0,ngridq(1)-1 iq=ivqiqnr(i1,i2,i3) jq=ivqiq(i1,i2,i3) ace=0.d0 do i=1,nbph xn=xnorm(i,jq) if (xn > 0.d0) then ace=ace+xn*log(xn)-(1.d0+xn)*log(1.d0+xn) end if end do ace=-ace write(50,'(4G18.10)') vqc(:,iq),ace end do end do end do close(50) write(*,*) write(*,'("Info(aceplot):")') write(*,'(" 3D fermionic anomalous correlation entropy written to FACE3D.OUT")') write(*,'(" 3D bosonic anomalous correlation entropy written to BACE3D.OUT")') end subroutine elk-10.4.9/src/PaxHeaders/writeevalwx.f900000644000000000000000000000013214762655565015153 xustar0030 mtime=1741380469.541014069 30 atime=1741380468.428008251 30 ctime=1741380469.541014069 elk-10.4.9/src/writeevalwx.f900000644002504400250440000000133214762655565017674 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2021 Chung-Yu Wang, J. K. Dewhurst, S. Sharma and ! E. K. U. Gross. This file is distributed under the terms of the GNU General ! Public License. See the file COPYING for license details. subroutine writeevalwx use modmain use modphonon use modbog implicit none ! local variables integer iq,i ! write out the bosonic eigenvalues open(50,file='EIGVALWX.OUT',form='FORMATTED',action='WRITE') write(50,'(I6," : nqpt")') nqpt write(50,'(I6," : nbph")') nbph do iq=1,nqpt write(50,*) write(50,'(I6,3G18.10," : q-point, vql")') iq,vql(:,iq) write(50,'(" (phonon branch, eigenvalue, X-norm below)")') do i=1,nbph write(50,'(I6,2G18.10)') i,evalwx(i,iq),xnorm(i,iq) end do end do close(50) end subroutine elk-10.4.9/src/PaxHeaders/tdhfc.f900000644000000000000000000000013214762655565013662 xustar0030 mtime=1741380469.542014074 30 atime=1741380468.430008261 30 ctime=1741380469.542014074 elk-10.4.9/src/tdhfc.f900000644002504400250440000000105514762655565016405 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine tdhfc use modmain use modtdhfc implicit none ! initialise global variables call init0 call init1 call readstate call genvsig call gencore call linengy call genapwlofr call gensocfr ! read the eigenvalues and occupation numbers from file call readevalsv call readoccsv ! find the number of and index to the states within the energy window call genidxthc end subroutine elk-10.4.9/src/PaxHeaders/genidxthc.f900000644000000000000000000000013014762655565014545 xustar0029 mtime=1741380469.54301408 30 atime=1741380468.432008271 29 ctime=1741380469.54301408 elk-10.4.9/src/genidxthc.f900000644002504400250440000000200614762655565017267 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2024 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine genidxthc use modmain use modtdhfc implicit none ! local variables integer ik,nst,nmax,ist ! determine the maximum number of states within energy window over all k-points nmax=0 do ik=1,nkpt nst=0 do ist=1,nstsv if (abs(evalsv(ist,ik)-efermi) < ecutthc) nst=nst+1 end do nmax=max(nmax,nst) end do if (nmax == 0) then write(*,*) write(*,'("Error(genidxthc): no states within energy window ecutthc")') write(*,*) stop end if ! allocate global arrays if (allocated(nstthc)) deallocate(nstthc) allocate(nstthc(nkpt)) if (allocated(idxthc)) deallocate(idxthc) allocate(idxthc(nmax,nkpt)) ! determine the number of and index to used states do ik=1,nkpt nst=0 do ist=1,nstsv if (abs(evalsv(ist,ik)-efermi) < ecutthc) then nst=nst+1 idxthc(nst,ik)=ist end if end do nstthc(ik)=nst end do end subroutine elk-10.4.9/src/PaxHeaders/Makefile0000644000000000000000000000013214762655564013711 xustar0030 mtime=1741380468.435008287 30 atime=1741380468.434008282 30 ctime=1741380468.435008287 elk-10.4.9/src/Makefile0000644002504400250440000003374614762655564016450 0ustar00dewhurstdewhurst00000000000000 include ../make.inc # modules SRC_modules = modmain.f90 $(SRC_MPI) modmpi.f90 modramdisk.f90 $(SRC_LIBXC) \ modxcifc.f90 modfxcifc.f90 moddftu.f90 modrdm.f90 modphonon.f90 modtest.f90 \ modrandom.f90 modpw.f90 modvars.f90 modtddft.f90 modgw.f90 modulr.f90 \ modbog.f90 modtdhfc.f90 moddelf.f90 $(SRC_OMP) modomp.f90 $(SRC_MKL) \ mkl_init.f90 $(SRC_W90S) modw90.f90 # Elk program SRC_elk = elk.f90 # main subroutines and functions SRC_main0 = \ energynn.f90 genvmatk.f90 symdmat.f90 gradzf.f90 rfirctof.f90 wfmtsv.f90 \ wfmtsv_sp.f90 genwfsv.f90 genwfsv_sp.f90 rfinp.f90 SRC_main1 = \ elnes.f90 axangsu2.f90 gradzvcln.f90 gentpmae.f90 zfcmtwr.f90 cfcmtwr.f90 \ projsbf.f90 timesec.f90 ztorfmt.f90 zfmtctof.f90 gaunt.f90 potxcmt.f90 \ sdelta_mp.f90 stheta_mp.f90 sdelta_fd.f90 stheta_fd.f90 writelsj.f90 \ eveqnzh.f90 gensmatk.f90 gensfacgp.f90 rhomag.f90 wsplintp.f90 checkmt.f90 \ reciplat.f90 gradrf.f90 gencfrm.f90 mixadapt.f90 zftrf.f90 sbessel.f90 \ gengclgq.f90 genstress.f90 force.f90 genvbmatk.f90 forcek.f90 writeepsinv.f90 \ polark.f90 zfmtinp.f90 mixbroyden.f90 grad2rfmt.f90 effmass.f90 sfacmag.f90 \ polynm.f90 epsinv.f90 rfinpc.f90 writeiad.f90 genapwfr.f90 gengclq.f90 \ addbfsm.f90 genylmv.f90 olpfv.f90 hmlfv.f90 genexpmt.f90 sphcover.f90 \ genppts.f90 eveqnzg.f90 fderiv.f90 genpmat.f90 genexpmat.f90 writeforces.f90 \ r3cross.f90 genspchi0.f90 potefield.f90 rhoinit.f90 eveqnsv.f90 roteuler.f90 \ genrmesh.f90 splint.f90 wavefcr.f90 lopzflm.f90 brzint.f90 rotdmat.f90 \ genylmg.f90 gentaucr.f90 readinput.f90 numlist.f90 hermite.f90 rvfcross.f90 \ genfspecies.f90 atpstep.f90 dmatls.f90 writeengy.f90 writechg.f90 genlofr.f90 \ rotrfmt.f90 genpmatk.f90 writeinfo.f90 mossbauer.f90 initoep.f90 i3minv.f90 \ r3mv.f90 genidxlo.f90 nuclei.f90 writeefg.f90 writeevsp.f90 gencore.f90 \ r3mtv.f90 r3minv.f90 r3frac.f90 genapwlofr.f90 gridsize.f90 symrfir.f90 \ erf.f90 geomplot.f90 ylmroty.f90 ssfext.f90 writestate.f90 sdelta_sq.f90 \ potxcir.f90 potxc.f90 rcfmtinp.f90 rhoplot.f90 occupy.f90 symveca.f90 \ jprplot.f90 geomopt.f90 eveqnss.f90 hartfock.f90 potplot.f90 \ genwfpw.f90 hmlxbse.f90 hmlxbsek.f90 hmldbse.f90 hmldbsek.f90 gradwfcr2.f90 \ oepresk.f90 addlorbcnd.f90 energy.f90 wfplot.f90 oepvcl.f90 oepvclk.f90 \ polar.f90 dbxcplot.f90 sbesseldm.f90 writehmlbse.f90 dielectric_bse.f90 \ vecplot.f90 nesting.f90 writeevbse.f90 emdplot3d.f90 emdplot2d.f90 \ emdplot1d.f90 rfhkintp.f90 writewfpw.f90 vblocal.f90 writefsm.f90 getwfpw.f90 \ plotpt1d.f90 init1.f90 init2.f90 findsymcrys.f90 plotpt3d.f90 genspecies.f90 \ fermisurfbxsf.f90 writeexpmat.f90 writekpts.f90 wfcrplot.f90 writedos.f90 \ energykncr.f90 ggamt_1.f90 ggair_1.f90 ggamt_sp_1.f90 ggair_sp_1.f90 \ ggamt_2a.f90 ggair_2a.f90 ggamt_2b.f90 ggair_2b.f90 ggamt_sp_2a.f90 \ ggair_sp_2a.f90 ggamt_sp_2b.f90 ggair_sp_2b.f90 writeemd.f90 reademd.f90 \ emdplot.f90 init3.f90 init4.f90 bfieldfsm.f90 testcheck.f90 pade.f90 \ wsplint.f90 gensocfr.f90 pades.f90 genscss.f90 rfcmtwr.f90 nonlinopt.f90 \ writelat.f90 rhocore.f90 rcfinp.f90 readspecies.f90 findband.f90 exxengy.f90 \ gentauk.f90 gradrfmt.f90 checkfsm.f90 genrlmv.f90 mae.f90 writegvecrf.f90 \ zcfmtwr.f90 olpistl.f90 hmlistl.f90 olpalo.f90 hmlalo.f90 \ olplolo.f90 hmllolo.f90 olpaa.f90 hmlaa.f90 gengclg.f90 rhomagsh.f90 \ charge.f90 moment.f90 rfint0.f90 r3mdet.f90 gencfrc.f90 checkstop.f90 \ genbs.f90 gradwf2.f90 writelinen.f90 rfmtlm.f90 putpmat.f90 getpmat.f90 \ rfmtpack.f90 zfmtpack.f90 putevalfv.f90 getevalfv.f90 wfmtfv.f90 putkmat.f90 \ getkmat.f90 putepsinv.f90 getcfgq.f90 putevalsv.f90 getevalsv.f90 \ getevecsv.f90 putevecsv.f90 genshtmat.f90 allatoms.f90 putevecfv.f90 \ getevecfv.f90 writesym.f90 putoccsv.f90 getoccsv.f90 torque.f90 findqpt.f90 \ findkpt.f90 genevfsv.f90 sdelta.f90 stheta.f90 sortidx.f90 \ symmat.f90 radnucl.f90 symrvf.f90 writeqpts.f90 rndevsv.f90 gengkvec.f90 \ mixlinear.f90 writesf.f90 gengqf.f90 genkmat.f90 genolpq.f90 genjlgprmt.f90 \ rfinterp.f90 fsmooth.f90 axangrot.f90 rotaxang.f90 wspline.f90 splined.f90 \ findswidth.f90 findsymlat.f90 writepmat.f90 genstrain.f90 symmetry.f90 \ linengy.f90 writestress.f90 eulerrot.f90 cftwfir.f90 rschrodint.f90 \ writegclq.f90 writegeom.f90 writemom.f90 gendmat.f90 curlrvf.f90 \ genzvclmt.f90 genjtot.f90 symvec.f90 checkwrite.f90 genjprk.f90 proj2d.f90 \ genidxbse.f90 symrvfir.f90 genjpr.f90 eveqnfvr.f90 gentau.f90 genjlgpr.f90 \ writestrain.f90 writefermi.f90 rfmtctof.f90 findsym.f90 zfsht.f90 rhonorm.f90 \ genvchi0.f90 cfmtconj.f90 stheta_sq.f90 sdelta_lr.f90 stheta_lr.f90 \ findsymsite.f90 genlmirep.f90 writespecies.f90 rhomagk.f90 symrvfmt.f90 \ wigner3jf.f90 genhvec.f90 ylmrot.f90 wxcplot.f90 massnucl.f90 gendmatk.f90 \ rfplot.f90 strainabg.f90 eveqnit.f90 oepmain.f90 rdirac.f90 bandstr.f90 \ sfacinit.f90 findscq.f90 plot1d.f90 plot2d.f90 plot3d.f90 init0.f90 \ readstate.f90 eveqnhf.f90 zbsht.f90 i3mtv.f90 spline.f90 gauntyry.f90 \ findnjcmax.f90 gndstate.f90 sstask.f90 fermisurf.f90 spiralsc.f90 atom.f90 \ maginit.f90 exxengyk.f90 moke.f90 hmlrad.f90 dos.f90 findprimcell.f90 \ plotpt2d.f90 sfacrho.f90 bdipole.f90 dielectric.f90 elfplot.f90 vclcore.f90 \ zfmtwr.f90 zvcldisp.f90 vecfbz.f90 lopzflmn.f90 zpotclmt.f90 readfermi.f90 \ gensdmat.f90 symrfmt.f90 sphcrd.f90 gencrm.f90 rminv.f90 rtozfmt.f90 \ genwfsvp.f90 genwfsvp_sp.f90 rdiracint.f90 rotzflm.f90 latvstep.f90 \ gradzfmt.f90 eveqnfv.f90 cfsht.f90 wfirsv.f90 wfirsv_sp.f90 \ ggamt_4.f90 ggair_4.f90 trzhmm.f90 rfmtinp.f90 findngkmax.f90 \ potks.f90 mtdmin.f90 rfcopy.f90 rhomagv.f90 eveqn.f90 genffacgp.f90 \ unitary.f90 zmdet.f90 rfmtftoc.f90 zminv.f90 symrf.f90 genvmat.f90 \ writeeval.f90 mixerifc.f90 splinew.f90 nfftifc.f90 batchdv.f90 readevalsv.f90 \ readoccsv.f90 z2mm.f90 z2mctm.f90 z2mmct.f90 zmmabu.f90 zmmab.f90 rzmmabu.f90 \ rzmmaau.f90 zmmaau.f90 moldyn.f90 gencrho.f90 cpotclmt.f90 rfmtsm.f90 \ rbshtip.f90 rfshtip.f90 zbshtip.f90 zfshtip.f90 cbsht.f90 cbshtip.f90 \ cfshtip.f90 gencvclmt.f90 zcfmtinp.f90 zcfinp.f90 ggamt_3.f90 ggair_3.f90 \ piezoelt.f90 magnetoelt.f90 rmtavrg.f90 zlrzncnv.f90 efieldmt.f90 \ energyafsp.f90 writebox.f90 factn.f90 factr.f90 factn2.f90 r3mm.f90 r3mtm.f90 \ r3mmt.f90 r3vo.f90 gcd.f90 rfint.f90 sort.f90 gengvec.f90 gengvc.f90 \ potnucl.f90 zftcf.f90 gencfun.f90 rfirftoc.f90 zfirftoc.f90 zfirctof.f90 \ hflocal.f90 match.f90 genvsig.f90 zpotcoul.f90 cpotcoul.f90 clebgor.f90 \ wigner3j.f90 zfmtftoc.f90 writeefield.f90 potcoul.f90 eveqnfvz.f90 \ rfmtint.f90 zfmtint.f90 rbsht.f90 rfsht.f90 olprad.f90 checkrst.f90 \ writegsvars.f90 trimrfg.f90 writemix.f90 readmix.f90 SRC_main = $(SRC_main0) $(SRC_main1) SRC_BOG0 = \ dmatuv.f90 dmatwx.f90 eveqnuv.f90 eveqnwxy.f90 SRC_BOG1 = \ writeevaluv.f90 occupyuv.f90 putevaluv.f90 getevaluv.f90 putevecuv.f90 \ getevecuv.f90 putevecwxy.f90 getevecwxy.f90 putevalwx.f90 getevalwx.f90 \ aceplot.f90 writeevalwx.f90 SRC_BOG = $(SRC_BOG0) $(SRC_BOG1) SRC_phonon0 = \ phdisp.f90 phdos.f90 dynqtor.f90 dynrtoq.f90 sumrule.f90 readdyn.f90 \ ephcouple.f90 alpha2f.f90 phlwidth.f90 writephn.f90 initeph.f90 dynsymapp.f90 \ dynsym.f90 dynev.f90 dynevs.f90 readbec.f90 initph.f90 SRC_phonon1 = \ olpaloq.f90 hmlaloq.f90 gendcfun.f90 dmatch.f90 dolpistl.f90 gendvsig.f90 \ drhomagsh.f90 dpotcoul.f90 dpotks.f90 dhmlistl.f90 dolpalo.f90 dhmlalo.f90 \ dhmllolo.f90 olpaaq.f90 dolpaa.f90 dhmlaa.f90 hmlaaq.f90 dengyeph.f90 \ gndsteph.f90 eveqneph.f90 hmlepha.f90 hmlephb.f90 hmlephde.f90 getephmkq.f90 \ ephdos.f90 gradrhomt.f90 doccupy.f90 dhmlrad.f90 gendwfsv.f90 dwfmtfv.f90 \ gengqvec.f90 writedvs.f90 dyntask.f90 dpotxc.f90 deveqnfv.f90 drhomagk.f90 \ gengvsmt.f90 dforce.f90 dforcek.f90 phonon.f90 mcmillan.f90 genephmat.f90 \ gengkqvec.f90 genmcph.f90 putdevecfv.f90 getdevecfv.f90 putdevecsv.f90 \ getdevecsv.f90 phononsc.f90 genscph.f90 dynfext.f90 writegamma.f90 \ readgamma.f90 writelambda.f90 eliashberg.f90 phscdvs.f90 readdvs.f90 \ readalpha2f.f90 gendsocfr.f90 bornechg.f90 bectask.f90 becfext.f90 \ putephmat.f90 getephmat.f90 readepsw0.f90 dynqnat.f90 SRC_phonon = $(SRC_phonon0) $(SRC_phonon1) SRC_ULR0 = \ writestulr.f90 potcoulu.f90 initulr.f90 rfzfftq.f90 gndstulr.f90 rhomagq.f90 \ potksu.f90 writeevalu.f90 genhmlu.f90 hdbulrk.f90 SRC_ULR1 = \ writekpa.f90 genzvmatk.f90 genzvbmatk.f90 chargeu.f90 momentu.f90 \ rhomaguk.f90 writeengyu.f90 rhocoreu.f90 writeinfou.f90 genkpakq.f90 \ eveqnulr.f90 vclqinit.f90 writemomru.f90 writechgrmt.f90 vblocalu.f90 \ addbfsmu.f90 occupyulr.f90 writevclr.f90 potxcu.f90 zfplot.f90 readstulr.f90 \ potefieldu.f90 potuinit.f90 readvclr.f90 plotu1d.f90 plotu2d.f90 plotu3d.f90 \ plotulr.f90 potuplot.f90 rhouplot.f90 maguplot.f90 bandstrulr.f90 \ bdipoleu.f90 writedosu.f90 putevalu.f90 getevalu.f90 dkevulr.f90 \ writemomqu.f90 SRC_ULR = $(SRC_ULR0) $(SRC_ULR1) SRC_DFTU0 = \ gendmatmt.f90 genveedu.f90 tm2todm.f90 tm3todm.f90 dmtotm3.f90 SRC_DFTU1 = \ writedftu.f90 sbesseli.f90 shankeli.f90 genfdu.f90 genfdufr.f90 engyfdu.f90 \ findlambda.f90 vmatmtsc.f90 genvmatmt.f90 vmatmtdu.f90 vmatmtftm.f90 \ fyukawa.f90 fyukawa0.f90 readdmatmt.f90 writetm.f90 writetm3.f90 gendmftm.f90 \ writeftm.f90 writetdtm3.f90 genwkpr0.f90 tm3rtoz.f90 SRC_DFTU = $(SRC_DFTU0) $(SRC_DFTU1) SRC_RDMFT0 = \ rdmft.f90 rdmwriteengy.f90 rdmminc.f90 rdmvaryc.f90 rdmdedc.f90 rdmengyxc.f90 \ rdmminn.f90 rdmvaryn.f90 SRC_RDMFT1 = \ rdmdkdc.f90 rdmenergy.f90 rdmwritededn.f90 rdmdedn.f90 rdmdexcdn.f90 \ genvcl1223.f90 getvcl1221.f90 getvcl1223.f90 writevcl1221.f90 \ writevcl1223.f90 rdmdexcdc.f90 rdmdtsdn.f90 rdmentropy.f90 rdmeval.f90 \ genvcl1221.f90 SRC_RDMFT = $(SRC_RDMFT0) $(SRC_RDMFT1) SRC_GW0 = \ gwdmat.f90 gwlocal.f90 genwgw.f90 gwtails.f90 minf_nm.f90 acpole.f90 SRC_GW1 = \ gwrhomag.f90 gwdmatk.f90 gwefermi.f90 dysonr.f90 gwsefm.f90 putgwsefm.f90 \ getgwsefm.f90 polefit.f90 gwchgk.f90 gwsefmk.f90 gwspecf.f90 \ writegwsf.f90 acgwse.f90 fmin_nm.f90 zfpole.f90 gwbandstr.f90 SRC_GW = $(SRC_GW0) $(SRC_GW1) SRC_TDDFT0 = \ writeatdisp.f90 writetdforces.f90 readatdvc.f90 writetdengy.f90 \ writemomtd.f90 SRC_TDDFT1 = \ tddftlr.f90 genhmlt.f90 writetddos.f90 writeafpdt.f90 readafindt.f90 \ genvfxc.f90 genfxcr.f90 tdtemp.f90 writetdlsj.f90 genspfxcr.f90 genvfxcg.f90 \ tddftsplr.f90 genspfxcg.f90 genafieldt.f90 writetddft.f90 dielectric_tdrt.f90 \ readjtot.f90 afindtstep.f90 genefieldt.f90 energytd.f90 engyknk.f90 \ readforcet.f90 tdrestart.f90 writeatdvc.f90 rhostatic.f90 jtotk.f90 \ rhosplot.f90 bornecdyn.f90 becforce.f90 tdinit.f90 readrhos.f90 gengvnsmt.f90 \ genhafspt.f90 writeaxsf.f90 atptstep.f90 potkst.f90 tdbackup.f90 \ writetimes.f90 readtimes.f90 gentimes.f90 readafieldt.f90 genjr.f90 \ tddft.f90 timestep.f90 writetdjtk.f90 writexrmk.f90 zftft.f90 writeefieldw.f90 SRC_TDDFT = $(SRC_TDDFT0) $(SRC_TDDFT1) SRC_TDHFC = \ tdhfc.f90 genidxthc.f90 SRC_XC = \ xc_pzca.f90 xc_pwca.f90 xc_pbe.f90 xc_am05.f90 xc_xalpha.f90 xc_wc06.f90 \ x_wc06.f90 x_pbe.f90 c_pbe.f90 c_pbe_gcor.f90 xc_vbh.f90 fxc_pwca.f90 \ k_tf.f90 k_tf_sp.f90 k_tf1.f90 k_tfsc.f90 k_tfsc_sp.f90 k_tfsc1.f90 \ k_tfvw.f90 k_tfvw_sp.f90 k_tfvw1.f90 k_vwlb.f90 SRC_W90 = \ initw90.f90 writew90.f90 writew90win.f90 writew90eig.f90 setupw90.f90 \ writew90mmn.f90 writew90spn.f90 writew90amn.f90 writew90unk.f90 SRC = $(SRC_modules) $(SRC_FFT) $(SRC_elk) $(SRC_main) $(SRC_phonon) \ $(SRC_XC) $(SRC_DFTU) $(SRC_RDMFT) $(SRC_GW) $(SRC_TDDFT) \ $(SRC_ULR) $(SRC_W90) $(SRC_BOG) $(SRC_TDHFC) OBJ = $(SRC:.f90=.o) EXE = elk #------------------------------------------------------------------------------- # Suffix rules #------------------------------------------------------------------------------- .SUFFIXES: .o .f90 .f90.o: $(F90) $(F90_OPTS) -c $< #------------------------------------------------------------------------------- # Targets #------------------------------------------------------------------------------- elk: $(OBJ) $(F90) $(F90_OPTS) -o $(EXE) $(OBJ) $(F90_LIB) $(LIB_LIBXC) $(LIB_W90) all: elk clean: rm -f *.o *.mod *~ ifc* *.gcno gmon.out *.aux *.dvi *.log \ elk.pdf *.tex *.toc *.out $(EXE) cleanall: $(MAKE) clean doc: rm -f elk.aux elk.bbl elk.blg elk.log elk.pdf elk.tex elk.toc elk.lst ls $(SRC_modules) $(SRC_main) $(SRC_XC) $(SRC_phonon) $(SRC_DFTU) \ $(SRC_RDMFT) $(SRC_TDDFT) $(SRC_GW) > elk.lst ./protex -F -s $(SRC_elk) $$(cat elk.lst) > elk.tex pdflatex elk;pdflatex elk;pdflatex elk backup: tar -czf elk.tgz *.f90 libfftv eos spacegroup junk Makefile notes.txt \ ../docs ../examples ../tests ../tests-libxc protex ../COPYING \ ../README elk_silhouette.pdf depend gentest genalltests checklist.txt \ rmspaces checklen fmlop grepelk vimelk VERSION = $$(grep "version(3)" modmain.f90 | sed 's/.*\[\([^]]*\)\].*/\1/g' | sed 's/,/./g') NAME = elk-$(VERSION) RELEASE = ../release/$(NAME) version: echo $(VERSION) release: rm -rf $(RELEASE) mkdir $(RELEASE) cd eos; $(MAKE) clean cd spacegroup; $(MAKE) clean cd ..; find . -type f -name *~ -exec rm -f {} \; cd ..; find . -type f -name gmon.out -exec rm -f {} \; cd ..; find . -type f -name RUNNING -exec rm -f {} \; mkdir $(RELEASE)/src cp -r eos $(RELEASE)/src cp -r spacegroup $(RELEASE)/src cp $(SRC) Makefile protex elk_silhouette.pdf $(RELEASE)/src cp $(SRC) rmspaces grepelk vimelk $(RELEASE)/src cp mpi_stub.f90 mkl_stub.f90 w90_stub.f90 $(RELEASE)/src cp libxcf03.f90 libxcifc.f90 libxcifc_stub.f90 $(RELEASE)/src cp zfftifc_fftw.f90 cfftifc_fftw.f90 zfftifc_mkl.f90 cfftifc_mkl.f90 $(RELEASE)/src cp -r ../examples $(RELEASE) cp -r ../tests $(RELEASE) cp -r ../tests-libxc $(RELEASE) mkdir $(RELEASE)/species cp ../species/*.in $(RELEASE)/species cp -r ../utilities $(RELEASE) cp ../COPYING $(RELEASE) cp ../README $(RELEASE) cp ../release_notes.txt $(RELEASE) cp ../Makefile $(RELEASE) cp ../make.inc $(RELEASE) cp ../elk.sh $(RELEASE) $(MAKE) doc cp elk.pdf ../docs cd spacegroup;$(MAKE) doc;cp spacegroup.pdf ../../docs;$(MAKE) clean cp -r ../docs $(RELEASE) mkdir $(RELEASE)/release tar -C ../release -czf ../release/$(NAME).tgz $(NAME) cp ../docs/elk.pdf ../release cp ../docs/spacegroup.pdf ../release ls -l ../release/$(NAME).tgz lines: cat $(SRC) | wc -l spaces: ./rmspaces $(SRC) length: ./checklen $(SRC) vim: ./vimelk elk-10.4.9/src/PaxHeaders/protex0000644000000000000000000000013214762655564013515 xustar0030 mtime=1741380468.437008298 30 atime=1741380468.436008292 30 ctime=1741380468.437008298 elk-10.4.9/src/protex0000755002504400250440000011077714762655564016257 0ustar00dewhurstdewhurst00000000000000#!/usr/bin/perl # # $Id: protex,v 1.15 2004/06/03 23:49:46 eschwab Exp $ # #BOP # # !ROUTINE: ProTeX v. 2.00 - Translates DAO Prologues to LaTeX # # !INTERFACE: # protex [-hbACFS] ] [+-nlsxf] [src_file(s)] # # !DESCRIPTION: # Perl filter to produce a \LaTeX compatible document # from a DAO Fortran source code with standard Pro\TeX # prologues. If source files are not specified it # reads from stdin; output is always to stdout. # # \noindent # {\bf Command Line Switches:} \vspace{0.2cm} # # \begin{center} # \begin{tabular}{|c|l|} \hline \hline # -h & Help mode: list command line options \\ \hline # -b & Bare mode, meaning no preamble, etc. \\ \hline # -i & internal mode: omit prologues marked !BOPI \\ \hline # +/-n & New Page for each subsection (wastes paper) \\ \hline # +/-l & Listing mode, default is prologues only \\ \hline # +/-s & Shut-up mode, i.e., ignore any code from BOC to EOC \\ \hline # +/-x & No LaTeX mode, i.e., put !DESCRIPTION: in verbatim mode \\ \hline # +/-f & No source file info \\ \hline # -A & Ada code \\ \hline # -C & C++ code \\ \hline # -F & F90 code (default) \\ \hline # -S & Shell script \\ \hline \hline # \end{tabular} # \end{center} # # The options can appear in any order. The options, -h and -b, affect # the input from all files listed on command-line input. Each of the # remaining options effects only the input from the files listed after # the option and prior to any overriding option. The plus sign # turns off the option. For example, the command-line input, # \bv # protex -bnS File1 -F File2.f +n File3.f # \ev # will cause the option, {\tt -n} to affect the input from the files, # {\tt File} and {\tt File2.f}, but not from {\tt File3.f}. The # {\tt -S} option is implemented for {\tt File1} but is overridden by # the {\tt -F} for files {\tt File2.f} and {\tt File3.f}. # # # !SEE ALSO: # For a more detailed description of ProTeX functionality, # DAO Prologue and other conventions, consult: # # Sawyer, W., and A. da Silva, 1997: ProTeX: A Sample # Fortran 90 Source Code Documentation System. # DAO Office Note 97-11 # # # !REVISION HISTORY: # # 20Dec1995 da Silva First experimental version # 10Nov1996 da Silva First internal release (v1.01) # 28Jun1997 da Silva Modified so that !DESCRIPTION can appear after # !INTERFACE, and !INPUT PARAMETERS etc. changed to italics. # 02Jul1997 Sawyer Added shut-up mode # 20Oct1997 Sawyer Added support for shell scripts # 11Mar1998 Sawyer Added: file name, date in header, C, script support # 05Aug1998 Sawyer Fixed LPChang-bug-support-for-files-with-underscores # 10Oct1998 da Silva Introduced -f option for removing source file info # from subsection, etc. Added help (WS). # 06Dec1999 C. Redder Added LaTeX command "\label{sec:prologues}" just # after the beginning of the proglogue section. # 13Dec1999 C. Redder Increased flexbility in command-line # interface. The options can appear in any # order which will allow the user to implement # options for select files. # 01Feb1999 C. Redder Added \usepackage commands to preamble of latex # document to include the packages amsmath, epsfig # and hangcaption. # 10May2000 C. Redder Revised LaTeX command "\label{sec:prologues}" # to "\label{app:ProLogues}" # 10/10/2002 da Silva Introduced ARGUMENTS keyword, touch ups. # # 15Jan2003 R. Staufer Modified table of contents to print only section headers - no descriptions # # 25Feb2003 R. Staufer Added BOPI/EOPI and -i (internal) switch to provide the option of omitting prologue information from output files. # #EOP #---------------------------------------------------------------------------- # Keep this if you don't know what it does... # ------------------------------------------- ### $[ = 1; # set array base to 1 (removed to maintain Perl 5.30 compatibility) $, = ' '; # set output field separator $\ = "\n"; # set output record separator # Set valid options lists # ----------------------- $GlobOptions = 'hb'; # Global options (i.e for all files) $LangOptions = 'ACFS'; # Options for setting programming languages $SwOptions = 'flinsx'; # Options that can change for each input # file $RegOptions = "$GlobOptions$LangOptions"; # Scan for global options until first first # file is processed. # Scan for global options # ----------------------- $NFiles = 0; Arg: foreach $arg (@ARGV) { $option = &CheckOpts ( $arg, $RegOptions, $SwOptions ) + 1; if ( $option ) { $rc = &GetOpts ( $arg, $GlobOptions ); next Arg; } else { $NFiles++; }# end if }# end foreach # If all input arguments are options, then assume the # filename, "-", for the standard input # -------------------------------------------------- if ( $NFiles == 0 ) { push (@ARGV, "-"); } # Implement help option # --------------------- if ( $opt_h ) { &print_help(); exit(); }#end if # Optional Prologue Keywords # -------------------------- @keys = ( "!INTERFACE:", "!USES:", "!PUBLIC TYPES:", "!PRIVATE TYPES:", "!PUBLIC MEMBER FUNCTIONS:", "!PRIVATE MEMBER FUNCTIONS:", "!PUBLIC DATA MEMBERS:", "!PARAMETERS:", "!ARGUMENTS:", "!DEFINED PARAMETERS:", "!INPUT PARAMETERS:", "!INPUT/OUTPUT PARAMETERS:", "!OUTPUT PARAMETERS:", "!RETURN VALUE:", "!REVISION HISTORY:", "!BUGS:", "!SEE ALSO:", "!SYSTEM ROUTINES:", "!FILES USED:", "!REMARKS:", "!TO DO:", "!CALLING SEQUENCE:", "!AUTHOR:", "!CALLED FROM:", "!LOCAL VARIABLES:" ); # Initialize these for clarity # ---------------------------- $intro = 0; # doing introduction? $prologue = 0; # doing prologue? $first = 1; # first prologue? $source = 0; # source code mode? $verb = 0; # verbatim mode? $tpage = 0; # title page? $begdoc = 0; # has \begin{document} been written? # Initial LaTeX stuff # ------------------- &print_notice(); &print_preamble(); # \documentclass, text dimensions, etc. &print_macros(); # short-hand LaTeX macros # Main loop -- for each command-line argument # ------------------------------------------- ARG: foreach $arg (@ARGV) { # Scan for non-global command-line options # ---------------------------------------- $option = &CheckOpts ( $arg, $RegOptions, $SwOptions, "quiet" ) + 1; if ( $option ) { &GetOpts ( $arg, $SwOptions ); &SetOpt ( $arg, $LangOptions ); next ARG; }# end if # Determine the type of code, set corresponding search strings # ------------------------------------------------------------ # if ( $opt_F ) { # FORTRAN $comment_string = '!'; # ------- $boi_string = '!BOI'; $eoi_string = '!EOI'; $bop_string = '!BOP'; $eop_string = '!EOP'; $bopi_string = '!BOPI'; $eopi_string = '!EOPI'; $boc_string = '!BOC'; $eoc_string = '!EOC'; $boe_string = '!BOE'; $eoe_string = '!EOE'; #}# end if if ( $opt_A ) { # ADA $comment_string = '--'; # --- $boi_string = '--BOI'; $eoi_string = '--EOI'; $bop_string = '--BOP'; $eop_string = '--EOP'; $bopi_string = '--BOPI'; $eopi_string = '--EOPI'; $boc_string = '--BOC'; $eoc_string = '--EOC'; $boe_string = '--BOE'; $eoe_string = '--EOE'; }# end if if ( $opt_C ) { $comment_string = '//'; # C $boi_string = '//BOI'; # - $eoi_string = '//EOI'; $bop_string = '//BOP'; $eop_string = '//EOP'; $bopi_string = '//BOPI'; $eopi_string = '//EOPI'; $boc_string = '//BOC'; $eoc_string = '//EOC'; $boe_string = '//BOE'; $eoe_string = '//EOE'; }# end if if ( $opt_S ) { # Script $comment_string = '#'; # ------ $boi_string = '#BOI'; $eoi_string = '#EOI'; $bop_string = '#BOP'; $eop_string = '#EOP'; $bopi_string = '#BOPI'; $eopi_string = '#EOPI'; $boc_string = '#BOC'; $eoc_string = '#EOC'; $boe_string = '#BOE'; $eoe_string = '#EOE'; }# end if # Set file name parameters # ------------------------ $InputFile = $arg; @all_path_components = split( /\//, $InputFile ); $FileBaseName = pop ( @all_path_components ); $FileBaseName =~ s/_/\\_/g; if ( $InputFile eq "-" ) {$FileBaseName = "Standard Input";} # Set date # -------- $Date = `date`; # Open current file # ----------------- open ( InputFile, "$InputFile" ) or print STDERR "Unable to open $InputFile: $!"; # Print page header # ----------------- # printf "\n\\markboth{Left}{Source File: %s, Date: %s}\n\n", # $FileBaseName, $Date; LINE: # Inner loop --- for processing each line of the input file # --------------------------------------------------------- while ( ) { chop; # strip record separator # !PARAMETERS: really mean !ARGUMENTS: # ------------------------------------ # s/!PARAMETERS:/!ARGUMENTS:/g; @Fld = split(' ', $_, 9999); # Straight quote # -------------- if ($Fld[0] eq '!QUOTE:') { for ($i = 1; $i <= $#Fld - 1; $i++) { printf '%s ', $Fld[$i]; }# end for print " "; next LINE; }# end if # Handle optional Title Page and Introduction # ------------------------------------------- if ($Fld[0] eq $boi_string) { print ' '; $intro = 1; next LINE; }# end if if ($Fld[1] eq '!TITLE:') { if ( $intro ) { shift @Fld; shift @Fld; @title = @Fld; $tpage = 1; next LINE; }# end if }# end if if ($Fld[1] eq '!AUTHORS:') { if ( $intro ) { shift @Fld; shift @Fld; @author = @Fld; $tpage = 1; next LINE; }# end if }# end if if ($Fld[1] eq '!AFFILIATION:') { if ( $intro ) { shift @Fld; shift @Fld; @affiliation = @Fld; $tpage = 1; next LINE; }# end if }# end if if ($Fld[1] eq '!DATE:') { if ( $intro ) { shift @Fld; shift @Fld; @date = @Fld; $tpage = 1; next LINE; }# end if }# end if if ($Fld[1] eq '!INTRODUCTION:') { if ( $intro ) { &do_beg(); print ' '; print '%..............................................'; shift @Fld; shift @Fld; print "\\section{@Fld}"; next LINE; }# end if }# end if # End of introduction # ------------------- if ($Fld[0] eq $eoi_string) { print ' '; print '%/////////////////////////////////////////////////////////////'; print "\\newpage"; $intro = 0; next LINE; }# end if # Beginning of prologue # --------------------- if ($Fld[0] eq $bop_string) { if ( $source ) { &do_eoc(); } print ' '; print '%/////////////////////////////////////////////////////////////'; &do_beg(); if ($first == 0) { ### print "\\newpage"; print " "; print "\\mbox{}\\hrulefill\\ "; print " ";} else { unless($opt_b){print "\\section{Routine/Function Prologues} \\label{app:ProLogues}";} }# end if $first = 0; $prologue = 1; $verb = 0; $source = 0; &set_missing(); # no required keyword yet next LINE; }# end if # Beginning of internal prologue # ------------------------------ if ($Fld[0] eq $bopi_string) { if ($opt_i) {$prologue = 0;} else { if ($source) { &do_eoc(); } print ' '; print '%/////////////////////////////////////////////////////////////'; &do_beg(); if ($first ==0) { ### print "\\newpage"; print " "; print "\\mbox{}\\hrulefill\\"; print " ";} else { unless($opt_b){print "\\section{Routine/Function Prologues} \\label{app:ProLogues}";} }# endif $first = 0; $prologue = 1; $verb = 0; $source = 0; &set_missing(); # no required keyword yet next LINE; }# endelse }# endif # A new subroutine/function # ------------------------- if ($Fld[1] eq '!ROUTINE:' ) { if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" if ( $opt_n && $not_first ) { printf "\\newpage\n"; } unless ($opt_f) {printf "\\subsection{%s (Source File: %s)}\n\n", $_, $FileBaseName;} else {printf "\\subsection{%s }\n\n", $_;} $have_name = 1; $not_first = 1; next LINE; }# end if }# end if # A new Module # ------------ if ($Fld[1] eq '!MODULE:' ) { if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" if ( $opt_n && $not_first ) { printf "\\newpage\n"; } unless($opt_f) {printf "\\subsection{Fortran: Module Interface %s (Source File: %s)}\n\n", $_, $FileBaseName;} else {printf "\\subsection{Fortran: Module Interface %s }\n\n", $_;} $have_name = 1; $have_intf = 1; # fake it, it does not need one. $not_first = 1; next LINE; }# end if }# end if # A new include file # ------------------ if ($Fld[1] eq '!INCLUDE:' ) { if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" if ( $opt_n && $not_first ) { printf "\\newpage\n"; } unless($opt_f) {printf "\\subsection{Include File %s (Source File: %s)}\n\n", $_, $FileBaseName;} else {printf "\\subsection{Include File %s }\n\n", $_;} $have_name = 1; $have_intf = 1; # fake it, it does not need one. $not_first = 1; next LINE; }# end if }# end if # A new INTERNAL subroutine/function # ---------------------------------- if ($Fld[1] eq '!IROUTINE:') { # Internal routine if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" @words = split " ", $_; printf "\\subsection [$words[1]] {$_}\n\n"; $have_name = 1; next LINE; }# end if }# end if # A new CLASS # ------------ if ($Fld[1] eq '!CLASS:' ) { if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" if ( $opt_n && $not_first ) { printf "\\newpage\n"; } unless($opt_f) {printf "\\subsection{C++: Class Interface %s (Source File: %s)}\n\n", $_, $FileBaseName;} else {printf "\\subsection{C++: Class Interface %s }\n\n", $_;} $have_name = 1; $have_intf = 1; # fake it, it does not need one. $not_first = 1; next LINE; }# end if }# end if # A new Method # ------------------------- if ($Fld[1] eq '!METHOD:' ) { if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" if ( $opt_n && $not_first ) { printf "\\newpage\n"; } unless ($opt_f) {printf "\\subsection{%s (Source File: %s)}\n\n", $_, $FileBaseName;} else {printf "\\subsection{%s }\n\n", $_;} $have_name = 1; $not_first = 1; next LINE; }# end if }# end if # A new function # ------------------------- if ($Fld[1] eq '!FUNCTION:' ) { if ($prologue) { shift @Fld; shift @Fld; $_ = join(' ', @Fld); $name_is = $_; s/_/\\_/g; # Replace "_" with "\_" if ( $opt_n && $not_first ) { printf "\\newpage\n"; } unless ($opt_f) {printf "\\subsection{%s (Source File: %s)}\n\n", $_, $FileBaseName;} else {printf "\\subsection{%s }\n\n", $_;} $have_name = 1; $not_first = 1; next LINE; }# end if }# end if # Description: what follows will be regular LaTeX (no verbatim) # ------------------------------------------------------------- if (/!DESCRIPTION:/) { if ($prologue) { if ($verb) { printf "\\end{verbatim}"; printf "\n{\\sf DESCRIPTION:\\\\ }\n\n"; $verb = 0; } else { # probably never occurs }# end if if ($opt_x) { printf "\\begin{verbatim} "; $verb = 1; $first_verb = 1; } else { for ($i = 2; $i <= $#Fld - 1; $i++) { printf '%s ', $Fld[$i]; }# end for }# end if ### print " "; $have_desc = 1; next LINE; }# end if }# end if # Handle optional keywords (these will appear as verbatim) # -------------------------------------------------------- if ($prologue) { KEY: foreach $key ( @keys ) { if ( /$key/ ) { if ($verb) { printf "\\end{verbatim}"; $verb = 0; } else { printf "\n\\bigskip"; }# end if $k = sprintf('%s', $key); $ln = length($k); ###printf "\\subsection*{%s}\n", substr($k, 2, $ln - 1); ###printf "{\\Large \\em %s}\n", ucfirst lc substr($k, 2, $ln - 1); $_ = $key; if( /USES/ || /INPUT/ || /OUTPUT/ || /PARAMETERS/ || /VALUE/ || /ARGUMENTS/ ) { printf "{\\em %s}\n", substr($k, 1, $ln - 1); } # italics else { printf "{\\sf %s}\n", substr($k, 1, $ln - 1); # san serif }# end if printf "\\begin{verbatim} "; $verb = 1; $first_verb = 1; if ( $key eq "!INTERFACE:" ) { $have_intf = 1; } if ( $key eq "!CALLING SEQUENCE:" ) { $have_intf = 1; } if ( $key eq "!REVISION HISTORY:" ) { $have_hist = 1; } next LINE; }# end if }# end foreach }# end if # End of prologue # --------------- if ($Fld[0] eq $eop_string) { if ($verb) { print "\\end{verbatim}"; $verb = 0; }# end if $prologue = 0; # &check_if_all_there(); # check if all required keywords are there. if ( $opt_l ) { $Fld[0] = $boc_string;} else { next LINE; } }# end if unless ( $opt_s ) { # End of Internal Prologue # ------------------------ if ($Fld[0] eq $eopi_string) { if ($verb) { print "\\end{verbatim}"; $verb = 0; }# endif $prologue = 0; # &check_if_all_there(); # check if all required keywords are there. if ($opt_l) { $Fld[0] = $boc_string;} else { next LINE; } }# endif # # Beginning of source code section # -------------------------------- if ($Fld[0] eq $boc_string) { print ' '; print '%/////////////////////////////////////////////////////////////'; $first = 0; $prologue = 0; $source = 1; ### printf "\\subsection*{CONTENTS:}\n\n", $Fld[3]; ###printf "{\\sf CONTENTS:}"; printf "\n \\begin{verbatim}\n"; $verb = 1; next LINE; }# end if # End of source code # ------------------ if ($Fld[0] eq $eoc_string) { &do_eoc(); $prologue = 0; next LINE; }# end if # Beginning of example prologue # ----------------------------- if ($Fld[0] eq $boe_string) { if ( $source ) { &do_eoc(); } print ' '; print '%/////////////////////////////////////////////////////////////'; $first = 0; $prologue = 1; $verb = 0; $source = 0; next LINE; }# end if # End of example prologue # ----------------------- if ($Fld[0] eq $eoe_string) { if ($verb) { print "\\end{verbatim}"; $verb = 0; }# end if $prologue = 0; if ( $opt_l ) { $Fld[0] = $boc_string;} else { next LINE; } }# end if }# end unless # Prologue or Introduction, print regular line (except for !) # ----------------------------------------------------------- if ($prologue||$intro) { if ( $verb && $#Fld == 0 && ( $Fld[0] eq $comment_string ) ) { next LINE; # to eliminate excessive blanks }# end if if ( $Fld[1] eq "\\ev" ) { # special handling $_ = $comment_string . " \\end{verbatim}"; }# end if s/^$comment_string/ /; # replace comment string with blank # $line = sprintf('%s', $_); # not necessary -- comment str is absent # $ln = length($line); # not necessary -- comment str is absent unless ( $first_verb ) { printf "\n "; } printf '%s', $_; # printf '%s', substr($line, 1, $ln - 1); # comment str is absent $first_verb = 0; next LINE; }# end if # Source code: print the full line # -------------------------------- if ($source) { print $_; next LINE; }# end if }# end inner loop for processing each line of the input file # --------------------------------------------------------- }# end main loop for each command-line argument # -------------------------------------------- print $_; if ( $source ) { &do_eoc(); } print '%...............................................................'; # see comment above where these are originally set. #print "\\setlength{\\parskip}{\\oldparskip}"; #print "\\setlength{\\parindent}{\\oldparindent}"; #print "\\setlength{\\baselineskip}{\\oldbaselineskip}"; unless ( $opt_b ) { print "\\end{document}"; }#end unless #---------------------------------------------------------------------- sub CheckOpts # Checks options against a given list. Outputs error message # for any invalid option. # # Usage: # $rc = &CheckOpts ( options, valid_reg_options, # valid_sw_options, # quiet_mode ) # # character: options - options to be checked. (e.g. -df+x) The # list must begin with a positive or # negative sign. If no sign appears at the # beginning or by itself, then the argument # is not recognized as a list of options. # character: valid_reg_options - list of valid regular options. # (i.e. options that are associated only # eith negative sign.) # character: valid_sw_options - list of valid switch options. # (i.e. options that can be associated with # either a positive or negative sign. # logical: quiet mode (optional) If true then print no error # messages. # integer: rc - return code # = -1 if the arguement, options, is # not recognized as a list of options # = 0 if all options are valid. # > 0 for the number of invalid options. # { local($options, $valid_reg_options, $valid_sw_options, $quiet_mode ) = @_; if ( $options eq "+" || $options eq "-" ) {return -1} local(@Options) = split( / */, $options ); if ( $Options[ $[ ] ne "-" && $Options[ $[ ] ne "+" ) {return -1;} local($option, $option_sign, $valid_list, $pos); local($errs) = 0; foreach $option ( @Options ) { if ( $option eq "-" || $option eq "+" ) {$option_sign = $option;} else { if ( $option_sign eq "-" ) { $valid_list = $valid_reg_options . $valid_sw_options; } else { $valid_list = $valid_sw_options; } $pos = index ($valid_list,$option); if ( $pos < $[ && $quiet_mode ) { $errs++; print STDERR "Invalid option: $option_sign$option \n"; }# end if }# end if }# end foreach return $errs; }#end sub GetOpts sub GetOpts # Gets options. If an option is valid, then opt_[option] is # set to 0 or 1 as a side effect if the option is preceeded by # a positive or negative sign. # # Usage: # $rc = &GetOpts ( options, valid_options ) # # character: options - options to be checked. (e.g. -df+x) The # list must begin with a positive or # negative sign. If no sign appears at the # beginning or by itself, then the argument # is not recognized as a list of options. # character: valid_options - list of valid options (e.g. dfhx) # integer: rc - return code # = -1 if the arguement, options, is # not recognized as a list of options. # = 0 otherwise # { local($options,$valid_options) = @_; if ( $options eq "+" || $options eq "-" ) {return -1} local(@Options) = split( / */, $options ); if ( $Options[ $[ ] ne "-" && $Options[ $[ ] ne "+" ) {return -1;} local($option, $option_sign); foreach $option ( @Options ) { if ( $option eq "-" || $option eq "+" ) { $option_sign = $option; } else { if ( index ($valid_options,$option) >= $[ ) { if ( $option_sign eq "-" ) {${"opt_$option"} = 1;} if ( $option_sign eq "+" ) {${"opt_$option"} = 0;}; }# end if }# end if }# end foreach return 0; }#end sub GetOpts sub SetOpt # Sets option flags. For the last input option that is in a # list, the flag opt_[option] is set to 1 as a side effect. # For all other options in the list, opt_[option] is set to 0. # # Usage: # $rc = &SetOpt ( options, valid_options ) # # character: options - options to be checked. (e.g. -df+x) The # list must begin with a positive or # negative sign. If no sign appears at the # beginning or by itself, then the argument # is not recognized as a list of options. # character: valid_options - list of valid options (e.g. def ) # integer: rc - return code # = -1 if the arguement, options, is # not recognized as a list of options. # = 0 otherwise # Note: For the examples provided for the input arguments, # $opt_d = 0, $opt_e = 0, and $opt_f = 1, since the # input option, -f, was the last in the argument, # option. # { local($options,$valid_options) = @_; if ( $options eq "+" || $options eq "-" ) {return -1} local(@Options) = split( / */, $options ); local(@ValidOptions) = split( / */, $valid_options ); if ( $Options[ $[ ] ne "-" && $Options[ $[ ] ne "+" ) {return -1;} local($option, $option_sign); foreach $option ( @Options ) { if ( $option ne "-" && $option ne "+" ) { if ( index ($valid_options,$option) >= $[ ) { foreach $valid_option (@ValidOptions ) { ${"opt_$valid_option"} = 0; }# end foreach ${"opt_$option"} = 1; }# end if }# end if }# end foreach return 0; }#end sub SetOpt sub print_help { print "Usage: protex [-hbACFS] [+-nlsxf] [src_file(s)]"; print " "; print " Options:"; print " -h Help mode: list command line options"; print " -b Bare mode, meaning no preamble, etc."; print " +-n New Page for each subsection (wastes paper)"; print " +-l Listing mode, default is prologues only"; print " +-s Shut-up mode, i.e., ignore any code from BOC to EOC"; print " +-x No LaTeX mode, i.e., put !DESCRIPTION: in verbatim mode"; print " +-f No source file info"; print " -A Ada code"; print " -C C++ code"; print " -F F90 code"; print " -S Shell script"; print " "; print " The options can appear in any order. The options, -h and -b,"; print " affect the input from all files listed on command-line input."; print " Each of the remaining options effects only the input from the"; print " files listed after the option and prior to any overriding"; print " option. The plus sign turns off the option."; }# end sub print_help sub print_notice { print "% **** IMPORTANT NOTICE *****" ; print "% This LaTeX file has been automatically produced by ProTeX v. 1.1"; print "% Any changes made to this file will likely be lost next time"; print "% this file is regenerated from its source. Send questions "; print "% to Arlindo da Silva, dasilva\@gsfc.nasa.gov"; print " "; }# sub print_notice sub print_preamble { unless ( $opt_b ) { print "%------------------------ PREAMBLE --------------------------"; print "\\documentclass[a4paper,11pt]{article}"; print "\\usepackage{amsmath}"; print "\\usepackage{amssymb}"; print "\\usepackage{epsfig}"; print "\\usepackage{tabularx}"; print "\\usepackage{color}"; print "\\usepackage[linkbordercolor={0 0 1}]{hyperref}"; print "\\textheight 9in"; print "\\topmargin 0pt"; print "\\headsep 1cm"; print "\\headheight 0pt"; print "\\textwidth 6in"; print "\\oddsidemargin 0in"; print "\\evensidemargin 0in"; print "\\marginparpush 0pt"; print "\\pagestyle{plain}"; print "\\markboth{}{}"; print "%-------------------------------------------------------------"; }# end unless # in your main document before you include any protex-generated files # for the first time, if you define these three variables as length # settings (like this:) # \newlength{\oldparskip} # \newlength{\oldparindent} # \newlength{\oldbaselineskip} # then 1) comment in all the lines below, and 2) find the 3 reset lines # further down and comment in them as well. # then protex will override the paragraph and skip settings during # the source sections, but will restore the original document settings # at the end. if someone can figure out how to check to see if a # latex variable exists, and do a conditional section, we could make # this fully self-contained. # nsc feb 2003 #print "\\setlength{\\oldparskip}{\\parskip}"; print "\\setlength{\\parskip}{0pt}"; #print "\\setlength{\\oldparindent}{\\parindent}"; print "\\setlength{\\parindent}{0pt}"; #print "\\setlength{\\oldbaselineskip}{\\baselineskip}"; print "\\setlength{\\baselineskip}{11pt}"; }# end sub print_preamble sub print_macros { print " "; print "%--------------------- SHORT-HAND MACROS ----------------------"; print "\\def\\bv{\\begin{verbatim}}"; print "\\def\\ev\{\\end\{verbatim}}"; print "\\def\\be{\\begin{equation}}"; print "\\def\\ee{\\end{equation}}"; print "\\def\\bea{\\begin{eqnarray}}"; print "\\def\\eea{\\end{eqnarray}}"; print "\\def\\bi{\\begin{itemize}}"; print "\\def\\ei{\\end{itemize}}"; print "\\def\\bn{\\begin{enumerate}}"; print "\\def\\en{\\end{enumerate}}"; print "\\def\\bd{\\begin{description}}"; print "\\def\\ed{\\end{description}}"; print "\\def\\({\\left (}"; print "\\def\\){\\right )}"; print "\\def\\[{\\left [}"; print "\\def\\]{\\right ]}"; print "\\def\\<{\\left \\langle}"; print "\\def\\>{\\right \\rangle}"; print "\\def\\cI{{\\cal I}}"; print "\\def\\diag{\\mathop{\\rm diag}}"; print "\\def\\tr{\\mathop{\\rm tr}}"; print "%-------------------------------------------------------------"; print " "; print "%------------------------ Elk commands -----------------------"; print "\\newcommand{\\block}[2]{"; print "\\color{blue}\\subsection{\\tt #1}\\color{black}"; print "\\begin{tabularx}{\\textwidth}[h]{|l|X|c|c|}"; print "\\hline"; print "#2 \\\\"; print "\\hline"; print "\\end{tabularx}\\vskip 0.25cm"; print "}"; print "%-------------------------------------------------------------"; }# end sub print_macros sub do_beg { unless ( $opt_b ) { if ( $begdoc == 0 ) { if ( $tpage ) { print "\\title{@title}"; print "\\author{@author\\\\ {\\em @affiliation}}"; print "\\date{@date}"; } print "\\begin{document}"; if ( $tpage ) { print "\\pagecolor[rgb]{1.0,0.95,0.85}"; print "\\fcolorbox{black}{white}{\\fbox{"; print "\\begin{minipage}[t]{\\linewidth}"; print "\\maketitle"; print "\\end{minipage}}}"; print "\\thispagestyle{empty}"; print "\\newpage"; print "\\pagecolor{white}"; } print "\\tableofcontents"; print "\\newpage"; $begdoc = 1; } } }# end sub do_beg sub do_eoc { print ' '; if ($verb) { print "\\end{verbatim}"; $verb = 0; } $source = 0; }# end sub do_eoc sub set_missing { $have_name = 0; # have routine name? $have_desc = 0; # have description? $have_intf = 0; # have interface? $have_hist = 0; # have revision history? $name_is = "UNKNOWN"; }# end sub set_missing sub check_if_all_there { $have_name || die "ProTeX: invalid prologue, missing !ROUTINE: or !IROUTINE: in <$name_is>"; $have_desc || die "ProTeX: invalid prologue, missing !DESCRIPTION: in <$name_is>"; $have_intf || die "ProTeX: invalid prologue, missing !INTERFACE: in <$name_is>"; $have_hist || die "ProTeX: invalid prologue, missing !REVISION HISTORY: in <$name_is>"; }# end sub check_if_all_there elk-10.4.9/src/PaxHeaders/elk_silhouette.pdf0000644000000000000000000000013214762655564015764 xustar0030 mtime=1741380468.440008313 30 atime=1741380468.439008308 30 ctime=1741380468.440008313 elk-10.4.9/src/elk_silhouette.pdf0000644002504400250440000001426214762655564020513 0ustar00dewhurstdewhurst00000000000000%PDF-1.4 % 3 0 obj << /Length 4 0 R /Filter /FlateDecode >> stream xm[8rߵZ,ex <~yERӃF?̒(2/Iq\Qy1^i̳׫l%RgkIzY_:7uޯu^Y<ǫ|V^IS*:1_kVPzTt]gZ #s*3EIisjB,SsqT^LCsz֕_*JS ԫCTXx׼^ZS3KΖ<oX9Zgk'<)mι?{z$Eje{7j },Mmi1lX9,QfA#C4KosI9ize ߶KxKyR Y2w ))/9*W?̹e#KªD\3l;jz˓HZJҔ#4W}MyQGk_/$Xx Wsz2JQnEM6UqWWWG+z42ϢHP(02p+MHSkoĎ|3kr9"ٌ֬_9X"}NVɝ=M~yձ5R&|y/u`6cg &?WP(耟7ސ~M b[rj#[DԔ<l4Tܡyj?9uKh}17~!ǫ6R !_mٱIM_$uu/*xdKaao<~_Szl"$[~|nTcIM^QSr@:Vބe!vw4=>婸RܫLxD> cK]!Rf$] P@uHa=|nݱ>єY9#0$lvxC 4ȒA\N&,Rgİ\ `@ yI3ILU'1m}Nv|I+q;`H ~ 8Wd3I`p;A+7ac1^VHZ!L)ĭ 5+87ѼL<#ä IzEA%E"O硰wa(8[,Yk{}غ x43:Ү֬ܔ1c8hdRP0jx+B7z; c7,(48]v4ALCN=Gҝ%nDD2"#{tvV3"Z0w_s  Ylk?rnVHb+>O='r%z[BN+PF~}2JVOldӕZ 6Ӱ: Zwܜ_$I5/>c0:n=łH].T1;dXx @;L{D JƋ?n(+q3< b٫1vN;j4{"(Q3n(?'a3'!aϷdWGJ2~{7e :2U[-zT(xy@.p\?bRT-FZ 3U-=j2wрi ^47ܗ*kh{g6i_~)_`Q0IwhjoXeV2Dܮ])m8ptPBՄ}4hfS7F=j.P=$9(܏ ߱w 4uYn Ո}IN5ZTd䎧!xܮ]cv515f,|}4BٍNTYt^ڌ!5{]L&.E $Q?mG5nB!{oEOT6~Q洒`ޤ" 2L?|BB낫K{~SLE/VsCtwU+›ZGiҮk+,9F۶\fYl=AHA&!mmY`&lEN2_}h'0Yg's4+8!;-&5m \vVSsT>|#q}{46)NfD%ѰvNZIsN2B$EQQ &C\'oT希HZry1L^@_B^;A)$F0VSs^.P.F,/LRH%M/4@$wiOMH]TVt8.XЖZC Cu*~ ɯ@%o:ScRqN:腱ܚ= R40n&ViZm(q#=au勜>ؤ|QqYo)(ݔBHNvN x^8*;SЖ%d;IŐˉLwv!rw$#tFg2s)/0PYNDU[$S8';.tAnz L%9~t{%ĤrEN8wc>q-"H(뮾8R9C8@eyiseo3dP*Ã1G%z G22)n TkQ)Dv"E&sdKR,ɂj[AL{8ōj*+jU ^q$ZP3 .}UL&K&њ& :1`1%~fuƋF?o&r /Z.C|!ʗ?$?]o+A@t9{B4:8;1`qOhm1L@s&1nAMQ)>ǩ]`AYT}e펲3nwa/(uAh*bI:)P$Hϵ bƒs]{ zhS*"p%sRthbÇ.8nagX3tY*9p|om fO(9#=WݥOUiKn'|ܟ:\?2-wnle{1PUuBNQck24ɵf.ֻK6NeHt.fǞ)m%lIW ɩgy[Uh ڳVTxgZc5s8֭ FnmLƚj6i`W:jSIt765YhZظ[ןѴu63=>(ЁG%v"VLQD~py3l g$hkƍ>,~vexU@//,4J ֨Hi+A ;PE¿G׬-7O^74|aaTeƵɛ-"ƼbgnRt?OvM>xӰ[qزGp Ao?1+&`z8"e}qp7'˓Ywk#ngD}"e$QoyV{=~;paFʰS E9Ka{at3%Tcri(dV3oeD/tyd7FC8JCd18+;ǝE)&cM~7B5ƪO 3nW[E-oYh356V#o!2=&f~LJeo y2缻Ṝ*x =L?WS0ע I̶?3#7wXEnyL̨+=>y_^@҈:6[e r~¹88 7ZQOB04ǠQ|CMy-}njIwu0jƾ)(B?t-C0]*Q?]Hd)I6c\t=0}k#:b/Dw1׽_t)z] c>PL9Y5+M+?#iz퉜lQ%H2h,ƮK؁1Gݥ|aO>nײk<U"}/Gq>%RӧpW}As4tz˴$K kطFPBߨw* K[6q|Z}>}%Qs ;b~,h$fՕ[2aueҬt|wquQWʵ.w69Br\ }Qnp^U>qcwbyH)OH:Μ endstream endobj 4 0 obj 5438 endobj 2 0 obj << /ExtGState << /a0 << /CA 1 /ca 1 >> >> >> endobj 5 0 obj << /Type /Page /Parent 1 0 R /MediaBox [ 0 0 818.336792 550.414001 ] /Contents 3 0 R /Group << /Type /Group /S /Transparency /CS /DeviceRGB >> /Resources 2 0 R >> endobj 1 0 obj << /Type /Pages /Kids [ 5 0 R ] /Count 1 >> endobj 6 0 obj << /Creator (cairo 1.8.8 (http://cairographics.org)) /Producer (cairo 1.8.8 (http://cairographics.org)) >> endobj 7 0 obj << /Type /Catalog /Pages 1 0 R >> endobj xref 0 8 0000000000 65535 f 0000005838 00000 n 0000005552 00000 n 0000000015 00000 n 0000005529 00000 n 0000005624 00000 n 0000005903 00000 n 0000006028 00000 n trailer << /Size 8 /Root 7 0 R /Info 6 0 R >> startxref 6080 %%EOF elk-10.4.9/src/PaxHeaders/rmspaces0000644000000000000000000000012714762655565014016 xustar0029 mtime=1741380469.54501409 29 atime=1741380469.54501409 29 ctime=1741380469.54501409 elk-10.4.9/src/rmspaces0000755002504400250440000000021114762655565016531 0ustar00dewhurstdewhurst00000000000000#!/bin/bash while [ "$*" != "" ] do echo $1 sed -i 's/[ \t]*$//' $1 sed -i ':a;/^[ \n]*$/{$d;N;ba}' $1 echo >> $1 shift done elk-10.4.9/src/PaxHeaders/grepelk0000644000000000000000000000013214762655565013626 xustar0030 mtime=1741380469.547014101 30 atime=1741380469.547014101 30 ctime=1741380469.547014101 elk-10.4.9/src/grepelk0000755002504400250440000000064414762655565016357 0ustar00dewhurstdewhurst00000000000000#!/bin/bash echo echo "main code" grep "$@" *.f90 Makefile echo echo "spacegroup" grep "$@" spacegroup/*.f90 spacegroup/Makefile echo echo "eos" grep "$@" eos/*.f90 eos/Makefile echo echo "examples" grep -r "$@" ../examples/* echo echo "tests" grep -r "$@" ../tests/* echo echo "tests-libxc" grep -r "$@" ../tests-libxc/* echo echo "species" grep -r "$@" ../species/* echo echo "utilities" grep -r "$@" ../utilities/* elk-10.4.9/src/PaxHeaders/vimelk0000644000000000000000000000013214762655565013464 xustar0030 mtime=1741380469.550014116 30 atime=1741380469.549014111 30 ctime=1741380469.550014116 elk-10.4.9/src/vimelk0000755002504400250440000000213614762655565016213 0ustar00dewhurstdewhurst00000000000000#!/bin/bash if [ "$1" == "-d" ]; then rm -f ~/.vim/ftdetect/elk.vim rm -f ~/.vim/syntax/elk.vim echo echo "Syntax highlighting disabled for vim." echo exit fi rm -f elk.vim echo > elk.vim echo 'syn match elkComment "!.*$"' >> elk.vim echo 'syn match elkComment ":.*$"' >> elk.vim grep "case('" readinput.f90 | cut -d "'" -f2 | grep -v '^$' > vimelk.temp grep "case('" readinput.f90 | cut -d "'" -f4 | grep -v '^$' >> vimelk.temp grep "case('" readinput.f90 | cut -d "'" -f6 | grep -v '^$' >> vimelk.temp grep "case('" readinput.f90 | cut -d "'" -f8 | grep -v '^$' >> vimelk.temp awk '{print "syn match elkBlock '\''"$1"'\''";}' vimelk.temp >> elk.vim rm vimelk.temp echo >> elk.vim echo 'colorscheme zellner' >> elk.vim echo >> elk.vim echo 'hi link elkComment Comment' >> elk.vim echo 'hi link elkBlock Identifier' >> elk.vim mkdir -p ~/.vim/ftdetect mkdir -p ~/.vim/syntax echo "au BufRead,BufNewFile elk.in set filetype=elk" > ~/.vim/ftdetect/elk.vim mv elk.vim ~/.vim/syntax echo echo "Syntax highlighting enabled for vim." echo echo "To disable highlighting type:" echo " ./vimelk -d" echo elk-10.4.9/src/PaxHeaders/mpi_stub.f900000644000000000000000000000013214762655565014414 xustar0030 mtime=1741380469.563014184 30 atime=1741380469.563014184 30 ctime=1741380469.563014184 elk-10.4.9/src/mpi_stub.f900000644002504400250440000000317314762655565017142 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2010 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. ! Stub routines for MPI. module mpi integer mpi_comm_world integer mpi_in_place integer mpi_sum integer mpi_logical integer mpi_integer integer mpi_double_precision integer mpi_double_complex contains subroutine mpi_init(ierror) implicit none integer, intent(out) :: ierror ierror=0 end subroutine subroutine mpi_finalize(ierror) implicit none integer, intent(out) :: ierror ierror=0 end subroutine subroutine mpi_comm_dup(comm,newcomm,ierror) implicit none integer, intent(in) :: comm integer, intent(out) :: newcomm,ierror newcomm=comm ierror=0 end subroutine subroutine mpi_comm_size(comm,size,ierror) implicit none integer, intent(in) :: comm integer, intent(out) :: size,ierror size=1 ierror=0 end subroutine subroutine mpi_comm_rank(comm,rank,ierror) implicit none integer, intent(in) :: comm integer, intent(out) :: rank,ierror rank=0 ierror=0 end subroutine subroutine mpi_barrier(comm,ierror) implicit none integer, intent(in) :: comm integer, intent(out) :: ierror ierror=0 end subroutine subroutine mpi_bcast(buffer,count,datatype,root,comm,ierror) implicit none type(*), intent(in) :: buffer(..) integer, intent(in) :: count,datatype,root,comm integer, intent(out) :: ierror ierror=0 end subroutine subroutine mpi_allreduce(sendbuf,recvbuf,count,datatype,op,comm,ierror) implicit none type(*), intent(in) :: sendbuf(..),recvbuf(..) integer, intent(in) :: count,datatype,op,comm integer, intent(out) :: ierror ierror=0 end subroutine end module elk-10.4.9/src/PaxHeaders/mkl_stub.f900000644000000000000000000000012414762655565014413 xustar0028 mtime=1741380469.5660142 28 atime=1741380469.5660142 28 ctime=1741380469.5660142 elk-10.4.9/src/mkl_stub.f900000644002504400250440000000107714762655565017141 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2018 J. K. Dewhurst, S. Sharma and E. K. U. Gross. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. ! Stub routines for Intel MKL subroutine mkl_set_num_threads(num_threads) implicit none integer, intent(in) :: num_threads end subroutine integer function mkl_set_num_threads_local(num_threads) implicit none integer, intent(in) :: num_threads mkl_set_num_threads_local=0 end function subroutine mkl_set_dynamic(dynamic) implicit none logical, intent(in) :: dynamic end subroutine elk-10.4.9/src/PaxHeaders/libxcf03.f900000644000000000000000000000013214762655565014204 xustar0030 mtime=1741380469.583014289 30 atime=1741380469.581014278 30 ctime=1741380469.583014289 elk-10.4.9/src/libxcf03.f900000644002504400250440000040423314762655565016734 0ustar00dewhurstdewhurst00000000000000!! Copyright (C) 2016 Micael Oliveira !! 2020-2022 Susi Lehtola !! All rights reserved. !! !! This Source Code Form is subject to the terms of the Mozilla Public !! License, v. 2.0. If a copy of the MPL was not distributed with this !! file, You can obtain one at mozilla.org/MPL/2.0/. module xc_f03_lib_m use, intrinsic :: iso_c_binding implicit none private public :: & ! version xc_f03_version, & xc_f03_version_string, & ! literature reference xc_f03_reference, & xc_f03_reference_doi, & xc_f03_reference_key, & ! func_info xc_f03_func_info_t, & xc_f03_func_info_get_number, & xc_f03_func_info_get_kind, & xc_f03_func_info_get_name, & xc_f03_func_info_get_family, & xc_f03_func_info_get_references, & xc_f03_func_info_get_flags, & xc_f03_func_info_get_n_ext_params, & xc_f03_func_info_get_ext_params_name, & xc_f03_func_info_get_ext_params_description, & xc_f03_func_info_get_ext_params_default_value, & ! func_reference xc_f03_func_reference_t, & xc_f03_func_reference_get_ref, & xc_f03_func_reference_get_doi, & xc_f03_func_reference_get_key, & xc_f03_func_reference_get_bibtex, & ! func xc_f03_func_t, & xc_f03_func_init, & xc_f03_func_end, & xc_f03_func_get_info, & xc_f03_functional_get_name, & xc_f03_functional_get_number, & xc_f03_family_from_id, & xc_f03_number_of_functionals, & xc_f03_maximum_name_length, & xc_f03_available_functional_numbers, & xc_f03_available_functional_names, & xc_f03_func_set_dens_threshold, & xc_f03_func_set_zeta_threshold, & xc_f03_func_set_sigma_threshold, & xc_f03_func_set_tau_threshold, & xc_f03_func_set_ext_params, & xc_f03_func_set_ext_params_name, & ! mixed functional interfaces xc_f03_num_aux_funcs, & xc_f03_aux_func_ids, & xc_f03_aux_func_weights, & ! lda xc_f03_lda, & xc_f03_lda_exc, & xc_f03_lda_exc_vxc, & xc_f03_lda_exc_vxc_fxc, & xc_f03_lda_exc_vxc_fxc_kxc, & xc_f03_lda_vxc, & xc_f03_lda_vxc_fxc, & xc_f03_lda_vxc_fxc_kxc, & xc_f03_lda_fxc, & xc_f03_lda_kxc, & xc_f03_lda_lxc, & ! gga xc_f03_gga, & xc_f03_gga_exc, & xc_f03_gga_exc_vxc, & xc_f03_gga_exc_vxc_fxc, & xc_f03_gga_exc_vxc_fxc_kxc, & xc_f03_gga_vxc, & xc_f03_gga_vxc_fxc, & xc_f03_gga_vxc_fxc_kxc, & xc_f03_gga_fxc, & xc_f03_gga_kxc, & xc_f03_gga_lxc, & xc_f03_gga_ak13_get_asymptotic, & xc_f03_hyb_exx_coef, & xc_f03_hyb_cam_coef, & xc_f03_nlc_coef, & ! mgga xc_f03_mgga, & xc_f03_mgga_exc, & xc_f03_mgga_exc_vxc, & xc_f03_mgga_exc_vxc_fxc, & xc_f03_mgga_exc_vxc_fxc_kxc, & xc_f03_mgga_vxc, & xc_f03_mgga_vxc_fxc, & xc_f03_mgga_vxc_fxc_kxc, & xc_f03_mgga_fxc, & xc_f03_mgga_kxc, & xc_f03_mgga_lxc integer(c_int), parameter, public :: & XC_UNPOLARIZED = 1, & ! Spin unpolarized XC_POLARIZED = 2 ! Spin polarized integer(c_int), parameter, public :: & XC_NON_RELATIVISTIC = 0, & ! Functional includes or not relativistic XC_RELATIVISTIC = 1 ! corrections. Only available in some functionals. ! Kinds integer(c_int), parameter, public :: & XC_EXCHANGE = 0, & XC_CORRELATION = 1, & XC_EXCHANGE_CORRELATION = 2, & XC_KINETIC = 3 ! Families of xc functionals integer(c_int), parameter, public :: & XC_FAMILY_UNKNOWN = -1, & XC_FAMILY_NONE = 0, & XC_FAMILY_LDA = 1, & XC_FAMILY_GGA = 2, & XC_FAMILY_MGGA = 4, & XC_FAMILY_LCA = 8, & XC_FAMILY_OEP = 16, & XC_FAMILY_HYB_GGA = 32, & XC_FAMILY_HYB_MGGA = 64, & XC_FAMILY_HYB_LDA = 128 integer(c_int), parameter, public :: & XC_FLAGS_HAVE_EXC = 1, & XC_FLAGS_HAVE_VXC = 2, & XC_FLAGS_HAVE_FXC = 4, & XC_FLAGS_HAVE_KXC = 8, & XC_FLAGS_HAVE_LXC = 16, & XC_FLAGS_HAVE_ALL = 31, & ! The most common case XC_FLAGS_1D = 32, & XC_FLAGS_2D = 64, & XC_FLAGS_3D = 128, & XC_FLAGS_HYB_CAM = 256, & XC_FLAGS_HYB_CAMY = 512, & XC_FLAGS_VV10 = 1024, & XC_FLAGS_HYB_LC = 2048, & XC_FLAGS_HYB_LCY = 4096, & XC_FLAGS_STABLE = 8192, & XC_FLAGS_DEVELOPMENT = 16384, & XC_FLAGS_NEEDS_LAPLACIAN = 32768 integer(c_int), parameter, public :: & XC_TAU_EXPLICIT = 0, & XC_TAU_EXPANSION = 1 integer(c_int), parameter, public :: & XC_MAX_REFERENCES = 5 ! List of functionals ! Slater exchange integer(c_int), parameter, public :: XC_LDA_X = 1 ! Wigner integer(c_int), parameter, public :: XC_LDA_C_WIGNER = 2 ! Random Phase Approximation (RPA) integer(c_int), parameter, public :: XC_LDA_C_RPA = 3 ! Hedin & Lundqvist integer(c_int), parameter, public :: XC_LDA_C_HL = 4 ! Gunnarson & Lundqvist integer(c_int), parameter, public :: XC_LDA_C_GL = 5 ! Slaters Xalpha integer(c_int), parameter, public :: XC_LDA_C_XALPHA = 6 ! Vosko, Wilk & Nusair (VWN5) integer(c_int), parameter, public :: XC_LDA_C_VWN = 7 ! Vosko, Wilk & Nusair (VWN5_RPA) integer(c_int), parameter, public :: XC_LDA_C_VWN_RPA = 8 ! Perdew & Zunger integer(c_int), parameter, public :: XC_LDA_C_PZ = 9 ! Perdew & Zunger (Modified) integer(c_int), parameter, public :: XC_LDA_C_PZ_MOD = 10 ! Ortiz & Ballone (PZ parametrization) integer(c_int), parameter, public :: XC_LDA_C_OB_PZ = 11 ! Perdew & Wang integer(c_int), parameter, public :: XC_LDA_C_PW = 12 ! Perdew & Wang (modified) integer(c_int), parameter, public :: XC_LDA_C_PW_MOD = 13 ! Ortiz & Ballone (PW parametrization) integer(c_int), parameter, public :: XC_LDA_C_OB_PW = 14 ! AMGB (for 2D systems) integer(c_int), parameter, public :: XC_LDA_C_2D_AMGB = 15 ! PRM (for 2D systems) integer(c_int), parameter, public :: XC_LDA_C_2D_PRM = 16 ! von Barth & Hedin integer(c_int), parameter, public :: XC_LDA_C_VBH = 17 ! Casula, Sorella & Senatore integer(c_int), parameter, public :: XC_LDA_C_1D_CSC = 18 ! Slater exchange integer(c_int), parameter, public :: XC_LDA_X_2D = 19 ! Teter 93 integer(c_int), parameter, public :: XC_LDA_XC_TETER93 = 20 ! Exchange in 1D for an soft-Coulomb interaction integer(c_int), parameter, public :: XC_LDA_X_1D_SOFT = 21 ! Modified LSD (version 1) of Proynov and Salahub integer(c_int), parameter, public :: XC_LDA_C_ML1 = 22 ! Modified LSD (version 2) of Proynov and Salahub integer(c_int), parameter, public :: XC_LDA_C_ML2 = 23 ! Gombas integer(c_int), parameter, public :: XC_LDA_C_GOMBAS = 24 ! Perdew & Wang (fit to the RPA energy) integer(c_int), parameter, public :: XC_LDA_C_PW_RPA = 25 ! P-F Loos correlation LDA integer(c_int), parameter, public :: XC_LDA_C_1D_LOOS = 26 ! Ragot-Cortona integer(c_int), parameter, public :: XC_LDA_C_RC04 = 27 ! Vosko, Wilk & Nusair (VWN1) integer(c_int), parameter, public :: XC_LDA_C_VWN_1 = 28 ! Vosko, Wilk & Nusair (VWN2) integer(c_int), parameter, public :: XC_LDA_C_VWN_2 = 29 ! Vosko, Wilk & Nusair (VWN3) integer(c_int), parameter, public :: XC_LDA_C_VWN_3 = 30 ! Vosko, Wilk & Nusair (VWN4) integer(c_int), parameter, public :: XC_LDA_C_VWN_4 = 31 ! Minnesota GAM exhange functional integer(c_int), parameter, public :: XC_GGA_X_GAM = 32 ! Minnesota GAM correlation functional integer(c_int), parameter, public :: XC_GGA_C_GAM = 33 ! HCTH-A integer(c_int), parameter, public :: XC_GGA_X_HCTH_A = 34 ! Engel and Vosko integer(c_int), parameter, public :: XC_GGA_X_EV93 = 35 ! Dispersionless Density Functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_DLDF = 36 ! Dispersionless Density Functional integer(c_int), parameter, public :: XC_MGGA_C_DLDF = 37 ! Burke, Cancio, Gould, and Pittalis integer(c_int), parameter, public :: XC_GGA_X_BCGP = 38 ! acGGA, asymptotically corrected GGA correlation integer(c_int), parameter, public :: XC_GGA_C_ACGGA = 39 ! lambda_OC2(N) version of PBE integer(c_int), parameter, public :: XC_GGA_X_LAMBDA_OC2_N = 40 ! Revised Becke 86 with modified gradient correction integer(c_int), parameter, public :: XC_GGA_X_B86_R = 41 ! Zhao, Levy & Parr, Eq. (21) integer(c_int), parameter, public :: XC_MGGA_XC_ZLP = 42 ! Zhao, Levy & Parr, Eq. (20) integer(c_int), parameter, public :: XC_LDA_XC_ZLP = 43 ! lambda_CH(N) version of PBE integer(c_int), parameter, public :: XC_GGA_X_LAMBDA_CH_N = 44 ! lambda_LO(N) version of PBE integer(c_int), parameter, public :: XC_GGA_X_LAMBDA_LO_N = 45 ! HJS screened exchange B88 corrected version integer(c_int), parameter, public :: XC_GGA_X_HJS_B88_V2 = 46 ! Chiodo et al integer(c_int), parameter, public :: XC_GGA_C_Q2D = 47 ! Chiodo et al integer(c_int), parameter, public :: XC_GGA_X_Q2D = 48 ! Reparametrized PBE by del Campo, Gazquez, Trickey & Vela integer(c_int), parameter, public :: XC_GGA_X_PBE_MOL = 49 ! Thomas-Fermi kinetic energy integer(c_int), parameter, public :: XC_LDA_K_TF = 50 ! Lee and Parr Gaussian ansatz for the kinetic energy integer(c_int), parameter, public :: XC_LDA_K_LP = 51 ! Thomas-Fermi plus von Weiszaecker correction integer(c_int), parameter, public :: XC_GGA_K_TFVW = 52 ! interpolated version of revAPBE integer(c_int), parameter, public :: XC_GGA_K_REVAPBEINT = 53 ! interpolated version of APBE integer(c_int), parameter, public :: XC_GGA_K_APBEINT = 54 ! revised APBE integer(c_int), parameter, public :: XC_GGA_K_REVAPBE = 55 ! Armiento & Kuemmel 2013 integer(c_int), parameter, public :: XC_GGA_X_AK13 = 56 ! Meyer, Wang, and Young integer(c_int), parameter, public :: XC_GGA_K_MEYER = 57 ! Berland and Hyldgaard integer(c_int), parameter, public :: XC_GGA_X_LV_RPW86 = 58 ! PBE revised by Tognetti et al integer(c_int), parameter, public :: XC_GGA_X_PBE_TCA = 59 ! PBE for hybrid interfaces integer(c_int), parameter, public :: XC_GGA_X_PBEINT = 60 ! spin-dependent gradient correction to PBEint integer(c_int), parameter, public :: XC_GGA_C_ZPBEINT = 61 ! PBE for hybrid interfaces integer(c_int), parameter, public :: XC_GGA_C_PBEINT = 62 ! spin-dependent gradient correction to PBEsol integer(c_int), parameter, public :: XC_GGA_C_ZPBESOL = 63 ! oTPSS-D functional of Goerigk and Grimme integer(c_int), parameter, public :: XC_MGGA_XC_OTPSS_D = 64 ! oPBE-D functional of Goerigk and Grimme integer(c_int), parameter, public :: XC_GGA_XC_OPBE_D = 65 ! oPWLYP-D functional of Goerigk and Grimme integer(c_int), parameter, public :: XC_GGA_XC_OPWLYP_D = 66 ! oBLYP-D functional of Goerigk and Grimme integer(c_int), parameter, public :: XC_GGA_XC_OBLYP_D = 67 ! VMT{8,4} with constraint satisfaction with mu = mu_GE integer(c_int), parameter, public :: XC_GGA_X_VMT84_GE = 68 ! VMT{8,4} with constraint satisfaction with mu = mu_PBE integer(c_int), parameter, public :: XC_GGA_X_VMT84_PBE = 69 ! Vela, Medel, and Trickey with mu = mu_GE integer(c_int), parameter, public :: XC_GGA_X_VMT_GE = 70 ! Vela, Medel, and Trickey with mu = mu_PBE integer(c_int), parameter, public :: XC_GGA_X_VMT_PBE = 71 ! Colle and Salvetti integer(c_int), parameter, public :: XC_MGGA_C_CS = 72 ! Minnesota MN12-SX correlation functional integer(c_int), parameter, public :: XC_MGGA_C_MN12_SX = 73 ! Minnesota MN12-L correlation functional integer(c_int), parameter, public :: XC_MGGA_C_MN12_L = 74 ! Minnesota M11-L correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M11_L = 75 ! Minnesota M11 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M11 = 76 ! Minnesota M08-SO correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M08_SO = 77 ! Minnesota M08 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M08_HX = 78 ! Minnesota N12-SX correlation functional integer(c_int), parameter, public :: XC_GGA_C_N12_SX = 79 ! Minnesota N12 correlation functional integer(c_int), parameter, public :: XC_GGA_C_N12 = 80 ! Minnesota N12-SX exchange functional integer(c_int), parameter, public :: XC_HYB_GGA_X_N12_SX = 81 ! Minnesota N12 exchange functional integer(c_int), parameter, public :: XC_GGA_X_N12 = 82 ! regularized TPSS correlation integer(c_int), parameter, public :: XC_GGA_C_REGTPSS = 83 ! one-parameter progressive functional (Xalpha version) integer(c_int), parameter, public :: XC_GGA_C_OP_XALPHA = 84 ! one-parameter progressive functional (G96 version) integer(c_int), parameter, public :: XC_GGA_C_OP_G96 = 85 ! one-parameter progressive functional (PBE version) integer(c_int), parameter, public :: XC_GGA_C_OP_PBE = 86 ! one-parameter progressive functional (B88 version) integer(c_int), parameter, public :: XC_GGA_C_OP_B88 = 87 ! Filatov & Thiel correlation integer(c_int), parameter, public :: XC_GGA_C_FT97 = 88 ! PBE correlation to be used with the SSB exchange integer(c_int), parameter, public :: XC_GGA_C_SPBE = 89 ! Swart, Sola and Bickelhaupt correction to PBE integer(c_int), parameter, public :: XC_GGA_X_SSB_SW = 90 ! Swart, Sola and Bickelhaupt integer(c_int), parameter, public :: XC_GGA_X_SSB = 91 ! Swart, Sola and Bickelhaupt dispersion integer(c_int), parameter, public :: XC_GGA_X_SSB_D = 92 ! HCTH/407+ integer(c_int), parameter, public :: XC_GGA_XC_HCTH_407P = 93 ! HCTH p=7/6 integer(c_int), parameter, public :: XC_GGA_XC_HCTH_P76 = 94 ! HCTH p=1/4 integer(c_int), parameter, public :: XC_GGA_XC_HCTH_P14 = 95 ! Becke 97 GGA-1 integer(c_int), parameter, public :: XC_GGA_XC_B97_GGA1 = 96 ! HCTH-A integer(c_int), parameter, public :: XC_GGA_C_HCTH_A = 97 ! BPCCAC (GRAC for the energy) integer(c_int), parameter, public :: XC_GGA_X_BPCCAC = 98 ! Tognetti, Cortona, Adamo (revised) integer(c_int), parameter, public :: XC_GGA_C_REVTCA = 99 ! Tognetti, Cortona, Adamo integer(c_int), parameter, public :: XC_GGA_C_TCA = 100 ! Perdew, Burke & Ernzerhof integer(c_int), parameter, public :: XC_GGA_X_PBE = 101 ! Revised PBE from Zhang & Yang integer(c_int), parameter, public :: XC_GGA_X_PBE_R = 102 ! Becke 86 integer(c_int), parameter, public :: XC_GGA_X_B86 = 103 ! Becke 86 with modified gradient correction integer(c_int), parameter, public :: XC_GGA_X_B86_MGC = 105 ! Becke 88 integer(c_int), parameter, public :: XC_GGA_X_B88 = 106 ! Gill 96 integer(c_int), parameter, public :: XC_GGA_X_G96 = 107 ! Perdew & Wang 86 integer(c_int), parameter, public :: XC_GGA_X_PW86 = 108 ! Perdew & Wang 91 integer(c_int), parameter, public :: XC_GGA_X_PW91 = 109 ! Handy & Cohen OPTX 01 integer(c_int), parameter, public :: XC_GGA_X_OPTX = 110 ! dePristo & Kress 87 version R1 integer(c_int), parameter, public :: XC_GGA_X_DK87_R1 = 111 ! dePristo & Kress 87 version R2 integer(c_int), parameter, public :: XC_GGA_X_DK87_R2 = 112 ! Lacks & Gordon 93 integer(c_int), parameter, public :: XC_GGA_X_LG93 = 113 ! Filatov & Thiel 97 (version A) integer(c_int), parameter, public :: XC_GGA_X_FT97_A = 114 ! Filatov & Thiel 97 (version B) integer(c_int), parameter, public :: XC_GGA_X_FT97_B = 115 ! Perdew, Burke & Ernzerhof SOL integer(c_int), parameter, public :: XC_GGA_X_PBE_SOL = 116 ! Hammer, Hansen, and Norskov integer(c_int), parameter, public :: XC_GGA_X_RPBE = 117 ! Wu & Cohen integer(c_int), parameter, public :: XC_GGA_X_WC = 118 ! mPW91 of Adamo & Barone integer(c_int), parameter, public :: XC_GGA_X_MPW91 = 119 ! Armiento & Mattsson 05 integer(c_int), parameter, public :: XC_GGA_X_AM05 = 120 ! Madsen 07 integer(c_int), parameter, public :: XC_GGA_X_PBEA = 121 ! Adamo & Barone modification to PBE integer(c_int), parameter, public :: XC_GGA_X_MPBE = 122 ! Extended PBE by Xu & Goddard III integer(c_int), parameter, public :: XC_GGA_X_XPBE = 123 ! Becke 86 with modified gradient correction for 2D integer(c_int), parameter, public :: XC_GGA_X_2D_B86_MGC = 124 ! Bayesian best fit for the enhancement factor integer(c_int), parameter, public :: XC_GGA_X_BAYESIAN = 125 ! Reparametrized PBE by Pedroza, Silva & Capelle integer(c_int), parameter, public :: XC_GGA_X_PBE_JSJR = 126 ! Becke 88 in 2D integer(c_int), parameter, public :: XC_GGA_X_2D_B88 = 127 ! Becke 86 in 2D integer(c_int), parameter, public :: XC_GGA_X_2D_B86 = 128 ! Perdew, Burke & Ernzerhof in 2D integer(c_int), parameter, public :: XC_GGA_X_2D_PBE = 129 ! Perdew, Burke & Ernzerhof integer(c_int), parameter, public :: XC_GGA_C_PBE = 130 ! Lee, Yang & Parr integer(c_int), parameter, public :: XC_GGA_C_LYP = 131 ! Perdew 86 integer(c_int), parameter, public :: XC_GGA_C_P86 = 132 ! Perdew, Burke & Ernzerhof SOL integer(c_int), parameter, public :: XC_GGA_C_PBE_SOL = 133 ! Perdew & Wang 91 integer(c_int), parameter, public :: XC_GGA_C_PW91 = 134 ! Armiento & Mattsson 05 integer(c_int), parameter, public :: XC_GGA_C_AM05 = 135 ! Extended PBE by Xu & Goddard III integer(c_int), parameter, public :: XC_GGA_C_XPBE = 136 ! Langreth & Mehl integer(c_int), parameter, public :: XC_GGA_C_LM = 137 ! Reparametrized PBE by Pedroza, Silva & Capelle integer(c_int), parameter, public :: XC_GGA_C_PBE_JRGX = 138 ! opt-Becke 88 for vdW integer(c_int), parameter, public :: XC_GGA_X_OPTB88_VDW = 139 ! Reparametrized PBE for vdW integer(c_int), parameter, public :: XC_GGA_X_PBEK1_VDW = 140 ! Reparametrized PBE for vdW integer(c_int), parameter, public :: XC_GGA_X_OPTPBE_VDW = 141 ! Regularized PBE integer(c_int), parameter, public :: XC_GGA_X_RGE2 = 142 ! Regularized PBE integer(c_int), parameter, public :: XC_GGA_C_RGE2 = 143 ! Refitted Perdew & Wang 86 integer(c_int), parameter, public :: XC_GGA_X_RPW86 = 144 ! Exchange part of Keal and Tozer version 1 integer(c_int), parameter, public :: XC_GGA_X_KT1 = 145 ! Keal and Tozer, version 2 integer(c_int), parameter, public :: XC_GGA_XC_KT2 = 146 ! Wilson & Levy integer(c_int), parameter, public :: XC_GGA_C_WL = 147 ! Wilson & Ivanov integer(c_int), parameter, public :: XC_GGA_C_WI = 148 ! Modified Becke 88 for proton transfer integer(c_int), parameter, public :: XC_GGA_X_MB88 = 149 ! Second-order generalized gradient approximation integer(c_int), parameter, public :: XC_GGA_X_SOGGA = 150 ! Second-order generalized gradient approximation 2011 integer(c_int), parameter, public :: XC_GGA_X_SOGGA11 = 151 ! Second-order generalized gradient approximation 2011 integer(c_int), parameter, public :: XC_GGA_C_SOGGA11 = 152 ! Wilson & Ivanov initial version integer(c_int), parameter, public :: XC_GGA_C_WI0 = 153 ! Tozer and Handy v. 1 integer(c_int), parameter, public :: XC_GGA_XC_TH1 = 154 ! Tozer and Handy v. 2 integer(c_int), parameter, public :: XC_GGA_XC_TH2 = 155 ! Tozer and Handy v. 3 integer(c_int), parameter, public :: XC_GGA_XC_TH3 = 156 ! Tozer and Handy v. 4 integer(c_int), parameter, public :: XC_GGA_XC_TH4 = 157 ! C09x to be used with the VdW of Rutgers-Chalmers integer(c_int), parameter, public :: XC_GGA_X_C09X = 158 ! To be used with HYB_GGA_X_SOGGA11_X integer(c_int), parameter, public :: XC_GGA_C_SOGGA11_X = 159 ! van Leeuwen & Baerends integer(c_int), parameter, public :: XC_GGA_X_LB = 160 ! HCTH/93 integer(c_int), parameter, public :: XC_GGA_XC_HCTH_93 = 161 ! HCTH/120 integer(c_int), parameter, public :: XC_GGA_XC_HCTH_120 = 162 ! HCTH/147 integer(c_int), parameter, public :: XC_GGA_XC_HCTH_147 = 163 ! HCTH/407 integer(c_int), parameter, public :: XC_GGA_XC_HCTH_407 = 164 ! EDF1 integer(c_int), parameter, public :: XC_GGA_XC_EDF1 = 165 ! XLYP integer(c_int), parameter, public :: XC_GGA_XC_XLYP = 166 ! Keal and Tozer, version 1 integer(c_int), parameter, public :: XC_GGA_XC_KT1 = 167 ! lsPBE, a PW91-like modification of PBE exchange integer(c_int), parameter, public :: XC_GGA_X_LSPBE = 168 ! lsRPBE, a PW91-like modification of RPBE integer(c_int), parameter, public :: XC_GGA_X_LSRPBE = 169 ! Becke 97-D integer(c_int), parameter, public :: XC_GGA_XC_B97_D = 170 ! Becke 86 reoptimized for use with vdW functional of Dion et al integer(c_int), parameter, public :: XC_GGA_X_OPTB86B_VDW = 171 ! Revised Minnesota M11 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_REVM11 = 172 ! PBE1W integer(c_int), parameter, public :: XC_GGA_XC_PBE1W = 173 ! mPWLYP1w integer(c_int), parameter, public :: XC_GGA_XC_MPWLYP1W = 174 ! PBELYP1W integer(c_int), parameter, public :: XC_GGA_XC_PBELYP1W = 175 ! acGGA+, asymptotically corrected GGA correlation+ integer(c_int), parameter, public :: XC_GGA_C_ACGGAP = 176 ! LDA hybrid exchange (LDA0) integer(c_int), parameter, public :: XC_HYB_LDA_XC_LDA0 = 177 ! CAM version of LDA0 integer(c_int), parameter, public :: XC_HYB_LDA_XC_CAM_LDA0 = 178 ! Becke 88 reoptimized with the 6-311G** basis set integer(c_int), parameter, public :: XC_GGA_X_B88_6311G = 179 ! Nearly correct asymptotic potential integer(c_int), parameter, public :: XC_GGA_X_NCAP = 180 ! NCAP exchange + P86 correlation integer(c_int), parameter, public :: XC_GGA_XC_NCAP = 181 ! van Leeuwen & Baerends modified integer(c_int), parameter, public :: XC_GGA_X_LBM = 182 ! Exchange form based on Ou-Yang and Levy v.2 integer(c_int), parameter, public :: XC_GGA_X_OL2 = 183 ! mu fixed from the semiclassical neutral atom integer(c_int), parameter, public :: XC_GGA_X_APBE = 184 ! mu fixed from the semiclassical neutral atom integer(c_int), parameter, public :: XC_GGA_K_APBE = 185 ! mu fixed from the semiclassical neutral atom integer(c_int), parameter, public :: XC_GGA_C_APBE = 186 ! Tran and Wesolowski set 1 (Table II) integer(c_int), parameter, public :: XC_GGA_K_TW1 = 187 ! Tran and Wesolowski set 2 (Table II) integer(c_int), parameter, public :: XC_GGA_K_TW2 = 188 ! Tran and Wesolowski set 3 (Table II) integer(c_int), parameter, public :: XC_GGA_K_TW3 = 189 ! Tran and Wesolowski set 4 (Table II) integer(c_int), parameter, public :: XC_GGA_K_TW4 = 190 ! Haas, Tran, Blaha, and Schwarz integer(c_int), parameter, public :: XC_GGA_X_HTBS = 191 ! Constantin et al based on the Airy gas integer(c_int), parameter, public :: XC_GGA_X_AIRY = 192 ! Local Airy Gas integer(c_int), parameter, public :: XC_GGA_X_LAG = 193 ! Functional for organometallic chemistry integer(c_int), parameter, public :: XC_GGA_XC_MOHLYP = 194 ! Functional for barrier heights integer(c_int), parameter, public :: XC_GGA_XC_MOHLYP2 = 195 ! Tozer and Handy v. FL integer(c_int), parameter, public :: XC_GGA_XC_TH_FL = 196 ! Tozer and Handy v. FC integer(c_int), parameter, public :: XC_GGA_XC_TH_FC = 197 ! Tozer and Handy v. FCFO integer(c_int), parameter, public :: XC_GGA_XC_TH_FCFO = 198 ! Tozer and Handy v. FCO integer(c_int), parameter, public :: XC_GGA_XC_TH_FCO = 199 ! Optimized correlation functional of Cohen and Handy integer(c_int), parameter, public :: XC_GGA_C_OPTC = 200 ! Local tau approximation integer(c_int), parameter, public :: XC_MGGA_X_LTA = 201 ! Tao, Perdew, Staroverov & Scuseria integer(c_int), parameter, public :: XC_MGGA_X_TPSS = 202 ! Minnesota M06-L exchange functional integer(c_int), parameter, public :: XC_MGGA_X_M06_L = 203 ! GVT4 (X part of VSXC) integer(c_int), parameter, public :: XC_MGGA_X_GVT4 = 204 ! tau-HCTH from Boese and Handy integer(c_int), parameter, public :: XC_MGGA_X_TAU_HCTH = 205 ! Becke-Roussel 89, gamma = 0.8 integer(c_int), parameter, public :: XC_MGGA_X_BR89 = 206 ! Becke & Johnson 06 integer(c_int), parameter, public :: XC_MGGA_X_BJ06 = 207 ! Tran & Blaha 09 integer(c_int), parameter, public :: XC_MGGA_X_TB09 = 208 ! Rasanen, Pittalis & Proetto 09 integer(c_int), parameter, public :: XC_MGGA_X_RPP09 = 209 ! Pittalis-Rasanen-Helbig-Gross 2007 integer(c_int), parameter, public :: XC_MGGA_X_2D_PRHG07 = 210 ! PRHG07 with Pittalis-Rasanen-Proetto 2010 correction integer(c_int), parameter, public :: XC_MGGA_X_2D_PRHG07_PRP10 = 211 ! revised Tao, Perdew, Staroverov & Scuseria integer(c_int), parameter, public :: XC_MGGA_X_REVTPSS = 212 ! Perdew, Kurth, Zupan, and Blaha integer(c_int), parameter, public :: XC_MGGA_X_PKZB = 213 ! Becke-Roussel 89, gamma = 1.0 integer(c_int), parameter, public :: XC_MGGA_X_BR89_1 = 214 ! Engel, Chevary, Macdonald and Vosko integer(c_int), parameter, public :: XC_GGA_X_ECMV92 = 215 ! Perdew, Burke & Ernzerhof based on VWN correlation integer(c_int), parameter, public :: XC_GGA_C_PBE_VWN = 216 ! Perdew 86 with more accurate value for ftilde integer(c_int), parameter, public :: XC_GGA_C_P86_FT = 217 ! RATIONAL$^{p}$ by Lehtomaki and Lopez-Acevedo (by default $p=3/2$, $C_{2}=0.7687$) integer(c_int), parameter, public :: XC_GGA_K_RATIONAL_P = 218 ! PG1 (Pauli-Gaussian) functional by Constantin, Fabiano, and Della Sala integer(c_int), parameter, public :: XC_GGA_K_PG1 = 219 ! PGSL025 (Pauli-Gaussian) functional by Constantin, Fabiano, and Della Sala integer(c_int), parameter, public :: XC_MGGA_K_PGSL025 = 220 ! MS exchange of Sun, Xiao, and Ruzsinszky integer(c_int), parameter, public :: XC_MGGA_X_MS0 = 221 ! MS1 exchange of Sun, et al integer(c_int), parameter, public :: XC_MGGA_X_MS1 = 222 ! MS2 exchange of Sun, et al integer(c_int), parameter, public :: XC_MGGA_X_MS2 = 223 ! MS2 hybrid exchange of Sun, et al integer(c_int), parameter, public :: XC_HYB_MGGA_X_MS2H = 224 ! Tsuneda and Hirao integer(c_int), parameter, public :: XC_MGGA_X_TH = 225 ! Minnesota M11-L exchange functional integer(c_int), parameter, public :: XC_MGGA_X_M11_L = 226 ! Minnesota MN12-L exchange functional integer(c_int), parameter, public :: XC_MGGA_X_MN12_L = 227 ! MS2 exchange of Sun, et al with revised value for c integer(c_int), parameter, public :: XC_MGGA_X_MS2_REV = 228 ! Cancio and Chou 2006 integer(c_int), parameter, public :: XC_MGGA_XC_CC06 = 229 ! Exchange for accurate virtual orbital energies integer(c_int), parameter, public :: XC_MGGA_X_MK00 = 230 ! Tao, Perdew, Staroverov & Scuseria integer(c_int), parameter, public :: XC_MGGA_C_TPSS = 231 ! VSXC (correlation part) integer(c_int), parameter, public :: XC_MGGA_C_VSXC = 232 ! Minnesota M06-L correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M06_L = 233 ! Minnesota M06-HF correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M06_HF = 234 ! Minnesota M06 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M06 = 235 ! Minnesota M06-2X correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M06_2X = 236 ! Minnesota M05 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M05 = 237 ! Minnesota M05-2X correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M05_2X = 238 ! Perdew, Kurth, Zupan, and Blaha integer(c_int), parameter, public :: XC_MGGA_C_PKZB = 239 ! Becke correlation 95 integer(c_int), parameter, public :: XC_MGGA_C_BC95 = 240 ! revised TPSS correlation integer(c_int), parameter, public :: XC_MGGA_C_REVTPSS = 241 ! TPSSLYP1W integer(c_int), parameter, public :: XC_MGGA_XC_TPSSLYP1W = 242 ! Exchange for accurate virtual orbital energies (v. B) integer(c_int), parameter, public :: XC_MGGA_X_MK00B = 243 ! functional with balanced localization integer(c_int), parameter, public :: XC_MGGA_X_BLOC = 244 ! Modified Tao, Perdew, Staroverov & Scuseria integer(c_int), parameter, public :: XC_MGGA_X_MODTPSS = 245 ! Semilocal dynamical correlation integer(c_int), parameter, public :: XC_GGA_C_PBELOC = 246 ! Semilocal dynamical correlation integer(c_int), parameter, public :: XC_MGGA_C_TPSSLOC = 247 ! Minnesota MN12-SX hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_MN12_SX = 248 ! mBEEF exchange integer(c_int), parameter, public :: XC_MGGA_X_MBEEF = 249 ! mBEEF-vdW exchange integer(c_int), parameter, public :: XC_MGGA_X_MBEEFVDW = 250 ! Tao and Mo 2016 correlation integer(c_int), parameter, public :: XC_MGGA_C_TM = 251 ! Perdew 86 based on VWN5 correlation integer(c_int), parameter, public :: XC_GGA_C_P86VWN = 252 ! Perdew 86 based on VWN5 correlation, with more accurate value for ftilde integer(c_int), parameter, public :: XC_GGA_C_P86VWN_FT = 253 ! B97M-V exchange-correlation functional integer(c_int), parameter, public :: XC_MGGA_XC_B97M_V = 254 ! Vydrov and Van Voorhis integer(c_int), parameter, public :: XC_GGA_XC_VV10 = 255 ! Jemmer-Knowles meta-GGA exchange integer(c_int), parameter, public :: XC_MGGA_X_JK = 256 ! MVS exchange of Sun, Perdew, and Ruzsinszky integer(c_int), parameter, public :: XC_MGGA_X_MVS = 257 ! PBE for formation energies integer(c_int), parameter, public :: XC_GGA_C_PBEFE = 258 ! Karasiev, Sjostrom, Dufty & Trickey integer(c_int), parameter, public :: XC_LDA_XC_KSDT = 259 ! Minnesota MN15-L exchange functional integer(c_int), parameter, public :: XC_MGGA_X_MN15_L = 260 ! Minnesota MN15-L correlation functional integer(c_int), parameter, public :: XC_MGGA_C_MN15_L = 261 ! one-parameter progressive functional (PW91 version) integer(c_int), parameter, public :: XC_GGA_C_OP_PW91 = 262 ! SCAN exchange of Sun, Ruzsinszky, and Perdew integer(c_int), parameter, public :: XC_MGGA_X_SCAN = 263 ! SCAN hybrid exchange (SCAN0) integer(c_int), parameter, public :: XC_HYB_MGGA_X_SCAN0 = 264 ! PBE for formation energies integer(c_int), parameter, public :: XC_GGA_X_PBEFE = 265 ! version of B97 by Cohen and Handy integer(c_int), parameter, public :: XC_HYB_GGA_XC_B97_1P = 266 ! SCAN correlation of Sun, Ruzsinszky, and Perdew integer(c_int), parameter, public :: XC_MGGA_C_SCAN = 267 ! Minnesota MN15 hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_MN15 = 268 ! Minnesota MN15 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_MN15 = 269 ! Correct Asymptotic Potential integer(c_int), parameter, public :: XC_GGA_X_CAP = 270 ! Non-empirical (excogitated) B88 functional of Becke and Elliott integer(c_int), parameter, public :: XC_GGA_X_EB88 = 271 ! Reparametrized PBE by del Campo, Gazquez, Trickey & Vela integer(c_int), parameter, public :: XC_GGA_C_PBE_MOL = 272 ! PBEmol0 integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE_MOL0 = 273 ! PBEsol0 integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE_SOL0 = 274 ! PBEbeta0 integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBEB0 = 275 ! PBEmolbeta0 integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE_MOLB0 = 276 ! gamma-TFvW form by Acharya et al [$g = 1 - 1.513/N^{0.35}]$ integer(c_int), parameter, public :: XC_GGA_K_ABSP3 = 277 ! gamma-TFvW form by Acharya et al [$g = l = 1/(1 + 1.332/N^{1/3})$] integer(c_int), parameter, public :: XC_GGA_K_ABSP4 = 278 ! Boese-Martin for kinetics integer(c_int), parameter, public :: XC_HYB_MGGA_X_BMK = 279 ! Boese-Martin correlation for kinetics integer(c_int), parameter, public :: XC_GGA_C_BMK = 280 ! correlation part of tau-hcth integer(c_int), parameter, public :: XC_GGA_C_TAU_HCTH = 281 ! Hybrid version of tau-HCTH integer(c_int), parameter, public :: XC_HYB_MGGA_X_TAU_HCTH = 282 ! correlation part of hyb-tau-hcth integer(c_int), parameter, public :: XC_GGA_C_HYB_TAU_HCTH = 283 ! Becke 2000 integer(c_int), parameter, public :: XC_MGGA_X_B00 = 284 ! BEEF-vdW exchange integer(c_int), parameter, public :: XC_GGA_X_BEEFVDW = 285 ! BEEF-vdW exchange-correlation integer(c_int), parameter, public :: XC_GGA_XC_BEEFVDW = 286 ! Chachiyo simple 2 parameter correlation integer(c_int), parameter, public :: XC_LDA_C_CHACHIYO = 287 ! high local exchange 2017 integer(c_int), parameter, public :: XC_MGGA_XC_HLE17 = 288 ! Liu-Parr correlation integer(c_int), parameter, public :: XC_LDA_C_LP96 = 289 ! PBE50 integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE50 = 290 ! Gradient-regulated connection-based correction for the PBE exchange integer(c_int), parameter, public :: XC_GGA_X_PBETRANS = 291 ! SCAN + rVV10 correlation integer(c_int), parameter, public :: XC_MGGA_C_SCAN_RVV10 = 292 ! Minnesota revM06-L exchange functional integer(c_int), parameter, public :: XC_MGGA_X_REVM06_L = 293 ! Minnesota revM06-L correlation functional integer(c_int), parameter, public :: XC_MGGA_C_REVM06_L = 294 ! Minnesota M08-HX hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M08_HX = 295 ! Minnesota M08-SO hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M08_SO = 296 ! Minnesota M11 hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M11 = 297 ! Chachiyo exchange integer(c_int), parameter, public :: XC_GGA_X_CHACHIYO = 298 ! TPSS for surface adsorption integer(c_int), parameter, public :: XC_MGGA_X_RTPSS = 299 ! MS2beta exchange of Furness and Sun integer(c_int), parameter, public :: XC_MGGA_X_MS2B = 300 ! MS2beta* exchange of Furness and Sun integer(c_int), parameter, public :: XC_MGGA_X_MS2BS = 301 ! MVSbeta exchange by Furness and Sun integer(c_int), parameter, public :: XC_MGGA_X_MVSB = 302 ! MVSbeta* exchange by Furness and Sun integer(c_int), parameter, public :: XC_MGGA_X_MVSBS = 303 ! Revised Minnesota M11 hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_REVM11 = 304 ! Revised Minnesota M06 hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_REVM06 = 305 ! Revised Minnesota M06 correlation functional integer(c_int), parameter, public :: XC_MGGA_C_REVM06 = 306 ! Chachiyo simple 2 parameter correlation with modified spin scaling integer(c_int), parameter, public :: XC_LDA_C_CHACHIYO_MOD = 307 ! Karasiev reparameterization of Chachiyo integer(c_int), parameter, public :: XC_LDA_C_KARASIEV_MOD = 308 ! Chachiyo simple GGA correlation integer(c_int), parameter, public :: XC_GGA_C_CHACHIYO = 309 ! Minnesota M06-SX short-range hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M06_SX = 310 ! Minnesota M06-SX correlation functional integer(c_int), parameter, public :: XC_MGGA_C_M06_SX = 311 ! Revised Swart, Sola and Bickelhaupt dispersion integer(c_int), parameter, public :: XC_GGA_X_REVSSB_D = 312 ! ccDF: coupled-cluster motivated density functional integer(c_int), parameter, public :: XC_GGA_C_CCDF = 313 ! HF + LYP correlation integer(c_int), parameter, public :: XC_HYB_GGA_XC_HFLYP = 314 ! B3P86, NWChem version integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3P86_NWCHEM = 315 ! PW91, alternate version with more digits integer(c_int), parameter, public :: XC_GGA_X_PW91_MOD = 316 ! Xie, Wu, and Zhao interpolation ansatz without fitting parameters integer(c_int), parameter, public :: XC_LDA_C_W20 = 317 ! Corrected KSDT by Karasiev, Dufty and Trickey integer(c_int), parameter, public :: XC_LDA_XC_CORRKSDT = 318 ! Filatov and Thiel 1998 meta-GGA exchange integer(c_int), parameter, public :: XC_MGGA_X_FT98 = 319 ! Perdew, Burke & Ernzerhof with less precise value for beta integer(c_int), parameter, public :: XC_GGA_X_PBE_MOD = 320 ! Perdew, Burke & Ernzerhof with parameter values used in Gaussian integer(c_int), parameter, public :: XC_GGA_X_PBE_GAUSSIAN = 321 ! Perdew, Burke & Ernzerhof with parameters from Gaussian integer(c_int), parameter, public :: XC_GGA_C_PBE_GAUSSIAN = 322 ! Tao, Perdew, Staroverov & Scuseria with parameters from Gaussian integer(c_int), parameter, public :: XC_MGGA_C_TPSS_GAUSSIAN = 323 ! Nearly correct asymptotic potential revised integer(c_int), parameter, public :: XC_GGA_X_NCAPR = 324 ! relPBE0 a.k.a. relPBE: PBE0 refitted for actinide compounds integer(c_int), parameter, public :: XC_HYB_GGA_XC_RELPBE0 = 325 ! Becke 97-3c by Grimme et. al. integer(c_int), parameter, public :: XC_GGA_XC_B97_3C = 327 ! Self-interaction corrected correlation functional by Schmidt et al integer(c_int), parameter, public :: XC_MGGA_C_CC = 387 ! Iso-orbital corrected LDA correlation by Lebeda et al integer(c_int), parameter, public :: XC_MGGA_C_CCALDA = 388 ! BR3P86 hybrid meta-GGA from Neumann and Handy integer(c_int), parameter, public :: XC_HYB_MGGA_XC_BR3P86 = 389 ! CASE21: Constrained And Smoothed semi-Empirical 2021 functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_CASE21 = 390 ! Revised regTM correlation by Jana et al integer(c_int), parameter, public :: XC_MGGA_C_RREGTM = 391 ! PBE-2X: PBE0 with 56% exact exchange integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE_2X = 392 ! PBE38: PBE0 with 3/8 = 37.5% exact exchange integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE38 = 393 ! B3LYP with VWN functional 3 instead of RPA integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3LYP3 = 394 ! CAM-O3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAM_O3LYP = 395 ! TPSS0 with 25% exact exchange integer(c_int), parameter, public :: XC_HYB_MGGA_XC_TPSS0 = 396 ! Becke 1994 meta-GGA correlation integer(c_int), parameter, public :: XC_MGGA_C_B94 = 397 ! Becke 1994 hybrid meta-GGA integer(c_int), parameter, public :: XC_HYB_MGGA_XC_B94_HYB = 398 ! wB97X-D3 range-separated functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_WB97X_D3 = 399 ! LC version of BLYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_BLYP = 400 ! The original (ACM, B3PW91) hybrid of Becke integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3PW91 = 401 ! B3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3LYP = 402 ! B3P86 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3P86 = 403 ! O3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_O3LYP = 404 ! mPW1K integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPW1K = 405 ! PBEH (PBE0) integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBEH = 406 ! Becke 97 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B97 = 407 ! Becke 97-1 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B97_1 = 408 ! APF hybrid functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_APF = 409 ! Becke 97-2 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B97_2 = 410 ! X3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_X3LYP = 411 ! B1WC integer(c_int), parameter, public :: XC_HYB_GGA_XC_B1WC = 412 ! Boese-Martin for Kinetics integer(c_int), parameter, public :: XC_HYB_GGA_XC_B97_K = 413 ! Becke 97-3 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B97_3 = 414 ! MPW3PW of Adamo & Barone integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPW3PW = 415 ! B1LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_B1LYP = 416 ! B1PW91 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B1PW91 = 417 ! mPW1PW integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPW1PW = 418 ! MPW3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPW3LYP = 419 ! SB98 (1a) integer(c_int), parameter, public :: XC_HYB_GGA_XC_SB98_1A = 420 ! SB98 (1b) integer(c_int), parameter, public :: XC_HYB_GGA_XC_SB98_1B = 421 ! SB98 (1c) integer(c_int), parameter, public :: XC_HYB_GGA_XC_SB98_1C = 422 ! SB98 (2a) integer(c_int), parameter, public :: XC_HYB_GGA_XC_SB98_2A = 423 ! SB98 (2b) integer(c_int), parameter, public :: XC_HYB_GGA_XC_SB98_2B = 424 ! SB98 (2c) integer(c_int), parameter, public :: XC_HYB_GGA_XC_SB98_2C = 425 ! Hybrid based on SOGGA11 form integer(c_int), parameter, public :: XC_HYB_GGA_X_SOGGA11_X = 426 ! HSE03 integer(c_int), parameter, public :: XC_HYB_GGA_XC_HSE03 = 427 ! HSE06 integer(c_int), parameter, public :: XC_HYB_GGA_XC_HSE06 = 428 ! HJS hybrid screened exchange PBE version integer(c_int), parameter, public :: XC_HYB_GGA_XC_HJS_PBE = 429 ! HJS hybrid screened exchange PBE_SOL version integer(c_int), parameter, public :: XC_HYB_GGA_XC_HJS_PBE_SOL = 430 ! HJS hybrid screened exchange B88 version integer(c_int), parameter, public :: XC_HYB_GGA_XC_HJS_B88 = 431 ! HJS hybrid screened exchange B97x version integer(c_int), parameter, public :: XC_HYB_GGA_XC_HJS_B97X = 432 ! CAM version of B3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAM_B3LYP = 433 ! CAM version of B3LYP, tuned for excitations and properties integer(c_int), parameter, public :: XC_HYB_GGA_XC_TUNED_CAM_B3LYP = 434 ! BHandH i.e. BHLYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_BHANDH = 435 ! BHandHLYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_BHANDHLYP = 436 ! B3LYP with RC04 LDA integer(c_int), parameter, public :: XC_HYB_GGA_XC_MB3LYP_RC04 = 437 ! Minnesota M05 hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M05 = 438 ! Minnesota M05-2X hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M05_2X = 439 ! Mixture of B88 with BC95 (B1B95) integer(c_int), parameter, public :: XC_HYB_MGGA_XC_B88B95 = 440 ! Mixture of B86 with BC95 integer(c_int), parameter, public :: XC_HYB_MGGA_XC_B86B95 = 441 ! Mixture of PW86 with BC95 integer(c_int), parameter, public :: XC_HYB_MGGA_XC_PW86B95 = 442 ! Mixture of B88 with BC95 from Zhao and Truhlar integer(c_int), parameter, public :: XC_HYB_MGGA_XC_BB1K = 443 ! Minnesota M06-HF hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M06_HF = 444 ! Mixture of mPW91 with BC95 from Zhao and Truhlar integer(c_int), parameter, public :: XC_HYB_MGGA_XC_MPW1B95 = 445 ! Mixture of mPW91 with BC95 for kinetics integer(c_int), parameter, public :: XC_HYB_MGGA_XC_MPWB1K = 446 ! Mixture of X with BC95 integer(c_int), parameter, public :: XC_HYB_MGGA_XC_X1B95 = 447 ! Mixture of X with BC95 for kinetics integer(c_int), parameter, public :: XC_HYB_MGGA_XC_XB1K = 448 ! Minnesota M06 hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M06 = 449 ! Minnesota M06-2X hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_M06_2X = 450 ! Mixture of PW91 with BC95 from Zhao and Truhlar integer(c_int), parameter, public :: XC_HYB_MGGA_XC_PW6B95 = 451 ! Mixture of PW91 with BC95 from Zhao and Truhlar for kinetics integer(c_int), parameter, public :: XC_HYB_MGGA_XC_PWB6K = 452 ! MPW with 1 par. for metals/LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPWLYP1M = 453 ! Revised B3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_REVB3LYP = 454 ! CAMY version of BLYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAMY_BLYP = 455 ! PBE0-1/3 integer(c_int), parameter, public :: XC_HYB_GGA_XC_PBE0_13 = 456 ! TPSSh integer(c_int), parameter, public :: XC_HYB_MGGA_XC_TPSSH = 457 ! revTPSSh integer(c_int), parameter, public :: XC_HYB_MGGA_XC_REVTPSSH = 458 ! B3LYP* integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3LYPS = 459 ! Global hybrid for vertical ionization potentials integer(c_int), parameter, public :: XC_HYB_GGA_XC_QTP17 = 460 ! B3LYP-MCM1 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3LYP_MCM1 = 461 ! B3LYP-MCM2 integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3LYP_MCM2 = 462 ! wB97 range-separated functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_WB97 = 463 ! wB97X range-separated functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_WB97X = 464 ! Long-range corrected short-range hybrid PBE (LRC-wPBEh) by Rohrdanz, Martins and Herbert integer(c_int), parameter, public :: XC_HYB_GGA_XC_LRC_WPBEH = 465 ! wB97X-V range-separated functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_WB97X_V = 466 ! LCY version of PBE integer(c_int), parameter, public :: XC_HYB_GGA_XC_LCY_PBE = 467 ! LCY version of BLYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_LCY_BLYP = 468 ! Vydrov and Van Voorhis integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_VV10 = 469 ! CAMY version of B3LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAMY_B3LYP = 470 ! wB97X-D range-separated functional integer(c_int), parameter, public :: XC_HYB_GGA_XC_WB97X_D = 471 ! hPBEint integer(c_int), parameter, public :: XC_HYB_GGA_XC_HPBEINT = 472 ! Long-range corrected PBE (LRC-wPBE) by Rohrdanz, Martins and Herbert integer(c_int), parameter, public :: XC_HYB_GGA_XC_LRC_WPBE = 473 ! MVSh hybrid exchange functional integer(c_int), parameter, public :: XC_HYB_MGGA_X_MVSH = 474 ! B3LYP with VWN functional 5 instead of RPA integer(c_int), parameter, public :: XC_HYB_GGA_XC_B3LYP5 = 475 ! EDF2 integer(c_int), parameter, public :: XC_HYB_GGA_XC_EDF2 = 476 ! Correct Asymptotic Potential hybrid integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAP0 = 477 ! Long-range corrected PBE (LC-wPBE) by Vydrov and Scuseria integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_WPBE = 478 ! HSE12 integer(c_int), parameter, public :: XC_HYB_GGA_XC_HSE12 = 479 ! HSE12 (short-range version) integer(c_int), parameter, public :: XC_HYB_GGA_XC_HSE12S = 480 ! HSEsol integer(c_int), parameter, public :: XC_HYB_GGA_XC_HSE_SOL = 481 ! CAM-B3LYP retuned using ionization potentials of water integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAM_QTP_01 = 482 ! mPW1LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPW1LYP = 483 ! mPW1PBE integer(c_int), parameter, public :: XC_HYB_GGA_XC_MPW1PBE = 484 ! Kang-Musgrave hybrid integer(c_int), parameter, public :: XC_HYB_GGA_XC_KMLYP = 485 ! Long-range corrected PBE (LC-wPBE) by Weintraub, Henderson and Scuseria integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_WPBE_WHS = 486 ! Long-range corrected short-range hybrid PBE (LC-wPBE) by Weintraub, Henderson and Scuseria integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_WPBEH_WHS = 487 ! Long-range corrected PBE (LC-wPBE) by Weintraub, Henderson and Scuseria integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_WPBE08_WHS = 488 ! Long-range corrected PBE (LC-wPBE) by Weintraub, Henderson and Scuseria integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_WPBESOL_WHS = 489 ! CAM-B3LYP retuned using ionization potentials of water integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAM_QTP_00 = 490 ! CAM-B3LYP retuned using ionization potentials of water integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAM_QTP_02 = 491 ! CAM-B3LYP retuned using ionization potentials of water integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_QTP = 492 ! Regularized SCAN exchange by Bartok and Yates integer(c_int), parameter, public :: XC_MGGA_X_RSCAN = 493 ! Regularized SCAN correlation by Bartok and Yates integer(c_int), parameter, public :: XC_MGGA_C_RSCAN = 494 ! Swart 2012 GGA exchange integer(c_int), parameter, public :: XC_GGA_X_S12G = 495 ! Swart 2012 hybrid exchange integer(c_int), parameter, public :: XC_HYB_GGA_X_S12H = 496 ! Re-regularized SCAN exchange by Furness et al integer(c_int), parameter, public :: XC_MGGA_X_R2SCAN = 497 ! Re-regularized SCAN correlation by Furness et al integer(c_int), parameter, public :: XC_MGGA_C_R2SCAN = 498 ! BLYP35 integer(c_int), parameter, public :: XC_HYB_GGA_XC_BLYP35 = 499 ! von Weiszaecker correction to Thomas-Fermi integer(c_int), parameter, public :: XC_GGA_K_VW = 500 ! Second-order gradient expansion of the kinetic energy density integer(c_int), parameter, public :: XC_GGA_K_GE2 = 501 ! TF-lambda-vW form by Golden (l = 13/45) integer(c_int), parameter, public :: XC_GGA_K_GOLDEN = 502 ! TF-lambda-vW form by Yonei and Tomishima (l = 1/5) integer(c_int), parameter, public :: XC_GGA_K_YT65 = 503 ! TF-lambda-vW form by Baltin (l = 5/9) integer(c_int), parameter, public :: XC_GGA_K_BALTIN = 504 ! TF-lambda-vW form by Lieb (l = 0.185909191) integer(c_int), parameter, public :: XC_GGA_K_LIEB = 505 ! gamma-TFvW form by Acharya et al [$g = 1 - 1.412/N^{1/3}$] integer(c_int), parameter, public :: XC_GGA_K_ABSP1 = 506 ! gamma-TFvW form by Acharya et al [$g = 1 - 1.332/N^{1/3}$] integer(c_int), parameter, public :: XC_GGA_K_ABSP2 = 507 ! gamma-TFvW form by Gazquez and Robles integer(c_int), parameter, public :: XC_GGA_K_GR = 508 ! gamma-TFvW form by Ludena integer(c_int), parameter, public :: XC_GGA_K_LUDENA = 509 ! gamma-TFvW form by Ghosh and Parr integer(c_int), parameter, public :: XC_GGA_K_GP85 = 510 ! Pearson 1992 integer(c_int), parameter, public :: XC_GGA_K_PEARSON = 511 ! Ou-Yang and Levy v.1 integer(c_int), parameter, public :: XC_GGA_K_OL1 = 512 ! Ou-Yang and Levy v.2 integer(c_int), parameter, public :: XC_GGA_K_OL2 = 513 ! Fuentealba & Reyes (B88 version) integer(c_int), parameter, public :: XC_GGA_K_FR_B88 = 514 ! Fuentealba & Reyes (PW86 version) integer(c_int), parameter, public :: XC_GGA_K_FR_PW86 = 515 ! DePristo and Kress integer(c_int), parameter, public :: XC_GGA_K_DK = 516 ! Perdew integer(c_int), parameter, public :: XC_GGA_K_PERDEW = 517 ! Vitos, Skriver, and Kollar integer(c_int), parameter, public :: XC_GGA_K_VSK = 518 ! Vitos, Johansson, Kollar, and Skriver integer(c_int), parameter, public :: XC_GGA_K_VJKS = 519 ! Ernzerhof integer(c_int), parameter, public :: XC_GGA_K_ERNZERHOF = 520 ! Lembarki & Chermette integer(c_int), parameter, public :: XC_GGA_K_LC94 = 521 ! Lee, Lee & Parr integer(c_int), parameter, public :: XC_GGA_K_LLP = 522 ! Thakkar 1992 integer(c_int), parameter, public :: XC_GGA_K_THAKKAR = 523 ! short-range part of the PBE (default w=0 gives PBEh) integer(c_int), parameter, public :: XC_GGA_X_WPBEH = 524 ! HJS screened exchange PBE version integer(c_int), parameter, public :: XC_GGA_X_HJS_PBE = 525 ! HJS screened exchange PBE_SOL version integer(c_int), parameter, public :: XC_GGA_X_HJS_PBE_SOL = 526 ! HJS screened exchange B88 version integer(c_int), parameter, public :: XC_GGA_X_HJS_B88 = 527 ! HJS screened exchange B97x version integer(c_int), parameter, public :: XC_GGA_X_HJS_B97X = 528 ! Short-range recipe for B88 functional - erf integer(c_int), parameter, public :: XC_GGA_X_ITYH = 529 ! Short-range recipe for B88 functional - Yukawa integer(c_int), parameter, public :: XC_GGA_X_SFAT = 530 ! wB97M-V exchange-correlation functional integer(c_int), parameter, public :: XC_HYB_MGGA_XC_WB97M_V = 531 ! Slater exchange with relativistic corrections integer(c_int), parameter, public :: XC_LDA_X_REL = 532 ! Semiclassical GGA at fourth order integer(c_int), parameter, public :: XC_GGA_X_SG4 = 533 ! Semiclassical GGA at fourth order integer(c_int), parameter, public :: XC_GGA_C_SG4 = 534 ! Gilbert and Gill 1999 integer(c_int), parameter, public :: XC_GGA_X_GG99 = 535 ! LDA constructed from slab-like systems of 1 electron integer(c_int), parameter, public :: XC_LDA_XC_1D_EHWLRG_1 = 536 ! LDA constructed from slab-like systems of 2 electrons integer(c_int), parameter, public :: XC_LDA_XC_1D_EHWLRG_2 = 537 ! LDA constructed from slab-like systems of 3 electrons integer(c_int), parameter, public :: XC_LDA_XC_1D_EHWLRG_3 = 538 ! PBE power integer(c_int), parameter, public :: XC_GGA_X_PBEPOW = 539 ! Tao and Mo 2016 exchange integer(c_int), parameter, public :: XC_MGGA_X_TM = 540 ! meta-GGA version of VT{8,4} GGA integer(c_int), parameter, public :: XC_MGGA_X_VT84 = 541 ! TPSS with correct surface asymptotics integer(c_int), parameter, public :: XC_MGGA_X_SA_TPSS = 542 ! Perdew and Constantin 2007 integer(c_int), parameter, public :: XC_MGGA_K_PC07 = 543 ! Gilbert and Gill 1999 (mixed) integer(c_int), parameter, public :: XC_GGA_X_KGG99 = 544 ! high local exchange 2016 integer(c_int), parameter, public :: XC_GGA_XC_HLE16 = 545 ! Short-range LDA exchange with error function kernel (erfc) integer(c_int), parameter, public :: XC_LDA_X_ERF = 546 ! Lee-Parr reparametrization A integer(c_int), parameter, public :: XC_LDA_XC_LP_A = 547 ! Lee-Parr reparametrization B integer(c_int), parameter, public :: XC_LDA_XC_LP_B = 548 ! Rae self-energy corrected exchange integer(c_int), parameter, public :: XC_LDA_X_RAE = 549 ! Wigner including kinetic energy contribution integer(c_int), parameter, public :: XC_LDA_K_ZLP = 550 ! McWeeny 76 integer(c_int), parameter, public :: XC_LDA_C_MCWEENY = 551 ! Brual & Rothstein 78 integer(c_int), parameter, public :: XC_LDA_C_BR78 = 552 ! GGA component of SCAN integer(c_int), parameter, public :: XC_GGA_C_SCAN_E0 = 553 ! Proynov and Kong 2009 integer(c_int), parameter, public :: XC_LDA_C_PK09 = 554 ! GapC integer(c_int), parameter, public :: XC_GGA_C_GAPC = 555 ! Gaploc integer(c_int), parameter, public :: XC_GGA_C_GAPLOC = 556 ! another spin-dependent correction to PBEint integer(c_int), parameter, public :: XC_GGA_C_ZVPBEINT = 557 ! another spin-dependent correction to PBEsol integer(c_int), parameter, public :: XC_GGA_C_ZVPBESOL = 558 ! Takkar and McCarthy reparametrization integer(c_int), parameter, public :: XC_GGA_C_TM_LYP = 559 ! Thakkar and McCarthy reparametrization integer(c_int), parameter, public :: XC_GGA_C_TM_PBE = 560 ! Wilson 94 (Eq. 25) integer(c_int), parameter, public :: XC_GGA_C_W94 = 561 ! Krieger, Chen, Iafrate, and Savin integer(c_int), parameter, public :: XC_MGGA_C_KCIS = 562 ! Hybrid based on KCIS integer(c_int), parameter, public :: XC_HYB_MGGA_XC_B0KCIS = 563 ! Lee & Parr, Eq. (56) integer(c_int), parameter, public :: XC_MGGA_XC_LP90 = 564 ! A dynamical correlation functional integer(c_int), parameter, public :: XC_GGA_C_CS1 = 565 ! MPW1KCIS for barrier heights integer(c_int), parameter, public :: XC_HYB_MGGA_XC_MPW1KCIS = 566 ! MPWKCIS1K for barrier heights integer(c_int), parameter, public :: XC_HYB_MGGA_XC_MPWKCIS1K = 567 ! PBE1KCIS for binding energies integer(c_int), parameter, public :: XC_HYB_MGGA_XC_PBE1KCIS = 568 ! TPSS1KCIS for thermochemistry and kinetics integer(c_int), parameter, public :: XC_HYB_MGGA_XC_TPSS1KCIS = 569 ! Becke 88 reoptimized to be used with tau1 integer(c_int), parameter, public :: XC_GGA_X_B88M = 570 ! Meta-GGA correlation by Becke integer(c_int), parameter, public :: XC_MGGA_C_B88 = 571 ! B5050LYP integer(c_int), parameter, public :: XC_HYB_GGA_XC_B5050LYP = 572 ! Wigner with corresponding LYP parameters integer(c_int), parameter, public :: XC_LDA_C_OW_LYP = 573 ! Optimized Wigner integer(c_int), parameter, public :: XC_LDA_C_OW = 574 ! GX functional of Loos integer(c_int), parameter, public :: XC_MGGA_X_GX = 575 ! PBE-GX functional of Loos integer(c_int), parameter, public :: XC_MGGA_X_PBE_GX = 576 ! Groth, Dornheim, Sjostrom, Malone, Foulkes, Bonitz integer(c_int), parameter, public :: XC_LDA_XC_GDSMFB = 577 ! Gordon and Kim 1972 integer(c_int), parameter, public :: XC_LDA_C_GK72 = 578 ! Karasiev reparameterization of Chachiyo integer(c_int), parameter, public :: XC_LDA_C_KARASIEV = 579 ! Liu-Parr kinetic integer(c_int), parameter, public :: XC_LDA_K_LP96 = 580 ! revised SCAN integer(c_int), parameter, public :: XC_MGGA_X_REVSCAN = 581 ! revised SCAN integer(c_int), parameter, public :: XC_MGGA_C_REVSCAN = 582 ! revised SCAN hybrid exchange (SCAN0) integer(c_int), parameter, public :: XC_HYB_MGGA_X_REVSCAN0 = 583 ! SCAN + VV10 correlation integer(c_int), parameter, public :: XC_MGGA_C_SCAN_VV10 = 584 ! REVSCAN + VV10 correlation integer(c_int), parameter, public :: XC_MGGA_C_REVSCAN_VV10 = 585 ! Becke-Roussel 89 with an explicit inversion of x(y), gamma = 0.8 integer(c_int), parameter, public :: XC_MGGA_X_BR89_EXPLICIT = 586 ! Keal and Tozer, version 3 integer(c_int), parameter, public :: XC_GGA_XC_KT3 = 587 ! Baer and Neuhauser, gamma=1 integer(c_int), parameter, public :: XC_HYB_LDA_XC_BN05 = 588 ! Livshits and Baer, empirical functional also used for IP tuning integer(c_int), parameter, public :: XC_HYB_GGA_XC_LB07 = 589 ! Long-range LDA correlation functional integer(c_int), parameter, public :: XC_LDA_C_PMGB06 = 590 ! Combined analytical theory with Monte Carlo sampling integer(c_int), parameter, public :: XC_GGA_K_GDS08 = 591 ! As GDS08 but for an electron gas with spin integer(c_int), parameter, public :: XC_GGA_K_GHDS10 = 592 ! Reparametrized GHDS10 integer(c_int), parameter, public :: XC_GGA_K_GHDS10R = 593 ! Trickey, Karasiev, and Vela integer(c_int), parameter, public :: XC_GGA_K_TKVLN = 594 ! Three parameter PBE-like expansion integer(c_int), parameter, public :: XC_GGA_K_PBE3 = 595 ! Four parameter PBE-like expansion integer(c_int), parameter, public :: XC_GGA_K_PBE4 = 596 ! Intermediate form between PBE3 and PBE4 integer(c_int), parameter, public :: XC_GGA_K_EXP4 = 597 ! Becke 98 integer(c_int), parameter, public :: XC_HYB_MGGA_XC_B98 = 598 ! Neural network LDA from Tozer et al integer(c_int), parameter, public :: XC_LDA_XC_TIH = 599 ! Exchange in 1D for an exponentially screened interaction integer(c_int), parameter, public :: XC_LDA_X_1D_EXPONENTIAL = 600 ! Short-range recipe for PBE functional - Yukawa integer(c_int), parameter, public :: XC_GGA_X_SFAT_PBE = 601 ! Becke-Roussel 89 with an explicit inversion of x(y), gamma = 1.0 integer(c_int), parameter, public :: XC_MGGA_X_BR89_EXPLICIT_1 = 602 ! Regularized TPSS integer(c_int), parameter, public :: XC_MGGA_X_REGTPSS = 603 ! Functional derivative recovered from the stray LB94 potential integer(c_int), parameter, public :: XC_GGA_X_FD_LB94 = 604 ! Revised FD_LB94 integer(c_int), parameter, public :: XC_GGA_X_FD_REVLB94 = 605 ! PBEloc variation with enhanced compatibility with exact exchange integer(c_int), parameter, public :: XC_GGA_C_ZVPBELOC = 606 ! Hybrid based on APBE integer(c_int), parameter, public :: XC_HYB_GGA_XC_APBE0 = 607 ! Hybrid based in APBE and zvPBEloc integer(c_int), parameter, public :: XC_HYB_GGA_XC_HAPBE = 608 ! JS17 meta-GGA for 2D integer(c_int), parameter, public :: XC_MGGA_X_2D_JS17 = 609 ! Similar to CAM-B3LYP, but trying to reduce the many-electron self-interaction integer(c_int), parameter, public :: XC_HYB_GGA_XC_RCAM_B3LYP = 610 ! hybrid fitted to carbon NMR shifts integer(c_int), parameter, public :: XC_HYB_GGA_XC_WC04 = 611 ! hybrid fitted to proton NMR shifts integer(c_int), parameter, public :: XC_HYB_GGA_XC_WP04 = 612 ! Luo-Karasiev-Trickey GGA kinetic integer(c_int), parameter, public :: XC_GGA_K_LKT = 613 ! CAM version of B3LYP, tuned for TDDFT integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAMH_B3LYP = 614 ! Long-range corrected short-range hybrid PBE (whPBE0) by Shao et al integer(c_int), parameter, public :: XC_HYB_GGA_XC_WHPBE0 = 615 ! Three parameter PBE-like expansion integer(c_int), parameter, public :: XC_GGA_K_PBE2 = 616 ! L0.4 by Laricchia et al integer(c_int), parameter, public :: XC_MGGA_K_L04 = 617 ! L0.6 by Laricchia et al integer(c_int), parameter, public :: XC_MGGA_K_L06 = 618 ! VT84F by Karasiev et al integer(c_int), parameter, public :: XC_GGA_K_VT84F = 619 ! LGAP by Constantin et al integer(c_int), parameter, public :: XC_GGA_K_LGAP = 620 ! Reduced derivative approximation by Karasiev et al integer(c_int), parameter, public :: XC_MGGA_K_RDA = 621 ! Short-range recipe for OPTX functional integer(c_int), parameter, public :: XC_GGA_X_ITYH_OPTX = 622 ! Short-range recipe for PBE functional integer(c_int), parameter, public :: XC_GGA_X_ITYH_PBE = 623 ! Short-range LYP by Ai, Fang, and Su integer(c_int), parameter, public :: XC_GGA_C_LYPR = 624 ! LC version of BLYP for electron affinities integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_BLYP_EA = 625 ! Regularized Tao and Mo exchange integer(c_int), parameter, public :: XC_MGGA_X_REGTM = 626 ! Second-order gradient expansion integer(c_int), parameter, public :: XC_MGGA_K_GEA2 = 627 ! Fourth-order gradient expansion integer(c_int), parameter, public :: XC_MGGA_K_GEA4 = 628 ! mGGA-rev functional by Cancio, Stewart, and Kuna (a=1) integer(c_int), parameter, public :: XC_MGGA_K_CSK1 = 629 ! mGGA-rev functional by Cancio, Stewart, and Kuna (a=4) integer(c_int), parameter, public :: XC_MGGA_K_CSK4 = 630 ! mGGAloc-rev functional by Cancio, Stewart, and Kuna (a=1) integer(c_int), parameter, public :: XC_MGGA_K_CSK_LOC1 = 631 ! mGGAloc-rev functional by Cancio, Stewart, and Kuna (a=4) integer(c_int), parameter, public :: XC_MGGA_K_CSK_LOC4 = 632 ! LGAP-GE by Constantin et al integer(c_int), parameter, public :: XC_GGA_K_LGAP_GE = 633 ! Reoptimized PC07 by Mejia-Rodriguez and Trickey integer(c_int), parameter, public :: XC_MGGA_K_PC07_OPT = 634 ! empirically optimized gamma-TFvW form integer(c_int), parameter, public :: XC_GGA_K_TFVW_OPT = 635 ! LC version of B88 integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_BOP = 636 ! LC version of PBE integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_PBEOP = 637 ! Krieger, Chen, and Kurth integer(c_int), parameter, public :: XC_MGGA_C_KCISK = 638 ! LC version of BLYP with correlation only in the short range integer(c_int), parameter, public :: XC_HYB_GGA_XC_LC_BLYPR = 639 ! Modified CAM-B3LYP by Day, Nguyen and Pachter integer(c_int), parameter, public :: XC_HYB_GGA_XC_MCAM_B3LYP = 640 ! Short-range LDA exchange with Yukawa attenuation integer(c_int), parameter, public :: XC_LDA_X_YUKAWA = 641 ! Re-regularized SCAN correlation with larger value for eta integer(c_int), parameter, public :: XC_MGGA_C_R2SCAN01 = 642 ! Revised correlation energy for MGGAC exchange functional integer(c_int), parameter, public :: XC_MGGA_C_RMGGAC = 643 ! MCML exchange integer(c_int), parameter, public :: XC_MGGA_X_MCML = 644 ! Re-regularized SCAN exchange by Furness et al with larger value for eta integer(c_int), parameter, public :: XC_MGGA_X_R2SCAN01 = 645 ! Swart 2012 range-separated hybrid GGA exchange integer(c_int), parameter, public :: XC_HYB_GGA_X_CAM_S12G = 646 ! Swart 2012 range-separated hybrid GGA exchange integer(c_int), parameter, public :: XC_HYB_GGA_X_CAM_S12H = 647 ! r++SCAN: rSCAN with uniform density limit and coordinate scaling behavior integer(c_int), parameter, public :: XC_MGGA_X_RPPSCAN = 648 ! r++SCAN: rSCAN with uniform density limit and coordinate scaling behavior integer(c_int), parameter, public :: XC_MGGA_C_RPPSCAN = 649 ! r$^{4}$SCAN, a functional that satisfies the same exact constraints that SCAN does integer(c_int), parameter, public :: XC_MGGA_X_R4SCAN = 650 ! Exchange part of VCML-rVV10 by Trepte and Voss integer(c_int), parameter, public :: XC_MGGA_X_VCML = 651 ! VCML-rVV10 by Trepte and Voss integer(c_int), parameter, public :: XC_MGGA_XC_VCML_RVV10 = 652 ! Google Accelerated Science 22 integer(c_int), parameter, public :: XC_HYB_MGGA_XC_GAS22 = 658 ! r2SCANh: r2SCAN hybrid like TPSSh with 10% exact exchange integer(c_int), parameter, public :: XC_HYB_MGGA_XC_R2SCANH = 659 ! r2SCAN0: r2SCAN hybrid like PBE0 with 25% exact exchange integer(c_int), parameter, public :: XC_HYB_MGGA_XC_R2SCAN0 = 660 ! r2SCAN50: r2SCAN hybrid like PBE50 with 50% exact exchange integer(c_int), parameter, public :: XC_HYB_MGGA_XC_R2SCAN50 = 661 ! CAM hybrid screened exchange PBE version integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAM_PBEH = 681 ! CAMY hybrid screened exchange PBE version integer(c_int), parameter, public :: XC_HYB_GGA_XC_CAMY_PBEH = 682 ! Ruggeri, Rios, and Alavi unrestricted fit integer(c_int), parameter, public :: XC_LDA_C_UPW92 = 683 ! Ruggeri, Rios, and Alavi restricted fit integer(c_int), parameter, public :: XC_LDA_C_RPW92 = 684 ! LDA-type exchange with tau-dependent potential integer(c_int), parameter, public :: XC_MGGA_X_TLDA = 685 ! Tao 2001 integer(c_int), parameter, public :: XC_MGGA_X_EDMGGA = 686 ! Generalized density-matrix with a=1/2 integer(c_int), parameter, public :: XC_MGGA_X_GDME_NV = 687 ! Reparametrized local-density approximation integer(c_int), parameter, public :: XC_MGGA_X_RLDA = 688 ! Generalized density-matrix with a=0 integer(c_int), parameter, public :: XC_MGGA_X_GDME_0 = 689 ! Generalized density-matrix with a=0.00638 integer(c_int), parameter, public :: XC_MGGA_X_GDME_KOS = 690 ! Varied-terms (VT) mGGA of Koehl, Odom, and Scuseria integer(c_int), parameter, public :: XC_MGGA_X_GDME_VT = 691 ! simple local model for Slater potential integer(c_int), parameter, public :: XC_LDA_X_SLOC = 692 ! revised Tao and Mo 2016 exchange integer(c_int), parameter, public :: XC_MGGA_X_REVTM = 693 ! revised Tao and Mo 2016 exchange integer(c_int), parameter, public :: XC_MGGA_C_REVTM = 694 ! EDMGGA hybrid integer(c_int), parameter, public :: XC_HYB_MGGA_XC_EDMGGAH = 695 ! Modified Becke-Roussel for band gaps - cuspless hole integer(c_int), parameter, public :: XC_MGGA_X_MBRXC_BG = 696 ! Modified Becke-Roussel for band gaps - hydrogen hole integer(c_int), parameter, public :: XC_MGGA_X_MBRXH_BG = 697 ! Half-and-half meta-LDAized LDA exchange by Lehtola and Marques integer(c_int), parameter, public :: XC_MGGA_X_HLTA = 698 ! Half-and-half meta-LDAized PW correlation by Lehtola and Marques integer(c_int), parameter, public :: XC_MGGA_C_HLTAPW = 699 ! Deorbitalized SCAN (SCAN-L) exchange integer(c_int), parameter, public :: XC_MGGA_X_SCANL = 700 ! Deorbitalized revised SCAN (revSCAN-L) exchange integer(c_int), parameter, public :: XC_MGGA_X_REVSCANL = 701 ! Deorbitalized SCAN (SCAN-L) correlation integer(c_int), parameter, public :: XC_MGGA_C_SCANL = 702 ! SCAN-L + rVV10 correlation integer(c_int), parameter, public :: XC_MGGA_C_SCANL_RVV10 = 703 ! SCAN-L + VV10 correlation integer(c_int), parameter, public :: XC_MGGA_C_SCANL_VV10 = 704 ! Jana and Samal 2018, screened range-separated TM exchange integer(c_int), parameter, public :: XC_HYB_MGGA_X_JS18 = 705 ! Patra, Jana and Samal 2018, screened range-separated TM exchange integer(c_int), parameter, public :: XC_HYB_MGGA_X_PJS18 = 706 ! TASK exchange of Aschebrock and Kuemmel integer(c_int), parameter, public :: XC_MGGA_X_TASK = 707 ! MGGAC exchange of Patra et al integer(c_int), parameter, public :: XC_MGGA_X_MGGAC = 711 ! beta fitted to LC20 to be used with MGGAC integer(c_int), parameter, public :: XC_GGA_C_MGGAC = 712 ! modified Becke-Roussel by Patra et al integer(c_int), parameter, public :: XC_MGGA_X_MBR = 716 ! Deorbitalized re-regularized SCAN (r2SCAN-L) exchange integer(c_int), parameter, public :: XC_MGGA_X_R2SCANL = 718 ! Deorbitalized re-regularized SCAN (r2SCAN-L) correlation integer(c_int), parameter, public :: XC_MGGA_C_R2SCANL = 719 ! Long-range corrected TM-LYP by Jana et al integer(c_int), parameter, public :: XC_HYB_MGGA_XC_LC_TMLYP = 720 ! modified TASK exchange integer(c_int), parameter, public :: XC_MGGA_X_MTASK = 724 ! Functional for quasi-1D systems integer(c_int), parameter, public :: XC_GGA_X_Q1D = 734 ! KTBM learned exchange - 0 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_0 = 735 ! KTBM learned exchange - 1 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_1 = 736 ! KTBM learned exchange - 2 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_2 = 737 ! KTBM learned exchange - 3 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_3 = 738 ! KTBM learned exchange - 4 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_4 = 739 ! KTBM learned exchange - 5 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_5 = 740 ! KTBM learned exchange - 6 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_6 = 741 ! KTBM learned exchange - 7 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_7 = 742 ! KTBM learned exchange - 8 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_8 = 743 ! KTBM learned exchange - 9 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_9 = 744 ! KTBM learned exchange - 10 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_10 = 745 ! KTBM learned exchange - 11 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_11 = 746 ! KTBM learned exchange - 12 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_12 = 747 ! KTBM learned exchange - 13 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_13 = 748 ! KTBM learned exchange - 14 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_14 = 749 ! KTBM learned exchange - 15 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_15 = 750 ! KTBM learned exchange - 16 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_16 = 751 ! KTBM learned exchange - 17 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_17 = 752 ! KTBM learned exchange - 18 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_18 = 753 ! KTBM learned exchange - 19 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_19 = 754 ! KTBM learned exchange - 20 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_20 = 755 ! KTBM learned exchange - 21 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_21 = 756 ! KTBM learned exchange - 22 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_22 = 757 ! KTBM learned exchange - 23 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_23 = 758 ! KTBM learned exchange - 24 integer(c_int), parameter, public :: XC_MGGA_X_KTBM_24 = 759 ! KTBM learned exchange - GAP integer(c_int), parameter, public :: XC_MGGA_X_KTBM_GAP = 760 ! These are old names kept for compatibility integer(c_int), parameter, public :: & XC_LDA_X_1D = 21, & XC_GGA_X_BGCP = 38, & XC_GGA_C_BGCP = 39, & XC_GGA_C_BCGP = 39, & XC_GGA_C_VPBE = 83, & XC_GGA_XC_LB = 160, & XC_MGGA_C_CC06 = 229, & XC_GGA_K_ABSR1 = 506, & XC_GGA_K_ABSR2 = 507, & XC_LDA_C_LP_A = 547, & XC_LDA_C_LP_B = 548, & XC_MGGA_C_LP90 = 564 !---------------------------------------------------------------- interface subroutine xc_version(major, minor, micro) bind(c) import integer(c_int), intent(out) :: major, minor, micro end subroutine xc_version type(c_ptr) function xc_version_string() bind(c) import end function xc_version_string type(c_ptr) function xc_reference() bind(c) import end function xc_reference type(c_ptr) function xc_reference_doi() bind(c) import end function xc_reference_doi type(c_ptr) function xc_reference_key() bind(c) import end function xc_reference_key end interface !---------------------------------------------------------------- type :: xc_f03_func_info_t private type(c_ptr) :: ptr = C_NULL_PTR end type xc_f03_func_info_t interface integer(c_int) function xc_func_info_get_number(info) bind(c) import type(c_ptr), value :: info end function xc_func_info_get_number integer(c_int) function xc_func_info_get_kind(info) bind(c) import type(c_ptr), value :: info end function xc_func_info_get_kind type(c_ptr) function xc_func_info_get_name(info) bind(c) import type(c_ptr), value :: info end function xc_func_info_get_name integer(c_int) function xc_func_info_get_family(info) bind(c) import type(c_ptr), value :: info end function xc_func_info_get_family integer(c_int) function xc_func_info_get_flags(info) bind(c) import type(c_ptr), value :: info end function xc_func_info_get_flags type(c_ptr) function xc_func_info_get_references(info, number) bind(c) import type(c_ptr), value :: info integer(c_int), value :: number end function xc_func_info_get_references integer(c_int) function xc_func_info_get_n_ext_params(info) bind(c) import type(c_ptr), value :: info end function xc_func_info_get_n_ext_params type(c_ptr) function xc_func_info_get_ext_params_name(info, number) bind(c) import type(c_ptr), value :: info integer(c_int), value :: number end function xc_func_info_get_ext_params_name type(c_ptr) function xc_func_info_get_ext_params_description(info, number) bind(c) import type(c_ptr), value :: info integer(c_int), value :: number end function xc_func_info_get_ext_params_description real(c_double) function xc_func_info_get_ext_params_default_value(info, number) bind(c) import type(c_ptr), value :: info integer(c_int), value :: number end function xc_func_info_get_ext_params_default_value end interface !---------------------------------------------------------------- type :: xc_f03_func_reference_t private type(c_ptr) :: ptr = C_NULL_PTR end type xc_f03_func_reference_t interface type(c_ptr) function xc_func_reference_get_ref(reference) bind(c) import type(c_ptr), value :: reference end function xc_func_reference_get_ref type(c_ptr) function xc_func_reference_get_doi(reference) bind(c) import type(c_ptr), value :: reference end function xc_func_reference_get_doi type(c_ptr) function xc_func_reference_get_bibtex(reference) bind(c) import type(c_ptr), value :: reference end function xc_func_reference_get_bibtex type(c_ptr) function xc_func_reference_get_key(reference) bind(c) import type(c_ptr), value :: reference end function xc_func_reference_get_key end interface !---------------------------------------------------------------- type :: xc_f03_func_t private type(c_ptr) :: ptr = C_NULL_PTR end type xc_f03_func_t interface type(c_ptr) function xc_func_alloc() bind(c) import end function xc_func_alloc integer(c_int) function xc_func_init(p, functional, nspin) bind(c) import type(c_ptr), value :: p integer(c_int), value :: functional, nspin end function xc_func_init subroutine xc_func_end(p) bind(c) import type(c_ptr), value :: p end subroutine xc_func_end subroutine xc_func_free(p) bind(c) import type(c_ptr), value :: p end subroutine xc_func_free subroutine libxc_free(p) bind(c) import type(c_ptr), value :: p end subroutine libxc_free type(c_ptr) function xc_func_get_info(p) bind(c) import type(c_ptr), value :: p end function xc_func_get_info type(c_ptr) function xc_functional_get_name(number) bind(c) import integer(c_int), value :: number end function xc_functional_get_name integer(c_int) function xc_functional_get_number(func_string) bind(c) import character(kind=c_char), intent(in) :: func_string(*) end function xc_functional_get_number integer(c_int) function xc_family_from_id(id, family, number) bind(c) import integer(c_int), value :: id type(c_ptr), value :: family, number end function xc_family_from_id integer(c_int) function xc_f03_number_of_functionals() bind(c, name="xc_number_of_functionals") import end function xc_f03_number_of_functionals integer(c_int) function xc_f03_maximum_name_length() bind(c, name="xc_maximum_name_length") import end function xc_f03_maximum_name_length subroutine xc_f03_available_functional_numbers(list) bind(c, name="xc_available_functional_numbers") import integer(c_int), intent(out) :: list(*) end subroutine xc_f03_available_functional_numbers subroutine xc_available_functional_names(list) bind(c) import type(c_ptr) :: list(*) end subroutine xc_available_functional_names subroutine xc_func_set_dens_threshold(p, dens_threshold) bind(c) import type(c_ptr), value :: p real(c_double), value :: dens_threshold end subroutine xc_func_set_dens_threshold subroutine xc_func_set_zeta_threshold(p, zeta_threshold) bind(c) import type(c_ptr), value :: p real(c_double), value :: zeta_threshold end subroutine xc_func_set_zeta_threshold subroutine xc_func_set_sigma_threshold(p, sigma_threshold) bind(c) import type(c_ptr), value :: p real(c_double), value :: sigma_threshold end subroutine xc_func_set_sigma_threshold subroutine xc_func_set_tau_threshold(p, tau_threshold) bind(c) import type(c_ptr), value :: p real(c_double), value :: tau_threshold end subroutine xc_func_set_tau_threshold subroutine xc_func_set_ext_params(p, ext_params) bind(c) import type(c_ptr), value :: p real(c_double), intent(in) :: ext_params(*) end subroutine xc_func_set_ext_params subroutine xc_func_set_ext_params_name(p, name, par) bind(c) import type(c_ptr), value :: p character(kind=c_char), intent(in) :: name(*) real(c_double), value :: par end subroutine xc_func_set_ext_params_name end interface ! LDAs !---------------------------------------------------------------- interface subroutine xc_lda(p, np, rho, zk, vrho, v2rho2, v3rho3, v4rho4) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*), v2rho2(*), v3rho3(*), v4rho4(*) end subroutine xc_lda subroutine xc_lda_exc(p, np, rho, zk) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*) end subroutine xc_lda_exc subroutine xc_lda_exc_vxc(p, np, rho, zk, vrho) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*) end subroutine xc_lda_exc_vxc subroutine xc_lda_exc_vxc_fxc(p, np, rho, zk, vrho, v2rho2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*), v2rho2(*) end subroutine xc_lda_exc_vxc_fxc subroutine xc_lda_exc_vxc_fxc_kxc(p, np, rho, zk, vrho, v2rho2, v3rho3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*), v2rho2(*), v3rho3(*) end subroutine xc_lda_exc_vxc_fxc_kxc subroutine xc_lda_vxc(p, np, rho, vrho) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: vrho(*) end subroutine xc_lda_vxc subroutine xc_lda_vxc_fxc(p, np, rho, vrho, v2rho2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: vrho(*), v2rho2(*) end subroutine xc_lda_vxc_fxc subroutine xc_lda_vxc_fxc_kxc(p, np, rho, vrho, v2rho2, v3rho3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: vrho(*), v2rho2(*), v3rho3(*) end subroutine xc_lda_vxc_fxc_kxc subroutine xc_lda_fxc(p, np, rho, v2rho2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: v2rho2(*) end subroutine xc_lda_fxc subroutine xc_lda_kxc(p, np, rho, v3rho3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: v3rho3(*) end subroutine xc_lda_kxc subroutine xc_lda_lxc(p, np, rho, v4rho4) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: v4rho4(*) end subroutine xc_lda_lxc end interface ! GGAs !---------------------------------------------------------------- interface subroutine xc_gga(p, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3, & v4rho4, v4rho3sigma, v4rho2sigma2, v4rhosigma3, v4sigma4 & ) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) real(c_double), intent(out) :: v4rho4(*), v4rho3sigma(*), v4rho2sigma2(*), v4rhosigma3(*), v4sigma4(*) end subroutine xc_gga subroutine xc_gga_exc(p, np, rho, sigma, zk) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*) end subroutine xc_gga_exc subroutine xc_gga_exc_vxc(p, np, rho, sigma, zk, vrho, vsigma) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) end subroutine xc_gga_exc_vxc subroutine xc_gga_exc_vxc_fxc(p, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) end subroutine xc_gga_exc_vxc_fxc subroutine xc_gga_exc_vxc_fxc_kxc(p, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) end subroutine xc_gga_exc_vxc_fxc_kxc subroutine xc_gga_vxc(p, np, rho, sigma, vrho, vsigma) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: vrho(*), vsigma(*) end subroutine xc_gga_vxc subroutine xc_gga_vxc_fxc(p, np, rho, sigma, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) end subroutine xc_gga_vxc_fxc subroutine xc_gga_vxc_fxc_kxc(p, np, rho, sigma, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) end subroutine xc_gga_vxc_fxc_kxc subroutine xc_gga_fxc(p, np, rho, sigma, v2rho2, v2rhosigma, v2sigma2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) end subroutine xc_gga_fxc subroutine xc_gga_kxc(p, np, rho, sigma, v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) end subroutine xc_gga_kxc subroutine xc_gga_lxc(p, np, rho, sigma, v4rho4, v4rho3sigma, v4rho2sigma2, v4rhosigma3, v4sigma4) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: v4rho4(*), v4rho3sigma(*), v4rho2sigma2(*), v4rhosigma3(*), v4sigma4(*) end subroutine xc_gga_lxc end interface interface real(c_double) function xc_gga_ak13_get_asymptotic(homo) bind(c) import real(c_double), value :: homo end function xc_gga_ak13_get_asymptotic end interface interface real(c_double) function xc_hyb_exx_coef(p) bind(c) import type(c_ptr), value :: p end function xc_hyb_exx_coef subroutine xc_hyb_cam_coef(p, omega, alpha, beta) bind(c) import type(c_ptr), value :: p real(c_double), intent(out) :: omega, alpha, beta end subroutine xc_hyb_cam_coef subroutine xc_nlc_coef(p, nlc_b, nlc_c) bind(c) import type(c_ptr), value :: p real(c_double), intent(out) :: nlc_b, nlc_c end subroutine xc_nlc_coef integer(c_int) function xc_num_aux_funcs(p) bind(c, name="xc_num_aux_funcs") import type(c_ptr), value :: p end function xc_num_aux_funcs subroutine xc_aux_func_ids(p, ids) bind(c, name="xc_aux_func_ids") import type(c_ptr), value :: p integer(c_int), intent(out) :: ids(*) end subroutine xc_aux_func_ids subroutine xc_aux_func_weights(p, weights) bind(c, name="xc_aux_func_weights") import type(c_ptr), value :: p real(c_double), intent(in) :: weights(*) end subroutine xc_aux_func_weights end interface ! the meta-GGAs !---------------------------------------------------------------- interface subroutine xc_mgga(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3, & v4rho4, v4rho3sigma, v4rho3lapl, v4rho3tau, v4rho2sigma2, v4rho2sigmalapl, & v4rho2sigmatau, v4rho2lapl2, v4rho2lapltau, v4rho2tau2, v4rhosigma3, & v4rhosigma2lapl, v4rhosigma2tau, v4rhosigmalapl2, v4rhosigmalapltau, & v4rhosigmatau2, v4rholapl3, v4rholapl2tau, v4rholapltau2, v4rhotau3, v4sigma4, & v4sigma3lapl, v4sigma3tau, v4sigma2lapl2, v4sigma2lapltau, v4sigma2tau2, & v4sigmalapl3, v4sigmalapl2tau, v4sigmalapltau2, v4sigmatau3, v4lapl4, & v4lapl3tau, v4lapl2tau2, v4lapltau3, v4tau4 & ) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) real(c_double), intent(out) :: & v4rho4(*), v4rho3sigma(*), v4rho3lapl(*), v4rho3tau(*), v4rho2sigma2(*), v4rho2sigmalapl(*), & v4rho2sigmatau(*), v4rho2lapl2(*), v4rho2lapltau(*), v4rho2tau2(*), v4rhosigma3(*), & v4rhosigma2lapl(*), v4rhosigma2tau(*), v4rhosigmalapl2(*), v4rhosigmalapltau(*), & v4rhosigmatau2(*), v4rholapl3(*), v4rholapl2tau(*), v4rholapltau2(*), v4rhotau3(*), v4sigma4(*), & v4sigma3lapl(*), v4sigma3tau(*), v4sigma2lapl2(*), v4sigma2lapltau(*), v4sigma2tau2(*), & v4sigmalapl3(*), v4sigmalapl2tau(*), v4sigmalapltau2(*), v4sigmatau3(*), v4lapl4(*), & v4lapl3tau(*), v4lapl2tau2(*), v4lapltau3(*), v4tau4(*) end subroutine xc_mgga subroutine xc_mgga_exc(p, np, rho, sigma, lapl, tau, zk) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*) end subroutine xc_mgga_exc subroutine xc_mgga_exc_vxc(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) end subroutine xc_mgga_exc_vxc subroutine xc_mgga_exc_vxc_fxc(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) end subroutine xc_mgga_exc_vxc_fxc subroutine xc_mgga_exc_vxc_fxc_kxc(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) end subroutine xc_mgga_exc_vxc_fxc_kxc subroutine xc_mgga_vxc(p, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: vrho(*), vsigma(*), vlapl(*), vtau(*) end subroutine xc_mgga_vxc subroutine xc_mgga_vxc_fxc(p, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) end subroutine xc_mgga_vxc_fxc subroutine xc_mgga_vxc_fxc_kxc(p, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) end subroutine xc_mgga_vxc_fxc_kxc subroutine xc_mgga_fxc(p, np, rho, sigma, lapl, tau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) end subroutine xc_mgga_fxc subroutine xc_mgga_kxc(p, np, rho, sigma, lapl, tau, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) end subroutine xc_mgga_kxc subroutine xc_mgga_lxc(p, np, rho, sigma, lapl, tau, & v4rho4, v4rho3sigma, v4rho3lapl, v4rho3tau, v4rho2sigma2, v4rho2sigmalapl, & v4rho2sigmatau, v4rho2lapl2, v4rho2lapltau, v4rho2tau2, v4rhosigma3, & v4rhosigma2lapl, v4rhosigma2tau, v4rhosigmalapl2, v4rhosigmalapltau, & v4rhosigmatau2, v4rholapl3, v4rholapl2tau, v4rholapltau2, v4rhotau3, v4sigma4, & v4sigma3lapl, v4sigma3tau, v4sigma2lapl2, v4sigma2lapltau, v4sigma2tau2, & v4sigmalapl3, v4sigmalapl2tau, v4sigmalapltau2, v4sigmatau3, v4lapl4, & v4lapl3tau, v4lapl2tau2, v4lapltau3, v4tau4 & ) bind(c) import type(c_ptr), value :: p integer(c_size_t), value :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: & v4rho4(*), v4rho3sigma(*), v4rho3lapl(*), v4rho3tau(*), v4rho2sigma2(*), v4rho2sigmalapl(*), & v4rho2sigmatau(*), v4rho2lapl2(*), v4rho2lapltau(*), v4rho2tau2(*), v4rhosigma3(*), & v4rhosigma2lapl(*), v4rhosigma2tau(*), v4rhosigmalapl2(*), v4rhosigmalapltau(*), & v4rhosigmatau2(*), v4rholapl3(*), v4rholapl2tau(*), v4rholapltau2(*), v4rhotau3(*), v4sigma4(*), & v4sigma3lapl(*), v4sigma3tau(*), v4sigma2lapl2(*), v4sigma2lapltau(*), v4sigma2tau2(*), & v4sigmalapl3(*), v4sigmalapl2tau(*), v4sigmalapltau2(*), v4sigmatau3(*), v4lapl4(*), & v4lapl3tau(*), v4lapl2tau2(*), v4lapltau3(*), v4tau4(*) end subroutine xc_mgga_lxc end interface contains !---------------------------------------------------------------- subroutine xc_f03_version(major, minor, micro) integer(c_int), intent(out) :: major, minor, micro call xc_version(major, minor, micro) end subroutine xc_f03_version subroutine xc_f03_version_string(version) character(len=*), intent(out) :: version type(c_ptr) :: c_version c_version = xc_version_string() call c_to_f_string_ptr(c_version, version) end subroutine xc_f03_version_string subroutine xc_f03_reference(ref) character(len=*), intent(out) :: ref type(c_ptr) :: c_ref c_ref = xc_reference() call c_to_f_string_ptr(c_ref, ref) end subroutine xc_f03_reference subroutine xc_f03_reference_doi(doi) character(len=*), intent(out) :: doi type(c_ptr) :: c_doi c_doi = xc_reference_doi() call c_to_f_string_ptr(c_doi, doi) end subroutine xc_f03_reference_doi subroutine xc_f03_reference_key(key) character(len=*), intent(out) :: key type(c_ptr) :: c_key c_key = xc_reference_key() call c_to_f_string_ptr(c_key, key) end subroutine xc_f03_reference_key !---------------------------------------------------------------- integer(c_int) function xc_f03_func_info_get_number(info) result(number) type(xc_f03_func_info_t), intent(in) :: info number = xc_func_info_get_number(info%ptr) end function xc_f03_func_info_get_number integer(c_int) function xc_f03_func_info_get_kind(info) result(kind) type(xc_f03_func_info_t), intent(in) :: info kind = xc_func_info_get_kind(info%ptr) end function xc_f03_func_info_get_kind character(len=128) function xc_f03_func_info_get_name(info) result(name) type(xc_f03_func_info_t), intent(in) :: info call c_to_f_string_ptr(xc_func_info_get_name(info%ptr), name) end function xc_f03_func_info_get_name integer(c_int) function xc_f03_func_info_get_family(info) result(family) type(xc_f03_func_info_t), intent(in) :: info family = xc_func_info_get_family(info%ptr) end function xc_f03_func_info_get_family integer(c_int) function xc_f03_func_info_get_flags(info) result(flags) type(xc_f03_func_info_t), intent(in) :: info flags = xc_func_info_get_flags(info%ptr) end function xc_f03_func_info_get_flags type(xc_f03_func_reference_t) function xc_f03_func_info_get_references(info, number) result(reference) type(xc_f03_func_info_t), intent(in) :: info integer(c_int), intent(inout) :: number ! number of the reference. Must be 0 in the first call type(c_ptr) :: next_ref reference%ptr = xc_func_info_get_references(info%ptr, number) if (.not. c_associated(reference%ptr)) then number = -1 else next_ref = xc_func_info_get_references(info%ptr, INT(number + 1, c_int)) if (c_associated(next_ref)) then number = number + 1 else number = -1 end if end if end function xc_f03_func_info_get_references integer(c_int) function xc_f03_func_info_get_n_ext_params(info) result(n_ext_params) type(xc_f03_func_info_t), intent(in) :: info n_ext_params = xc_func_info_get_n_ext_params(info%ptr) end function xc_f03_func_info_get_n_ext_params character(len=128) function xc_f03_func_info_get_ext_params_name(info, number) result(name) type(xc_f03_func_info_t), intent(in) :: info integer(c_int), intent(in) :: number call c_to_f_string_ptr(xc_func_info_get_ext_params_name(info%ptr, number), name) end function xc_f03_func_info_get_ext_params_name character(len=128) function xc_f03_func_info_get_ext_params_description(info, number) result(description) type(xc_f03_func_info_t), intent(in) :: info integer(c_int), intent(in) :: number call c_to_f_string_ptr(xc_func_info_get_ext_params_description(info%ptr, number), description) end function xc_f03_func_info_get_ext_params_description real(c_double) function xc_f03_func_info_get_ext_params_default_value(info, number) result(val) type(xc_f03_func_info_t), intent(in) :: info integer(c_int), intent(in) :: number val = xc_func_info_get_ext_params_default_value(info%ptr, number) end function xc_f03_func_info_get_ext_params_default_value !---------------------------------------------------------------- character(len=1024) function xc_f03_func_reference_get_ref(reference) result(ref) type(xc_f03_func_reference_t), intent(in) :: reference call c_to_f_string_ptr(xc_func_reference_get_ref(reference%ptr), ref) end function xc_f03_func_reference_get_ref character(len=1024) function xc_f03_func_reference_get_doi(reference) result(doi) type(xc_f03_func_reference_t), intent(in) :: reference call c_to_f_string_ptr(xc_func_reference_get_doi(reference%ptr), doi) end function xc_f03_func_reference_get_doi character(len=1024) function xc_f03_func_reference_get_bibtex(reference) result(bibtex) type(xc_f03_func_reference_t), intent(in) :: reference call c_to_f_string_ptr(xc_func_reference_get_bibtex(reference%ptr), bibtex) end function xc_f03_func_reference_get_bibtex character(len=1024) function xc_f03_func_reference_get_key(reference) result(key) type(xc_f03_func_reference_t), intent(in) :: reference call c_to_f_string_ptr(xc_func_reference_get_key(reference%ptr), key) end function xc_f03_func_reference_get_key !---------------------------------------------------------------- subroutine xc_f03_func_init(p, functional, nspin, err) type(xc_f03_func_t), intent(inout) :: p integer(c_int), intent(in) :: functional integer(c_int), intent(in) :: nspin integer(c_int), optional, intent(out) :: err integer(c_int) :: ierr p%ptr = xc_func_alloc() ierr = xc_func_init(p%ptr, functional, nspin) if(present(err)) err = ierr end subroutine xc_f03_func_init subroutine xc_f03_func_end(p) type(xc_f03_func_t), intent(inout) :: p call xc_func_end(p%ptr) call xc_func_free(p%ptr) end subroutine xc_f03_func_end type(xc_f03_func_info_t) function xc_f03_func_get_info(p) result(info) type(xc_f03_func_t), intent(in) :: p info%ptr = xc_func_get_info(p%ptr) end function xc_f03_func_get_info character(len=128) function xc_f03_functional_get_name(number) result(name) integer(c_int), intent(in) :: number type(c_ptr) :: cstr cstr = xc_functional_get_name(number) call c_to_f_string_ptr(cstr, name) call libxc_free(cstr) end function xc_f03_functional_get_name integer(c_int) function xc_f03_functional_get_number(func_string) result(number) character(len=*), intent(in) :: func_string number = xc_functional_get_number(f_to_c_string(func_string)) end function xc_f03_functional_get_number integer(c_int) function xc_f03_family_from_id(id, family, number) integer(c_int), intent(in) :: id integer(c_int), intent(out), optional, target :: family, number type(c_ptr) c_family, c_number integer(c_int), pointer :: f_family, f_number if (present(family)) then f_family => family call c_f_pointer(c_family, f_family) else c_family = C_NULL_PTR end if if (present(number)) then f_number => number call c_f_pointer(c_number, f_number) else c_number = C_NULL_PTR end if xc_f03_family_from_id = xc_family_from_id(id, c_family, c_number) end function xc_f03_family_from_id subroutine xc_f03_available_functional_names(list) character(len=*), intent(out) :: list(*) integer(c_int) :: n, i, maxlen character(kind=c_char), allocatable, target :: names(:,:) type(c_ptr), allocatable :: c_list(:) n = xc_f03_number_of_functionals() maxlen = xc_f03_maximum_name_length() allocate(names(maxlen, n)) allocate(c_list(n)) do i = 1, n c_list(i) = c_loc(names(1,i)) end do call xc_available_functional_names(c_list) do i = 1, n call c_to_f_string_ptr(c_list(i), list(i)) end do deallocate(c_list) deallocate(names) end subroutine xc_f03_available_functional_names subroutine xc_f03_func_set_dens_threshold(p, dens_threshold) type(xc_f03_func_t), intent(in) :: p real(c_double), intent(in) :: dens_threshold call xc_func_set_dens_threshold(p%ptr, dens_threshold) end subroutine xc_f03_func_set_dens_threshold subroutine xc_f03_func_set_zeta_threshold(p, zeta_threshold) type(xc_f03_func_t), intent(in) :: p real(c_double), intent(in) :: zeta_threshold call xc_func_set_zeta_threshold(p%ptr, zeta_threshold) end subroutine xc_f03_func_set_zeta_threshold subroutine xc_f03_func_set_sigma_threshold(p, sigma_threshold) type(xc_f03_func_t), intent(in) :: p real(c_double), intent(in) :: sigma_threshold call xc_func_set_sigma_threshold(p%ptr, sigma_threshold) end subroutine xc_f03_func_set_sigma_threshold subroutine xc_f03_func_set_tau_threshold(p, tau_threshold) type(xc_f03_func_t), intent(in) :: p real(c_double), intent(in) :: tau_threshold call xc_func_set_tau_threshold(p%ptr, tau_threshold) end subroutine xc_f03_func_set_tau_threshold subroutine xc_f03_func_set_ext_params(p, ext_params) type(xc_f03_func_t), intent(in) :: p real(c_double), intent(in) :: ext_params(*) call xc_func_set_ext_params(p%ptr, ext_params) end subroutine xc_f03_func_set_ext_params subroutine xc_f03_func_set_ext_params_name(p, name, par) type(xc_f03_func_t), intent(in) :: p character(len=*), intent(in) :: name real(c_double), intent(in) :: par call xc_func_set_ext_params_name(p%ptr, f_to_c_string(name), par) end subroutine xc_f03_func_set_ext_params_name ! LDAs !---------------------------------------------------------------- subroutine xc_f03_lda(p, np, rho, zk, vrho, v2rho2, v3rho3, v4rho4) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*), v2rho2(*), v3rho3(*), v4rho4(*) call xc_lda(p%ptr, np, rho, zk, vrho, v2rho2, v3rho3, v4rho4) end subroutine xc_f03_lda subroutine xc_f03_lda_exc(p, np, rho, zk) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*) call xc_lda_exc(p%ptr, np, rho, zk) end subroutine xc_f03_lda_exc subroutine xc_f03_lda_exc_vxc(p, np, rho, zk, vrho) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*) call xc_lda_exc_vxc(p%ptr, np, rho, zk, vrho) end subroutine xc_f03_lda_exc_vxc subroutine xc_f03_lda_exc_vxc_fxc(p, np, rho, zk, vrho, v2rho2) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*), v2rho2(*) call xc_lda_exc_vxc_fxc(p%ptr, np, rho, zk, vrho, v2rho2) end subroutine xc_f03_lda_exc_vxc_fxc subroutine xc_f03_lda_exc_vxc_fxc_kxc(p, np, rho, zk, vrho, v2rho2, v3rho3) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: zk(*), vrho(*), v2rho2(*), v3rho3(*) call xc_lda_exc_vxc_fxc_kxc(p%ptr, np, rho, zk, vrho, v2rho2, v3rho3) end subroutine xc_f03_lda_exc_vxc_fxc_kxc subroutine xc_f03_lda_vxc(p, np, rho, vrho) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: vrho(*) call xc_lda_vxc(p%ptr, np, rho, vrho) end subroutine xc_f03_lda_vxc subroutine xc_f03_lda_vxc_fxc(p, np, rho, vrho, v2rho2) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: vrho(*), v2rho2(*) call xc_lda_vxc_fxc(p%ptr, np, rho, vrho, v2rho2) end subroutine xc_f03_lda_vxc_fxc subroutine xc_f03_lda_vxc_fxc_kxc(p, np, rho, vrho, v2rho2, v3rho3) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: vrho(*), v2rho2(*), v3rho3(*) call xc_lda_vxc_fxc_kxc(p%ptr, np, rho, vrho, v2rho2, v3rho3) end subroutine xc_f03_lda_vxc_fxc_kxc subroutine xc_f03_lda_fxc(p, np, rho, v2rho2) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: v2rho2(*) call xc_lda_fxc(p%ptr, np, rho, v2rho2) end subroutine xc_f03_lda_fxc subroutine xc_f03_lda_kxc(p, np, rho, v3rho3) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: v3rho3(*) call xc_lda_kxc(p%ptr, np, rho, v3rho3) end subroutine xc_f03_lda_kxc subroutine xc_f03_lda_lxc(p, np, rho, v4rho4) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*) real(c_double), intent(out) :: v4rho4(*) call xc_lda_lxc(p%ptr, np, rho, v4rho4) end subroutine xc_f03_lda_lxc ! GGAs !---------------------------------------------------------------- subroutine xc_f03_gga(p, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3, & v4rho4, v4rho3sigma, v4rho2sigma2, v4rhosigma3, v4sigma4 & ) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) real(c_double), intent(out) :: v4rho4(*), v4rho3sigma(*), v4rho2sigma2(*), v4rhosigma3(*), v4sigma4(*) call xc_gga(p%ptr, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3, & v4rho4, v4rho3sigma, v4rho2sigma2, v4rhosigma3, v4sigma4 & ) end subroutine xc_f03_gga subroutine xc_f03_gga_exc(p, np, rho, sigma, zk) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*) call xc_gga_exc(p%ptr, np, rho, sigma, zk) end subroutine xc_f03_gga_exc subroutine xc_f03_gga_exc_vxc(p, np, rho, sigma, zk, vrho, vsigma) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) call xc_gga_exc_vxc(p%ptr, np, rho, sigma, zk, vrho, vsigma) end subroutine xc_f03_gga_exc_vxc subroutine xc_f03_gga_exc_vxc_fxc(p, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) call xc_gga_exc_vxc_fxc(p%ptr, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2) end subroutine xc_f03_gga_exc_vxc_fxc subroutine xc_f03_gga_exc_vxc_fxc_kxc(p, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) call xc_gga_exc_vxc_fxc_kxc(p%ptr, np, rho, sigma, zk, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) end subroutine xc_f03_gga_exc_vxc_fxc_kxc subroutine xc_f03_gga_vxc(p, np, rho, sigma, vrho, vsigma) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: vrho(*), vsigma(*) call xc_gga_vxc(p%ptr, np, rho, sigma, vrho, vsigma) end subroutine xc_f03_gga_vxc subroutine xc_f03_gga_vxc_fxc(p, np, rho, sigma, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) call xc_gga_vxc_fxc(p%ptr, np, rho, sigma, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2) end subroutine xc_f03_gga_vxc_fxc subroutine xc_f03_gga_vxc_fxc_kxc(p, np, rho, sigma, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: vrho(*), vsigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) call xc_gga_vxc_fxc_kxc(p%ptr, np, rho, sigma, vrho, vsigma, & v2rho2, v2rhosigma, v2sigma2, & v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) end subroutine xc_f03_gga_vxc_fxc_kxc subroutine xc_f03_gga_fxc(p, np, rho, sigma, v2rho2, v2rhosigma, v2sigma2) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2sigma2(*) call xc_gga_fxc(p%ptr, np, rho, sigma, v2rho2, v2rhosigma, v2sigma2) end subroutine xc_f03_gga_fxc subroutine xc_f03_gga_kxc(p, np, rho, sigma, v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rhosigma2(*), v3sigma3(*) call xc_gga_kxc(p%ptr, np, rho, sigma, v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) end subroutine xc_f03_gga_kxc subroutine xc_f03_gga_lxc(p, np, rho, sigma, v4rho4, v4rho3sigma, v4rho2sigma2, v4rhosigma3, v4sigma4) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*) real(c_double), intent(out) :: v4rho4(*), v4rho3sigma(*), v4rho2sigma2(*), v4rhosigma3(*), v4sigma4(*) call xc_gga_lxc(p%ptr, np, rho, sigma, v4rho4, v4rho3sigma, v4rho2sigma2, v4rhosigma3, v4sigma4) end subroutine xc_f03_gga_lxc real(c_double) function xc_f03_gga_ak13_get_asymptotic(homo) result(asymptotic) real(c_double), intent(in) :: homo asymptotic = xc_gga_ak13_get_asymptotic(homo) end function xc_f03_gga_ak13_get_asymptotic real(c_double) function xc_f03_hyb_exx_coef(p) result(coef) type(xc_f03_func_t), intent(in) :: p coef = xc_hyb_exx_coef(p%ptr) end function xc_f03_hyb_exx_coef subroutine xc_f03_hyb_cam_coef(p, omega, alpha, beta) type(xc_f03_func_t), intent(in) :: p real(c_double), intent(out) :: omega, alpha, beta call xc_hyb_cam_coef(p%ptr, omega, alpha, beta) end subroutine xc_f03_hyb_cam_coef subroutine xc_f03_nlc_coef(p, nlc_b, nlc_c) type(xc_f03_func_t), intent(in) :: p real(c_double), intent(out) :: nlc_b, nlc_c call xc_nlc_coef(p%ptr, nlc_b, nlc_c) end subroutine xc_f03_nlc_coef integer(c_int) function xc_f03_num_aux_funcs(p) result(naux) type(xc_f03_func_t), intent(in) :: p naux = xc_num_aux_funcs(p%ptr) end function xc_f03_num_aux_funcs subroutine xc_f03_aux_func_ids(p, ids) type(xc_f03_func_t), intent(in) :: p integer(c_int), intent(out) :: ids(:) call xc_aux_func_ids(p%ptr, ids) end subroutine xc_f03_aux_func_ids subroutine xc_f03_aux_func_weights(p, weights) type(xc_f03_func_t), intent(in) :: p real(c_double), intent(out) :: weights(:) call xc_aux_func_weights(p%ptr, weights) end subroutine xc_f03_aux_func_weights ! the meta-GGAs !---------------------------------------------------------------- subroutine xc_f03_mgga(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3, & v4rho4, v4rho3sigma, v4rho3lapl, v4rho3tau, v4rho2sigma2, v4rho2sigmalapl, & v4rho2sigmatau, v4rho2lapl2, v4rho2lapltau, v4rho2tau2, v4rhosigma3, & v4rhosigma2lapl, v4rhosigma2tau, v4rhosigmalapl2, v4rhosigmalapltau, & v4rhosigmatau2, v4rholapl3, v4rholapl2tau, v4rholapltau2, v4rhotau3, v4sigma4, & v4sigma3lapl, v4sigma3tau, v4sigma2lapl2, v4sigma2lapltau, v4sigma2tau2, & v4sigmalapl3, v4sigmalapl2tau, v4sigmalapltau2, v4sigmatau3, v4lapl4, & v4lapl3tau, v4lapl2tau2, v4lapltau3, v4tau4 & ) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) real(c_double), intent(out) :: & v4rho4(*), v4rho3sigma(*), v4rho3lapl(*), v4rho3tau(*), v4rho2sigma2(*), v4rho2sigmalapl(*), & v4rho2sigmatau(*), v4rho2lapl2(*), v4rho2lapltau(*), v4rho2tau2(*), v4rhosigma3(*), & v4rhosigma2lapl(*), v4rhosigma2tau(*), v4rhosigmalapl2(*), v4rhosigmalapltau(*), & v4rhosigmatau2(*), v4rholapl3(*), v4rholapl2tau(*), v4rholapltau2(*), v4rhotau3(*), v4sigma4(*), & v4sigma3lapl(*), v4sigma3tau(*), v4sigma2lapl2(*), v4sigma2lapltau(*), v4sigma2tau2(*), & v4sigmalapl3(*), v4sigmalapl2tau(*), v4sigmalapltau2(*), v4sigmatau3(*), v4lapl4(*), & v4lapl3tau(*), v4lapl2tau2(*), v4lapltau3(*), v4tau4(*) call xc_mgga(p%ptr, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3, & v4rho4, v4rho3sigma, v4rho3lapl, v4rho3tau, v4rho2sigma2, v4rho2sigmalapl, & v4rho2sigmatau, v4rho2lapl2, v4rho2lapltau, v4rho2tau2, v4rhosigma3, & v4rhosigma2lapl, v4rhosigma2tau, v4rhosigmalapl2, v4rhosigmalapltau, & v4rhosigmatau2, v4rholapl3, v4rholapl2tau, v4rholapltau2, v4rhotau3, v4sigma4, & v4sigma3lapl, v4sigma3tau, v4sigma2lapl2, v4sigma2lapltau, v4sigma2tau2, & v4sigmalapl3, v4sigmalapl2tau, v4sigmalapltau2, v4sigmatau3, v4lapl4, & v4lapl3tau, v4lapl2tau2, v4lapltau3, v4tau4 & ) end subroutine xc_f03_mgga subroutine xc_f03_mgga_exc(p, np, rho, sigma, lapl, tau, zk) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*) call xc_mgga_exc(p%ptr, np, rho, sigma, lapl, tau, zk) end subroutine xc_f03_mgga_exc subroutine xc_f03_mgga_exc_vxc(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) call xc_mgga_exc_vxc(p%ptr, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau) end subroutine xc_f03_mgga_exc_vxc subroutine xc_f03_mgga_exc_vxc_fxc(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) call xc_mgga_exc_vxc_fxc(p%ptr, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) end subroutine xc_f03_mgga_exc_vxc_fxc subroutine xc_f03_mgga_exc_vxc_fxc_kxc(p, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: zk(*), vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) call xc_mgga_exc_vxc_fxc_kxc(p%ptr, np, rho, sigma, lapl, tau, zk, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) end subroutine xc_f03_mgga_exc_vxc_fxc_kxc subroutine xc_f03_mgga_vxc(p, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: vrho(*), vsigma(*), vlapl(*), vtau(*) call xc_mgga_vxc(p%ptr, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau) end subroutine xc_f03_mgga_vxc subroutine xc_f03_mgga_vxc_fxc(p, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) call xc_mgga_vxc_fxc(p%ptr, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) end subroutine xc_f03_mgga_vxc_fxc subroutine xc_f03_mgga_vxc_fxc_kxc(p, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: vrho(*), vsigma(*), vlapl(*), vtau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) call xc_mgga_vxc_fxc_kxc(p%ptr, np, rho, sigma, lapl, tau, vrho, vsigma, vlapl, vtau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) end subroutine xc_f03_mgga_vxc_fxc_kxc subroutine xc_f03_mgga_fxc(p, np, rho, sigma, lapl, tau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, v2sigma2, v2sigmalapl, v2sigmatau, & v2lapl2, v2lapltau, v2tau2) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: v2rho2(*), v2rhosigma(*), v2rholapl(*), v2rhotau(*), & v2sigma2(*), v2sigmalapl(*), v2sigmatau(*), v2lapl2(*), v2lapltau(*), v2tau2(*) call xc_mgga_fxc(p%ptr, np, rho, sigma, lapl, tau, & v2rho2, v2rhosigma, v2rholapl, v2rhotau, & v2sigma2, v2sigmalapl, v2sigmatau, v2lapl2, v2lapltau, v2tau2) end subroutine xc_f03_mgga_fxc subroutine xc_f03_mgga_kxc(p, np, rho, sigma, lapl, tau, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: v3rho3(*), v3rho2sigma(*), v3rho2lapl(*), v3rho2tau(*), & v3rhosigma2(*), v3rhosigmalapl(*), v3rhosigmatau(*), v3rholapl2(*), & v3rholapltau(*), v3rhotau2(*), v3sigma3(*), v3sigma2lapl(*), v3sigma2tau(*), & v3sigmalapl2(*), v3sigmalapltau(*), v3sigmatau2(*), v3lapl3(*), v3lapl2tau(*), & v3lapltau2(*), v3tau3(*) call xc_mgga_kxc(p%ptr, np, rho, sigma, lapl, tau, & v3rho3, v3rho2sigma, v3rho2lapl, v3rho2tau, v3rhosigma2, v3rhosigmalapl, & v3rhosigmatau, v3rholapl2, v3rholapltau, v3rhotau2, v3sigma3, v3sigma2lapl, & v3sigma2tau, v3sigmalapl2, v3sigmalapltau, v3sigmatau2, v3lapl3, v3lapl2tau, & v3lapltau2, v3tau3) end subroutine xc_f03_mgga_kxc subroutine xc_f03_mgga_lxc(p, np, rho, sigma, lapl, tau, & v4rho4, v4rho3sigma, v4rho3lapl, v4rho3tau, v4rho2sigma2, v4rho2sigmalapl, & v4rho2sigmatau, v4rho2lapl2, v4rho2lapltau, v4rho2tau2, v4rhosigma3, & v4rhosigma2lapl, v4rhosigma2tau, v4rhosigmalapl2, v4rhosigmalapltau, & v4rhosigmatau2, v4rholapl3, v4rholapl2tau, v4rholapltau2, v4rhotau3, v4sigma4, & v4sigma3lapl, v4sigma3tau, v4sigma2lapl2, v4sigma2lapltau, v4sigma2tau2, & v4sigmalapl3, v4sigmalapl2tau, v4sigmalapltau2, v4sigmatau3, v4lapl4, & v4lapl3tau, v4lapl2tau2, v4lapltau3, v4tau4 & ) type(xc_f03_func_t), intent(in) :: p integer(c_size_t), intent(in) :: np real(c_double), intent(in) :: rho(*), sigma(*), lapl(*), tau(*) real(c_double), intent(out) :: & v4rho4(*), v4rho3sigma(*), v4rho3lapl(*), v4rho3tau(*), v4rho2sigma2(*), v4rho2sigmalapl(*), & v4rho2sigmatau(*), v4rho2lapl2(*), v4rho2lapltau(*), v4rho2tau2(*), v4rhosigma3(*), & v4rhosigma2lapl(*), v4rhosigma2tau(*), v4rhosigmalapl2(*), v4rhosigmalapltau(*), & v4rhosigmatau2(*), v4rholapl3(*), v4rholapl2tau(*), v4rholapltau2(*), v4rhotau3(*), v4sigma4(*), & v4sigma3lapl(*), v4sigma3tau(*), v4sigma2lapl2(*), v4sigma2lapltau(*), v4sigma2tau2(*), & v4sigmalapl3(*), v4sigmalapl2tau(*), v4sigmalapltau2(*), v4sigmatau3(*), v4lapl4(*), & v4lapl3tau(*), v4lapl2tau2(*), v4lapltau3(*), v4tau4(*) call xc_mgga_lxc(p%ptr, np, rho, sigma, lapl, tau, & v4rho4, v4rho3sigma, v4rho3lapl, v4rho3tau, v4rho2sigma2, v4rho2sigmalapl, & v4rho2sigmatau, v4rho2lapl2, v4rho2lapltau, v4rho2tau2, v4rhosigma3, & v4rhosigma2lapl, v4rhosigma2tau, v4rhosigmalapl2, v4rhosigmalapltau, & v4rhosigmatau2, v4rholapl3, v4rholapl2tau, v4rholapltau2, v4rhotau3, v4sigma4, & v4sigma3lapl, v4sigma3tau, v4sigma2lapl2, v4sigma2lapltau, v4sigma2tau2, & v4sigmalapl3, v4sigmalapl2tau, v4sigmalapltau2, v4sigmatau3, v4lapl4, & v4lapl3tau, v4lapl2tau2, v4lapltau3, v4tau4 & ) end subroutine xc_f03_mgga_lxc ! Helper functions to convert between C and Fortran strings ! Based on the routines by Joseph M. Krahn function f_to_c_string(f_string) result(c_string) character(len=*), intent(in) :: f_string character(kind=c_char,len=1) :: c_string(len_trim(f_string)+1) integer :: i, strlen strlen = len_trim(f_string) forall (i=1:strlen) c_string(i) = f_string(i:i) end forall c_string(strlen+1) = C_NULL_CHAR end function f_to_c_string subroutine c_to_f_string(c_string, f_string) character(kind=c_char,len=1), intent(in) :: c_string(*) character(len=*), intent(out) :: f_string integer :: i i = 1 do while(c_string(i) /= C_NULL_CHAR .and. i <= len(f_string)) f_string(i:i) = c_string(i) i = i + 1 end do if (i < len(f_string)) f_string(i:) = ' ' end subroutine c_to_f_string subroutine c_to_f_string_ptr(c_string, f_string) type(c_ptr), intent(in) :: c_string character(len=*), intent(out) :: f_string character(len=1, kind=c_char), pointer :: p_chars(:) integer :: i if (.not. c_associated(c_string)) then f_string = ' ' else call c_f_pointer(c_string, p_chars, [huge(0)]) i = 1 do while(p_chars(i) /= C_NULL_CHAR .and. i <= len(f_string)) f_string(i:i) = p_chars(i) i = i + 1 end do if (i < len(f_string)) f_string(i:) = ' ' end if end subroutine c_to_f_string_ptr end module xc_f03_lib_m !! Local Variables: !! mode: f90 !! coding: utf-8 !! End: elk-10.4.9/src/PaxHeaders/libxcifc.f900000644000000000000000000000013214762655565014355 xustar0030 mtime=1741380469.586014304 30 atime=1741380469.585014299 30 ctime=1741380469.586014304 elk-10.4.9/src/libxcifc.f900000644002504400250440000004463514762655565017113 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2009 T. McQueen and J. K. Dewhurst. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. module libxcifc use xc_f03_lib_m ! libxc version number integer libxcv(3) private grad contains !BOP ! !ROUTINE: xcifc_libxc ! !INTERFACE: subroutine xcifc_libxc(xctype,n,tempa,rho,rhoup,rhodn,g2rho,g2up,g2dn,grho2, & gup2,gdn2,gupdn,tau,tauup,taudn,ex,ec,vx,vc,vxup,vxdn,vcup,vcdn,dxdgr2,dxdgu2,& dxdgd2,dxdgud,dcdgr2,dcdgu2,dcdgd2,dcdgud,dxdg2r,dxdg2u,dxdg2d,dcdg2r,dcdg2u, & dcdg2d,wx,wxup,wxdn,wc,wcup,wcdn) ! !USES: use, intrinsic :: iso_c_binding ! !INPUT/OUTPUT PARAMETERS: ! xctype : type of exchange-correlation functional (in,integer(3)) ! n : number of density points (in,integer) ! tempa : temperature in atomic units (in,real,optional) ! rho : spin-unpolarised charge density (in,real(n),optional) ! rhoup : spin-up charge density (in,real(n),optional) ! rhodn : spin-down charge density (in,real(n),optional) ! g2rho : grad^2 rho (in,real(n),optional) ! g2up : grad^2 rhoup (in,real(n),optional) ! g2dn : grad^2 rhodn (in,real(n),optional) ! grho2 : |grad rho|^2 (in,real(n),optional) ! gup2 : |grad rhoup|^2 (in,real(n),optional) ! gdn2 : |grad rhodn|^2 (in,real(n),optional) ! gupdn : (grad rhoup).(grad rhodn) (in,real(n),optional) ! tau : kinetic energy density (in,real(n),optional) ! tauup : spin-up kinetic energy density (in,real(n),optional) ! taudn : spin-down kinetic energy density (in,real(n),optional) ! ex : exchange energy density (out,real(n),optional) ! ec : correlation energy density (out,real(n),optional) ! vx : spin-unpolarised exchange potential (out,real(n),optional) ! vc : spin-unpolarised correlation potential (out,real(n),optional) ! vxup : spin-up exchange potential (out,real(n),optional) ! vxdn : spin-down exchange potential (out,real(n),optional) ! vcup : spin-up correlation potential (out,real(n),optional) ! vcdn : spin-down correlation potential (out,real(n),optional) ! dxdgr2 : de_x/d(|grad rho|^2) (out,real(n),optional) ! dxdgu2 : de_x/d(|grad rhoup|^2) (out,real(n),optional) ! dxdgd2 : de_x/d(|grad rhodn|^2) (out,real(n),optional) ! dxdgud : de_x/d((grad rhoup).(grad rhodn)) (out,real(n),optional) ! dcdgr2 : de_c/d(|grad rho|^2) (out,real(n),optional) ! dcdgu2 : de_c/d(|grad rhoup|^2) (out,real(n),optional) ! dcdgd2 : de_c/d(|grad rhodn|^2) (out,real(n),optional) ! dcdgud : de_c/d((grad rhoup).(grad rhodn)) (out,real(n),optional) ! dxdg2r : de_x/d(grad^2 rho) (out,real(n),optional) ! dxdg2u : de_x/d(grad^2 rhoup) (out,real(n),optional) ! dxdg2d : de_x/d(grad^2 rhodn) (out,real(n),optional) ! dcdg2r : de_c/d(grad^2 rho) (out,real(n),optional) ! dcdg2u : de_c/d(grad^2 rhoup) (out,real(n),optional) ! dcdg2d : de_c/d(grad^2 rhodn) (out,real(n),optional) ! wx : de_x/dtau (out,real(n),optional) ! wxup : de_x/dtauup (out,real(n),optional) ! wxdn : de_x/dtaudn (out,real(n),optional) ! wc : de_c/dtau (out,real(n),optional) ! wcup : de_c/dtauup (out,real(n),optional) ! wcdn : de_c/dtaudn (out,real(n),optional) ! !DESCRIPTION: ! Interface to the Libxc exchange-correlation functional library. The second ! and third integers in {\tt xctype} define the exchange and correlation ! functionals, respectively. ! ! !REVISION HISTORY: ! Created April 2009 (Tyrel McQueen) ! Modified September 2009 (JKD and TMQ) ! Updated for Libxc 1, July 2010 (JKD) ! Updated for Libxc 4, March 2018 (JKD) ! Updated for Libxc 5, May 2020 (JKD) ! Updated for Libxc 6, December 2022 (JKD) ! Updated for Fortran 2003 interface, October 2024 (JKD) !EOP !BOC implicit none ! mandatory arguments integer, intent(in) :: xctype(3),n ! optional arguments real(8), optional, intent(in) :: tempa real(8), optional, intent(in) :: rho(n),rhoup(n),rhodn(n) real(8), optional, intent(in) :: g2rho(n),g2up(n),g2dn(n) real(8), optional, intent(in) :: grho2(n),gup2(n),gdn2(n),gupdn(n) real(8), optional, intent(in) :: tau(n),tauup(n),taudn(n) real(8), optional, intent(out) :: ex(n),ec(n),vx(n),vc(n) real(8), optional, intent(out) :: vxup(n),vxdn(n),vcup(n),vcdn(n) real(8), optional, intent(out) :: dxdgr2(n),dxdgu2(n),dxdgd2(n),dxdgud(n) real(8), optional, intent(out) :: dxdg2r(n),dxdg2u(n),dxdg2d(n) real(8), optional, intent(out) :: wx(n),wxup(n),wxdn(n) real(8), optional, intent(out) :: dcdgr2(n),dcdgu2(n),dcdgd2(n),dcdgud(n) real(8), optional, intent(out) :: dcdg2r(n),dcdg2u(n),dcdg2d(n) real(8), optional, intent(out) :: wc(n),wcup(n),wcdn(n) ! local variables integer nspin,fmly,id,k integer(c_size_t) np type(xc_f03_func_t) p ! allocatable arrays real(8), allocatable :: r(:,:),sigma(:,:),vrho(:,:),vsigma(:,:) real(8), allocatable :: lapl(:,:),t(:,:),vlapl(:,:),vtau(:,:) if (present(rho)) then nspin=XC_UNPOLARIZED else if (present(rhoup).and.present(rhodn)) then nspin=XC_POLARIZED else write(*,*) write(*,'("Error(libxcifc): missing arguments")') write(*,*) stop end if if (xctype(2) /= 0) then if (xctype(2) == xctype(3)) then write(*,*) write(*,'("Error(libxcifc): Libxc exchange and correlation functionals")') write(*,'(" are the same : ",2I8)') xctype(2:3) write(*,*) stop end if end if ! convert number of points to long integer np=n ! loop over functional kinds (exchange or correlation) do k=2,3 id=xctype(k) if (id > 0) then fmly=xc_f03_family_from_id(id) ! initialise functional call xc_f03_func_init(p,id,nspin) select case(fmly) case(XC_FAMILY_LDA) !-------------------------! ! LDA functionals ! !-------------------------! ! set temperature for free energy functional if ((id == XC_LDA_XC_KSDT).or.(id == XC_LDA_XC_GDSMFB)) then call xc_f03_func_set_ext_params(p,[tempa]) end if if (k == 2) then ! exchange or a kinetic energy functional if (present(rho)) then if (present(ex)) then call xc_f03_lda_exc_vxc(p,np,rho,ex,vx) else call xc_f03_lda_vxc(p,np,rho,vx) end if else allocate(r(2,n),vrho(2,n)) r(1,1:n)=rhoup(1:n); r(2,1:n)=rhodn(1:n) if (present(ex)) then call xc_f03_lda_exc_vxc(p,np,r,ex,vrho) else call xc_f03_lda_vxc(p,np,r,vrho) end if vxup(1:n)=vrho(1,1:n); vxdn(1:n)=vrho(2,1:n) deallocate(r,vrho) end if else ! correlation if (present(rho)) then if (present(ec)) then call xc_f03_lda_exc_vxc(p,np,rho,ec,vc) else call xc_f03_lda_vxc(p,np,rho,vc) end if else allocate(r(2,n),vrho(2,n)) r(1,1:n)=rhoup(1:n); r(2,1:n)=rhodn(1:n) if (present(ec)) then call xc_f03_lda_exc_vxc(p,np,r,ec,vrho) else call xc_f03_lda_vxc(p,np,r,vrho) end if vcup(1:n)=vrho(1,1:n); vcdn=vrho(2,1:n) deallocate(r,vrho) end if end if case(XC_FAMILY_GGA,XC_FAMILY_HYB_GGA) !-------------------------! ! GGA functionals ! !-------------------------! if (k == 2) then ! exchange or a kinetic energy functional if (present(rho)) then if (present(ex)) then call xc_f03_gga_exc_vxc(p,np,rho,grho2,ex,vx,dxdgr2) else call xc_f03_gga_vxc(p,np,rho,grho2,vx,dxdgr2) end if else allocate(r(2,n),sigma(3,n),vrho(2,n),vsigma(3,n)) r(1,1:n)=rhoup(1:n); r(2,1:n)=rhodn(1:n) sigma(1,1:n)=gup2(1:n) if (present(gupdn)) then sigma(2,1:n)=gupdn(1:n) else sigma(2,1:n)=0.d0 end if sigma(3,1:n)=gdn2(1:n) if (present(ex)) then call xc_f03_gga_exc_vxc(p,np,r,sigma,ex,vrho,vsigma) else call xc_f03_gga_vxc(p,np,r,sigma,vrho,vsigma) end if vxup(1:n)=vrho(1,1:n); vxdn(1:n)=vrho(2,1:n) dxdgu2(1:n)=vsigma(1,1:n) if (present(dxdgud)) dxdgud(1:n)=vsigma(2,1:n) dxdgd2(1:n)=vsigma(3,1:n) deallocate(r,sigma,vrho,vsigma) end if else ! correlation if (present(rho)) then if (present(ec)) then call xc_f03_gga_exc_vxc(p,np,rho,grho2,ec,vc,dcdgr2) else call xc_f03_gga_vxc(p,np,rho,grho2,vc,dcdgr2) end if else allocate(r(2,n),sigma(3,n),vrho(2,n),vsigma(3,n)) r(1,1:n)=rhoup(1:n); r(2,1:n)=rhodn(1:n) sigma(1,1:n)=gup2(1:n) sigma(2,1:n)=gupdn(1:n) sigma(3,1:n)=gdn2(1:n) if (present(ec)) then call xc_f03_gga_exc_vxc(p,np,r,sigma,ec,vrho,vsigma) else call xc_f03_gga_vxc(p,np,r,sigma,vrho,vsigma) end if vcup(1:n)=vrho(1,1:n); vcdn(1:n)=vrho(2,1:n) dcdgu2(1:n)=vsigma(1,1:n) dcdgud(1:n)=vsigma(2,1:n) dcdgd2(1:n)=vsigma(3,1:n) deallocate(r,sigma,vrho,vsigma) end if end if case(XC_FAMILY_MGGA) !------------------------------! ! meta-GGA functionals ! !------------------------------! if (k == 2) then ! exchange or a kinetic energy functional if (present(rho)) then if (present(ex)) then call xc_f03_mgga_exc_vxc(p,np,rho,grho2,g2rho,tau,ex,vx,dxdgr2, & dxdg2r,wx) else call xc_f03_mgga_vxc(p,np,rho,grho2,g2rho,tau,vx,dxdgr2,dxdg2r,wx) end if else allocate(r(2,n),sigma(3,n),lapl(2,n),t(2,n)) allocate(vrho(2,n),vsigma(3,n),vlapl(2,n),vtau(2,n)) r(1,1:n)=rhoup(1:n); r(2,1:n)=rhodn(1:n) sigma(1,1:n)=gup2(1:n); sigma(3,1:n)=gdn2(1:n) if (present(gupdn)) then sigma(2,1:n)=gupdn(1:n) else sigma(2,1:n)=0.d0 end if lapl(1,1:n)=g2up(1:n); lapl(2,1:n)=g2dn(1:n) t(1,1:n)=tauup(1:n); t(2,1:n)=taudn(1:n) if (present(ex)) then call xc_f03_mgga_exc_vxc(p,np,r,sigma,lapl,t,ex,vrho,vsigma,vlapl, & vtau) else call xc_f03_mgga_vxc(p,np,r,sigma,lapl,t,vrho,vsigma,vlapl,vtau) end if vxup(1:n)=vrho(1,1:n); vxdn(1:n)=vrho(2,1:n) dxdgu2(1:n)=vsigma(1,1:n); dxdgd2(1:n)=vsigma(3,1:n) if (present(dxdgud)) dxdgud(1:n)=vsigma(2,1:n) dxdg2u(1:n)=vlapl(1,1:n); dxdg2d(1:n)=vlapl(2,1:n) wxup(1:n)=vtau(1,1:n); wxdn(1:n)=vtau(2,1:n) deallocate(r,sigma,lapl,t) deallocate(vrho,vsigma,vlapl,vtau) end if else ! correlation if (present(rho)) then if (present(ec)) then call xc_f03_mgga_exc_vxc(p,np,rho,grho2,g2rho,tau,ec,vc,dcdgr2, & dcdg2r,wc) else call xc_f03_mgga_vxc(p,np,rho,grho2,g2rho,tau,vc,dcdgr2,dcdg2r,wc) end if else allocate(r(2,n),sigma(3,n),lapl(2,n),t(2,n)) allocate(vrho(2,n),vsigma(3,n),vlapl(2,n),vtau(2,n)) r(1,1:n)=rhoup(1:n); r(2,1:n)=rhodn(1:n) sigma(1,1:n)=gup2(1:n) sigma(2,1:n)=gupdn(1:n) sigma(3,1:n)=gdn2(1:n) lapl(1,1:n)=g2up(1:n); lapl(2,1:n)=g2dn(1:n) t(1,1:n)=tauup(1:n); t(2,1:n)=taudn(1:n) if (present(ec)) then call xc_f03_mgga_exc_vxc(p,np,r,sigma,lapl,t,ec,vrho,vsigma,vlapl, & vtau) else call xc_f03_mgga_vxc(p,np,r,sigma,lapl,t,vrho,vsigma,vlapl,vtau) end if vcup(1:n)=vrho(1,1:n); vcdn(1:n)=vrho(2,1:n) dcdgu2(1:n)=vsigma(1,1:n) dcdgud(1:n)=vsigma(2,1:n) dcdgd2(1:n)=vsigma(3,1:n) dcdg2u(1:n)=vlapl(1,1:n); dcdg2d(1:n)=vlapl(2,1:n) wcup(1:n)=vtau(1,1:n); wcdn(1:n)=vtau(2,1:n) deallocate(r,sigma,lapl,t) deallocate(vrho,vsigma,vlapl,vtau) end if end if case default write(*,*) write(*,'("Error(libxcifc): unsupported Libxc functional family : ",I8)')& fmly write(*,*) stop end select ! destroy functional call xc_f03_func_end(p) else ! case when id=0 if (k == 2) then if (present(ex)) ex(1:n)=0.d0 if (present(vx)) vx(1:n)=0.d0 if (present(vxup)) vxup(1:n)=0.d0 if (present(vxdn)) vxdn(1:n)=0.d0 if (present(dxdgr2)) dxdgr2(1:n)=0.d0 if (present(dxdgu2)) dxdgu2(1:n)=0.d0 if (present(dxdgd2)) dxdgd2(1:n)=0.d0 if (present(dxdgud)) dxdgud(1:n)=0.d0 if (present(dxdg2r)) dxdg2r(1:n)=0.d0 if (present(dxdg2u)) dxdg2u(1:n)=0.d0 if (present(dxdg2d)) dxdg2d(1:n)=0.d0 if (present(wx)) wx(1:n)=0.d0 if (present(wxup)) wxup(1:n)=0.d0 if (present(wxdn)) wxdn(1:n)=0.d0 else if (present(ec)) ec(1:n)=0.d0 if (present(vc)) vc(1:n)=0.d0 if (present(vcup)) vcup(1:n)=0.d0 if (present(vcdn)) vcdn(1:n)=0.d0 if (present(dcdgr2)) dcdgr2(1:n)=0.d0 if (present(dcdgu2)) dcdgu2(1:n)=0.d0 if (present(dcdgd2)) dcdgd2(1:n)=0.d0 if (present(dcdgud)) dcdgud(1:n)=0.d0 if (present(dcdg2r)) dcdg2r(1:n)=0.d0 if (present(dcdg2u)) dcdg2u(1:n)=0.d0 if (present(dcdg2d)) dcdg2d(1:n)=0.d0 if (present(wc)) wc(1:n)=0.d0 if (present(wcup)) wcup(1:n)=0.d0 if (present(wcdn)) wcdn(1:n)=0.d0 end if end if end do end subroutine subroutine fxcifc_libxc(fxctype,n,rho,rhoup,rhodn,fxc,fxcuu,fxcud,fxcdd) use, intrinsic :: iso_c_binding implicit none ! mandatory arguments integer, intent(in) :: fxctype(3),n ! optional arguments real(8), optional, intent(in) :: rho(n),rhoup(n),rhodn(n) real(8), optional, intent(out) :: fxc(n),fxcuu(n),fxcud(n),fxcdd(n) ! local variables integer nspin,fmly,id,k integer(c_size_t) np type(xc_f03_func_t) p ! allocatable arrays real(8), allocatable :: r(:,:),f(:,:) np=n if (present(rho)) then nspin=XC_UNPOLARIZED else if (present(rhoup).and.present(rhodn)) then nspin=XC_POLARIZED else write(*,*) write(*,'("Error(libxcifc): missing arguments")') write(*,*) stop end if ! zero the kernel if (present(fxc)) fxc(1:n)=0.d0 if (present(fxcuu)) fxcuu(1:n)=0.d0 if (present(fxcud)) fxcud(1:n)=0.d0 if (present(fxcdd)) fxcdd(1:n)=0.d0 ! loop over functional kinds (exchange or correlation) do k=2,3 id=fxctype(k) if (id < 1) cycle fmly=xc_f03_family_from_id(id) ! initialise functional call xc_f03_func_init(p,id,nspin) select case(fmly) case(XC_FAMILY_LDA) !-------------------------! ! LDA functionals ! !-------------------------! if (present(rho)) then allocate(f(1,n)) call xc_f03_lda_fxc(p,np,rho,f) fxc(1:n)=fxc(1:n)+f(1,1:n) deallocate(f) else allocate(r(2,n),f(3,n)) r(1,1:n)=rhoup(1:n); r(2,1:n)=rhodn(1:n) call xc_f03_lda_fxc(p,np,r,f) fxcuu(1:n)=fxcuu(1:n)+f(1,1:n) fxcud(1:n)=fxcud(1:n)+f(2,1:n) fxcdd(1:n)=fxcdd(1:n)+f(3,1:n) deallocate(r,f) end if case default write(*,*) write(*,'("Error(libxcifc): unsupported Libxc functional family : ",I8)') & fmly write(*,'(" for calculating f_xc")') write(*,*) stop end select ! destroy functional call xc_f03_func_end(p) end do end subroutine subroutine xcdata_libxc(xctype,xcdescr,xcspin,xcgrad,hybrid,hybridc) implicit none ! arguments integer, intent(in) :: xctype(3) character(264), intent(out) :: xcdescr integer, intent(out) :: xcspin,xcgrad logical, intent(out) :: hybrid real(8), intent(out) :: hybridc ! local variables integer k,id,fmly,g character(128) name type(xc_f03_func_t) p ! check version is compatible call xc_f03_version(libxcv(1),libxcv(2),libxcv(3)) if (all(libxcv(1) /= [6,7])) then write(*,*) write(*,'("Error(libxcifc): incompatible Libxc version : ",I0,".",I0,".",& &I0)') libxcv(:) write(*,*) stop end if ! undefined spin polarisation xcspin=-1 ! undefined gradient type xcgrad=-1 ! not a hybrid functional by default hybrid=.false. ! default description xcdescr='none' do k=2,3 id=xctype(k) if (id < 1) cycle ! initialise functional call xc_f03_func_init(p,id,XC_UNPOLARIZED) !-----------------------! ! gradient type ! !-----------------------! g=grad(p) if (g < 0) then write(*,*) write(*,'("Error(libxcifc): unsupported gradient type")') write(*,*) stop end if if (k == 3) then if ((xcgrad >= 0).and.(g /= xcgrad)) then write(*,*) write(*,'("Error(libxcifc): inconsistent exchange and correlation & &gradient types")') write(*,*) stop end if end if xcgrad=g !----------------------------! ! hybrid functionals ! !----------------------------! fmly=xc_f03_family_from_id(id) ! hybrid GGA functionals if (fmly == XC_FAMILY_HYB_GGA) then if (k == 2) then write(*,*) write(*,'("Error(libxcifc): set only correlation part of xctype for & &Libxc hybrids")') write(*,*) stop end if ! set the hybrid mixing coefficient hybridc=xc_f03_hyb_exx_coef(p) hybrid=.true. end if !--------------------------------! ! functional description ! !--------------------------------! name=xc_f03_functional_get_name(id) if (k == 2) then xcdescr=trim(name) else xcdescr=trim(xcdescr)//'; '//trim(name) end if ! destroy functional call xc_f03_func_end(p) end do end subroutine integer function grad(p) implicit none ! arguments type(xc_f03_func_t), intent(in) :: p ! local variables type(xc_f03_func_info_t) info type(xc_f03_func_t) pa integer fmly,flg,knd integer naux,i ! allocatable arrays integer, allocatable :: ida(:) info=xc_f03_func_get_info(p) fmly=xc_f03_func_info_get_family(info) select case(fmly) case(XC_FAMILY_LDA) ! no gradients required grad=0 case(XC_FAMILY_GGA,XC_FAMILY_HYB_GGA) ! GGA gradients required grad=2 case(XC_FAMILY_MGGA) flg=xc_f03_func_info_get_flags(info) if (iand(flg,XC_FLAGS_NEEDS_LAPLACIAN) == 0) then ! tau and no Laplacian grad=4 else ! tau and Laplacian grad=5 end if ! check if tau is not required knd=xc_f03_func_info_get_kind(info) if (knd == XC_KINETIC) then ! this is a kinetic energy functional so tau is not required grad=3 else ! this is an exchange and/or correlation functional naux=xc_f03_num_aux_funcs(p) allocate(ida(naux)) call xc_f03_aux_func_ids(p,ida) do i=1,naux call xc_f03_func_init(pa,ida(i),XC_UNPOLARIZED) info=xc_f03_func_get_info(pa) knd=xc_f03_func_info_get_kind(info) call xc_f03_func_end(pa) if (knd == XC_KINETIC) then ! this is a deorbitalised functional and does not require tau grad=3 exit end if end do deallocate(ida) end if case default grad=-1 end select end function !EOC end module elk-10.4.9/src/PaxHeaders/zfftifc_mkl.f900000644000000000000000000000013214762655565015070 xustar0030 mtime=1741380469.605014404 30 atime=1741380469.605014404 30 ctime=1741380469.605014404 elk-10.4.9/src/zfftifc_mkl.f900000644002504400250440000000365014762655565017616 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine zfftifc(nd,n,sgn,z) use mkl_dfti implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn complex(8), intent(inout) :: z(*) ! local variables integer status,p real(8) t1 type(DFTI_DESCRIPTOR), pointer :: handle ! interface to the Intel MKL advanced Discreet Fourier Transform (DFT) routines ! (with thanks to Torbjorn Bjorkman) p=product(n(1:nd)) t1=1.d0/dble(p) status=DftiCreateDescriptor(handle,DFTI_DOUBLE,DFTI_COMPLEX,nd,n) status=DftiSetValue(handle,DFTI_FORWARD_SCALE,t1) status=DftiCommitDescriptor(handle) if (sgn == -1) then status=DftiComputeForward(handle,z) else status=DftiComputeBackward(handle,z) end if status=DftiFreeDescriptor(handle) end subroutine subroutine rzfftifc(nd,n,sgn,r,z) use mkl_dfti implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn real(8), intent(inout) :: r(*) complex(8), intent(inout) :: z(*) ! local variables integer status,p,i real(8) t1 type(DFTI_DESCRIPTOR), pointer :: handle ! automatic arrays integer strides(0:nd) p=product(n(1:nd)) t1=1.d0/dble(p) status=DftiCreateDescriptor(handle,DFTI_DOUBLE,DFTI_REAL,nd,n) status=DftiSetValue(handle,DFTI_CONJUGATE_EVEN_STORAGE,DFTI_COMPLEX_COMPLEX) status=DftiSetValue(handle,DFTI_PLACEMENT,DFTI_NOT_INPLACE) status=DftiSetValue(handle,DFTI_FORWARD_SCALE,t1) strides(0)=0 strides(1)=1 if (nd > 1) then strides(2)=n(1)/2+1 do i=2,nd-1 strides(i+1)=strides(i)*n(i) end do end if if (sgn == -1) then status=DftiSetValue(handle,DFTI_OUTPUT_STRIDES,strides) status=DftiCommitDescriptor(handle) status=DftiComputeForward(handle,r,z) else status=DftiSetValue(handle,DFTI_INPUT_STRIDES,strides) status=DftiCommitDescriptor(handle) status=DftiComputeBackward(handle,z,r) end if status=DftiFreeDescriptor(handle) end subroutine elk-10.4.9/src/PaxHeaders/cfftifc_mkl.f900000644000000000000000000000013214762655565015041 xustar0030 mtime=1741380469.607014414 30 atime=1741380469.607014414 30 ctime=1741380469.607014414 elk-10.4.9/src/cfftifc_mkl.f900000644002504400250440000000362014762655565017564 0ustar00dewhurstdewhurst00000000000000 ! Copyright (C) 2022 J. K. Dewhurst and S. Sharma. ! This file is distributed under the terms of the GNU General Public License. ! See the file COPYING for license details. subroutine cfftifc(nd,n,sgn,c) use mkl_dfti implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn complex(4), intent(inout) :: c(*) ! local variables integer status,p real(4) t1 type(DFTI_DESCRIPTOR), pointer :: handle ! interface to the Intel MKL advanced Discreet Fourier Transform (DFT) routines ! (with thanks to Torbjorn Bjorkman) p=product(n(1:nd)) t1=1.e0/real(p) status=DftiCreateDescriptor(handle,DFTI_SINGLE,DFTI_COMPLEX,nd,n) status=DftiSetValue(handle,DFTI_FORWARD_SCALE,t1) status=DftiCommitDescriptor(handle) if (sgn == -1) then status=DftiComputeForward(handle,c) else status=DftiComputeBackward(handle,c) end if status=DftiFreeDescriptor(handle) end subroutine subroutine rcfftifc(nd,n,sgn,r,c) use mkl_dfti implicit none ! arguments integer, intent(in) :: nd,n(nd),sgn real(4), intent(inout) :: r(*) complex(4), intent(inout) :: c(*) ! local variables integer status,p,i real(4) t1 type(DFTI_DESCRIPTOR), pointer :: handle ! automatic arrays integer strides(0:nd) p=product(n(1:nd)) t1=1.e0/real(p) status=DftiCreateDescriptor(handle,DFTI_SINGLE,DFTI_REAL,nd,n) status=DftiSetValue(handle,DFTI_CONJUGATE_EVEN_STORAGE,DFTI_COMPLEX_COMPLEX) status=DftiSetValue(handle,DFTI_PLACEMENT,DFTI_NOT_INPLACE) status=DftiSetValue(handle,DFTI_FORWARD_SCALE,t1) strides(0)=0 strides(1)=1 if (nd > 1) then strides(2)=n(1)/2+1 do i=2,nd-1 strides(i+1)=strides(i)*n(i) end do end if if (sgn == -1) then status=DftiSetValue(handle,DFTI_OUTPUT_STRIDES,strides) status=DftiCommitDescriptor(handle) status=DftiComputeForward(handle,r,c) else status=DftiSetValue(handle,DFTI_INPUT_STRIDES,strides) status=DftiCommitDescriptor(handle) status=DftiComputeBackward(handle,c,r) end if status=DftiFreeDescriptor(handle) end subroutine elk-10.4.9/PaxHeaders/examples0000644000000000000000000000013214762655566013225 xustar0030 mtime=1741380470.161017311 30 atime=1741380469.620014482 30 ctime=1741380470.161017311 elk-10.4.9/examples/0000755002504400250440000000000014762655566016024 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/PaxHeaders/BSE0000644000000000000000000000013214762655565013635 xustar0030 mtime=1741380469.638014576 30 atime=1741380469.622014493 30 ctime=1741380469.638014576 elk-10.4.9/examples/BSE/0000755002504400250440000000000014762655565016434 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/BSE/PaxHeaders/Si0000644000000000000000000000013014762655565014206 xustar0029 mtime=1741380469.63101454 30 atime=1741380469.623014498 29 ctime=1741380469.63101454 elk-10.4.9/examples/BSE/Si/0000755002504400250440000000000014762655565017007 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/BSE/Si/PaxHeaders/EPSILON_11.OUT0000644000000000000000000000013214762655565016270 xustar0030 mtime=1741380469.626014514 30 atime=1741380469.625014508 30 ctime=1741380469.626014514 elk-10.4.9/examples/BSE/Si/EPSILON_11.OUT0000644002504400250440000016350614762655565021025 0ustar00dewhurstdewhurst00000000000000 0.000000000 11.66588532 0.1250000000E-02 11.65430648 0.2500000000E-02 11.61124981 0.3750000000E-02 11.51356928 0.5000000000E-02 11.33618510 0.6250000000E-02 11.08496950 0.7500000000E-02 10.81533017 0.8750000000E-02 10.58797550 0.1000000000E-01 10.42531540 0.1125000000E-01 10.32538260 0.1250000000E-01 10.27976752 0.1375000000E-01 10.27373754 0.1500000000E-01 10.28929980 0.1625000000E-01 10.31195281 0.1750000000E-01 10.33401056 0.1875000000E-01 10.35352667 0.2000000000E-01 10.37034339 0.2125000000E-01 10.38534219 0.2250000000E-01 10.40206854 0.2375000000E-01 10.42376516 0.2500000000E-01 10.45035451 0.2625000000E-01 10.48026076 0.2750000000E-01 10.51241792 0.2875000000E-01 10.54606657 0.3000000000E-01 10.58034798 0.3125000000E-01 10.61452198 0.3250000000E-01 10.64829180 0.3375000000E-01 10.68195032 0.3500000000E-01 10.71615309 0.3625000000E-01 10.75142730 0.3750000000E-01 10.78797059 0.3875000000E-01 10.82576250 0.4000000000E-01 10.86470568 0.4125000000E-01 10.90465691 0.4250000000E-01 10.94532003 0.4375000000E-01 10.98615689 0.4500000000E-01 11.02646878 0.4625000000E-01 11.06589616 0.4750000000E-01 11.10512901 0.4875000000E-01 11.14544997 0.5000000000E-01 11.18726601 0.5125000000E-01 11.23021645 0.5250000000E-01 11.27459524 0.5375000000E-01 11.32151176 0.5500000000E-01 11.37173449 0.5625000000E-01 11.42511348 0.5750000000E-01 11.48098154 0.5875000000E-01 11.53876936 0.6000000000E-01 11.59836383 0.6125000000E-01 11.66002470 0.6250000000E-01 11.72397672 0.6375000000E-01 11.79023497 0.6500000000E-01 11.85873416 0.6625000000E-01 11.92944054 0.6750000000E-01 12.00236633 0.6875000000E-01 12.07754405 0.7000000000E-01 12.15499526 0.7125000000E-01 12.23471210 0.7250000000E-01 12.31669111 0.7375000000E-01 12.40106751 0.7500000000E-01 12.48822782 0.7625000000E-01 12.57862618 0.7750000000E-01 12.67250732 0.7875000000E-01 12.76992981 0.8000000000E-01 12.87092234 0.8125000000E-01 12.97555135 0.8250000000E-01 13.08391475 0.8375000000E-01 13.19611514 0.8500000000E-01 13.31223858 0.8625000000E-01 13.43237337 0.8750000000E-01 13.55672765 0.8875000000E-01 13.68577681 0.9000000000E-01 13.82014461 0.9125000000E-01 13.96029233 0.9250000000E-01 14.10647790 0.9375000000E-01 14.25892054 0.9500000000E-01 14.41790102 0.9625000000E-01 14.58377697 0.9750000000E-01 14.75697281 0.9875000000E-01 14.93797229 0.1000000000 15.12731937 0.1012500000 15.32562492 0.1025000000 15.53357150 0.1037500000 15.75191509 0.1050000000 15.98149371 0.1062500000 16.22324573 0.1075000000 16.47823250 0.1087500000 16.74765820 0.1100000000 17.03288436 0.1112500000 17.33544886 0.1125000000 17.65709364 0.1137500000 17.99979326 0.1150000000 18.36577460 0.1162500000 18.75751579 0.1175000000 19.17769827 0.1187500000 19.62905547 0.1200000000 20.11400104 0.1212500000 20.63379473 0.1225000000 21.18675427 0.1237500000 21.76456884 0.1250000000 22.34517818 0.1262500000 22.88095862 0.1275000000 23.28651801 0.1287500000 23.44969343 0.1300000000 23.30623288 0.1312500000 22.94598268 0.1325000000 22.60991062 0.1337500000 22.55880956 0.1350000000 22.91764885 0.1362500000 23.62914353 0.1375000000 24.54219570 0.1387500000 25.48729144 0.1400000000 26.29425940 0.1412500000 26.81782719 0.1425000000 26.99746089 0.1437500000 26.88689145 0.1450000000 26.61995937 0.1462500000 26.29193583 0.1475000000 25.84624877 0.1487500000 25.23837557 0.1500000000 24.63027612 0.1512500000 24.25348519 0.1525000000 24.17246299 0.1537500000 24.25674511 0.1550000000 24.27821973 0.1562500000 24.00545031 0.1575000000 23.36816322 0.1587500000 22.49749292 0.1600000000 21.48572012 0.1612500000 20.28305745 0.1625000000 18.85350783 0.1637500000 17.21839501 0.1650000000 15.37906101 0.1662500000 13.27847992 0.1675000000 10.84726159 0.1687500000 8.143736706 0.1700000000 5.452482046 0.1712500000 3.078634736 0.1725000000 1.083328444 0.1737500000 -0.6798127544 0.1750000000 -2.398544048 0.1762500000 -4.093826040 0.1775000000 -5.504856629 0.1787500000 -6.321029385 0.1800000000 -6.442488533 0.1812500000 -5.957280231 0.1825000000 -5.059098583 0.1837500000 -4.042200943 0.1850000000 -3.232313967 0.1862500000 -2.844639338 0.1875000000 -2.920050747 0.1887500000 -3.389136243 0.1900000000 -4.139978322 0.1912500000 -4.993079474 0.1925000000 -5.680476155 0.1937500000 -5.958466854 0.1950000000 -5.798532232 0.1962500000 -5.365532098 0.1975000000 -4.819008635 0.1987500000 -4.284064922 0.2000000000 -3.921634767 0.2012500000 -3.873955684 0.2025000000 -4.162290855 0.2037500000 -4.683145724 0.2050000000 -5.286239240 0.2062500000 -5.888783582 0.2075000000 -6.500589633 0.2087500000 -7.169462720 0.2100000000 -7.958038022 0.2112500000 -8.874168848 0.2125000000 -9.824656310 0.2137500000 -10.63217438 0.2150000000 -11.11342243 0.2162500000 -11.21482368 0.2175000000 -11.01839659 0.2187500000 -10.66430360 0.2200000000 -10.28947644 0.2212500000 -9.973347702 0.2225000000 -9.735670359 0.2237500000 -9.589092818 0.2250000000 -9.545543858 0.2262500000 -9.574854580 0.2275000000 -9.621513927 0.2287500000 -9.642493979 0.2300000000 -9.612183258 0.2312500000 -9.527090907 0.2325000000 -9.406374905 0.2337500000 -9.261464441 0.2350000000 -9.064871943 0.2362500000 -8.791664938 0.2375000000 -8.478553021 0.2387500000 -8.197018422 0.2400000000 -8.001941193 0.2412500000 -7.916186632 0.2425000000 -7.925996481 0.2437500000 -7.996574932 0.2450000000 -8.094422474 0.2462500000 -8.174047464 0.2475000000 -8.200019114 0.2487500000 -8.200048515 0.2500000000 -8.237830320 0.2512500000 -8.329109249 0.2525000000 -8.414889572 0.2537500000 -8.435251310 0.2550000000 -8.402010028 0.2562500000 -8.362861480 0.2575000000 -8.333448953 0.2587500000 -8.287874491 0.2600000000 -8.198767669 0.2612500000 -8.070583978 0.2625000000 -7.917737162 0.2637500000 -7.732721975 0.2650000000 -7.508774259 0.2662500000 -7.261596185 0.2675000000 -7.008429674 0.2687500000 -6.757795714 0.2700000000 -6.524118406 0.2712500000 -6.331715744 0.2725000000 -6.202164742 0.2737500000 -6.140982086 0.2750000000 -6.132027987 0.2762500000 -6.140570097 0.2775000000 -6.134437462 0.2787500000 -6.111013304 0.2800000000 -6.084979060 0.2812500000 -6.052434203 0.2825000000 -5.991885783 0.2837500000 -5.887709990 0.2850000000 -5.738695068 0.2862500000 -5.560384940 0.2875000000 -5.379941004 0.2887500000 -5.218994201 0.2900000000 -5.081630146 0.2912500000 -4.964121423 0.2925000000 -4.868101406 0.2937500000 -4.792050413 0.2950000000 -4.724151301 0.2962500000 -4.659490024 0.2975000000 -4.603612330 0.2987500000 -4.559699686 0.3000000000 -4.537103914 0.3012500000 -4.553927583 0.3025000000 -4.608110162 0.3037500000 -4.665372049 0.3050000000 -4.691811867 0.3062500000 -4.680893920 0.3075000000 -4.645279156 0.3087500000 -4.597033682 0.3100000000 -4.541341689 0.3112500000 -4.483021935 0.3125000000 -4.426647674 0.3137500000 -4.368723764 0.3150000000 -4.302164024 0.3162500000 -4.224915734 0.3175000000 -4.137679465 0.3187500000 -4.043116812 0.3200000000 -3.948665696 0.3212500000 -3.860010684 0.3225000000 -3.774947099 0.3237500000 -3.688177003 0.3250000000 -3.597922073 0.3262500000 -3.508310180 0.3275000000 -3.428555205 0.3287500000 -3.364198508 0.3300000000 -3.308886162 0.3312500000 -3.249778415 0.3325000000 -3.178980212 0.3337500000 -3.096860517 0.3350000000 -3.008242899 0.3362500000 -2.919250132 0.3375000000 -2.833526850 0.3387500000 -2.749032456 0.3400000000 -2.663348102 0.3412500000 -2.580152814 0.3425000000 -2.506918564 0.3437500000 -2.452624420 0.3450000000 -2.423938182 0.3462500000 -2.418800989 0.3475000000 -2.434232531 0.3487500000 -2.478663395 0.3500000000 -2.562642787 0.3512500000 -2.682432280 0.3525000000 -2.817524837 0.3537500000 -2.935571292 0.3550000000 -3.004170163 0.3562500000 -3.012174418 0.3575000000 -2.975992936 0.3587500000 -2.920329830 0.3600000000 -2.859402353 0.3612500000 -2.798588158 0.3625000000 -2.742679753 0.3637500000 -2.697244109 0.3650000000 -2.666924475 0.3662500000 -2.649306588 0.3675000000 -2.633356971 0.3687500000 -2.610752157 0.3700000000 -2.581665078 0.3712500000 -2.547293397 0.3725000000 -2.505701179 0.3737500000 -2.457624553 0.3750000000 -2.410832292 0.3762500000 -2.374832930 0.3775000000 -2.352556076 0.3787500000 -2.341148494 0.3800000000 -2.339769224 0.3812500000 -2.348170927 0.3825000000 -2.359406428 0.3837500000 -2.362866457 0.3850000000 -2.351297718 0.3862500000 -2.324480464 0.3875000000 -2.289981450 0.3887500000 -2.257239655 0.3900000000 -2.228610977 0.3912500000 -2.198651864 0.3925000000 -2.162711610 0.3937500000 -2.121706156 0.3950000000 -2.079041167 0.3962500000 -2.036012752 0.3975000000 -1.991711166 0.3987500000 -1.946978717 0.4000000000 -1.905611853 0.4012500000 -1.871443196 0.4025000000 -1.847385004 0.4037500000 -1.834857863 0.4050000000 -1.829657747 0.4062500000 -1.822969987 0.4075000000 -1.809839274 0.4087500000 -1.791717774 0.4100000000 -1.773061118 0.4112500000 -1.759225704 0.4125000000 -1.752995945 0.4137500000 -1.752580671 0.4150000000 -1.753344548 0.4162500000 -1.748997942 0.4175000000 -1.734249043 0.4187500000 -1.708954428 0.4200000000 -1.677326282 0.4212500000 -1.643905707 0.4225000000 -1.613267238 0.4237500000 -1.590569185 0.4250000000 -1.579799331 0.4262500000 -1.582592088 0.4275000000 -1.598667852 0.4287500000 -1.624818758 0.4300000000 -1.652753855 0.4312500000 -1.672289400 0.4325000000 -1.678318704 0.4337500000 -1.671758655 0.4350000000 -1.655064480 0.4362500000 -1.630837315 0.4375000000 -1.602290599 0.4387500000 -1.571798821 0.4400000000 -1.539180569 0.4412500000 -1.502601231 0.4425000000 -1.461819730 0.4437500000 -1.419191272 0.4450000000 -1.378344094 0.4462500000 -1.343121722 0.4475000000 -1.316243164 0.4487500000 -1.297665387 0.4500000000 -1.284970756 0.4512500000 -1.275859624 0.4525000000 -1.269429052 0.4537500000 -1.265471200 0.4550000000 -1.263254541 0.4562500000 -1.261447950 0.4575000000 -1.258475121 0.4587500000 -1.253095720 0.4600000000 -1.244979511 0.4612500000 -1.233100960 0.4625000000 -1.215224445 0.4637500000 -1.190183446 0.4650000000 -1.159257842 0.4662500000 -1.126235073 0.4675000000 -1.096507447 0.4687500000 -1.074024188 0.4700000000 -1.058051451 0.4712500000 -1.043873924 0.4725000000 -1.027503892 0.4737500000 -1.008900116 0.4750000000 -0.9907326928 0.4762500000 -0.9752809848 0.4775000000 -0.9627725018 0.4787500000 -0.9521199904 0.4800000000 -0.9428379714 0.4812500000 -0.9359933340 0.4825000000 -0.9330509120 0.4837500000 -0.9337720692 0.4850000000 -0.9352468824 0.4862500000 -0.9331709950 0.4875000000 -0.9247145455 0.4887500000 -0.9107175575 0.4900000000 -0.8944702991 0.4912500000 -0.8785137292 0.4925000000 -0.8635046082 0.4937500000 -0.8498004839 0.4950000000 -0.8382791318 0.4962500000 -0.8292399690 0.4975000000 -0.8224139924 0.4987500000 -0.8174824909 0.5000000000 -0.8142533421 0.5012500000 -0.8133343439 0.5025000000 -0.8146931317 0.5037500000 -0.8158575729 0.5050000000 -0.8142723457 0.5062500000 -0.8094665113 0.5075000000 -0.8017441448 0.5087500000 -0.7909309190 0.5100000000 -0.7766267934 0.5112500000 -0.7598022156 0.5125000000 -0.7429406319 0.5137500000 -0.7277376805 0.5150000000 -0.7139857800 0.5162500000 -0.7009228677 0.5175000000 -0.6885285954 0.5187500000 -0.6775224700 0.5200000000 -0.6696579225 0.5212500000 -0.6672800548 0.5225000000 -0.6702610116 0.5237500000 -0.6744072267 0.5250000000 -0.6752425562 0.5262500000 -0.6724232563 0.5275000000 -0.6688321800 0.5287500000 -0.6671197923 0.5300000000 -0.6677175695 0.5312500000 -0.6687328482 0.5325000000 -0.6680209973 0.5337500000 -0.6644706049 0.5350000000 -0.6574054085 0.5362500000 -0.6463563300 0.5375000000 -0.6314593062 0.5387500000 -0.6137489553 0.5400000000 -0.5950536275 0.5412500000 -0.5773277868 0.5425000000 -0.5614904049 0.5437500000 -0.5469856388 0.5450000000 -0.5330414399 0.5462500000 -0.5199444997 0.5475000000 -0.5086441448 0.5487500000 -0.5000611035 0.5500000000 -0.4944998296 0.5512500000 -0.4907893726 0.5525000000 -0.4865660040 0.5537500000 -0.4804388777 0.5550000000 -0.4733681583 0.5562500000 -0.4675038641 0.5575000000 -0.4647029890 0.5587500000 -0.4654924924 0.5600000000 -0.4683190875 0.5612500000 -0.4706949093 0.5625000000 -0.4708275463 0.5637500000 -0.4678109555 0.5650000000 -0.4613233126 0.5662500000 -0.4516370878 0.5675000000 -0.4397638701 0.5687500000 -0.4272282785 0.5700000000 -0.4151517203 0.5712500000 -0.4039355612 0.5725000000 -0.3937606140 0.5737500000 -0.3849908354 0.5750000000 -0.3782037341 0.5762500000 -0.3736426795 0.5775000000 -0.3704009953 0.5787500000 -0.3667913668 0.5800000000 -0.3620191429 0.5812500000 -0.3568622383 0.5825000000 -0.3523916158 0.5837500000 -0.3486003778 0.5850000000 -0.3448862760 0.5862500000 -0.3414081564 0.5875000000 -0.3390422620 0.5887500000 -0.3380820536 0.5900000000 -0.3373545515 0.5912500000 -0.3348838078 0.5925000000 -0.3292754245 0.5937500000 -0.3203392147 0.5950000000 -0.3090125301 0.5962500000 -0.2967833188 0.5975000000 -0.2849587297 0.5987500000 -0.2744529520 0.6000000000 -0.2659128907 0.6012500000 -0.2594242775 0.6025000000 -0.2540889359 0.6037500000 -0.2485631459 0.6050000000 -0.2421406798 0.6062500000 -0.2351890749 0.6075000000 -0.2286354907 0.6087500000 -0.2230110001 0.6100000000 -0.2181701783 0.6112500000 -0.2137432695 0.6125000000 -0.2094826845 0.6137500000 -0.2055018676 0.6150000000 -0.2022862021 0.6162500000 -0.1999819511 0.6175000000 -0.1978953021 0.6187500000 -0.1951055813 0.6200000000 -0.1910803903 0.6212500000 -0.1856189271 0.6225000000 -0.1786936314 0.6237500000 -0.1706404993 0.6250000000 -0.1621807955 0.6262500000 -0.1539711738 0.6275000000 -0.1461522219 0.6287500000 -0.1382743735 0.6300000000 -0.1297289723 0.6312500000 -0.1203504250 0.6325000000 -0.1105621129 0.6337500000 -0.1010321852 0.6350000000 -0.9236878597E-01 0.6362500000 -0.8485358101E-01 0.6375000000 -0.7840343407E-01 0.6387500000 -0.7277517738E-01 0.6400000000 -0.6769645678E-01 0.6412500000 -0.6296898715E-01 0.6425000000 -0.5851633847E-01 0.6437500000 -0.5445330075E-01 0.6450000000 -0.5109982492E-01 0.6462500000 -0.4885026403E-01 0.6475000000 -0.4802120929E-01 0.6487500000 -0.4876692633E-01 0.6500000000 -0.5075753584E-01 0.6512500000 -0.5300450334E-01 0.6525000000 -0.5439122628E-01 0.6537500000 -0.5428555963E-01 0.6550000000 -0.5241194570E-01 0.6562500000 -0.4850531394E-01 0.6575000000 -0.4255724166E-01 0.6587500000 -0.3506384330E-01 0.6600000000 -0.2670947909E-01 0.6612500000 -0.1813546232E-01 0.6625000000 -0.9973611733E-02 0.6637500000 -0.2718510833E-02 0.6650000000 0.3386128725E-02 0.6662500000 0.8207574825E-02 0.6675000000 0.1175705001E-01 0.6687500000 0.1446181965E-01 0.6700000000 0.1690939744E-01 0.6712500000 0.1911830025E-01 0.6725000000 0.2054960143E-01 0.6737500000 0.2086807997E-01 0.6750000000 0.2038617003E-01 0.6762500000 0.1991446843E-01 0.6775000000 0.2028080582E-01 0.6787500000 0.2174453410E-01 0.6800000000 0.2394233818E-01 0.6812500000 0.2665580352E-01 0.6825000000 0.3021000292E-01 0.6837500000 0.3477452383E-01 0.6850000000 0.3998831962E-01 0.6862500000 0.4547461340E-01 0.6875000000 0.5108222377E-01 0.6887500000 0.5675271763E-01 0.6900000000 0.6255126666E-01 0.6912500000 0.6859973170E-01 0.6925000000 0.7472502117E-01 0.6937500000 0.8038712009E-01 0.6950000000 0.8514782833E-01 0.6962500000 0.8908265361E-01 0.6975000000 0.9272484977E-01 0.6987500000 0.9664964232E-01 0.7000000000 0.1010248792 0.7012500000 0.1056370554 0.7025000000 0.1101589436 0.7037500000 0.1142741223 0.7050000000 0.1178690694 0.7062500000 0.1210346309 0.7075000000 0.1239090175 0.7087500000 0.1265944966 0.7100000000 0.1289723473 0.7112500000 0.1307598718 0.7125000000 0.1319236176 0.7137500000 0.1328611497 0.7150000000 0.1341419016 0.7162500000 0.1361376733 0.7175000000 0.1389357972 0.7187500000 0.1426587465 0.7200000000 0.1474543279 0.7212500000 0.1531039447 0.7225000000 0.1590333624 0.7237500000 0.1647002663 0.7250000000 0.1698738738 0.7262500000 0.1745826272 0.7275000000 0.1789123362 0.7287500000 0.1829172938 0.7300000000 0.1865522012 0.7312500000 0.1897618312 0.7325000000 0.1926997459 0.7337500000 0.1955583640 0.7350000000 0.1982558884 0.7362500000 0.2005500939 0.7375000000 0.2022977875 0.7387500000 0.2034767124 0.7400000000 0.2041362513 0.7412500000 0.2045182881 0.7425000000 0.2051087300 0.7437500000 0.2063326561 0.7450000000 0.2082686757 0.7462500000 0.2108039234 0.7475000000 0.2138439735 0.7487500000 0.2172264903 0.7500000000 0.2207518789 0.7512500000 0.2243849316 0.7525000000 0.2281075657 0.7537500000 0.2317212422 0.7550000000 0.2351143122 0.7562500000 0.2384660526 0.7575000000 0.2419648625 0.7587500000 0.2456284689 0.7600000000 0.2494250504 0.7612500000 0.2532454157 0.7625000000 0.2568479009 0.7637500000 0.2600833537 0.7650000000 0.2630360912 0.7662500000 0.2657935724 0.7675000000 0.2682843217 0.7687500000 0.2703854846 0.7700000000 0.2721046192 0.7712500000 0.2736647888 0.7725000000 0.2753658399 0.7737500000 0.2774413792 0.7750000000 0.2800098542 0.7762500000 0.2830617838 0.7775000000 0.2864490387 0.7787500000 0.2898893469 0.7800000000 0.2930462797 0.7812500000 0.2957401355 0.7825000000 0.2981533905 0.7837500000 0.3006708133 0.7850000000 0.3034775995 0.7862500000 0.3064802448 0.7875000000 0.3094985835 0.7887500000 0.3124249898 0.7900000000 0.3152266190 0.7912500000 0.3178588008 0.7925000000 0.3202725902 0.7937500000 0.3225223412 0.7950000000 0.3247430599 0.7962500000 0.3270049092 0.7975000000 0.3293745810 0.7987500000 0.3320164205 0.8000000000 0.3349899259 0.8012500000 0.3380230004 0.8025000000 0.3406032859 0.8037500000 0.3422764913 0.8050000000 0.3429648802 0.8062500000 0.3430922303 0.8075000000 0.3432719800 0.8087500000 0.3438522901 0.8100000000 0.3449296995 0.8112500000 0.3465820680 0.8125000000 0.3487977018 0.8137500000 0.3513832935 0.8150000000 0.3540808277 0.8162500000 0.3567355836 0.8175000000 0.3593662652 0.8187500000 0.3621102349 0.8200000000 0.3650701273 0.8212500000 0.3681803466 0.8225000000 0.3712246033 0.8237500000 0.3739383061 0.8250000000 0.3761269060 0.8262500000 0.3777390440 0.8275000000 0.3788357558 0.8287500000 0.3796008826 0.8300000000 0.3803445517 0.8312500000 0.3813412963 0.8325000000 0.3826933886 0.8337500000 0.3843618557 0.8350000000 0.3862616212 0.8362500000 0.3882538317 0.8375000000 0.3901551147 0.8387500000 0.3919014540 0.8400000000 0.3936015377 0.8412500000 0.3953661363 0.8425000000 0.3972356694 0.8437500000 0.3992421803 0.8450000000 0.4014191629 0.8462500000 0.4037509655 0.8475000000 0.4061833948 0.8487500000 0.4086799006 0.8500000000 0.4112419337 0.8512500000 0.4138565806 0.8525000000 0.4164635401 0.8537500000 0.4189899646 0.8550000000 0.4213919696 0.8562500000 0.4236640247 0.8575000000 0.4258159703 0.8587500000 0.4278588058 0.8600000000 0.4298077011 0.8612500000 0.4316809976 0.8625000000 0.4335005027 0.8637500000 0.4352853534 0.8650000000 0.4370676591 0.8662500000 0.4389197636 0.8675000000 0.4409056201 0.8687500000 0.4430240852 0.8700000000 0.4452315782 0.8712500000 0.4474786638 0.8725000000 0.4497177413 0.8737500000 0.4519113481 0.8750000000 0.4540478922 0.8762500000 0.4561255448 0.8775000000 0.4581136055 0.8787500000 0.4599644504 0.8800000000 0.4616618374 0.8812500000 0.4632306503 0.8825000000 0.4647203467 0.8837500000 0.4661859494 0.8850000000 0.4676687762 0.8862500000 0.4692038910 0.8875000000 0.4708034389 0.8887500000 0.4724426620 0.8900000000 0.4741070685 0.8912500000 0.4758307727 0.8925000000 0.4776603257 0.8937500000 0.4795847244 0.8950000000 0.4815297791 0.8962500000 0.4834068478 0.8975000000 0.4851419573 0.8987500000 0.4866912040 0.9000000000 0.4880551988 0.9012500000 0.4892619475 0.9025000000 0.4903559008 0.9037500000 0.4914062462 0.9050000000 0.4925050674 0.9062500000 0.4937590948 0.9075000000 0.4952294086 0.9087500000 0.4968856722 0.9100000000 0.4986508107 0.9112500000 0.5004685513 0.9125000000 0.5023174774 0.9137500000 0.5041783990 0.9150000000 0.5060126128 0.9162500000 0.5077721202 0.9175000000 0.5094327017 0.9187500000 0.5110219757 0.9200000000 0.5125972152 0.9212500000 0.5141827889 0.9225000000 0.5157568188 0.9237500000 0.5172998379 0.9250000000 0.5188199244 0.9262500000 0.5203359128 0.9275000000 0.5218574946 0.9287500000 0.5233690532 0.9300000000 0.5248304156 0.9312500000 0.5261842997 0.9325000000 0.5273714301 0.9337500000 0.5284003339 0.9350000000 0.5293790156 0.9362500000 0.5303964820 0.9375000000 0.5314445971 0.9387500000 0.5325132683 0.9400000000 0.5336693858 0.9412500000 0.5349884103 0.9425000000 0.5364630488 0.9437500000 0.5380181244 0.9450000000 0.5395615548 0.9462500000 0.5410068878 0.9475000000 0.5422894670 0.9487500000 0.5434008799 0.9500000000 0.5444311615 0.9512500000 0.5455284325 0.9525000000 0.5467740407 0.9537500000 0.5481483567 0.9550000000 0.5495937660 0.9562500000 0.5510613148 0.9575000000 0.5525177681 0.9587500000 0.5539422869 0.9600000000 0.5553255016 0.9612500000 0.5566746441 0.9625000000 0.5580151012 0.9637500000 0.5593652170 0.9650000000 0.5607146134 0.9662500000 0.5620386606 0.9675000000 0.5633279522 0.9687500000 0.5645989992 0.9700000000 0.5658684007 0.9712500000 0.5671294520 0.9725000000 0.5683640331 0.9737500000 0.5695621750 0.9750000000 0.5707239505 0.9762500000 0.5718654871 0.9775000000 0.5730258582 0.9787500000 0.5742347609 0.9800000000 0.5754861805 0.9812500000 0.5767539529 0.9825000000 0.5780125817 0.9837500000 0.5792469325 0.9850000000 0.5804565660 0.9862500000 0.5816526780 0.9875000000 0.5828464421 0.9887500000 0.5840422446 0.9900000000 0.5852412615 0.9912500000 0.5864414629 0.9925000000 0.5876367280 0.9937500000 0.5888227486 0.9950000000 0.5900019178 0.9962500000 0.5911788045 0.9975000000 0.5923531765 0.9987500000 0.5935202445 0.000000000 0.000000000 0.1250000000E-02 0.2106769079 0.2500000000E-02 0.4326592792 0.3750000000E-02 0.6647871022 0.5000000000E-02 0.8782870378 0.6250000000E-02 1.018177003 0.7500000000E-02 1.047770042 0.8750000000E-02 0.9858522044 0.1000000000E-01 0.8750672595 0.1125000000E-01 0.7469865512 0.1250000000E-01 0.6238754306 0.1375000000E-01 0.5217200270 0.1500000000E-01 0.4462655561 0.1625000000E-01 0.3940527254 0.1750000000E-01 0.3574764102 0.1875000000E-01 0.3299381195 0.2000000000E-01 0.3072004621 0.2125000000E-01 0.2852620381 0.2250000000E-01 0.2617835875 0.2375000000E-01 0.2384279787 0.2500000000E-01 0.2179413757 0.2625000000E-01 0.2012923693 0.2750000000E-01 0.1883982739 0.2875000000E-01 0.1791588013 0.3000000000E-01 0.1732992488 0.3125000000E-01 0.1701321181 0.3250000000E-01 0.1686794256 0.3375000000E-01 0.1680420608 0.3500000000E-01 0.1678132433 0.3625000000E-01 0.1681003293 0.3750000000E-01 0.1691817166 0.3875000000E-01 0.1712845944 0.4000000000E-01 0.1745573193 0.4125000000E-01 0.1791503401 0.4250000000E-01 0.1852235886 0.4375000000E-01 0.1927899439 0.4500000000E-01 0.2014217539 0.4625000000E-01 0.2100278738 0.4750000000E-01 0.2174173367 0.4875000000E-01 0.2234903581 0.5000000000E-01 0.2289651439 0.5125000000E-01 0.2338739964 0.5250000000E-01 0.2375416176 0.5375000000E-01 0.2399065169 0.5500000000E-01 0.2418776830 0.5625000000E-01 0.2444907070 0.5750000000E-01 0.2482102436 0.5875000000E-01 0.2528827974 0.6000000000E-01 0.2581013502 0.6125000000E-01 0.2636720333 0.6250000000E-01 0.2697207542 0.6375000000E-01 0.2764243920 0.6500000000E-01 0.2838505931 0.6625000000E-01 0.2919903097 0.6750000000E-01 0.3008191860 0.6875000000E-01 0.3103251097 0.7000000000E-01 0.3205029231 0.7125000000E-01 0.3313160496 0.7250000000E-01 0.3426298956 0.7375000000E-01 0.3541981432 0.7500000000E-01 0.3658488156 0.7625000000E-01 0.3777061595 0.7750000000E-01 0.3900721041 0.7875000000E-01 0.4031796094 0.8000000000E-01 0.4171434868 0.8125000000E-01 0.4320222495 0.8250000000E-01 0.4478650816 0.8375000000E-01 0.4647213732 0.8500000000E-01 0.4826149048 0.8625000000E-01 0.5014830732 0.8750000000E-01 0.5211401037 0.8875000000E-01 0.5414243489 0.9000000000E-01 0.5624601036 0.9125000000E-01 0.5846141174 0.9250000000E-01 0.6082275927 0.9375000000E-01 0.6335200950 0.9500000000E-01 0.6606447061 0.9625000000E-01 0.6897478746 0.9750000000E-01 0.7209982229 0.9875000000E-01 0.7545968201 0.1000000000 0.7907821545 0.1012500000 0.8298385841 0.1025000000 0.8721098966 0.1037500000 0.9180098874 0.1050000000 0.9680294225 0.1062500000 1.022750070 0.1075000000 1.082870672 0.1087500000 1.149247729 0.1100000000 1.222943587 0.1112500000 1.305282256 0.1125000000 1.397928143 0.1137500000 1.503003021 0.1150000000 1.623254205 0.1162500000 1.762295554 0.1175000000 1.924957035 0.1187500000 2.117795025 0.1200000000 2.349833173 0.1212500000 2.633608065 0.1225000000 2.986524119 0.1237500000 3.432182377 0.1250000000 4.000192209 0.1262500000 4.719856862 0.1275000000 5.597654591 0.1287500000 6.570480493 0.1300000000 7.468773347 0.1312500000 8.081105540 0.1325000000 8.305890525 0.1337500000 8.239061288 0.1350000000 8.125865615 0.1362500000 8.205967193 0.1375000000 8.618643845 0.1387500000 9.414314746 0.1400000000 10.57158551 0.1412500000 11.98566826 0.1425000000 13.48627218 0.1437500000 14.91245173 0.1450000000 16.19441789 0.1462500000 17.39527153 0.1475000000 18.56687910 0.1487500000 19.58908087 0.1500000000 20.33770968 0.1512500000 20.90939007 0.1525000000 21.55782197 0.1537500000 22.49526285 0.1550000000 23.80021250 0.1562500000 25.37669972 0.1575000000 26.99144190 0.1587500000 28.50707880 0.1600000000 29.97619133 0.1612500000 31.43516702 0.1625000000 32.82679904 0.1637500000 34.10883187 0.1650000000 35.28030230 0.1662500000 36.31831536 0.1675000000 37.09825586 0.1687500000 37.38837290 0.1700000000 37.04425492 0.1712500000 36.21006327 0.1725000000 35.16918393 0.1737500000 34.09035419 0.1750000000 32.93117427 0.1762500000 31.46728154 0.1775000000 29.55311441 0.1787500000 27.34622771 0.1800000000 25.17254502 0.1812500000 23.32215777 0.1825000000 22.01412490 0.1837500000 21.36408199 0.1850000000 21.30458207 0.1862500000 21.60227384 0.1875000000 21.98800062 0.1887500000 22.25585807 0.1900000000 22.24997281 0.1912500000 21.84569431 0.1925000000 21.02855437 0.1937500000 19.98912837 0.1950000000 19.03557277 0.1962500000 18.35869214 0.1975000000 18.00186989 0.1987500000 17.98329971 0.2000000000 18.28124684 0.2012500000 18.76175265 0.2025000000 19.22795876 0.2037500000 19.53172380 0.2050000000 19.64574945 0.2062500000 19.64300625 0.2075000000 19.58977479 0.2087500000 19.50682993 0.2100000000 19.35298055 0.2112500000 19.01579519 0.2125000000 18.38436352 0.2137500000 17.42378419 0.2150000000 16.24554982 0.2162500000 15.05969549 0.2175000000 14.03758425 0.2187500000 13.26000303 0.2200000000 12.71566557 0.2212500000 12.33511018 0.2225000000 12.05625401 0.2237500000 11.84159788 0.2250000000 11.63714768 0.2262500000 11.38386036 0.2275000000 11.06232436 0.2287500000 10.68554417 0.2300000000 10.28061309 0.2312500000 9.880874913 0.2325000000 9.504512479 0.2337500000 9.139413714 0.2350000000 8.779616300 0.2362500000 8.471992048 0.2375000000 8.276009724 0.2387500000 8.201091368 0.2400000000 8.210907033 0.2412500000 8.248989783 0.2425000000 8.260366408 0.2437500000 8.215601388 0.2450000000 8.101731128 0.2462500000 7.920121667 0.2475000000 7.716619262 0.2487500000 7.547312963 0.2500000000 7.405377145 0.2512500000 7.225019523 0.2525000000 6.965008016 0.2537500000 6.663821850 0.2550000000 6.382303443 0.2562500000 6.127725374 0.2575000000 5.865881323 0.2587500000 5.575470743 0.2600000000 5.273167735 0.2612500000 4.985220647 0.2625000000 4.712548687 0.2637500000 4.451589349 0.2650000000 4.221170262 0.2662500000 4.039169907 0.2675000000 3.906167817 0.2687500000 3.822444817 0.2700000000 3.793056766 0.2712500000 3.813516768 0.2725000000 3.861734245 0.2737500000 3.903821410 0.2750000000 3.906952522 0.2762500000 3.855779759 0.2775000000 3.765067921 0.2787500000 3.661096286 0.2800000000 3.546745366 0.2812500000 3.407570175 0.2825000000 3.243546082 0.2837500000 3.073058169 0.2850000000 2.921571840 0.2862500000 2.811844532 0.2875000000 2.750873003 0.2887500000 2.726023363 0.2900000000 2.719780817 0.2912500000 2.724806918 0.2925000000 2.737061306 0.2937500000 2.746148746 0.2950000000 2.748525812 0.2962500000 2.753167042 0.2975000000 2.764328871 0.2987500000 2.782429759 0.3000000000 2.810582017 0.3012500000 2.835825771 0.3025000000 2.824692192 0.3037500000 2.757991336 0.3050000000 2.652144082 0.3062500000 2.537053658 0.3075000000 2.429966051 0.3087500000 2.332933929 0.3100000000 2.244642156 0.3112500000 2.164698671 0.3125000000 2.087888913 0.3137500000 2.007446381 0.3150000000 1.924506958 0.3162500000 1.844433459 0.3175000000 1.771446926 0.3187500000 1.710468080 0.3200000000 1.663435048 0.3212500000 1.624772678 0.3225000000 1.588196590 0.3237500000 1.553732146 0.3250000000 1.526228488 0.3262500000 1.510848967 0.3275000000 1.506875970 0.3287500000 1.503928266 0.3300000000 1.490592650 0.3312500000 1.465598102 0.3325000000 1.437233721 0.3337500000 1.414738886 0.3350000000 1.403723119 0.3362500000 1.405336460 0.3375000000 1.416378838 0.3387500000 1.434361340 0.3400000000 1.463150510 0.3412500000 1.508472320 0.3425000000 1.572552711 0.3437500000 1.653285936 0.3450000000 1.742150437 0.3462500000 1.830235456 0.3475000000 1.917981257 0.3487500000 2.005818467 0.3500000000 2.079307270 0.3512500000 2.114487609 0.3525000000 2.091829290 0.3537500000 2.006325124 0.3550000000 1.876515726 0.3562500000 1.739270627 0.3575000000 1.624717153 0.3587500000 1.540224062 0.3600000000 1.479646951 0.3612500000 1.438066342 0.3625000000 1.412870006 0.3637500000 1.400148207 0.3650000000 1.391981796 0.3662500000 1.377006857 0.3675000000 1.350220449 0.3687500000 1.317207527 0.3700000000 1.284122375 0.3712500000 1.252196065 0.3725000000 1.223601838 0.3737500000 1.204872625 0.3750000000 1.200790732 0.3762500000 1.207870470 0.3775000000 1.217444985 0.3787500000 1.224302640 0.3800000000 1.226567818 0.3812500000 1.218620398 0.3825000000 1.194222686 0.3837500000 1.154315625 0.3850000000 1.106711209 0.3862500000 1.062110088 0.3875000000 1.027781024 0.3887500000 1.001968516 0.3900000000 0.9768261411 0.3912500000 0.9483545360 0.3925000000 0.9198410456 0.3937500000 0.8959863580 0.3950000000 0.8779110211 0.3962500000 0.8642086686 0.3975000000 0.8550979538 0.3987500000 0.8531471987 0.4000000000 0.8595349431 0.4012500000 0.8725655268 0.4025000000 0.8889592319 0.4037500000 0.9028587705 0.4050000000 0.9074069459 0.4062500000 0.9019307130 0.4075000000 0.8926995908 0.4087500000 0.8858906895 0.4100000000 0.8844338662 0.4112500000 0.8872884923 0.4125000000 0.8893985945 0.4137500000 0.8854267699 0.4150000000 0.8722998079 0.4162500000 0.8502266054 0.4175000000 0.8242151433 0.4187500000 0.8017407626 0.4200000000 0.7875964405 0.4212500000 0.7834685736 0.4225000000 0.7898510113 0.4237500000 0.8051780192 0.4250000000 0.8252076529 0.4262500000 0.8444462812 0.4275000000 0.8569249939 0.4287500000 0.8558194659 0.4300000000 0.8363760483 0.4312500000 0.8008905040 0.4325000000 0.7572874757 0.4337500000 0.7124022991 0.4350000000 0.6698947839 0.4362500000 0.6321392082 0.4375000000 0.5999875589 0.4387500000 0.5721499220 0.4400000000 0.5467932200 0.4412500000 0.5243639893 0.4425000000 0.5076915485 0.4437500000 0.4992902303 0.4450000000 0.4999227208 0.4462500000 0.5083081420 0.4475000000 0.5209700264 0.4487500000 0.5335413742 0.4500000000 0.5433333458 0.4512500000 0.5500129515 0.4525000000 0.5539485766 0.4537500000 0.5548368797 0.4550000000 0.5518308311 0.4562500000 0.5444326877 0.4575000000 0.5327382199 0.4587500000 0.5176740621 0.4600000000 0.4999405033 0.4612500000 0.4794450543 0.4625000000 0.4574289863 0.4637500000 0.4372631772 0.4650000000 0.4228711193 0.4662500000 0.4170736298 0.4675000000 0.4196221157 0.4687500000 0.4262134886 0.4700000000 0.4310543504 0.4712500000 0.4315865582 0.4725000000 0.4300627683 0.4737500000 0.4302554894 0.4750000000 0.4337641797 0.4762500000 0.4394324492 0.4775000000 0.4452892041 0.4787500000 0.4505550280 0.4800000000 0.4558620830 0.4812500000 0.4616184048 0.4825000000 0.4664121313 0.4837500000 0.4673059934 0.4850000000 0.4619563845 0.4862500000 0.4508510461 0.4875000000 0.4376919971 0.4887500000 0.4269256161 0.4900000000 0.4204806589 0.4912500000 0.4175458987 0.4925000000 0.4169715856 0.4937500000 0.4185129738 0.4950000000 0.4216457550 0.4962500000 0.4252570695 0.4975000000 0.4285916538 0.4987500000 0.4311918240 0.5000000000 0.4329773503 0.5012500000 0.4335370425 0.5025000000 0.4308901548 0.5037500000 0.4235889359 0.5050000000 0.4129139206 0.5062500000 0.4008432262 0.5075000000 0.3883288006 0.5087500000 0.3759178249 0.5100000000 0.3649429577 0.5112500000 0.3574222509 0.5125000000 0.3539463662 0.5137500000 0.3530728913 0.5150000000 0.3533207573 0.5162500000 0.3545702807 0.5175000000 0.3574352326 0.5187500000 0.3625260041 0.5200000000 0.3700249893 0.5212500000 0.3780071827 0.5225000000 0.3822184006 0.5237500000 0.3799885158 0.5250000000 0.3734661366 0.5262500000 0.3669787456 0.5275000000 0.3625049481 0.5287500000 0.3588711234 0.5300000000 0.3534098732 0.5312500000 0.3443603339 0.5325000000 0.3320263708 0.5337500000 0.3174705471 0.5350000000 0.3017249487 0.5362500000 0.2861073701 0.5375000000 0.2722663133 0.5387500000 0.2617419409 0.5400000000 0.2553272303 0.5412500000 0.2525172470 0.5425000000 0.2517484010 0.5437500000 0.2518058339 0.5450000000 0.2528470388 0.5462500000 0.2555218805 0.5475000000 0.2598299753 0.5487500000 0.2649811722 0.5500000000 0.2693918279 0.5512500000 0.2713777682 0.5525000000 0.2708412295 0.5537500000 0.2698046221 0.5550000000 0.2704112708 0.5562500000 0.2731289724 0.5575000000 0.2767285898 0.5587500000 0.2787646166 0.5600000000 0.2770297336 0.5612500000 0.2711308097 0.5625000000 0.2620811451 0.5637500000 0.2512595317 0.5650000000 0.2401300816 0.5662500000 0.2301836169 0.5675000000 0.2226693464 0.5687500000 0.2179712945 0.5700000000 0.2155560558 0.5712500000 0.2147941751 0.5725000000 0.2153726177 0.5737500000 0.2170955498 0.5750000000 0.2194436339 0.5762500000 0.2212385324 0.5775000000 0.2212221352 0.5787500000 0.2194049573 0.5800000000 0.2171686678 0.5812500000 0.2156364502 0.5825000000 0.2145294815 0.5837500000 0.2130001566 0.5850000000 0.2110322329 0.5862500000 0.2091766544 0.5875000000 0.2072197133 0.5887500000 0.2038422540 0.5900000000 0.1977395444 0.5912500000 0.1889627761 0.5925000000 0.1789309193 0.5937500000 0.1695468739 0.5950000000 0.1623565681 0.5962500000 0.1579756251 0.5975000000 0.1561783382 0.5987500000 0.1563539257 0.6000000000 0.1576054621 0.6012500000 0.1586533952 0.6025000000 0.1584361112 0.6037500000 0.1569685675 0.6050000000 0.1552286033 0.6062500000 0.1542190549 0.6075000000 0.1541249293 0.6087500000 0.1543571585 0.6100000000 0.1543378169 0.6112500000 0.1538967147 0.6125000000 0.1531835029 0.6137500000 0.1524703097 0.6150000000 0.1516380124 0.6162500000 0.1499176931 0.6175000000 0.1466528193 0.6187500000 0.1419468078 0.6200000000 0.1363448231 0.6212500000 0.1304201229 0.6225000000 0.1247851362 0.6237500000 0.1200874823 0.6250000000 0.1166038799 0.6262500000 0.1140212921 0.6275000000 0.1116971125 0.6287500000 0.1092089645 0.6300000000 0.1067602887 0.6312500000 0.1050297915 0.6325000000 0.1045904313 0.6337500000 0.1055913907 0.6350000000 0.1077613870 0.6362500000 0.1105566613 0.6375000000 0.1134957683 0.6387500000 0.1163035256 0.6400000000 0.1189043358 0.6412500000 0.1213812960 0.6425000000 0.1239160322 0.6437500000 0.1267231527 0.6450000000 0.1298920781 0.6462500000 0.1332549717 0.6475000000 0.1364012935 0.6487500000 0.1386552082 0.6500000000 0.1391205750 0.6512500000 0.1372232441 0.6525000000 0.1331713606 0.6537500000 0.1276287909 0.6550000000 0.1211778290 0.6562500000 0.1144258354 0.6575000000 0.1082338814 0.6587500000 0.1033520982 0.6600000000 0.1001252185 0.6612500000 0.9864215636E-01 0.6625000000 0.9878506789E-01 0.6637500000 0.1001799253 0.6650000000 0.1023786218 0.6662500000 0.1049556893 0.6675000000 0.1073702570 0.6687500000 0.1091539388 0.6700000000 0.1104189994 0.6712500000 0.1116687337 0.6725000000 0.1129674247 0.6737500000 0.1137159966 0.6750000000 0.1131727251 0.6762500000 0.1110064012 0.6775000000 0.1075566579 0.6787500000 0.1035907131 0.6800000000 0.9955637138E-01 0.6812500000 0.9529400849E-01 0.6825000000 0.9077061122E-01 0.6837500000 0.8648919839E-01 0.6850000000 0.8284853094E-01 0.6862500000 0.7982071731E-01 0.6875000000 0.7727845515E-01 0.6887500000 0.7511576893E-01 0.6900000000 0.7325608210E-01 0.6912500000 0.7184783846E-01 0.6925000000 0.7122506083E-01 0.6937500000 0.7144588320E-01 0.6950000000 0.7204824165E-01 0.6962500000 0.7237810661E-01 0.6975000000 0.7207548184E-01 0.6987500000 0.7132396088E-01 0.7000000000 0.7061941339E-01 0.7012500000 0.7031932780E-01 0.7025000000 0.7053813096E-01 0.7037500000 0.7115543626E-01 0.7050000000 0.7188494871E-01 0.7062500000 0.7252108375E-01 0.7075000000 0.7299157243E-01 0.7087500000 0.7336774780E-01 0.7100000000 0.7377254425E-01 0.7112500000 0.7405192193E-01 0.7125000000 0.7373434264E-01 0.7137500000 0.7242818790E-01 0.7150000000 0.7013142554E-01 0.7162500000 0.6717521736E-01 0.7175000000 0.6386886433E-01 0.7187500000 0.6041200906E-01 0.7200000000 0.5722401372E-01 0.7212500000 0.5487021257E-01 0.7225000000 0.5362409235E-01 0.7237500000 0.5332077669E-01 0.7250000000 0.5359005043E-01 0.7262500000 0.5415382690E-01 0.7275000000 0.5488877537E-01 0.7287500000 0.5576760203E-01 0.7300000000 0.5678057070E-01 0.7312500000 0.5777948790E-01 0.7325000000 0.5860894869E-01 0.7337500000 0.5937930141E-01 0.7350000000 0.6029835320E-01 0.7362500000 0.6135643853E-01 0.7375000000 0.6235800868E-01 0.7387500000 0.6307743379E-01 0.7400000000 0.6325176499E-01 0.7412500000 0.6257864972E-01 0.7425000000 0.6096625087E-01 0.7437500000 0.5870703438E-01 0.7450000000 0.5622178860E-01 0.7462500000 0.5375801310E-01 0.7475000000 0.5147273473E-01 0.7487500000 0.4950908105E-01 0.7500000000 0.4784982315E-01 0.7512500000 0.4641430451E-01 0.7525000000 0.4527176889E-01 0.7537500000 0.4443574246E-01 0.7550000000 0.4367286057E-01 0.7562500000 0.4280497622E-01 0.7575000000 0.4192044932E-01 0.7587500000 0.4116485431E-01 0.7600000000 0.4064614944E-01 0.7612500000 0.4049636618E-01 0.7625000000 0.4072415693E-01 0.7637500000 0.4112164641E-01 0.7650000000 0.4151314943E-01 0.7662500000 0.4191940113E-01 0.7675000000 0.4237545578E-01 0.7687500000 0.4276737177E-01 0.7700000000 0.4284387285E-01 0.7712500000 0.4240416648E-01 0.7725000000 0.4144475049E-01 0.7737500000 0.4012104706E-01 0.7750000000 0.3867231157E-01 0.7762500000 0.3736403212E-01 0.7775000000 0.3643474918E-01 0.7787500000 0.3601196078E-01 0.7800000000 0.3600302611E-01 0.7812500000 0.3606407833E-01 0.7825000000 0.3583170580E-01 0.7837500000 0.3527781614E-01 0.7850000000 0.3467208505E-01 0.7862500000 0.3425186846E-01 0.7875000000 0.3407277216E-01 0.7887500000 0.3407380382E-01 0.7900000000 0.3420247151E-01 0.7912500000 0.3442566617E-01 0.7925000000 0.3465018051E-01 0.7937500000 0.3474445701E-01 0.7950000000 0.3467944578E-01 0.7962500000 0.3450159551E-01 0.7975000000 0.3421320276E-01 0.7987500000 0.3390441936E-01 0.8000000000 0.3388889686E-01 0.8012500000 0.3449837581E-01 0.8025000000 0.3577054838E-01 0.8037500000 0.3733205669E-01 0.8050000000 0.3853459736E-01 0.8062500000 0.3885168391E-01 0.8075000000 0.3823856798E-01 0.8087500000 0.3699147217E-01 0.8100000000 0.3536177075E-01 0.8112500000 0.3355759910E-01 0.8125000000 0.3185866080E-01 0.8137500000 0.3048513881E-01 0.8150000000 0.2946327153E-01 0.8162500000 0.2865778159E-01 0.8175000000 0.2791318285E-01 0.8187500000 0.2719399109E-01 0.8200000000 0.2663736326E-01 0.8212500000 0.2644627608E-01 0.8225000000 0.2673606712E-01 0.8237500000 0.2746064285E-01 0.8250000000 0.2841873484E-01 0.8262500000 0.2934852258E-01 0.8275000000 0.3000172682E-01 0.8287500000 0.3015735943E-01 0.8300000000 0.2973847827E-01 0.8312500000 0.2888391057E-01 0.8325000000 0.2783141222E-01 0.8337500000 0.2677081794E-01 0.8350000000 0.2582622492E-01 0.8362500000 0.2508066776E-01 0.8375000000 0.2449042628E-01 0.8387500000 0.2387468902E-01 0.8400000000 0.2311207995E-01 0.8412500000 0.2221989843E-01 0.8425000000 0.2124255146E-01 0.8437500000 0.2020837807E-01 0.8450000000 0.1917475040E-01 0.8462500000 0.1821710294E-01 0.8475000000 0.1737198113E-01 0.8487500000 0.1663232551E-01 0.8500000000 0.1600081690E-01 0.8512500000 0.1551848743E-01 0.8525000000 0.1521615726E-01 0.8537500000 0.1507607310E-01 0.8550000000 0.1504399304E-01 0.8562500000 0.1506533422E-01 0.8575000000 0.1510383117E-01 0.8587500000 0.1513158168E-01 0.8600000000 0.1512452219E-01 0.8612500000 0.1506307299E-01 0.8625000000 0.1493261233E-01 0.8637500000 0.1472042506E-01 0.8650000000 0.1440141326E-01 0.8662500000 0.1397297837E-01 0.8675000000 0.1349933046E-01 0.8687500000 0.1306723988E-01 0.8700000000 0.1273134327E-01 0.8712500000 0.1251426841E-01 0.8725000000 0.1241787396E-01 0.8737500000 0.1242256613E-01 0.8750000000 0.1250327638E-01 0.8762500000 0.1265837348E-01 0.8775000000 0.1289474601E-01 0.8787500000 0.1318177552E-01 0.8800000000 0.1345452682E-01 0.8812500000 0.1365274604E-01 0.8825000000 0.1373984594E-01 0.8837500000 0.1371135998E-01 0.8850000000 0.1358231940E-01 0.8862500000 0.1337923468E-01 0.8875000000 0.1314815145E-01 0.8887500000 0.1291649777E-01 0.8900000000 0.1266903118E-01 0.8912500000 0.1239330849E-01 0.8925000000 0.1213540160E-01 0.8937500000 0.1198130637E-01 0.8950000000 0.1198698680E-01 0.8962500000 0.1215209019E-01 0.8975000000 0.1243391963E-01 0.8987500000 0.1275792577E-01 0.9000000000 0.1304257805E-01 0.9012500000 0.1322306358E-01 0.9025000000 0.1324342990E-01 0.9037500000 0.1306245075E-01 0.9050000000 0.1266694505E-01 0.9062500000 0.1209957499E-01 0.9075000000 0.1147324582E-01 0.9087500000 0.1090329731E-01 0.9100000000 0.1044014143E-01 0.9112500000 0.1007917191E-01 0.9125000000 0.9811986908E-02 0.9137500000 0.9647602813E-02 0.9150000000 0.9592295781E-02 0.9162500000 0.9623517132E-02 0.9175000000 0.9684576404E-02 0.9187500000 0.9718178243E-02 0.9200000000 0.9716849107E-02 0.9212500000 0.9719422237E-02 0.9225000000 0.9750444055E-02 0.9237500000 0.9797371146E-02 0.9250000000 0.9843770958E-02 0.9262500000 0.9892838413E-02 0.9275000000 0.9968090541E-02 0.9287500000 0.1010051723E-01 0.9300000000 0.1030724592E-01 0.9312500000 0.1057942376E-01 0.9325000000 0.1085563787E-01 0.9337500000 0.1102135791E-01 0.9350000000 0.1101358898E-01 0.9362500000 0.1088330136E-01 0.9375000000 0.1068396922E-01 0.9387500000 0.1039217339E-01 0.9400000000 0.9988607707E-02 0.9412500000 0.9543257074E-02 0.9425000000 0.9167891247E-02 0.9437500000 0.8933866698E-02 0.9450000000 0.8856619658E-02 0.9462500000 0.8905239144E-02 0.9475000000 0.9002469518E-02 0.9487500000 0.9029476961E-02 0.9500000000 0.8878841233E-02 0.9512500000 0.8551786634E-02 0.9525000000 0.8154158808E-02 0.9537500000 0.7787729770E-02 0.9550000000 0.7496693395E-02 0.9562500000 0.7285067529E-02 0.9575000000 0.7140487898E-02 0.9587500000 0.7043165889E-02 0.9600000000 0.6968542430E-02 0.9612500000 0.6890592551E-02 0.9625000000 0.6799344562E-02 0.9637500000 0.6712820755E-02 0.9650000000 0.6653234344E-02 0.9662500000 0.6619495325E-02 0.9675000000 0.6588705374E-02 0.9687500000 0.6544927997E-02 0.9700000000 0.6498442312E-02 0.9712500000 0.6465582790E-02 0.9725000000 0.6445132659E-02 0.9737500000 0.6421629455E-02 0.9750000000 0.6375017282E-02 0.9762500000 0.6281416799E-02 0.9775000000 0.6135794576E-02 0.9787500000 0.5969727275E-02 0.9800000000 0.5822089399E-02 0.9812500000 0.5711193140E-02 0.9825000000 0.5634473694E-02 0.9837500000 0.5576580735E-02 0.9850000000 0.5518949458E-02 0.9862500000 0.5451097511E-02 0.9875000000 0.5374546283E-02 0.9887500000 0.5294897232E-02 0.9900000000 0.5217188207E-02 0.9912500000 0.5146890284E-02 0.9925000000 0.5085865647E-02 0.9937500000 0.5029761716E-02 0.9950000000 0.4973788315E-02 0.9962500000 0.4919268069E-02 0.9975000000 0.4870994494E-02 0.9987500000 0.4831110925E-02 elk-10.4.9/examples/BSE/Si/PaxHeaders/EPSILON_BSE_11.OUT0000644000000000000000000000013214762655565016761 xustar0030 mtime=1741380469.629014529 30 atime=1741380469.628014524 30 ctime=1741380469.629014529 elk-10.4.9/examples/BSE/Si/EPSILON_BSE_11.OUT0000644002504400250440000016350614762655565021516 0ustar00dewhurstdewhurst00000000000000 0.000000000 11.17590407 0.1250000000E-02 11.17652447 0.2500000000E-02 11.17838616 0.3750000000E-02 11.18149065 0.5000000000E-02 11.18584046 0.6250000000E-02 11.19143913 0.7500000000E-02 11.19829121 0.8750000000E-02 11.20640230 0.1000000000E-01 11.21577901 0.1125000000E-01 11.22642905 0.1250000000E-01 11.23836119 0.1375000000E-01 11.25158529 0.1500000000E-01 11.26611233 0.1625000000E-01 11.28195444 0.1750000000E-01 11.29912491 0.1875000000E-01 11.31763825 0.2000000000E-01 11.33751017 0.2125000000E-01 11.35875768 0.2250000000E-01 11.38139909 0.2375000000E-01 11.40545406 0.2500000000E-01 11.43094364 0.2625000000E-01 11.45789037 0.2750000000E-01 11.48631825 0.2875000000E-01 11.51625288 0.3000000000E-01 11.54772148 0.3125000000E-01 11.58075296 0.3250000000E-01 11.61537804 0.3375000000E-01 11.65162926 0.3500000000E-01 11.68954114 0.3625000000E-01 11.72915022 0.3750000000E-01 11.77049518 0.3875000000E-01 11.81361696 0.4000000000E-01 11.85855889 0.4125000000E-01 11.90536676 0.4250000000E-01 11.95408903 0.4375000000E-01 12.00477693 0.4500000000E-01 12.05748466 0.4625000000E-01 12.11226950 0.4750000000E-01 12.16919210 0.4875000000E-01 12.22831657 0.5000000000E-01 12.28971080 0.5125000000E-01 12.35344664 0.5250000000E-01 12.41960019 0.5375000000E-01 12.48825206 0.5500000000E-01 12.55948771 0.5625000000E-01 12.63339777 0.5750000000E-01 12.71007840 0.5875000000E-01 12.78963172 0.6000000000E-01 12.87216622 0.6125000000E-01 12.95779726 0.6250000000E-01 13.04664759 0.6375000000E-01 13.13884793 0.6500000000E-01 13.23453763 0.6625000000E-01 13.33386535 0.6750000000E-01 13.43698985 0.6875000000E-01 13.54408085 0.7000000000E-01 13.65531999 0.7125000000E-01 13.77090187 0.7250000000E-01 13.89103528 0.7375000000E-01 14.01594445 0.7500000000E-01 14.14587058 0.7625000000E-01 14.28107344 0.7750000000E-01 14.42183328 0.7875000000E-01 14.56845285 0.8000000000E-01 14.72125980 0.8125000000E-01 14.88060933 0.8250000000E-01 15.04688721 0.8375000000E-01 15.22051322 0.8500000000E-01 15.40194511 0.8625000000E-01 15.59168303 0.8750000000E-01 15.79027479 0.8875000000E-01 15.99832177 0.9000000000E-01 16.21648584 0.9125000000E-01 16.44549732 0.9250000000E-01 16.68616440 0.9375000000E-01 16.93938392 0.9500000000E-01 17.20615425 0.9625000000E-01 17.48759020 0.9750000000E-01 17.78494081 0.9875000000E-01 18.09961016 0.1000000000 18.43318204 0.1012500000 18.78744903 0.1025000000 19.16444660 0.1037500000 19.56649272 0.1050000000 19.99623304 0.1062500000 20.45669055 0.1075000000 20.95131637 0.1087500000 21.48403332 0.1100000000 22.05925374 0.1112500000 22.68183218 0.1125000000 23.35686991 0.1137500000 24.08919921 0.1150000000 24.88218923 0.1162500000 25.73513972 0.1175000000 26.63780929 0.1187500000 27.55948390 0.1200000000 28.42929980 0.1212500000 29.10957539 0.1225000000 29.39065155 0.1237500000 29.08916662 0.1250000000 28.27984121 0.1262500000 27.38214824 0.1275000000 26.88353439 0.1287500000 27.03681360 0.1300000000 27.75472801 0.1312500000 28.69446464 0.1325000000 29.42090741 0.1337500000 29.59053621 0.1350000000 29.18239111 0.1362500000 28.51745051 0.1375000000 27.88542356 0.1387500000 27.25621194 0.1400000000 26.40179147 0.1412500000 25.08320894 0.1425000000 23.27149814 0.1437500000 21.35098084 0.1450000000 19.77026932 0.1462500000 18.55299807 0.1475000000 17.31391573 0.1487500000 15.53640976 0.1500000000 12.85392738 0.1512500000 9.445410935 0.1525000000 6.022950455 0.1537500000 3.049998238 0.1550000000 0.4696160537 0.1562500000 -1.774958968 0.1575000000 -3.498895006 0.1587500000 -4.577308110 0.1600000000 -5.190242437 0.1612500000 -5.667387323 0.1625000000 -6.214927921 0.1637500000 -6.854047992 0.1650000000 -7.563624420 0.1662500000 -8.359310639 0.1675000000 -9.182186673 0.1687500000 -9.806089765 0.1700000000 -10.03530563 0.1712500000 -9.868272348 0.1725000000 -9.359736575 0.1737500000 -8.556939958 0.1750000000 -7.591457491 0.1762500000 -6.695472974 0.1775000000 -6.138515191 0.1787500000 -6.108690719 0.1800000000 -6.532684610 0.1812500000 -7.094893852 0.1825000000 -7.545768909 0.1837500000 -7.862878890 0.1850000000 -8.093952153 0.1862500000 -8.194888447 0.1875000000 -8.066006125 0.1887500000 -7.700821340 0.1900000000 -7.266109592 0.1912500000 -6.992055243 0.1925000000 -7.004889818 0.1937500000 -7.284195352 0.1950000000 -7.740617642 0.1962500000 -8.309063125 0.1975000000 -8.958623214 0.1987500000 -9.623623989 0.2000000000 -10.18497708 0.2012500000 -10.54934870 0.2025000000 -10.70514260 0.2037500000 -10.70866209 0.2050000000 -10.64523215 0.2062500000 -10.58101553 0.2075000000 -10.51815053 0.2087500000 -10.39643949 0.2100000000 -10.17387879 0.2112500000 -9.876207829 0.2125000000 -9.567282525 0.2137500000 -9.308774798 0.2150000000 -9.124928903 0.2162500000 -8.999806953 0.2175000000 -8.914767459 0.2187500000 -8.868971056 0.2200000000 -8.854016538 0.2212500000 -8.840211971 0.2225000000 -8.795676193 0.2237500000 -8.685565252 0.2250000000 -8.484712521 0.2262500000 -8.212857333 0.2275000000 -7.918321263 0.2287500000 -7.633708895 0.2300000000 -7.370316479 0.2312500000 -7.143713676 0.2325000000 -6.975295223 0.2337500000 -6.867684786 0.2350000000 -6.810013624 0.2362500000 -6.792411287 0.2375000000 -6.806937800 0.2387500000 -6.859109932 0.2400000000 -6.953517800 0.2412500000 -7.067307148 0.2425000000 -7.171557547 0.2437500000 -7.249639797 0.2450000000 -7.277518876 0.2462500000 -7.233363022 0.2475000000 -7.132537147 0.2487500000 -7.027217377 0.2500000000 -6.970514654 0.2512500000 -6.972542358 0.2525000000 -6.988178694 0.2537500000 -6.962612069 0.2550000000 -6.883582463 0.2562500000 -6.769171972 0.2575000000 -6.626594131 0.2587500000 -6.455098752 0.2600000000 -6.271642761 0.2612500000 -6.102644044 0.2625000000 -5.959148709 0.2637500000 -5.837141491 0.2650000000 -5.731905183 0.2662500000 -5.640704314 0.2675000000 -5.560320779 0.2687500000 -5.491598937 0.2700000000 -5.439725081 0.2712500000 -5.401115942 0.2725000000 -5.362958920 0.2737500000 -5.318487072 0.2750000000 -5.262877683 0.2762500000 -5.186934950 0.2775000000 -5.087668375 0.2787500000 -4.969193393 0.2800000000 -4.835643616 0.2812500000 -4.692720981 0.2825000000 -4.550457666 0.2837500000 -4.418353408 0.2850000000 -4.300965557 0.2862500000 -4.202902322 0.2875000000 -4.128264076 0.2887500000 -4.069159419 0.2900000000 -4.009038090 0.2912500000 -3.941652227 0.2925000000 -3.875363858 0.2937500000 -3.827513633 0.2950000000 -3.816772684 0.2962500000 -3.841886316 0.2975000000 -3.874117300 0.2987500000 -3.886524191 0.3000000000 -3.878455483 0.3012500000 -3.867122590 0.3025000000 -3.868519241 0.3037500000 -3.884536842 0.3050000000 -3.902951340 0.3062500000 -3.908665037 0.3075000000 -3.891911673 0.3087500000 -3.848322890 0.3100000000 -3.779782041 0.3112500000 -3.693956914 0.3125000000 -3.600127692 0.3137500000 -3.507415334 0.3150000000 -3.423692861 0.3162500000 -3.351590116 0.3175000000 -3.287618323 0.3187500000 -3.225752706 0.3200000000 -3.161265314 0.3212500000 -3.095037310 0.3225000000 -3.034515660 0.3237500000 -2.985833441 0.3250000000 -2.945852487 0.3262500000 -2.905143839 0.3275000000 -2.857558627 0.3287500000 -2.803243161 0.3300000000 -2.746228032 0.3312500000 -2.691349810 0.3325000000 -2.639266220 0.3337500000 -2.584327178 0.3350000000 -2.521410273 0.3362500000 -2.453012686 0.3375000000 -2.388323935 0.3387500000 -2.337525813 0.3400000000 -2.304948192 0.3412500000 -2.285830231 0.3425000000 -2.272962107 0.3437500000 -2.267263022 0.3450000000 -2.276950423 0.3462500000 -2.307372724 0.3475000000 -2.355501467 0.3487500000 -2.409057096 0.3500000000 -2.448415233 0.3512500000 -2.458904568 0.3525000000 -2.441414307 0.3537500000 -2.406152923 0.3550000000 -2.363818679 0.3562500000 -2.323720702 0.3575000000 -2.290626812 0.3587500000 -2.262847472 0.3600000000 -2.237016129 0.3612500000 -2.211355129 0.3625000000 -2.185824399 0.3637500000 -2.162429192 0.3650000000 -2.142329482 0.3662500000 -2.121953849 0.3675000000 -2.095591820 0.3687500000 -2.063918870 0.3700000000 -2.035908949 0.3712500000 -2.019854750 0.3725000000 -2.016612979 0.3737500000 -2.024069763 0.3750000000 -2.042112689 0.3762500000 -2.068243352 0.3775000000 -2.094035838 0.3787500000 -2.110683829 0.3800000000 -2.113302901 0.3812500000 -2.101604263 0.3825000000 -2.081008059 0.3837500000 -2.058646228 0.3850000000 -2.036145425 0.3862500000 -2.009831280 0.3875000000 -1.978008798 0.3887500000 -1.943740344 0.3900000000 -1.911338266 0.3912500000 -1.882411821 0.3925000000 -1.855074398 0.3937500000 -1.828137046 0.3950000000 -1.803371293 0.3962500000 -1.782714027 0.3975000000 -1.768170381 0.3987500000 -1.761417423 0.4000000000 -1.759256153 0.4012500000 -1.754869577 0.4025000000 -1.744218495 0.4037500000 -1.726372361 0.4050000000 -1.700722133 0.4062500000 -1.667065339 0.4075000000 -1.626469009 0.4087500000 -1.581259823 0.4100000000 -1.534202070 0.4112500000 -1.487139441 0.4125000000 -1.440883919 0.4137500000 -1.396438662 0.4150000000 -1.355658529 0.4162500000 -1.320698596 0.4175000000 -1.293107017 0.4187500000 -1.273784364 0.4200000000 -1.263839190 0.4212500000 -1.265028352 0.4225000000 -1.277125353 0.4237500000 -1.295412262 0.4250000000 -1.313666809 0.4262500000 -1.328222348 0.4275000000 -1.337771695 0.4287500000 -1.340908171 0.4300000000 -1.336242066 0.4312500000 -1.324977507 0.4325000000 -1.310632480 0.4337500000 -1.295359603 0.4350000000 -1.277875709 0.4362500000 -1.255619563 0.4375000000 -1.228135953 0.4387500000 -1.197962837 0.4400000000 -1.169134642 0.4412500000 -1.145070599 0.4425000000 -1.127020333 0.4437500000 -1.113266590 0.4450000000 -1.099993717 0.4462500000 -1.084873012 0.4475000000 -1.069863604 0.4487500000 -1.059471548 0.4500000000 -1.056984181 0.4512500000 -1.061568758 0.4525000000 -1.067709227 0.4537500000 -1.069444068 0.4550000000 -1.065297491 0.4562500000 -1.056917047 0.4575000000 -1.044825966 0.4587500000 -1.028043631 0.4600000000 -1.006861680 0.4612500000 -0.9839078004 0.4625000000 -0.9624674396 0.4637500000 -0.9443807922 0.4650000000 -0.9290866411 0.4662500000 -0.9142293245 0.4675000000 -0.8977140929 0.4687500000 -0.8795000262 0.4700000000 -0.8607306317 0.4712500000 -0.8420981256 0.4725000000 -0.8241516852 0.4737500000 -0.8082189239 0.4750000000 -0.7959282021 0.4762500000 -0.7875394407 0.4775000000 -0.7810797821 0.4787500000 -0.7739839831 0.4800000000 -0.7650762981 0.4812500000 -0.7546670272 0.4825000000 -0.7438193373 0.4837500000 -0.7335545011 0.4850000000 -0.7242037419 0.4862500000 -0.7151592917 0.4875000000 -0.7050355623 0.4887500000 -0.6926781635 0.4900000000 -0.6780896705 0.4912500000 -0.6619572176 0.4925000000 -0.6451178240 0.4937500000 -0.6287082566 0.4950000000 -0.6140275027 0.4962500000 -0.6021071751 0.4975000000 -0.5930877377 0.4987500000 -0.5858991798 0.5000000000 -0.5797736006 0.5012500000 -0.5758585647 0.5025000000 -0.5757403704 0.5037500000 -0.5784890027 0.5050000000 -0.5803036524 0.5062500000 -0.5779867934 0.5075000000 -0.5714703432 0.5087500000 -0.5622156512 0.5100000000 -0.5514930039 0.5112500000 -0.5404889790 0.5125000000 -0.5299329782 0.5137500000 -0.5193345384 0.5150000000 -0.5079363480 0.5162500000 -0.4961438166 0.5175000000 -0.4851789720 0.5187500000 -0.4757839099 0.5200000000 -0.4679263788 0.5212500000 -0.4617313951 0.5225000000 -0.4575096276 0.5237500000 -0.4547277822 0.5250000000 -0.4519446169 0.5262500000 -0.4479409584 0.5275000000 -0.4425246462 0.5287500000 -0.4360164896 0.5300000000 -0.4284215178 0.5312500000 -0.4194874024 0.5325000000 -0.4092551364 0.5337500000 -0.3981688923 0.5350000000 -0.3867315469 0.5362500000 -0.3752386239 0.5375000000 -0.3637668618 0.5387500000 -0.3523356607 0.5400000000 -0.3410306162 0.5412500000 -0.3300185747 0.5425000000 -0.3195621888 0.5437500000 -0.3100694168 0.5450000000 -0.3020596464 0.5462500000 -0.2958866796 0.5475000000 -0.2913335048 0.5487500000 -0.2875370512 0.5500000000 -0.2834020153 0.5512500000 -0.2781126612 0.5525000000 -0.2713919585 0.5537500000 -0.2635058177 0.5550000000 -0.2549614238 0.5562500000 -0.2461965884 0.5575000000 -0.2374797011 0.5587500000 -0.2289183528 0.5600000000 -0.2205123882 0.5612500000 -0.2122482337 0.5625000000 -0.2041670934 0.5637500000 -0.1964027954 0.5650000000 -0.1892232461 0.5662500000 -0.1829957732 0.5675000000 -0.1779224964 0.5687500000 -0.1736209116 0.5700000000 -0.1692381726 0.5712500000 -0.1641958029 0.5725000000 -0.1584464031 0.5737500000 -0.1521866367 0.5750000000 -0.1456530561 0.5762500000 -0.1390227767 0.5775000000 -0.1323710498 0.5787500000 -0.1257175704 0.5800000000 -0.1190847771 0.5812500000 -0.1125041039 0.5825000000 -0.1060009287 0.5837500000 -0.9958887737E-01 0.5850000000 -0.9327233023E-01 0.5862500000 -0.8705042948E-01 0.5875000000 -0.8091998516E-01 0.5887500000 -0.7487719443E-01 0.5900000000 -0.6891870218E-01 0.5912500000 -0.6304246408E-01 0.5925000000 -0.5724857442E-01 0.5937500000 -0.5153942809E-01 0.5950000000 -0.4591696368E-01 0.5962500000 -0.4037518399E-01 0.5975000000 -0.3489628145E-01 0.5987500000 -0.2946247762E-01 0.6000000000 -0.2406831650E-01 0.6012500000 -0.1871703916E-01 0.6025000000 -0.1341282106E-01 0.6037500000 -0.8157988848E-02 0.6050000000 -0.2953395836E-02 0.6062500000 0.2200479261E-02 0.6075000000 0.7302283714E-02 0.6087500000 0.1234811881E-01 0.6100000000 0.1732910850E-01 0.6112500000 0.2222905971E-01 0.6125000000 0.2702748051E-01 0.6137500000 0.3171824690E-01 0.6150000000 0.3633557707E-01 0.6162500000 0.4093865299E-01 0.6175000000 0.4555864739E-01 0.6187500000 0.5018750173E-01 0.6200000000 0.5480555426E-01 0.6212500000 0.5939896981E-01 0.6225000000 0.6396104726E-01 0.6237500000 0.6848866853E-01 0.6250000000 0.7297984620E-01 0.6262500000 0.7743332917E-01 0.6275000000 0.8184866743E-01 0.6287500000 0.8622601351E-01 0.6300000000 0.9056585183E-01 0.6312500000 0.9486880343E-01 0.6325000000 0.9913550636E-01 0.6337500000 0.1033665355 0.6350000000 0.1075623451 0.6362500000 0.1117232818 0.6375000000 0.1158498076 0.6387500000 0.1199428901 0.6400000000 0.1240039015 0.6412500000 0.1280338149 0.6425000000 0.1320327996 0.6437500000 0.1360003972 0.6450000000 0.1399355332 0.6462500000 0.1438363078 0.6475000000 0.1477004171 0.6487500000 0.1515275874 0.6500000000 0.1553227526 0.6512500000 0.1590937752 0.6525000000 0.1628447827 0.6537500000 0.1665749970 0.6550000000 0.1702821491 0.6562500000 0.1739645995 0.6575000000 0.1776215945 0.6587500000 0.1812529539 0.6600000000 0.1848587885 0.6612500000 0.1884393406 0.6625000000 0.1919948329 0.6637500000 0.1955251628 0.6650000000 0.1990294868 0.6662500000 0.2025057868 0.6675000000 0.2059501040 0.6687500000 0.2093548762 0.6700000000 0.2127079141 0.6712500000 0.2159985031 0.6725000000 0.2192344480 0.6737500000 0.2224491185 0.6750000000 0.2256742041 0.6762500000 0.2289151152 0.6775000000 0.2321603227 0.6787500000 0.2353974285 0.6800000000 0.2386185558 0.6812500000 0.2418196865 0.6825000000 0.2449990612 0.6837500000 0.2481560728 0.6850000000 0.2512906626 0.6862500000 0.2544030199 0.6875000000 0.2574934363 0.6887500000 0.2605622380 0.6900000000 0.2636097540 0.6912500000 0.2666363035 0.6925000000 0.2696421907 0.6937500000 0.2726277036 0.6950000000 0.2755931150 0.6962500000 0.2785386836 0.6975000000 0.2814646557 0.6987500000 0.2843712667 0.7000000000 0.2872587420 0.7012500000 0.2901272988 0.7025000000 0.2929771464 0.7037500000 0.2958084876 0.7050000000 0.2986215190 0.7062500000 0.3014164320 0.7075000000 0.3041934127 0.7087500000 0.3069526430 0.7100000000 0.3096943005 0.7112500000 0.3124185590 0.7125000000 0.3151255888 0.7137500000 0.3178155567 0.7150000000 0.3204886265 0.7162500000 0.3231449591 0.7175000000 0.3257847123 0.7187500000 0.3284080416 0.7200000000 0.3310150997 0.7212500000 0.3336060370 0.7225000000 0.3361810016 0.7237500000 0.3387401391 0.7250000000 0.3412835933 0.7262500000 0.3438115056 0.7275000000 0.3463240156 0.7287500000 0.3488212608 0.7300000000 0.3513033768 0.7312500000 0.3537704974 0.7325000000 0.3562227547 0.7337500000 0.3586602787 0.7350000000 0.3610831982 0.7362500000 0.3634916398 0.7375000000 0.3658857290 0.7387500000 0.3682655892 0.7400000000 0.3706313426 0.7412500000 0.3729831097 0.7425000000 0.3753210097 0.7437500000 0.3776451601 0.7450000000 0.3799556770 0.7462500000 0.3822526754 0.7475000000 0.3845362686 0.7487500000 0.3868065686 0.7500000000 0.3890636861 0.7512500000 0.3913077307 0.7525000000 0.3935388104 0.7537500000 0.3957570321 0.7550000000 0.3979625016 0.7562500000 0.4001553232 0.7575000000 0.4023356002 0.7587500000 0.4045034347 0.7600000000 0.4066589277 0.7612500000 0.4088021789 0.7625000000 0.4109332870 0.7637500000 0.4130523497 0.7650000000 0.4151594634 0.7662500000 0.4172547237 0.7675000000 0.4193382248 0.7687500000 0.4214100602 0.7700000000 0.4234703223 0.7712500000 0.4255191024 0.7725000000 0.4275564908 0.7737500000 0.4295825771 0.7750000000 0.4315974496 0.7762500000 0.4336011959 0.7775000000 0.4355939026 0.7787500000 0.4375756553 0.7800000000 0.4395465388 0.7812500000 0.4415066370 0.7825000000 0.4434560330 0.7837500000 0.4453948088 0.7850000000 0.4473230458 0.7862500000 0.4492408244 0.7875000000 0.4511482243 0.7887500000 0.4530453243 0.7900000000 0.4549322025 0.7912500000 0.4568089359 0.7925000000 0.4586756011 0.7937500000 0.4605322738 0.7950000000 0.4623790288 0.7962500000 0.4642159403 0.7975000000 0.4660430818 0.7987500000 0.4678605259 0.8000000000 0.4696683445 0.8012500000 0.4714666090 0.8025000000 0.4732553898 0.8037500000 0.4750347568 0.8050000000 0.4768047792 0.8062500000 0.4785655256 0.8075000000 0.4803170636 0.8087500000 0.4820594604 0.8100000000 0.4837927827 0.8112500000 0.4855170962 0.8125000000 0.4872324662 0.8137500000 0.4889389573 0.8150000000 0.4906366335 0.8162500000 0.4923255581 0.8175000000 0.4940057941 0.8187500000 0.4956774034 0.8200000000 0.4973404478 0.8212500000 0.4989949883 0.8225000000 0.5006410852 0.8237500000 0.5022787985 0.8250000000 0.5039081874 0.8262500000 0.5055293108 0.8275000000 0.5071422268 0.8287500000 0.5087469932 0.8300000000 0.5103436670 0.8312500000 0.5119323048 0.8325000000 0.5135129628 0.8337500000 0.5150856965 0.8350000000 0.5166505611 0.8362500000 0.5182076109 0.8375000000 0.5197569002 0.8387500000 0.5212984825 0.8400000000 0.5228324109 0.8412500000 0.5243587380 0.8425000000 0.5258775159 0.8437500000 0.5273887962 0.8450000000 0.5288926303 0.8462500000 0.5303890689 0.8475000000 0.5318781621 0.8487500000 0.5333599600 0.8500000000 0.5348345118 0.8512500000 0.5363018665 0.8525000000 0.5377620728 0.8537500000 0.5392151786 0.8550000000 0.5406612316 0.8562500000 0.5421002792 0.8575000000 0.5435323682 0.8587500000 0.5449575449 0.8600000000 0.5463758555 0.8612500000 0.5477873456 0.8625000000 0.5491920604 0.8637500000 0.5505900448 0.8650000000 0.5519813431 0.8662500000 0.5533659996 0.8675000000 0.5547440579 0.8687500000 0.5561155613 0.8700000000 0.5574805528 0.8712500000 0.5588390749 0.8725000000 0.5601911699 0.8737500000 0.5615368797 0.8750000000 0.5628762458 0.8762500000 0.5642093093 0.8775000000 0.5655361110 0.8787500000 0.5668566915 0.8800000000 0.5681710908 0.8812500000 0.5694793488 0.8825000000 0.5707815048 0.8837500000 0.5720775981 0.8850000000 0.5733676674 0.8862500000 0.5746517513 0.8875000000 0.5759298879 0.8887500000 0.5772021150 0.8900000000 0.5784684701 0.8912500000 0.5797289906 0.8925000000 0.5809837133 0.8937500000 0.5822326749 0.8950000000 0.5834759117 0.8962500000 0.5847134596 0.8975000000 0.5859453545 0.8987500000 0.5871716317 0.9000000000 0.5883923264 0.9012500000 0.5896074735 0.9025000000 0.5908171076 0.9037500000 0.5920212630 0.9050000000 0.5932199737 0.9062500000 0.5944132734 0.9075000000 0.5956011957 0.9087500000 0.5967837737 0.9100000000 0.5979610405 0.9112500000 0.5991330287 0.9125000000 0.6002997707 0.9137500000 0.6014612987 0.9150000000 0.6026176447 0.9162500000 0.6037688403 0.9175000000 0.6049149168 0.9187500000 0.6060559056 0.9200000000 0.6071918375 0.9212500000 0.6083227432 0.9225000000 0.6094486531 0.9237500000 0.6105695975 0.9250000000 0.6116856062 0.9262500000 0.6127967091 0.9275000000 0.6139029357 0.9287500000 0.6150043152 0.9300000000 0.6161008766 0.9312500000 0.6171926489 0.9325000000 0.6182796605 0.9337500000 0.6193619400 0.9350000000 0.6204395154 0.9362500000 0.6215124146 0.9375000000 0.6225806656 0.9387500000 0.6236442957 0.9400000000 0.6247033322 0.9412500000 0.6257578024 0.9425000000 0.6268077330 0.9437500000 0.6278531508 0.9450000000 0.6288940822 0.9462500000 0.6299305537 0.9475000000 0.6309625912 0.9487500000 0.6319902206 0.9500000000 0.6330134678 0.9512500000 0.6340323581 0.9525000000 0.6350469169 0.9537500000 0.6360571694 0.9550000000 0.6370631404 0.9562500000 0.6380648548 0.9575000000 0.6390623371 0.9587500000 0.6400556117 0.9600000000 0.6410447029 0.9612500000 0.6420296346 0.9625000000 0.6430104307 0.9637500000 0.6439871150 0.9650000000 0.6449597108 0.9662500000 0.6459282416 0.9675000000 0.6468927305 0.9687500000 0.6478532006 0.9700000000 0.6488096745 0.9712500000 0.6497621751 0.9725000000 0.6507107247 0.9737500000 0.6516553458 0.9750000000 0.6525960605 0.9762500000 0.6535328907 0.9775000000 0.6544658585 0.9787500000 0.6553949854 0.9800000000 0.6563202930 0.9812500000 0.6572418027 0.9825000000 0.6581595356 0.9837500000 0.6590735130 0.9850000000 0.6599837557 0.9862500000 0.6608902844 0.9875000000 0.6617931199 0.9887500000 0.6626922826 0.9900000000 0.6635877929 0.9912500000 0.6644796709 0.9925000000 0.6653679366 0.9937500000 0.6662526101 0.9950000000 0.6671337111 0.9962500000 0.6680112591 0.9975000000 0.6688852737 0.9987500000 0.6697557743 0.000000000 0.000000000 0.1250000000E-02 0.4985250980E-02 0.2500000000E-02 0.9974571219E-02 0.3750000000E-02 0.1497203888E-01 0.5000000000E-02 0.1998174996E-01 0.6250000000E-02 0.2500782733E-01 0.7500000000E-02 0.3005442985E-01 0.8750000000E-02 0.3512576167E-01 0.1000000000E-01 0.4022608169E-01 0.1125000000E-01 0.4535971332E-01 0.1250000000E-01 0.5053105450E-01 0.1375000000E-01 0.5574458797E-01 0.1500000000E-01 0.6100489207E-01 0.1625000000E-01 0.6631665185E-01 0.1750000000E-01 0.7168467070E-01 0.1875000000E-01 0.7711388256E-01 0.2000000000E-01 0.8260936466E-01 0.2125000000E-01 0.8817635106E-01 0.2250000000E-01 0.9382024677E-01 0.2375000000E-01 0.9954664287E-01 0.2500000000E-01 0.1053613324 0.2625000000E-01 0.1112703275 0.2750000000E-01 0.1172798771 0.2875000000E-01 0.1233964866 0.3000000000E-01 0.1296269385 0.3125000000E-01 0.1359783142 0.3250000000E-01 0.1424580181 0.3375000000E-01 0.1490738033 0.3500000000E-01 0.1558337984 0.3625000000E-01 0.1627465382 0.3750000000E-01 0.1698209954 0.3875000000E-01 0.1770666151 0.4000000000E-01 0.1844933533 0.4125000000E-01 0.1921117173 0.4250000000E-01 0.1999328107 0.4375000000E-01 0.2079683820 0.4500000000E-01 0.2162308774 0.4625000000E-01 0.2247334992 0.4750000000E-01 0.2334902693 0.4875000000E-01 0.2425160985 0.5000000000E-01 0.2518268635 0.5125000000E-01 0.2614394910 0.5250000000E-01 0.2713720500 0.5375000000E-01 0.2816438550 0.5500000000E-01 0.2922755788 0.5625000000E-01 0.3032893780 0.5750000000E-01 0.3147090323 0.5875000000E-01 0.3265600998 0.6000000000E-01 0.3388700889 0.6125000000E-01 0.3516686518 0.6250000000E-01 0.3649877995 0.6375000000E-01 0.3788621439 0.6500000000E-01 0.3933291696 0.6625000000E-01 0.4084295399 0.6750000000E-01 0.4242074427 0.6875000000E-01 0.4407109821 0.7000000000E-01 0.4579926225 0.7125000000E-01 0.4761096948 0.7250000000E-01 0.4951249740 0.7375000000E-01 0.5151073407 0.7500000000E-01 0.5361325409 0.7625000000E-01 0.5582840625 0.7750000000E-01 0.5816541478 0.7875000000E-01 0.6063449706 0.8000000000E-01 0.6324700069 0.8125000000E-01 0.6601556391 0.8250000000E-01 0.6895430422 0.8375000000E-01 0.7207904093 0.8500000000E-01 0.7540755926 0.8625000000E-01 0.7895992517 0.8750000000E-01 0.8275886278 0.8875000000E-01 0.8683020933 0.9000000000E-01 0.9120346693 0.9125000000E-01 0.9591247615 0.9250000000E-01 1.009962437 0.9375000000E-01 1.064999670 0.9500000000E-01 1.124763129 0.9625000000E-01 1.189870255 0.9750000000E-01 1.261049665 0.9875000000E-01 1.339167299 0.1000000000 1.425260244 0.1012500000 1.520580968 0.1025000000 1.626655838 0.1037500000 1.745363467 0.1050000000 1.879040937 0.1062500000 2.030629774 0.1075000000 2.203879283 0.1087500000 2.403633726 0.1100000000 2.636243310 0.1112500000 2.910159171 0.1125000000 3.236801414 0.1137500000 3.631825194 0.1150000000 4.116935872 0.1162500000 4.722349172 0.1175000000 5.489611626 0.1187500000 6.473054857 0.1200000000 7.733828136 0.1212500000 9.310743362 0.1225000000 11.14409577 0.1237500000 12.97359694 0.1250000000 14.38298837 0.1262500000 15.11645214 0.1275000000 15.31046052 0.1287500000 15.38928903 0.1300000000 15.81805848 0.1312500000 16.88477212 0.1325000000 18.60527728 0.1337500000 20.70187810 0.1350000000 22.73608054 0.1362500000 24.47221035 0.1375000000 26.06272407 0.1387500000 27.77102077 0.1400000000 29.68174092 0.1412500000 31.64624107 0.1425000000 33.29036243 0.1437500000 34.34998302 0.1450000000 35.06011823 0.1462500000 35.92329216 0.1475000000 37.25073328 0.1487500000 38.96896726 0.1500000000 40.58557227 0.1512500000 41.39110949 0.1525000000 41.13917589 0.1537500000 40.21925875 0.1550000000 38.96276682 0.1562500000 37.36463503 0.1575000000 35.46232246 0.1587500000 33.55738303 0.1600000000 31.97238651 0.1612500000 30.77145842 0.1625000000 29.79835271 0.1637500000 28.89172384 0.1650000000 27.98248696 0.1662500000 26.99307595 0.1675000000 25.77280990 0.1687500000 24.25723348 0.1700000000 22.61021344 0.1712500000 21.03698651 0.1725000000 19.65265708 0.1737500000 18.57941134 0.1750000000 17.95781166 0.1762500000 17.84895835 0.1775000000 18.16360336 0.1787500000 18.62258040 0.1800000000 18.86045219 0.1812500000 18.71313737 0.1825000000 18.30579994 0.1837500000 17.80579096 0.1850000000 17.24379866 0.1862500000 16.59929121 0.1875000000 15.94746114 0.1887500000 15.47403012 0.1900000000 15.32859697 0.1912500000 15.48282441 0.1925000000 15.76639169 0.1937500000 16.00706080 0.1950000000 16.11963296 0.1962500000 16.08694297 0.1975000000 15.88273876 0.1987500000 15.45708248 0.2000000000 14.81206285 0.2012500000 14.03728880 0.2025000000 13.25165527 0.2037500000 12.54277409 0.2050000000 11.93697427 0.2062500000 11.39719512 0.2075000000 10.85739476 0.2087500000 10.29626094 0.2100000000 9.767798315 0.2112500000 9.337482679 0.2125000000 9.030181991 0.2137500000 8.821713296 0.2150000000 8.658044792 0.2162500000 8.498729047 0.2175000000 8.333815681 0.2187500000 8.155023092 0.2200000000 7.938077974 0.2212500000 7.667527845 0.2225000000 7.345747263 0.2237500000 6.988387520 0.2250000000 6.641702125 0.2262500000 6.361230188 0.2275000000 6.166082792 0.2287500000 6.042706814 0.2300000000 5.979543486 0.2312500000 5.973496759 0.2325000000 6.006927217 0.2337500000 6.051157319 0.2350000000 6.089590607 0.2362500000 6.114204762 0.2375000000 6.124312016 0.2387500000 6.119278877 0.2400000000 6.077479723 0.2412500000 5.976157635 0.2425000000 5.817742510 0.2437500000 5.610051880 0.2450000000 5.362330515 0.2462500000 5.110481257 0.2475000000 4.904398265 0.2487500000 4.766635490 0.2500000000 4.669890670 0.2512500000 4.553148291 0.2525000000 4.374266059 0.2537500000 4.148320784 0.2550000000 3.918774024 0.2562500000 3.706198570 0.2575000000 3.511423418 0.2587500000 3.346400133 0.2600000000 3.227548454 0.2612500000 3.150639550 0.2625000000 3.096141354 0.2637500000 3.050424783 0.2650000000 3.008732477 0.2662500000 2.967970670 0.2675000000 2.927032281 0.2687500000 2.887365453 0.2700000000 2.843938058 0.2712500000 2.784732702 0.2725000000 2.706436816 0.2737500000 2.613530073 0.2750000000 2.506795896 0.2762500000 2.391359865 0.2775000000 2.279207507 0.2787500000 2.179064000 0.2800000000 2.096369087 0.2812500000 2.037136678 0.2825000000 2.004368965 0.2837500000 1.994323078 0.2850000000 2.001445261 0.2862500000 2.021178473 0.2875000000 2.042998069 0.2887500000 2.053712965 0.2900000000 2.054130427 0.2912500000 2.058751487 0.2925000000 2.080322834 0.2937500000 2.121975597 0.2950000000 2.169134776 0.2962500000 2.191702232 0.2975000000 2.173324314 0.2987500000 2.129299853 0.3000000000 2.085286142 0.3012500000 2.052493662 0.3025000000 2.023260160 0.3037500000 1.980751788 0.3050000000 1.913815851 0.3062500000 1.823739255 0.3075000000 1.719138925 0.3087500000 1.611345420 0.3100000000 1.512500806 0.3112500000 1.431174686 0.3125000000 1.370667666 0.3137500000 1.330415537 0.3150000000 1.305185483 0.3162500000 1.286292236 0.3175000000 1.266849262 0.3187500000 1.244981095 0.3200000000 1.223999293 0.3212500000 1.210194464 0.3225000000 1.205630723 0.3237500000 1.203496329 0.3250000000 1.194317597 0.3262500000 1.175873642 0.3275000000 1.153688748 0.3287500000 1.134310529 0.3300000000 1.121384081 0.3312500000 1.113836804 0.3325000000 1.106703277 0.3337500000 1.097889143 0.3350000000 1.093185598 0.3362500000 1.101456810 0.3375000000 1.127097137 0.3387500000 1.166486126 0.3400000000 1.209705461 0.3412500000 1.248373915 0.3425000000 1.283322230 0.3437500000 1.320489971 0.3450000000 1.359393011 0.3462500000 1.390385172 0.3475000000 1.400602378 0.3487500000 1.379604197 0.3500000000 1.327469162 0.3512500000 1.259452597 0.3525000000 1.194657696 0.3537500000 1.143708517 0.3550000000 1.109445217 0.3562500000 1.089362286 0.3575000000 1.076400994 0.3587500000 1.064503005 0.3600000000 1.052237384 0.3612500000 1.040445241 0.3625000000 1.030674669 0.3637500000 1.023251927 0.3650000000 1.015294637 0.3662500000 1.003857047 0.3675000000 0.9921820869 0.3687500000 0.9887996691 0.3700000000 0.9978583677 0.3712500000 1.014185382 0.3725000000 1.030070446 0.3737500000 1.041820404 0.3750000000 1.046212995 0.3762500000 1.036892742 0.3775000000 1.010071763 0.3787500000 0.9688336533 0.3800000000 0.9200720681 0.3812500000 0.8721032483 0.3825000000 0.8311645298 0.3837500000 0.7966473312 0.3850000000 0.7635428513 0.3862500000 0.7304083632 0.3875000000 0.7009894607 0.3887500000 0.6785615603 0.3900000000 0.6624384021 0.3912500000 0.6491727817 0.3925000000 0.6367580082 0.3937500000 0.6266416292 0.3950000000 0.6199402225 0.3962500000 0.6158410342 0.3975000000 0.6128502376 0.3987500000 0.6066761889 0.4000000000 0.5916097066 0.4012500000 0.5667872978 0.4025000000 0.5357943781 0.4037500000 0.5017624889 0.4050000000 0.4670015618 0.4062500000 0.4342996155 0.4075000000 0.4065640239 0.4087500000 0.3858868454 0.4100000000 0.3727904446 0.4112500000 0.3666031731 0.4125000000 0.3669318995 0.4137500000 0.3740935117 0.4150000000 0.3882348807 0.4162500000 0.4084718665 0.4175000000 0.4331148791 0.4187500000 0.4604530952 0.4200000000 0.4889468401 0.4212500000 0.5156998021 0.4225000000 0.5352657077 0.4237500000 0.5430111197 0.4250000000 0.5388519381 0.4262500000 0.5256454517 0.4275000000 0.5058038150 0.4287500000 0.4809982230 0.4300000000 0.4542762184 0.4312500000 0.4294974930 0.4325000000 0.4080022677 0.4337500000 0.3878398685 0.4350000000 0.3670314019 0.4362500000 0.3466325037 0.4375000000 0.3300773511 0.4387500000 0.3203378728 0.4400000000 0.3179339264 0.4412500000 0.3207205394 0.4425000000 0.3249354137 0.4437500000 0.3270411307 0.4450000000 0.3263282180 0.4462500000 0.3258594376 0.4475000000 0.3291723842 0.4487500000 0.3363538621 0.4500000000 0.3434362964 0.4512500000 0.3445274312 0.4525000000 0.3360882582 0.4537500000 0.3202148185 0.4550000000 0.3016439793 0.4562500000 0.2826654032 0.4575000000 0.2632814352 0.4587500000 0.2445191794 0.4600000000 0.2290607064 0.4612500000 0.2188379104 0.4625000000 0.2133217161 0.4637500000 0.2099526029 0.4650000000 0.2058846403 0.4662500000 0.1998771983 0.4675000000 0.1930933395 0.4687500000 0.1875240210 0.4700000000 0.1839706387 0.4712500000 0.1824231823 0.4725000000 0.1831829834 0.4737500000 0.1863832395 0.4750000000 0.1908057996 0.4762500000 0.1938856790 0.4775000000 0.1936386073 0.4787500000 0.1903506024 0.4800000000 0.1857335796 0.4812500000 0.1813438567 0.4825000000 0.1778570844 0.4837500000 0.1749328104 0.4850000000 0.1715957202 0.4862500000 0.1668654324 0.4875000000 0.1605468621 0.4887500000 0.1537076430 0.4900000000 0.1478290290 0.4912500000 0.1438742061 0.4925000000 0.1424598868 0.4937500000 0.1439110481 0.4950000000 0.1479291106 0.4962500000 0.1534875866 0.4975000000 0.1590411499 0.4987500000 0.1636745044 0.5000000000 0.1680726750 0.5012500000 0.1728658457 0.5025000000 0.1763583105 0.5037500000 0.1753411513 0.5050000000 0.1685630260 0.5062500000 0.1583991315 0.5075000000 0.1480806081 0.5087500000 0.1391761579 0.5100000000 0.1321459014 0.5112500000 0.1269266832 0.5125000000 0.1226498335 0.5137500000 0.1185203294 0.5150000000 0.1150212898 0.5162500000 0.1131803239 0.5175000000 0.1131333805 0.5187500000 0.1140648803 0.5200000000 0.1153016047 0.5212500000 0.1165610326 0.5225000000 0.1170436781 0.5237500000 0.1155294169 0.5250000000 0.1115418580 0.5262500000 0.1057956809 0.5275000000 0.9932360113E-01 0.5287500000 0.9254694534E-01 0.5300000000 0.8549522263E-01 0.5312500000 0.7846971339E-01 0.5325000000 0.7206823565E-01 0.5337500000 0.6671508770E-01 0.5350000000 0.6245382558E-01 0.5362500000 0.5910921734E-01 0.5375000000 0.5653332103E-01 0.5387500000 0.5471639141E-01 0.5400000000 0.5372730185E-01 0.5412500000 0.5364273451E-01 0.5425000000 0.5452080425E-01 0.5437500000 0.5632469944E-01 0.5450000000 0.5873689833E-01 0.5462500000 0.6100539290E-01 0.5475000000 0.6214098865E-01 0.5487500000 0.6145415241E-01 0.5500000000 0.5894463224E-01 0.5512500000 0.5521908896E-01 0.5525000000 0.5115543857E-01 0.5537500000 0.4749616467E-01 0.5550000000 0.4458266719E-01 0.5562500000 0.4242618658E-01 0.5575000000 0.4088690814E-01 0.5587500000 0.3980034825E-01 0.5600000000 0.3906786739E-01 0.5612500000 0.3868716129E-01 0.5625000000 0.3871570767E-01 0.5637500000 0.3922673426E-01 0.5650000000 0.4022823864E-01 0.5662500000 0.4149716288E-01 0.5675000000 0.4243686142E-01 0.5687500000 0.4233329593E-01 0.5700000000 0.4102621957E-01 0.5712500000 0.3900328492E-01 0.5725000000 0.3681673391E-01 0.5737500000 0.3478984387E-01 0.5750000000 0.3304210836E-01 0.5762500000 0.3155216090E-01 0.5775000000 0.3025584236E-01 0.5787500000 0.2912163302E-01 0.5800000000 0.2814419603E-01 0.5812500000 0.2731317039E-01 0.5825000000 0.2660714997E-01 0.5837500000 0.2600155426E-01 0.5850000000 0.2547471188E-01 0.5862500000 0.2500976365E-01 0.5875000000 0.2459438559E-01 0.5887500000 0.2421990997E-01 0.5900000000 0.2388044435E-01 0.5912500000 0.2357197876E-01 0.5925000000 0.2329104792E-01 0.5937500000 0.2303224054E-01 0.5950000000 0.2278484617E-01 0.5962500000 0.2253352513E-01 0.5975000000 0.2226931334E-01 0.5987500000 0.2199878762E-01 0.6000000000 0.2173516179E-01 0.6012500000 0.2148674979E-01 0.6025000000 0.2125604206E-01 0.6037500000 0.2104311202E-01 0.6050000000 0.2084799414E-01 0.6062500000 0.2067171066E-01 0.6075000000 0.2051662919E-01 0.6087500000 0.2038628596E-01 0.6100000000 0.2028388582E-01 0.6112500000 0.2020737477E-01 0.6125000000 0.2013917632E-01 0.6137500000 0.2003869777E-01 0.6150000000 0.1986386976E-01 0.6162500000 0.1961586465E-01 0.6175000000 0.1933675638E-01 0.6187500000 0.1906393705E-01 0.6200000000 0.1881141776E-01 0.6212500000 0.1857934478E-01 0.6225000000 0.1836448488E-01 0.6237500000 0.1816425863E-01 0.6250000000 0.1797668660E-01 0.6262500000 0.1779977729E-01 0.6275000000 0.1763162614E-01 0.6287500000 0.1747065161E-01 0.6300000000 0.1731565789E-01 0.6312500000 0.1716578746E-01 0.6325000000 0.1702044596E-01 0.6337500000 0.1687922290E-01 0.6350000000 0.1674178685E-01 0.6362500000 0.1660772043E-01 0.6375000000 0.1647637060E-01 0.6387500000 0.1634707014E-01 0.6400000000 0.1621980553E-01 0.6412500000 0.1609536996E-01 0.6425000000 0.1597474881E-01 0.6437500000 0.1585871777E-01 0.6450000000 0.1574773064E-01 0.6462500000 0.1564143103E-01 0.6475000000 0.1553741945E-01 0.6487500000 0.1543042698E-01 0.6500000000 0.1531527195E-01 0.6512500000 0.1519245781E-01 0.6525000000 0.1506754288E-01 0.6537500000 0.1494542893E-01 0.6550000000 0.1482814225E-01 0.6562500000 0.1471594362E-01 0.6575000000 0.1460857182E-01 0.6587500000 0.1450581414E-01 0.6600000000 0.1440768336E-01 0.6612500000 0.1431449261E-01 0.6625000000 0.1422698397E-01 0.6637500000 0.1414644732E-01 0.6650000000 0.1407466453E-01 0.6662500000 0.1401374309E-01 0.6675000000 0.1396589043E-01 0.6687500000 0.1393218539E-01 0.6700000000 0.1390786649E-01 0.6712500000 0.1387479931E-01 0.6725000000 0.1380385563E-01 0.6737500000 0.1368019234E-01 0.6750000000 0.1352131606E-01 0.6762500000 0.1335621258E-01 0.6775000000 0.1320192484E-01 0.6787500000 0.1306264806E-01 0.6800000000 0.1293678917E-01 0.6812500000 0.1282145135E-01 0.6825000000 0.1271404114E-01 0.6837500000 0.1261259152E-01 0.6850000000 0.1251569117E-01 0.6862500000 0.1242234275E-01 0.6875000000 0.1233183966E-01 0.6887500000 0.1224367595E-01 0.6900000000 0.1215748399E-01 0.6912500000 0.1207299230E-01 0.6925000000 0.1198999697E-01 0.6937500000 0.1190834221E-01 0.6950000000 0.1182790703E-01 0.6962500000 0.1174859589E-01 0.6975000000 0.1167033213E-01 0.6987500000 0.1159305333E-01 0.7000000000 0.1151670788E-01 0.7012500000 0.1144125252E-01 0.7025000000 0.1136665047E-01 0.7037500000 0.1129287008E-01 0.7050000000 0.1121988378E-01 0.7062500000 0.1114766728E-01 0.7075000000 0.1107619895E-01 0.7087500000 0.1100545933E-01 0.7100000000 0.1093543078E-01 0.7112500000 0.1086609716E-01 0.7125000000 0.1079744359E-01 0.7137500000 0.1072945628E-01 0.7150000000 0.1066212234E-01 0.7162500000 0.1059542968E-01 0.7175000000 0.1052936690E-01 0.7187500000 0.1046392318E-01 0.7200000000 0.1039908826E-01 0.7212500000 0.1033485232E-01 0.7225000000 0.1027120598E-01 0.7237500000 0.1020814021E-01 0.7250000000 0.1014564633E-01 0.7262500000 0.1008371597E-01 0.7275000000 0.1002234105E-01 0.7287500000 0.9961513717E-02 0.7300000000 0.9901226380E-02 0.7312500000 0.9841471658E-02 0.7325000000 0.9782242375E-02 0.7337500000 0.9723531543E-02 0.7350000000 0.9665332354E-02 0.7362500000 0.9607638166E-02 0.7375000000 0.9550442496E-02 0.7387500000 0.9493739009E-02 0.7400000000 0.9437521511E-02 0.7412500000 0.9381783944E-02 0.7425000000 0.9326520377E-02 0.7437500000 0.9271725000E-02 0.7450000000 0.9217392122E-02 0.7462500000 0.9163516163E-02 0.7475000000 0.9110091652E-02 0.7487500000 0.9057113219E-02 0.7500000000 0.9004575596E-02 0.7512500000 0.8952473612E-02 0.7525000000 0.8900802185E-02 0.7537500000 0.8849556328E-02 0.7550000000 0.8798731136E-02 0.7562500000 0.8748321792E-02 0.7575000000 0.8698323559E-02 0.7587500000 0.8648731779E-02 0.7600000000 0.8599541873E-02 0.7612500000 0.8550749336E-02 0.7625000000 0.8502349734E-02 0.7637500000 0.8454338706E-02 0.7650000000 0.8406711960E-02 0.7662500000 0.8359465270E-02 0.7675000000 0.8312594479E-02 0.7687500000 0.8266095489E-02 0.7700000000 0.8219964269E-02 0.7712500000 0.8174196847E-02 0.7725000000 0.8128789311E-02 0.7737500000 0.8083737807E-02 0.7750000000 0.8039038538E-02 0.7762500000 0.7994687764E-02 0.7775000000 0.7950681799E-02 0.7787500000 0.7907017009E-02 0.7800000000 0.7863689814E-02 0.7812500000 0.7820696684E-02 0.7825000000 0.7778034140E-02 0.7837500000 0.7735698751E-02 0.7850000000 0.7693687135E-02 0.7862500000 0.7651995957E-02 0.7875000000 0.7610621928E-02 0.7887500000 0.7569561805E-02 0.7900000000 0.7528812389E-02 0.7912500000 0.7488370523E-02 0.7925000000 0.7448233096E-02 0.7937500000 0.7408397036E-02 0.7950000000 0.7368859314E-02 0.7962500000 0.7329616942E-02 0.7975000000 0.7290666969E-02 0.7987500000 0.7252006485E-02 0.8000000000 0.7213632619E-02 0.8012500000 0.7175542535E-02 0.8025000000 0.7137733437E-02 0.8037500000 0.7100202563E-02 0.8050000000 0.7062947188E-02 0.8062500000 0.7025964621E-02 0.8075000000 0.6989252206E-02 0.8087500000 0.6952807321E-02 0.8100000000 0.6916627377E-02 0.8112500000 0.6880709819E-02 0.8125000000 0.6845052121E-02 0.8137500000 0.6809651793E-02 0.8150000000 0.6774506373E-02 0.8162500000 0.6739613430E-02 0.8175000000 0.6704970565E-02 0.8187500000 0.6670575405E-02 0.8200000000 0.6636425611E-02 0.8212500000 0.6602518869E-02 0.8225000000 0.6568852894E-02 0.8237500000 0.6535425429E-02 0.8250000000 0.6502234246E-02 0.8262500000 0.6469277141E-02 0.8275000000 0.6436551938E-02 0.8287500000 0.6404056488E-02 0.8300000000 0.6371788666E-02 0.8312500000 0.6339746373E-02 0.8325000000 0.6307927535E-02 0.8337500000 0.6276330103E-02 0.8350000000 0.6244952051E-02 0.8362500000 0.6213791377E-02 0.8375000000 0.6182846103E-02 0.8387500000 0.6152114275E-02 0.8400000000 0.6121593959E-02 0.8412500000 0.6091283246E-02 0.8425000000 0.6061180248E-02 0.8437500000 0.6031283098E-02 0.8450000000 0.6001589952E-02 0.8462500000 0.5972098987E-02 0.8475000000 0.5942808399E-02 0.8487500000 0.5913716407E-02 0.8500000000 0.5884821247E-02 0.8512500000 0.5856121178E-02 0.8525000000 0.5827614478E-02 0.8537500000 0.5799299443E-02 0.8550000000 0.5771174388E-02 0.8562500000 0.5743237650E-02 0.8575000000 0.5715487581E-02 0.8587500000 0.5687922552E-02 0.8600000000 0.5660540953E-02 0.8612500000 0.5633341192E-02 0.8625000000 0.5606321694E-02 0.8637500000 0.5579480900E-02 0.8650000000 0.5552817270E-02 0.8662500000 0.5526329280E-02 0.8675000000 0.5500015423E-02 0.8687500000 0.5473874208E-02 0.8700000000 0.5447904159E-02 0.8712500000 0.5422103819E-02 0.8725000000 0.5396471743E-02 0.8737500000 0.5371006505E-02 0.8750000000 0.5345706692E-02 0.8762500000 0.5320570906E-02 0.8775000000 0.5295597765E-02 0.8787500000 0.5270785902E-02 0.8800000000 0.5246133964E-02 0.8812500000 0.5221640610E-02 0.8825000000 0.5197304517E-02 0.8837500000 0.5173124374E-02 0.8850000000 0.5149098884E-02 0.8862500000 0.5125226762E-02 0.8875000000 0.5101506740E-02 0.8887500000 0.5077937560E-02 0.8900000000 0.5054517978E-02 0.8912500000 0.5031246764E-02 0.8925000000 0.5008122698E-02 0.8937500000 0.4985144576E-02 0.8950000000 0.4962311204E-02 0.8962500000 0.4939621401E-02 0.8975000000 0.4917073999E-02 0.8987500000 0.4894667839E-02 0.9000000000 0.4872401778E-02 0.9012500000 0.4850274680E-02 0.9025000000 0.4828285425E-02 0.9037500000 0.4806432901E-02 0.9050000000 0.4784716009E-02 0.9062500000 0.4763133660E-02 0.9075000000 0.4741684778E-02 0.9087500000 0.4720368294E-02 0.9100000000 0.4699183153E-02 0.9112500000 0.4678128309E-02 0.9125000000 0.4657202728E-02 0.9137500000 0.4636405384E-02 0.9150000000 0.4615735263E-02 0.9162500000 0.4595191359E-02 0.9175000000 0.4574772678E-02 0.9187500000 0.4554478235E-02 0.9200000000 0.4534307055E-02 0.9212500000 0.4514258172E-02 0.9225000000 0.4494330629E-02 0.9237500000 0.4474523479E-02 0.9250000000 0.4454835785E-02 0.9262500000 0.4435266618E-02 0.9275000000 0.4415815058E-02 0.9287500000 0.4396480194E-02 0.9300000000 0.4377261124E-02 0.9312500000 0.4358156955E-02 0.9325000000 0.4339166802E-02 0.9337500000 0.4320289788E-02 0.9350000000 0.4301525046E-02 0.9362500000 0.4282871717E-02 0.9375000000 0.4264328947E-02 0.9387500000 0.4245895895E-02 0.9400000000 0.4227571725E-02 0.9412500000 0.4209355608E-02 0.9425000000 0.4191246727E-02 0.9437500000 0.4173244268E-02 0.9450000000 0.4155347427E-02 0.9462500000 0.4137555408E-02 0.9475000000 0.4119867421E-02 0.9487500000 0.4102282684E-02 0.9500000000 0.4084800423E-02 0.9512500000 0.4067419870E-02 0.9525000000 0.4050140265E-02 0.9537500000 0.4032960855E-02 0.9550000000 0.4015880893E-02 0.9562500000 0.3998899640E-02 0.9575000000 0.3982016364E-02 0.9587500000 0.3965230338E-02 0.9600000000 0.3948540843E-02 0.9612500000 0.3931947167E-02 0.9625000000 0.3915448604E-02 0.9637500000 0.3899044454E-02 0.9650000000 0.3882734023E-02 0.9662500000 0.3866516626E-02 0.9675000000 0.3850391580E-02 0.9687500000 0.3834358212E-02 0.9700000000 0.3818415853E-02 0.9712500000 0.3802563841E-02 0.9725000000 0.3786801519E-02 0.9737500000 0.3771128236E-02 0.9750000000 0.3755543348E-02 0.9762500000 0.3740046216E-02 0.9775000000 0.3724636207E-02 0.9787500000 0.3709312692E-02 0.9800000000 0.3694075050E-02 0.9812500000 0.3678922665E-02 0.9825000000 0.3663854925E-02 0.9837500000 0.3648871225E-02 0.9850000000 0.3633970964E-02 0.9862500000 0.3619153547E-02 0.9875000000 0.3604418385E-02 0.9887500000 0.3589764894E-02 0.9900000000 0.3575192493E-02 0.9912500000 0.3560700608E-02 0.9925000000 0.3546288670E-02 0.9937500000 0.3531956115E-02 0.9950000000 0.3517702383E-02 0.9962500000 0.3503526919E-02 0.9975000000 0.3489429174E-02 0.9987500000 0.3475408602E-02 elk-10.4.9/examples/BSE/Si/PaxHeaders/elk.in0000644000000000000000000000013114762655565015367 xustar0030 mtime=1741380469.632014545 29 atime=1741380469.63101454 30 ctime=1741380469.632014545 elk-10.4.9/examples/BSE/Si/elk.in0000644002504400250440000000331014762655565020107 0ustar00dewhurstdewhurst00000000000000 ! BSE optical spectrum of silicon. Note that the non-zero vkloff is needed to ! make the system non-metallic, i.e. all occupation numbers in EIGVAL.OUT should ! be either 0 or 1. If this is not the case, then the response function will be ! too large. This is quite a time-consuming calculation and should be run on ! a multi-processor system. ! Silicon is surprisingly difficult for a BSE calculation: it requires quite a ! large k-point set for good convergence, unlike the excitonic peak in LiF. tasks 0 ! ground-state calculation 120 ! compute momentum matrix elements 121 ! compute RPA dielectric function with no local field contributions 180 ! generate RPA dielectric function with local field contributions 185 ! write the BSE Hamiltonian matrix to file 186 ! diagonalise the BSE matrix 187 ! compute BSE dielectric function ! this should be small (but not so small that it affects the results!) for a ! fast calculation because the wavefunctions used in the construction of the BSE ! matrix elements are expanded to this angular momentum cut-off lmaxo 4 ! number of valence states to use in BSE Hamiltonian nvbse 3 ! number of conduction states ncbse 4 ! a scissor correction is required to match the gap to experiment scissor 0.0331 swidth 0.005 wplot 800 100 0 : nwplot, ngrkf, nswplot 0.0 1.0 : wplot avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 5 5 5 vkloff 0.25 0.5 0.625 elk-10.4.9/examples/BSE/PaxHeaders/CaO-core0000644000000000000000000000013114762655565015224 xustar0030 mtime=1741380469.637014571 29 atime=1741380469.63301455 30 ctime=1741380469.637014571 elk-10.4.9/examples/BSE/CaO-core/0000755002504400250440000000000014762655565020024 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/BSE/CaO-core/PaxHeaders/Ca_lo.in0000644000000000000000000000013214762655565016647 xustar0030 mtime=1741380469.634014555 30 atime=1741380469.634014555 30 ctime=1741380469.634014555 elk-10.4.9/examples/BSE/CaO-core/Ca_lo.in0000644002504400250440000000357314762655565021401 0ustar00dewhurstdewhurst00000000000000 'Ca_lo' : spsymb 'calcium' : spname -20.0000 : spzn 73057.72467 : spmass 0.447214E-06 2.2000 40.2509 500 : sprmin, rmt, sprmax, nrmt 8 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 T 2 1 1 2.00000 F 2 1 2 4.00000 F 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -12.300 0 T 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -1.9708 0 T 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -1.2735 0 T 2 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0.5000 0 T elk-10.4.9/examples/BSE/CaO-core/PaxHeaders/O.in0000644000000000000000000000013214762655565016030 xustar0030 mtime=1741380469.636014566 30 atime=1741380469.636014566 30 ctime=1741380469.636014566 elk-10.4.9/examples/BSE/CaO-core/O.in0000644002504400250440000000222014762655565020546 0ustar00dewhurstdewhurst00000000000000 'O' : spsymb 'oxygen' : spname -8.00000 : spzn 29165.12202 : spmass 0.707107E-06 1.6000 22.7954 300 : sprmin, rmt, sprmax, nrmt 4 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -1.1227 0 T elk-10.4.9/examples/BSE/CaO-core/PaxHeaders/elk.in0000644000000000000000000000013214762655565016405 xustar0030 mtime=1741380469.638014576 30 atime=1741380469.637014571 30 ctime=1741380469.638014576 elk-10.4.9/examples/BSE/CaO-core/elk.in0000644002504400250440000000506214762655565021132 0ustar00dewhurstdewhurst00000000000000 ! This example demonstrates the calculation of the Ca 2p 1/2 - 2p 3/2 (L2 / L3) ! x-ray absorption spectra in CaO. The Ca 2p states are treated as local ! orbitals in Ca_lo.in; additional local orbitals are added to allow an accurate ! description of the unoccupied 3d states (compare with the default version of Ca.in). ! Look at the imaginary part of the spectrum (EPSILON_BSE_11.OUT) in the range 11.8 to ! 12.5 Ha. Compare to the independent-particle calculation (EPSILON_11.OUT). ! Try switching off the exchange and the direct term in the BSE Hamiltonian ! individually (set hxbse/hdbse to .false.). ! For a converged spectrum a lot more k-points (6 x 6 x 6 or more) are needed. ! The numerical cut-offs are well converged, so the computation is quite time ! and memory consuming. Run with hybrid parallelization (MPI across nodes, OpenMP ! across cores) on a cluster for smaller memory footprint. Compare with calculations ! and experimental data in J. Phys. Condens. Matter 23, 145501 (2011). ! Example by Markus Meinert. tasks 0 ! ground-state calculation 120 ! compute momentum matrix elements 121 ! compute RPA dielectric function without local field contributions 180 ! generate RPA dielectric function with local field contributions 185 ! write the BSE Hamiltonian matrix to file 186 ! diagonalise BSE matrix 187 ! compute BSE dielectric function ! do not include valence bands right below E_F nvbse 0 ! additional valence bands for the BSE calculation - these are the six 2p states ! of Ca (check EIGVAL.OUT) istxbse 1 2 3 4 5 6 ! number of conduction band states for the BSE calculation ncbse 20 ! large number of empty states required nempty 20 ! enhanced G-vector cut-off of local contribution to RPA gmaxrf 5.0 ! the spectrum is very sensitive to the k-point mesh ngridk 2 2 2 ! use a symmetry breaking shift for more efficient use of the k-points vkloff 0.05 0.15 0.25 ! Broyden mixing for fast convergence mixtype 3 ! the energy window for the plot starts at zero by default; ! sufficient energy points needed wplot 5000 100 0 0.0 14.0 ! include spin-orbit coupling for the 2p 1/2 - 2p 3/2 splitting spinorb .true. ! about 0.27 eV Lorentzian broadening to simulate lifetime effects swidth 0.01 sppath './' avec 4.545 4.545 0.0 4.545 -4.545 0.0 4.545 0.0 4.545 atoms 2 : nspecies 'Ca_lo.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'O.in' 1 0.5 0.5 0.0 elk-10.4.9/examples/BSE/PaxHeaders/LiF0000644000000000000000000000013214762655565014307 xustar0030 mtime=1741380469.640014587 30 atime=1741380469.638014576 30 ctime=1741380469.640014587 elk-10.4.9/examples/BSE/LiF/0000755002504400250440000000000014762655565017106 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/BSE/LiF/PaxHeaders/elk.in0000644000000000000000000000013214762655565015467 xustar0030 mtime=1741380469.640014587 30 atime=1741380469.640014587 30 ctime=1741380469.640014587 elk-10.4.9/examples/BSE/LiF/elk.in0000644002504400250440000000217614762655565020217 0ustar00dewhurstdewhurst00000000000000 ! BSE optical spectrum of lithium fluoride. This material has a prominent ! excitonic peak, which is absent in the usual RPA dielectric function. tasks 0 ! ground-state calculation 120 ! compute momentum matrix elements 121 ! compute RPA dielectric function with no local field contributions 180 ! generate RPA dielectric function with local field contributions 185 ! write BSE Hamiltonian matrix 186 ! diagonalise BSE matrix 187 ! generate BSE dielectric function scissor 0.21 ! number of BSE valence states nvbse 3 ! number of BSE conduction states ncbse 4 ! G-vector cut-off of local contribution to RPA gmaxrf 3.0 swidth 0.005 nempty 8 wplot 800 100 0 : nwplot, ngrkf, nswplot 0.0 1.5 : wplot avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 4 4 4 elk-10.4.9/examples/PaxHeaders/ELF0000644000000000000000000000013214762655565013632 xustar0030 mtime=1741380469.645014613 30 atime=1741380469.642014597 30 ctime=1741380469.645014613 elk-10.4.9/examples/ELF/0000755002504400250440000000000014762655565016431 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/ELF/PaxHeaders/BN0000644000000000000000000000013214762655565014131 xustar0030 mtime=1741380469.644014608 30 atime=1741380469.642014597 30 ctime=1741380469.644014608 elk-10.4.9/examples/ELF/BN/0000755002504400250440000000000014762655565016730 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/ELF/BN/PaxHeaders/elk.in0000644000000000000000000000013214762655565015311 xustar0030 mtime=1741380469.644014608 30 atime=1741380469.644014608 30 ctime=1741380469.644014608 elk-10.4.9/examples/ELF/BN/elk.in0000644002504400250440000000105514762655565020034 0ustar00dewhurstdewhurst00000000000000 ! Electron localisation function (ELF) of cubic boron nitride. Note that the ELF ! is not continuous at the muffin-tin boundaries. To make it smooth increase ! several parameters such as rgkmax, gmaxvr, lmaxo and lmaxapw. Alternatively, ! run with highq=.true. tasks 0 51 plot1d 2 400 0.0 0.0 0.0 1.0 1.0 1.0 avec 3.4204 3.4204 0.0000 3.4204 0.0000 3.4204 0.0000 3.4204 3.4204 sppath '../../../species/' atoms 2 'B.in' 1 0.0 0.0 0.0 'N.in' 1 0.25 0.25 0.25 ngridk 2 2 2 vkloff 0.25 0.5 0.625 elk-10.4.9/examples/ELF/PaxHeaders/Ru0000644000000000000000000000013214762655565014220 xustar0030 mtime=1741380469.648014629 30 atime=1741380469.645014613 30 ctime=1741380469.648014629 elk-10.4.9/examples/ELF/Ru/0000755002504400250440000000000014762655565017017 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/ELF/Ru/PaxHeaders/Ru.in0000644000000000000000000000013214762655565015213 xustar0030 mtime=1741380469.647014623 30 atime=1741380469.647014623 30 ctime=1741380469.647014623 elk-10.4.9/examples/ELF/Ru/Ru.in0000644002504400250440000000404114762655565017734 0ustar00dewhurstdewhurst00000000000000 'Ru' : spsymb 'ruthenium' : spname -44.0000 : spzn 184239.3392 : spmass 0.301511E-06 2.0000 43.5262 600 : sprmin, rmt, sprmax, nrmt 15 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 3.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 1 : nlx 2 2 : lx, io 0.1500 0 F : apwe0, apwdm, apwve 0.1500 1 F 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0.1500 2 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -2.6548 0 T 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -1.6432 0 T elk-10.4.9/examples/ELF/Ru/PaxHeaders/elk.in0000644000000000000000000000013214762655565015400 xustar0030 mtime=1741380469.649014634 30 atime=1741380469.649014634 30 ctime=1741380469.649014634 elk-10.4.9/examples/ELF/Ru/elk.in0000644002504400250440000000146714762655565020132 0ustar00dewhurstdewhurst00000000000000 ! Example due to A. Baranov on how to obtain a very smooth electron localisation ! function (ELF). Since the ELF depends on derivatives of the density it can ! sometimes be mismatched at the muffin-tin boundaries. This can be corrected ! by using high cut-offs for angular momenta and APW functions. Note also that a ! modified species file Ru.in is used. tasks 0 31 51 avec 4.42816109463 -2.5566 0.0 0.0 5.1132 0.0 0.0 0.0 8.0901 atoms 1 'Ru.in' 2 0.3333333333 0.6666666667 0.25 0.6666666667 0.3333333333 0.75 ! this ensures that no radial points will be skipped when computing the density lradstp 1 rgkmax 11.0 gmaxvr 22.0 lmaxapw 12 lmaxo 12 ngridk 2 2 1 vkloff 0.5 0.5 0.5 plot1d 2 1000 0.0 0.0 0.0 0.0 1.0 0.0 elk-10.4.9/examples/PaxHeaders/Hartree-Fock0000644000000000000000000000013014762655565015474 xustar0029 mtime=1741380469.65401466 30 atime=1741380469.650014639 29 ctime=1741380469.65401466 elk-10.4.9/examples/Hartree-Fock/0000755002504400250440000000000014762655565020275 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Hartree-Fock/PaxHeaders/HEG0000644000000000000000000000013014762655565016077 xustar0029 mtime=1741380469.65201465 30 atime=1741380469.651014644 29 ctime=1741380469.65201465 elk-10.4.9/examples/Hartree-Fock/HEG/0000755002504400250440000000000014762655565020700 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Hartree-Fock/HEG/PaxHeaders/elk.in0000644000000000000000000000013114762655565017260 xustar0030 mtime=1741380469.653014655 29 atime=1741380469.65201465 30 ctime=1741380469.653014655 elk-10.4.9/examples/Hartree-Fock/HEG/elk.in0000644002504400250440000000065214762655565022006 0ustar00dewhurstdewhurst00000000000000 ! Hartree-Fock ground state of the homogenous electron gas. The Wigner radius ! (r_s) is written to INFO.OUT. Note that the exact exchange energy is only ! computed during the last iteration. tasks 0 5 chgexs 10.0 ! use the unit cell of aluminium avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.75 ! note that low density gases require denser k-point grids! ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/Hartree-Fock/PaxHeaders/Si0000644000000000000000000000013114762655565016050 xustar0030 mtime=1741380469.655014665 29 atime=1741380469.65401466 30 ctime=1741380469.655014665 elk-10.4.9/examples/Hartree-Fock/Si/0000755002504400250440000000000014762655565020650 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Hartree-Fock/Si/PaxHeaders/elk.in0000644000000000000000000000013214762655565017231 xustar0030 mtime=1741380469.655014665 30 atime=1741380469.655014665 30 ctime=1741380469.655014665 elk-10.4.9/examples/Hartree-Fock/Si/elk.in0000644002504400250440000000151214762655565021752 0ustar00dewhurstdewhurst00000000000000 ! Hartree-Fock calculation of silicon. Note that this is still an experimental ! feature in Elk. It is also quite slow and is best run using OpenMP on a ! multi-processor machine. ! Important: the exact exchange energy is only calculated on the last iteration. ! All previously calculated exchange energies are approximate. tasks 0 5 ! Hartree-Fock is treated as a second-variational correction to the Kohn-Sham ! problem. Thus a large number of empty states are required for convergence. nempty 8 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 2 2 2 vkloff 0.25 0.25 0.25 elk-10.4.9/examples/PaxHeaders/TDDFT-magnetic-response0000644000000000000000000000013114762655565017511 xustar0030 mtime=1741380469.663014707 29 atime=1741380469.65601467 30 ctime=1741380469.663014707 elk-10.4.9/examples/TDDFT-magnetic-response/0000755002504400250440000000000014762655565022311 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-magnetic-response/PaxHeaders/Ni-magnetic-response0000644000000000000000000000013214762655565023501 xustar0030 mtime=1741380469.661014697 30 atime=1741380469.657014676 30 ctime=1741380469.661014697 elk-10.4.9/examples/TDDFT-magnetic-response/Ni-magnetic-response/0000755002504400250440000000000014762655565026300 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-magnetic-response/Ni-magnetic-response/PaxHeaders/CHI0_T.OUT0000644000000000000000000000013214762655565025115 xustar0030 mtime=1741380469.658014681 30 atime=1741380469.658014681 30 ctime=1741380469.658014681 elk-10.4.9/examples/TDDFT-magnetic-response/Ni-magnetic-response/CHI0_T.OUT0000644002504400250440000001053214762655565027640 0ustar00dewhurstdewhurst00000000000000 0.000000000 -1.169399737 0.3333333333E-03 -1.180064743 0.6666666667E-03 -1.190839903 0.1000000000E-02 -1.201497740 0.1333333333E-02 -1.211893033 0.1666666667E-02 -1.222342874 0.2000000000E-02 -1.233315994 0.2333333333E-02 -1.245298205 0.2666666667E-02 -1.258562475 0.3000000000E-02 -1.273000392 0.3333333333E-02 -1.288383516 0.3666666667E-02 -1.304637755 0.4000000000E-02 -1.321833172 0.4333333333E-02 -1.340027347 0.4666666667E-02 -1.359238627 0.5000000000E-02 -1.379484422 0.5333333333E-02 -1.400824318 0.5666666667E-02 -1.423370803 0.6000000000E-02 -1.447251187 0.6333333333E-02 -1.472530935 0.6666666667E-02 -1.499122868 0.7000000000E-02 -1.526654516 0.7333333333E-02 -1.554437359 0.7666666667E-02 -1.581407646 0.8000000000E-02 -1.605589842 0.8333333333E-02 -1.625760598 0.8666666667E-02 -1.643850604 0.9000000000E-02 -1.659660401 0.9333333333E-02 -1.671708350 0.9666666667E-02 -1.682008779 0.1000000000E-01 -1.689039540 0.1033333333E-01 -1.691769564 0.1066666667E-01 -1.694575575 0.1100000000E-01 -1.705930589 0.1133333333E-01 -1.733473412 0.1166666667E-01 -1.776791141 0.1200000000E-01 -1.828935719 0.1233333333E-01 -1.882639876 0.1266666667E-01 -1.933642392 0.1300000000E-01 -1.983673294 0.1333333333E-01 -2.035056792 0.1366666667E-01 -2.079482726 0.1400000000E-01 -2.102617650 0.1433333333E-01 -2.106032706 0.1466666667E-01 -2.117766575 0.1500000000E-01 -2.155158865 0.1533333333E-01 -2.206430136 0.1566666667E-01 -2.259152859 0.1600000000E-01 -2.319359916 0.1633333333E-01 -2.397988369 0.1666666667E-01 -2.494952820 0.1700000000E-01 -2.604613005 0.1733333333E-01 -2.719111589 0.1766666667E-01 -2.827094434 0.1800000000E-01 -2.920306356 0.1833333333E-01 -3.001406405 0.1866666667E-01 -3.084291489 0.1900000000E-01 -3.183535833 0.1933333333E-01 -3.284242511 0.1966666667E-01 -3.342322159 0.000000000 -0.3022315633E-01 0.3333333333E-03 -0.3347470196E-01 0.6666666667E-03 -0.3694264790E-01 0.1000000000E-02 -0.4054120530E-01 0.1333333333E-02 -0.4385516884E-01 0.1666666667E-02 -0.4644968320E-01 0.2000000000E-02 -0.4822915850E-01 0.2333333333E-02 -0.4933399848E-01 0.2666666667E-02 -0.5022648079E-01 0.3000000000E-02 -0.5131150679E-01 0.3333333333E-02 -0.5271726473E-01 0.3666666667E-02 -0.5438696123E-01 0.4000000000E-02 -0.5633169082E-01 0.4333333333E-02 -0.5864414169E-01 0.4666666667E-02 -0.6142708760E-01 0.5000000000E-02 -0.6475920875E-01 0.5333333333E-02 -0.6871921014E-01 0.5666666667E-02 -0.7344019241E-01 0.6000000000E-02 -0.7917251729E-01 0.6333333333E-02 -0.8630978875E-01 0.6666666667E-02 -0.9539027545E-01 0.7000000000E-02 -0.1070291645 0.7333333333E-02 -0.1217502007 0.7666666667E-02 -0.1400093291 0.8000000000E-02 -0.1615460765 0.8333333333E-02 -0.1838532507 0.8666666667E-02 -0.2054415729 0.9000000000E-02 -0.2277103553 0.9333333333E-02 -0.2485751570 0.9666666667E-02 -0.2670959518 0.1000000000E-01 -0.2838540861 0.1033333333E-01 -0.2943655775 0.1066666667E-01 -0.2937976104 0.1100000000E-01 -0.2815054704 0.1133333333E-01 -0.2645243724 0.1166666667E-01 -0.2535438630 0.1200000000E-01 -0.2545997152 0.1233333333E-01 -0.2677295870 0.1266666667E-01 -0.2889050781 0.1300000000E-01 -0.3143707938 0.1333333333E-01 -0.3481122778 0.1366666667E-01 -0.3955258521 0.1400000000E-01 -0.4479752645 0.1433333333E-01 -0.4811172622 0.1466666667E-01 -0.4853855451 0.1500000000E-01 -0.4829100648 0.1533333333E-01 -0.4910656543 0.1566666667E-01 -0.5040959354 0.1600000000E-01 -0.5126483863 0.1633333333E-01 -0.5226747535 0.1666666667E-01 -0.5459798699 0.1700000000E-01 -0.5899690415 0.1733333333E-01 -0.6597397675 0.1766666667E-01 -0.7552227926 0.1800000000E-01 -0.8673797682 0.1833333333E-01 -0.9844396909 0.1866666667E-01 -1.102311376 0.1900000000E-01 -1.238407654 0.1933333333E-01 -1.423779339 0.1966666667E-01 -1.660370932 elk-10.4.9/examples/TDDFT-magnetic-response/Ni-magnetic-response/PaxHeaders/CHI_T.OUT0000644000000000000000000000013214762655565025035 xustar0030 mtime=1741380469.660014691 30 atime=1741380469.660014691 30 ctime=1741380469.660014691 elk-10.4.9/examples/TDDFT-magnetic-response/Ni-magnetic-response/CHI_T.OUT0000644002504400250440000001053214762655565027560 0ustar00dewhurstdewhurst00000000000000 0.000000000 -7.947625401 0.3333333333E-03 -8.437765313 0.6666666667E-03 -8.964537558 0.1000000000E-02 -9.512772499 0.1333333333E-02 -10.07748384 0.1666666667E-02 -10.69051052 0.2000000000E-02 -11.39609507 0.2333333333E-02 -12.23183126 0.2666666667E-02 -13.15147742 0.3000000000E-02 -13.95607301 0.3333333333E-02 -14.26787677 0.3666666667E-02 -13.36053649 0.4000000000E-02 -9.771320013 0.4333333333E-02 -2.424589324 0.4666666667E-02 6.093511471 0.5000000000E-02 11.43418701 0.5333333333E-02 13.05307386 0.5666666667E-02 12.67045067 0.6000000000E-02 11.57071734 0.6333333333E-02 10.32941695 0.6666666667E-02 9.158722357 0.7000000000E-02 8.128141390 0.7333333333E-02 7.252062436 0.7666666667E-02 6.516791089 0.8000000000E-02 5.917830063 0.8333333333E-02 5.463322839 0.8666666667E-02 5.114826421 0.9000000000E-02 4.833042646 0.9333333333E-02 4.631614923 0.9666666667E-02 4.493575097 0.1000000000E-01 4.411970992 0.1033333333E-01 4.403105999 0.1066666667E-01 4.447642841 0.1100000000E-01 4.485349736 0.1133333333E-01 4.435113452 0.1166666667E-01 4.271194411 0.1200000000E-01 4.042496785 0.1233333333E-01 3.806813331 0.1266666667E-01 3.595745727 0.1300000000E-01 3.407989749 0.1333333333E-01 3.228114181 0.1366666667E-01 3.062801866 0.1400000000E-01 2.938586661 0.1433333333E-01 2.872491455 0.1466666667E-01 2.837604389 0.1500000000E-01 2.787366568 0.1533333333E-01 2.719670235 0.1566666667E-01 2.657991234 0.1600000000E-01 2.602456618 0.1633333333E-01 2.534386517 0.1666666667E-01 2.447813997 0.1700000000E-01 2.350605028 0.1733333333E-01 2.253322405 0.1766666667E-01 2.165368402 0.1800000000E-01 2.090486430 0.1833333333E-01 2.023927027 0.1866666667E-01 1.957906575 0.1900000000E-01 1.888382522 0.1933333333E-01 1.818930266 0.1966666667E-01 1.757425101 0.000000000 -1.580545278 0.3333333333E-03 -1.950668145 0.6666666667E-03 -2.415558754 0.1000000000E-02 -2.989251270 0.1333333333E-02 -3.666678700 0.1666666667E-02 -4.456243558 0.2000000000E-02 -5.412859379 0.2333333333E-02 -6.661497976 0.2666666667E-02 -8.417568557 0.3000000000E-02 -10.92675946 0.3333333333E-02 -14.41576173 0.3666666667E-02 -19.07814087 0.4000000000E-02 -24.45213244 0.4333333333E-02 -27.94948860 0.4666666667E-02 -26.36873493 0.5000000000E-02 -20.97036535 0.5333333333E-02 -15.38297753 0.5666666667E-02 -11.16759873 0.6000000000E-02 -8.290034133 0.6333333333E-02 -6.370392998 0.6666666667E-02 -5.092453311 0.7000000000E-02 -4.244113480 0.7333333333E-02 -3.682622714 0.7666666667E-02 -3.317876023 0.8000000000E-02 -3.100910340 0.8333333333E-02 -2.971031250 0.8666666667E-02 -2.867009256 0.9000000000E-02 -2.793713099 0.9333333333E-02 -2.744699557 0.9666666667E-02 -2.691555862 0.1000000000E-01 -2.640594933 0.1033333333E-01 -2.565924960 0.1066666667E-01 -2.419947718 0.1100000000E-01 -2.171690692 0.1133333333E-01 -1.849959957 0.1166666667E-01 -1.542994748 0.1200000000E-01 -1.312573298 0.1233333333E-01 -1.161818538 0.1266666667E-01 -1.063608651 0.1300000000E-01 -0.9891054435 0.1333333333E-01 -0.9365564833 0.1366666667E-01 -0.9202209036 0.1400000000E-01 -0.9363459151 0.1433333333E-01 -0.9501975250 0.1466666667E-01 -0.9218537854 0.1500000000E-01 -0.8612213124 0.1533333333E-01 -0.8045842577 0.1566666667E-01 -0.7554398023 0.1600000000E-01 -0.6953404972 0.1633333333E-01 -0.6238407621 0.1666666667E-01 -0.5572012273 0.1700000000E-01 -0.5066171962 0.1733333333E-01 -0.4748287160 0.1766666667E-01 -0.4578680894 0.1800000000E-01 -0.4463923863 0.1833333333E-01 -0.4325528159 0.1866666667E-01 -0.4159591229 0.1900000000E-01 -0.4025242244 0.1933333333E-01 -0.3987401259 0.1966666667E-01 -0.4042694944 elk-10.4.9/examples/TDDFT-magnetic-response/Ni-magnetic-response/PaxHeaders/elk.in0000644000000000000000000000013214762655565024661 xustar0030 mtime=1741380469.662014702 30 atime=1741380469.662014702 30 ctime=1741380469.662014702 elk-10.4.9/examples/TDDFT-magnetic-response/Ni-magnetic-response/elk.in0000644002504400250440000000161014762655565027401 0ustar00dewhurstdewhurst00000000000000 ! Magnetic response of fcc nickel. Try plotting the transverse component as a ! function of frequency. Compare to B. Rousseau, A. Eiguren and A. Bergara, ! Phys. Rev. B 85, 054305 (2012) and references therein. tasks 0 330 ! energy cut-off for Kohn-Sham response function emaxrf 1.5 ! G-vector cut-off for response function gmaxrf 5.0 ! frequency plot range wplot 60 100 1 0 0.020 ! q-vector of response function vecql 0.1 0.1 0.0 spinpol .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ! dense k-point grid is required for response functions ngridk 10 10 10 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/TDDFT-magnetic-response/PaxHeaders/Ni-magnon-spiral0000644000000000000000000000013214762655565022625 xustar0030 mtime=1741380469.664014712 30 atime=1741380469.663014707 30 ctime=1741380469.664014712 elk-10.4.9/examples/TDDFT-magnetic-response/Ni-magnon-spiral/0000755002504400250440000000000014762655565025424 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-magnetic-response/Ni-magnon-spiral/PaxHeaders/elk.in0000644000000000000000000000013214762655565024005 xustar0030 mtime=1741380469.665014717 30 atime=1741380469.664014712 30 ctime=1741380469.665014717 elk-10.4.9/examples/TDDFT-magnetic-response/Ni-magnon-spiral/elk.in0000644002504400250440000000334614762655565026535 0ustar00dewhurstdewhurst00000000000000 ! In this example, the frequency of a magnon at a particular q-vector in fcc Ni ! is determined. Computing a magnon frequency requires the energy difference, ! dE, between the ferromagnetic and a conical spin-spiral state with small polar ! angle theta. The following formula can then be used to compute the frequency: ! ! w(q) = (4/M) dE / sin^2(theta) ! ! where M is the total moment in the unit cell. See Q. Niu and L. Kleinman, ! Phys. Rev. Lett. 80, 2205 (1998). It is good practice to fix a q and then run ! two fixed spin direction calculations: one at theta=0, and the other at a ! finite theta (in this case 15 degrees). ! Note that the energy difference is very small (order of meV), and the ! calculation has to be very well converged in all parameters. As a result this ! example is best run on a multi-processor, and is still quite time-consuming. tasks 0 stype 1 taufsm 0.01 swidth 0.005 rgkmax 8.0 gmaxvr 14.0 lmaxapw 8 lmaxo 8 ! tight convergence required epspot 1.d-9 epsengy 1.d-6 ! use a fixed spin direction calculation fsmtype -1 ! use a polar angle of 15 degrees momfix 0.0 0.258819045 0.965925826 ! large global field in same direction as momfix bfieldc 0.0 0.258819045 0.965925826 spinsprl .true. ! spin-spiral q-vector in lattice coordinates vqlss 0.1 0.1 0.0 nempty 10 ! very fine k-point grid required for good convergence ngridk 20 20 20 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 ! experimental lattice parameter scale 3.325 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/examples/PaxHeaders/basic0000644000000000000000000000013214762655565014305 xustar0030 mtime=1741380469.708014942 30 atime=1741380469.666014723 30 ctime=1741380469.708014942 elk-10.4.9/examples/basic/0000755002504400250440000000000014762655565017104 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/PaxHeaders/Au0000644000000000000000000000013214762655565014652 xustar0030 mtime=1741380469.668014733 30 atime=1741380469.667014728 30 ctime=1741380469.668014733 elk-10.4.9/examples/basic/Au/0000755002504400250440000000000014762655565017451 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/Au/PaxHeaders/elk.in0000644000000000000000000000013214762655565016032 xustar0030 mtime=1741380469.669014738 30 atime=1741380469.668014733 30 ctime=1741380469.669014738 elk-10.4.9/examples/basic/Au/elk.in0000644002504400250440000000125214762655565020554 0ustar00dewhurstdewhurst00000000000000 ! Example of spin-orbit coupling for Au. Try comparing the band structure ! without spin-orbit coupling. tasks 0 20 spinorb .true. avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.85 sppath '../../../species/' atoms 1 : nspecies 'Au.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 plot1d 7 100 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-10.4.9/examples/basic/PaxHeaders/HfSiO40000644000000000000000000000013214762655565015341 xustar0030 mtime=1741380469.672014754 30 atime=1741380469.669014738 30 ctime=1741380469.672014754 elk-10.4.9/examples/basic/HfSiO4/0000755002504400250440000000000014762655565020140 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/HfSiO4/PaxHeaders/elk.in0000644000000000000000000000013214762655565016521 xustar0030 mtime=1741380469.671014749 30 atime=1741380469.671014749 30 ctime=1741380469.671014749 elk-10.4.9/examples/basic/HfSiO4/elk.in0000644002504400250440000000464614762655565021255 0ustar00dewhurstdewhurst00000000000000 ! HfSiO4 generated with spacegroup data from Am. Mineral. 67, 804 (1982). tasks 0 ! perform a single averaging of the muffin-tin radii mrmtav 1 ngridk 2 2 2 ! Atomic positions generated by spacegroup version 1.2.00 ! Hermann-Mauguin symbol : I41/amd:2 ! Hall symbol : -I 4bd 2 ! Schoenflies symbol : D4h^19 ! space group number : 141:2 ! lattice constants (a,b,c) : 12.42022400 12.42022400 11.26881400 ! angles in degrees (bc,ac,ab) : 90.00000000 90.00000000 90.00000000 ! number of conventional unit cells : 1 1 1 ! reduction to primitive cell : T ! Wyckoff positions : ! species : 1, Hf.in ! 0.000000000 0.7500000000 0.1250000000 ! species : 2, Si.in ! 0.000000000 0.7500000000 0.6250000000 ! species : 3, O.in ! 0.000000000 0.6550000000E-01 0.1948000000 avec 6.210112000 6.210112000 5.634407000 6.210112000 6.210112000 -5.634407000 6.210112000 -6.210112000 5.634407000 sppath '../../../species/' atoms 3 : nspecies 'Hf.in' : spfname 2 : natoms; atposl, bfcmt below 0.87500000 0.87500000 0.25000000 0.00000000 0.00000000 0.00000000 0.12500000 0.12500000 0.75000000 0.00000000 0.00000000 0.00000000 'Si.in' : spfname 2 : natoms; atposl, bfcmt below 0.37500000 0.37500000 0.25000000 0.00000000 0.00000000 0.00000000 0.62500000 0.62500000 0.75000000 0.00000000 0.00000000 0.00000000 'O.in' : spfname 8 : natoms; atposl, bfcmt below 0.26030000 0.80520000 0.93450000 0.00000000 0.00000000 0.00000000 0.73970000 0.19480000 0.06550000 0.00000000 0.00000000 0.00000000 0.19480000 0.73970000 0.43450000 0.00000000 0.00000000 0.00000000 0.80520000 0.26030000 0.56550000 0.00000000 0.00000000 0.00000000 0.62930000 0.80520000 0.56550000 0.00000000 0.00000000 0.00000000 0.37070000 0.19480000 0.43450000 0.00000000 0.00000000 0.00000000 0.19480000 0.37070000 0.06550000 0.00000000 0.00000000 0.00000000 0.80520000 0.62930000 0.93450000 0.00000000 0.00000000 0.00000000 elk-10.4.9/examples/basic/HfSiO4/PaxHeaders/spacegroup.in0000644000000000000000000000013214762655565020116 xustar0030 mtime=1741380469.673014759 30 atime=1741380469.673014759 30 ctime=1741380469.673014759 elk-10.4.9/examples/basic/HfSiO4/spacegroup.in0000644002504400250440000000101414762655565022634 0ustar00dewhurstdewhurst00000000000000 'I41/amd:2' : hrmg 12.420224 12.420224 11.268814 : a, b, c 90.0 90.0 90.0 : ab, ac, bc 1 1 1 : ncell .true. : primcell 3 : nspecies 'Hf' 'Hf.in' : spsymb, spfname 1 : nwpos 0.0000 0.7500 0.1250 : wpos 'Si' 'Si.in' 1 0.0000 0.7500 0.6250 'O' 'O.in' 1 0.0000 0.0655 0.1948 elk-10.4.9/examples/basic/PaxHeaders/Si0000644000000000000000000000013214762655565014660 xustar0030 mtime=1741380469.676014775 30 atime=1741380469.674014765 30 ctime=1741380469.676014775 elk-10.4.9/examples/basic/Si/0000755002504400250440000000000014762655565017457 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/Si/PaxHeaders/elk.in0000644000000000000000000000013214762655565016040 xustar0030 mtime=1741380469.676014775 30 atime=1741380469.676014775 30 ctime=1741380469.676014775 elk-10.4.9/examples/basic/Si/elk.in0000644002504400250440000000141714762655565020565 0ustar00dewhurstdewhurst00000000000000 ! Band structure of silicon. The points listed after plot1d below are the ! vertices joined in the band structure. tasks 0 20 ! use Broyden mixing mixtype 3 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 2 2 2 vkloff 0.25 0.5 0.625 ! These are the vertices to be joined for the band structure plot plot1d 7 200 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-10.4.9/examples/basic/PaxHeaders/graphene0000644000000000000000000000013114762655565016075 xustar0030 mtime=1741380469.678014786 29 atime=1741380469.67701478 30 ctime=1741380469.678014786 elk-10.4.9/examples/basic/graphene/0000755002504400250440000000000014762655565020675 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/graphene/PaxHeaders/elk.in0000644000000000000000000000013214762655565017256 xustar0030 mtime=1741380469.679014791 30 atime=1741380469.678014786 30 ctime=1741380469.679014791 elk-10.4.9/examples/basic/graphene/elk.in0000644002504400250440000000141514762655565022001 0ustar00dewhurstdewhurst00000000000000 ! Band structure of graphene. Observe the massless Dirac-like dispersion in the ! density of states. tasks 0 10 nempty 8 wplot 200 150 1 -0.5 0.5 plot1d 4 100 0.333333333 0.333333333 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.333333333 0.333333333 0.0 ! very high number of k-points required to resolve the linear dispersion ngridk 30 30 1 avec -0.5 0.866025403784 0.0 -1.0 0.0 0.0 0.0 0.0 3.2265697 scale 4.64890 sppath '../../../species/' atoms 1 : nspecies 'C.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.333333333333 0.333333333333 0.0 elk-10.4.9/examples/basic/PaxHeaders/B120000644000000000000000000000013214762655565014631 xustar0030 mtime=1741380469.681014801 30 atime=1741380469.680014796 30 ctime=1741380469.681014801 elk-10.4.9/examples/basic/B12/0000755002504400250440000000000014762655565017430 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/B12/PaxHeaders/elk.in0000644000000000000000000000013214762655565016011 xustar0030 mtime=1741380469.681014801 30 atime=1741380469.681014801 30 ctime=1741380469.681014801 elk-10.4.9/examples/basic/B12/elk.in0000644002504400250440000000137014762655565020534 0ustar00dewhurstdewhurst00000000000000 ! B12 ground state (Andrew Chizmeshya) tasks 0 10 rgkmax 6.0 scale 9.6376071 avec 0.55522 0.00000 0.82027 -0.27761 0.48083 0.82027 -0.27761 -0.48083 0.82027 sppath '../../../species/' atoms 1 : nspecies 'B.in' : spfname 12 : natoms; atposl below 0.77917 0.77917 0.36899 0.36899 0.77917 0.77914 0.77917 0.36899 0.77918 0.22082 0.22082 0.63108 0.22082 0.63100 0.22082 0.63100 0.22082 0.22086 0.98989 0.98989 0.34576 0.34579 0.98989 0.98986 0.98989 0.34579 0.98981 0.01010 0.01010 0.65424 0.01010 0.65420 0.01019 0.65420 0.01010 0.01014 ngridk 2 2 2 elk-10.4.9/examples/basic/PaxHeaders/Nb-autoswidth0000644000000000000000000000013214762655565017035 xustar0030 mtime=1741380469.683014812 30 atime=1741380469.682014806 30 ctime=1741380469.683014812 elk-10.4.9/examples/basic/Nb-autoswidth/0000755002504400250440000000000014762655565021634 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/Nb-autoswidth/PaxHeaders/elk.in0000644000000000000000000000013214762655565020215 xustar0030 mtime=1741380469.684014817 30 atime=1741380469.684014817 30 ctime=1741380469.684014817 elk-10.4.9/examples/basic/Nb-autoswidth/elk.in0000644002504400250440000000100514762655565022733 0ustar00dewhurstdewhurst00000000000000 ! Example demonstrating the automatic determination of the smearing width. See ! 'autoswidth' in the manual for details. ! Example by T. Bjorkman and O. Granas. tasks 0 autoswidth .true. avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 3.118 sppath '../../../species/' atoms 1 : nspecies 'Nb.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 elk-10.4.9/examples/basic/PaxHeaders/TiC-eg-t2g0000644000000000000000000000013214762655565016047 xustar0030 mtime=1741380469.686014827 30 atime=1741380469.685014822 30 ctime=1741380469.686014827 elk-10.4.9/examples/basic/TiC-eg-t2g/0000755002504400250440000000000014762655565020646 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/TiC-eg-t2g/PaxHeaders/elk.in0000644000000000000000000000013214762655565017227 xustar0030 mtime=1741380469.687014832 30 atime=1741380469.687014832 30 ctime=1741380469.687014832 elk-10.4.9/examples/basic/TiC-eg-t2g/elk.in0000644002504400250440000000213214762655565021747 0ustar00dewhurstdewhurst00000000000000 ! Density of states of TiC resolved into irreducible representations. When ! lmirep is set to .true., the Y_lm basis is transformed into one in which the ! site symmetries are block diagonal. The band characters determined from the ! density matrix expressed in this basis correspond therefore to irreducible ! representations (IR). ! In this example, we want the e_g and t_2g resolved DOS for the Ti atom. The ! ELMIREP.OUT file contains a set of eigenvalues, the degeneracies of which ! allow for easy identification of the IR. For l = 2, the 3-fold degeneracy is ! the t_2g IR, while the 2-fold is the e_g IR. Adding together curves 5, 6 and 7 ! in the file PDOS_S01_A0001.OUT will give the t_2g plot, and adding curves 8 ! and 9 will give the e_g plot. tasks 0 10 lmirep .true. avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 8.1787 sppath '../../../species/' atoms 2 : nspecies 'Ti.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'C.in' 1 0.5 0.5 0.5 ngridk 8 8 8 elk-10.4.9/examples/basic/PaxHeaders/Al0000644000000000000000000000013214762655565014641 xustar0030 mtime=1741380469.689014843 30 atime=1741380469.688014838 30 ctime=1741380469.689014843 elk-10.4.9/examples/basic/Al/0000755002504400250440000000000014762655565017440 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/Al/PaxHeaders/elk.in0000644000000000000000000000013214762655565016021 xustar0030 mtime=1741380469.690014848 30 atime=1741380469.689014843 30 ctime=1741380469.690014848 elk-10.4.9/examples/basic/Al/elk.in0000644002504400250440000000127514762655565020550 0ustar00dewhurstdewhurst00000000000000 ! Ground state of aluminium. Try calculating the density of states by using ! tasks=10 tasks 0 ! You can add notes to the INFO.OUT file using the "notes" block notes Simple calculation of the ground state of aluminium. Must check convergence with respect to k-point set later. Run by H. Golightly avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.8267 ! this is the relative path to the species files sppath '../../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/basic/PaxHeaders/Cu0000644000000000000000000000013214762655565014654 xustar0030 mtime=1741380469.692014859 30 atime=1741380469.691014853 30 ctime=1741380469.692014859 elk-10.4.9/examples/basic/Cu/0000755002504400250440000000000014762655565017453 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/Cu/PaxHeaders/elk.in0000644000000000000000000000013214762655565016034 xustar0030 mtime=1741380469.692014859 30 atime=1741380469.692014859 30 ctime=1741380469.692014859 elk-10.4.9/examples/basic/Cu/elk.in0000644002504400250440000000144414762655565020561 0ustar00dewhurstdewhurst00000000000000 ! Try and find the equilibrium volume of fcc copper by adjusting the scale ! parameter. The individual lattice vectors can also be scaled separately using ! scale1, scale2 or scale3. Remember that a previously converged charge density ! can be used to begin a new calculation, even at a different volume. This is ! done by setting task=1. tasks 0 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale1 6.83117 scale2 6.83117 scale3 6.83117 scale 0.96 ! large cut-off is required for Cu rgkmax 8.5 lmaxapw 10 gmaxvr 14.0 sppath '../../../species/' atoms 1 : nspecies 'Cu.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 8 8 8 elk-10.4.9/examples/basic/PaxHeaders/Pb0000644000000000000000000000013214762655565014646 xustar0030 mtime=1741380469.694014869 30 atime=1741380469.693014864 30 ctime=1741380469.694014869 elk-10.4.9/examples/basic/Pb/0000755002504400250440000000000014762655565017445 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/Pb/PaxHeaders/elk.in0000644000000000000000000000013214762655565016026 xustar0030 mtime=1741380469.695014874 30 atime=1741380469.694014869 30 ctime=1741380469.695014874 elk-10.4.9/examples/basic/Pb/elk.in0000644002504400250440000000123614762655565020552 0ustar00dewhurstdewhurst00000000000000 ! Band structure of lead with spin-orbit coupling. tasks 0 20 spinpol .true. spinorb .true. nempty 8 rgkmax 8.0 avec 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 scale 9.3541 sppath '../../../species/' atoms 1 : nspecies 'Pb.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 8 8 8 plot1d 7 200 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-10.4.9/examples/basic/PaxHeaders/YBCO0000644000000000000000000000013114762655565015040 xustar0030 mtime=1741380469.697014885 29 atime=1741380469.69601488 30 ctime=1741380469.697014885 elk-10.4.9/examples/basic/YBCO/0000755002504400250440000000000014762655565017640 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/YBCO/PaxHeaders/elk.in0000644000000000000000000000013014762655565016217 xustar0029 mtime=1741380469.69801489 30 atime=1741380469.697014885 29 ctime=1741380469.69801489 elk-10.4.9/examples/basic/YBCO/elk.in0000644002504400250440000000147014762655565020745 0ustar00dewhurstdewhurst00000000000000 ! High T_c superconductor YBa2Cu3O7. Note that the code determines which atoms ! are equivalent, and lists them in EQATOMS.OUT. tasks 0 ! small cut-off for testing purposes rgkmax 6.0 ! use Broyden mixing mixtype 3 avec 7.2246 0.0 0.0 0.0 7.3442 0.0 0.0 0.0 22.0733 sppath '../../../species/' atoms 4 : nspecies 'Y.in' : spfname 1 : natoms; atposl below 0.5 0.5 0.5 'Ba.in' 2 0.5 0.5 0.1843 0.5 0.5 0.8157 'Cu.in' 3 0.0 0.0 0.0 0.0 0.0 0.3556 0.0 0.0 0.6444 'O.in' 7 0.0 0.5 0.0 0.5 0.0 0.3773 0.5 0.0 0.6227 0.0 0.5 0.3789 0.0 0.5 0.6211 0.0 0.0 0.1584 0.0 0.0 0.8416 ngridk 2 2 1 vkloff 0.25 0.5 0.5 elk-10.4.9/examples/basic/PaxHeaders/AlAs-fatbands0000644000000000000000000000013214762655565016705 xustar0030 mtime=1741380469.702014911 30 atime=1741380469.699014895 30 ctime=1741380469.702014911 elk-10.4.9/examples/basic/AlAs-fatbands/0000755002504400250440000000000014762655565021504 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/AlAs-fatbands/PaxHeaders/AlAs.par0000644000000000000000000000013014762655565020304 xustar0030 mtime=1741380469.701014906 28 atime=1741380469.7000149 30 ctime=1741380469.701014906 elk-10.4.9/examples/basic/AlAs-fatbands/AlAs.par0000644002504400250440000000551114762655565023032 0ustar00dewhurstdewhurst00000000000000 world 0.0, -0.25, 1.113445717, 0.5 title "AlAs band structure" subtitle "(atomic character of As)" xaxis tick off xaxis ticklabel off yaxis tick major 0.1 yaxis tick minor ticks 2 yaxis label "Energy (Hartree)" s0.y1=0.05*s0.y1 s1.y1=0.05*s1.y1 s2.y1=0.05*s2.y1 s3.y1=0.05*s3.y1 s4.y1=0.05*s4.y1 s5.y1=0.05*s5.y1 s6.y1=0.05*s6.y1 s7.y1=0.05*s7.y1 s8.y1=0.05*s8.y1 s9.y1=0.05*s9.y1 s10.y1=0.05*s10.y1 s11.y1=0.05*s11.y1 s12.y1=0.05*s12.y1 s13.y1=0.05*s13.y1 s14.y1=0.05*s14.y1 s15.y1=0.05*s15.y1 s16.y1=0.05*s16.y1 s17.y1=0.05*s17.y1 s18.y1=0.05*s18.y1 s19.y1=0.05*s19.y1 s20.y1=0.05*s20.y1 s21.y1=0.05*s21.y1 s22.y1=0.05*s22.y1 s0 line type 0 s1 line type 0 s2 line type 0 s3 line type 0 s4 line type 0 s5 line type 0 s6 line type 0 s7 line type 0 s8 line type 0 s9 line type 0 s10 line type 0 s11 line type 0 s12 line type 0 s13 line type 0 s14 line type 0 s15 line type 0 s16 line type 0 s17 line type 0 s18 line type 0 s19 line type 0 s20 line type 0 s21 line type 0 s22 line type 0 s0 errorbar linestyle 0 s1 errorbar linestyle 0 s2 errorbar linestyle 0 s3 errorbar linestyle 0 s4 errorbar linestyle 0 s5 errorbar linestyle 0 s6 errorbar linestyle 0 s7 errorbar linestyle 0 s8 errorbar linestyle 0 s9 errorbar linestyle 0 s10 errorbar linestyle 0 s11 errorbar linestyle 0 s12 errorbar linestyle 0 s13 errorbar linestyle 0 s14 errorbar linestyle 0 s15 errorbar linestyle 0 s16 errorbar linestyle 0 s17 errorbar linestyle 0 s18 errorbar linestyle 0 s19 errorbar linestyle 0 s20 errorbar linestyle 0 s21 errorbar linestyle 0 s22 errorbar linestyle 0 s0 errorbar riser linewidth 3.5 s1 errorbar riser linewidth 3.5 s2 errorbar riser linewidth 3.5 s3 errorbar riser linewidth 3.5 s4 errorbar riser linewidth 3.5 s5 errorbar riser linewidth 3.5 s6 errorbar riser linewidth 3.5 s7 errorbar riser linewidth 3.5 s8 errorbar riser linewidth 3.5 s9 errorbar riser linewidth 3.5 s10 errorbar riser linewidth 3.5 s11 errorbar riser linewidth 3.5 s12 errorbar riser linewidth 3.5 s13 errorbar riser linewidth 3.5 s14 errorbar riser linewidth 3.5 s15 errorbar riser linewidth 3.5 s16 errorbar riser linewidth 3.5 s17 errorbar riser linewidth 3.5 s18 errorbar riser linewidth 3.5 s19 errorbar riser linewidth 3.5 s20 errorbar riser linewidth 3.5 s21 errorbar riser linewidth 3.5 s22 errorbar riser linewidth 3.5 s0 errorbar color 1 s1 errorbar color 1 s2 errorbar color 1 s3 errorbar color 1 s4 errorbar color 1 s5 errorbar color 1 s6 errorbar color 1 s7 errorbar color 1 s8 errorbar color 1 s9 errorbar color 1 s10 errorbar color 1 s11 errorbar color 1 s12 errorbar color 1 s13 errorbar color 1 s14 errorbar color 1 s15 errorbar color 1 s16 errorbar color 1 s17 errorbar color 1 s18 errorbar color 1 s19 errorbar color 1 s20 errorbar color 1 s21 errorbar color 1 s22 errorbar color 1 s23 line color 1 s24 line color 1 s25 line color 1 s23 linewidth 2.0 s24 linewidth 2.0 s25 linewidth 2.0 elk-10.4.9/examples/basic/AlAs-fatbands/PaxHeaders/elk.in0000644000000000000000000000013214762655565020065 xustar0030 mtime=1741380469.702014911 30 atime=1741380469.702014911 30 ctime=1741380469.702014911 elk-10.4.9/examples/basic/AlAs-fatbands/elk.in0000644002504400250440000000146514762655565022615 0ustar00dewhurstdewhurst00000000000000 ! Band structure of AlAs which produces a band-structure with line thickness ! proportional to the atomic character. You can produce the plot by running ! ! xmgrace -settype xydy BAND_S02_A0001.OUT -settype xy BANDLINES.OUT -param AlAs.par ! ! You can change the graph appearance either in xmgrace or by editing AlAs.par tasks 0 21 nempty 8 plot1d 3 200 : nvp1d, npp1d 0.5 0.0 0.0 : vlvp1d 0.0 0.0 0.0 0.5 0.5 0.0 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 10.53 sppath '../../../species/' atoms 2 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 ngridk 4 4 4 elk-10.4.9/examples/basic/PaxHeaders/CuFeS20000644000000000000000000000013214762655565015334 xustar0030 mtime=1741380469.704014921 30 atime=1741380469.703014916 30 ctime=1741380469.704014921 elk-10.4.9/examples/basic/CuFeS2/0000755002504400250440000000000014762655565020133 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/CuFeS2/PaxHeaders/elk.in0000644000000000000000000000013214762655565016514 xustar0030 mtime=1741380469.705014927 30 atime=1741380469.704014921 30 ctime=1741380469.705014927 elk-10.4.9/examples/basic/CuFeS2/elk.in0000644002504400250440000000324714762655565021244 0ustar00dewhurstdewhurst00000000000000 ! An example of how Elk can automatically determine the primitive unit cell ! from the conventional one. The input chalcopyrite unit cell contains 16 atoms ! which is reduced to 8 by the code. tasks 0 ! large smearing width for better convergence swidth 0.01 ! automatic determination of the primitive unit cell primcell .true. avec 9.99476 0.00000 0.00000 0.00000 9.99476 0.00000 0.00000 0.00000 19.6966 sppath '../../../species/' atoms 3 : nspecies 'Cu.in' : spfname 4 : natoms; atposl, bfcmt below 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.2500 0.0000 0.0000 0.0000 0.5000 0.0000 0.7500 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.0000 0.0000 0.0000 'Fe.in' : spfname 4 : natoms; atposl, bfcmt below 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.5000 0.7500 0.0000 0.0000 0.0000 0.5000 0.0000 0.2500 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 'S.in' : spfname 8 : natoms; atposl, bfcmt below 0.2574 0.2500 0.1250 0.0000 0.0000 0.0000 0.7426 0.7500 0.1250 0.0000 0.0000 0.0000 0.2500 0.7426 0.8750 0.0000 0.0000 0.0000 0.7500 0.2574 0.8750 0.0000 0.0000 0.0000 0.7574 0.7500 0.6250 0.0000 0.0000 0.0000 0.2426 0.2500 0.6250 0.0000 0.0000 0.0000 0.7500 0.2426 0.3750 0.0000 0.0000 0.0000 0.2500 0.7574 0.3750 0.0000 0.0000 0.0000 ngridk 2 2 2 elk-10.4.9/examples/basic/PaxHeaders/Si-PBEsol0000644000000000000000000000013214762655565016002 xustar0030 mtime=1741380469.707014937 30 atime=1741380469.706014932 30 ctime=1741380469.707014937 elk-10.4.9/examples/basic/Si-PBEsol/0000755002504400250440000000000014762655565020601 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/Si-PBEsol/PaxHeaders/elk.in0000644000000000000000000000013214762655565017162 xustar0030 mtime=1741380469.707014937 30 atime=1741380469.707014937 30 ctime=1741380469.707014937 elk-10.4.9/examples/basic/Si-PBEsol/elk.in0000644002504400250440000000136514762655565021711 0ustar00dewhurstdewhurst00000000000000 ! Band structure of silicon using the new PBEsol functional (xctype = 22) ! (http://arxiv.org/pdf/0711.0156). tasks 0 20 xctype 22 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 2 2 2 vkloff 0.25 0.5 0.625 ! These are the vertices to be joined for the band structure plot plot1d 7 200 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-10.4.9/examples/basic/PaxHeaders/diamond-rho3D0000644000000000000000000000013214762655565016675 xustar0030 mtime=1741380469.713014968 30 atime=1741380469.708014942 30 ctime=1741380469.713014968 elk-10.4.9/examples/basic/diamond-rho3D/0000755002504400250440000000000014762655565021474 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/basic/diamond-rho3D/PaxHeaders/elk.in0000644000000000000000000000013214762655565020055 xustar0030 mtime=1741380469.710014953 30 atime=1741380469.710014953 30 ctime=1741380469.710014953 elk-10.4.9/examples/basic/diamond-rho3D/elk.in0000644002504400250440000000112314762655565022574 0ustar00dewhurstdewhurst00000000000000 ! 3D plot of the charge density of diamond using OpenDX. tasks 0 33 ! define box corners and grid size for 3D plot, first point is the origin plot3d 0.0 0.0 0.0 : vclp3d 2.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 2.0 80 80 80 avec 3.3637 3.3637 0.0000 3.3637 0.0000 3.3637 0.0000 3.3637 3.3637 sppath '../../../species/' atoms 1 : nspecies 'C.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 2 2 2 vkloff 0.25 0.5 0.625 elk-10.4.9/examples/basic/diamond-rho3D/PaxHeaders/rho3d.general0000644000000000000000000000013214762655565021330 xustar0030 mtime=1741380469.712014963 30 atime=1741380469.711014958 30 ctime=1741380469.712014963 elk-10.4.9/examples/basic/diamond-rho3D/rho3d.general0000644002504400250440000000027414762655565024055 0ustar00dewhurstdewhurst00000000000000file = RHO3D.OUT grid = 80 x 80 x 80 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 3-vector, scalar type = float, float end elk-10.4.9/examples/basic/diamond-rho3D/PaxHeaders/rho3d.net0000644000000000000000000000013214762655565020501 xustar0030 mtime=1741380469.714014974 30 atime=1741380469.713014968 30 ctime=1741380469.714014974 elk-10.4.9/examples/basic/diamond-rho3D/rho3d.net0000644002504400250440000003450214762655565023227 0ustar00dewhurstdewhurst00000000000000// // time: Fri Sep 26 23:37:42 2008 // // version: 3.2.0 (format), 4.4.0 (DX) // // // MODULE main // workspace: width = 298, height = 472 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[1]: x = 56, y = 47, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "rho3d.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node Isosurface[2]: x = 220, y = 121, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.04 // main_Isosurface_2_out_1 = Isosurface( main_Import_1_out_1, main_Isosurface_2_in_2, main_Isosurface_2_in_3, main_Isosurface_2_in_4, main_Isosurface_2_in_5, main_Isosurface_2_in_6 ) [instance: 2, cache: 1]; // // node Color[1]: x = 72, y = 232, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "white" // input[4]: defaulting = 0, visible = 0, type = 32, value = "front colors" // main_Color_1_out_1 = Color( main_Isosurface_2_out_1, main_Color_1_in_2, main_Color_1_in_3, main_Color_1_in_4, main_Color_1_in_5 ) [instance: 1, cache: 1]; // // node Color[2]: x = 69, y = 316, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "orange" // input[4]: defaulting = 0, visible = 0, type = 32, value = "back colors" // main_Color_2_out_1 = Color( main_Color_1_out_1, main_Color_2_in_2, main_Color_2_in_3, main_Color_2_in_4, main_Color_2_in_5 ) [instance: 2, cache: 1]; // // node Image[4]: x = 223, y = 410, inputs = 49, label = Image // input[1]: defaulting = 0, visible = 0, type = 32, value = "Image_4" // input[4]: defaulting = 0, visible = 0, type = 1, value = 1 // input[5]: defaulting = 0, visible = 0, type = 8, value = [7.29024 7.29024 7.29024] // input[6]: defaulting = 0, visible = 0, type = 8, value = [-4.66221 51.8696 -4.66221] // input[7]: defaulting = 0, visible = 0, type = 5, value = 21.0859 // input[8]: defaulting = 0, visible = 0, type = 1, value = 640 // input[9]: defaulting = 0, visible = 0, type = 5, value = 0.75 // input[10]: defaulting = 0, visible = 0, type = 8, value = [0 0 -1] // input[11]: defaulting = 1, visible = 0, type = 5, value = 24.9389 // input[12]: defaulting = 0, visible = 0, type = 1, value = 0 // input[14]: defaulting = 0, visible = 0, type = 1, value = 1 // input[15]: defaulting = 1, visible = 0, type = 32, value = "none" // input[16]: defaulting = 1, visible = 0, type = 32, value = "none" // input[17]: defaulting = 1, visible = 0, type = 1, value = 1 // input[18]: defaulting = 1, visible = 0, type = 1, value = 1 // input[19]: defaulting = 0, visible = 0, type = 1, value = 0 // input[29]: defaulting = 1, visible = 0, type = 3, value = 0 // input[41]: defaulting = 0, visible = 0, type = 32, value = "zoom" // depth: value = 24 // window: position = (0.0104,0.0600), size = 0.4542x0.5800, screen = 0 // internal caching: 1 // main_Image_4_out_1, main_Image_4_out_2, main_Image_4_out_3 = Image( main_Image_4_in_1, main_Color_2_out_1, main_Image_4_in_3, main_Image_4_in_4, main_Image_4_in_5, main_Image_4_in_6, main_Image_4_in_7, main_Image_4_in_8, main_Image_4_in_9, main_Image_4_in_10, main_Image_4_in_11, main_Image_4_in_12, main_Image_4_in_13, main_Image_4_in_14, main_Image_4_in_15, main_Image_4_in_16, main_Image_4_in_17, main_Image_4_in_18, main_Image_4_in_19, main_Image_4_in_20, main_Image_4_in_21, main_Image_4_in_22, main_Image_4_in_23, main_Image_4_in_24, main_Image_4_in_25, main_Image_4_in_26, main_Image_4_in_27, main_Image_4_in_28, main_Image_4_in_29, main_Image_4_in_30, main_Image_4_in_31, main_Image_4_in_32, main_Image_4_in_33, main_Image_4_in_34, main_Image_4_in_35, main_Image_4_in_36, main_Image_4_in_37, main_Image_4_in_38, main_Image_4_in_39, main_Image_4_in_40, main_Image_4_in_41, main_Image_4_in_42, main_Image_4_in_43, main_Image_4_in_44, main_Image_4_in_45, main_Image_4_in_46, main_Image_4_in_47, main_Image_4_in_48, main_Image_4_in_49 ) [instance: 4, cache: 1]; // network: end of macro body CacheScene(main_Image_4_in_1, main_Image_4_out_1, main_Image_4_out_2); } main_Import_1_in_1 = "rho3d.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_Isosurface_2_in_2 = 0.04; main_Isosurface_2_in_3 = NULL; main_Isosurface_2_in_4 = NULL; main_Isosurface_2_in_5 = NULL; main_Isosurface_2_in_6 = NULL; main_Isosurface_2_out_1 = NULL; main_Color_1_in_2 = "white"; main_Color_1_in_3 = NULL; main_Color_1_in_4 = "front colors"; main_Color_1_in_5 = NULL; main_Color_1_out_1 = NULL; main_Color_2_in_2 = "orange"; main_Color_2_in_3 = NULL; main_Color_2_in_4 = "back colors"; main_Color_2_in_5 = NULL; main_Color_2_out_1 = NULL; macro Image( id, object, where, useVector, to, from, width, resolution, aspect, up, viewAngle, perspective, options, buttonState = 1, buttonUpApprox = "none", buttonDownApprox = "none", buttonUpDensity = 1, buttonDownDensity = 1, renderMode = 0, defaultCamera, reset, backgroundColor, throttle, RECenable = 0, RECfile, RECformat, RECresolution, RECaspect, AAenable = 0, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, interactionMode, title, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels, webOptions) -> ( object, camera, where) { ImageMessage( id, backgroundColor, throttle, RECenable, RECfile, RECformat, RECresolution, RECaspect, AAenable, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels, interactionMode, title, renderMode, buttonUpApprox, buttonDownApprox, buttonUpDensity, buttonDownDensity) [instance: 1, cache: 1]; autoCamera = AutoCamera( object, "front", object, resolution, aspect, [0,1,0], perspective, viewAngle, backgroundColor) [instance: 1, cache: 1]; realCamera = Camera( to, from, width, resolution, aspect, up, perspective, viewAngle, backgroundColor) [instance: 1, cache: 1]; coloredDefaultCamera = UpdateCamera(defaultCamera, background=backgroundColor) [instance: 1, cache: 1]; nullDefaultCamera = Inquire(defaultCamera, "is null + 1") [instance: 1, cache: 1]; resetCamera = Switch( nullDefaultCamera, coloredDefaultCamera, autoCamera) [instance: 1, cache: 1]; resetNull = Inquire( reset, "is null + 1") [instance: 2, cache: 1]; reset = Switch( resetNull, reset, 0) [instance: 2, cache: 1]; whichCamera = Compute( "($0 != 0 || $1 == 0) ? 1 : 2", reset, useVector) [instance: 1, cache: 1]; camera = Switch( whichCamera, resetCamera, realCamera) [instance: 3, cache: 1]; AAobject = AutoAxes( object, camera, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels) [instance: 1, cache: 1]; switchAAenable = Compute("$0+1", AAenable) [instance: 2, cache: 1]; object = Switch( switchAAenable, object, AAobject) [instance:4, cache: 1]; SWapproximation_options = Switch( buttonState, buttonUpApprox, buttonDownApprox) [instance: 5, cache: 1]; SWdensity_options = Switch( buttonState, buttonUpDensity, buttonDownDensity) [instance: 6, cache: 1]; HWapproximation_options = Format( "%s,%s", buttonDownApprox, buttonUpApprox) [instance: 1, cache: 1]; HWdensity_options = Format( "%d,%d", buttonDownDensity, buttonUpDensity) [instance: 2, cache: 1]; switchRenderMode = Compute( "$0+1", renderMode) [instance: 3, cache: 1]; approximation_options = Switch( switchRenderMode, SWapproximation_options, HWapproximation_options) [instance: 7, cache: 1]; density_options = Switch( switchRenderMode, SWdensity_options, HWdensity_options) [instance: 8, cache: 1]; renderModeString = Switch( switchRenderMode, "software", "hardware")[instance: 9, cache: 1]; object_tag = Inquire( object, "object tag")[instance: 3, cache: 1]; annoted_object = Options( object, "send boxes", 0, "cache", 1, "object tag", object_tag, "ddcamera", whichCamera, "rendering approximation", approximation_options, "render every", density_options, "button state", buttonState, "rendering mode", renderModeString) [instance: 1, cache: 1]; RECresNull = Inquire( RECresolution, "is null + 1") [instance: 4, cache: 1]; ImageResolution = Inquire( camera, "camera resolution") [instance: 5, cache: 1]; RECresolution = Switch( RECresNull, RECresolution, ImageResolution) [instance: 10, cache: 1]; RECaspectNull = Inquire( RECaspect, "is null + 1") [instance: 6, cache: 1]; ImageAspect = Inquire( camera, "camera aspect") [instance: 7, cache: 1]; RECaspect = Switch( RECaspectNull, RECaspect, ImageAspect) [instance: 11, cache: 1]; switchRECenable = Compute( "$0 == 0 ? 1 : (($2 == $3) && ($4 == $5)) ? ($1 == 1 ? 2 : 3) : 4", RECenable, switchRenderMode, RECresolution, ImageResolution, RECaspect, ImageAspect) [instance: 4, cache: 1]; NoRECobject, RECNoRerenderObject, RECNoRerHW, RECRerenderObject = Route(switchRECenable, annoted_object); Display( NoRECobject, camera, where, throttle) [instance: 1, cache: 1]; image = Render( RECNoRerenderObject, camera) [instance: 1, cache: 1]; Display( image, NULL, where, throttle) [instance: 2, cache: 1]; WriteImage( image, RECfile, RECformat) [instance: 1, cache: 1]; rec_where = Display( RECNoRerHW, camera, where, throttle) [instance: 1, cache: 0]; rec_image = ReadImageWindow( rec_where) [instance: 1, cache: 1]; WriteImage( rec_image, RECfile, RECformat) [instance: 1, cache: 1]; RECupdateCamera = UpdateCamera( camera, resolution=RECresolution, aspect=RECaspect) [instance: 2, cache: 1]; Display( RECRerenderObject, camera, where, throttle) [instance: 1, cache: 1]; RECRerenderObject = ScaleScreen( RECRerenderObject, NULL, RECresolution, camera) [instance: 1, cache: 1]; image = Render( RECRerenderObject, RECupdateCamera) [instance: 2, cache: 1]; WriteImage( image, RECfile, RECformat) [instance: 2, cache: 1]; } main_Image_4_in_1 = "Image_4"; main_Image_4_in_3 = "X24,,"; main_Image_4_in_4 = 1; main_Image_4_in_5 = [7.29024 7.29024 7.29024]; main_Image_4_in_6 = [-4.66221 51.8696 -4.66221]; main_Image_4_in_7 = 21.0859; main_Image_4_in_8 = 640; main_Image_4_in_9 = 0.75; main_Image_4_in_10 = [0 0 -1]; main_Image_4_in_11 = NULL; main_Image_4_in_12 = 0; main_Image_4_in_13 = NULL; main_Image_4_in_14 = 1; main_Image_4_in_15 = NULL; main_Image_4_in_16 = NULL; main_Image_4_in_17 = NULL; main_Image_4_in_18 = NULL; main_Image_4_in_19 = 0; main_Image_4_in_20 = NULL; main_Image_4_in_21 = NULL; main_Image_4_in_22 = NULL; main_Image_4_in_23 = NULL; main_Image_4_in_25 = NULL; main_Image_4_in_26 = NULL; main_Image_4_in_27 = NULL; main_Image_4_in_28 = NULL; main_Image_4_in_29 = NULL; main_Image_4_in_30 = NULL; main_Image_4_in_31 = NULL; main_Image_4_in_32 = NULL; main_Image_4_in_33 = NULL; main_Image_4_in_34 = NULL; main_Image_4_in_35 = NULL; main_Image_4_in_36 = NULL; main_Image_4_in_37 = NULL; main_Image_4_in_38 = NULL; main_Image_4_in_39 = NULL; main_Image_4_in_40 = NULL; main_Image_4_in_41 = "zoom"; main_Image_4_in_42 = NULL; main_Image_4_in_43 = NULL; main_Image_4_in_44 = NULL; main_Image_4_in_45 = NULL; main_Image_4_in_46 = NULL; main_Image_4_in_47 = NULL; main_Image_4_in_48 = NULL; main_Image_4_in_49 = NULL; Executive("product version 4 4 0"); $sync main(); elk-10.4.9/examples/PaxHeaders/magnetism-source-free0000644000000000000000000000013214762655565017425 xustar0030 mtime=1741380469.716014984 30 atime=1741380469.715014979 30 ctime=1741380469.716014984 elk-10.4.9/examples/magnetism-source-free/0000755002504400250440000000000014762655565022224 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism-source-free/PaxHeaders/Ba1220000644000000000000000000000013214762655565020174 xustar0030 mtime=1741380469.723015021 30 atime=1741380469.716014984 30 ctime=1741380469.723015021 elk-10.4.9/examples/magnetism-source-free/Ba122/0000755002504400250440000000000014762655565022773 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism-source-free/Ba122/PaxHeaders/Ba122-Bxc-field-lines.png0000644000000000000000000000013014762655565024427 xustar0029 mtime=1741380469.72101501 30 atime=1741380469.717014989 29 ctime=1741380469.72101501 elk-10.4.9/examples/magnetism-source-free/Ba122/Ba122-Bxc-field-lines.png0000644002504400250440000124625314762655565027170 0ustar00dewhurstdewhurst00000000000000PNG  IHDRyL] pHYs5ؗtIME 9} IDATxyeOU5wfr bS  VXq]Y*ʱ @A r rMIf&sOYzj{fz!$5:>_!ć;vnFTנQ?cƌVRJ۶Çϵ>|V:SUwwUɤ}և!zݰG5M===ޞ={3Çϵ>|v׏;|YYYSO=nnnϰу={L0AJ)(~+˲0x'׾v'N4?>|\hGWWرcmd2,_nݲen9sևA}E訩)ks<Ϻ=cJ ZЇϵ>|8`H$J+,+ ysc=v{P___>P(4`cצeYӧO1u]K.7j*ևbXEEE vm*RUջ4h4:a„mڵ-K'Jh(B**+++kEٰKJ9^0jjj.yY_>B"дa?h=A ujdooowww{{ԩS'MT¡s>>aض]P?TWWw'h,+W\hQgg(dλ+|\Ç ݊2, )e qGBG"cۿouYضgϞP(k}_"` wuud,+|(][nĉgcSUuԩq Cct'~,ˊD"9EGuuu9>|\ÇYfRӴn:.A*HR& և/D</fM!4Ѳ.uwaصx<u|m'?ٴiև#^|_|ѶbxζCYNKpG[sD"(p/^||\hkk #9_JHiN0*++իWϙ3+Wz7dm|Ga! e9>Rʁ,lH|1Kp ޽{ƌ^xW׿^v?(7nPܱx5?>|\[䚶mH cb$2M3-_~~@׶1cxނhtO?ST >|oG=qD߮Ga"0>zaYVWWWηb5T*o~`i9>T*Urd[[7`|! Wه۷o7oZus7eB"0M@#hYO7toځH=lB-ALÇF'N}1 $!/衇4M8V%YʫVz'?xm(*6LPtG(PNoq"N?[lqث'^=_3d2 }1(Ǿٳg;iF|Vnll<蠃cYV:Y(bؐm=2 ,+}WvwwwRk}$7lٳ۪4m9.ܮ!STjirnƍmO<ٿC|]}ȣר?#msiYQQQYaZE:.!L&sBa{[nks/1\R)0Ju}1UWF nIEbfr" )eEEEʉD}|ݨd2+4EۻxW=\[߇'iv4B]wR޽{B!t:H +oƗ_SL1Fs8B!tz^>mŵ>׎ϐڼys{{-Jm^yt?%I'5i -JRQeywUrnT #HYjÇB~nGyy@` yzC-/K섩e esi^B)ڜ?e |#XfMmZ#t?nڿ%5 ,9뺦i\,)e~:I**t'TWQbn|f%GRԵ^;p"M|>!Lc>9/2y8߶X,f5~bXifY!I)s4J3t,ڵkWGGk/عsg,H$}<yO^d&c3Ny[555wy7t/wN ԓZ#3O{\t".ُ+Г&M~GW e6SwX3zM[$쿓zoiEEE|QCUULD_`RUi%7F㯿v?`Ù~>dkG#Nd5ցsp.'ʶ`08(Jwu;PhܹsSSZOt||wF#Auȼwk} 9DO49\[r?VWWi}/buuoۜrnƺCڣ oPT1HR#u}/>xh'1"\! !n>9oooo]H)+V,Z#W_=R3?'kq9J]Ç~H$9Pr}mM9Nmmm_|qEEmjoo8q St:vO1?qBJ9%,sveYRT*N dtpW?W_}u˖-N6Ν;A>Ng79 Z[[Gp$W|}|M9ZZZQZ)SUuҥ'N&===C9*HE> 6_ P2FJbob/ٵO=ԓO>:%\r9,X`䥗^8s|3۶mkhh8S/_vʔ)wyC=yO.lmmu1q>?C㵏Qe h;s֮֜]_y啎ZJVLiW]u՗bhFօkY-ܲiӦSO=Λ7oǝbZA.YO3|=cf<)YOk\p\z??V~Wy睗^za…;wtf3gμێ<ZhO~K./nʊ Nxdr6P0PUzm9"-}rLIUUs"5 c׮]iΞ=rwK,~pUW-X`Qx衇Os';|.y^&O,;v +s=\x%ӦM[g͚=#4Mz,Xp?~Kwr4߳MVJYPQi߷~_01cYh׿^xȽ?C*//3ρ#vuuEUVyϟ?Μ9ŜI&]wu'O~,YRp\s/*Aեށ/6/h \8*/*SZ8Vض]І(H=܏~K/S@8餓Z[[MJ ObiAcTUQWS]]X .|'s9UUUSN9ꨣg;_}G}?zQxA-3e5k֔pfƍ V~B#(1LC.õ׿q544\z]tQKK3(kN8! ;ص^{׎3.KR/(vx>Ͽ}^#iyO/_> sOY@XHS _HE*LL _~<ӧO߾}{ 'ѱ2A 0 ÷kKgξv@v}W[[}9sLROӦM4MJY__]aÆֳ>8餓&Mxv bgsX΅W%$vuX" ɺw88C"!12k׎T"H6dbLjb| ϝ;בr0yMp8{M<^}էr_?ϮZܹs9眝;w[~[H$O?tv>d+l3i&8|'!cEnRI V/غ.RI(Rʆ+V/&JP@$QLS (++s:I_Gp.OٳJU^߮%GƎ/Yd+W<>"7rsҤIم;vXrGsΝ;wzw޹)Ga_Dorſyr)qA/$ i]ruס[l@o-7^bwYp8-?`Ӵ6Na94v( (2dSX)2Zp?eeeF *!վZji}Ļ)>}{_׮]J&M4nܸ;{g͜9^~G:Rw >.vxf1Oouo47nxG< ,p,N_~y w+86Uwwkۿeڵk֭]wݔ)S [nUD;R,G/ >ˏtC5[k`B RM@G 6wic3#albQ3TM3l<*** 4_x@ co !ls'H)<6Ǯ|5!D0,Dׁ\YYZc=vqǝ~91"ED#؁ua=RP(=+\rʝ;wq+V3gkN;mڴiEv~jժ3g~.\xG.~'vaf-kA!< 5`/ XP163UG3Cr,],+$ԌnY>k'8'ifHucj2lvB1Jeeezk~}-gC Drv4D"@xVOOOA{Tb/ b{5Z04믿s|9{˲F(3p#}>;g> ,Ə;wqW_}uSS 7h۶_|7 'd˖-wq֭[;X,~׶mMƎ{x㍳fr]wݵdɒ:??/??k wttbsp_80l{@ lBZle<9Nee<Β HC R fe|٘nä]"*@;<_72I_x/TryOQ:L#gG0JLAQ~(UU2eO?dɒwygܹŸ 2wuu$m߮da@͘?R.\p…<ַ9s8.|̚5WU_ +uuu]wѼϲt«|%ʱt吮&e`)LC`㖾hEJ딍pVA;]PWMk;vӞU$JN{죨CxQGv=Nhֶ#m4C!Hi6I)Kn&ɣ:ʑn=C֭[Nc̲b#h+kY ;%ھK|ц"fv,Rl( l]}lC9kdz|i-_LŭP-A#\dVJ4S] njqlgnx~q;Ϝ*w4$ 1b )e*Gѷz0 0{ɜʺ!bb$ڹ o'2 +?Z㓁;;S{aB c|ca,}P&`z7\MظJd-I -94w݀sl^ՔA"Wx핲C,7_4CTjHMJL&)?}݉'nܸI$dڡ![%WаCF.#HOTeee}ޅN{{~FLF5NO:uԎxjOnGl_fwWX6?G<9a"LBd#ӶUд#'5 -]ǏoY fK1p)e??峦m9LE:sʜo9"G[!eYR ѓۻ6 WUu/>d3;ۀi !L?D36bFJZcjB.mYBP*r~BNu>UP:-2)H@ & z)q6 ~\#>ؿa7~Dt;)-RlqؑCM+5 IDATv,NUgH9aXuGÖC-ƍipmYV%elɜBq R JfdžNEL̙aNOxgOgy&n꒍9)O_ŋ;::,J.1*cyag6v4b?~LocWg WHBTo6CJ#Z`\QZvp_U͎~ _ *f5?E2I:<8Ѷ ίh}?c㕬~h=q*1 TVSY{c87rH]|kZӴ7x㭷zgM4wH͇mC *v6'PjYĪ'N8fh8=}~R>-D"8ݚ9a+p;_G3pa0}IrͼQ86-؎tlv0kTTSo5ĉ47g\DZpo]ىvKؾ)=<ͻo306΃.'m'sDu:ۘ<!PU˲ !Lo#7t5\3f̘^UU{zzQEfH)Guos Jǫ(Nn%]]bdϋKDe5;84HM3KhGk9]7زeK1UU BCr^UUW\q{;:?${󋪪B>'a^;sLw|&[oeۯHu`}0>GbmlId裖6V[%,0*m4>{o<)k~ i*0DeL?af<6 ]i'p@}\Il3LvJQ^Yb?`?ԕkNXQ֯ew1g|jrƜѽ#Q¶Rl+\4o޺!۶P(Eȳg6 3?eY]vom}ӈ?p}(YL~@uzxUP,]"%2q/g#{ôjeӬSl{[R*w}yY&>kZǻZs539_+p_q%Wc~k6cƌ!wcOUUUYCśi(R JE}G|T9iavбIK q&@R趠9dPq(FyȖVTZ&U VeE~. f mòuKΧujmEVѸZu)[ Kp᝿ab7冀+2B6ؔIDXv"{2*`#+%l*cޥͨۄ&s IN{ҽ曗^z}Z (E"oiyg !pGG k'>)Z_BMjhލh1 tS汯Ht8:Lթ=6bnj\x**FE-=NQ6jj<{OW:hnص!BErm,"2(➓Fb &?_ȒHIDefx{ صģ&4Mrŕhp\NgGWvJGXEQJ̺y-:sO<`0U(jNY)YW6Hmv⟅}`!5?>||U۲D]ALڂ019̚KqPÝVHOɲ_M5 +"; zQ@ 2a6֌"cf?~{c‡+7F'gOvh:cX= 37c!2)@O'ʑ#H,Dk[褺k L=aـ!شdRF;G3e:'iq(Jiq:g+UUA+UU|g/ ST/++Ro(LbG(kYwѵG䞕۞&ڲ'@e &lK47NJSHӯPu')=b}K'0ܣn`盹Dqcw[*^iۢFɄ*ض9l_긔6APWTHT:ǵu764n3e&y>8t6oMtXivoCGiz)e+C&,4(z|Ҫ=TߚY-\.pq/!ӼZA2Ϟ=gęU\-e'^tᮯd'ѷۑ''56~ֶT*)xAW F/8v(lx=yf}Zi !@ b-?1pcJP)4)O9~a[ஓ%gFp8/[Av&2 5!נwzfVfb 䪬,pr zî4'ȡUo:1.z.!Rϳ/eӼT:[M8@H'+$,Zzfܟ9%ݖANjt5=-4p;^#+Mv~ ` 2mB?ߠ =IVT4~ -z|:G^SNN4w.o>-eJ}JPWY0\$F !sc !zzz949eY֐Y}GJi^%\cFw@M*H:6l:W .JXLP7)P:VW@a$cvclV}IMmHT n%쬣jH !swg'!`mmRuT mei웝'Zlys%gK,ׄHSXOUAS{.8$) lKEI*+q:53 D b]G=L~#z)@x79@E  1Q߮q;2lz|e&aA q{Rt\#mTdM: D}AvvK![PWP+>0tg^Կ%1% F2kgK(ElU"!ai``j[LsgBcưmYu"d%7Fz:(Whhc!h3#sJȾ*IjQcGiaL&Nc؂xNU1IUxkkks8l6 d>_#Da5?_`BOmõ˩CB C(OY/*DvV:~tde .,,Yf__k/=CݿflRT@<@BH{쥘zU`wJ$ %H&$*ws +*"\.|;|?F]= 8YrN&aef E2 ~WXZ#ޝ\]+9sRGG=Tw;[:a*4ڊLVUKZa2.D*sOjVƛï;d48#mc2C9SbReDx2@)NOs<7wm%do23yt+J2Qc}hI3̝4{)SI{^N_kGqi-ݑ5f8P;^#kl$4&DDŽqcy_ǢW"D 1 3?jWC{&CEB0Bu=mw9֚ 0s>cJԳ&@ߨ;zN;1mЭu[+a ЉPK_BbV؉/hڅ*q=XoRz :7a wwP sKBBQ:^* )ve_I7XPlĔ)6]shi!3K8"MZ6)tT)jǓn꫒=$g3 bݜt^6tgDdz-'}#F/={?#(:IW9Nnd]׋ib?C3^1zܪ/,)lkG,Yr%|tbכh)MT(˦ ~vmtU{]:~So>_pu_dy6FjYG˙ѣY&m|C_nn:f<SB4 |:gaYM,!X8ms#֭֭7Gd;zM}Ms)3vɺM,@vMU2Gn٤v<̆z~%aA سt\I@ok.@0θ歨(MLk~!ȞiZڽ<vax|Dt:]~ /i4C@'@Qi. 2Cc+ﯘ6X|)! ۏ gZY` ,ߪpKf{: " _E0-~ξRD_!.͞rBVؖg,^Z*$UC!M`xʟdD2ȖDD*پP5fw/;/?9dωeK),c2v tǞE:g|YQbת,4?莝&H=43AVH+xK* ˪D @ŅwaʵksJ Vc9olVжdOk ^GNDJ, -xlBȱGi4a^Hd0%6ԌcD.䩧õ3,ݔ+t и-k(w%_7ި'O^im-랩JR;ʭhl:Tʫt~4]wqW5)`} @H;۳z!A.{n_BI' Ed ! Â?W\qżyʬ=>d6644βѵlǦ'2 r%UaZmr5؊) kqv6 KYJby^S3m>}ڐ>W-]dH 5TMҼn YaL C6vB{XDWI8UP eBiN[@P783Z]AiWx$^%m^$jb8P5B9`DhNϢͶzbCw.3s0,7^L+B8U(JF^;gɟ*]?捥lYO<-{lێC>qE>FOZزe˽{i)3tMӓ~xSZ͚%WIqlZY'@nv2&4rPوmMv_M2IXC 2s-Lact`w[̞}lzZѻ mt6QU+ WG9; W4$&*hBe5>8Ԩ B{ n `Vs4PU ALAd1[Ѣ]!:PC$ҙ&3ر{HniT2R3 Tα1]bʩ_faU+M3+Y's3f]U]js!iKs _pq>nnafjD0c)e1s ذvڳ:3/~𪫮:x1 >Gi= ̙s,k…E-QZ^ 3 vғƂrf 03iW89PACO OW'!iiَ3s":.mZuU)usvSuX)Ma iN`{ۢ;h8 <|Ew+fkTmL'3.`Ri]Tl)|)5fA8L#+cmPh ;'y:#Atg+I4( cP! Ҥ w(]dg.  OŤ(q*($!eO+&NBT4Q2 h 3Ib9hs gɔ{.=N80_7Q]̜ozdwgdpBmjj:ǎ{ 7{?OX,vG#ϵ>-6 _PYYygWTT>S 7״IzO&`cZ⿞|MYSEҠr_m;S_'[U]pR7{$%̋ȶv,8* S L[5SX 69 g0niH2FJk*t -Er9gV$8ƶ0LL:zmIs=:1D IDATG~N*e B *hM`ˌb#@dX!P,8dBURƇdi+,;ør6m[]uo IzbTxԲll 5Q7N`B w$H>p[RzSXX}URv?۷Wq,*EjoL=ֽDz' U)!d'|q@AMf!D~E;wttL0(//w3a„o_?F o\8$jkk}1<>'믯\Ҷi_Ūh} 3T!/> Uο7'% *h!תSb^FJOfքThF( CWQX~{/&AR*RXfamHibZם>v*渔%c.{{4Odw,^rzU>$uRҔЙʸ݄m]&e%Bb%b{PKMC(4B5|k=|=d 'T.Î,@AnlGnfr)zu*9\,lI%<ƟEB:Dݳ朮."**Ab-M׋òiO"nͻvZ`2t"x3rY`~dT]tѬYz-EI3`}|T]GydCCCݛXq O! OO>]08UK'45L) ғ/4f`c֪ڲ׷ |"iii"ǖ.Ɣ!Sef i4(S]fk}a"a41K̴f3-@KL8 z VԖY6ǜȸ))΍T἗?˄>\-HHry]Эu\pFm$ Ǯ P` :mlǵN q/^s~K&{)DfoiBt%t@ 3 *ԍ;3_ۨ`ؘfH˯ia=)Ͻ?ʚ} ˉ&84esl5!DfUVV]xQR d\Q{osF5?3glkkF޳RD7yxw¹9J&'Pv ysB/L]۬Ttuym;v!ͼL]( e҈ˆ^YTk4vqeiil799:䒨r:tR`+"mYy3,TMPb2訦jƌYD@@AP\uT0V/ȼ@=F] 3fỲVqw& ͠vٱ{^HD03^@"PU"2A@Rپ&#RKޕpƙi`,GhBf^HL7!UWrtEǢg?0nSjA %>xrDoʀ˷tѨH$q;]q?~37Rt:]SSSi靝]**mYs7gNۦ9DIE:ѽ xUu-j\NǢfƎŽe N&Tk} YHp۴0HzJ[iR6O-(PiTbNJ٦V"iј,eӾ va{T8ێY[G1kkI HB0"d;&lvo4_I8$!57WYt)|7J.A{"Ǫ˵!((t A-$:2mC r1(=ڒ9$[9G[ @2J.tFmE'Q [ätDa;z)=\'AC8`,5c--nIVr,B`IwOZ6fTbŴMR9F-H$lA?|VVV3 vlݯJkkQGpmEEEYyu+'u-$:g;yݮ(UƖc5*!T6Ѝ),~6&sC$T=Ď%)򹶷.aCuLQg,sZw8=9K34ʠ`"  6 `ۀ66` M46BDIь&OtyW^QU;sSO=TW׮]]z}~?Yw#MX㖬^QH),o?HUc4UaիHE]!toX&$NڧT(?0{q҈:^Uk>s\j% "k;@yak6l%m|/rY^G[[H!߻zHkHc_A>{[R7۶lٲe˖~CCC]wV[1 dol'CIhI9ﱚXmZʄry\iWY\$aR!.@ TH*tuŝq$^Jp5ǹv+7>;V-T Z\'/NQƓju6S*O'Φu)ޱg1F VKbv\js/R}KP4$nvAO bB<'Y[l5 mru`|7E)~r 5Tíf¤hfr4Gdd_OƩR[9mjMr|JgqsuVPSsXPЙʟ% ylC@k)*W=9vގ q 6aw~hz#]ԙYT,5!1ǐIl:I~8iPS|*_el;'_IJa)<-}:Σ!yCi},MvY}{?g>tll?DŽ~/vj3UуR(N7S=UT87Ee MJ6Zͬ!<,0[ =+},e8_ezq(VSݺ%`k 䆣 Zrky8G1E^>?fJ -7E)|fNL4cCo sbX94՞&\B"olw꬛}ڲpsퟂe[هWA3S:?xFFI||zbti Ô۩+8k9)y,` bHoxY* H];891s^Jy InBؼQ$2#@1Iń3!̾,A>w=>ϳv{UsS8z4 *i @%OOc~I;ev|\pnʽ7sۇŸ) 񙺇8.e*hAi*+. bG1ؐ5Z B`*-3: Xjenj=i@G?];%*C:B81p-b ~.xA,iWy,O{4'e!ܶmۮ]#=#6Nu I):G @ K&v#Z{z>$xΓ0w瞳I!ᕼ|V t p[<*-m𓹢 0X/ԓ~𛈸ڳoo/k#q`tePwu#| %6 Ҕ _*d+<=^+BJyXn)<e\_b.9^x7+L~!6G<#B[n߾}ڍzdV(Ȭ$;g3RnClZte7J s/M3dAF% l)"j 4Y-".(IR8pV1@FuDQBDAX&P}*["cge+D2%MifeQ[ &.&1 r& X6>KZ|T`ȾBmHWSa!Dt mEoW'@7KpCEls͖#8Ld *2$b/mT.ek~V2b[gF#U7-o8٭ah Ik<94F*L\f%$PC,#}R4\ddϸ㟈FU[ɾ:Gs/Ru7o^_px<Gk}'N\uU%ˣdj3OebÆ |߼.[!έ!6=Al?: #EuzX "A-U. >lNP>Wb|/U#Wf&-Ychϱ ^zp&vȨwAPיzSހjGބ%;^Z[8υ8uxB)&dDSmQZ.FVc5]}=]M[O~FUN`@C``#%[O3u*[)ZY2Edn/i2VrDt4#B:!DZR?u$+7%Y +uNӵ2J%NC)"#2CV^`7( /z5!)!. RS1P ѼgtM=Hdq1j|P6a=ZNQqչL5>7o~_RǰXl6S%I󑂟'Rbz= 6{ݛp QVoGP1ǟIeSrı r*e $ P H1 ǔ-L,a`ag$W;wAl*r`H !a40bj6x^2 ڱ\[˞qP&ht Fb98IayϧSڍI}IM_ʩNvݕBT(6C4(/s%ȶӝ?R,R`P=nGc[#"la(zX[DV}Ptfv>nʐYBkB)ʫfϐ>LVL \6hh? ;^'m7s!/@qB&+&DZyk~N/BX*9wyX]W (&P۱ s?u*rq :!I<_{ݓ)8t3mA|HНeG27[G 5ɳdJEXC%҆F_IJg~d̝H/T&HZWt92W? C`N58)m2ѳ0lX~IoBEYץxNqS$ ^t9gl*Gh!BDbt9ӟ!qMLߊ('VXvH$$6%?rGf(sDJv LM)u[j-бMa))&. `n;q^5R*e t1/!0,.sϾ>> L#D(J"O (DB:s E8\Yu]_l 0=n{|R槱 Z%AqU㳻3=gaVnk`C] h~o{Y (s_ut4eR燬ZjoPYO;F}]5;m=|#Byǹ!B+8>9",41 Cbm'@K0Lʫ>$w.U\5!0ނݾq@&CṠT[&ƆܘS36Fki%OҮ*,p8v?GcZ_?לeZN^"?!2s8Ϟ#HV;%Z;''$9L$ZWeR5w^&$Na`c2^|wq]^2\>ݲťO[Lߋq[Z]-e`HWDn%[A4=lTOP?ޓuRjICc1prb^̎'SZBFqtBM껱<+sg7Wɾvyr8'AǿcZq<0+~faݍ;`4Zos ΂A_ 7$z%cf88%z qo犧ηa+b*Dwa8CCA[5p'/:eȨDv}dC nXKӱph\bo,cXIν|hZ)p6΄u>jJ[#}:Nb!su y4Oў'lRV¦3Se| !3VYҐ4f L̲aLVko}/7.o_|"`BӽO/OT >/߉h:!R#!=y"vq Dd$ b1b5q= AEbD~_%)lEqZ5DB r %3`e(5lmhȈ5 wi}cԏؙՀ7EOiL8킠S2?>\uٷ 7=3"#< n [C'=24!-!K~1QrX8"bbBOr#t1i˜Ê-\^nM7Gw`--'k.z{_e'`Y#0[ юcZ tga6NT!<ɕ_/B_@ IDAT4t&JY8/GPz2eS:`;V1^R1Ty"MmfY( 8ޣX!FY^6^D9"MVm9|1XpXs2 ={}x':̭}ߟGsFB|N)wkp<ў=Cf6 3SZ\Y/0Ke,R6BU$l5T 5GO7U0q Pq2}/aUZS;?Ɏ8# wEi\uMCH[YOٴ6mR.1b;b55$CGaai % l ǕO)q#Jtg{ j0Zab :s*c0њQ[yPҘ!v(tYpQd,$i%IQp3y 01Q[qy^qy̋Ku&=$!na`l)5o֭5@g(}.vB3UDI$*c>y*vق &Mv[ hAjQRR+51iv S{I"qpM} Ba؜љw,D40$6Nu9 ۟fa[d܌]K%NY*2$ WKI饁l;֛=F+ 9,.w)"|QA:4j A<3j:űw2r~k'L,ODH% P6[ !'gQwf %DhJ˅1hMtV_[j)\u#|D7lÒcEXZiv/ӜZ|%TPFjӱ8VN)+e3+yg&s&jI!MK/~6o7l'n1N.˲*3*Ln2c;u[v1.'NC؞qC1ǗK^v%[N Y5 s8&4M %$QT`F@,s4``'Ʒ0x3 m qԭuH4uK5lĻndbk "n >@7'X#w: ۶ŋזѣ%Uf;Q1V#D/{ڨ/Vܷt(z#Њ ~S ɯڄژ0M#85=$Td D~u1 ̗^!S&e b6.|544Ea`pɶ 0hч|5c&[]Ϟ9fmbqs1#?/RNK}r +=q}YN<,#ŭR,mZwa$D'A7 iJC1~qZҞ$ V^}0,BdSpAY/p(UX)#1:(Kɲ"nKEH ood&JPx8 ~3sB /xK(RS CL@ģ|٩f>e (/f51΢W>= 7_'UZsO:c%}CXSi]S8Xa"_ $צQn{cmN,-NDF"axy+=El>En%2CߏH)2~ԑraq,^ ' Q^VS}IȦ+;1vO+c%9NqlLwvB9hf"`1߂'L&NZ;f](otS8u5f Uu>إےE.ƪ?՝ oFa+2:YaӉ2M6F$Xi k1246h[NpsyRJZyzn: 8FadpgvY8&썕ھ:zdMgf?{x+ R鱂ۑ'4 r3ߘ y,BMl9J҆g8YUx! ´ ǚ+u*ht6V"NX+^2 ŠrnEHjA&8GzZيz@Ӕad5g]J}QcByawPGLZ`^u1S@6MڵBF%HBLHZ\6q9<#ف_d|VI &%F/S+T ڇ'S +<܊0bH Iz5y>x?aɬyDiJSTdv4-ZhqRe>^[P d:w$"Q!$LbO371AC7-a"tC"h$>2^V*YY1YZʰ6Nh{^u>Pa)d'`>5GUə^oڹ6K{J}qE]6\& eGqgٷGB)$&a~Um&g_@7 АKKcݞtfQ;Le:nx;kJ4dn$+Tw=XHmX_ū.adOf 3fn9Fiv%zl|)) CD ~*)=*ĸYZ{tXBǧ'߆55e4H0FtS^R'ꩣӳ\z}ԿQI7t{boSD6xcfamȤwN (8h C⦴5Ζin&?g=veRB^IBhxmN$}A3C`ʁφv;?ܤ$yK'i90f{9m!YBh>44MAx1*0#ڠ&͹.R8;KiWō6ǬN{Y*:ĩf ´OZ_U(!:!fV k &+J9!%rbT|Wn\/Mᅫ/cdNg2YuM&{vg}ss:pѳ{BBê~hJv.[7+A(„оO%iucݝIWd8; CS^jU!4ŝ/L|SyT$p\T~u+cSv6F"*lf-XG5YyG !1 8h-jS<츪{6mcz0%F{wQuE1IBǠt@M1^_`(~k&naBZE#>o $Hq\W]ŇPd؋j:.Q󋸜G [?BO&t^NˁTwjYk0bGߍk2!Il JѸ| ISgޔdtLc FR+@6ۅdY 2FM065 Q-Y%,Ž-LOr%|bJ`C *hX4;Ex a:8(>T্^\Vԗ:C\f}sy7'9Pdv==Jv=;7(O-t? ,Poq *EZS9:3'7>ȓ6RUSߦq3^T۠f= . OF?=V$BJlL5V^$Xe*ґ.] dž0HEi lX`")fKA6v}P'ZNoR Zs=vA&F Cq s yswNP*Hu>98=Ŗ_eϧc^Km hO[ (D$ |24E*N@" j H箖lINpvx_Gfh,1"^w(c?aH%qZB!`ZGX3slM^OiXZf_v"XZIGN H4S-K~cC|$a7kB!:udZ%b@v!6 G  ,ǐ,7N_]l31-IT|MxMpzDLY(:bl,kd5-lbb<%{OGς79z={8dOSPiP( 뼋.` f#v&1LU5AU}:MƘ;G KX)&X}9EVQ$rjn"j 8{,wcTeq'A/4j170wytcolBPh@ "J؎fI3FJ>e}BTV(^N ly/xt! Ef=lIb&1Fx^&M; L-S)ܷ_iͬQؠPH>ded3 2c:E'ֱ8eVv`jFDa9D)OA{\z[.wa8Ȭ:7Y=_ ڣ0慄 mфRJm1(=7 k}bAh/8,)6q/y;bۅl0 @-?ir9J_*ņh}ǻ[H /]~6gDcCD^`JHP-rEAEQD5P'%tMfZmM}NyYNJ;A-f9dzO;NץYf@D!!耙Iv6E\\~t *p'' wӪ0]~UD,ΐ^d}rϽXczbV./sQв,uO9,q?}^>}rAIؕ䩗J'm 1.9io$ý`Qyt:˵Q8bN cDEXFu>kCJ6mxiN\†gDcŒ IDAT a㍯a|^އyxI. aNSmX Csp2jNVC$*m~-F[ uK2U k2 <#8J!xӋi.ZaIںyĨ/a qeuCJJT+@jњ0(ֻR#ݗH0;bB8-Q.dy cBU[ >z9:E_fXUd(p "DC#6YG.Ɲ!y8{^O?Ts%&%.dߠ%: d2J89q/J +LUwe+Yq ?zI/Y";mIj {}Kc~*p9LIf@(+ LCʡx>8{T:ҩ?&)!s->˜}{`pNT_齻:sϾ N@o$ ؟8;tEvM-g/Go7;Fi2_ w0֯|4YIı@$UIU*p*xZkk>gWͪ*Q]xd7y#ss _4ejAۀ +3[y?đl p+udf+4C#s`ocڼ \{-іd q3s./o歽hBzR" iش~:TScc\dnSU׊왼Hso39,R+ay4F2p<2UKphƴB6mXOwb5! zmlcd աy;Dl{^VsPq 9iDž7Thnu&>U76zϿ)A\[g4)@_v&;PAm$ F} }GA`*>Nr}~@p^s BQAy(ۜO'O#;@S0T% TG ù0k` @ w:Tus4 vp|.\5y)mH LHA7&3in\ P]g:u9~#~w & H: T@yopa}YLjdO8~ `$pФeV֨ Nzs6+Vb\ͫ_ϳOH)!贴ŦmA3T* MDz4(a*t-Y:n+ %i'ǶRqlD8+ #I>K`(<P85ɛTkT21'q[8Qz'67u i榳h^]IuΪ1 d`Z<(YY\(aZA8Sɦpޯzh+F1u;iK⒗02ǽ1^$0 ߧOJbv_+tM`A^sAELkd,$y57#dnIH>ٰA$Ǥ ߃m[nZ{Y=MCN\rI a8Y} ե0> ϡ|*0fq{xoзYΐf&k8,%;@ew=a/ETt>8f CQY'FOobBh Z 5'] g'O s!}3`$EX0&\rř?9z^`!tpD^p0"3O1]ֽ6*sXǀ&[UQ +0wҝֲStZH9BKPv- ks?=yxBL4ծax:,D?v@;eiwBERwr/o}Saך]ˑ\x>=o~f_+J+`t+-ιyrP`T+sp0F!M C*.|=.弋w)g[Y1ޖpG9 f%!\ObДU|תvֳ̜OOp^f7 `UA.a$!LNpbA#sa!9AF:i=)v$Rc@ s/:ɉɒ#m@$1w7\ٿid9.>ޚ1uu+DQk]vQsZaIOkeu^s{es:`8>kj~uZK7s&E\!҈2~8.pCmdhq 'QɁEʞyh/ [6v|37}.'81Ͼug%SQ.,P+lR&ՁQ#EE<ذE"nUU;c]zՔN@R'V@.fOKɝj)U 29}$7t Є%8z#6C088 Sg.jl[SWB(v@zxwt,'ATb{⳨4]0[½i\^6DT{pQoNIZlE8Kyaà.cT<^?}p]-)7}OA+@ZͦH+4! ||6*'͜AK^q%Eڨ<^],)Zh<}8Ge4G |8M۹ \q5O}Əu;ð>n2w>F"m5dʺc`d 䉃2P&7D$Yt`{Zw±1,-Ff6Dn0 tLmaeī9 C'!]ct';yiފǓ`"FG %R@d``p\k5Oދ#Pbm4KRdSNJ`nWns``'8\[y i+B)# e[kq~hk-Q%G!@BlY.gUGF^ݮ9PID7?V ^`w$(},k2- ;t ہ9=Ҝb%'}C@T512vN~m+TW.MϩÇF#9G99EKh 3Wݛ{32t% 5'&p*eQs$QIƶ=̊JpT܇+3_ʦ3LZc~mn {>½E^d^VxfWY~ D ZmN]FPY#Yb0T*qoޜ4vkRcLƦ8thh.tjfffZP qAh6D nZm:--~|T v[k?X@¥Ob .d"M?2ՍEaz!**@Z2J%% '*C3Xgdޠzm$[{+ f Wa1Js~MzxU|rz _e8iVv1 iE"sgDJJ(TҤb1[x00)2$Zr /s7IDv!Ͽtē7vCHjW"a{%GVK ɓz&4:Gn1F#L_&>5<+(boC ѢgZ|cȣ۶+Z+7yP 57]Y0>$)h6[YwhcLS^}q)j*jT=Nr^z+x浶#VoO818qÁ?Lo+H% #K;={^ߓ80P1u)* \ t{WqŚkzΉ}b)ROwY3~O}Bҙ (L6P :qg*If 0'%WE%/iaMXW'|)@Q%:Dq\:_qTsa?]#'O!a@5+825&xe 7+r3[M92ZM o`c}zoD0v7(ARuhvT!tI@*tz=&&ղmF*Z+9dWqDetksM9;(:402?=p5xa(ڟ,C‘*.`e?Q4X{*j}*kUag]@V jkPZ4$5m,AqW;Mf(8SMG 7@Ǯdϖv#@#1y& IDAT;'O\90D1/e~ͺ\Yd2iF2O~=}odgq"NkN Vfeqt7v OW9MD7R39-!Ӫ$~ݤ{7ptZBeI=xAr<'ٷā᭨$ GfOѠ49p9u,|V CPA _#afiCALCk W?Y0|+ }*q#ÈG%K?$XXդU$(y␫be{Mqb3Jvc6 })Gpmf#@fe`}4D0<`4[hd_y= s&+Cg/6b5կBN|ގ;ϧ/0-+ C4>108f=gUL82JIRc:n7qVFnEwCDdRN8YW7ޙ#Gܐ.dW J7/G6{5+-' gz(pjrF@B+ױuZ>6ОA9S_ӺUD"iiXJ:ͼH_1薁ց,H8׹! DHjO-SN{By `d Eh! Ū($]0{=h y@(:sb~i+̓"ʽ 0u, U[$^ DZuӃ[d+屦\ղIan('xQS@kF9|W~g_ Nr1wb6Έj8A'Zɻ(Ѕ/OKQȳ~Es.1"fgea/4:D8129 n:qh-B!ҁAh.ƀlFK]Ckx 񤬻N#Y o g=8?\f-JUҶQKR"3;D"as%EXIG030Xaj35gM,M%jűjwbJ =[,A+>K@G $s%VP5nZ;+gzQe4}f~"op@+b䓯48{,ڕkثQk]MXP@:k݂#5؉Q!Yt޷d)2Mg0懿 nʅ! o~ aq6T9p0ʾCg J%D]l{n&9:Hi[3UVI-qQ*/l8?C#tBe<-.JzLM_c,)t>Sr^&c ,#505V|콍|'seŌZV*ǰy'9L~1ܔbŚU~-/S=]9%^Y6`[?#<5oD *;˾w0LːM>'ۓ(0C:6J3{ˋԇy_ff"4JKXCC_Srֹ {^XYJ'4A9Du.oc%FKndN f)!싩TC ndhke{NSKۨ|L Zec78Ee$ |:.7T 0"BiIWs/E&"8n&"g}QI~!\oNeN/-aB)h1?2$p -#<(Qe=B`@bd68>`|jna<8JHLNOlclk0&QY%F$Ҳ/)#Y&ܼ6M.nHWO6HUB6eh%KyǡbW褔Bsk:oƶ3=m18SE=Xqܭ{3Ԁ O@ b54KݶY•E+M"o=kcʐg⃋%Ɵ~)ެ6Ajh\ >dtgg#RE8X 7Żetf~ZUD\[5$D~ 4$em tv$ @E#T1|)`40==fTOېpln.VJ*|S|z^ȉ#͇q=NpOqo Zfus2(I};A pmЦJ^] (U]}AAy :~ ~9_D>%šeRM8~#_oV-!)D054Iy5xQ'?1.{9K5Y4 h~gԥƞ$% gS٨S @8 3*A!Kiw%}c9 " qx^ʼEXH"[X˰[!*&NЭm':&;DPmlW;w)+lu#t"iء;CLt/JwWCPuaq*bB}9N,Xm ,ټ֔S8#xe|n0Ɗ תWpL3}z%Ո[ h qE#utAa0n3ޫm \)W|F21!X&;yKޓd\Iۜ` c_WíAwSU+mD"0mdZ%,SvBx@+UTd_g$(20$U\;WHcΫJ$&Iae|9wxެz,[rI"Cmr<+sq qz|J֭AhISZYjXpZM=PN A'/ۿO/xlڲ(|~ aL{NRt BqX q(H68@)aTdel:<o}V˺GVw{D̴DE`a װ5Z0 4& V6kIua.m_Iq8oxSk@n3ai}%MEdзb zpoI=8G_eD0y-e>2FGJźL09)uhp[νY\ɧX* ֞uM¥֫ җf>o7sp[w,ǰv_`+i+q; {OZٟ~*xΡwJݴVRڥ[Tɺs%u eid"Fx yYcgSH3'kX&%^>7lxb<8vTрט'W(^ظcjͰJ9F81u3eG\ĝw>Y$ZEHNa1Skf) 5_bA?r=V~j=ҀhͮH' .JܻN02% OA{3 )VbpDf8~7 jy9Z_K69bw`87<@|*x0B4,Hml 3x#/X[lvn-`m6uboSU|{ z5WY3; hlx 䳁4J(|-~EG)"`=j XQC-xlS24!GH!&V=_#p&N%T]E5B=@e(H\pSaJfGuZH.; M2ɿaJlzOm8$%?!׳N͖ o_(s oП |sylRr< jξ]s9RξuGI#ZYc1vvb 8U81WA(D|udsk[bx{\L J[E \#(N@}Q#pqE\5iD,ېJU1] u*iMIWE4'kQ0Eu uai4l$ZG$-\ +YK3R/斯 NaJ´7!65ý+̄VU f${Gtz mwi?†ut+TUC-C?A 6>Hk2b#!`?w넚 D8 t>kF\'wR=g"/Yɻz@# aX p #6/9+Rv{_67>G'I1*2w|O⸨E &t swϖN9Vp6Zs2BYL&*0TD %3Jxg8}Dzaɂ?$%W<ʇ6[TdL. >:|1L>Yö 314F:r]^]*\;V g7wS`0?`b|5w*yV%`p)Q#'JH(#y>a'7F9XڸgE,YeQX RќNPvԽkEa(˲BdA,~48'V 4uNIjɜπ%~0y4ǘSU)e@6X>ԫa\J ;l} Y,i/nR"L8HPNB~WL?]t?̈yg8'O=Íƭ6t޵ٱ#!(|ԆiAh6#e+?J^SEz!ʹ;9Q<&H,Z+CHbALG&󶐤!* Y|03"#Q%YPәᬏR?޽;9q3}ɧ袩DCtWu:Kt|LSAOGVyR6 O?ɛP^fKveT7H: w5dJt\!ٸSVaF:-t7uyt[ h͈YӪB rB6l!S{9uD1+Zax4''81w7q-׳}?lx|na8m`Aڶ9i[7eG)iq S`-ީh=nw2Od6>A|^ M̷B[2e6z:g'k6nV6"4D~ pɇǼi M6ʶ%EMyGb@kgřY65C^#S`?LΎIC+(5Jr$[Kq*MgVIE$fgfz=VJ@`mc^=pX^PYS&M.L RbB'AUG+_?4Kh$AFoDvӖ_]z1AMSJ*Kw"4M.a'g2; ßhUˍy?bU3 ȮwqWՙ< zu2JsPg!jRQrH}< !YoT58E9C\FؿI☛"z5.i[e4kc5ymء z /(k!CɇȲhAouV7pvdh<?1 5@h[Oퟔ>Z] ^q#Ϳo@RЕ"DktPΏ&Wɕm+//CS3_U/AXnjo[aDXiR)(p1^IKO)WRڜ+<r h  BemdUE1Sv^de!Y}I3.>B820YvJ#fY16O|*h4/ IDATR3ԒX\y/_H`/LWy$QT:uNmX)ʪ3;۹ض:HrM:ݔKHgbgӜ 3Ɏo0,$=:αqjT"N',4yV# *Ӗ$쫆⟴@%a.1J-u cÏ1H.4s@\[2oG>*+wWG[VN(# " L2A؀3l>a @9 uZsu=i=%q:1R^㸅AeFBhhz)XKϞGbp9=XہRyV߈w"%[zdR,cɊkw,%*%6jU,@Q<I0:xіԬI`R = Q6/\*`x$$KPZxO/wK{H#8~+|+(3|6U3'Du{NpⶻWgj7DKK#]|Zϼ/ь*V@c X>Em'0VdzjtMTQah{` 饪S$X( %.>.^} vьzZj堔*X]Hv8/q Өɟ>Qv*mnG W# egѹCAiutjz*` kQ2orb|Wf@%zIt.^ԓ4Ajα#|o९k:]1vWEc42.]ߥt=aEIqLtcZ. ;k{^=&LMs~'}jR0SJ8\V<9U/0ow+"!GD"o UNҀnu'LBloW[Dgy.>ݰ|4NTbSвqLLdGr*(CjJ . sl7@ڗ2V 24 ,淚O|9M(AF66⓴%×,*a{,z7H#m R);mZ)Y?=իdb-9hN3rMl[LZ?,DY8$wf\V #PYʔD^p0}ny/})Ofؘ1DgZbm2=\]`eޖP_-~r(l@f{5Uv I K|-URu&dz ,eSuS3iVNѐd@26//0^F[ ?C]_gzpNJj+N=JE`a8 /GeLj 0i#7U\1ЯF֟EusFNjMo३c!Tq ASDj N#\U+a6`eI/^JVYњo=4矗2Uzp`Y4撞2n$1 JC%֍Ҝp q67s5Y -S9\.~J6㛩<6B ZJᇫp(wMpY갢'F`T­ dz{X v⩌%VүC3SU=tz/M~%$@89Ob]LJT72& ӞƇ v7!1Q@H o3ZDIũc> J+#l {Hh38:\ukEaRS:^K 7 `*1~2[9 И!"S~:-O4J}qn;pú֔^ćw沫0l^V#?m8dqH]VTkmލT .CWgOW':i>9LMiIMLw1f/\UFv,Z)ɃFw̟YQ>,64 DeocthĿb׭a#NO~iP2pC+rI>I YJ״)ݯ(p8Y"i" 4 /CpkOl|ϐHuVHTK}>.yh'Jckϣa2TVO\ww ~Qica4YkblTeeva/zg׹'#S_JUo uҿaa2ȩr8jdLld@7譀+?E@jatAY0;'iG=2Mò}ɟdd /!]]M AH-& Ɩ`gӉ&)Bjvn|5u>FưBeǟf^M'w 51<4ޭHMƱ!Rh 0408 ).-peXc]tRŚA | &荹P \!węcl ABX)cS4#- "}ԘbW ^MNS#6-)nfGۆi/Uz@'p3Z5T@8nu>&m6vF6* p:HC`JZj4Α]~:Q8)<&wgdV^ QiV ̔d';4N+)U"dJKc,K/ K8 g,qu}4*7--{fKt^%o98 717cin@ G+hf6Eh$&(M% Ո[nk7m[˞-t%>5aE]:נ8\M+iGS3mѯrd_wu|Jp)u}4<+eNd yI4OR]WW~T hFŋ6||/A*kMd~~+Y(Z3$ZSѵPl)=|6毊8TC 1@_Ք_c:*9zI8HZ5BEUtDG lL4z Tk&XDF6yfRp0q g]M$6;gr%HC2 dqTJ1cPͷOy|mФsdSvVJ`l.ʸ5:¨>?䀞DqZΔ1 .s56MJH_ h&a=_'^ 2 C/I}˥)dB•DD*"}ā~8Nk jĊV +1?1&ebV+vcl?s|0R\p{M{ pj0s|kEJbɶ':5m vLđG`q='f6vD V^WI=cr3 f@W2@{GY{K. J9#T 3zK,^|C7ƨK|EcHКBI Vhk< $xJyLZh5xhJe0E%0|"<_`K?[i5vH6^Cé۔1f1?X% cmZ+YW)Zb`8|Sh3 &i1Z)'lj협ELOƎi`(5S_)HsaM'*0ڱ\Ψ^?ܯ-(HBgu]u 6hpr+\^?7)TG'97/ oNN}I簚yW61002Xt/Bl<%1_C˝J $ajZ~ W"F,ꢃ<_s!d H{:,P-6z)+SQ –c;\}`]Fw2薄a VK[P %$]<-W07mI!|5+8qW#-; 9rԳ_RLOjdlnXJWT ^$9wTR,q5zM62E0ǵu EDȗúӢTe!:bBݡ 4neXc~~a~AÎ/#H]fGO+~(lhۍxRϑG)9كI>P,៉aOwa[x94`%fv~3cP"#JmcZdJFcT zxlz KG(9IB,\awWp *35==܄O\im|ɉ !d Q6K`b/.JPC fAy(M\P6Yx9K?KQxJ7^/hxN<3l|;Cz"J`Iv\ZSS!)##¨ l(MÇd|n>2~F 5,ddN$(܌wigLF <Nҭehd}vhMI\3ß}C\W'tm<*BΨ27݀AAǣhcK{7 ,Njk=8{SwCMռ=\&ZsL|IڌZ!> zOEkg%J㨎kYRIH(܎,y?rPbj"2V4F?B<'pV˜wg QeHe37/Q M7gXt,{︜9knkâ) &E!n&MK{1l ;*<Ȭa2 XW\Ǔ[pa#\GY|qq啱1enX% ɬɅWmQP 0bSSbj23U?`BTPpeH .SX\H줢 %haEg|4ATm|h{z2$\.K8j߽VfYD^ˑCSk +錜/VJw&~ 0h/lmc/=ǥ)+ݭ}71ʴ\.e,Ri` Z][ohf+æw6v=]veRFwwV]=7)dByCjs,('LM衩HDp9wM{1NP:3:-)НG9s` ]ۘi>#yjd#;D~=W9Wv,Fu/gAsNzB 9S]^}XK|,.:e c7 }}j'rjAXjt'],(=JY= +.hzW'әhT- ` 퀁QQf0 J٦m&O7X@Q#" IDAT[0(Xa.QL]a C.j"o{',o|2:,a[+ď/08 UfDM^ĭ0'`aVC˔Dͳ(W^γV<58yGN#U,t&C( D]lc oqt?_CWL9)Gf&x/gx3pR۬BHnF M&ZA`aTFdM=rASl~-#ETdf2,K p,MGu!; NC'ClHvF-wj>I}JDisrWrOM ?SڵMOCɾyVˏ&y4c3+=Lm#`N~CAAR#F Md[ UN B9O-%dŋ~ \" h-rvz-gQJZ{75An)vޣ[u1m*aݿ*N˳G[ @~3225Tף%CYuӳ7jyZ8~;.&oVǨ*k.grkZ|d q}$mM[GRM 9^8B^Lq`m!2xHhОhUTXНelKd.00xHAzcLB =e?4~MvH)334ԣk0p~TuE9'Fv=]:a9>"L#0z9;hD!*ွW]iu2pko`)]i9a`B/'.}ˊՖpU7rS|#dAM\bnV^Mz])}Edg'u:,_ђ Z8FyK, Տ9խ2kg9IU?: Z!hwe-Sa־wf2{imq♦Cˊ2ʓOgd=(SO*+awsEqJke )E#[W7+X0PQ66_AOo%K`I6l䖷8W"n5)Fk}Wchzʝ|e^tA1R)7qќugRiC K n[馩)ͮoxn@p(TtHx}S鴀eP!Imog.S.衋-5aYi"Q#'Ȫ2q<3!tSN/&9xd&*el+ toINM&DZO8-}aʛ~(fw9|O2Ws]0fJHΝOF¨d(\@w[;+ y5ܩg|Ly([r;Tfhy3=mcw &&0eTJ8cI6v* i T4ԱU&N}~fUj-J6tsb32Xgo^tˈzw yJ TH`(nS 2ѠpJkЬqݍz di"@ZQ:¦sٶ׿U ~TjTd%B}iHZZC(Gd"(h-q_3W)@)F/5A~̜tfhh= K3.E0\Xh<6H uGYf3i' |Qo`X..u6FV_DHT/u0WEݚ8xB"&E."tQF3u } _a^_}}OdRz[VΈt>J7|w(AŞlŐ9#f_*k\]^s*V~r޹bN*b&7OKTs)qoֿSTT};٧ i/y`l6-KiN?޿>nwhB̈\~^DJPxr\> f<IXg)zgI;SfڨD(%|'`Lc&AUҤ fܪkcTPpEk põ|3]Ծm*xFȃѯ_[@0RfVĨh})CЉLhh`[cSQU+(\8A| ݙ)yI(C_aJXt e FG҄1p9*~eOA]U9yܴ(A#`h)?<*UFXgzQ (<EŞUmQZ*D׀ %B}n&KX" *ʥ0LAa@Œ~79~5CNwcg tUƗQu]?d$WMY5Fa(w& 0&ɉхy>Ź/7XnCa(76xt:(oubWxHjt*2{e`XY]TMz2=gE l=^t&"O  ^S BW ~+j9)kakDb&c՜x IV_ĦpX: orNNޏ4vv8gA7SdY 3XW_G?e**V^3߃fX<ё2A#y3i :mg`cQ!.4x?|bDXhmIfNp2uQG.w8 g/-.EE#7%Z 9򼎋B9,<;݌K7=|j<7P㊛/^"TǛP ~ Q0s:̟VT (T[wx)CяQ eє 6t;Z*T|QΤIw\bRTeDQظZ|Tc3|~:zTWohpOpLgKc*g&$0VD‡Gh6id 1tWMA8F:^ҏ]dd:Op[)CQ4vAq  &qgh xi@KeLTou_Ñ%Q%(RX0K#l'¥nG}=Uly0)|6R<46E[z"uzk\kʋ7;?Weж) ]hEJ=wA \𓬻G?2 ~_eyvb(j2@\br(x)oVS9sG%} ݸe=mz߁Sץy<9~4))[yqC2ƹTsYΧc…MAk`MbAFykIɨ=}@%*U ƪ xe{J)4Іe_0PB{XI V/6<ЭӚ>w\p4,|LX2PFJtP u䧃SMIOK| |j06Р^PkEA1_clv= j (p V&HzK9Tfz-R87奮G?iEhA23bob`J,?P-z-H UTءUVh,,S8Oxv v2} /lw@v0dq-f&ikebĝ0| RUgX[~#4֦cii T5+DaMvscPdm 1~0Ž~K[409 Z(:m&Kl`Ӊ+CIZg2vdi0&P>3:=}FZڥ{&ߟ3S,?\Vm'T6V4t%OB4o!G?00Vu(4j^Oh^?Ş)ʧ96 &3y{Iі0$&ؖ^Tk֌#6t蜡X\Jw:K*|_Bv]fd Fk sx8@4z&M}7ξe/.iĖT Jk߆/q : ,-ig2}'H}RPE!530Mh (@w.O`:ν{1\-4"kf vp`x #z +`s8*=|mS (>%娑a!r W26Cwkn@` lA"8 ƶ] n\wrdr/J B=2 4eFi;Љ:>4|:B\a3`_؍<Ҁ;0Z<"(© *C42:teWU [e6 c6l'*2Z@` BXa}%LkYjl\ڑĉ[I# Ek F􃨙jY湇^)ċVyd.dG*U?fhr,sBbUZYe(op.V*c\;\A"ƿ@g~;\L#Q)׮ˬ]tf&D-AÙ2.g)G=XV,L+ Nŏy'3ɓX[6u n??>"S%= Z}xIإ٭8W5n} o\Gà^, jPkSDR`axضόS: (~+E&[Ql^a;>"2(e-MLa!hS;HIa]ChZeDA4nRšQl _ t]J7 @|JnUj'xnu?Z.-1Cǘ<AF}6c.8P2@02̔R=JUٛyk_^ZRӆ=n5DFfRK*5~0CC>֖YH |"E4 pm6ٻ3VxAvjӽۋ"g\YL߆08\z3ޟ$sxs\qn˧@(ĝڂSD1ʺZGDxSN,˅;2@`) UHE>lW;#a!̨ߧ3)_ G" bJ 9ѓlȆHp+` 5Rkni  "Eo O]fe~zadɳ_fZYP(J!<5{!$}4ۀX¢qMX,l.f5߾K[,xL3ht 0t@ZT_qavi>"=;Uh>VA=X2!yw gk2ԏ{jb3SuL̩Vs[I)*ZFAYl嬴 ZXI2Z߇vo6 ?wHYb B [pH\ EiƕĿ_yO%OY80n> 3zluU7:Nol]l1JYBX#:q߲$ ^P$et>f[P6Z6^ͱ^:3g8}& R7AdWYۡԙ%bUW 4gyO2©DTS;yb?cŨ.&~5 VH cYN IDAT T2TC)CUKb] Q]?P?1Ҋ ((E^M?ϱDxlDdE6UD33O~iH.FR^,+Ym23o UՐE zJfyp _S?C)GePLhekLθ"} ե`08ʙyP-Pŀ{B0w.l1\idI(rN#\}TUjڎ.g (43h@@A{`tmWfUZ2Cx )lxx-qY q=X/PVPC Z 4*U t3f>Wrh+9V|gg89'Ϗ ?JGKS۲,,uxa~z1,%eFO7WQV)u_bC?+opڥ"iMv V~@Qf$OS[4=GaK'rs "Q6(1`XfGe=d/՚C&+iģO{ >-C%!yK7(Ē&@XBa-GZ3L@cN,Qm] T_UCH!Nۊfw\p31YbY٢TF%hOP,e oDX[i긾 jhJŠ`SZU],<ϒݷ|R|*&uaq ̹Q1h;T Q&]6..?J<8k# ƸE$.]ZRuo* |k0nVa0U,|3Vb/bQHg{c[(k{\[H qF"ikҊm}A,0'҄mu\8+kOwq;ߤY9%HwJ }DAkv[~>C/b+;2.L[8MW m݂n ;4VjW ?R1cCӣ?W_ԣxTFҩ6Hi1S&Mծy/M/[˞'۽;. ҄u[<+Q1k8GiAeZAk&He[g,ՓÏb*s¹: (Cy+3 c Q+_M>e+ic PN Dkl(7 qbfAx8'`JJkHf~U˩ѕn ijbJ;xL4{,6U\L1= BΤa5x槃0&\081q~^&sߋ~`8|DbW`4C$~{cbd4Z`4{Ͳ:$GOR^*h'(hGz=-"{(WR|w6]}2 ӺAbtHXbAD"hUX25@r6ڥ!^V޸w-=l+ v>^nڏ^Fg)vF [XJkP$0PA] W|3:EOkATx<:_Vڥ/aR;[Umܫ;+Kq=UZr4'F ˒|H՝:nQ>h m#]VEfBp_Fo1󤾴ym| s 5[ \APA69#"N[JWk-a)T(/sEH} }a,5a#O0~z#n$1NZWB?dw`+$,+๔ ͦ> ApU 0mr=Tv=(.n]-HqiyK`{\ Li,Xed$K+3s7=bl’w.x.xD }m|&\ٓ&?\ "&ꉹ,'p] s$H A廊/\c*ɕ1^IU347b;[ʤ @-ܶD{/>! a"=q"Ovͳuzo (&fŊw/X0n1~R Rh?r?7Ai JshL=Ba?0!{mfꆄj6b5x ٿgmn,d/8k¸c hYX -5SX61en&R!cN8%ZPҬX8GԪb{PfÛXP d Mf"2krp&3I+czr(6@fYVul^h ̜֡qG9U D%``#4.Nk1& Cu(%N x(݊oe} þ>.疛4 wW4PV^oƜd5СSm4T*V$hӔ?<~`:[&/);J{?K3PK bzZ =BqLKm݊mYb^K6UgδkPt*Tn S!}7f`Tt5;֝ӝ8D%҈d_FFG DX p%“K=*wkưOoE'۞5k|Ǚ56%~|HwNZIg0FeIqζӿnMmS@{vf%iڏ`ىd8h`p;9V?{"Pg nV .\A/0d ~v/4K9zd ٗMc!VylDp"kUs݈1wE5wcx`X4iUa { Q)*E}\vԝH)gͺ jBSjw|<\a\*;ר(|LW s C8BBB-${fgp͵ (F4h̬\fvs>=Va=B8l,GkGk! Ϡe <%HZVT&5xWmU{(+)՟rd|,oDKVt}l)Xw:ēHzZWdrp)Q#OtԻriP w!+]FY⧹Dwu}W~w?SnbQYdv"| 1`&Vf/}`q6uΥ x1+Ai,vMk>^;i3'0CmWtki~|7˸8Vm`)DXQTλAiI}XY/`ΡBmWު2p(Z\d ~6rǿA"ւE8RΤ9ocwq,B=K18QNLedMqV"՘37pu",YJ~L/#_(qeq8UӓAgS 0g[_ê[[)D|9T7z'U\I{.& [8TDuJ,3-طvid."H@bzi$،튓3d7hz29tu09dsʩcH֞^U:!ZR`=WmĒ/daT9,:Ord t Gh )9`[82=- i#!IԬ~ZJMzrz-M Mv='kލIyt}F=wq}vBDa5df&{yp9yDSu+dEyk^iO*y)t8j=ٖ n-KU!9:<Ҥ^({i2n N{nt#+?zGtwؼT+r ZZ &N}_QQy/gz8Ie.; S3+x?[`t IpFv?(bU2wOk6x0|q4C;-V^N!D5*>~P&,x071n! R*nۆqZCiX9YiPXG\A foQ1ɹoĩx*gKT4s' NȄE~4hysmɡ'(ÈcglmA{_ 㻀~bΡ0&"ku(aQ< ׳d]l ZCP܈tvgu鎡ItmVȃ|ЂNxe1t%G~>ˊ-ލ–D{uλ!/*PgjzXmГn2߽,P1MBXG?n'Z]Ȃr,N#h)E\vPqBu tlFciKjJct\<&%qfljsW? >X%N&l&=Y8BuJ¶0A$2XJ,8cB~2qk0Vx5%(BYUv2roegۍWbj3\$!ԟvTF#0К&2831?mK@\d{8Ӽ'^⍔`l"kfNVSDb(,)LU|(We}Aa8DiJVnq)yĖI+Ra.7P:^&gh1_@9j7˪uX dq--h޼O!_W~C+05f)|&;ﵓ)O!d<鋅 z%:ǧnaz\4 !o_7mbbk8z`3HwPjU|H)\(y0YugEsMm,BT ,ӕ3rZ^ Y,a3@5zZf+.BFGQ/k+p2uB*!iޡ>&'sRwg3QO;ٽ@ ʳb-u+\1DW`:{.~|)JعG!Td8k\v=j"1yjJ px۽Mr3][@Qw\zP 3p1)ܻLc n'ML, Aȕ X҉&'>v&,LR|ͲXpKxǺע(!W|~1*'DJVp|Vc&L$Q2n@!&e0}NETL!c}ll͓Yņjq3@2~(_a]8SX")*(MST(a ].s0붭4혥f޿#NsS_D jǦv/p} Ɨ`J[04},fZ]{4L6=d5"XÚ5̎s ۴d蘛D!U~Sc]:IRO^q~{,9r&o(7}B]OvW(ZJOJƸ Фd% `DkR+&GmI%XK&ΐ\Cef"YgEi|-˔de(E-l;h)à483U\+iMerLﮄC$MQ S8.‡H7 ;_]i`tCwH[R+z48땜r .gJU8M w' X 8O̪lۚ20 I&b5x+,cϯը8,^B>YFa6-*3}*__EK_>{\2WG3,N^u[y]#.OȳH;{~%֮~WY\ BpP؍+t߸U(C*M&35(A.n(w5 A6G6G_'`#];Rh&=؛d6zL%d^d n3SuCGJBp`ըV*1_v'i &v|(Ыb$Evb{8-Mc U+YEP1V,kxn|ʳTb.-S~ Z[h7xr%~Em vhسX wVdaj U'S#f!QpJbj"J&f.OGg% 2i6Qin: cS41}|;g S)dTTO9KX+&bXP Z* L/)ЗjR:9ViȷLgDTt xk|]`)j]h)*50 ''k4=klǸO<2ǿU/\Ą}Osۿ("bPX>0yuEua&nUD~#lY\ ȫ?-Tp~kBFR,`H* 8+B~;!F lqY{ёWڨ1oh'23f.`GZH5oc5KN"7PJ7\ЊOvc$I5#Ac1*PtKhLJWO5=haۼ䇑bFsSanJ|5 -NN[r}?٫j}0ciy Q;Arݥ{KA t Co3vbV岘m4B*t/Mp 'R+3~4UiMy*xՑ} OXE-1VƇ2G9ta֯e6 U@F";WP-j ZƎ&*oA%,-L?`n.<"vtAt:PYvޘH_r05NμP)L'.2௓ _;o4?I̳;SP1;ȼMA [!p˃41$VSz3>ɁoM$\%&o(naXR&R'Qԟ7 z n=AB[^;Mn8ͽ:$q">MO)|I{ \Ída> ᣚ0aN9lgSb( ye74ssc 6-ı1E:|as^ugd"ݦN tU\ۈs(e .:ȜZ&H;P9h&E70aٜZ:d+_F.XN<O3y84{n2gW0Dr1+"\^3xn[" Ľ{']&6L`:R귍Kf\UkYK_@(#~LqB1jL-ſ`Ȗ̱,]1ASAQ(ӉC'22Ɣ|/OB܁ k^ƽw21?G 7a^ZQ> |EEz#{)$Bp|$.[ C6 x źҷa'?v;Ӓ}+1DZ\aczH"i9b4)0xG.J&&sgޗ"3#c |M0|lsq0t$F%Ճq/ccl38}/)B^Ȇ5ZTd Z` 4ME@$Qe2|x&RP7F~Q/HÐ"{1~u=q >s #lbHQjZH, )͘ssb^J]wDka=y\@0cX,2%T8~3♠\UE0OY*U27K_+p_xԇ%HA="spb5HȀab3NX2;֓Sf ƍ7?]ڊ}b%it(fPargBJh}-kx&VR$~mkælʅWQ.Q)qpw{lIaq-zyNDͽHc:f5%b9 MW?gA.X?yڏ}v?”dR ?[t|+6Je}7bwsKmd7)efRUbn4,;Lv܅PoP(ѕFBs ؃T &xe#8ebTSL %1KFSl ;v9E K3N{`Ȑ#[u' .7`ۨYE2R+E2Y-9Aa93WAsVcUMMaWpi42*- tSI.SǴ@ֳH\Jhp+<$%[hV /g.^r56rWh4㲯G 6د CC\|ON5@mh eLvЮ(i  5sfYiumA{zQ~s\fFnHIܯ+@[XMږ.w8t^:( ս {D|>g2ͦ/ZAX6w}aǟ jvah)id#j*-`̃?ado|'o^йz+`׃Kjx~^ >pS'ߦ8 tBi$M#T(A<7,r{kOZ,SRUؽl|!SjfZ5Zm۩^#2(7H&v2ET^ʷڌD0x3Ξ{ d߉ݣ[ѣvn=ti %E^XX j(ܛ#[3BB3/TLy2ĶHu %3d37|!vl&2-fxMj 0?R1g\S(ڗz&fߺifҌg~Z _C/!2W)jݡ'į~6 |}$+Hf->Ϳ}O +H>ӐH$8 y#)0ZXMy= kR@`Ai=,?J{p;(> M%"Uԫ4z:یqZdf' 'W<c##w[j.E U3a{2!mLM0eZ dc&^~v//7зЅQV4b)od#*㇙纝$ ֚b|Y2C8ņ's[hfQ)7IN:[O=RgGU(A6o-\`zc2Jl7sz>r4]LҎ +ë71罟zTv08%][#d&SdSlqv fQFaa42$Pxɓ0xr#ͦLe$w l=oc̎d* C.;CeՊaOFU,僧sA'psS4'3Aǘ=:v-e2q ^$+־MG9ξVXDSlғҫQfʪ nфsM)w(ĪW_^cl=S$cS؊:;HhٻfH#%8WaW`. pN}*= nVSR"l|34HHӦ M/V "AW' M'lOK/8nB#b7间7&1SЭqpn.. ?W ACeI̙.{9> xWoǂ=k6q&x9BQAQHI AհSm08G%m-RHIB }ذ7!OL;3 NCs⶝b%=RmjnU#P3~ Yfu .P://]l:+_mYmwxh1R6 vY)SƫUr񷀞"'000@y54.)L\"VaT%Fl.: O²ڱ|AMhf-b%x zBK3? E Y@3McyRrğdL85$Nj*K".jm"nI.$}IèYd/_C[dˈe*&0 BOl_!% @@ |%*0CQIO<ʡTuV) >ň+b~\ZP%+Wrg9[KaH6v]z7|NI'_s*Ma[1 VG6hT4@KhIYs",ΡsnAԇ#1=:KUIlV=@z=[a}w!Dp%c~O375'RmAڧT,73;kD̈́mCVxa&u5B-lXM|2vքz fm* iN8HZo/-돋Uzh$a#0a<Ɔqu|(:iEbX"mCR:7<\kO>MEV^el9-[q`'nH5E9*r",XŢv,39ڍ}z1X4LWV$L u3Nz r/{p~4K:zig61aOiX4eMk-ܽx^b[GiQâKv!,䀚9+dքL]>>+cn⩻DV ^{N>M/b32=ۢh.UhTYF1"Gh<2ԛ'#hU*6x:Evbkce7Q߅';qUdEŤarUe À^K1Zbʔ, EX|zȚ$=!ťjP11 .{K=k̐% d \6g aav.^,\ndP^[`H|E|bi&qFQ-9|J F L×8 !Cʏx*:r"5m K ӂ:?dfSvDo6pip冩Qw68쾸 m'鶰hŐٵ:d:-Fil·`p֊}ލ͋n?T ؙ{8`1rP,d LgHOmSy8fP˳vFg`;'l0n0 ) чsR؈ BѢP,ḆO6 } yZ0= zz=EV鏣+M%aDQ9ƎbNy k.jzX'Y$JL ,H=W&)f0~f)4:,+G*/W0{uk7Z+bڷRI5]~`nO<僌G_^y;̄Qn ШRg?jm2I% S|oh4yK8=M]|h]LmҨ0+gcY0YNʇge,s6ef"7JҦKSuхmeP[~w(HCԶ펹ɩt<-o9Z;Kw:[eY{ȿkTϊqEN)2v{;;xtԔc}ৌq=~EB$ #NSHOR"|MB(טJ5!t8,1ׄs1m''* **0_Sq;J2 .#vBc">X-SHrF듬{!}}_Bk>5,[h'+ BMXtSZMY6" wEСp:3žY~<79S,Bwr˟ϦM,%M^g}!v(M&C'˖&tDz`z;SrFs2 wjiZЊUբ%&NO)9@҂Bܪo'_.:2ѣ AN6owegONzB E^׶6,_w׶[YWW׵UXQTH'@Hש<<}fN\/erML{"0{8at(цp}}E4(3d%-x*Ճˊv<2fYMrqѷtT3)%xܒ~ Z(˲oRJ.@Iu$$TU$_ѬT;Yw +W+֩h$Z4 3#O,4 ωXwƱe߉r )V̩g%_!kDO*{oc|VLgG!K֫\ܡZ5Q\T%ne|ƛ"sPI߂H1ࢠ%" Z /Ԅ^l ?Zxgi{{1+)o8)Mt\2'^Z!ȤI$8?噯{48eVmbHf!]jbӷDSu:`ۥjuI 2=E΢(ɫI4-cI؈&U=QBMϴ]s)(h$ԇZ+$(޺>\l"껇]by6Ϻl}ߝ>AY*X&T<{˧e"a{D* ApfNY8[} c܇'||wa-:(E+aZN0=<Ҩ: .o.e v!~_\CO ruL؈l =PjPG=ia"7P _v"<?pggu|8'&Hk^u͋5>-{#I.yuͺ W rqbNf}RR{j4tOgJ◿n {=l76ނrz܁w̘Y+Ws=rγy;($,j0q_ѿD0qGYJɇZXGˡA3Hu6I%M: ݗſ#2ONJlfPU4:ȢRstfstK_v VIX (X a <Ȍq:V='M}uk[*ɘ{|B&K:J|yMA<٩>vS\iqR'/b]D5ەڴ /`Kx7ܗޙ'Ok#,J5}i,Z6w36pWU`B ok]2Ylx>>EѷsR-٘(Oؘ)Ĥ֮g?f2(ŏQa Q+[\lۥ^DŽ!F':>N}u`YҥG6ANN }ߞH%8&z7d?)z=|ULhX`aT_mPsN۫:K5A"EM۷K^FV VroENհVAA+:( 7HˢCv&*lN`|"D!Z95tx5s3h,~gxH@ٻ=e8)zjQoְa9P/1{$oڜVuJZ# ҂?>Ϻ!TfNW8?鱕}`&hfIB'܁49̏JGW-]=QF$B^o#Tgfok>4=ZG`Nl?B;UkVZ)D:ٵP ͜t ]HfU+6̖Z0]{ķZb3Gׄ&j9ooq8f x\! >GţSrY$].%o39awN# F}4tDeq|OɫQFl]M pj~KŴpub\@HatM*L?>.z~CՂ[đ-!O+|ϟ%L,s| C:a8v0T~p^]ElSY'g2hN#Y4m7S,;[@B1/ï^͠}0zi858d)8{= JVFJ} R#Wbi:O3m<6Wa1ICtK4C%N5k,neV!R)қtM̲X|w}Ю+bmI; p,μ'6D]y6݁($ĆZȸM m>:[oe.C4AXUj4$Te4&ILN05Ÿ́tJ) MgccyK̆LQN\Bk.ߢ4˩g?WBOg )f"{0'RAXzW&x)YJSl'3I4FwaPⵖlZL1^po Y:ERʶs~k4/ORN|nP駧Uk95ʳlo70>'C7҂TKNq`PfgQ!`ʓlt4*K䃜X+@~Sh;+:Wg-3g&f(/evꤟ[Y%!\%Ĝj]ۮ@dq\_̝V ԉ\85* ^CK9h.E#ԆyʬG%|_>9(cLLQ=2KSU鰢/͆Uw&b+FJDƎT?[B6#+BIgm;}}5Tb;$gO+io+8:SE*~lJ<Л;r8լo5 0*T*avjRO\:ط rzKJ}w{8ܺgv'LïL5??m㪈9$c׈ /J47}rsdX?jNXO:ӆM+gvԫLĩsAiI\x7/ny'A*< njԻ?O~Ms: 2y[ ;IsQ|Ch[.{Tc)Z1u]ēXگ5 |Twww\>ll~ ]gӧƹg iX%~ ŪN`؃Yòeh"V&zY~K[R$vPX\CQ-s`g̤,e g>dFeX @z9P&nn!:gO#f6㺑)X\_ 2PcMѬ7<]CQ<5or?e5 Nv&c;Ǔ_HCX1Sن-ͽo p"Ew]BoH5,L0})cZуMdret0MX ^.l[>q%^/`C|b]nԚ9ڒb&I#Q/lq=(7Jvj@7) ьY`;W-ι~{OG,4jj <ż~FkklCeK0ӆOY<4H)z̄eb@\= l-5m" (13Ek5}y󢙟tHu`oϽrd}^Jo-JdC j+6Ɖ3)v&D Sw4)V%Ϛ[ILl壯"za`٬._ =UT F~px.+q*z J؃8cJsٽ4܄ W' \476h޿XU.+?X(4צV=õϦtO#2Vȡ9y7݂L!Ғ4h֣q0r6Ȕ(17o[ ū@bwa-&?.ȮDik"; !LH +FQ"g`潊)3Ât/H2ɮG^aRiէ5''_;v/`xIC%"A~>/mWZ6Y34$B$㌱s3S|Xãv3uƨc֩W[ .`jI!-]5eR>q^xS@Ol4ޖ/_~w>!n4-2o7o;n|_xۙ^^.N8M k+k-CikI;N 1P4U,Ͽ"^*j@#~)~Τŧ*Rc[`~*-9aH/Yk~"] !c {SX@'(!wr̃h`BB޴.mBKu A5ӼjLKj9j;XJUR î ˰w,Hм\Ḣο&5d1-_SX,iaQނ1*q]zELvE Wf4*¨sKYvoqM{Gj&vmBL'r4q cil3: )xUu}x3]f[/׳~oB)Ϳ%oZ1ҩ(V'O2S28?Zb?S  ;s Y)n0=Պ+ѵhTXEWso; .' o9)k Sq IDAT^rkM-%Z7n=hwxu'֐>ۺu뮼(4*oC_r%o;x{CImdJryFhAY^=$71?݈nEZ>zu =D*LHGOͱ Ǎ8#O)f|m_amptObSbe;Ԅs%R/J3hrI dWѹil,fd0|,uhWnE;TsTs_ >߁܁:nVz/:q+i)5ޝhyB2RFc${:R?v_cβ#n5$NJPF E^QXDKAF)jDy0jHź O*4=vʽnM&{̤8y ܻѷ1]-ɭb/%.tPbl\V#UMPoa5۶v2`zU,Ç`Ƈ̨F-Rn`#K,Zʕ^FHݜ@ AĂwLut=:Stnsmo|,eGœ},霾ObUgd26l#2Rj`i; 2|8c!=¾ _9JWđ=k͂ݐ։*u6v?酸et0_l6Ц,VJ#u |L Gn'㮟0p ~?y3#jZ9P/Cvra!]Hy .TG<ר@ ]Îm$[:sש ;X=<\[oJ +ljSў>DU—^ʞA~_vmpg*%T~}> _}G[}XAXk4"ᮋZmpb ¬a;b6ZR^kÏSʫ0 WfYz J"?; pDVp[ak>H0wf4ӥ)~gQ) E'd嵥*{wS"@*|WaW\v`nҦwpI Q SB.M,g,(AZgƬJ: {W>e+R8^R=>Ƽ($5䎎c#)v/oo|ϼb#n'?3פ茿Lڑ/ɹ@R%D!O:OyW` 7MyOw7z+EA.,Pad'? {W2|}JK+bH΀FoN"kto缵 jJBH(fX6-Qbzlm:V )$%Rdׁ[K okØ~mSrh+oCU"(`e~7:=9d1 QjWqd0庤p8(1UMizU-%<, g%pFA˲R1X*dKtq2Z_+%y: mxX;pe&eSŮ~"z@2gX&YOSZtݻdZkaZl޽)gxb{'98~@'i@)iP/E=UMu).;|`ZQWOcO`zϿ]֞[}mZm4BQKU/:?L궦iEiM2ij|jm9SSBA{û;VFOS3l@>O ܸqX45_SҼc^`agN3`걤t(Oa4|+4yWGc^]?T z; ΖoGA}ؽy֪T&4ij~;Z7 Nܩh]9@(4*%nοtƾ[wWa1 vL2Gƺ?ZX,MP^&H$6+v'xr`?:+cvDK:MeTA  Y^!&쾤^n L(@\2iui{(Gc0ճHe{oطi-FaT2S03L+1> V#cbZ~.bq«V҉%ABt$#33 qA+[DD! :Y1u@}p͐=cNi.&L&H&H/c>:`gxĭ}CiLnnV pYc zوh;S.e/R"2:֮J¨i (%7b;#S@z%eGeOS- DDlF,Z}Zkl˄@f4T+lyEuDvwd4N_M1IJ)i}Zx06,!޷+EsДEB/V +o!+I!E2#b)NKpbP9{WD 4)tO:1JQٓ]r܌Qiӻm]GmШ5ӔJ)=T'jj:{ `Ei~#рrXj 1J-d84%*ذp:V nus}. v۶m;ӎ@ӄǜj5qiXz__."}ooo&y@J,L羈oi+9᪨죠g.F bsDdi逨\ѦO:߅2숦|Hkթh"^*MQ2Qf`0Y|Ư?#n,؏:Z{&)"ȆS;KJT'/<8oN@`P߃A'V&UˮzZE1 &X^Lgt[v̙DB:8.f!J5 =9 O.oNAyLG/ ""= H-%`W8Up$1j V-߁2YWM',bvnj$&ȵ6ۮ[ZjM PM@ :GUX{xئS-ARfYnFV,َCY#RsPd~f-6R& zC`J 4;rȱ[՞LJ Ÿ߈m 9a1Dz;900ZoԒkc/8 Fp߭l0585vSXTJ7OϷ V ;gN9}F(e89]s\7\e'Ė=i$z]T5+\RB (DD> v J:ߵ jsA>t%}$"Kn-Z@QV: RYrdQRD߮Qazd1?rbӨ6~ro+!i4}-fƩ".NYz{ɮ28#eM'Zg褺1JAz0Fj6nl"wj{SqAY {zMk坦+,-( GO(/61@:}ggӔ6Q;LD5JVdd۳N\G&l\P.<"oK)f|0S*G'k:3׾I9 'mMj2Q.DZm57~|ؒJޅѯu@*v>0)YA_S$AoW:VpzobbJ$d3-]Cc*"-GÎ>G Ě/`pHDQjne;u`rJC뛼&dqpIwɅ{n*xjXӋN^3~Ço͏]6RL鄷imA۲?e~b/˭1iOG =^V 9B\{9>|㵧)W0v8  N}Q*1C$0=3.Sxwm0G0A=i6K>>@}:ZO]Vy1r8t?Ef>H{6\B dom,tFY@lGBw6D}X]cผ%6i%6d+׮w(r҃~bP$TbOwf\ʉMOX%39cEj`Q-1&1Jza@<`lI컝Cw񔫹=)F5j<+z::(OS~ReҤ >CITfl [ Voa_ƈH5:[۴ޟjTG45i`Dl60J4I>)Z[Iy Xm$t8 Tw};Gx<'W𜿞v|cֶnhe! !*E׺f׬%\aq4כvB}n뗶EbV5˯{EK ܿm}n=X* z:6M6*#ens/G?n%LLSѣIo k^"65w^7EA ޼V z 3arrNa :/#DXcg>TaFK)-xMS& %H ) MjĂk8Uʄ\=CIkK-%c. 1IؐʔSt=);c},N씯%+;a܄iǸq`ZmRa#FaqDw I_8X+MNg~BۿVdi -mG;0$QWtD'Ŕw$:vǹp5&Q8ůf燰eץa 2|"Kz~ܘj#v23kScj Iw])/Ihzʥa#)hh!L=JA5ROT D*$W#L;~ ! Mh7һ>ǜOӿ NXG6MHnH,%iΙшV%5jqsg;R-!?fp,?Kd9L0җ8qzժն|tu޲گ=.Ao4`DT8 ?WFQbFfK,5mЛQ\ݷʋV%۸l%Cby4E#b1_0-V]'&LQZF'D Y|Ud/o\.Qa幼c9%Qh'+TbjWs*djԧ^G Ŕebw@%O'{AơC!ڍm(2P/11CMQX;=M~ :;|of4-yC"c-,1AN(xv9. ߘ]=d'\\utg!\CtJLÕQr#`뭯 ~3V%ZEc8ZaЛNqͻڻ/dLMgόVbIJE&PBγ;D)t+,mD e=Uuw+v^1ZZKvV 5PnZMcTG(j$Z;b--~m'eb^ڦՀV\NBvlp#ݖs"tܺtͭgk_oK)˒ۊs}MrfbO 9[OV}YzfJfjߊ5X+8n[r7IJT`y{ˎjenl Kj`ÂyߖK@mF7nj=p;/[v-p\2}:3=5,FC*fԗ\nM8Dl`MoHD4B]GO4H+pihiePXMq5fv8h+ ߈ؕhy C+rl6¨qId'ju/ z/?IqTf0kOpiFoy+ 2ȧޅH_~0 "s_= Lr64)Цk[("ΉM @]=˒i'09P 6sa]V#t=Ծ5INA&I+:2u!f .׾1o~69߱u&''˚TV~RTG R6mjm$xTB|LB IDAT.aA""d]&)1 kn>X~wgN/ײxгwry5QS1DR8u]u.ZOb,VGR\0ն՛JN>S8߃1p (a(&ʍJfLIK0*'oEq9\^\>ȩ͵>DIC2!cr׉S) 8Q^* |ИF MzR1-EOBPky9[t1]I ;lS9uHjڴo=丒f9ѹ=hYAK?+ό8LR!Nڥ==RXh4ڎQ4'|m[~iG=ܨ'V嵭1'A}뺏%SSSS7Mӏodm*yp|;yvHY Tg*r5P7$ڱ->%+*zw_zѢz3[\ѽ$2ޕl4S\n~a | A6_ .z7DhԱP2!S\zH|E 2}Yj# U(a8<6 *3 7И  )WZ|!4n yh$cΥ |4 0=*`n꘶Uesp^){0U qqmz,`ֺ$M'R-9B'3 &xU fHYZ6 1&ub(gډWx`]'"]͉2>5E&M=#䵼m<lώlvUh xijxٺCX)<2VЖJ'`v+4M7ocI|^ 9YԪU6mŏJ)VƸ F87X2d˴ Q%=pRN4 -^puFh,աR/Q-q{\32kl%W/Mo8 LNN=jCMQVm}B4%džȚ-[vl _tuݣSp4iZWWWS2J֭[|n[~}[ᶳr!DWg'^ɑ;x!2^ocD"<[SA?/T9p&xkN\3&熍=Y„)&ٰ{=uHLt^yFfrriEk.g",Fk_oҢ1Amrهa eQh 3pEK Ё-e:p,*3ަII&aշ%ۃJǤ%!e2"( RѨQ0"e[Q֋.}7;D3Ylu+7xWsՎ2ӱ&jNmi7b=G 2YX1S[ ֓O9l|坁WpG9*2a z2ҥ۷ooOMM=ƥR{\V|>ԯ]r{'牵Lӯyܙϴڶɷi333p1LҴuO`|ޙIQ_ަgcfXm`ADQbb 15c/՘D5&d7!AYa٧ٚf癇g鮩nih* |p_t ̛?$.L1|XkL t+( i.!; by[ ")CirHj.L)@c E݊xH>˰ir.'{SZY'~=عŨyу]a|13UO fx~i*X].>sqPiU3,ݲ*[?ӳ@JpZ+~g'_fܗcI/oNsx@uvD !V+P;#1Ê\s쓍b‚YhgzY3H16EPZkPBӧOC]2UUx< NY$g(8WkU#4zlhK$~? PDdYwS"C=4`F~R؝#qqPU*}Fobby N/H؈tݦQ)Ӱg\ aZ`4RxGVG!؁^"?8$.0Tz;ӑsҍ2I4-o.Uy+@(D\6TO*fngKj/=N#2n)rK]$MHɹKjU (dѽ7Iv<r*cjRM5n`FW_Khx 5m]͵Oѿ5nġ(4:Hm}.# :ɭBU sD̈́Exq4M|hjc39hD!^]?WE/JGqɓ5M8ΒLN&z a.x<Ov{aIksx^Az{{$:*|򲲲;v#$ݠ$I8p7>2==^pާpާ`&l\vh:;xt,cX*o1PMC>33I @򪗅ʘf ]鲗rP8Ê!눴aΕ= ;G*sP]D8c=U|[00qL ŠQ H/Bݹ]k#aD?d2gܣd:XRq<}x+q-X nVLTT k\Am*6S8O\9= 5ܪnVNulA\δ(֒IAC3,-ǣz>:_+STD$Tg W'e)3]Smmx6 ؚa[ĘS0} ߎ.zǏߵk]d_Q1cપs=WUU=_s'QZ_^^>\2 D4ы֭%`42b%`ơPwTz̾ =m2xBET@W޻0./$5/l3ubq@n,Oh>2.={dծ#];r#_ȏ/Hv()շyč )jMsKF52 ^%(|(2iΔL.rQ8D[O_/q-*4s̭[3D %\dYeyzK.5jUU5Mn0IliŲV>)S|HϾXA+.ѣG!EђG*lLdԓۇo;U"n^8ЊmZlZ=8){y1~ Bwѐ+z*OCүTfG//U_->_JdT4dc=,1"&f@o/d7 ]VʨdI|#R|v",?)6SU +C4\$񈄐hJBcм8ͱ$n F]EfwkYɚGmE;c-@ 瓙Vrvj^ISshiY1c?B\P:0B{gchmʔ)``T_=6NzusYHkyM> I`744 v%|iii9=c wLïtJ0q"DѲ ױ%7j2BNˎ8c_ R]C8_k]!˺g@{[i86V8/ q5w5䀵Oc)=6̬ċe#crWg @rȺ2*D/kUq]!{!8@ԥ]vi@0T:jޢNx:>ickw0tĻ:+"V;U?"Ap gasQ?wj 8*Gp&'j4VU1-s0^^MQ@YM6G?w3k֬X,6P'Šf xBiii 7߅ Z]Ҟ|ɫ}tf'(4+4`.EU-Oy~+X 9B~b`Ԝ?4 -%|Z|Z.y +^Dg+)$pkxMhB_7 z)Д\%cNv5Uɖu$1͗~ك? ?OB.e?x77<|@EJ-_! ߫̇fx":^'l|WZO[GR._,{!w&,̨'ʞpWtS߲\7wBcx<hɣØ3W݄H7ahmFk ùNqXefdPaRʍf@RÀZe23=#8`$-Z 7xt@wo EoIpR ב)&3Bz(1}NN*aYhN _E`4{sӈ9 F s}<.]ZYDX]]h 9hL,:(NOwI@e1SĢLLbWVV.Xq1󾬬L<^UU5Tvtt+eY%/EPe`.xVÛ[~&vRb'#G!Km__{;nYm*f/>`K*<)_5o#!bI|axZfIgh}njG;dlz{+呪qxD( uZlٸ⌹g7J+:r|j:;iD6?ί>_1r1<5Go}k0u'i`4ۋqSuVxf#` N }OkAƾ',B>vgsK/5уwv#0f)7Sn4Ҹlj7{;:H\xtxkm^\Rv`V#sYg\T,De_@uO[trrc5? 73Zro4|hmM4iϴڹneg0nZr‹.hCZ)#-ZP{24`^7#F U5y////1w8LN!ԃW%cRMcJ4NsZқ  zeCF%cH>X^xv4cA#Ι2 m-hyH"_q>$$􆍡|3xLfw( IDAT2+Č|&| Hv*lkg*Qc^mi ]QیͲZ9k!u9Ǹ< VZ߅y] B|ع8?L9|Q,*b̗t>z^ui@'mm:F*%*B"Ƶ.k#UҰne3$ixڄt,T*5$LMMSӴ~[塺IsW__yc*1v(26ϣmX:/ ʻ!2X1'򅶬 g-k9h}Mw|6C Wo ΡI|)jj;?k{On4ԩ K2?R?k*ulT +16)ٯر\*0#ˀ1oIM N!K4  =%ˉIY`ۀjKb|Fi!D^5N9 <E\P8KJJ,<2XRPZDeanSs@Nzm/jm:~G3uΡnJEņ3=P`YY~Xw %YWC8c}5e4l*7bȼIb7 Hr%em;_v 3&Zf"{=!" eYtc?`Pb0GqO_Ʋ-)^u]־φ:^oSf^CAfXGg|OFwPu9;H]6{zz>zhaդǙ.;2KL]]g?i)Jzzz~_|Ǐ?xKK~nw4=θ&x?nnWՈ"D"uiU{1L>y$ $ddvZozjj0 X&ϬRYzj~{ PWCԱ9e 1.5<Ktq:w#mڈ_V5C,2)ؚp>MsVC pN<JNEtB;B{ζb_eD2(uZU l?dJ}kɥ"!@Q $3_)U5C@ ¼1SC AfRdNq7qĉ' F9Lkɤ؀9NwSX\?qm ,].khh0kqv1gΜ!Ey<"el#6beZu-6Г@S,R0d eWToǢ [7|Y"B"tv^ 0=o|P.^߫0`z()Cjz|8[H%77:)`$oϘw5;ݏ$68䌅 MMd`t?J݅0@J"\MAW߈g|0\{4RSSe˖FXXmXıa=FfiL$gv].W4Mkhh0a38cƍC֓.BygEH aj}k^þCqssF9?;>D(+/bN 76. 3ҹN!ŽbTL_୥6}ض̚7F 5Sb˗=tFQ_FfZ`Ω2+U ߅vKsRƽNC(<iD6 };XՂ끦Ӑ@Ag/A$40\Y0%eVyԙ1c͛7 կ K'a=I$i7púubX 6ԩJeѢEuIE _xᅡjɡPۈO~+c[ۿFԢo\H(wⳁ>IB2`O=?mňpXnOHE0ltf8&SF0!: br[, tA" %b dCn-=H+'+pL1>A_Mi t=Dv>q;䣿9 Kh[__/9ު@V,PwHk>;<묳UU+++h4ZzmEEEmmE/_|eٲeFnwmLncep-:cF0]u B003fs싹1AƍsP? ^| (cP I34_ RVZ8,s.FmC=Iimڲ"oS#VΉ Y5بUB'qZXFh+H{jXp!oGiClcB3BkY/8\cz=OaZ[^^~FPyHyW^yeuӳhѢvm?я~>X_tçzjȑ\s͹{#GcXr;/aX6z!32[7 5К41g#=x]pg|9^"ogoz4=8t\p1~ʹ#>r4M]iڹ{՘2oqX <3IBhۍ-gb2.8pW!̽lL:,Ci+*λCrRORdHW:DOAzf-b"ز;dx<(VNz!v/셩T`Gٳg-L:߸qcSSSQ*&. 67pܹs5?3< D^lR,?m߅6ta[a\O.iu_K{: `~3d.l]-9 _瞮 V̟ivtGFc5FVdޯ69ZKÌavV"?*OMv])0*߇>Cpy􋲻͛ѼAbɒS|F.43>Zˋ=fpzՊVUU}Gt9n041R0k֬u??3o馢$|˗/?tВ%KͺɔY2 msvlǛc؊3 e|JqfEs]Pc6鄱ֈ̢c,rCk$"E46"&w֠? 熠 j5iō#-qA}T3?!xjZgdչR x0bHf dP ~pJY3^{W. BefȷߑQ$(Jq0e f^^ij}G竫CC}G'`!iny0Cp[.\X1P. 8$b8blހ4eT 9Ɯ3+`G(+5#k`NUM$+_r<8~;~PSy(Ěs(7 Lq*Hq24͹6dHt0vpC}XzƸ*7cըS f37\}.5jՑHdE3uuuTuk-_קLrOEEży٦&:e X C`v^yD@ P%$?kD"@ҿvnFg-ĢOFwiX #j@AhLdd^OPd\ >Z.iCa3զǜBdƜcOtADy]VMIgod)H5_.\HwvC((rw\F3f̘1gټyy7[lm,K$a!ڹ>k,8 Q]ZLwGͫ*^zo {-סMBFSf3I5cv\Zs\f G pPza=Tn3*\Gׯr7o޼o|&Lx&%:@gaYwkVa!@Jּ߁??5@ZHD#bDҿ1LP/::rR>|$v|"ƌŝkzis|]ǡd$zi T` { ܭk9`T `K6 g][NC(KD|?8͡Pl2MXQ9Ծݦ .^q c",XYkAfl{6X) JʪGix( 4oč "(V ߖCB4.`d&!"Ԍľm92Kfu(h)D flB LnI=;+!xte;gUGYSK Y c:ZvD7&OD ;ԪW;"NȒUTx  3'N; )Yy`L?yqۏ2*8 \~6.<^|Ռf6^=hW4@ȱ[KD[; =~[zDr&6mmwmV]vZlNQ$jQUSperxX)xMBYz5 9c7^xsK_!AbJ2nw@l@:#ؚ~X옚iCR:j:pR]PfBk!#l73ܯb-T%Ck⩍vOXQ: Z86]4VQ+o Ֆޕw^t,/9NySN0ćpx2Oq$x8ЅQ5ư\V3 գ E >pGƚ )66u_ 0F~g Hk F2_ ?Įm?U Yr!% P9"O<fHcvUżSqgؾ n@{7jF%"%ERzh.co[gg[[&[k9eP>r!>~5gTi]KC<%]0~TM?qx(16li-A@<k!m=m58m2B1x2B˙0l: < Hn2Z*P ?_B2fDi%Hh(cq>|0owڬܶ~dLler|KBlMwiDN[_-Ѽ-м Wd* JCx.3R" }x%;oxJ0.=xz(} fgpeCy-܃MØw;x&מW slJ4UUi͘ %c؈#ۈs/Gmh߇-k^?X_eQ w?@5rbfTQ|! ލ00X.Fېh.5M\47^eRJ@'%)`x,"_کҁ=8MJJ(7}12< %U~-kS(_rU:^7w^BG/x@ aÛf 0 D4JHq@fNF b2Zw^yKnT3U>?9f08q9s!roo/ j%Hk X!WY`9e=#!Æ!%!kT@߽s02!c*MA{־#0uqu0-\͹fSE~#.߾C Y̙st{:d !UDv+***rsr(2־o&V=qA<*}2ڬGȰyZwযƞpJ b@H׍K@iBa^SUabyyy(v _ %cQ"ةT11)D,-/{}a+߂ChÛ"4,|J2)ZGi5C<˄\1 xk9E1i (Zc-\k%S IDAT:AGyyyQvhƔd߈oDAl߄iƞK\ef2Hxx`4ꁩPV;ѓF x\YdH. OÅa>R)IhD8i-Ab _y~!2Zv4jGKP+--mO B襐XF7H'ڪ~$t HH"2OW.^2/alaeqc</Vr,+---ʦDQ<,q aLL}/۹/gɅgq ~ 7甕0n\& -ӡPŒzsJAhb=}*L$|>߄ |#NTN 16XA=p.J WP솧ğ-xl]PEMp#gN*4~|@ P0$'෿_I#j&Lkꮸ ]ci-Qk@ l_^%~8<7ߟ͊5|P^ g=ey4 0_ؼ}t*it{ hXĀr4dȪlJA Џ1d:4v3B|j)n J굿jxKkO !S3%eM_:TM|fL֞b:'6K<4M|gK?V2T1flgY´<ӧ6˅p/bJ|ӈKvNQU_UUUDe- ]z %X,V,!)lҪT*5cʑW'}j[5l};`l\u*kCOk%;,f %$uQ *cC2y~ˢz^{ǟ,DpxŊ]wPwre7 ',֊"e(AoE2e\0k֬bd29(XN$>JJJWd(r KmT?Zp~oaYsN)L  !uUŊoXN* =v':܃D4}#A\!atuuUTTidh4Zd&"}>_;/ĉ =?򓁊bim_6xbh8&~i|qbCu o Ȳ\;*=Szپ}$In{C8+nj{8Aq-A5DQRV"HQj<+ct/2fʔ)9]k @ h4J(i-A0<OQ*~Qt:-Y"HD:PYYyw8y@u\ĵź!c: !Z6 9ʿC1樵(.[rrWwZJ@6!Hk xB- C;Xl𡶣 0vX{XGQktC&V[dXնdm$9FUNwiZa(J* Ջi 9pƘ]DQJcn=K >@$Y]XiӦM6N9؁r1Ifuww+DKP  +C=\z@q|E"U#rUU\(J6cpxZAZKǙ&Iʢl*8V3#ه*uDž.]`IRUU5~AZK' <<$؅Dk +Ms"<pG#Ȋ+f̘Qj/ % MӊUѪjRx/e8nxZ'$Ir vGyr-ZqRSAx:TSUU%U[ ǁk޽ӌ %Sb`q1rVڂq(ƻ믿~̘1tqRG +[vCUMEQ=l߾SOKzB zt'eAPE>{<z7ns gۅ6-\p…|El"Z8FQUXsUhQʬO}bD$ {cn&c1$~(%N(L BJd2Pu}qma:!;!c21UUk %?^oQҘh(y80aJCD"!˲}1Q_0s Hk bȲNJTڨƾ6Lik0;{(q\:?E N|eNbsξο3?D">~eq\"7XqAQgy)Rd2yZ{Сd2SƘ}^(GnC +i-A W;455ӖeN@ PHv Hk " ~+\|<8o?KKK˩ s8n̘1E"Z CQE+(ʢEzi1{S?`0qiz@_P(s{t'3TED"8qַ +S='ꪬ^( ůAZKGd2yq4iR?OPU>)AeY+h2TU"j$I4 Hk hje{,WpA(cA-ZD Hk ⨡(pʭ}5(:jm;P( %bGt-1m_NjСCqC 4 Hk F?oV4xgeYnnnu4qoST?Ȓ$QmA!|CP(uTN;qkD9 (R#''Z uET*ekcXiڦMdY>3(̛7Υx`af:p2۷O8> NX6o|[5j!y0Ȳ\VV6yƌAi-Aݻw`4e IknJZKq?aEmekC5Aq"n+%IJ^w//xb2C&Z81yg"Ɣ$UVmذoς :d8YlYSJ4y~S{'x;0a}AZK'&ZX83{_%\BA1~ߜ={v  p8\RRxy?d Hk bV׿>ctbP2AV:;; Gi-AJ7zF1(L';mmmV0a¸qjjj{カ&:2AZKDqp{zz^/K,:u*(Pfqǣh<555F2AAqFAi-AAAAZKAAAZKAi-AAAi-AAAAZKAi-AAAi-AAAAZKAA x<(  Hk H_zϞ=t %#s=Mǁ Z8R0JKK8AZKG Y^/ Hk HF9@i-AA(Li-AA8AqD$Aq BXKi-AAHh % Z  %  bXIRtZ?-NFlٲ|r 8t=hmm*U1\.PDggw9sqt4Z&ct@$;v!Hk b4-Lq8$G4+_JEEŽA!FAK'oH$|ɲ2: i-A 7 DQ˃X,'D" :::"H:NR<<  n|>H|QF=z)ApSVViI]vX,Dx/---//1b .& UU;;;Dooo<gWZZ:nܸꪪr:Ì,/ү?_2 ~ 'N3fȑ#l bP( zzzٳO=O?ѧp$>֧zj7xԩSqtx嗟zꩊ\y啷~(GBӴD"L&cXKKG}Gڵk ,7oC9|?r-]vcBQ`ݺu>(~yC5K_ҰcLUUX0ܸqڵkW^L&??z1'|rܹ_1hoذ;ꪫAPo|GwW\bŊ֙3g.\p… @.(ʺu~RϧcBF?gy7s87eʔ)SvmPh͚5+W\|رcO;O?$N(ھ}~]v]{7{ϰ&;B^*+ذwP(X^Ph(X(Ez%RH}^'*z4(zŹ;;73Y^k}7/% _ ;㴴i8璒R)'''##?Y^^bmll6lVZߏQ(ikk+//`jjj("2zbccn͂~-tĉ)))lۛQ(_|322D̙3%%%kA@ddd( B#  466~zllo֭}uNNܼyf͚%~-ȟHtqq`0h4xkkk~~~^^^GG9sHz]h4ZjjjdddWWܹs,Yb``0ւyP(UV]rEGG>|>g{{{mmm@hOb={իW"""VrssC  Z?*m۶;veͅVVV溺BBBp8|Z9 D"UUUoܸq)ܯ7Y(D  Q[[C'--Øi4ZWWǏ?~bp8$d``[YZZYUU%**4o<1hkA@B ݻw{{{ϟ?@2 <ɄBt:bt:NPLt{zzFFF ~YPii˗/;::tttf͚y2A@@[ Wd2㓓ݻD"D"p>>> h41>>Nр<"p8 Օ~ooogggqqqUUMLLLnD,\^^pB4އ )))tRtt=* 榦Jbfffll4L&D"Y[[;nY,XWWWIIIyyyww-,,>焄@%%ov c@@x?dQUUuIyyyooo P(ߏsww_zDsssPPPƁJdeeeee555,Yd…+Lq < IDAT8Ǐ Q(w(Sۛ᜜/^9rDJJ{Sv??)Z$,,vss"ҥKjjj>>>RRR@`@@ g7o;;;qSth4ZIIIVVVZZ333C @N511p8Y^^5***:96s{{ʕ+ ӋK.^tIAAa*퍊tpp_^|YTTt׮]_g)))P(^UUUTTtG>|߯kdddnn.))),,,((=eee-C"?ٳG[[󋟒W]xVZEMMMPPTS]]}ȑ/~iRRRjjjdeěf̘14rccҌ3եdeeitGGG߽{{allleec777߿e RQQj=MuQVVjmmiӦ8ÇkjjV\`u{''gxx8777''D"YZZΞ=!$B󋋋kiih4=y &4<<2sիWMMM' 6[nժU] ?mkE0 bLLL֬Y=iӧOLfOOǏ=:EA8.'' H$eee --=0 `/VRRB[322***T*LP(蘚 ~sJ߿#uҥK,Y2aPׯ_G"'>|#ztzcccYYYii)766vuu5,p3fHeeeVVVyy9޶mGBBȑ#+++G6 3g~(Oڲe~aaݻWX!))ǝGegg_ܼ֭[,k…Srxyedd.]f''' *uuu6l[b̙3eeeݻ-$$dkk h?~<11QCCcɒ%ñ!!!㦦/-]BwvkkM\\\o߾EDD$//WOO;wayxxfΜijjV]]zMMͩ^B&&&FFF8<<<--mxxXPPB}]SSSMMͪG %>>}›ʩS^:ְ~d v Fr oiiaiZ[[;vBX,;VTT~$}FGGc0vcssΝ;I$B$.]0L20w\6ʋ/ Ofhh%!!a_]]rgϞCxxɓ'ٗ2>>rUkk'NtwwSJRD"MJJ;w… oݺUWWt:=55G28}||N:ႭuuuEPMMM3B٠MMMD$}JJJddd<8yѣǏm?(ڵk4틣ggg4Fsuu}yҥ/Cyy%KrgϚ?~hh7s988wuuq"`5klذ_297PC|Xp!`xx'k׮Rnd05`oV-t:3؀d2T*8,q'Ha||{\|.< $ق$[D"!L&'_y鉉_};w`Ǐ⦻#G0OСCS$z5k֬X?}А'' --իawwǏG __ߌSNuttܹ3..nxx[A"ׯ-9mmmFDD̙3GYY\_߯JOOχ@ ZZZw%:^TTÇxKKKfffrrȈ*_UUUfffFFFwwhKKKbbbrrٳf̘UTTdddgff*++7;rss333߽{WPP ,,~hhh'**500@&>}V\~}]]],{ C߸qQKK+--رc_ck%$$322ۣ$$$V|r[+..(((zjΏrrrrssO<)$$TSSytx:uT"]vB7/+++))yPAAA^^^nnnaa!nӧ‚†~"3I̒%K W>>>mmKjii544{WYY ZZZVTTdffZYYMS[[ ym빮vƍ+"$$bŊd/_)//g\~|X[[{rx}Z[[Ԥ۷oϝ;}}7...==]BB"..b@ W^yyy%%%m߾p2D @hjj ˻b  .]t)###00?j.))AP( ///[[HR?Zs<e[[ +&&&ƒdWW3fHJJJJJ`Ia,[YYBDYYYoo訂BɉD"BTX,}ڵk7l{h={-Z}UVm޼ʕ+_p:}}}=744+2pM]DDDuܹqqq}Ν;kjjڤ8#8kkkcřGPf9;;X,;w߿MbXW^e2 f޽evٯ`2BUUcǎ!]Ǐg0"""mmmMMM .ܷo{t:;&GMMСCk׮zݻw9a0D"8g{TTRCC`0LMM̾復׿NQ(̼u떀ҥKDDD8Q׬Ysv]]]?~WSSB =66VXX4###ww9sX, B?ڪ®]feeekkkee6PC̙cgg5)C`kjjlmNN !&&e˖+V8::EFFܹQ(V Jbll%4372<< @FFFv9[;|`X8``ϣ6WCZZ*}}}x<^SS󫪪޾}{ѢE֭˫[҂b!JII+d2HdDDݻy/ࠡ644}Dooo@@@mmΝ;,Y sy'x|rr˗/mll<@TUU׬Y .ܼys͋-bWV&|}}o߾ldWWoS<{۷FRL&J[[[m-$%%ELLsYLLLRRRx<IHH 555tNxEE:'@ bbbP(499y·( TSS+((`MXZXBB3dDAAAQQQN[K$~*))ეsѶ k/FK.4'gϞ4m||<<<<;;17qaaaGGŋ~䶶={L^J&''߸q*..nrrʭ[R( yyyWWW)\UUU///OOwժU+V`? KKˀwww33wڵKYYy͚5666BBBS;_fee9? 3444| w'P( AAA111===QgxxXOOHB0NT 7F!"cccXlKK˕+W8WCCCx<7777?f͚Tyyy---i4ZxxxKK Cwwwxx34448ĺzn ƕ+W_ii)pI|u}ݻOp$å ?{j.BPWWח/_9shӦMwiiiLvppxinnndd}V^ݻwGFFvww>())?>))IBBݐH$P$ 6hk!N߹s{ݺu?k.aaӧO ɓ@*!(Z[[[ZZ:::Z\\8===L& {l6lؠsΔr`חN:uȾpB{{;@ `dK7 c2[P(8##c۶mϞ=~Յ ˗ *//ZAWL&ڐA>zzz怱`d2?~,..]n0 >Niiijj괽ccc&a{N'//oL&ӧdk9yuttH$WVmll>|x,{ŕWRR[hQTTԁΞ=_ytttvܙ>L&s||NBBJL[_@z{{;::WXq1> y󦬬L@@:66~ ޾lٲ{`0eeȔ> 1B?~O9r0x&&&d28+++222::bݼyk  ˗===H$L& DDDDEEuwwJIIAP!!! ŋYYYnnn@򥎎`IIIVV0>//^GGGKKKo߾]XX>---@efffhhknݺWSS:00PSSVWWwY@@(!!!88Jc0>z˗;v\@2zٮ.111555ׯ_S(d { ǎp%ϝ;wҥX/^СCq3f H\fggwJJJ$Ғӧd2Y__謢RSS`'y"h4r͚5;>>*&&fddĭႦ^FFH[[Clgg7!XKJJȘqr ijj2J#+---,,SUU1c#UQQA$555͛7TF+..!e _innCGGٳ9otzaaaIIАkh䎎F* BY,B`˗uwwɵ h4AAA###vKKKKwwwoo////Nႂ@Kyyy qqqT*5''_@@@\\|ٜ###eeeJ>FC" n:k֬]v}І~A0LPPPGGǂ at,ϟ?|2׵kDEEWZN*)) 500n`&YVVݽe _sFGG7ox̙K]cccssGhz!H kL&D$99;TNR! 1 `}a2d(,8ήG v1ﻹNr7o888>}_PXk .ZhӦM%%%[nL"RRRV\ hG>}u?񊊊ׯā@StرrqqZϟϝ;kTɓ'&bLLL윢C Bpp0nHm۶ݻwB硡!OOO]̙cdd"G"7z "D"k֬|TT ^x ׿xB[[;<>Kjkk2L(:::' bcc3o<<t_`ZJKKmll6lpEIIsMNz}HH$a\kkk;vRRRkQւp:~s.]E6"""::::V,-----qrr244`0 gdd}BP>Zx< ̩ @xxxa07&^UUQPP`ee7aܐwwŋOu\z5F{gnjj#~h4L P' eA8OǧOT 777ˋ68peooo-[ cǾTVVشiSnn.x葯%b0 tK"H$8P酗B"222 (JNNnsFRRR0̋/FGG8Yښ'44dr:K.={Ʀ&i+d2;::0L__27`xTTTV ӗBuuu W>}p7svB4NzUyyQ*جXbʕ---()!!!!!!"""((@ . e|||xxmppphhJ"H)))999SSә3gN󣥥VPPpm۶988XYYY[[K@J+WB: ޞL&q*aTVVN"`X@ _]]PPP"`0===addЮ655䁀db[ZZ-Zݢx< SRRΜ9cnnb6o̮8d2FǏ-^x޼y} $D"1;;ё <]]]$S +tuum߾{UVVNOOԴd8?ŋܹFϞ={o/aaaqqq===vRPP D"֖S>{4 )==۷^BPW^~j khh\rĉׯ_666]`/8pLJFkjjٍdŵ֭[UUUs PTT߿Ae eeeCC;wX[[oݺu+hpymd*>r䈩iXXʆ\~ҥKܝxPP灴Wf`sΩ Yzjҥ}}}d ֭[;vX==='NPUUUWW߷o_aa!PڅNxb޼y7ns? Hyy;vpNu NNNLjjj7nhjj*//sҥOfeeaXnSNmٲQGGg%/_ R0X,ƍvvv q SNCCϟС<࠯ڵk'xyy>|XXX&x```PPPHH%TRRr۷o3L???oogr)~~Gr0 ,G!umڴiBF&D".^8w>H$nܸq޽ /^rP⌮b2555N5kV{{(ɤP(DOxhh3X}iii YYY4mhh-**OӃ޾}Bpxssŋ^~[U*lhhx!WB<<<<|֬Y7nQ  nݺuٲe[l㔕]t)""bZ?@ff{"""? s뷴;wbmݺG533۶m4 ʕ+7oބ5kxxx|MGbݻw@HHhhhܹsZ$~J^fI5vЎb9 @AVΙL0P(J UUU .ZHYYӷo^dŋ{zzccc]ѣ~ a0o޼^5hkA~8==}||Jq146444..NWWPFnʹ W^%%%]p']=QXXٹn:4nݺ 2L/L&3!!˗;v%@xIII̙3]\\SZ"'''88WOONݽ[QhhhhŊwܹvڪU-Z~9صk׽{TUUKJJ6oliiy޽>ܼysǎ aa0(Lv///qrr211t:ŢQ999O<)((PTTq[T@szϞ=bbb>| ! Fo۶+i׮]333khhpuuBϞ=e%N Xv}]~=돂F_ ())%''[XX`juuu||<םڸ8Bx={؆$((HRRrժUDEE9::l޼pdmmmT[[9s888X[[3cǎ͛7@___GGGCCCAAFeff766tOBBBYY#h`pppyy*((`0KKKNW@@@XX8>>~̙\)4fooBRRRjjj_ hoo~DBBb֬Yʩ:::$Iaa ѣ~S>+W>ydl95<>^WWSÇ ;w#G1,L&XYYYYYq=`F%$$hkkrJvvv޽;%%9s&00 @ P ϵe_vCzyym۶ M @x… >} >4@[ )--ݰaX%Kdggsw2W^ݿ?g;wع(ʶ3gTPP$i…۶m#rZP>x`ɒ%/$H6l055USSz޽{&t^xqkk+F`0,H$H\s}mذaJŭ?jjLLL#""ZI{{;gϞ XDW^]رcw\vmvv3A fǎ Q%%%M> >>>YY٭[yɓ999 ,qEPO*--]|SSF#$3gΌ7o^CC:~B1 qϕå:::xxx˧>aaa3ӆGMM޽{,ӳ|tр7}d́.+--mddnLII}IZZ۷oa0f||׎gnn`0߼y233d޽{>7oz*ϊ+nܸ`0vuׯ_wvv5IPTT|򥒒s}}=иk׮ nݚǕ+!!QRR188ӓçZCѣG\GXX… 'N(((<}O/˗8`'͛/+wg̘npBkk+LvrrjhhذabbbV^E;((F;;;WUUeff !H9sTUUĈfeeIKK|;w.¦CCC=222#_ mTTT6m1z ݭ3c ϟ{xx|iӦ?#ٴi?uٳgj.,Y5'Bp7* 466oٲ/^J'u.\ϯ9%,,ye`ooѡqƲ2* @`0 G"P(L&vAPVVV٭ZZZvvv{F+ ;}_SSӖ-[%%%̀'OΟ?޼yBBB\jՃN8hرF:;;z'm-01`D")**bX^^^&N"""P(… ??  ƙ3gΟ?1()L1TTTlڴHرcVVV ,~8FFFd2ݻzzz_ܒ>ã W7a2=rrrRSS`dd|FFÇ!H{{{nnܹseee_KKKezzz}||rrr֯_/++ ŻqndNN```}}}^^Ȉ-Zdhhn:KKKii隚T #,,P^^^ {KKKH&CBB8+s̱`0 溺t:=++ޞ2B&lByxxz{{!yyy43C|ڵk4//{ hkA@&CXXXBB",,Ą3"%;;{ٲe\іaҢMuuu---NNNܹs|⅞UXXXLL̓'OTUU=<<:$""p8\tttxx8sUVpAPKKK779s%$$<{ZRRRQQq1CCC0<obb3'GTTt,x"77W\\\YY@222,--'? %%%UUU FDDfPXX(!!OP*++Դcff˛3ё#G6l`hhWvtuuH+%%N_<  &ڵkA1mmm\hmm>>>GOOtuutii٭[0Etth]]mFGGo޼bƍΝR_+TXX`edd"""\]]wSRRROOF->>>>| S4cƌݻwy󦮮nt:GJJJHHG HO>]v_ZZZAAg϶m P`傂nnn WWWG –%+qppؽ{sss'CF߿֭7nu!Hgg' < \z8I&>~hmmO9Ǐukkk&qD"q_˙v222Q[[+''"### D"-ZdffݻH`"ۛ122:vعs焄6l0zΝ/a'!!!''0"xǏ8ɴ\pattt׮]GRTjii) `X@))Ac@>,0;{mڴҥ b4ԩS={Ky搐䪪ٳg/\000011qƍBUCBBrss###^cǎ!0mڴYdɮ]ܹ/ۈ#Hqff7^}]\\4Mmm-Nwرɓ'GEEV_x@[[ӧY/F+,,LKKxZB¦&COMMZdɶm~{ aaaoC ٸq4[}M>}ѢE)))L& zxx(MRjɱEIDW |2^`0lh$ēm[l uww'_̕JeVVVN~ Gڵ… 3ok-~Ç_zbyEEEOvppprrj!2zIo7[ ¤|fWyL1PBE_n?ndͩgc/_!-[~|X3gΜ|x׮]zӧ~Ǐc֭.\իצMNpN8|2䣏>ZrQrx5X<m۶. F;v؀,YIBB¥KD"N#](~ bL&ߌ flꫛ)s,~w=<<~>aÆ g6L[l!þ)S̝;s6oLz510ݻ%''=l&tڵ .knРA...`۶m]vRZʊtd0EEEC%sG17)++  1cDDD\z_[ASSL&jz >O Nꆆ9s|g۷ov~mDDT6m|{/:łFy^#f |ݷ4=IFW+ P^"_;ZyaB -ȓWBq \'=%kw}u}2%bX&Mh4˖-3fLsߪK^/_TYY6k֬?<==ݻשSܹs{6lXyyF {wl2HFT*fΜ)H9F寙r/++wrrf9.J1bnn:[ ٜӺ:l^P(Rnnn5t*_rQvg&egg>J[v/V9L:f#>UT)vt" *z%i+`y<ܩ7͸lax󃺳gg|~z?sΟ~Kb߄bIIIr*,ĪT>,((,jjj"+555={RO\ۿ!b2^cc-[/^kaXfݻwo޼IRڶm;x`777''%$L&L&JUUU񹹹B0((?00חfh4fX'܌/_|F;wOP( B~tϞ=#lN غXZZZӂZhh4ϷŤEV|}}Iwȱc>|D+NK.uww?tPBBW_}ݡC___n$oH Rw)B NLLLHHZuC !dxzz]}A:j- ɴX,yyyEEEdÆ ˗////'GdSyLMM *ɏ+Vرc֬Yc)oA gϞU*}ٹsgPPo_J:%Ղ͛7j???@wwwgmm:nE9jR[[K\& ;~v-Y$..w555zf{zz —{J^vãG9 Hp--d܃wfY`;nաTY^@i @Z~c"!X@cB:QW;Tn%>\4w ʪD}g Z T&'%I KJ^e+k&-qE<.d24:NP\]]]nn` Ba۶m8xQM}C0`۷ ֯_G=|Ap\.keed2D"WWWWWW'l6[h}II ;}Fikk[QQl:8~U*NVTL 777JEF555õ-))f/_>w'oK]ok׮]xҥ7|#OUׯŋ;l7 xmN|@{K &Œ8))Ąא]qEX6f#r3}^+$pw:EЋ)ׯ4H. 7Ϛ5%'3fL4iȐ!2ϟIOOߺuk=9B_O>\huf69Bt|>_јL&6霜j5I,d$''S(??oFEEEuuJh4f[YYx<2= իW[nZmhh(++"( o r-(ʩS3={;;;;;rLgϞۿ{Zpggg2ST__+W|w}7nܛzyy՝ѣG߾}˿k6b1L &yӳi&t9ڵkPPPmmmbbbl6@Tx-HMr|/GAf10J# `"8$yHUb _JcP7 [1.``!\Vxr0!CdqTzg7!w…! NX m P;/KqNX])Y\5ߎ '=R!">NtΡCZ biӦ֭[}ccsssnj3f̘+={ܴiӞ={~'1sLZ 444''?%%eРA_ŋ zieeVY,BX,|>F b6|>}khhDf՛`\^^nX"""Ξ=K*,,4u2())t:,񐿂bjӪhlmmZjծ];sppXhъ+ngzqΝKLL,//'VVVK#r_ӧOݻwΝ[  BGDDDUUU\\ܔ)S}@p…7zzzFGG8}0`~8a„7:jeee}%w<oȑ'Nxm޼y֭mڴq-)@};w5xx[¤3١<_hU!ėP@:tbvLjHX{`ϸ6O w*(U]Fߌ"4>SN˗/"Go۶-::Œ:g|d2իWt:JFJ5g ,+%%SNd}֭ȑ#-[#~ƞ;w>,,K.}#ekqd B[nرt֍w3K,Yz?vΝ ~~~:u!?3s͛7۷s\S^FI$'N0ڵkG0am~=ۛdo߾}=ڰaӧgϞfd;2 pBRR눤V>1&R<׭[׺u;:: r*0~9rcbb~-QZZZ[[斗m۶iӦq8d4j\.?{_q4՜njj"cA*j5AZc6zT*e/yYa6KJJRRRn޼Y]]M5|]i> 'hۛ578<ɓ'9ҪU)Su6<Ņg4̙d2~y̙˗/]J޽{O<٫WCO_͵w?LAt:r>vCCCIIIyyy}}L&S(ͦT7,Ng0Zv֬YF̙3ׯ߇~fN>>',*;j5x1DAAAnM5͏?X,}IJJsvv]\RD"Qvvvyy)S^,fUx|WBZ:̠C(εLJ|v,%M_V|8 òC`ťl9ѠJj8D?*  Ղ?=B0,@_?x W,`jmhLZ޽l2(ҳ e˄ Yz5>n4ɧXb< !tDQM {N .\bO :l(.. !!! "66v-ZP|>_.\ooZM~AT*T*bihhX,B/)nܸq…{bFEEiZ''cǮX",,l64b>|$]-[ٱX,ңթ//?6:vرc߿ܹs'NlժСCB_-[`y<^Z777SNWo-{M溺:TP([-lllD".|*++/]t]Fӽ{w6]\\>,vӧT*M6NJNN &μ<A :ܻw!r;;;pl61I`0ܹsѣ*jС_~%pxbmmmΝ7m4wl\޶m[2#BRݻuּ}z~տk-˗f{$2224 $%*nnn?>886>>ѣG7ozZJd2u:ݓ'OtMC!r=p`IJӢLp]6 btfx0%2C\8E#`ზ6'\*DT KUn 0fjD!anIMKã4p1NTPaCƊIc_%Dg EU*\Ə ws[j6 U/0Z@h jK`2;&./S#Ci`S/ H`Ci_.zuySZ%vlq%~C?'sRYkΝ=zt݋Dю?,X5f''dVWWv]D) U(i4T*%{r>|9zh,77Bx{{{yy%$$_u8Npppppps+333//\.8::{{{[]v999/-- _I/3<ʊJZ,rcAT9tttbޞC[[[;vԨQ7o޼|ݻw}||HéT͛Nڳg®RΜ94o޼_\rߊ~aΜ9?ߺ?#$IddD"3 "{{>o߾ߏt]vݲeK|||IIСCCCCKKKKJJnܸ1gD#Zj1r'MxbyAUx)s+ZjѻwWs566*>`׮]iiioB. 88? ` +X,0@EF)Jhh&#:! lBxݞGH1;|$Wn 8P[d3B\fLX@`+J ^H-"tܕ~#MeI\EҒ&BؚfjņN8L 4ty6.]`0Ao&fyNm~(:Rc!g2$Wi _+Q|݃pϦNzFjd%''3L@T*>>~~~O>}IMM/Gk ݺuX,۷oP((@ff]Lӛo\߄lNKK ߅o!$$dD,Av˗/_z;vܿZZڵСCSRR-[PPPpeJբE;nfΜ9s nJ$W ڷoWp-Bh4*fٳϵZ\sVBg+=E%d` 4OΦcmTkg>rl.njĩ<Щ{HŝzmGOLOD  '>8B,f5 a'z6Gt!؁/8b0x,n?TPȈРU  ^ h}IJS gAւR,)L8x : GO\E H80 fc:GV$O4д~ nh)޲3))v3}*邎=к3_eOi) $}}Q({cƌ9r֭[^d2;wlmmI.FX,4l6 +++4NKRXa tR;;ӧOo߾͛3%Jkjj&N+**Ǝ:7FYvd8p޽{) [sΡCݻWTT@@AիAH455斖^pfwЁT5o>''… yϞ=Nqù\5k,K^zLL; b!4Ia6 KR(nbtA ͨEg *ⓆxP kj[.92MM:㍞nz *L\p{,C+OYg\k!N + |a„^h;oSZ|j琖mzЎt#=R+ ع ޽ 3j AC ^Pk3;LZeީ垘D8{Ӧ6EqbT6<~?zƐIO "Ӛ(>_UUuRX(y<^ w^XX؋FC`W I746T*l6[&| RSSCnJ\N:USSTv]t߿Dվpb:ub֭666G-//}Qݺu[d yя?8c A65MɊRNMMݼy :v9mڴaÆm߾=::zQC_~=ҥ?h=W(+WJ֭;_C7t 0`ժUoYɓw~w}]//_|޽{Ϝ9aÆvډD3fYLiӦ/rΜ97n$ ))oJeeeGްa+H1444---""Dy=nܸO0vCܲe˽{ȺźuI… w9gΜUVR(&Ij ?󪪪{-ZG!!!,K.x<bSNO&ÿvc>~800o߾/_ ` 05֪`\Gj_Xp)6|_w0aT(xP܄ 'KoBt uI!W0*!UL@7#@0~e fG|XqA1˄ l@FBPt[h-5/e[QfBoB gLN b,HD$>=*R5rp_oR>W<`P! +*b_.&Ia~-%gl/ZH߉tJKBN,aAmN%[$\D_v绻WTTܿVV:ѣGuuuT*ͭo߾4ˋܷY,L&H6mHRR1DcXJ[ѐq_IIIEEELLLsn011.Y[[ݾ}Yojܹ3$$})))۷ot666>}*ɂD"N啕 eeeW^}yZlٲe>,77ӟ~D"y322yYf }|oZ .ڵa~M>f/^{oڴk׮t̙3y<ŋ-ZԹsٙ7n\TTԓ'OΜ9S[[KAAAN #"HӧO}}}.]:p?^Rr0CSXU=[`VtPhhh hϣ3Or2nhM"ݗ1ZӊA^ltףZe,-|'Oܿtj.GGG.k2W׋bTJ*++ϟ?O:07-tۜCnhhhlllٲT*xA.f/JڷoANp8;v [xi4Y b0PWT۷o=zɩ~ؿ@ ر_sOƠt:7\n\\>|M3Fӭ^zuڟW\9{l֭cbbѢo-[7sڵ}]jji~͐N><44s-,,/ >\$m߾熨Æ {֭[;tЮ]={7.??ɓ'uUVVvZ͛7X,www@(IIIݻwOHHU&5!~ƲT.pz3t`g-jIŸڂb?:R05Nt߅tCGyг%lWؗ6/T#GnK uj4j3Sw HN`8*C;6a6b:'L=p@pJ ZКr!܅>pk1yA~.Ƕ?˄ZB{8e% G7a¨%ƹj|[<[ve5=f_`:}DEE5gTjff _SPVUUرCϘ19cƌ1bę3gN:uҞ% E"_#FHJJxҥK\2k̙֬&&Nb֮];k֬ٮ۷o\.?~?N/k8d2٦M\]]Ǐ~o={Y`ŋ_H$K.֭۲e˲֭[Grs>}|+ äIabƌs TJZ!cLFDDDEE&wurr'=<bw 3 S1꟮> c]Ǘ`/>NT}UYHk<d,%@āIr9>#t%P|ȗj6s MtXlak,$q+͙^ڢf@6 |>`0YhNG9.Ŋinnn~>|HRxQQQ-?~ܶmWVVzyy544~!r#IokRիW~G/nܸcLVB"ꡊs%$$kZr9beffד *jcwxT?L̤7R" EDW"(\AE AAAPQHoRCBHN1i\3399y׻^{Ȇ ;w.-- h]nm= \nwoo޼yPBӧO[9rĉfnw:ϟ_6lܲp  ]wѣfj۶ŋ ZdzP,*f@$ RT,{x.=4)ʩ~[so;.IȭPvXQ}Qie*ruFKWܾ5*Z,7XkɜEPSUU%jC<$*îc*GZ=/dkr'f2fjXÇgddy񩩩 Gرc۶m/nӦѣ t~ƍ-Z4bĈ;cܹ%g:'Ξ=[=_|8p޼yC?? &>f3gܹs/B,:u4}E}ᇧN9sfxxxΝ'M^s5L-Z|ᇽ{^TZڽ{M74~w}_}U~~~HH{왔t1u[w,*R0I2Ja5ܚW!E%4*H d@,Bibh.gu/2R A֣L껀*"?U_! Z= ‡|tu]m:>v>C@ƪh:G)p * V$ʂxE~"j hf`EIYr@I#s2;K[XX-"?;:JoQVԠ5t3fuLxt=I,c|PΏk ·6X8FE3sBNOYEP*2Jx)YDՀHDO3*Z- 8d5 ɦ*#o4㩻HnS;(??..\QI(^/Ijfm۶Vbmnnny#G^xަM]777w׮]O>?lZ-?~JJʲe˂>!Y mڴyN:`uMv2??Μ9ϟ;wnO%:dɒUVǁ6LOӦMrAn̔eyܸql-ǏߴiSvt:$IZ|۷oߺu֭[;6IO{ywϞ=ۻw_~UV.]:wȑ#KKK9"IܹsW\dxݺBCC7n/޽{ş~iFFF-j'L0a„;w~ׯ۷ӯ2pnʔ)cƌyNڠA|(K.ӧO3gNEE7/+**曕+W7W QRR2k֬3f.7C̞={ܸq| |dFF?իWy1[n;vl)^  &<3_}_5%߿+j%I[n7`P?dzEGyUIC'.uk֠ *^Gsth) \9-FPJQLp׀' yr_%{OHS9rD+hȪ 108r6L@\@"H7 #ᶻyK[geD-n X \LZMxQ(b\8=̤jV@"ǝ)aý<-DJ .\ V-X@2=`*Cԇ$_hv㲳W/)`AO؏EW-ݡ`֢(Xe;#GѢt6k֬Fjۋ,XpqVx߮n~.^x%I.cEeggQ:5^TJafd&Kb!CNK=T)TJЏVD/ u JfV*4%-'PeSdC?DQs_ܰvYlNqƻv튌 3g&O'8ۏ}pnXpayyNlwΝ.~k۷sΣG޽[5n83&66ԩSNI&ڵ`ҥˁfϞ]~tlKJX^wҥ 7гgvڥ-{.//o˖-}޿~]m}V;eʔN:=<0q:ƍ/X`ѢE/]wU_]?^QQѷoߑ#G^AO?6lp:HW$I~iN"+gΜ9s+/&M7ok6sgyfʔ)/>[ot:۾}CΘ1#hTp&k׮{ ^u:KtvkJ+v_(QPAKMhʊ,. 4h䀚:Ic> jjT9Ch>)>@9ު UװP@ 5X 8\JTjVÑ,ˆdƁS)ɸHnLj$s75_X|xDDĪUfRѣ `2~ &lڴĉi{イNf?ðkpkp&>n`v:AĪA'bW`T%(\_tt7suo]hQnvݩS[M62Q{9mڴK{ォV=z֭[QQQݻw_bSRR?jԨ]v5sίjiiip{wyQFK-bu2>YUlkY5c^Є >8rhlllyyeA{.x7f͚G .߿lڵNZZN)++ &^t:]BB¬YZjեK_}۶m a]MƱcǮ]pdffرciii z7h-tФt3TŐE%!DYzj~bRI xtx J[@hpd(S숎0 =9W@ji f ,ҏ(+գ\ SE Q_C4APyh;zA@l]4Pa#YébkR)}AS\O:KƏTxw[7Ȯ-wtOdΖ)w1<ݹZUU~hŒi&Be`)ԟCLu` ` ɄO)! d| r0@5bŊ'N9rWF>`֬Y+W{$<"##N_FEEM2eȑ~‚g~7˖-4iҰaVZտovWV_]v޽C O%@HHHtt ry7.Yɓ a}>_ZZZPygz_[/O?tdd3`@>^k/}/G`/hLBŀ@ZgN#!!$8LxvКq(2dt m#lƑୡR%D*( e4oD6e Vյ{B%x ˵9 lҀMr_dstM!:"NgY9>hkW;vؚD LM `Z11:FD,ܬ &zXAIkG6,>,ڙ-{,(լ>1lV5*pzTa`%BP *@[u):Ձa$C2?@ R t%et"64(PR4VpLubPk$2eP=Y14ię.:vpAKIEsz,j =x9Ar-j{쉎~g/9sLaa2eU^M6={ѣGYfɒ%7|sRiҤIݺu[rerrr˖-gϞO[?;;t0eʔ~hbʕ[lm6f̘nݺ]4Kx' S'x'صkׁꫲWЖj[Bbסӧ]._DaÆj-[lَ֬;Ү`UVVdɒl͛7}ݢ(G _~e޽_cSR[Z~z?c>-bиݲJh$}{GЃdAX(HӇkUװ3 }!\ >l|x=;HV\V J)҄ %de=Q6"SV9U@RQjRև[U/ uo{z i&b`B PV# 7a;D ~@'@/OW<[qK4uwJʾsK]xlzFDA+ hބ(^CE#>TR)NO 8ue>'FQƆ2$0Uub TZ[T=uo{nEAn``WnkL ޠ&$ qF "Nm"uN;m)JO8X#i4 e%BlfזZj zqgw;a](1gϞ?~>}bcckmQPPPVVp W?P-twuװa6l|CkfK.;v-tGFFfddu]6mZv /=bĈ?~wo>lذnݺgӦMSN}{K]q~f ?kv٥K?% A*++QF8pԉKjکSN8qO>~ueddWT2m;v_< _>Asnـl9@UOѧC,~SlnMV6n;Gd(~!DSOT2+I S'iw܄$ZTnxP\PU@+Qb5`ksl0,$T_J$hH*5xrZ RFKn|%? O\$P(wù)B\V2:x}~Gh aSuFW'D˸h5ZS{PsXǏ2eʺu2Uƍ={vdd ^z+\n'M4Wz>&&&111!!_ W3g*fJɪm~WA'u={\R$%% 6l…NݦMM7.wy4o}ԛ$s?Ƭ5dաϣK{Pٷ(#^'Qf"8|8yJ1H> 0ǹΝ -0clZz*@ HdH 00\wR"J턚0 ):Ji.7MkjWdEP{,XʲYd D~UXV~s[!BĆ QQU& CA)'*ki># ,YGJQUPM;NbferΡdf/1;KP ')HJhrznvȊ ,Cp4Тf$VGxYLT+9B񫈠THסZAACTTD5'!IPCV1ªr8LKnpo1k0Z)vIZYU(=.HGK,nR3bѤhoҥKO._t*$fszz+psO޽nK/ucvVuذa={駟֬Y_L4{7Gs;:qͻS<Tj0M~v`v<}cy!d¼f4L t*ryUUG+$[7?~+RQQ1jԨ͛75!22rȐ!K.0`iӦOnt:]Vy9s9rooV9cƌ;cϞ=&Mo(&|>mp8:v|Z?;mOSbHdץx׮_? _f5k֋K\Vz{#ѯ/01z'4iƳV%4 U-/ćSKD-x<`SW]p gsx~ȁQ^._Q_kUW(TtZ4>nHաĘaXAW1[q}O!%bRS@|M;S$dbz~DmZT!˛|~'Ydn^cHsۣ&,l+#TGdd*_:Ey*e'Uw)%凛'5u7>s2I Hcs\2@-/)/,@ |`ȠX3I/aPN!LMdW7}t `E*DD E ATABh4o~&LxWx51K/ 4(,,G>u<~뮻W^9rdhh/'GYYɓ'l6 r~os=k׮s;wΜ9Wf۽m|sL:<>_G8*bT\Ef>y9Ee՜H3>f3a6{?8+è*y ~7/Ӓ'" ԑdvï\*$pcָ>:A2owѴI81P {t Y%yh?f>8W؝9]bP<'ȁdtkTdWk"1}@S YJ}(ss ŲY/&F:`!gq~l *Ydí 47YTM3f 8b&6@!Hu!DCY~ھøAMΚwut5>sIllIIwZIqN%F442T3d$iݾ ֊+XBE\tP#JV!AkyNsmJTxDJY!Mtbb y)tIYJ*!dQTueO{s~کgEػKxݖ߸I .UUC@ޜ'֭[[lgECCC711sΟ}Y-ZNs/'2?}||'ߟ)I6W9"gDg}\uVDPQIz:sy $!U#ƞtxY"C}Ck[M!]-bi<NGr_eò3 Y)BUr[/@C?WOBR刃ϱ1|ׂME)-E@"/u4$"Kve "vPKlKLz*$vt Is.(!OXG'z҄ Z.jqۗ-#):nvzw^G!8CmS!A^{5[leR3t;^RszQ竾!CAY=Di(%KUb@qRUe5 ^?*r\#X7ЌJHZUiND;$ďAKcB92RՇOܳ%G/:ֽx≥KK999xa˗/?|>zĉ ^ZiӦXx7/\p0nP(1$$>8s̤I֭[w5Zu8tД)SVZURRrCl'7J?^Veߵ˾Mvwn޼vut5fZ?T>ꭽ b-Qyl={tQI<:9x"c.'V3-SxukĄ"am)UQ 3 Ӣ!kvKraTPTԐ궋F1rJ=خ7#+l r*DZ 4\:kwx휭`g{h`KDk~EG _K6o!S^5C՛slS 4=%g懇 mݹhCc$ ̉m%Vgn wl*{rCȡ t5ހ̀GMLB4)>C!ރM>eq1Cwb!p?l:۴i{o?ȑ#o +55uO6m\wum۶ M&Ӌ/ /Ž'|sΖ-[իYfǏڵ0`E.]ԼysFf֟X@ѣӧOyJF1^mݺhɃ9VD>N"BHD,$"#6^Z7F)@]و2Lr'ʺȸ}ےCWo5ˁaٚWq*)B"2"SpkT~(P t kzGc1WDVQkk˿4 FPG*+ZYDj>zk]\QՅnt]V7k4r6:n8L+"+;vsW|.|$"-'|^o_xR^rf{P( q DF1{27Iih2v"Ll*"!m5p\"En #W_o=w1 _: 䗃en1ZUtFӨb?^?.U6'xCQEA炋b D2:*O洍8#[ RFUPvH0a [%/|QF;zQsZаڑҎ)IQZZZK9]%9slذ?qDFF(I&u>q#m۶z+<|͛;ּysAAkСCmb>QFnݺΝ;q*zpN|{1M]Tdl,N r 0'VaB 0-a2PQUGE-%^ C+TTڒ} i]gׯ ;2q3>[[w@O-RjpV׊]xT++#,δQ`VadbklT"ogHRA\^NcxC1)g 6WN0vC#$< IDAT꣬0\^W(𸡸Q ճ> !gR|yfHKΫMw˰ӷWFMq9S6J^rŽmD_s*D[e+U>zd6%bPѧtWHo2ԱDCwtT:gzɔLzN vDz*`.XP/XET *Bz$9$Ǐ{w׬Y&Ssμ~^$-p^JU՛[w1_yMIvv߱8o>;Jb IHA͚RPA%Ai8f7BY&"(">EV87vv \esC=Ib"eYAP #MZ@ӺsGLnE/Grh+y8مiߏNy5W_]\\+vm=П ;p6mZ[^z?~|7nO;w$xFڸNW;_^Y"7+2 vnGGemdz˪BQsңGMB4*w*{a8D? o[KӗZ*QIܻ}# ]%Bݺ겙N9pBvA%\ }>f )\0ᆞv>o8ьPAǝ& 4FA"&A(SuyԠH1(1Hܻ~#x@w1 Mly}¨ @C(nXߤ5Z<7oKpmT=A 4 *IGQNm 4QWƱlYތ-P|-_~=쳟~ɓދ/Tvv)S,X?찥"ڵ5jTyyU^zcǎ{wLOIF>zCP 8~xܞY־}&''/;;h4ƱV庺kN6m"]RLs*M|@N6Kk9<7sV.d;cRN[H6hh:|g\vp50ta r"WD6Y]7 %?0j}Z;/.m㐟xRFD{kь ?ЌAM4GI|ރ\}UF%c42HK8~nKF {/4:clܞNu9s^dU\4oO\T.gYB0N(Xm$6%|ܻ%}j8{$EsJ׭4QKgNjcLjn#=F~pb'5e[,ko[Z4xMϟsDc\K1*E<:#&tjlsTM?Z)ƣG4!# A$&sU#p +­<{@l & b9DHTg!zZ7WDhy8lm1]C} 2: Qh1I:5ԮHBCCs5e;yv۠lLuMHH曻tcO8'p&馛nJLL|x /4(mVRRf͚|}IOOX,q#G%''w޽W^ (/>pܩwܸq=ؤI~O/Ν;.\8wu566N07>ƱwΗ ksh( ̡Me#y ycHS z m$RA"O^58Cl-E - L Z0iF7Ry"6#./ :+ T]n"6܁eۨɫyFvcխɫvֽ kOzd)M~ѝ1*$Y"!I2DSo0^ET&A$S>#ߞb%Jh6ZF 6IƆ'ܘE U:1 '"L&rxVK4J⣰vy#l{D jO&Zr5?}{-70Q2`g?wٳZsDٻعIy VjA9u=$TH2a3^,E|h3zF@,5㟫|ks+3d D=0I_"($Y +j%0֛vnn\wvV- vKQB V-^PU>-MW_xcg+]?QJ4 Q@Ĵ("ZZWrSxRe+~[wZvw@`OUES,!; 3_}sm.jen"6B9#bx&[jl|G螀Va_(Adޞ>,xЩЫ1dR TaNV1To')|񬥏CEVWV oڇziӦ͜9ql7~C ꪫJKKy_{ͻ~hw߿G}RƏ /tiРA'⭏$|נ79*++kkk?^UUr<`$L `4M&d2f9777.7HJJr8 PcVE&vĊcE9"UYEP7$"6JKwWsn>%Ehp9[Y7l7x4PIklދMN &s$6ed~8J46{į.=6#hAWZ 4Fl4",roKh YVV`FTB|S{8#Ht#\`;QDc0G CSH2Q!n(iL e>u2H?{#| >{'oZY0͌1A<^6`M3x'Yj$GZ/Oit)Q4yxpXQ҆cfő_pd:d110U=ˉ`3Qsy+  ٲP6b;#.[5߇)e4=u4D;^ d=-X |_N4{#rmUV~zEJuM^}gj# ے:QH$F9-'G KJ-xC+r`Ѳ F06 j{|ARV zH4&HT0D5pKd@ #aO#F]Яr@즠+$P>XaU=+QWCjW1?Q??:ը6nHFA;[V:m$Gm]HQ2&uL4Z@Hg|*m=iO! )ٴAH҆ZXglEydw#']hvZ}{'>̦ՠ,o C\aSvOBz &e-XiD9||N0,DajtܥSbx}[ ex.sy `l0[(s7g(y^8ZIǴXJUgĊ7qېV[x I֓$ |wru!FdVw,glby4MڝSЊqxij#JM_i*5LcCT]9/2s4U{E% Q &sT<DA5If?EZ[ kojgG=o^\6j`Z}󍷻UܝK5Ԕ4(JZ̉U4ٗnV2CH3oALX ! w88KɄ*es^!YոѰ>R-4 >V30 (`e?Ro SЮT"zNЉ45L*Ϧ)Ž ?rOMI2!Ls2֞5fLJI;mܾCWaW[fJCV_ſr0>fvaS,z]?^WN\D%ة&1_9&JJi,+ԇH!4C$<1쾚lM_qbp|GwG&ya_:nʔ)~?3G5ko1iҤ3 ǎ;k֬W^y߾Ǝ=G9|pQQQ>}ZMz-[TUU=sx#,ǎ ]a騩=Rk׾9997|àVvs\MMM;vرcǼy{X,xƵkצF&!;65W4XKpM `gA'uܓ%IP>d QxZ $: a0M, 0k͢\ޅ/ Y~#wg c%EOU]Y61 ztaz.jGt1ކ#Ämcfdi0SyI&C%MռۋsZ|N*34h95X F[9'"*CG/ i/W>q+tLғQӣxX(b"txVK}1 xg9-|aO7S0(Q7}8P`@O{/-V=`o4}>L NS:-5 1`us[/I_Qr,/Q4 IF%T O+DL jPK^QeAqMǃ$kcMWuN@V'弲' ]O5jr_|Ɛ2"33}Rx|;Hpʕ26VS#bRŒ5zh럚iX%5d&w~zP/3\”DJ>FZ lmBLHBTH1:cX AnU ¸"D 63N&j-F{9bpVqh#[dǖNKQ2QEqܸq6m֬YvEEEwuO?p8Əb%\ye˖֣ߌΝ;Z*/bꪫ|w瞻=2H?/ r! 7o|]w 4ן=$juRRRRRRaa5\S[[{7O0AeQz.L$DYi+ɞ~稳ͥcsi *hpT]9Q*PN;jMmÆh 3,Wbl(ep&^/B s[[?7qvW BЇY A5%#F0ةi]-g@_0q|MS!~..;ۨ{pG=D$tNyh!zJҼpgZQV92 jXd| 4\>9-6IM-5Q> Fܨݡ3-7M'0 Eō:(bB%By7 U'AC[QʮV:ur sn 2dDHMByT6 f#A9b8 *` {d *U #j+@QnVUM&YGJ$;s``ְ91 zn!dL%ӓf#ϻc\+ .+rj$,yj; d&r(%!ָ2Km2cPiSMw"j!K x>`_d65m:LBTQ^N ՇkX*T h RwUkZ{bSsB^^} IDATngͻ4Ir~[uȑ#}YVglQuvw?SyyyC 9}=~s8lܟ ؿKƛt>l˖-%%%O?w}'9ko8D"555q_X_uuu6 nGd㍍N3o۶t͛7s=7oz9J`tͦ3ͥHPH3pn]fF4텥k) bW#ǨKr^%q3Md93Ar08 %]M;:r|.%hZ !t䕟p9a38ăk3$9۸8t>;HE -+"dIͪӥŢ&Y%VʦLfBcO%h: ȉ^ !Q(>D1 #(D4q6i~-?+e&דo5vU#Qm+[-i .-Ӳl,+· vmȧux$4ZUNJo1qpHDg ߾Te5m ݞXT||ÊѬ DHDQ|FD*ιu<'("(hCȶJ76]!B~?_{㧂 @%!C+qi7rmcߌ.['1KBrӷߥY_&Lý|#8v V+:^A$}R5c"hk#6 .c%/2a:(B2:pcL:"" M;S2Sc;Z@TB@DmS=UU~΀"ZeEޗF>`0K/L?S߿_?}9s朁֭[VVֲe{W\Y8/~ɷ~^k4 /7@  W_>?v=.uu=zt„ EEEoZY}>Ν{w>o_pa}}۷occ'O<3fLιsw./}?3_{vwx~5|˸%D,ܙˏ/L)4' XO@' +ޞD! ABǐ, r]PU;9RI0v+0>:܉9{9\ih/^kVk#Volݺ;vmgĉ;vXn]UUU׮]/'x&7ވD" ,89ͫope^).ބ_;!ǢFRu#מ[~tet*TpqkӃJE\ۗ`;#.ʻ4"X(m]=1>9tCuEC6 ectկGIsI-Z_1x$U;gi×7Iaq.ณt-ߒj M˜-mD=sCqX[ÇXall54i1l^VזKA6Ðd*䦀Έ'U^ Gsi8."5%QU%X7Bca3EnS:1طq! OrtڇYmGwZOl2 sƦUTJyV"{&SŤ';DjcefgbER E$#ZB*AnI4 T5iMA"D"(ŔھXI8|}DM_ Ɩ͊EBԠQ$?;j(Lg0[K~\#40FBnqԷݒbo#F-X _TFBKT*dMMlgx:MD,mu%0gND qD׺)FDh¤hA?'o@۶ݖC)#P+,*]KteO=ܶ/$ r7[ZX Nq>Z2t\sy'ٗ^.(עx`=ٳU?a^/_nݺ`0}=nw}dY^~}nvZgt:M&ӯ;v̘1nj7oV#G6l/jIM6=-m?[ں-Z~@Jw'1rMs,<ӖTyQ/]gZޞp8 ua&aNu{L6.9wQj:f=P$ǹ:%N-CQ |R#9M[Q63Q{):`݅_dBJLJ{zܪ.n0'Z]Tf`@v7ىjH nlNjq\N?G`/Gqhaׁi\lcI-`19x=$jZ8u 4/+ԀJGU$,:R5EQY.6\-oa"f՝'Low6'e񰝏.ަi8KB ZC 3;5 A*,.E MU 'EOIQ6TykiZy}b)ˉ-gEqTO \RЪ`˲%ztZHC!y_A(Y=ё,F>yl/'S33m=l'AU(UODfB^T̒CܷOP~xF%r4(b s,s娋4')-XZ]a#{Cz7e"AdP[ǐK1A(RsO5tp4s#/ l[RV~)NF!W$82Pd\O}kٽv j6kE]InGZ6H{c̙7x[o5iҤ?E+={aNZD"G)**{{ݿ={;vlڴiJ.v{(ʾ}RSSaڄ_lJKK+U͛8~~t_?fڵ+W|G q|Enk29sȽ-fi}.ϵ d"Cy~e5|jC]G j;qe1Nb`#xÚ(3W,29Y'(d$-wM!/_ᒼJ@E\ok). =_OFG4Q#{#T^lw~1w/alT2 ;k/wчV2qtNgOQ~CIPA}T];JY`Az. U4z<&L )yG qk5:{jzf?n}j-Q]|g/h"[| HOdO~g͎'0@ds8{GJ_:Xnv/_o\H̰Lr2mxyF}.8|%GMV74;eE)%HɫI{.yihu-uDtZFwmffOɊ(tx!c^QVnNypRom\AunKjN"]dfX'HA 5E-9R#!p¤LBN̈́ F_5(ˡ)ZVizf#3%VAi:^ONL8[8k-6D$zgL%R^O]{tt67jݧ^}ZZ@jjc p W$a'%^Y2*Jܲ#Qj*av j5a Ū!I%ʂԅY]GYt07~I$_{i*uѣ4ջAoϰbM!7]i0ycΝ'Mku_e?n1c[n{W]u՞={fΜ9a„5k<gx,:t袋.:7|yȑ kX744L<b֭[zΝ;sޟf3_5+?#IS*!5}e/p Xw 'u`#ܷҸ3TgY]twy)ԟ۶ c]<؎Cj{F:.˜Sw48OaXBZ+{WĸnnRny\z';wu!ɇ! z \KqXFSd&a ׵~ }=t5@j&to#XTplnf~f"jm{I|+s^De,QUQjt53I?sLqmwPRsx)Za& g)Ĥ #UlJnU0o軙sk魣fON(ME9o.LEԀQ?Ypl'[xK M,%0!6Ǫ8'*rsaM1p Ovy"dwXc]i~7pԸ)yy?W-exVQoڡ)&?ɦ /ZUJJj\¥Y=6efuxp|v*]1}!T4UcMeژbA}@,H $f3P>[eI) Q #zh;Wqv:ѩco%cEt05ml> KX^ie;Fj`a2j~|U0ښKܬQR=3:x7>3"dA2ģȰTϞ#Rb)CHap %sX"bNef~գˆ4:N/| zGq'A$H jOP3VDQngX|sη~{ƌYMMM4hܹsv{&E/A馛&O ǎ ,]433~j|3/p[oX,={9sԩSۺ tȿ!rx@RiB ekp΅B &&]g) /f5}Y=R\VZЕÑ ٞoOVFnf\MԐ9rL3!QK5Eb(4e Fk ti d|UCnu9kf7[Dȑ:'2gavOzS]Bٓ3k@NOzcq,zgDax.w3#+]w\S7d9M~>/~@F橲n0ǯ8"]'~~pi"5/V8*2dܳW_9{8CZhTg|UkH(DfAQ {APr0rkFڬ֬v`Jvd>ُB@VZ_&:i/ׇDL>@Ei]|}# 1~[Pg ԧ;IjR{ʇL&YKF8363mE=9{V?+I7`q?_5J>kd=0#䶡qц؄P?"%A𲬔7yLmNrQwq9ĽʧށV ("6<[9,KgpFN3]}0l[Y-Pv~i#ghq~W&N{JKKwٓO>١fkjj6l3UUU&M [l5kg\TRR"ŋcbb:{UV]okptx\CSNI|n;;;رcǎlii yw$IPE$d2YDDXZ~akPWiP6W m<~12dr.죭4- %IOuS{Wq-+anbF-܎֚R.6*8vyp-`IsccrZd TB|ˍ mW}5Q4WUxݷڤﬔ18"3s9q;JFJ5 XW[e%FNg3y*ɈV5%= :mioRg{{ҏD-?׍xuODBG93+>/>?c$v'VwbQpL__/]4DdȔ*j5Zm.Q 6 IDAT1#h࠱d`RəMicI3.suAQ:4ՠn؛:|2lѠs n}-Zf/^oSưd+\:˱T#+ $WqnCsDM}.d0F_Ž5F|X3#l$?PYLAt|.VVc] Kos'׻rlȁM\;G,<4* ٷräޡiC=-ٽQ*WݐYX EnM6D0M `KChxn?D<~vcM*_j| !Gr9 AS{샭+p fCR@4R>8V;Z)5?>2!~H32Fl&m<%:|5y/?>!%kT|pm.YaPY&=D.S~b#o[u2;-^R,A؞g/oTȑ ^F )je~w}[7o[[ffx nZXkS%ȼJPJ,/p|µ-]gBi 4M/lm|v|*1:VQ=h0-5_M2z@P2ZjvsJOVQUR pZ&/ⱈ[ɰ0{>c.FF (Tԡs#/L eYoؔgm(N2O;:B PKI&}G1h4Gaj*}*P6U\f0(T5[ImC8e0 #d斻(,/D=W/6IIvsw.l{Es 8\nx3Sُ,,ncD0%SV ܓA(HEZcpDjAfn8}Eaj4Cޅ>C3?|(`Ve`M.!?/q4EyRG_S경VvJ(\J9caunNxbq}Rlj/wxj^?Ly;F'M8xxoR`ҡRrwo 4U_k#=K:&f|VHUPZ{8*9H@m9Qwjbx*FcTN^!_&VvwfX1ST+S>FhVOHHA69~$F3F_)|g5#4 Jdס 9)/r*j枵|9%6DO>97lcE7.o/v2[n#!l 2w~i)NM%zD(y()neyDkI5J 5+ _+cz4c89̩Vj$RC-e.VRJ'P D^ Pz ѥ}O5|X>5 ӧOꫯ,X?| dee͜9_=t2eҁ0}ˡG9991?wZRy k׭[7mڴ?6lZ˖-[lY.]^~)St\{OVЖ吽[(9oP:p_$B'+.@A;!p5i$"˧xPhb+3r&+?Ūr "RG1,+G;$ GdYlNvHzH @qHxGv" iC('Ě̳^}(sh44`o&2jT06 5Jb3p|^nN$B%/}=tNU֏5" ?Ҩ<^k1>{k}-d:A*K(-A*1HNu v.dW zHod7hw- 6`n7v۷mքDżn絖m36J7߸?W YZn|ָ{N Sk$H6Qݵ o(/;G*U>ƣ9ܒ>,E@`ӹj2+;/`x7tzlE3kEEQ.êlʤo@D:i>SoDzّW[~P2|7eausH}&%DC;e%ԯ:vpwzzxdz:Q hH"22rw-](UdZZ] TRQ!\+.`F=^ɪ=䦹 gF\7}y{{Z@`K.ឧxwm-WUaff̵q) d9"cOT7mgh!^FQ"Zu]q{H/t=t !mϜWyet7K+ZRt,5G׵jK K@Y a]?D\j\+sϰXWV΢Z}>^r". 6,T\0%.<1ng׎ZҠ]w:H"&nt!@DW,c|ԡ]iQrf Qlt~G?Z-f]VL'=h#JZ$ A`t{a<5,ooߘA1u *E H OAѠa՛s{Cd &D2ٌqBOj/?P xR* uK{+mZRINHxXhX5a&LaלBLԗ{p :<\cVO|򼣥ť276!z&jmRYopQ?iLUqsl*r ]cE juaQy]،$Sf&=f"Zb D3'"] Ǧ# q;#Dؼy#<]s1---~kZZZZZZz\L\>!!!#G5"'ϗh4?<|?0lr?t:A]bŊ &hcӻ] wȺ|ӱu/X3QFʏ0f81"!0Wn: .2Z}o<DhqKjkXY{h1<XƓy~{RrDpG7JL #r%֖k-]~)xk'XSۼ{ ɽt)O 1"@`Ƈq?^T{[AfnK24Jn;={d_q9kT0@Yv[7ǽiom``ԆhW2Ҫӡdt<=Ϥ1)q91,sœkgC¯j*@Vuo1C޶j%^_xu7uڗڰ5 @+(Ooc!}y'O0HHχ6z`K/\B[|w2lOߑQ% ͔:mT6WW;V^ `$G ~{giؕHd #mP~cJxz{Dvk+~ɆLse?g}d a{SFvŭViq]LvΡ|j5[T^kk a^P,w44# }W5%;LFԂJg(6ciw8sȽh^w?Jn Sd~:PQێN˪ύ%AH^04vtV?K|@NA+R=+PP2e~ gV\Tn<Y@)>ߦNJ7Ji_@&`b8C0\*a%k{Wz10'(&]֘"(A fd(fտȚ I!ϕ~ZƋ.a]%e'WK~ ΐ|ÇOOOǎ[zuGȵX,3f/3ڿ{3gή]t:]BB?MMMnl$11VOϯ@ Rju^^n;vֶh"QW^ :ֽú7q9AJ_=OTS _$^+V&]_nQr1,!_5̍g?=k!it|T,D}5`h]ul/jk Q`T` Yv)1Q*Z`68x;͑y MW[ ߙ)t[[nT5yaϹ6.Sۺ@ /)IY4al9 5*[ƫhq  6I}YR@ڼ7#QA:{hKD D+ --2Ÿ9 ABlr(G^~'ƾL RO#%51_dG tpiscޝ/]Jl>h<;B#|X%  th.XuxJʏ; 34d([eTl F3&- #)ecm\WnB6# Q\D35  ,+KP@.(& IDAT$r@Q$~$(“9dN[w߿nΜ9´K.9rdGn[_LJ޸q !!!gΜ1:$I҆ >11fџX4 ZNdDm۶?~|ӦM 9g<ϱg Eyi|֗ {HPKI`v<~Fx;%^Bp-+<+N/ѤVfwUkKj$o?t%43+ߗ[zar :J%2hod}~Q] Oe3;{"ظ[WgqȢT ݦZ{xX gDv |Ό܃T8%~;gDPJ#Z}D! ͧ }wcnәvd~1>[<%C>1t0*bcN!9\\]p.F:Kg:ak <_,N1lښ{ J=cw?cA ZFoVsk L BTc?ޖ5zy>_dc 32#M\tż6d3{*[gIb_~}2 a4LN tb C{B D|c1?OQ2 $䈣r6<}H$dP2$›?Բ Q_Dk ] Dm v׺3 v'4H+4{c2PawQ[a2(K*#AX"xL }2c1ַw0c)o].[.E~Hݺy ZNeQp8<gZ Q[1چ䔴/7!Ww\v]ZCIƤD+k6xs>]AEF6PT^T&G]}Vnd_x0RMeǟ?SփF^4{ ~9dD% H0̨P'S7?fM Qڭ~;,aϻ% 7EpSIdK cLK+y;VǏ.HNkiMҹ8/IDtFFʎMSNر;sFcgώ=A.].K933sɒ%}z}mmmjjX;uJT*O:zuuuoւ  ϯQdw#ȯZF8s[+R^ 6(FNTFI͆E-´>nnzQU74oJUnLՅ3qO(6VfSmf&Yks(zR̒3 `l)~7p5[w; oI8ldzYPpk62L J/;oI|  TP`4$vo$Ǯt<|[}[ThveZ'_y=|4|lLzW\%83Br[!_=>-'^}UEJC`Y5wo9w$'Y/|IǬOo3-ݧ.i=I隞S9܍^SC!pFJ [:h9Exk]mIfZ>bM =ّ+2="Ò"6܃7u4VXdF{-x5<IB-9?aUw8 \wrc؄Z1V c~w6zA$Pi@ADpaWR"\-#rT YxH5c02 O\Jj^+%IIe'IfPYeˉT1p$#t;(d={M8?[o;;;pUU___[f͍7JF^'gxȢ( 2wy뭷̙-.iƋ/Fˉ Zug瓗ɫe<Βԁ}C4-%l."T&睑kH"qnlW#CQ(e5*lG#^j5[e)9M>p޻荫??1Y6RLs%6.|ΗWxuf m_e(d*ho"$-%`&DMLR^ UN ?.#dR)ΥGqq&f7mWwXDk+e&DΞd΍w yŒp.#@[ZOCzPOWo5B뛙JzC{ػ~)\ єZ9oT+z^(8W. ּ{I$gy1A,ްTiCۊݏ]S$3c#$DMt&]:7TBr#C- ִ8M8Y?Wcm,op1YuRaFvQąEI@kUl͇&K$q#Y%\Q]JAp#`4 47\h$ų_u|a״ v4Ԅ)UׯW./'L<,"cͧD Fv`{#0$L]wÚ`>Lfykd>fIZru4x(JCIȮ>"ZfP9vU?#+p2/="X^y2Z oMCUpUIie~U`7~r=RzW_3M)}Cm>oGK Esgp6o Ҳ_\yQ DfI&<"*b5|`. qNh%5b칷'DzjIUs:9j97F1?WF|)&<" Y_>5VzbTSߎHl~P;B އ] %a+bl\ Dfm"!/V+h&1iLwg4 ǫ^4*$& \Q|;!&eTZbƱ|%'F17+aFՔGj(tt0bOw;Ǐ~Ͻwh"DCj(T <}^ A-cmj-i~j2J9ЯDy晒y;,@LTyԄNj~~ݪ峇;oj\5+ä ˏAa<<2(âdUCg.?aHhPusSVO4OA־2=oy2ۙ 8>fڡ}TX!LbI|SeB X0̸T服\V-@$}u~\`711<71$R_uXa fD0L 6eI:r rJõLNT,g[zYlZ%*|ue=eZܾI7Mp$I:}1cZZZ|>_vvbۓcbb1ݻʕ+~|^P(~~{cƌ-bdhGt+lHU@h#SMezj'! ? ;x %6 M6/443 #5ʸwxpOheI}/SPde 5O8tѽb\=8vYOu{g[bT nW LG}K7-߆7 !ÓH(o.X=7>YS؁)ISlm A։.iN X8g /򊋫R7컶U([(|JǺ@)[G+.5ѕo-Wݟc [f<z RTu5./_ bSm;B@*zD>l6'/ףS(HfA.JZmdՁ md"szf.5cKS>^/}rexNA`ۇU/1TDב]r6j_+;^^M^뭥;NU ߢw',w^nndTdB0*99m+kQs_eiM]1=rq8 #BquW%,pcX:^I5sX65=0J:BJ۸elo5[4FnWqL"14g?zatd]uDBr+cz)K&)W과0 C4)H5pycsV6]۴S72M1㚵M5.HӌGik;˱3Ѩ%ur˾;nZ#tzATG+5e$Fc6^)&?\3NKYUϢKܡ=cMWD1iaC3faK;3ILr_H mh윛DMg3M>ų7b3#){/Χ/:+K~tMyO#mFā |a;ȹCFKh46noW4dDdi$|/DJr=-^qu Z7' W\h:_]ŹhEmWǽ'^:_T!oHnaxVfZ"qEuJWEҌiiza?QB -!'3jou}6aD<~̂M&^H4$vcpNǸ8D37 `.0Qi.u=(34yXyYw_-䧒`H$G➸eH{⋍== cGč.|Ĥ$ZܨzTG!.Goá6u9_-_3&^^Lg4!E+,YF@]ue~RydCx%Z]{ƛ\](̆6*<- #syzg@b^xǞ'+>r )aۼ.@{Znm&1U.d \{8rs>ٱeRɯ譿S x*l#:H8d \6@\yV-H2T%0c}vEcYqOs\J6FoQ`Q1 ?쌳qp8p2?eS˘t7ٻۍP^a߸)YjfGI._K/\}yI祏Rs`Di(6r"-oUnBQشysE2;yle951u\ׇgS);gȑ.+hZgZ.GhŊӧOkŇjk֬y'g̘q_~e޽K,3f_}eeeQykk)((8ˮ#[Z:V6:,5Y0@fw7S/K2Idʥ6mϳ^Qh]84$q7b/(sA0#SPQ#TxθuLyljiz_2ap#TD IDATI|Xʄ4!+9fl7a\"VMs(sq8)/0idW>ՙr˵;|Uwj%`U+sCzeᤢqs*z_D}x "a-KE]m:GW0ԅ6P 0Ca)Zf%2j+& [4 R#~Y3?9EjO83(WnG+[i 1-_Ԉʙ%AQ UtjcTwp&rE>LH0Jrg )sv7KՊۦ*u eƔD:P F M"[Jv&flBQMKogi|W4BtZ>@S QYqS߁5D_Qmdc vrE]8Hjٙ'<}{0~%*a!=g;?(vlZ;ճ a"e"DPWL~#7  *"х)YRysF{d8{") NW*_7Aպ6c3C@ju0}6s<Ĥ#ROG+zABZ,j\[9<)1)^+3'Ѕ3exygE@!At )"q:>|}>}5_c=Ys W5P Af =ַp;h9ϡ3}ž7,F2s7/oVq nAE*akc |"oMR SՕ7l} Fͬ$d0|®lP̞W>yZs0j@d_̰gswPl&ԣ;v=|~1<ۡ$qǩ P1Wmuk.HT.x[S3Ek|RRSSv" bIA#(!hPHӦK*I6d{}}]?L/ zͰ<:rLٖ$iL4 x95Uo~ 4Qr;}*P#5 kv}kt^i~il$+xIiiʤ 5`U^0l:I}N :꠳?!EK}oʴ?dm4`/AVTry^{GYצ]n%94geZ,]U?fPˆDPΞ[E3Z[t'۴׏VDU ubLabLȡ"˞zfݖ2u=aw A &x/y]Kgd]?ck^2a.Fjg{tcn!q'f?S/ $0xYlqk%ʙW6aq65{.2M13u3K qM 5y/.83كX4 y=;#p^<6=h̴ _- ۑd}Itpd<S.)hٸҬH6sƍyyyOE?0bĈ 8pܹqaaaEEڵkjA~'x:PO^Rg :*0QG=LX&$#52&40,`3X`D㢡8Y"@L1 膠y-;yE'^I نyY8/2w_2(?V{p#-C;fx.Qot`i*wRDzUke-j k3LFE7Xzz,o[ y-z@uEMRw K{98-<~={6qdz7Ym{1k.X@N8~93[*jD$ҡcĠ#!0=Kbi皔^785^Zq}k zyQrlO4 b3xqϔb+k=z/>Rg,!g#;ڶ#OLf fweM(qhvsᮗn`HU2/`@KU?G$B9\Yiẗ́!$"QY Æo߰%~%f7&qʋGS`Md\23Ȅi7μV6CNM5Wz6Նǥ9 ͑-棷;=ӿXvb^A|lOẂt@Gi҄ȟmɱ_-VESY#9I1nAkO]4z<^`;֌^I6?vxbJhD 7WlfnHe=p #R~LRb܎\&\ɨSP?ƟP7m^+zFPRy$Kv" yy.s]%wɩYwA%3-Kuc|⍧g%WR2y.Ëv%C#:஀Gyf p3 OZѪ:cANq.9C <|VB"ItARDĻGF5{1Gql+OpoFtW'nIQT=qe| q n`lNt?-6_&ON&„ {w4bsM1% }c^*TJ iƤւEy?SéјA1 =%BZJ '"RK#Q}WO D\]eg OMo1_⁹$ohdJfl5EuSAJ;faN>Bi2(8:k2o㱥5\F]qK֎x]hRzZxIVƶ/-aԣ-4֕Gp58*;GrVs]jς"= 6G I-Rt E"Ph>sb  UcdfDV8V2 8q)a+Lf,ۨ SU ` %If71N׍ܖNy}s}crS磿=)@/ZJ[qxwc +;,32oKp= CK_AQ{Ka&N|c&n88~`LDg2Ećr3Cֿ.&5#  W;(*a!ՎĜL^6k Z.^3. $'bIT Ɋ CٿxDKi2s+q8%Kx | w`ryN< [߯fҧxιar&'[);Σ*BGŸ;bu݆vT nzZ2P`*R 䘹Oֽs:pfL*IV=iH_I7žr:!k7yӸ3?4l:)Tn2Z8vmbW3ǜhes iɿ}z_9u$ DTwݸޚ s[f(69VUo3S׉Nވ׽Q8=Bk9%J֓MFY9C۩?|(C?f<Æ ;xॗ^w6NRm=¡[+'sNtXG9Sw W,P== 'j Lĉ#gn3ͱ9&B9LI‚Wң>J~uQeaV:y?k>'39.m+cb;O _*bJV,NG9;rZWQe} 2RDg uG8b Cʊe2램d4o]'Q +u;Ç:7pǼ t q#p*Ċv/Xw̺ E!ovR(g`J; FE N?~ 786?'4$UM*w Sp7~sOGW0$@oɏz6vTqeŬ.=HoAVUtnz")N$zHANƠWN kji @/aƕǞm}:+ãP_ލqW*4Bs2["ΤC2Ѡt07r&LJ:~sCymSoW\=A*FZdb'vSdꡀb]?Ǐ"0)-~v}O-DDRt,}̤3ë%XsN;n{oz! T0AछJW[U,ԫj8,NF{:^ r-F >a,Ç饗c[WWdr:6mV=~kP,͌G!+e&\ z(8Ry8/ġ;?9& cOFZclǧ H H<oHlB+%Wg9'|T/gTɟ[ft{˹ :)L]bZn[l^9* (wBI2C'bTףwpe9"sjXBus8!̆&wNv !~ɦO-VoUH'tGjX8ATYfuMTKSáO˪ط'?8ODBOnW_U$/Oi:5!BHȉbFcKr0 YDVZ-3]O}'%N.2Z ]qD,s }D`@~O@OBR v-j+YCPA#_蝩0ɜp!Iؽ=[78z{n0(i:jLި 4w:W$5s# j@+JZ{]>vP¹ fQ(%XP9խkCE '\⸋ F9d ˍA.p:ճG0Ӊ˵'"% <ЈO MܙWmLspS -MF>bRx'ߝt &KVx>_S>xQ%D@f~.;0/;$o0)]VS!>` zR{+x ] uzFO%@}cSG;@agt5sb K${>CP0444ȲxUVu]ҥK{CJxxr+tW%AAYhǯpi BZ2Ocb젬Hh`%Djr,k3;[@oKo1 tOn 5 9$Zъ hw Zxx3%/mtk91M7py!}<\nmYu(TF]צsy:&e#ȌH"^:.`]]Dݫgf㰋-hUZ Ut_dxw[0EQAQʲ<>Hc5>H[[6TJ- W$ۈR\;3c!Nx=&h9ax\T9YيumLKB-e^BxU" b[$MhABueR3~ܞ²Vw1=dB9/x XH  +M.~8 **8(' 4wՔȺmpbq4Q3|/zq ?CY6OFetŶ2U0騯 Ff*4pXn:׶#u$i d@ M#UNQ$j_Hj_ f`Fk N>DrWv,Ac($AFH4ĀڎMA"J.QQVB#VCUN$+Ds=Zd .*B+LZ IDATAT|乇ooֲe֬Yc8ɪXԍFT-`2 ݤ&0/_Opyw7vܲG&`1Q^RE3|d >&`700hjDQLAj km=&0/'0B- 3^6KQZEh ~-Ԟ`aR;luqAH%Nt AlZCD,[ /^)MeJib55T{΄WHHt?WRǮ!7[kyͣl 2AI Ϣt~پ"r֢A#Ӓb 2gwt?F#gx1<2:8ax<`S00znec'"$07F'EB~cdICRR4lOԪoxC2UCktmm"FGg^?<gs DeBjG'P5(|ߠK:DppJ x;sv :H %BC_ b%1/:ӛMfO+@";Zzu$}kg'J]@˾kkuxMY8H#d #%݇;A@+ *JtlD*ǹD; wzaΔB ̛Ad!y0$CۭF }HC@BS$n2 ~f+{ݛ;'*LcA&Nu􉇬d9yOܘ)SBxs1}^:3pj6Klwe^бd%酗sY¥vIeN#Kcp+E83 S'm{|v6- ٷ-e7?$skf )iʀ]a[|Bm{8]`hmB%U9<}?{) V-Jfk; D1u&փ'lJ2f̶.F$ )T1#tTYsitw?ɪv2a||.zPɀkXrWhU'%^q(Ոj3N/9h$&#a=,%VfNB`f_EqB.hIHPlvOBUj@wOI}c K U=!%@c~/AG%f\vE%n8+El~`OQr%&z:x8/brFMa8?mo "tcN{{_:S%FSu{ZBOdZO&1:x.)у~nIg2fh"  %89WIѡb,(9x퍻8R2\{*:=>(Gs(۹hр w"27gŔ $ h%{Ww;<.?G^ ^8t+FNMЉFVqMycT M;Y+Zqex'%F5pj%ztւDH3Fsg`(3pɉgN2F&gH GRnԫbQ]fZ,N'xMQuмMSTCii  @$:9{ij  DdNaY%KGt3x$=CGqڿ7>ptFY:OLa!Fr+MH`!XRTTܽj[Ñ>#_[/fuvH : Z-`] 6R6[IQmeϼHN7|*X)W tij<);}`AG@׭`j2ƀA׍5ArZNؘD7e$ LwC'}jfqg2J|D(ȯ v&(]+  ntTv !g03xt HOaB~<OCcfûcWsvZ?A״v2ÖdzHD0XF .A# .T XL|ɜcWhC{G>ϙ?X͂ŏXNCb0`2?u\92;.qw!D !EZ(Nmx-@@ F=kYq#3}kٙs܏QurrՄ@Ob'm>rJ~+l,e <@,q =FCzRJ9˝v("W<@OGA䅑#Q*q5AatHq'u\5+K^NK[jQl̾s=,C2b{ATn7ۦLne5P9ŒJ*;Zi&~&.ovڔL:#E&HIg$h2qQ&A1Y<ج;$ab|Rgn %LLC)t'v&0!_T&i|N)#|K{rb  8 0 NoRrb1-楡=ۈ ց5 =`l^ ?M l&TB;&.V&D,{d`QШp Pd0așFH i: PX\0NO'sŇMi:|A Q"9N @tTB]8  ٽ}3u)W &M\ekH)U~"|w4wvN˘A0Lc %Ԕڵ,x[Uk-bd_aFZvagB,:f3ҹE/Eya4dLÞUW QyZsP0K016\Q"'gL{v6!g<}|%hFNÕp 0с_mϺN [FE!$?dHߚB$U,^|*jh۽T[1!Ї # l3^A![҈{=z:cȊ7x^''Һg Yobx?CHYZNm ɓv7wBP1b##qGkop@( 9a:N$r"dXTu<{3妏,saoIyM&$Q9Stۨం"Д. jh2 F1.u6DÇH(iwg’Edʌ ){:zt Wm-{OWh;d|Wzd0>_DY9gNc5nY ׄ)f"2E<Ag +D~SgU(h JK D\&wbwK bD4!u(5d[fƱ՜5btћwӀI$0Ƽ~4؍8k(,p0Ѥ~~+4 dž7g1qpA.հگW{`}kExlp)NtL 4C{Ⓨy] قu{)) $ |2(n=[nS)U1K'}{|E]Lp<Eh|Px'fPu~GnG#-# LTPG95vI T tk r 58Ag_ P!³6߿8qa1`]8.I%UKݼݒ $)%:h[cGozO ㇔1_uCI.i^-jn1SI/H!K: 8JC''uTMWx6<3>Ii|Ÿ0M47s줘Uf8p I6ƙH.oLFپa3=} xf%zcP<ݝ$5#L%_c=F,t|r4Br775sym?F(z A _")QkX077$ IcDIȁf!Ƙ\ }Z*m( YGuSI$.?$1HE%%M/o`(+:{Zb$cc)w~όF_/|͎U3r\?YN?CQ5.hzouX:;Vq Co>3)-lXQU~jޅV nJGr) %twֶs<,0S[Am-!nm`.h>*I?ǞҵoNWoٖ'qM+ xENP|jA/!?ns'Sx̌1&zҽFK,\dbwh,r^VR1u߅D|Ġ;Ndɩ9dQ$5i#03lfcf'.E96G)>z3`z`{-480Jc* Q8gw_=̣ru> _s섾+d 1IOV}8Ks1QXglN:y;1ip("VGY,ٕ) sb7Jw#3W$c0b2a1QbH0Wn~D//'P.6U5 )׏HX԰ȳL&~/$g0P֢. [Wk""MndGc)s 8!" H"_>idI蟷JUF”E2΁uX,D5~fXݒ-gިI]["5JLaY 6)ЭҠЪ1ˊGJDSO_T91@(zK{XՆGGw9c Io[P.A8a;ƳE4+1 Rɩ$n}amG8j UDC~ <1!*J$Fv4!HX,bHO 8;`0 $qR^_fpF! CHRbؠb1r"Qe\)r-4AA7|ȯos+Hٮm* WgzIs^>^Ofo#S6װ'ƒVyGC ^YVλT?81zO:q/d{#xҮP>3~hSxaCsB4H4L2vMsDtd0QQ?YgC";k"BrNt@}ABᘮl0ws/)ATJ K~|т)vtי|iM&Cf Q nB*NQB@#4;8L.`(oְ-3.k`o),K@6`an$4c$sfR bla8ޟWA~fVEgj#+B 1ډ]fwt9$9%cЊl@Ge#1ϗ_,4'Xw>E(FFÆIF rRDeM IDATA:S A> |Eġ(J8t8Й+E9f &LKz9V MXVn23;o8ɸo~xVJ ;!F .2e f϶nj"3psƯO,a(#+Әc3Jr5PE+N2k8lm<30CAf@hԗ\ŸOزi#[CI_çZ?I84[)ETp<oDAu¬>DCєy| Iz29?|aiRGg1#1 6v>96}aŪ&e5h&j .i bWOK01L3[irJ|'KG0<~GO,9|H.7\}}o|c{<N7)v%<tqd-I$ bC^ pt9Q7>6ݕѢh^9i߰VOP1ThNd33LT. B f2bT2Si$3QK[77FY@(. > !DTn::2tCj- Qd?@G֜miwki,ؾojݨH[Y]#B _QĖ̞X!\TAe|?SǞ\zə'f`/r  I2P a"T䋐D  !YUt b8e 2J|O\A-|GҗdBVL| K G.Tdgޤ0X4QD,ZW|]>m-ؗЩ4D17is?yoڈ5S@,vi %ϚzLI&x4w7rk-"wNfX)5d~|;ie2n&Aq~7x)sM= dM8Nur B :h5X)ғCL 4YF9Ւ(g0glEigL!60 .LvzZGgrmA5.*L{J %F0 $4=xD錹+SPHFO^' lmgkpkHr<195|[ַ ` 1vj|Ӻ#`E䔌+Z3F(tQ`/L(VHjD Dt]UT5,<~o63 StU4:D5IZ5 m=ǜЃ9uvrs]ő? e)ƹ)4RdB'*lNv:o>eyNDMK ׹x&JIyPaBS0ٶ~P`Ч8yHz7+)4#xS'x9)5 ;zy&MO^^"\Y=QlGfG?nVh1f@@Q艒/CȖ͐6X#r!DbSm#aR$@DahĔ>nd|]W鳘>- {Yx7LɌCv f];bM=?=SvԊ 7] Mq!^_'=R:hqZwccGD ?b)|A_w68ӵ\r.3g"ERnpI*)⳩o 9v>BATa ^ "@}'?隣dXEtI(AKu sSdOk0\2|3Αvn?Z#xLT1aИ`e".hAt_vU|dQcQV\fРbH-uoziퟟt5gū$E<ߤYɓY˟(4po~_Kl%T(λ>6G9ǍEt쒈 HDdRXr]  AoJ@@W\efw5^$ ӅέjXaGQN ++[yȿ˗ <2?Ý8Md峦wN!_u8W`3xBkdq6gUsI $^iUA!z!GER1o^ ۻ3N'h޺ e`b plm< Hc HVZvLM4" l6TBqڭZ@USC{Y>M#mř$HdlF [b4F|^_(r69ܸ(rߛ-Ɲ_ʹnu˷GFq癴uZ;6PfdAяԓ4GеlC?MN=3VcO/EV{`-voj dTs׽gH"k9[(">5FcQފb IV&[2ghNڲ=[>@Ggo] 3&<HSHxe_}m3fUbn{+TI*ɫv75'2mLf&ثSeew EEy`5cpUҴX(q4EN,!{:#%V. I#W?ťk{ó+o=u3?ea9& L$G&tOA~|>$ _GfD&e˷aX<& )KHC\E9˼R2B;(x?}Q'1-CJ8}f,#m[j[8lc ϶qLjzlZbIŐj]TK&+d9 Soa 4**;et `R FNL?4r$1r-`rS ҰEX(W6l!ߎ2ﺖ^P<*cT HEhQI|>X4> @ʄ Ci. L9wᄌPxo~PuVkƗ]1;Z:TpŃ ebj mJo 4P6E{J/޺OuDr1|uUD~l4)CvXG*{9|[!ނʷmSB_'yDDBSgOLXף/UaTly&l~$1%G\c" `iT5ԭsw++$ni^^!XsJA8?;hco{vL~ _|NXD4̦9ΣDt\FQf~0JW*KYkBՀF(LxL\}D08j7FcoTIu$n(CZٸ)0V<= P:^&+UbgJDڽ]X>&AOu?!MAUj:ecqd]!߼D^zeKH/ i`wzuJ;DP10( , Zҕ<|peYY,ZG(# dTz)v#W-`d&à)T?ji ފ$ES'V42m3¢*NJ+{{|ZBn6~5RigG8fW{y(x+)52JR 3:|?{:f>ɋNSɩ!Yvh:s]㊥9W.~I =ȷoie0LWry_%C$boiL1Iach80<̖qbrtn:`iMPnBS=?[Ra/ :hfj iDT"uX{1 4ĈLtn>mN-⹩[RQp{DkfGշS#@CkJ8 r0XyM!Hkw[`Xƻ=<]IL]QiZ(_UpYCaFIv5˰rh sj_G',.@7\R*!_.)l[&\199sF\x!HqRƥ* ĺwIs_cF[rGsXE3Y6 XJnlN;m1Npesf]^O Ɗ -7xEX͘_`MbƯV(cV4x.t%3?:qËpR~|L='k؎?"` <P1+2+G. N_+ݭXGFhEeC}<*#&Eg=DS2T2^K$Ufn>$| 4tAC=Q4/ŵOIƴ"7??8ypOwoLy\Gk0J\E'7hKdMUN\+4hHO#sعEK*v/XvVK]EUQ$.yGTǓCre]/"S̲R 0\ Xc W'2D*YrgMڶj՗σ<ū- %{~WJ"PбHkTNjiVʍ\ݦYS^[ty~v.|U^򡧅^QGM/#P P(! D\fA06Ԅ Pi#G1 WWcz]elFƋ f3WvnF`H]heh7X aoE Dz[f-ә"]"[eH_  T.8~#zbeEf# f!;1|fJp#`E<ɟv6LehJ[=xsGb)-AB*#;G)sU$d^i1fn7'?daH` EI$.3#g`-WCHܙ^ʵ} 65 nƘ/gݱ zEr8EEu{})"N6n,⛑B;Vy JlT}^~Dqv&iT9NQ/iӗ N?y>z>eo8×!q@mh=Q]A'߄/QnMa3A8|.h TJ[ *q|’]ssj)f-9ۜdt?a22ӔrKgAQn1c&m||iW0$an| [Ʒa$pzwEŅ̹d( r!0 )&䱭KP12t#sMD`AaBݍQ;6$FШYPSWq|R*mN=HȀ@EeSڤ.97gLqxu&eFO (oq9qg]hLf1hTu2|"(:5pjuML:nUŤaֱ 8䏚4% |2WgRlb.&\]9{zNŧ5o.#Wqը}ع3[r8NALz.狟WiflnʣA_]@enP:KCϒ%pmL|6K [,ܳSb*H9_\_x7*BؑytJUk'*2d Jf7ҷ )1q08!-38I%t+Je5! #+yk:-;O(OBC `me> fΦ!#i?VgJe"92<%OQ8  GGXϦX7i#`8wL41&[%v#0a"$ 22NLE>U@Y|MeIѬJ1s\VY zB9YnnzSabZЂ:-ODTQ㨖z,]2nu8 X9dWμb9uW뙽Bx m)5ùOӛw;(o~wDYGF |4T˒V>)APEՙdrJfLRH+s5rAJF/DMaR@<<׋OYlob},C̦ J+ZrɄdqWG-@|6.Cut'02=7^i1|Y #29d0SPƹi^],kA\#FOGp[pqv.dxf#Y!~Nu:`yVRA1K6Ȉ3ۢt(r=qH1sY}hĖw:ɻ9 ;FPvL~zg\P*s{MX IfPu-iYE""\\3WQpYȳj|QGS(cO;,Rq=VuaTΝJuciҽƺ'S_omI!*v<l NT!#F3[P}>[ IDATq4(!3C&xwtYKR0t;m8%r#Glap*N.o`'̩v .FYM8[70p""8J( sN,-޹,h P@c> ̺=\ݵUnY7qVsf y2|ib,.p@56!8eA >fc0v֬nԼi@TF>|m- ?~hf#-fV0l^Z(x-IZ`;p‚EPh&DŽ#eKX%r\b9Aj eNj5FDRIE#N^+lzI xt!zģíքcEֆFsݚs-q8H*C{l]_" ]qF]b DhO[k#N[HUjrXY/yd F hX c3[8/(pqwE>xE1=[aV7c׌17rpp B1XY876b߳y+ʹ3m"#h=%@*uzvٛO借]x>rdӚ:3͈~ ?yS[3ͥF?]>?UvX'.nyQyĕ]Ie,G|ey{nyyZŲ桶C>]$c߇x7͊XC `X|o:^~K0csr8Cݜ1a6J&Oö֡Aw$!asr@4]XsL义uIa[Meҡ"3W>) OgEb\4;(24Im+_ }E389h"$i{ʻsѨK{`l0`0{B'! JHЛi Ľ&7}4}N13}߻{xO93<7~ʸc-`5w_=w1l"2&xw$¹!d rkT75t`oMFNIA q%lsOf{: Hsc y3ĐK]:-2֫'I&s7ٰ!r \:ջ} ]G9ēh4jM9 }I*  Q@. 2`S)&SJ4$^UVMKKƦsnȇ[bS>FY o7זaIUSK.:PRhfwScgB25eh+Eް35ǒiA1QgD}|!+v7@'CC{ Or~hQLF{I*PnvUǓYP.6L#g!]Qt#zteqʨvNv唤HT}}kdX4/kK`L m4F9:iƞ>^BP!mV jL ӑuA CAA"kt0!,5j#W hڰL!E8לy>`G{ oɈ'veЕ"'9ܰ]=n(b}oZԌLIV+c9 :5d vU]T=%>}9 2Ս `.o> Hm>+x Y0]5Ƴhƙc+z;9,v˕W?eMT=2Q7݊e9cx|*<O F)vP9ޱ9<^*W,+x/|,sYdө<6؃nqp/^Ε Sά>z=f ~%ܻ~Sͼm}Cgx`{)$m>L,Fmbk|AW1F,SecmV0VDR ݙ5\XZ*3L'AI X4(%8vJu@ga]R0[Jhn8BWU۱cvn&"SP[=o1b 樳crܞƀL;W0bkZ0.Uf}4I?qpN$Q's-m7ň"$E9iIJѳ9+=I|!?:S'r}w"<9̨J'63>18L(Em`̔r\0t:c4 'E(8c=Yg +:Ihmܜ;|{:j%"Tf!<&@>wm$1Yǂ {f7 oEbIrm@N0,2& Tٳ'GCa3H@L`AȢr,A#ZR1F Di ;~G_xIiBͺVfW2O MF Y }/;BrNggi-Q̪,8v2B}{r3acsVI+#ةf}0Jj2zk+;]y|2ȜNu"זtةv;vM+;&YFǓV(  '|dzH7> 6;Jo'Ǹ9>ABT5w j (G?:ӱm-Y3Oڹi$ô%XPTbSFifG1G8zCɤ9$4qxcY{SA;l25?3оqEf`-Q.&gYdnGΛ eڈU`+}Z)MD{=`Fj3,(A10/\7CV S䲅ZAP,P1b:9fHHC0}#7~M.OmUK0ڒK# xtdK"HxelN D6l n۶HI1K!͡gFfH1n!rv$<-[ǜJ1ҙ>kf̐H/ ̉@2CR=A"C2CDaEp)tN6=O,-3L:xtIl2^;DŽDY>Se҄W"f@kb7q=\3nmQP[vTmĜO/=I6ur{# gB86\4m752-R]|r>NiٟR[:LuPaFK3<`xu ݰh:i  [ Y1tRɀ3ٷGewTWZ)ɓPWw3ŃMdf1|D7E2η=18vl%:T(#.3K,MY\7_nRVq0c1|EiOχw@d7[HJxȭN痕D/@N.?*/nQJ $j$V"\DfxE`kG2ю`G=uӁ{,e]_5?-`Z5i4EDbc"$ϮKǍҳOxÿb1CẦ^$XXp,W}Ɩ%i2:Kzf&u0mwTq 4;}:x,̹O^/v5D NG2 A)}w|G\K$5Q є*"k+ [ģx^,S# 3abs_Ŏo.j}` Թ9b|>{rw>ƣf31gfш|nj ۶.5Ě|.IԂdސ+ퟒ}2)G`4)rp H%QG,\yҺLyW> Uyjr0v>25 R  r? ~nW?7am-цA:D _w8`6|Qs6ImRz(FP"6 DKd"V_RM FA@ 2aOȒ_>E<'3워*6lͲexۻ9@~ZԇյVz5zm~R˅5DYƉES_`jYb(//Ƶ~ hZ {e jh~me}(0vsN1/tq8+X:|l5)b{16n9ĉ^wnic{m}FTK?،G z9U-c=)_G̗u@Mǖ25GC[lkSƄQ`s^+"@^=+7M fR{Li"}*+:7`0K t┰ DNKCM(WA=ykv!uTV),"ܬ`Wj L׃Q؋W"4ZWpi wP%c(c ;"\5Tx@hV˦Vls4A+9=QgcC6wbpJ-gW(VcB2w.Dbwt~yVjdԹ2G26)Ubtqj'j81.njr?4s0Hvi s9AnA`"3}`Pm(,bdRh !a8fB4d 34u_Vi(n+%xؿJЇ4K=u,C]%;1n46[y7O9Ώaя 5 H0ꊦ,"ZH bQ`xJ2NN v?XP=S*f HΈ<ҙNͨFgR`76i>-!eo:##D99FpDdF7Y6 DT:0uw`s=<1w'R.ȱYqDq.^5Fg8\w[Z󹱖c<<'wVlmSsL-0RdƖ8t ^EIA ;HY61!pLMiv9 \9_VR:/w~/?-筣X h t~5Ҳ>dD057TЈgg}a孂.YCjf)\61` T7,ogaФAF>̭8VujqͰ˄J~~u4x Mc&~ڱM*4@kB8ʅc1P^eE'KWD[CuQtz{ N7E~^k^.W jbozb:苑1ãi @!Y-c+viA!)YYv,_0ݣ%ݬX3LjCB?#Y'z>t_ϝS9bC֗7 9Kz q}]n˒3OK% 7|#{ޢ,sZ=swTKuyENӔϯE-LY"F=v[itp .䎣XR$`BSe;CÑ }dGj#2U^b>)O5 *Քc[n/n!#!X/61B0I! Z7Ҽj{S5O.$;\9??ctWA`+L]MJj5 !MMkcl $vH'@EMo pUQq (p+6pVMn9R"C"4HIG!Br! (ngHa} zHlh(/4*.Mǃ}194GPN@ IDAT$1BM|^A{XTU8k%WGg-n<%UVY>͵eLq%NE03@Uǖvى/:`ѥyKCC[n|,xeunkۉgr Gr!&o:.Bvd4Dd@vgf2$ B2RɚQP<ۯ1w\(Sa=ލ]qnqvJ R,n?$b*VuQm:cI9/)33ɏ4nCmQrt0ƛMx8e&XR]~7(Hu<ڣbL+2Vi2*S:D{]|EM uYw{Yv?L W{oga1ypϭ~dD5 K&.@~peL>xz8X$~FZ a\;osbǕ#BݶO?z:} 3{873o=ݡ3j4sWd zU9yQۂB\:Rģ \"G8Nop>ž^||mOM8 qh7GC4xA|qkԌΏZ_~kդ/݌ݑT'2ƀR &wlҕRdϦآ繡7iI/Z/*)%>V2 }l0M4o&;Yxx+ f ؄Mkǝ7.aHY˾ ,O7Մvg]2GUq縉l2 *rc?Q?;2**zg;k6Ɯa N]1QTb}44#y `R0x-,%&Ӧa$@dܯ`Q : 9ï82kđz8:8DO*yR(16ha_+"i՗Pʼ~ 8g3|3ws} lˀOaU%:yM-0BzQKqZnD 3 hp mۖ+?Кd r:/$κ?[^4eDcGוSZwfM銂S9IG8& @T ݻ?؁3-U|Յ+^4dU8aZ2r){HgoekI>@a|eڔՔ1_}-yk=Ofd@OŐTQcyhQ`q\{'_~D/cw89|5}?] ɵ+Ƣ"8rw?j-auO̭{ܺpIӘZ*):iC#JG^$#]sE~;gV!kyQxɴXg@w W뻭%$R:baXW#)0s!LdP0"3Fg] O&eFȝDC?sz328DL,ѩMbM N0(fq)g"HΪ$D7[̓4Sip""2{øTztiSZQJG+g,u''c&&H՘) k#H[[ۘ1cD?L5˲|W9sfAn  S(uG61̒XDb,[h9$8{ mC ]$zo*QcѴP ד~=?)# Gz &v1&d`wPJ[bmh4v[ETZ0 E Ǭ fx $G0RWU:  I9ġ3lrSI{Hte.X|e%t7'GϻF?|ю.DgT_Ѻ5ͱ.M4>,fCYv}کe7w;ᅡn& C~apX)yaf : *SY߅B zC|Sm/Ie'!䃼 ')ce5H#\; [LX-dq!b,y"qLiG\LNjf-T#h 7fBv2<'~Ela`_y啇zr'/[pʕ+z;c_=yPn*(l;+bnͽL|W*Id+[ dct*r݄ՂEds=݁B(#k'·lWKgƕV14@; iL/FB_Tx&sK5ŧ Hr~gctWfS:@KtR :vSv[A^6..>0a??Hxj2yO/G{έ%}+Zq+/UW<._%pK'{K/yq߭5 ۍy.;h81m I&?姧#,G_y}bS,c5 gӧnE+tk d8`MI09)LX,K[$Y({o>Kw_q3~+pjgeec;3 nRpXLe,R$,R'rJiA+Q.zKzdWUX7ϲ\&MB7HjƵYU1 n@t?;+81~5g|T/<$* @/lB_2u"i:I6؞f{7uc2f2A}9}0ZV[X\AK B,gI#Tl @+<W~NdX'Uu vvĕrK&Cd:߇+J|ޥ.rNc_^kyuE˥wLO΋{Sw3-_U7q+>sևx]*M]Q\^еwm },;Æ6ñAupF[b$ ӹ\ :ȳ$zuqbY5㽤P Pvk'+hQk7CCkھ!CgK== PXb"Z>⎀e"j]AU7j U59R p9fs`r˴s{Bkvdϱd2p K.ݼy35+oP[oap-x<_'V ],ɩc]~40678$}qLa~¤{u4F%/3bɤ3QܠsȑT*c y<=4<@pJ928 6Q`Pa6teT7sb׎b4P3ϰ7Lc?coGl:t:9e+E1+d3Xh3 7#H[(ǻ33u+pN25W͚7߰I|)[YOy7˯ٶB {2Zm+2g}w'E`'׿|#޲H2ž$o_s1cmc_7Ite%IlY1(O=NeY Ȣd7 ERvuPBbMωq958[MhJңDB)&ʐ`]GA4ΙRqVid_6L.1ʭYPżOi`=mzR2h"Z~U(T4"s h%N'Iy]6m7:*~>nDA ^3Rz+G1#2<DkDJF2"gwWy3H2\Pʔ"6b 1N M(ŶonkDgtL΂!U{o+\%D~kҨ:+9 #a]oc< &K&cRLEsmώi.ʪ>>M"=ԙS*_Χ-\{OM!aK+*$0٢{A#Kp)yE'͏O.2lq "!Z4(N?uM{J>].bW2 " DN\9u1Xˉ9nn;CP)dGK#}|~RYt@]B=RB̹ nzqefR !B dd*AEA"i>@BK-3(~~!bp], I_`b uuuQkr)}1[ZaY]{ü9|+w^\9 [:<22wǑuֽЫHԙ/oᆴ2I4[Xtf((3:=0ZJaZ DЉ-X^-1-1>&JKn`)'~5J [ɿ9铿ŋ?O{9BR&],߂_ 'X E௳d6 IDATI'өq@U ~bQ9mΝ@[QbdQbTa Ɨ} F9aGg"4wȇD┉|?SExh0gy{6PmrΫꉼ]48Cf0w5gYsh G{Re,bCTdPG0y+=+8B+ -u,a vnQ+޴|?K+^8׳b((@N 5Ms\+Ul"2h$ÚOܖW?'^꡽+ڛidK k/ cx_ϋ&.9H[-"qiU" ')4Ǫ85ag0c5CD, oǢp @;%t1ZHE=d=> e+3J(m# fpIV~lCTr6l$牭@hgӺ__coAV偁]O3|> Ag>,f_RLDw'W4& qd}V/6Pd"cЋSWm*3›RD#Dm4KHvc cDqӳg Rv a JSe8gEl]uzeݭN56?AjVm]7B?YDe9_ LUCT `FM+Ê 4Kq|b=!vY.PT0O>:cu?oܽE)R 6b6'xe?],Ka(F,Ū>J ~:Ņ|>MM3Վ"`QhpZ i`eh{$HF5TQ戮gq<{pdal!%XoYcK2V N=q1Zw$"$bX`5~ZbtH EBIzꭜTLձ0tS̘x?K9>NJҘ<_0LG]vuKr&I"12b$vY;+?N0YcpG+f` Bz^E(l@&odo1:OXkZfsOOn%cNPYҳIl䐥ʹw)$zJK bQNGT9 DJ! !erqHbճ lht;q^qٞ@^*ΞDŽ3?#{sȹ/hH$6ۼYȹ%.7~^ag3W ʵ|E:^kHe ?U~&xlQƯX~B3opw_hf[x;ճxxng\d3R頻׿FρX2_[/률^6w۸YWU?ns?B< jfPVGQ=ͣ%" :Q0 Z:wb"`3b0-,cS6.䘳Xnf lv'u7 eW'[# qA,%urVP0>ǑH`902B$F(JiMݡXVT*1F!q!QAJSu2Ӗ(?p~D"(?4RZţciolG/ei1p#D,yVD:/Rn"PCf_/s$TRGZg~kZ0 1^DLk-=CSͅJr[UHXJcoY0T&Z@4\ d˼vW\ T msKQ ff色6~>b rR+Tqsd4yC©p6B+p3n{X=\y3^.y$Nwrcumk '¡yVo픊#CU҈QEIbj&c$Drv%sKm/CHƬrAB%E0$ Itbو]/0B`U$Sxq3ܙ;8 XN1 Rϻ12iiC#$$,=U_biQTDHa77>xڹ/DEO~o~ >X3x! ( f 9^Z;O>H{ynVcw9ɓM0g';q Fаy(":!a0U[9c<&H`n'!vOi+ ܱ 'pfUNyiȨsv%g;^721)ݸHrF>O[4a숃Zh;0b}aROFL{Nv6hPT\EB^f_=DL":D^pk 4ulWygf}Bs]}Օ߶.vb1ͳGp#Z>~ۇLn0eE5WTQmc0|@tƹy=&:w_~ʭd# k며qGOqMeLD;:#+ Z|60K}4yɬ5? <% #T|NaWXgDx?/z)KX״udz|%8/쉱6eƂ2Y"NP2Ϯ0aVSygsYi2ld9#ۦ0M8ƒAb'f-TXӓ#%D!!}(oVv4Nڃ^R`8BC/g$ Gh5a,%WH@M$DC ?=a)?M4lf;ya2Ź"renlA6 Rqͩ2[߱6???HKxnY}x &Z'lFNسOmpu5Ka.$ VU'wNZd1X;WCZkBDBE 3v"D 1dhhDIj~(n;9`%â9'LRz*͹ni hP el.͟ 7i]W{ $L=D=y"'y8E>Gs<  %}!ĥv_w%-qW~.F6r5>W񚗤[xY~z-5ը(2 ]ڪ=z8j+߬QKPѧfg$Nd"+e=E o'ycɴ:ĩ)}XQ iH`R2AL5^ˆCH 8BTRz a|`_r4&0ѕRAu` DfvLS& 8yy#ДuO7򖹺s+PoO1pO?έ]L62Ƴzo%N0woJjk#eDB(1Qw  B>zAT aU$l?!B J"E})n&ip1AfOt(n1'(!5`6H2f`ȿq^*x[K9Ll7Zώ m:4H2.n1>mt4 $nlZ۱ǙT$?3y9̵S(}j"Ʌ<"G!F_\ءB3D_͘Lqg ֠ )$*rtmcP@1G 9 F, F1}PgbR>s#)!5 4RdenfK W#i Kb{u&+4I! (&0?'b;BK-a.J2[;&X 5=~Q0|k'q-B]QQκ̡@U=ȿe\[xi6JZS_u70?,K>>љsap)PB{u5R]ܴ>;s5pz#Ev/8s}˪>|łܼe|upRUBYWDIȑy,u-->޲kOt bz#8 ;K*dM QIeNl^?_6Sfe%8d8A 9=\SMi?Ea[Ǔ.@p&omh5vaU#OTK3M\S9[6'|ȞOWqߨH$ Юqis-ljxNS :\[$ć~?_2 ^L"yDT:?evsբ, 2y$%q l:Ïc̔-\ 3ʳYݶ~6Xs&ėsڣ122A:ġA/l-9o7UgwXg\r [L<$<W`sϛm<8sL;w#;8s6PJ(K Yq*Xd{ ¶J49gCQR1PT$fSf$c?9f(D1_ M$tA44LD  : &0tGI(X̜>"?BT&I>(!=&]N3@JSMa_ov1cFOQ=ڍGcMHHv4FFo+uA*@G &԰9=W%{0oVyݘ LTŗ՝'w$ `fqQqs]_^T6_]UlIPN{FbxEtXP@#uEoCKO#Q1N ~;Gxkڂ@01 \ٹ<8^ɓmS2o'Opvޯ$UƳiTPKa,uQm̷kw< _su؜qʜcR+>*/@ĕO|\ZZ:xC* ͜ *Ԋ[y2AAc̘P蚍>7hR;Y5<6''EQ\q9:%_] , 3iN5Dѐ yZ1'@u ʤ%15eל7ߥ y`RdU7DZ5EO/b1~ʡ5 IDATS6jOoz}t!N^ ~}/Ma(tgW"%!PUC ~Yg؆ccS7Rgb_? l[=͔փ"iW/7,(ڸiB4=个GGREAm Z=~m=IVp)'zy(B~¯^s b=A 446bo*)<x.4s *.4˯Ll Z:#Qjbi[ rr!+c*z VH1 DGYmd1%IDM}L>Wi@z I<Z2. Pu"%0aɪeF dfqAOL'kɨI5C1cogLHZz:nGTf )K+3O~JIQۨW_Yt' +(v:` mB.)eN)4G6:|7wx|4Ddx"Zy0h*vFpe 3s{'puqԗ|?b㉩A@efsC-SlYDQ{*|1Br4: 坧h>_)zXvˑW]?m=P`gְ ⓷yN4u,@18ptFy R*NIDPPU)E(xt]^ tN~9_nߏMk]FʱX<y 8ehg.[/~<%儤 ~P. U2: Fe {!'|$?EމQu>fq1JAegQahAfw'w^%3c6}e8eNG$ʷ`#!Tר˘euϘ 1)F {9!C8,`ghM^"6$ ]idpkn>0GXs~dW#K-Lw'Rbh5ׯ[LF55> 2GLN;qu5NIDSl8HB#.Ma]-J\vA,HP|n?jqW~sɇlx A/?!σUIUoՕN]r>WegG`W*'B 5 4eJM:.ͦPwۭͮ(xt8-qDaӦI6OxAFvZYĨإN~8IYDT2A m`wm D]`FFz}qL:2>QW0UmT̈^5&x U+g JQEoQ}#*f )sJFFjQ#D'GO-]8n^h7pde$XH(خ\(-ƬMaӬ,}TR/ǧÜa8Js_^ &fc 13+v%CU},X·],<0 ^ uo=/~sR>+EXcxbmxpxJ- \ƓA_'g밈5v0i& 4%Hq\~$fD;܍ NkfZL#ϙ/ pX(EKIw~5rT6&RPx/xѾ oT#s\O2@3^ ȸxC[=G,K(_?k۶oٿ/^}/&ʬ ƉKвOR9%3ZKQyS^9((D* 7$&;Lᴋ/Ă1 sUnfu7i)Ȓ22C=eHS73LTcV6j҈%1lj&y!Bƭs"ܝk"Kj ®Ah"]!19nb;ԟJ%8겙8&Z_c8⁄7͂ˁ?ARtS>˞ыH0N;(PPEAG[!ܧy+̰&Ũ3lJ*ѡ*Dt8NP0smR"b1P24%aI9fo P~UeE]wMF@(N 5JOn䮽S .9PFgtG0T 띇2"eF9K/9M KXZL^Yd ܾ_lvR@dwHLW^mmtǯV]uXHBd&Zu !TY%9f=EJA}|& ڇ6T,.rͭcv"əfv.S&ID)WHL}| Ɗg`9g9Ê w_? 3?U>pGDHIru&4E`Ichێ??U Yf$^k‰(#FoOu:6Hl.wJf/ɬs%a_Z5u"G2:opJJ)kH#R<&z!ES=nQ'Y'm)Iok];Ρ:.1 zWBLTJ)?z035J J` -00&ܐBX̌N?j¤'v$+zCL̟D0m^"UcfYT4Q,|Vwy=3xzp$ndh29ǘSaMߧMW}P-G Za–ͮ$Zhjxr^RtEd2_~^?.˧އwR??}YHSQ꠴vL-3>>|i{ &yޮ6LfPr8:8ͪ.@_~M )ڂ Z \Y;깧XӗuJ2E#"1o~AQ;+Y N)+>cO~9ǑJcQbׯR^Z8S 4l~_?lMOܞ >rq>f4QXӌyBr<;Kژᡵ F"a^fO`BCqػ|!&U d O+i&va>.~&*Qv" ɜ G7[6J6g~w0aokwv;a7Ά;ٛd/쵭j/ɓ'7֮~_ Lp;>gcdġcWMt HFض} " ڧZp:)*B'TEOxыc$+w#.㒫To1Ķ($fd3hF(;^vޔsndR 0T!D1|Ÿn2c JזTQPvh:%3˂NYeKՅx|4mP̷qHE "Q5l=Kѽ򨺏,1)$f~Aeʛ.DoڞT{*FEupG)/1q. d3[?:L~~u6 5X)NK)N[HX@qh HBf]~ǯk\3g9uv64PPfQXPȞTn,rooExaʌU"0.Kas/1zҵ SKg VH18RGT^[/>2SČ7͜v[߲q~}HLw zؐ@&/榥XHNHh[8a&9 Q%,+q$D1ddBSVdt=[j( ]<,H-vډ+ T9pO540r) Gk˩@bIJ&B5/@$IK=?=^<#'ܰ\'6N(jp Ʀ2ŅdV,'2+=Aly52S \Sksq\:s:ňZ6BG?Dxj{2;$K5Se˻,3#u\?d62 qGHmҨQ!ƀp?H{_νKKeHcy၅g7y-]m\$p->0@a~HeOMbUlmO1~q;}t8%&L &Da>qz4`!eG^H2l8zy~siyէۑ =axy {{8QkcC\{%\}"]+X9a&;ߟoNk$Zoo*̵*hhݰC#4A3@+ئq\;۳'ؚ{rߍ]̓m ,G"K{hܐ)4ngVnuIp8]8#<0%jsCX>o;7SZ>m>zGs-LhCê$Nw u+ȊzT6|GOo*·H$d~EN.U% iX#'(6qՈ'&P5MeWW4"$-a5,$ y&5\/ǥUtC4nƔrcM{}*0G熽9sјו问|˗L*!H{nfVOEȍxf<bisP((E!'fqXٖ:~a\XE\?FrCNQ1AD5lAגk$ګVϖUT8-! l!X5:N}PhC[\u(c ;K? sW!.5j嗑k߮Nusn6|\k)rl )--KBcw.rr)oi# ܺkςBąHT;yd;ۆR(eq麦q#Ur?8k=M0lHؗ=A]+3w]??e$@.^'L2W+ƚ6S);ֺILpn6\' $ >`Alb?OOOF@m?t27ID* |=fzE)@?C##SX&fӵhO"-H "[筕4uJ4 '9Bued"o;I.;!gs =#$P߯e)syyY__(%KlsRۖD;zWS>blԕxX3{?޼F bu`wlvmtei#sآe]J_<;$PìpNjR|mMۆU9jgiT H3EH@n9=PLm#UXU_(Nsв#$hŧobJ-#5aE",bSX2s匝JQ9na_gYggG7.%<}E|^ΡԺ~]U!'qMr '_= "8 GSN:]8`yKRevߝ`o,+?k7<q\z< Н9jQ.FNM.;w˻Q:G؆c9.<zz5SCGeMR7gt[o9Spټ-{@0GFTjZD$u@1Eás]}1Z{D"!dh#A([/Y$ ]] IDAT_1DEЭyv,V l zDIK4  d[QcbL!W|(``/Lvn+jZ˾==_sDYXDl"w9uU\؈ VJEGV %GG01t?gNo(k`^D[i l`M'-gw!i0˳3qN,\I &GN+!sDn)tc-,U,m"g؊ShaH]keXSbwξ?FVW } .QĘ 7qҽE+|5:SzM"dNTbջM߈[DU%x`gO8f'dF0-SgΒyl cY!S`W3@810cΞk8gNE$]&w8`eYKpBbkz"#,,Yu\G9ز Pm&_M"I8Y3!yR| ߓfiQэ3Nyp+7|90|jf"d!=;A~djN.΃'$EB&tS]{Sbcvn}xSk82; HX2$.W G:XRIE9?F~hܕ>4 (.*~:0;ŧcw9?t掳ԟsY5V)yL,HQQUj ]QHoiޅ 9j?]O+)7y?vpj91C/>]&ld"KC8;7^ôĩT~ewqEnV }RυWV aYUtjiجP8ƏCf fNX !ӟ=ȔbwZ"}P补QU5;~Б/_~4*L3y&߂EA !Lō-1cNXsP|w=͊ǣуjXɱqU/?)"O;- O % VMr<6b QtlNAx7hAJYevi%qڰ݇a;E4<ɋ,85ːt!X3QǞ] ߄q҅}&Gg0m>!>Z'>j?IQWU$ʁ ~{o6nbg:oʓCo]sj dPyߞ݃ubgXZ>^uSLCPS_OG_0n(N6| ]CF ?r C}a("{Rz X ĔbADEBVA^H#e<$z:ۛgV*W]۾]`tD̴dbbcsl I`+1Җ!ꓩ8QA"xJ]6L:;Zix 5bt%p IIB/1 gWX}T^N~"x{$g !5woܻ a82(.eFrՠu9" `WolcYEJgBTUPt"(|͎nU9ܶ4vsX+c>kCH`m7:h e$|1Vn+1';b?rOeN΀Ax`?P!BO31AՕo>/..9#5I08 |˨1dumKÒ4!Nw|6S8 @K),S8,{sۂ38בiܧEKNoEc3mq2^1s9?~ $X 2$5ƙ3v݀I!ޮ~Ux}%YtF\,VL NUi7/}Ff e -#ZmH4Z 1g~.[*?%x_bE+++kmm7i.X4F`Ϸ:H ;GAtj7ӖK_alϪAiE<=MD+uS_ 5t5(`@d(AM|)1eиT(*g$$աnI&ymO,B˥&Gﱌ_~MHص[$i WaY&l/>y^!'Y_(yon(f|.yGΚGnBC$N@u'.pϺyf[o+uT91'}樲ZhiU/wH-m*N`pLGr[9oc{/S$v_MQ]/­̺1XKQON-ٍ11Ņ9`gWwlk\ zqvӾb=GF,# r9(Xfc* ( a+nghy:2HJHr`1x=hHbOYsvt@ vXhPFqB#'Jd{ 6 -`A'7MHMUy؄mӤrёvX'5Ie-~>N!Oղ=NP;mZ`Plj.  SOtE3Ѵ9ZY^$k;"Ls]QgaSs ktMDTd+X>t2ցUbߜ\V^Di~ih?yc]tqdTJœh'simdk1Ś>c[Yt49%9F l.ᩛTE9> 9"ܰh>}9: ^ ZlXG4n_ ehtrw [ɍ Lڢy~.|.XQ"O`O5}8nᵾy ~ywT mA#c5"Us|[:4jJ;/֋ iAnɤ̝1sYK #nfOR !L?S9[qz_CCj:u??{샚׎~̨:f)s=űSTf{ j-_1Y@܍ $()f".J-Eml6M9b0nޠmPR1є`Pӆ*`IUݬ~X?LX P>>HoGC7M`H?,w2 q[U<~~esG\Гo/pJκxD\=LrSdcς\ Ԯx{ٿ)sN>'xju 5$ڸuyQ2ЧΛnm1 Ǘpԏ7gB+c(C:jГV,&߿1S=#HTyluY%Qd ~m# HIj!– 6IembzCDvڐ Px|`5A& 8HcmJx]Ȕ.SKD@40CqnfE{ wwgd@[0ЗSÑ[N`48(ԕ0 `SpЇFYvvfyy.pc1c\VH(=m}z=a<|4P6raICg,"h5$1Ut^*'7"D#|CN0u6jK-4]Hp§ro |a]0+xzSଏLIh|[y7若mkCLIYK":z;n=}>jqp5\}'Ih|d㝜$N'/>~97b(nYpҒǷn(ʬҰX9_'6e<8 1 &j8']).fW =}M=n϶~0"u5,?c2܎dIMp6 v RAǽ<VCjX5GqH 4: 8NŚ]SqD.bf v bv Fd1AXS` 3у$0cIZ!G|jsf2(!FˮG%eS3QGwC".GF?C a~W;yǶDOkMy~B̢2.q}/MpݵGL(vnh][7w;OXxq$ $+ff6Z@;v7lsRhA8M PB4 0n6Pa.-8$3 >haKm=UD| !*LH7p Lj]mbB^N$)_~#(vUfR m\o#}Qgd[lZ`Ԅ֣R`X2xsu(2" x`LY6Z SӢsEƓ_^C%ќaIOc1,g2z~`Kmk%/3 8)`Gǩ06p,R©zY͛_gػl8 ' ,ppp9'*f$ƚzԵ|74 7fx≝۷o`„ ---X;~C̀":N-}\ bu!IbX6>A,+Hm=M[:0*}`eL zۈd)[AnP\x,rG 8,v;‷kFC9RƔ9:蚦fپP?=$Rz5\ `Rm|.P6 W..==Ē&jxjXtY(kbhjDy 4,*goH`́8Ju*Cj&ܳs{Q.\0|?Vj1 ǘVyl-Gȸ$Ͼ7oyv m maeL{١Coj5cYskf3  v7Z6H`6x qؙJ'Ƅr)L0>ޭybg\,WON <<^$F?9G5[iXKRUK~Tڞc]JuL%>nﮝ}meռL JC|^Or$i UݻU~_S3~x^r[KURKE67эܽQc]%.ش qP5i1߼ c&INju `F k8XTbeu‰]HT^Ε&Um/B/qt>iFZf!̦"/2s,Vl$Ism!qIam0uyA[J䀈@Ly8ӿe֢#N5k7ݔH+GNb2LzW^yex-//k#v\ϵB߮ě3OvAFQ̉(.0 >N5p8=> #;53:xD?83)xP7BCCC*N˅Õf gD}iY]|ݯ~p~:Y"ߓ@Li IF3XƑ$`2v ]ak݄.F\eDV6LlNLWw )/H6ax"p!j,r/C9q&I*Mw9fyu b5fbjf$lvAIoz1b $q}|8e!ԖM936<ᢷYOnĔآۮ<9%^kX{%\cwz\qܔmM/i+x<nצ;4 ( .&z{,RN#ECWy/vsr.'F6@wpfFbk:ې5oPd ;ʋS8ԉ$+ga^)R@F מO-"U8 0agTgh{No`영!L%~\py_7X傩S}=ѪKgҤi'[W#l?qe/ۙXI "Yb%c NO;G48>xˇ8g)XN9 IDATyOn9zՉK Sr޴l 2-*2x{>vJ'؍yy!g8$*'-[IW_O\4Xd *>&&3$ O0X?cBLzf61o`VAU(t ѰiDM |6,jnưe\b;n-`P1Rcx _r(AБf@Di[wޓlL9;j"IHub&6p›c +PA5IBCP`Js E@p0>~s3~iszvMq>m ,:HJ|NýIGga=B,+Z]Uʪ,oDbGFYmv\Fp - LyC"goZAzGu]o ^,>3fL4χ?YԩSw lWZ_o>pYt.39IT#5-pp|*Fm ~$ZjrPc|sVʪPq`/ OA)ad%'$͡BNxsMI⒑SH-ٵd$LbH lKn c8Wd8#iVK&CB#/->.c,ARSr{=M2<%*/Tg$Id%tܖOy'F m‚e"1iD6s~@e9ɲczM7}p(..&Mڹsph[QQqٳ׷r|5/qU_L^ UC,6dbAL3˳wͻ$bH#oIUHYm5MFr{8H|#B6/ؼA} ʏ_WMGN)vk>G9d!5(,+3LWhڃHs&rfLWx ݤ-IAd(I_ s |mcwO;+Gb_wyxWy2:[ó{=v_Xۭ<ƮƀՔ Q˞ xvGٿ1uũ ssL(IwIg(gul )Lp=-.".3U~y)DMJoQ|л'1ˤr5xo-"~!Eќ$ag(FO^mX1UɄӗwao#<4 ~d\Ă4W;צ˷sWp8#?7'g Dw0"EKղ53DXu6ͳ .,]zygUpT N2Of, HOiй p2~91azx/6Enj| ~y>BVX3͟Z#xO%߄0`~ \^;&gp[>޳fJJ{ })Diqс0Ffq2 + #[M%+uQ1v9dA%&86QMt AÁ!9|:˷=oJ+QŻ8Jt f7Q.go#U&ws޴m^hfD-YM EB`XE$p+GM6֒OZBQ1n{;cXxj:p6{9xׅSAO'-5@w,cwH%r,02'U1b1nAT{Y\M||;;%(9w0|6o(8;ݟ҄ !>y-p3M*c'4k`W'h372'}4;<1$`rA.(!S@sq АLwӚdulRR?y@IM8+l4&LZv ɋ;l adzB} lUeLaX;D!N$Qjy[jl)6R1@_?DL [r=ySfRP:\Ie&W,l! ONiGR3ĮfٱkQP@p)-H$hz"l%C Ĥ\v8<8=na;ׂjģ5?|ĻcQ\,K86M|\r]w5w`08.N$s1k֬JŵMMMX;eʔX,껿]UݤI '1$扝\3'JMowFywMwսwl:cLP P! $'! -PC1&q۸u[ۋua-y'y.]{͎FS$}9#0aiMg5 fD3Ac,-{Kٸʔ4&J43y7<| [/j~ъ1}[]}_БДsdn_Y}4m_k+z o*39,lr:̓p\<+GUjUUSk}ÿoÔ+ 2eb# +9{HP‘gxL9ޯH|7 JjKt@G(.8za" r ')l$ !u )mB؏*_mrдė2'rF]{i-Sw"c7h ņ !zJ~+;ЭDJi4`kaO/#<ƕO2y$^MA]G⩡rNZ5Ol'7=J=DGsHNqh{dki==8zw-}Aw8BN!k TFXqpA&f<(0 VEpj; hɔ+Lή Bnzx+%NH[!4s7J a8\_<7~ZZx!# #?QTWn)NێM,)D2 uo޹{;F,%U33#j>=L:.B*l-e]>~HL7otdx(愒Ghqeh )ĈD=NBJBw IkmɪeG />(p (((D"f+KӁ@`ҤIuuuXt:47|3uTY!bǙGHN[w-fUWAAC"6gtsx5AKSvbaVgnbس`4@'mUaCQ"AB~Zv7oe=rI7b WHքQRZe5MGʞ@,MsK 8},μoySkt2^,j2P_5a $ Rht6s0tDs5F\$x|m@ḙT߯vA(XYY),֮şM)?tB!~Dm- )(U8_֮g3QE>n?{QMz٭()Klks2hJCm"ֽhT|:*ayq=ٝLvsxq a2g+M_zB^( 9dC݈t"bÎvja5 _ r1ǧaYS F9@WoG0|/d `{pg;mEӌwGS Ԁ ^DR328x-liEO :i8(tpri\e=]qˎ⟁CAb?^o,3G6SWx4!ѭ#}sߞ[.9]SPʉ32Cޢr4|kۺ_gR-N,KWP7 t5Jv, fSnw5<ʼ|d/" 4omy]Eh`iNMbF3 Sf_y|:mΧܶQ]e{8 S.)Pu҉Z^ɮ8-i GgC(0.FD2Ҁl+ݎ` # r\%KM66n|-_gHv:Ol(Mm).O1H418t|z杲|؁x;~+4kZ[#ɝDQ4ܶ<ifRǠ0+3n}2`BBGT݁R̖}+Ɂk^nc:8Dү6zl77zr ,ƉfHd@7p}558n,ܭ19 ]QbZ j\Mlpq WjP(k.bC~4+0n9<ہ_nљ`D=l&U:(YB]'rVXwөTu-0H Ra#e>>xN7Ⱥ):\cE(6at8݀dwB禵e^wa9whs(cBK/{Jɔ韼;PErnJNf6j@ HR_-198d*'^b"tw?dgfu3 'ـOcE3PM av-#&Ĩ9wHByyQG%IgeYNmv)UXX%IӧOy\. mwX[SSBiӦjOm]=3owxt+<sq-A2e*0! ~=Rh/A1*b*mÍłU$ N!=T9r;-%gJ3 .ѴBSTٓ t2W<8,>COlK(" W=.XD:eD'H";VFdf\[Vea}~q'&0rzlgYPPsX{VtEڃCo6X -~p&<>5yTLzzz|>#Wޘ BU N'C%jnS0)ElTRF֕TTfc3~ K5<eb8~EDyM IDAT\c"MSb}FvxT_KxsX%Kwle~^mA<rO? wXGOw' |,VTƅ 4xz//Ο]K lT72u"W\'_~W}!ߛ Br'Qq9UROG;ʒhO3ڢ/YO%?U 8У癯4l?ɯ=HFGOY,, n1h Etz.!ՂDgo c̱)+^z1n`-&كan pbmrnxBˋęeL1O\;ιpD =])©{{*q yFӎMŠ9XS G {wD0"_M6䄜3>{=)]OMH4sb?ۖm4/@Na:W^qԊ# &[br!έ8I Y5 H*\‰dh4rb_xN8ᩧzGysכJL6mIII(l'MO 6?kÇoii njs?~Xܳ3I?vo {e&96{}wBwz?rh-ۋNYI%W"ڨ5wBa XDC36$ز>0m|ܗSAB0xY;=Yr׃j EpW3}'cg/懕JP"?f\yߺx֓ @q2L )f:)VTVx'ӫ GS1 C`xա"_ӹ[Q'$⁤fc:ѓC_wg}1)[Ý}x5:B}qE?ŦM1 A&cs:A ,T"_dDFT(NN29 `AhsO>㛧V&^GK*H sQ; !tI~5ۋMAR@::\v"ի?T4<ۖ,otW ēKyu%QFs'ܙ6O܌t ?‰N^UG}@7uFlԒi*]4a[[nznXQhƚ%nYqϾqIģs7eݬ E0׋S$1qyTrJ$X|G7DHx@hb)x6vT6~1w*1VAʏĥ>~8^Ix東w,gQw[r@ݵ->=HF-deNISɤL%&;z~BnB- ;2ve8sK4wkP1:Ls ȱ?$ahZv$p<1[l@:IǨ6mK:9 O> i5XO~DizQfَt4}Ww)ES)R Q_{Ȼ"ɧs@A%-ҜWŵk 6g1,D=+|Б<r_.3g;9眓N:iFf\kE.qfOa\ǿoh_ރ$ cGKLy#3O\wL+C ;/!} gͅtD[ױr)%&-0;1ZF"CzfEL X$&v 4@V\AF0A]/ql4,rᬳO,*b\=~W:pY#A]50q>`; ͠:+[8NE9 8Oy({ 9F+NbE<ϰ8Z,ssQ}>RIzqVhtt&!j|B[шf/[ݴxt0w cGRaF-Ht67ba捀 [n oxB}x<7_w9NYs7}+瞹el2?,ZNb{Js%4w>W|$>m%.DGw": uScf2iRY~x[H|OuLFD+"yN282%Q'Tc3=YHHJoZRˍW/x8cw3H+cHs/ѵr_ҼvT]wu(OV܁bsbQ45Ej'":ua^Fed:֤YV[QS`+8 2G\N%uYu6͊lL!CR`$R"dd 7sͻ}?Ï2{<;;:|>ڂ+nO?_{2?riiZ45_={߉,WVVm:^~}uuuYYٿa )flh1/Sً1}w9s R3X~e¤47F|ן?mĪOQ3٤CYqή95)R⡞9fi@gqF1|'DVA'ol G=2_wǣ<~4G Ue撫cgot L+a#KEdv5KvplYt. "r XKNʽ$-wpD2wuǩ| O/JS&Nd Y TٲƄ#'ቼH{N .)JQ_Oq>@ ѭc& /a5@ uP0bb?j冝%ifЖF:.2KI"4vb GUm3+P_@v-fG?2'nﱏWF4ML6{_u2~Oa3/o:{~syH /uD_嬌^W Ú$o6h8tP7+FhP#U5˼_>Jw2zM͊ ˏ8zI I:?=]Ps]DTkw-{aecX&:{3``VCOܲIpa)ܜo+![𾾾h4D J[N;>sg'áVU$QW|oZQCO0?C}G,(nwŗv\Y/pPtXjijyOx'N7iMgN9 ^B]l:{.@2DA+ѧ@beu\#N@c4^h|\|I{2MыdƜǕf)KaIhb4q$fWUzkjGE_FcЇ=Efh";AAbp;w7XOEDR" $DcĿv[E[Hf]ҍPLy 3E{<Da$ & "`yuȴFo&&.iPX,t\:<{HN5i6̢ӹ\胾&VUN45#G{`nWZMkK.ϛ3KoKɔjd:0H<]G` $FPtb!@:IA='8c|3/-}Lx[x1<.=I0:}֞ѓVE%L\/j O=:cNK QascNǣw__|q/Q^U׬F3}Wq}flSQNy!koVP ]^@YB ƍh$%]YT ~Г>;R7_-;$LlyٗבV L&:L;j2X@!2yE*(s%t4!xК\7ӽ锸rzC錥XǀWRK~ImOP1 9w?7UiW6: ԓ1Ù%Xۄ R9m`ۛL&G=H$D(Bee?</xɒ%@<7t:ݏ6- 68$TcǎtIpr_n{6WǛ;Xq.f4A;e3P;cMG☓I%ؾ$iVXp[jE;(W,Aowx/M19hqғ!lД@F70a*c&W\T1EDp/oC佦37E[eËYN*l6ӧ0 Y-KQvB{>AYT>NЅߟB! ,j4iuY' gY_ M!! J0Lv˟AlDYOR=`UӪuŠ#:. 04d;LqCdXT&hS ݒ+w%SVc{t xO’XNQ \>+$+Z>%-o1GMRA{=. .T4~zŒ*AA)&SPSٌ{d D@G*0e^^d͗~qvfc; irŕwWrNh*J/fヌz_NR plEQ\It/\kKKK^UUW\YYYY^^钢ѨŘLfڴi>On%>~Udp 4|1g7\ϯwq<]}HF0CBDPN5;A+Ǚ\xi# ٞ^VV:|llZsbe-MfɬHJi>fڱG;*dpD6*B)LO{So`> $c {xA.]͋1dF߄RܿEOot(+ D$7n!e G{CA( Nf䝻8b<"\.7 TڻIY}tXͯa>Zv4y^nn^bna>E>x7/^<#Xt^~=ituJq$XPflݕ@]|P3lD$&ⳁŊ`!PxHhN jiEKiĦJ޴}e'ci۞- 91R^߯il vg [tsT$2=K 76yƀe"WgL4lZ9vvvzTYe{H*'^?+^bʹ77m㷫zA[Jp/U蠧G#5~8[, p"1Al30LKK.ϙgxHBUz:yffǪzU` g_/U'qg` 6J ,1le_w"# }4_GaZD'?3Y/F mw[rX5VE!ѥfU:zQ=vyQ!zeфA+HCxҭqEiɟX^ܣƌؔN֥mcScC=`WQ'[jŽ<1n)-ts`|>>)TZj^;yo\=#k}"B`k֜Q ˣT)T(0VQ72=mA MqvFp݅O!i[Xx3:dB03^>D|܅[TRxk;л))0rxS *}NYq#[O:틓g6'"ҽvTcfZJ;X[VM5Ň46g%ޛ]::v#B&E,/H°tlGДZX^%ћk1]$#Y0]g/j Mߍk@ `XR^<䣾///7bYkHΏt:kkk5޽{g͚rdl ?mۦ(?7{Q#ۍ?G<8kc#;6w;г"hPVEo;z`l4aVUuԍ<${0έ&`6Xeu%_ȝ"@FiOW'x 9Ba1eU%7Q&t;[j(t_n׹lAV$sC,[//W "B.&ՎEv:n7}thIFIi![vN"z]^3M&/s_r8fkdHuBo6kLvc7^iJSs'l"dVUZw2P- {-o 3 2t cPM_5b ,Ml؏]b@T~h"9"Izf1t*V2G*n:^Q6Әr>}] K[&ңJ&R\I2$5Y_ IDATM=;!o4LX/҇+\Su, /EQ7`D-kZ#m⎊A>E0o7qL;'Ԕ '^zRI 2zucP{Ih.Sq_ӟZ\" 4VJ ~Jؙ:Wx {ɀXc@~Io1Ł ܚڔ|:HF1hS"x]Eÿχ)BI==ϗ Ę~t~6`( \"lA ڷe^Q`ogx, lQDt4/'Q #G,`lQ5f`4mmmj__t\^TT4iҤh4zw_zs|~ZY?25#EoҥǏ?)h d$I{]~}qqq8N&~ٳΝ{'hmѝ^Ur3e{~ɱsz1eBOPs3%Z |Ep:7"<u\!GMJN \x@2C&caP󛶣>uTȁ2E̚6&磦a /F1r~= 5;%/e].GjGH%xBr6?Md 7I֐p"?c@b)Z73tl.'ӎmu-*E`7oߏ}tbГ!Yc4ir R 8<|>".@p@q5e(N1hZ>CyN /hԺ%]'=Aoܵ_!(E~ka#$;0 H&Q=\{oGYn;(LӇ Rﯨ8(xI5n /|ǟ{l _QXQMA/Zr~vŋ3D \o:E?g̘3\r% ^xB ./s)\y;+_[- }0!@h^d=qtHhypVlZI#A:`~= <+~(VP9:oj`Z+f}˵+۩r:.1yTݩI{V>+N:w0JqvINiGSeb4$)LnߖT ro#ahBBr"ީ;e zIf\H8~LJ*fQB7v@ 9A]* ڜPDP*c5)m,FfΆN*qObN c;er$WgoDuZ\L%B*'j2A2EЏf2bVis1kztR;q'+#+P~#J6cӻKuI$IEn?MrxXt:m6!YXW^ٲe˂ *z_wundTWWk׮Z Kqg.Ց{fp<;;\nNZT"ߑxAKC4** dApksE (McE'HX p;/ڼhbR؝=,ՔwlM '!U3vT:f#Y1| L^Ji1(! =AB>uL]o zT* WFu=8ҒC5R1B22X%غ]'KJ'%6TwW"*㼃tI !Ctwf]1WQ t.n 6Bၴ6{2:Ҕ'j1raزL#y Q].iidH4\Z`Oq Y87%OAavsb)Yյ0 }Gh"4z g~λw4.h_e9^J;(3cHG燨3KySNe b[v$(RlBHFuμw̅\S,SL##*Ӿ=gLf!$t*""6PZ׺W\`]u, X"PB $^&393ޟ̜99>ᆴw.NdE`@S&TEijeu 7s kxQK\@ZOz?6bwljikdKRO6#0VT,M̤j75,$ePsL}#0X:9^ёѓ}е4bMNQn:p{ů5- 7wᆱdeeur]9# (fddtΪsGKKF 僋x㍺zDKaȲ&)))MkժU'N]C:_\\\]]/>쳡>F***!// ]\ѦlżZ bE+"H(Ϋ@f i HNW8WlHS:(aF5۵#hDLF8n{ Gnv4έ AcNpU"p1+K. m$$!ڶga.͢<0X!& uЭUcmvg(X'Y-m " ?7tGq&]FBʏWfi%F ckެb[q~Ə{R8W*5+h;}jJ{T4)(H,vK>!?Ah]Nw+MiZJ|7L RZNdhkg<\w|vnʀXĖmy=XLʓsS{SaeSXimo- &*_AVz%4yͭ3i0݋ӎ  DAEMlf>|TkPw)^<@?f3RnzQɑ2:Ȋ3+Є`͑=ջX`$ "5n$D-؁Wn wwlVb4)ʭ?c^_jR;%8 th4vu=G\AIV/oj.MFCy `@F2zt$ġRn+d_0o JvՄYOiD>A׵mSW+.yW_=|/rk֬ eʲ|N1hvlԗ^z`0w}0 (644\YwZ --n|>|>ߺu뮹AD~zٲecǎl6l--uVVVvm.?=@]]1qs76r%6Eu}1xyduХ4%,)Lk}xV7:jtdYA:D=la.|TͣI ֡R2nVeJ2tB~Vk!i|C̴1*.Joi$?_((К29ZO=;ZLi&sC.u,k8Q8hوZc5b?Yu{+b"<$E8a!:'~X92RU;gD@bAŢ(a[/`@|`޾`Hb76뚙q9*^Ufogp<6CW;Uszd/Gs#,z=[{'ϩ> 2bHΜ-n]adpVl-Mr*?U-22Ɉ jLq9FZYAK\"у1A$eNFGՋxI^b2xEV,+K։ BYv9ݡF(2fDu_ h!y"C -<9#hæh@lӤ1SbCK\.Z_]%s37x<_b钚r%y/3gΜxŲhѢ)S\wuO>… |>Vt8Gѣt:;9kVd5kV~~](z^]fku:iݻwh4vጌ={~OHHߴiӅX{͆?CLH{{xs ޗ ZĎ*YyX{"W0:ptVsYu`qɕj2bk2C BtTra6AҚO #-SZk8,ڢnmX3%ćf;4i9ݗ_kU`k&O0⊄Lv )=RpʦsqK|v8O2$NDtDF/ˋIX#$AlkJ(~ :$b@ ilnGؘ 2*Gh N-@awF6āXI(P5gPK4Qy rYvLEVX[. G/9oGB巚x]³ ƢTF(;Q4%{ѹ9<6FRz^u'j *(`bD`oi+uAVm2ARoho9¬=$A6/BNT &*gxȄ4{U6#pk&Ɇ(̖hRcղ{Z UÞS1q\t-4HJF]3:3D}AIE:#iŜ>D S{TY ՇU$WQyu jM:%rqlݻw>~^۷ѣGw1k֬Yf}G[l9qhkkׯل`0صkhVk'N{dž Og#666???'tKdYv8-A˗r-k4s cƌ駟}+|(ٜVQQQ\\| 6L{g̙3g|g;oѵ\q7N >=QjÐDĥh $;% )j͈lϺOک2!m fF[J k J*AdZYR{myRnBxoY|=\mέ>|h2+s7%%a4krLN߃g=t_1K.=U= ]$Ψ{JՋ1}+75&ŅR^$-A̜ ر{;%HgkpMibmZ>ON4zǑv: YYK~<lap0"Kxj#䫹TW <Х :joe+8!o?~"I_9gZFoy-<ə O"j#ًW^Jkb=rmK,>GK/Xz U`6mCY98s lug% +8(J BNjAHBa/өM`œ, IA" $A:t.Ug{ EE/@|mc1k kw{ ^DWcv-Ŵǿ! }ȸ_'\6ۑ`"Gv|- IЅ,(E@V={XʐVHS5~W;aJ*MiWtjNQH^СCiiiݻw޽ǎ{tfd2ɲiW,WTTX.UАrvOQ'nܸ>t;6666DN_ٷo9rxz>N-?\rӦMݻwazzVaÆ8q^{o,I?eK.ϐO}PӖaQ-BصU:8'FV 'K&: V@QM1"hR I^zNҡiX{S?>Q쮺s҃2sšt9q [3b"׬o3Ee9 [E yI : H -x xӖV-Ed ZMF,3dkk&i*I /\p ?1z-^=y, dNR7pI;Fu0)"`Q\lato?08_uV~< Tlbu%߼ҁޜKey{D:rOziڈMvtтt&z:'U1t<|VĊxn|*ԊmIʙ4Sh#ءx="b/Hk[i (vlATiԝG!ˆe8Q1:ex{CXse16lzYc;@3jƢ JS (~\6#{3bQ Gbse=i30%ߨ>_}FMnMҨ6&~-rg;{1$ikw8nS"vy< 5EIkIi8[ŐɤhlFhɪd IDATe  Nï`ڃGqE8TxemUY9ݹj*]h~3kAA뢮:M2Z#n1x4#'`ț4Zx1AKG@13-cР7@s5gR_0cIb(E:E F1׷lE`9'&Z')ҁ:/逫pTmZ)LL[xQ A/Ml_C@FUoUIؘ6vA!:) BElIn_feșkuBMVwo߾ekjjR}7n\jjn`0_|ݻw:t^9T!oZnjSPPp3Z,VUUu NW^y[#o)))Pyyyo{נժjѼ #>]8K9:KZ *zi$\>/ɴPKs2p% ?,yK[_;+] 7Qvks_KQvmlb!978^U"c%[b p6fw_ JH>6)+AU? 6)5N[͸rRolz6*5Vհ3]+r O(q|Ul? cZ駫ɃOwj2 dd =c>M_j"tTN'P9);еD/0R~]*Ƞ;v ,-q_]mS]m{HK!uΜb/ӯ}:Xe˖kw}+c9{lCH \.U C233^o4|cƍݻwV{t%_)))K.dժUG5kVCCɓ׬Ys6%/:ݻw@ j%\2f̘-[W_{më)HUpPs(`DQ1gs?Ց_'^%UNF>a&Ѩov0i xQx)cg_%6}%XV@D<+J}([{3j|qL@loo9d'|+53|ĸBr)Bxmm(fYĵ#t(Gl&Uןec2AAϾZZCGWIU5Ql]ᎸnBRT4M%.C;V`zUnV"! ]XP%˪ϹJ~j*Y]ŚňK0`VyBN#Klnc|lx<ĩBѫ{ 6A)dH1Pp%%S򢕓eGIGKZ~Rm;kꚃ}zL&FӵGkkk[[[Y,}?:sL'˦(ŋ_}Uud0 A 0`W]uaÆnaڴi$g#(_-n;3|p86oͷ_hϸe¾OpiMAQxVJ/0:ǜG(dHS;p`MeFز\s3= mo@ޓKnw]<}TN`]gJ ӱ˼wƹ1x[{dzR-$EХ{0݂baWUHVr.@ҟײ@Q-E~EUQ""%x%wȿ*(HBYAL_p>v~19iF>D%O^: r5փMi~Jj!Jݦ2l*~Zk{b(ᘁ #}+,zO?@ױTj 8=DҢ (ސȗiҙs;ijv#Ʉ".Հ$}8kZLn5G\\O`-xkݧnMYDD;`C!~'ZD숉3T"K'Pn>Έ.l ųqy B@kƙ!è)DϘSju^|?_p]f̘.Eju~GјtNhg_WWשgٲegAXnݐ!C֬Y /lٲ+;wnuu9C/ ku:]n5ꂟ/ u˝;wjߥ3ٴix|:t֭[nׯСCŋ/!O?TQQqvD:==^ӫ55 VRa{b㒡r"DmeeȯnMfut4E:%tMwl8jb!10 dXVjCv^¬7'P} ~~I(T=_̇lXQau"v1l()U8Ӎd$RuG;?D.sLp`mə2+ɊC]n<%ՍAjrh8 L >Mxv7 AѶMdaۗ*!5q4w( F!BL_᯿:Fj 3s GhpAqG^d0Zc-$zpWA!6u)27u8!6j X(zt@, XMx 5onب5#z#q6-V];֚UX B&`赆f-^ &6̠#6f*ӵzP:-~ \9>W梋.z{=~w۷ow82C 9xAKׯ_?y䐇'̘1l(TR^^>dȐɷvmVZZvO|#F5vE/ܴ|`f|zml yHrdžBBT8:&]ikc)2\M Cr%*J5*-pĉObR7<T;>yN$eL)u? `E 1 036cPט_-,lՆ""=qi勫O}ͫWdsW|~-b;[=QG?{%%3+/ gQ|FJ'" ;}kEztK.`6;;8qbڴiCvt:G [liiim=T_$Id>N:`!vI3Z4Ak_vEF\?i EBRpzaKȎ-d/bXR{eqE:!ÞUɵ@FOŖ%jZC勪Ÿvs &n}yx4Ĉ2(eZ8=15?m4|pcc $vĒ%ʂ6qz%-UQdM< q" 5c񳓵,hTg|PwznI^& Xላ)ԗ=w&b1h1K&kBj0鷊Ūu#0tZ4"z D4b霓\fWG;,=CG9̈&\& !w-b@>;pt/ H [Ϝ9چOF(;-Ԝ{x-&@ Wfx`/:|NףG\KŅhP /RLLL0~AAA>}zeX &m;qW^ov-[,))iСgA~͡8sϞ=woZ,ʲg!w` ǎ0`Xg~?*((:zпqdddx<~nݺā[nW_;OGkhѢ_->޽ܹsgΜ񢢢Gyd7_wYKׇ.w-Ձe?zV[:ţ=J)ЁLGE4yJӇkvM}CMEׅM,iM,9''ѩ~@'pڇEٸ^ cxϬfڀ89!ˎ)m3Pؾ~cSf@~+)m&ቪ)M\yL~xQx%N!^'{w [[V|u+hۦ^%-bwd$98& rdyOyKR"7}8!]כIr#޴_k~ezn"A4ytӐGq)u& 6"e~6Y Q/&vTNI "#x Y߮Nj*Lh¼Ï0+gEnB҂A8zb >>I$/cDBHa1Ccw 1QYЈ-Ltn%$Aj&*AZbCYM;JF $}qb$`ӳC&)H_pXW;N|BwnaW(bRsB=-9)mԨQF-Y[omll7o[[[o3g̜93: xѣeeeoYRRt mJKK̙sUWj-Zhܸq0ӦM7nܮ]~Yf\ bBqct:IZ"11Xt:7Bj1bʕMMM) x>_|qʕ3f̘>}z$s_gdd̜9sӦM .|ײn֜_~yQ=|?%޷ߛ͏]=L>Ui6J&.Hhŭ4K;aC479D:$zSR8ee(IJ=0&r)]%G iwM}Xt`:)*j<{}?}x"W@塎Gz\h A (۞%zt[-;ݎ/D;H/- fV %:]N/p؇CQkI@ p}|Ԁ7 Y]bB43B7#&`ғkfG*DaC Ë= !t &XL:p͉FoLZ,P6h $ 18KQ hCعmY6mhbx}# r(jYM Fd{R3V'k8%{9%,Ql*ӂj) }GzlZaaaUUdꫯB??6l؈#|>_ m߾}Ft:^`08cƌ1cƌ1""xjgҤI "9rU}e9r$111//owyI޲(!P-((ظq$Iќ1qEaZ].@]tх+V8x#:/}ٳg=zg}6eʔRxu߿ڴi~%KnO?q}㍺XT[ =l]_qj"R cv?9U҃;cic cIO J(Z4 !K#r" ծnnl4ڨ0M(VV+nN7SՌUr 9LV>j$V;$ܠd U6\~I2x~4p>/Ͳ], *֣]SvJ;oַZ\tXDq_NL-wCZKWoF?OTH"@?=.ײ!@@ B%^R VT$(4^-eA􀝾KnT{HIZ&{&GH8v;A{QxHIř Piȡ8z(½1D,fd6 kEvMAf0jzoߌQ05W&:tSonTፀքCF6!!s&UUJjʋ=fSmdc$@D"!{_8,));wnff&УGPݻwoݺu޼y7nmkkML&ɔ4o޼Amٲ姟~Z`V5jԸqJKKo6ԩS+V[g޼y999 UiӦŋ/\033s޽s]`h+Z[[CvrΝ O⪪*~v3q={̚5VkuuzAwaۺu}^hƍ@ IDAT|+rO<Đ!CfϞ]QQۧγ>;tMo'|r|^z衢~_~Yti~QoSGM7ogP) KQ;gv9BE֍+HqҾW"4n@E D7-Z r`՝zKV+*jx1\[ ~^! $l]³jr,nuu!g}zn4Pho >wc9m󻙼rb2.]Z*08:+OygϢ#NkI;hilHm_0 Y Va,=UQ諀%F@A *FF|WE/HZZH%ތZHv%"B%Zi<ҖJk5|bx) w@\A5bm-jDG?vFQ+*kE ر4T BF:nÇ?rhZh|G |\SSs>ؘ1cnݺx9sL4i̘1&iO=o=c=t{/?رc̙3~ӧO:uΜ9+W={({1c/+,* ,CӒn(g& Z7 FMP[,pl[M:d'eIdގʼn"Z^z^AlZɤGpku?ՐIHq_stZO*Q#ŗ*3s׉eб!sLM-N_tMxc*]'[s* p9ٳ=w65tWsh?~6)80&?Bs |Ҍp[hu5;iec>XH .gx-SL4avLBrFfr_\ɻYU͓Uw߿jժ>}緵eee۶m۸q;sС1cƬ[o߾~;fO>} U^/REEŠAw^TTi V|֭{FرcǎbŊ7x?M&SH.]T/?kǯ^|zjԨQ#..w!nWY]tG}{ ?N:uʔ)_~'|o߾uiѣGw=\ͭW_}uRRһ;~ G9\[BQ /v!Zf40;%%tw-o=ϧ`dH| X X~9s}sm۶۷o֬YoѣE))))));-[_o՟~ifffZZZAAAnnnNNη~{_z~ذaNKIIILLLLL}wvC$~VWW}ǿ[kz5\s5֭[z]nҥKZÇ_xQX{嗿HU_|j#66wk}n߾W^&iܸq|;`44_5ܹg;w~أG#F >w޿h>|xJJʻ[^^# 0੧ݻw?ÕW^ٻwA{;TVSS3aδr*7zHɁlZ3@ gNJdOw*]E0jD Jae. P.2K*1k\4 Q:#c!@isR4=CZ$"ɐʰ6MލSꀵyW1:\/Ã"S<,N"..-y9+>|se(lf{o$!t5$t+\QA 6Di"HB IH!Bzl6wnv7WO>{ys>.Lюpa[G1|c0`8 : PC6AU8pD7_3[/6K.FnE/ 0Aq`"awfHHà pXcm Css3+#HRzZQ]]W_ojjjN<9cƌq;wϞ={)GG۷?fS>>>,NAAAl$I^o4Yh4AAA ,`>˥[.33G"<3]wbT*}'-[}vX\SS~zGٹk$$$ر!YHMM]@.jժ _:|_0`ذa111I\-[lΝk֬IMM/VZ5{+WO'M5mڴZBVDFF=:V,>CSF,/I}}vt&CI$^C M,[wP:D*Y"B7(|Xhe&CZ0,l PlQgAmK&u~ &C=EL;р'n0ICXc-[uIo,?U\kBoH([ahu nviҤ2' |8;;iZD9))iٲev<-7믿;ollu몫srrN8m۶7z{{?55u|>P~Μ9qqq7n˖-۷oOvr/mY;Ox3^(AadCi>ihbE-_A(ʈ&昘hЛ;4M0J<d^-4ڢ]ȅc';E$dPA[u};m7e VAF SEn໣:au7_VlB\MHiɪl&0-7yϸp;w… gϞm  W_} K޸q^D}L ߵ a3w[ =Zt'F9"{hI x78D!x* 4TFλIW4ZLЃյ qh^6ؾUUiPt zڛh1CN0  qGx V\0AYx3GgĀ>k fRǝN+soUT{ oycXWw.DoDCKH+p1i(go̖]pK1>r4mFj!U" V҄ -ӍdkQ9%c\.Tx1XP$Ad?&aoa h[7x ?YK:n0.ܹXצ~R)426H8Hp tmRSVkiξѷH\nȒc79MHrR2Kh+'5M+߹|$>j$h *jkC-bիmw-AhANP֊~25akM$ 9DVBQO< "IuҤIBhĉߟ&6IQQQ۷oW(`AAAk֬[xq``s=nYTTϾ˃^4}RteeeO?vd1cL>] Nrvvl ?$1mٲ%44i+xXdIll)S=Aeddteye0rN}:7nܨj_z饇l?߿9rȐ!bX p\am۶s۷GFFXo߾j|-Z2k,>lŊ7n7n*0ǚN4WHk`+!|vL"tǐ}HgƧ۹6[+`h&>COa|\9t8U¶ Ri@aFJ0Ŗp$T'h,7/ Mpf+a$ε[ު||QQiWM:,@/x@miġ@8KЦ4 kgZNFX- wS$ ? X'MPG-xwm% 1I[SH 2}sx>kK:`-@l@oN3Q(n=^~3CmO9:S8IN+Mv&z^c!P!T7:)SRR|||B!áizݟ~۷=<<&N*˗/ϟ?&M}LJd?wʕ+/^liaKOZ[[/^7) Jl(7=( :u ؑÿ պcǎZ.Kd߾}zȆg~'OjlD$:F:޽{G9p@DH5$ IDATDɓJK{96ظ}ݻwV}6nܘ3ywy'88XT~7G~ȼ"Ԇ FOd]veddܻwOVF$( 8WQD;7nÇǏߕ'Ls}=c]׷gϞG1cƯn̲'OښyڵݻwǮݻwݻwAAgffM7cƌN= EiiiNN͛7)z7Mx<<]v[wK}H`|(p>^v14Fxhn1UvE- RƊQbͫL,VCP  cs83&yw ⛹9B R4Hw.0i Φ0 'h<8V1ޅ€QH\96d.hil=uުG?5Rdx1 }C#S^ F?m3>: eu=G/)iljOTi#GEWds! hy ZiiWYOwP͎$@!Avz1P¨YHS6e+j-mAjZ300 )ۗ} e!C%  ʔ5e`hp9p0_~r /^pŋ7f̘ .ddd9rd2,"""""Et+gׯmhΟ?iƽ{TWWj__ߧ~z|2IKܺulx#F1bZbg''}}}WTT|G2l+XuGC_^.wgϞ}ѣGw%"wԮE988$%%%%%4]^^~Ν[nm߾}ݺu}_קO^z ֖NRtщvl4X-[ܾ}{ԩ-j7,8d~~ZwUdԤשm`~g )T31uImTF0oHvZ;N0`eka0(F> W/͙dDL4Fp^[|)VtU˧yթ 1 =PC8-Gw:ݦcgGꕥ-m5Rk\&S ЪqCJ oBpt [bV "jKm*D2' v4Ѣ7t@!͢% fDi1|֚NX3xK!06  l+T!ZxmsȖKL@Ɗx쓌K`헫 O8c wݡW\^޾};''g߾}۷owqqIHHHOOWw)((qécsZ!!!{Dlv򼼼ӧOD=z|W<&$$DDDX{PT111^^^/^<}'|B099999޽{yyyEEEla```PPD"r*7n7ouO,zxx=3gt1T0`O??Z2z:qDff빑$8bBXUUuׯ9sV$q\GGGGٳ=..nԨQ^^^...urwss;wN:wޢ/v))={ΑS^^G[ޕ/i ,H˻I@ӵcA{MYwb9ԵB CGѫv+urCAMeq U(M#2˒+] .ơ6)Ç̂rD"Rtht6hI1h@pAW>r!Pxڡ) g# i8ӢZFz 1 1NzuV#Qi6WJ:ᄌ:I9Tm6\!PVI m]IC=jXhX &6R1;g[iw  M1FS`gz-stq }-[Z7:9%%6777//ѣ!!!cƌqwwh4mmm B.WWW;wܾ}pE9::>cެ,L&srrKVY[6mڃ(Ns xudݸǎĚ߼yԩSMMM @ pss ;wntt_{ڀVaÆu=-,&OcǎCvj`7\]]YWJ*JҠ~iZV}4;;;;;;333??_TڢdGdd7oN2`0č70Sqwٓmx<^Mg)'C_~b.rq䞄Fgoq> S%0 p ȖVAycHVuЩ=y^IoE 'd/xx$6ׂNs[E{2Fz$4@V<`Ե?b %B^ԦEpBFh3c-CH($m/Gef)vU7`-bG @YjB cšn@+а0(@SiL{ q¥oX˟|2sŊXzYYR.wTTZh4YYYxlPd4E"` I`0466ܿ%...!!!99Y"x<֊WjzrFQ(3gΔz*yyyyyyٓ3p\PpݽXviiiWLc$''ux=pSR0p3gΔ:9#]\\u T7o߸q]{pppxK0 .fi6 Mjօ788زMQPP&H͟aACw[$1n,ݺ 5:lCwݨJo9CxZd9Qڇo + QD9Y5Y#(ڂ$/5(9dA>@2PW{[;zIV`b,<@clo\e8ƀBpI)Ng?ߎֆc7ebmg "9s /?ӧz_LKKrJHHHWB$D"quuѣKh4eee5553bP(?y䈈///<~QXXx?gz)VAV+])#׿8/++{DXcbb222vwwOMMݽ{Ro9qDxx{Zn6DZkYݳg޽{kjjE"shhD"d2,33o߾oڵk )))''o߾$I=zҥ!!!R8?]1H&we7`àM`7?0@EA{]+aPrW.-fRؿaAjܶ*gWu7,FQV`Q$юvTdz> TӶubڌ 4V!L1qMah4:{`3> f-^KWQp`s-zI1jJD+[ӞuRԋ+*=FBoYKkxgÑD nn884PL1I02Z &aa)hs}YL&wb3ϣ63 pD 9K"x=у(Iwjtt8TF ߸q YA>]v?H|P(={vǧx㍒65w600ВQAEuqA0uԏ>h6Q݃޶m۲e {cǎm۶-33СC2ãuԩ bX( M$ 6O>|ƍrP^ M˛$!yg@Aq&f"KPFK A^ڊ&j m$ v@q[%fʻ`:3086f;F[$Ffw[!j<~mLAJEVx4Ƹpa99͟Ԝ^N>}z)ѓDEB|Z !"AqQ0+ؼh #Nɻ>,HkOFZṅ$٪r$5ˁZpIHzk: (H|B[msv}kXQ|-FuR>cjA㄄'N̘1?s޽{W^ۿx''9s79rABԩS7oX=z;nݺ7=X|GWW׀+Wt=y2`C}+Wf͚6mZ8>}gz_~o4kkkݻ' ÇJeYY 4hPJJJQQQ]]ڵkKKKn) NZZZ\DPUB ;Fh>Fdlw6_ejA [.\ѸiЏ2CdʂAiBB|JWS ]FL wqx9 T/vՁ2Q$ F$RkD5lk H@F[mŎ?ZV= !l@ߝ?{G3ַgvvvbb"JJJnn}ݫW;V(0 ##ѣ=zĉD S֬Yxbk>^߶m.\uK_k]\\Baiip `Gnݎ;v޽s\]%~~'N'0G&ړ2dR/_ϟ4iR}}=ǻxbdd䃺 D"DEEE]ͤI uC`oN;ws`؄ݟ_ Vs+DYN)67T v:6܄jhk%E*D5Jm(WL~=F#b7/z2^wSPo;GܪUsJOsg(h(s/@s-oiו8=q~|]" @Ә_()A+sUVI2ʏW}@xIwړE)-VL3I Wc]";4ʡ@rp:V6oh j*@  5'i[~8Kc%.Y_YwpD#/<ӎEuK JHH(((xg222&L0u &:ҥK۶mرcNj3gάYf#Fx\>h׮]k׮O8q#G1b:~3gFGGwnÇG?qX ͛77lPQQs 6Z37֚FDDDqq#=D{C{+RL <:䫱;, Q9T#]Ts} C6F\(lF}_aI*lM;ڰM ߂pe\]QFk'v H,cZ4@n[0 $)ϹoWu*C) @&;wnڴi&\& IDAT` :U͍pvvNOOOOOڼyszzzbbԩSYsuu֭[.\:nܸѣG$ٕFߚh4_}վ}.]:tPV{ԩ;vܹsgӦM[1=q#=D>}˲߄~~~O?Unڕٳ-Z4f̘Gwk[[[]]] x<ޕ+Wb1jްaC[[[CCCPPйs ~[L&dSL zg,[ۇ7_s^?CIt'FٹrE E7C%؆ -љ;i3a4@RnuF kj1Sg=>uŏ:s@ qǃ"##cccW^Vo޼y…5k888xyyJRDƂ~i߾}^^^cƌٳgOSSSll+Ѻ.*)1~9s*#Ù?{oLQѣ{3gY<{6ÿԇ/Y+줤S_r̙3|>_$wlllښkCh^DcEl>$wsqz{B8y>lV~PklBd`Kњ*DViqa E:䨰Qxy"VE{嚗Dr z\VEN>? 8ew#ԁ'r7B*_,zWZ|9qkK8U b%cf(8Y:5@pi;UCZ!;'{UoL=Env4c's DN"w߰XPPSXXhxн{w$O>ݣGAdn.]TVVfs玣f .;rȑ#Ggee]zʕ+\.ۻW^ӦMJ ݻGp8A~H$xB߬ԌR.)){nYYQBCCSSS{RC{u}#ZÇϝ;ƍ۲eKxxA=<< vĉ޽{?ȎQ^#FJ=zscc#M2A(>t:]UUUUUUIIIQQѭ[Ri^;]k4^oү`;\|1>׾\TC󇹅Y5 *5vb5F j5FpAn&> ;PWCh n-*j7mKޛU9`@HƦc/x4΂Xn{7"GW%ԶUpBAǐtƤִj;tx?ܾck.\QHvXYc A޶J`k`d %h3wZUdo16YJۋ/{%Ef"-J[5~%Kll :bmHHH߾}3fX.?v}5t7n]϶ ]pȑ#*ǧG RukjjjllU(^rEn/))lhh(*..nСQQQ...k9eܹf͚9sfWx,$ׯw .պˈ#.\ք OJosvv=ztWliilBbIIIJ9///??̙3rgϞZi,j+**֮];xNJRUPFH4LB!Kx$zcB$|̟Y P[Wkʼ7 .FZ4C2*;P-Wu>Ā; O>=?cԐn>LY x͛wَOHH8~Çg͚ƑcǎK8WWW߻woƌ]0`.77ܹsAHҀXZ 燵/++C wuuo5sG} ??^z۷oʔ)酎sYtiBB¯J iӦ]6997waGW0LYY@ pvv{nhhhmXݻ K.?~|ݺuC6lXdd\.wuuY/OgggvIhsbРNd 44Me.ih(h¦d<:ˢiu~ W/LBu`MuFL(i{;nPOcQOK2!n5=aλZlɇ.4(jqS%%gP*55$$&R<^'w@фQ1ٵ:`hИCC=#Lbv,$hz`D@@Y"7Fn AuJ40~(T Ml;zв,* n/!8^YAR\]\AyyT*)R՝*;<}駟f"FQ׳EzXl4u:]B{-**Rv '9~ʇbz  (J0()-Ew`h*ޭvaJPCXĕ*l{qR'yGU'\Ó(́(S3 hqGm4c|+1ѢMe44gQMc0H8fWQԣp7(3Y(<%uL2 ڸ=E<? p9x&QAl8mx#FGG_"cnyT*9V,ܿSw} ޿x3BCCz-/Z֭[˟ ?|*{ kn 55?pʕ+9Nnn#^Pj)zc*âJ3 3-+حkX &bbݨXHtw0ߏH" \\ÉsSnFG]))*L^ ނf>/ WHDړk0cb!4^d@Pfi@m9`ί`b8WLY4((L1!u9rR XM0]ç  LAd"WRr ׃x0;^p& D0H6.vT"sM^o8h⁍V#=ڮDv'*?vZ:f{}  ]yhB%&&b099sw!!>'/_f+++ə2e fq܏kKpp)++;{@}?~rooH3---555uuu c=hرc7o|UU[nyyy%$$uZ( qGr0 zA@P}3مbѣGhSSS$[:6l][[c->wՠ۪ڿ)222FXRRRϞ=y>|8$$ѣGٳwхǻ ư""""##kQL&YŋSL133(--=v%gffv ѕxcƌtt ݻf67TaZ8qno f10 EX L4T^J$rO:4Ze-5CEW ~ u CBIkA ?p@ JQmh4Ȓ6'0$(`v`[a`4.,((psss 6EPjjjT*l5o޼{CSSsΝˍW\)--7v-FvtTT5dff*++QEr̙2c 2vĉ-[\t)11k'LӧKth4DcjjjIHH4755׵/F;XápxzI  hj'p {nkPPz+4W͡S 灬 5FbPW lȍ.Ԁ AAסP2Pm7.$N @jخ@s ! jr65@^BiW?0hEwةt%Z Km|ȝd T:@PLdQ@fLWTTdX=lSAAA99F?͛7=<<wޝL&388800p׮]Ӈ"EEE ?kB۰U988TTT;vLZZ/6o޼} Dĭ:Hi2R]uS,+**bXJJJOpvfSgF1K+@D. ش}Ԗխv/n)PrX2`'ـLj" g-[ʮAQQ1;;477)rΜ93gΤ7o~cX|ɵbbb)4t7vvvk?9}C:tL&Q֯_) >dkx|[[&$$YVVf07@7dZ555p\4>踺hĨGkgJggنPKK S*...!!p-% Re@BS-ľW8l@{r'㊑AeYe.$e풇 :0Zx`1 Bk]JsqP,- v+Y0u|xT&A\*f? ;~A\<œcv Wx-ԦyE*v݆ @=YfL:}•]S|x<=F" }= ))Yf-Z977L&+))Y566ጌlv\\v'V"H555uvvx"B2@v}3 77WBB_d"2U ˗/O]]]h4D"IJJN0?xю;ZZZ֯_?q#Gdff"Z< ""B9NF  & :07ח/f sqĥ4VBnv-Iyh~]6 uRmnQP[+30BH/-  \,fP ѡ Fum' QY0sVwnW8+ʆ6:и_3~1^ <({;\b6-ܻwowPBBduuuo*F9+Z4o<$*((8::򉖏9zsssYYYss𖖖 !!q`0gp8w\Zaaᝯ"YYYC,:Dも: ĮbFP4+W,,,$T*ǵ#ɩ7@8qR'm60AuvбAMȓnx`Pzdǡ!>d`H;L,(C,t@tE3@}TechN\"`Ł}ȿ+܍M{]ԗCv)(b`-w3SL˗/}|]xxTLFLfO8q]1>Z---43>1a„ڡ$?޽;88իW#"""""~BSwr[[[ |!&F577wv5d2U\X,vܸqٳ6mîFP{RcX?we*jl8AE8/e=8\jv jHAsc{&3#[|z׸)FTxfІ# IDAT l&  @Ѡ&΄+@\ b VSX )J~\ޥ2YoAKMۮiV\`ͣ=[q55561`KveS+**YSSSBB"==f222D"ϲ>r-gffՍfΜ5A<==n>>>*0N]~]KKK__ft<"%%  Dt:#))inn3s_CC(,,lΜ9/^@a筫ٳUTXslz{+g9y kn73 P_B:V )ۭ ,l:5byPS o 1q\>[?Z cggx,zϘ充i4Tl#=}tBEwuǏYL04_}ϟ[;%K r8@dpPrDj(EDD{GeeeI$ݻw~ȑ#戏ZMMM^^~Ϟ=]ע8q!%Z }[b@%cr/׽U;2 jEy1<&pfj~mNh2I a RC|xm0v0P aiYU6^;[0UEh3%gay~oqqqZZZ/D}}=BQRRήKQQBLX>0cƌ 8ץK>}?ɓ~\XXXHHbCݸqCKKedd466 }X6-,,|Miiid!JE;ڨQoܛ/!իW`tuu.]zܹ*BǏs玻'Op۶msiBΗTGr@g`=ޱt(JrY_6ٝ/6 $V!eByHH@շ`1vY/P "=Ԋ0fC#@rLh k=ׂL?v hZ755h\8#&&62|ggg&9ڠcǎgϞus VVV;w<7=-ZdggiӦaSDD"d .\( r-''WYY;8<6mW^x1o< 9" wޔ87oޫW֯__TT9AB\77p ~@V'*EGyl'hM 'v7y ORWWFr0 8.mW -n"J Yq]à+jt.;yh\EYiNXkk>'UIII+`0P(T>\ f͚5'NɃn޼9$$dWpqqٹs3gnܸя*$$cǎ,.X͛vvv!zSTD|{wb222*//_^^ޛJ333` Lstt\n_LL̢E\\\={(۷oڵK.rrrrU$0΀_I A4ALlEPG h12`tf@(H,k7@  #NM@K AAY 52A$9A` 8񸥥hWUU! h{̴ƛJ]]|Yf555~zĎ:y˗/K ˗'%XLL?P(ʣF\;`pBhDa\`$%%bQQQo544Dr¦MҮ]֏[quu# >||#Gnܸ$vKR-[vI׿i͝ ׶aEp 90f& 'J3j/w07WYШnUX<@qu;#$Z<&, xw`>=!n1s5pۀ!Oľs~zGEEtЉ▖>CFs-|$iڵ.]vi~\SLaXH<@9rFmٲ%++[ܹS^^~۶mÕāFa.?|۷;r EEEDF :^ANN.**txJ@PPPHHѣG:::ҽRLL¢> @^^[q,gjjb;&""2,%%Pϟ>޽{p8111UUU 'Ĭ0ۂqq~dttŋrrLZۨ>R3xTxi286d|hy]^FXrJlLgx@mKۉGkXj@w_GW^O?{m[[ԩSvrrB@绹9A>NPWWw„ W\1FXzuii˗/KkϚ5700pϞ=ߊh(gK());vl={&MMMM3f̸qF $H!0@@Ț}jXYYlbg 133۸q3^:ڊ+[P(@&'Oo˖-SWWP(wܙ>}:P(gΜ-++w^RRRII͛7q8ܹo//9y67%[} {7VUU ˗/Ì3.]D2[s#kk7nHIIM<[@gg={$&&FDD 222<<<444:Y__ܹ , KOO,,,+//?}UUUgϞC-MVnU*zǝET(`N7AW屡5ڻw-(fn{ }8?~ا%77ktW緵)Gzlٲ߇HTVVpႄİM| ⒒GqppR H3f̨:}4VVVFza ɉDޞ={t]>~xΝǏGRԽ{Xl.+UUo= jmmMOO733_lYo !!>h3O.&&VPPɓ&''R(6p~ϟ_pIFFTTT$---f"""""""d2YDDFc04Ғ/^Ԅ]~HkkUVijjnPRLKT[T-Ha*q7ZTB*0(P `9~,Y8H$,'Otuu1[:~-[z,tŋ555r\/_>,J f7[}i``nݺ3gHII!MG...^^^'Nq3hlذŋqqq/G]\\LMM/^knn2;'N6mZ3}Ν;h4t:=,,***[nK\P}G饥zzzUlmm&O8RRRSLA򮳳233o߾`H$2 dɒɓ'"oa͚5O~eNN͖p t:!u4"-- ++K&ťh+W==={޼.C;/Z`2?)yvr˜M_:OXDrpV/ @P b.Xqb0+Brss{wHNNټys_ Ŋ7n܏ Z>sw`ҤIǏzm>>>>>>;{?|bŊ>swz iӦ%\]]͛ghhq͟?1+={2gΜ)S "Ai(`0 c(r˗\䄤I5}tVRRFx ɱYbŷ~(tׯAˋEPmll]\\zl#""6c8NRRR]]i 5jԨʈत$SSNĨ(:H400}veerqqqHH۷kjjdddz{\KN>mooo<<;?G ""u֛7o.Yddܞ'O\>@ **k׮ŋ;wncƌ1cRuPQQQQQY` P([[[8 щr,(( 222+VXbř3g@DMMMQQQXXX\\\BBbwܙ6mԩSutt\]]htUUUXXثW._$&''?|֬YrrrǏζ?̺ϋ/|B&Ǐ?2ӧ%%%8nddӧOjaa1|%%[iӦA.]JPvu;tG>x`NN80zh E 􀲲YΟ?} ߺu\Ⴛ+WBCC UUUT*666>|`0Ǐ]%##hѢE>yԩS4mرw܉=~ŋ{C}} p8رc{GXb2;\TTgGtdJ --ʕ+6m_k$::j>\7ڵkϜ9###3~z4n:sΒϟ?GGGKJJ"]ZP(6.;,h77W^Đ䪪*D_fVUUeffFEEܹSEEELLLVVVUU*80{/_y&%%D"  ~O>eff?@ HII! k4`466(**gee}ɉL&WWW?yDCCCSSs…RWW>ޠR˝޾円bӧOO8S}Op8D4oxO􆺺:9scC PWWґA@TTT__VEEN'$$<~8""YPPpXMbȵBBBD"ݻwRRRϟb0RRR FKK9;;ŋ_r?XVVDXX8))˗^ѱVVVFPչF|||llliiiMM D?ڵk'Mؘ͛Ǐq8R???acc1hKiiidd==QTTTqqٳXl\\ܱc&N8gΜ/ess9s n>۵_,Y$//#((hh߿ΝCo3@011122jlllhhIHHv233311P? b =pk׮ڵɓ'NNNK.UUU$Hϟ?wqqlkkknnNNN~ٵk-Z4cƌanٲ%55>ϏD"! ?A+++RRR綌b0"uر˗/WUUˋ1cƌ;޾O[EEE{ŋ߿$=V#G$bijjN2|0@ׯ_qF?f:th˖-#`0 wpp@333߽{WTTڪ̙$ zʅ4iwrr h/vvv IKK۱crDDD?lii]hAAA;;;[[ۋ/k֬Yrh4"itzdddxxxdd$3003f2Hu JMM}TTT| ӧONڱc1@@uZ[[{{k FRRZoIMM}ի7o۵;x" L?'Npsssvv[R"GiiV64rsrrnݺ/ (ۿDDDrr̙#**KJJlr>]v;vPEEEEFF xi֭4wѢE]VUUFGG'&&tDY]]P[[{]vSXXxȑ+VXXXt&I޾}{mwƍou퍊 ===777___>b8rGw`P\=+^ZZQ^^?wx>ܷoѣ7<r[[۱cɹ}~~~K.uqq?6P(MMMrrrjjjd2kb zjSS̙30===###++VBB%??ժURRRᛘzƊ&++2--u |x؄%|zyy#ֈ***:$ 6h|>RRRϓ'OJKKo'''GFFa0GGGgg޾MHNNx񢡡add >}ZPP@&Lfdd)y׍V^wHeggP(.YEEv --C:mm@yyPRR}v---**,,b޿4=zDھ}رcN:ݹsg͚5W^A|[n}wԨQ#o|\~=66vٲeNNNk18xyyٳw6`---=pկ_>eʔٳg755ǧ988r;vE򒒒l*JP SRRtܥKsuuo߾*t:L7//o޽'OTPPWy5k Pd1;;{̙gϞw㟂z}mo}d ^|o"2ςU||CCjiiӝ;wN:,!!1a„ٳg7nvI$R^^^aarhhhPPnرΝ311IIIqƛ7oq8L&?^WWwq}OQ(QQQ===##"݇_Kee%իh4 "xmIIٳg'%%O:@ ۶m?}t~>s?HK.Y[[QUU544wއƎ sFVVVTTTXXXVVTUU?ŋǎ!""2T[[[ddbPPЕ+Wx<ބ ***p8Pzzz``kX,֨Qx<@EP^^^ߕ5hnn޶mۗ/_Dڶmd^^իW/_bҶo߾m۶ ----عsgovd0Ϟ=,l6̙3'O29>ԖC;~<|Ӹc hhhnjӹ\pǏAb6ӧO>7III)::sٲe+W|ݻwWVVp8 dɒ͛7wxo߾ onn8qC=zr/_>tUUO"ɓ'ϟ|Z[[M=CHHȑ#G-Z|b? ñG!f߾}w^kkk k=x?~<0ҏCUU՞={P(ԪUL/ɓ'ϝ;քuuu'N#H 2tLbcc###SRRZ[[srr&Mzjyyy r%$$G&HҒ+$$`deeziiiaaa\.Ʀիo߾_nnٳg{b.\P]]o߾'w޽}={Ǝ˿s ˗/޾}L^zeaa1s6cx1{lwwos7n{xx$&&~L&)))u ;::VWWYZZZYY))) ?~9`~AMNNzܹsuuuykiiޗN[nҥ8.^XSSallF>\B^^/CwM0aܹ@ΝKNN>wܷ6سgܹs'L4NKKK#M;eTS]6fIIɄLgiiihh>\-yyy޽f2::: ETTtԩg۷|HP֬Y\$Mv~Z>|0<<ۻ4)+++))imm5777113fgϮ\2iҤS奦&&&UTTəX[[ N$===%%%22˗/%%%vvvT*M2`(bccʕ+tzUUUiiiVVϟ߿ooolbbӵ |||h;z Dcbbf̘aeeůϵr444ϛ7GtIZ[[_zu5MMM6¿6mߺuk?l…J'$$feeX[[P'O8;;oذ( JONNNJJɡR∦QB篘fWUU577WVV%'' h4Դ͛7-222z:B```FFݻ:X~M[[[]]====+++??_DDDKKKSSS^^^VV}߾}zzz44###** lmmG4| .ˠU<ǣP(!!! ,XbEg?IIInnndEFF>}СC6"kmmMNNjnnvvv޹sv'Us8.d2YYYyyyHwbq8C.<F#X1c?;ss_~eݿի. y󦷷xT*5---772...//OMMM@@QNVTTTSS355Eܢh~h>L[ooosse˖έ׷b...$?.\6jnn2O>;w.""BSSLOO韃4]G vŵt:)9bx<^\\\JJJAA!777&&Ǐ... ._`>}uΝ]?l]]ݾ}Ǝ;o;o޼˗8|o޸qDGG8qM:^BB6ŋg>{mh4?tYf}L&ĉ>|?~}:455!Mjjjjkk FPX,` V/HE %TUUmݺյw 6fhhO/B>s244;gTTԻwJKK---\w}e```ݿ˃ … kޝ5u~ $@b , D6PF(S!Z-i ֕eJ:uAFՂb)51@JuYpss}̹9'.U}L&Cу\VLPTZ}С\T&%%ر]mllLHH(**z#0=ź{3Q''3gzzzjqҥ +M@ vvvzB Lf2eee/y jjj*,,pnnnoDkjjj:tPeǏyjjC?>%BϷғxhX,ܹs\uR(;w466N>orssY,V``y~`09g,]|ѣor…x ւ377wttLKKB1)S.\А[\\p͍@ZBWknܸq8o#KKr a=Qܹs(܂]VRR2yGzz:N?qD^[[ǏO0A x 7UyR\.ٳ EUU՝;wj̙3N[jבU7D".Nc0ŋ/_|#i4]Kbb{l*wTT/_$wuk>T7nܸo߾Yfك.7!!a  ֎ J2222***&&fXG=zIWg„ ...nnnBP(MuGѨjZRT*RxL&ٳgvvvgà.##cSLyEEEׯ_OMMGq?SSSǎcwwxYYY}_|2111<<\ڱɹsLfrr2Tk1{fee=;T&]|>offF X;)ph4Z7T*{zz4P(dD&BH$|||]dff&%%R0''ӧI"77f͊pww{ܺ]8NVVDڶm#immhk֬yW$ ւ ~Çb7I$.@ E"T* A cƌ177bVVV666x<D"hee5@[[ۮ] j魭_-,..nii>^\Z>{lSSSFFZkd2YVV@ h->WJPg RIDAT*d̘19ɓ #//ϐKBqȑǏ7oZUUu햖ww%KDFGG Fnڴs,kΝ)))AAAF!XOfff&M? 1<C.H& DoJիͻu떱A.|ٳ+V ;rH[[[vUQQvq6Rܦ644T׭Ȑa?gPZ0| X f F":::Mֿ*}`(//SAT;;ãׇ/_r2LZXXX[[D'''' Jw.^hHZkZmKKKOO xv.===;##リcǎ,_?SISyխ[ܹCP6l`xƎn5F  B8ΝIopႹyttW\A_|L.4gΜkr~0+++++b>ŕ500P*>}Wa2iii555aaaW&HV.XYY rc]ɓ555XVL㏈Ox<ޱcjkk#""-ZdooA/h4/^qF ZA Ů]USSˑSFӧO߼ysٱGb0KII9s& QtvvƮXb ~^^\dҥKI$0zfJEw.X 66O'骻DEEYFk>}߆|WEEE?&H3f̘>}!EH$Dp>|Xb [[ہM:u޽0X GWQQqA6cƌ㕗WVVvvv7H$zzz?YZZgVTD,D"@d2Y,VggP( 箮'b-ڵkNRFLyyCCpoo)D&BRTPzK$$j{{{mll<<<&Mdl6;%%ՕJ~Pz1kO?ܹ3$$ĸ{J<O`nRMLLrhRhH$666x<~رF<6Ꚕ4h˸^6/ҥKMMM-,,ۺu̘1κjRVukRB}{Mw^77}-LIIIqq1FP(#sݻw۷]<|l+W\jUbb"1W7o޳gZ ___kk봴4;;'"2WVWWWo߾=,,,99yX!0t  Fjjٳ׭[7LOH,_tdݺuQQQpfX f;JG&?{,//s۶m]Z1I$ .TVVZ 9K.Q(hC B`i4Gc0={8::zڵkΝ mX ! KKK׮]34ԩS!!![l@]CCCZZT*ݿ9W^QThZWƺ|ªJߏ޺u+ 0Bd3gt??p<?ڮ]V]]uVVNb-`Hrʓ'O}||d2DBrykkkmmmUUUGGL^r%DsZF2>_]]]UU%ɐHB1bZkkkkjjr9 ~OTX. M"LMM?tZD:;;ds 0Jdf.doogp8 `tKҞplvss?caabk4Zh4"bl.B@ 0V$...( D" 9՗!rIENDB`elk-10.4.9/examples/magnetism-source-free/Ba122/PaxHeaders/elk.in0000644000000000000000000000013214762655565021354 xustar0030 mtime=1741380469.724015026 30 atime=1741380469.723015021 30 ctime=1741380469.724015026 elk-10.4.9/examples/magnetism-source-free/Ba122/elk.in0000644002504400250440000000474514762655565024110 0ustar00dewhurstdewhurst00000000000000 ! Magnetism in BaFe2As2 using the source-free version of LSDA. ! Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory ! S. Sharma, E. K. U. Gross, A. Sanna and J. K. Dewhurst ! Journal of Chemical Theory and Computation 14 (3), 1247 (2018) tasks 0 ! ground-state run 72 ! 2D plot of magnetisation 82 ! 2D plot of B_xc 83 ! 3D plot of B_xc 92 ! 2D plot of divergence of B_xc 152 ! 2D plot of m(r) x B_xc(r) ! enable source-free B_xc nosource .true. ! spin exchange-correlation scaling factor (see article) sxcscf 1.12 highq .true. ngridk 8 8 6 xctype 3 spinpol .true. spinorb .true. plot2d 0.0 0.0 0.5 1.0 0.0 0.5 0.0 1.0 0.5 600 600 plot3d 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 200 200 200 scale 9.8337 avec 1.078174 0.000000 0.000000 -0.000000 1.096817 0.000000 0.000000 0.000000 2.473656 primcell .true. sppath '../../../species/' atoms 3 "Ba.in" 4 0.00000 -0.00000 -0.00000 0.00000 0.00000 0.00000 0.00000 0.50000 0.50000 0.00000 0.00000 0.00000 0.50000 0.50000 -0.00000 0.00000 0.00000 0.00000 0.50000 -0.00000 0.50000 0.00000 0.00000 0.00000 "Fe.in" 8 0.75000 0.25000 0.25000 0.00000 0.00000 -0.01000 0.75000 0.75000 0.25000 0.00000 0.00000 0.01000 0.25000 0.25000 0.25000 0.00000 0.00000 -0.01000 0.25000 0.75000 0.25000 0.00000 0.00000 0.01000 0.75000 0.25000 0.75000 0.00000 0.00000 0.01000 0.75000 0.75000 0.75000 0.00000 0.00000 -0.01000 0.25000 0.25000 0.75000 0.00000 0.00000 0.01000 0.25000 0.75000 0.75000 0.00000 0.00000 -0.01000 "As.in" 8 0.00000 -0.00000 0.64970 0.00000 0.00000 0.00000 0.00000 -0.00000 0.35030 0.00000 0.00000 0.00000 0.50000 0.50000 0.64970 0.00000 0.00000 0.00000 0.50000 0.50000 0.35030 0.00000 0.00000 0.00000 0.00000 0.50000 0.14970 0.00000 0.00000 0.00000 0.00000 0.50000 0.85030 0.00000 0.00000 0.00000 0.50000 -0.00000 0.14970 0.00000 0.00000 0.00000 0.50000 -0.00000 0.85030 0.00000 0.00000 0.00000 elk-10.4.9/examples/PaxHeaders/molecules0000644000000000000000000000013214762655565015214 xustar0030 mtime=1741380469.731015063 30 atime=1741380469.725015031 30 ctime=1741380469.731015063 elk-10.4.9/examples/molecules/0000755002504400250440000000000014762655565020013 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/molecules/PaxHeaders/C600000644000000000000000000000013214762655565015544 xustar0030 mtime=1741380469.727015042 30 atime=1741380469.726015036 30 ctime=1741380469.727015042 elk-10.4.9/examples/molecules/C60/0000755002504400250440000000000014762655565020343 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/molecules/C60/PaxHeaders/elk.in0000644000000000000000000000013214762655565016724 xustar0030 mtime=1741380469.728015047 30 atime=1741380469.727015042 30 ctime=1741380469.728015047 elk-10.4.9/examples/molecules/C60/elk.in0000644002504400250440000000550714762655565021455 0ustar00dewhurstdewhurst00000000000000 ! C60 buckyball example. This example has high memory and time requirements and ! employs iterative diagonalisation. tasks 0 ! use iterative diagonalisation for the first-variational step tefvit .true. ! molecule calculation molecule .true. ! use very small energy cut-off rgkmax 4.0 sppath '../../../species/' ! use an fcc box to contain the molecule avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 24.0 ! the atomic coordinates are Cartesian with molecule=.true. atoms 1 : nspecies 'C.in' : spfname 60 : natoms; atposc below 4.20790955 1.12423579 5.07240250 5.92255243 0.30577656 3.09053347 2.53625794 -0.58931105 6.15449739 5.89150423 -2.19125067 2.27598598 6.07911622 -2.76287388 -0.40300296 6.14208189 2.34350589 1.26288498 6.32168145 1.79658139 -1.30022597 6.28972619 -0.81331917 -2.15152863 -0.85451519 2.59699373 6.10424958 0.89249869 4.38777367 4.97351314 -0.05102260 0.16353689 6.68186323 3.36781297 3.66786366 4.46912637 4.56285678 4.42127851 2.11483015 -0.49930340 5.89307270 3.14654495 0.64416979 6.61402206 0.89416165 3.23137475 5.86189222 0.36707927 -4.04684820 -1.59965305 5.07597408 -4.88658574 0.94354019 4.47250898 -1.68274430 -1.98120762 6.15625484 -3.32578546 2.99557474 4.97542176 -3.10623709 5.03232141 3.14743312 -6.29775752 0.83554235 2.11927100 -6.08784676 2.78439786 0.37044299 -4.45682426 4.92933134 0.89618365 -0.95746747 -5.66581425 3.40868774 -3.42822750 -5.26727104 2.27991661 -0.10387824 -4.05947157 5.30402621 -4.93898784 -3.27912812 3.09521999 -6.32980727 -1.77424483 1.26783606 -3.23999190 -5.83991471 -0.39909123 -4.57094481 -4.40022696 -2.14742792 -6.15020772 -2.32243545 -1.29533158 4.14416909 -3.98220068 3.40634448 3.25204835 -5.66116553 1.42568487 2.50352789 -3.19913602 5.30279789 0.75764784 -6.48459473 1.42687540 -0.65282474 -6.59204455 -0.92630589 4.44820711 -4.90778847 -0.92840348 3.09860260 -5.01057066 -3.17986082 0.49168780 -5.87162431 -3.17872698 -4.21537397 -1.10412910 -5.10475461 -3.37499392 -3.64732234 -4.50151628 -0.89933950 -4.36660874 -5.00582745 -2.54410030 0.61009804 -6.18628259 -4.15359883 4.00310105 -3.43858320 -5.90029145 2.21167861 -2.30835699 -5.93067825 -0.28551870 -3.12307455 -2.51263637 3.22020647 -5.33473426 0.94767869 5.68830199 -3.44022726 -0.76728544 6.50657224 -1.45864170 -3.26164816 5.68270840 -1.45786691 0.09442961 4.08156247 -5.33543346 4.03843892 1.62287778 -5.10734353 4.93027621 3.30214499 -3.12685400 3.41902454 5.29011783 -2.31168290 1.67416495 2.00384654 -6.18737863 0.84756100 -2.57503512 -6.13588359 3.31858560 -2.97318149 -5.00728254 4.87893235 -0.92061781 -4.50446425 0.04346370 -0.14161607 -6.71310040 elk-10.4.9/examples/molecules/PaxHeaders/H2O-iterative0000644000000000000000000000013214762655565017576 xustar0030 mtime=1741380469.730015057 30 atime=1741380469.729015052 30 ctime=1741380469.730015057 elk-10.4.9/examples/molecules/H2O-iterative/0000755002504400250440000000000014762655565022375 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/molecules/H2O-iterative/PaxHeaders/elk.in0000644000000000000000000000013214762655565020756 xustar0030 mtime=1741380469.730015057 30 atime=1741380469.730015057 30 ctime=1741380469.730015057 elk-10.4.9/examples/molecules/H2O-iterative/elk.in0000644002504400250440000000143514762655565023503 0ustar00dewhurstdewhurst00000000000000 ! Water molecule in a box. This example uses iterative diagonalisation which may ! be used for fine-grained parallelism. tasks 0 maxscl 30 lorbcnd .true. ! solve the first-variational eigenvalue equation iteratively tefvit .true. ! use adaptive linear mixing mixtype 1 ! molecule calculation (atomic positions are in Cartesian coordinates) molecule .true. ! put molecule in a large box avec 6.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 6.0 sppath '../../../species/' ! atomic positions in Cartesian coordinates atoms 2 : nspecies 'O.in' : spfname 1 : natoms; atposc below 0.0 0.0 0.0 'H.in' 2 1.811 0.0 0.0 -0.451907959 1.753710409 0.0 elk-10.4.9/examples/molecules/PaxHeaders/NaCl-monomer0000644000000000000000000000013214762655565017503 xustar0030 mtime=1741380469.733015073 30 atime=1741380469.731015063 30 ctime=1741380469.733015073 elk-10.4.9/examples/molecules/NaCl-monomer/0000755002504400250440000000000014762655565022302 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/molecules/NaCl-monomer/PaxHeaders/elk.in0000644000000000000000000000013214762655565020663 xustar0030 mtime=1741380469.733015073 30 atime=1741380469.733015073 30 ctime=1741380469.733015073 elk-10.4.9/examples/molecules/NaCl-monomer/elk.in0000644002504400250440000000164014762655565023406 0ustar00dewhurstdewhurst00000000000000 ! NaCl monomer in a large box. Note that with 'molecule=.true.' the atomic ! positions are supplied in Cartesian coordinates. Try plotting the 1D ! density along the molcular axis. You can also compute the vibrational ! frequency using task=200. tasks 0 molecule .true. ! large smearing width improves convergence for molecules swidth 0.005 rgkmax 6.0 ! large box containing the molecule avec 10.0 0.0 0.0 0.0 10.0 0.0 0.0 0.0 10.0 sppath '../../../species/' ! note that atomic positions are now in Cartesian coordinates atoms 2 : nspecies 'Na.in' : spfname 1 : natoms; atposc below 0.0 0.0 0.0 'Cl.in' : spfname 1 : natoms; atposc below 4.4121 0.0 0.0 plot1d 2 1000 0.0 0.0 0.0 1.0 0.0 0.0 elk-10.4.9/examples/PaxHeaders/structure-factors0000644000000000000000000000013214762655565016723 xustar0030 mtime=1741380469.735015083 30 atime=1741380469.734015078 30 ctime=1741380469.735015083 elk-10.4.9/examples/structure-factors/0000755002504400250440000000000014762655565021522 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/structure-factors/PaxHeaders/MnO0000644000000000000000000000013214762655565017414 xustar0030 mtime=1741380469.736015089 30 atime=1741380469.735015083 30 ctime=1741380469.736015089 elk-10.4.9/examples/structure-factors/MnO/0000755002504400250440000000000014762655565022213 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/structure-factors/MnO/PaxHeaders/elk.in0000644000000000000000000000013214762655565020574 xustar0030 mtime=1741380469.737015094 30 atime=1741380469.736015089 30 ctime=1741380469.737015094 elk-10.4.9/examples/structure-factors/MnO/elk.in0000644002504400250440000000455014762655565023322 0ustar00dewhurstdewhurst00000000000000 ! MnO in AFMII structure with LDA, in analogy with NiO example. Unit cell from ! Transactions and Journal of the British Ceramic Society (1984) 83, 5-9. ! ! This example illustrates the calculation of X-ray and magnetic structure ! factors which are the Fourier transforms of the electron density and ! magnetisation, respectively. ! ! The structure factors are calculated for the reflections whose diffraction ! vectors have lengths up to hmaxvr (given in a.u.). The connection to the ! traditional sin(theta)/lambda ratio is ! ! max|H| = 4*pi*max(sin(theta)/lambda) [wavelength also in a.u.!] ! ! Additionally, the hkl indices of the reflections are transformed by matrix ! vhmat. ! ! Since the primitive magnetic unit cell (given by avec) is bigger than the ! conventional crystallographic unit cell (cubic with a = 8.397946), a ! non-integer hkl indices appears when reflections are reindexed to the latter ! with vhmat. They have zero intensity for X-ray structure factors but are of ! non-zero intensity in case of magnetic structure factors. ! ! Example by Alexey I. Baranov. tasks 0 195 196 spinpol .true. scale 8.397946 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Mn.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 ! fairly high number of empty states nempty 8 sppath '../../../species/' ! this grid is too small for accurate magnetic moment ngridk 4 4 4 ! maximum |H| hmaxvr 6.0 ! H-vectors are reduced by the symmorphic crystal symmetries reduceh .true. ! uncomment the following lines to define an energy window for which only the ! orbitals within this window will contribute to the structure factors !wsfac ! -1.0 -0.1 ! H-vector transformation matrix for the conventional cell (cubic, a=8.397946) ! in the usual matrix row-column setting and applied directly as H' = MH but ! only for the output of the structure factor files. vhmat 1.5 -0.5 -0.5 -0.5 1.5 -0.5 -0.5 -0.5 1.5 ! For accurate results fine radial mesh (lradstp=1) should be used. lradstp 1 elk-10.4.9/examples/PaxHeaders/README0000644000000000000000000000013214762655565014161 xustar0030 mtime=1741380469.739015105 30 atime=1741380469.738015099 30 ctime=1741380469.739015105 elk-10.4.9/examples/README0000644002504400250440000000037714762655565016712 0ustar00dewhurstdewhurst00000000000000 Elk Code examples Please note that these examples are simply to demonstrate the features of the code. Any calculations used for production work must be thoroughly checked for convergence with respect to input parameters. elk-10.4.9/examples/PaxHeaders/electric-field0000644000000000000000000000013214762655565016077 xustar0030 mtime=1741380469.740015109 30 atime=1741380469.740015109 30 ctime=1741380469.740015109 elk-10.4.9/examples/electric-field/0000755002504400250440000000000014762655565020676 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/electric-field/PaxHeaders/WSe2-bilayer0000644000000000000000000000013014762655565020302 xustar0029 mtime=1741380469.74201512 30 atime=1741380469.740015109 29 ctime=1741380469.74201512 elk-10.4.9/examples/electric-field/WSe2-bilayer/0000755002504400250440000000000014762655565023103 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/electric-field/WSe2-bilayer/PaxHeaders/elk.in0000644000000000000000000000012714762655565021470 xustar0029 mtime=1741380469.74201512 29 atime=1741380469.74201512 29 ctime=1741380469.74201512 elk-10.4.9/examples/electric-field/WSe2-bilayer/elk.in0000644002504400250440000000274714762655565024220 0ustar00dewhurstdewhurst00000000000000 ! Demonstration of gap closing in WeS2 bilayers by application of a strong ! electric field. See Dai, et al., J. App. Phys. 117, 084310 (2015). tasks 0 31 ! plot the density in 1D 41 ! plot the potentials in 1D ! Electric field across the bilayer. The corresponding potential crosses zero ! at the center of the unit cell. This field is sufficient to completely close ! the indirect gap. efieldc 0.0 0.0 0.04 ! distance from center of unit cell at which the electric field is cut off. dmaxefc 15.0 plot1d 2 1000 0.0 0.0 0.0 0.0 0.0 1.0 ! band structure plot !tasks ! 20 !plot1d ! 4 400 : nvp1d, npp1d ##number of high symmetric points ! 0.0000000000 0.0000000000 0.0000000000 ! 0.5000000000 0.0000000000 0.0000000000 ! 0.3333333333 0.3333333333 0.0000000000 ! 0.0000000000 0.0000000000 0.0000000000 gmaxvr 24.0 rgkmax 8.0 ! avoid writing direct access files to disk wrtdsk .false. ! enable spin-orbit coupling spinorb .true. nempty 10 ! use PBE xctype 20 ngridk 8 8 1 swidth 0.005 avec 0.5 -0.866025403784 0.0 0.5 0.866025403784 0.0 0.0 0.0 3.0 scale 6.20208114106 scale3 3.94881170018 sppath '../../../species/' atoms 2 'W.in' 2 -0.333333333333 0.333333333333 0.417 0.333333333333 -0.333333333333 0.583 'Se.in' 4 0.333333333333 -0.333333333333 0.3740 0.333333333333 -0.333333333333 0.4600 -0.333333333333 0.333333333333 0.5400 -0.333333333333 0.333333333333 0.6260 elk-10.4.9/examples/PaxHeaders/Bogoliubov0000644000000000000000000000013214762655565015333 xustar0030 mtime=1741380469.747015146 30 atime=1741380469.743015125 30 ctime=1741380469.747015146 elk-10.4.9/examples/Bogoliubov/0000755002504400250440000000000014762655565020132 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Bogoliubov/PaxHeaders/diamond0000644000000000000000000000013114762655565016745 xustar0030 mtime=1741380469.745015136 29 atime=1741380469.74401513 30 ctime=1741380469.745015136 elk-10.4.9/examples/Bogoliubov/diamond/0000755002504400250440000000000014762655565021545 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Bogoliubov/diamond/PaxHeaders/elk.in0000644000000000000000000000013214762655565020126 xustar0030 mtime=1741380469.746015141 30 atime=1741380469.746015141 30 ctime=1741380469.746015141 elk-10.4.9/examples/Bogoliubov/diamond/elk.in0000644002504400250440000000275514762655565022661 0ustar00dewhurstdewhurst00000000000000 ! Renormalisation of the band gap of diamond using coupled electron and phonon ! Bogoliubov equations. See C.-Yu Wang, et al., Phys. Rev. B 105, 174509 (2022). ! This is a very expensive calculation and requires hundreds of cores to run in ! a reasonable time. ! First generate the phonon dynamical matrices tasks 0 : ground-state 205 : compute the dynamical matrices 220 : output phonon dispersion ! Then uncomment the following lines to solve the Bogoliubov equations !tasks ! 1 : ground-state ! 10 : DOS ! 241 : generate electron-phonon coupling matrix elements ! 270 : solve the electron-phonon Bogoliubov equations self-consistently ! 280 : compute the renormalised DOS ! 285 : compute the FACE and BACE (see article) pwxpsn 2 wplot 10000 300 8 -0.8 0.8 tauefm 0.1 tephde .false. ephscf 8.0 0.02 rgkmax 8.0 lmaxi 2 nrmtscf 2.0 nempty 16 broydpm 0.04 0.01 mixsdb 8 maxscl 500 ngridq 4 4 4 ngridk 16 16 16 avec 3.3637 3.3637 0.0000 3.3637 0.0000 3.3637 0.0000 3.3637 3.3637 sppath '../../../species/' atoms 1 : nspecies 'C.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 plot1d 7 200 : nvp1d, npp1d 1.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-10.4.9/examples/Bogoliubov/PaxHeaders/MgB20000644000000000000000000000013214762655565016062 xustar0030 mtime=1741380469.748015151 30 atime=1741380469.747015146 30 ctime=1741380469.748015151 elk-10.4.9/examples/Bogoliubov/MgB2/0000755002504400250440000000000014762655565020661 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Bogoliubov/MgB2/PaxHeaders/elk.in0000644000000000000000000000013214762655565017242 xustar0030 mtime=1741380469.749015157 30 atime=1741380469.748015151 30 ctime=1741380469.749015157 elk-10.4.9/examples/Bogoliubov/MgB2/elk.in0000644002504400250440000000356014762655565021770 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the superconducting gap of MgB2 with the coupled ! electron-phonon Bogoliubov equations. See See C.-Yu Wang, et al., ! Phys. Rev. B 105, 174509 (2022). ! Note that this example is computationally very expensive and requires ! hundreds of cores to run in a reasonable time. ! First generate the phonon dynamical matrices tasks 0 : ground state run 205 : compute the dynamical matrices 220 : output phonon dispersion ngridk 24 24 12 ! Then uncomment the following lines to solve the Bogoliubov equations !tasks ! 1 : ground-state ! 10 : DOS ! 241 : generate electron-phonon coupling matrix elements ! 270 : solve the electron-phonon Bogoliubov equations self-consistently ! 280 : compute the renormalised DOS ! 285 : compute the FACE and BACE (see article) ! !ngridk ! 36 36 24 ! !vkloff ! 0.25 0.5 0.625 pwxpsn 2 ecutb 0.001 bdiag .false. ediag .false. tephde .false. ramdisk .true. mixtype 3 broydpm 0.04 0.01 tauefm 0.01 ephscf 8.0 0.02 wplot 100000 1 1 -0.05 0.05 maxscl 8000 anomalous .true. nxlo 1 lmaxi 2 nempty 4 ngridq 12 12 6 ! increase the number of muffin-tin points (for accurate gradients) nrmtscf 2 plot1d 5 1000 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 avec 5.83170 0.000000000 0.0000 -2.91585 5.050400347 0.0000 0.00000 0.000000000 6.6594 sppath '../../../species/' atoms 2 : nspecies 'Mg.in' : spfname 1 : natoms; atposl below 0.00000000 0.00000000 0.00000000 'B.in' 2 0.33333333 0.66666667 0.50000000 0.66666667 0.33333333 0.50000000 plot1d 5 1000 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 elk-10.4.9/examples/PaxHeaders/Compton-scattering0000644000000000000000000000013214762655565017004 xustar0030 mtime=1741380469.762015225 30 atime=1741380469.750015162 30 ctime=1741380469.762015225 elk-10.4.9/examples/Compton-scattering/0000755002504400250440000000000014762655565021603 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Compton-scattering/PaxHeaders/Li0000644000000000000000000000013214762655565017350 xustar0030 mtime=1741380469.755015188 30 atime=1741380469.751015167 30 ctime=1741380469.755015188 elk-10.4.9/examples/Compton-scattering/Li/0000755002504400250440000000000014762655565022147 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Compton-scattering/Li/PaxHeaders/elk.in0000644000000000000000000000013214762655565020530 xustar0030 mtime=1741380469.752015172 30 atime=1741380469.752015172 30 ctime=1741380469.752015172 elk-10.4.9/examples/Compton-scattering/Li/elk.in0000644002504400250440000000163214762655565023254 0ustar00dewhurstdewhurst00000000000000 ! Once-integrated electron momentum density (EMD) plot for fcc Li. ! First the EMD is calculated on a regular H+k grid. This is then interpolated ! and integrated perpendicular to the plotting plane given by plot2d. The files ! required for plotting the EMD with OpenDX are included in this directory. ! Example by David Ernsting and Stephen Dugdale. tasks 0 170 172 ! the 2D plotting plane vertices are given in reciprocal lattice coordinates plot2d -2.0 -2.0 0.0 -2.0 2.0 0.0 2.0 -2.0 0.0 100 100 ! maximum length of H+k-vectors for the regular EMD grid hkmax 7.0 ! large k-point grid required ngridk 20 20 20 avec 0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 0.5 scale 6.6226 sppath '../../../species/' atoms 1 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 elk-10.4.9/examples/Compton-scattering/Li/PaxHeaders/emd2d.general0000644000000000000000000000013214762655565021757 xustar0030 mtime=1741380469.754015183 30 atime=1741380469.754015183 30 ctime=1741380469.754015183 elk-10.4.9/examples/Compton-scattering/Li/emd2d.general0000644002504400250440000000027114762655565024501 0ustar00dewhurstdewhurst00000000000000file = EMD2D.OUT grid = 100 x 100 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 2-vector, scalar type = float, float end elk-10.4.9/examples/Compton-scattering/Li/PaxHeaders/emd2d.net0000644000000000000000000000013214762655565021130 xustar0030 mtime=1741380469.756015193 30 atime=1741380469.755015188 30 ctime=1741380469.756015193 elk-10.4.9/examples/Compton-scattering/Li/emd2d.net0000644002504400250440000003741414762655565023663 0ustar00dewhurstdewhurst00000000000000// // time: Mon Jan 26 19:22:44 2015 // // version: 3.2.0 (format), 4.4.4 (DX) // // // MODULE main // workspace: width = 425, height = 581 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[2]: x = 199, y = 111, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "emd2d.general" // main_Import_2_out_1 = Import( main_Import_2_in_1, main_Import_2_in_2, main_Import_2_in_3, main_Import_2_in_4, main_Import_2_in_5, main_Import_2_in_6 ) [instance: 2, cache: 1]; // // node RubberSheet[2]: x = 138, y = 249, inputs = 4, label = RubberSheet // main_RubberSheet_2_out_1 = RubberSheet( main_Import_2_out_1, main_RubberSheet_2_in_2, main_RubberSheet_2_in_3, main_RubberSheet_2_in_4 ) [instance: 2, cache: 1]; // // node Colormap[3]: x = 351, y = 266, inputs = 19, label = Colormap // input[1]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.666667] [1.0 0.0] } // input[2]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[3]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[4]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[5]: defaulting = 0, visible = 0, type = 32, value = "Colormap_3" // input[7]: defaulting = 1, visible = 0, type = 5, value = 4.1046274e-06 // input[8]: defaulting = 1, visible = 0, type = 5, value = 0.014571383 // input[9]: defaulting = 1, visible = 0, type = 1, value = 20 // input[12]: defaulting = 0, visible = 0, type = 16777221, value = { 4.1046274e-06 0.014571383 } // input[17]: defaulting = 0, visible = 0, type = 5, value = 4.1046274e-06 // input[18]: defaulting = 0, visible = 0, type = 5, value = 0.014571383 // window: position = (17.0661,30.3398), size = 17.0661x30.3398 // main_Colormap_3_out_1[cache: 2], main_Colormap_3_out_2[cache: 2] = Colormap( main_Colormap_3_in_1, main_Colormap_3_in_2, main_Colormap_3_in_3, main_Colormap_3_in_4, main_Colormap_3_in_5, main_RubberSheet_2_out_1, main_Colormap_3_in_7, main_Colormap_3_in_8, main_Colormap_3_in_9, main_Colormap_3_in_10, main_Colormap_3_in_11, main_Colormap_3_in_12, main_Colormap_3_in_13, main_Colormap_3_in_14, main_Colormap_3_in_15, main_Colormap_3_in_16, main_Colormap_3_in_17, main_Colormap_3_in_18, main_Colormap_3_in_19 ) [instance: 3, cache: 1]; // // node Color[4]: x = 277, y = 387, inputs = 5, label = Color // main_Color_4_out_1 = Color( main_RubberSheet_2_out_1, main_Colormap_3_out_1, main_Color_4_in_3, main_Color_4_in_4, main_Color_4_in_5 ) [instance: 4, cache: 1]; // // node Image[4]: x = 226, y = 519, inputs = 49, label = Image // input[1]: defaulting = 0, visible = 0, type = 32, value = "Image_4" // input[4]: defaulting = 0, visible = 0, type = 1, value = 1 // input[5]: defaulting = 0, visible = 0, type = 8, value = [3.98495 2.30071 0.460402] // input[6]: defaulting = 0, visible = 0, type = 8, value = [3.98495 2.30071 23.7018] // input[7]: defaulting = 0, visible = 0, type = 5, value = 12.455 // input[8]: defaulting = 0, visible = 0, type = 1, value = 826 // input[9]: defaulting = 0, visible = 0, type = 5, value = 0.751 // input[10]: defaulting = 0, visible = 0, type = 8, value = [0 1 0] // input[11]: defaulting = 1, visible = 0, type = 5, value = 29.9999 // input[12]: defaulting = 0, visible = 0, type = 1, value = 0 // input[14]: defaulting = 0, visible = 0, type = 1, value = 1 // input[15]: defaulting = 1, visible = 0, type = 32, value = "none" // input[16]: defaulting = 1, visible = 0, type = 32, value = "none" // input[17]: defaulting = 1, visible = 0, type = 1, value = 1 // input[18]: defaulting = 1, visible = 0, type = 1, value = 1 // input[19]: defaulting = 0, visible = 0, type = 1, value = 0 // input[29]: defaulting = 1, visible = 0, type = 3, value = 0 // input[41]: defaulting = 0, visible = 0, type = 32, value = "rotate" // depth: value = 24 // window: position = (0.2953,0.1796), size = 0.4375x0.6120 // internal caching: 1 // main_Image_4_out_1, main_Image_4_out_2, main_Image_4_out_3 = Image( main_Image_4_in_1, main_Color_4_out_1, main_Image_4_in_3, main_Image_4_in_4, main_Image_4_in_5, main_Image_4_in_6, main_Image_4_in_7, main_Image_4_in_8, main_Image_4_in_9, main_Image_4_in_10, main_Image_4_in_11, main_Image_4_in_12, main_Image_4_in_13, main_Image_4_in_14, main_Image_4_in_15, main_Image_4_in_16, main_Image_4_in_17, main_Image_4_in_18, main_Image_4_in_19, main_Image_4_in_20, main_Image_4_in_21, main_Image_4_in_22, main_Image_4_in_23, main_Image_4_in_24, main_Image_4_in_25, main_Image_4_in_26, main_Image_4_in_27, main_Image_4_in_28, main_Image_4_in_29, main_Image_4_in_30, main_Image_4_in_31, main_Image_4_in_32, main_Image_4_in_33, main_Image_4_in_34, main_Image_4_in_35, main_Image_4_in_36, main_Image_4_in_37, main_Image_4_in_38, main_Image_4_in_39, main_Image_4_in_40, main_Image_4_in_41, main_Image_4_in_42, main_Image_4_in_43, main_Image_4_in_44, main_Image_4_in_45, main_Image_4_in_46, main_Image_4_in_47, main_Image_4_in_48, main_Image_4_in_49 ) [instance: 4, cache: 1]; // network: end of macro body CacheScene(main_Image_4_in_1, main_Image_4_out_1, main_Image_4_out_2); } main_Import_2_in_1 = "emd2d.general"; main_Import_2_in_2 = NULL; main_Import_2_in_3 = NULL; main_Import_2_in_4 = NULL; main_Import_2_in_5 = NULL; main_Import_2_in_6 = NULL; main_Import_2_out_1 = NULL; main_RubberSheet_2_in_2 = NULL; main_RubberSheet_2_in_3 = NULL; main_RubberSheet_2_in_4 = NULL; main_RubberSheet_2_out_1 = NULL; main_Colormap_3_in_1 = { [0.0 0.666667] [1.0 0.0] }; main_Colormap_3_in_2 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_3_in_3 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_3_in_4 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_3_in_5 = "Colormap_3"; main_Colormap_3_in_7 = NULL; main_Colormap_3_in_8 = NULL; main_Colormap_3_in_9 = NULL; main_Colormap_3_in_10 = NULL; main_Colormap_3_in_11 = NULL; main_Colormap_3_in_12 = { 4.1046274e-06 0.014571383 }; main_Colormap_3_in_13 = NULL; main_Colormap_3_in_14 = NULL; main_Colormap_3_in_15 = NULL; main_Colormap_3_in_16 = NULL; main_Colormap_3_in_17 = 4.1046274e-06; main_Colormap_3_in_18 = 0.014571383; main_Colormap_3_in_19 = NULL; main_Colormap_3_out_1 = NULL; main_Color_4_in_3 = NULL; main_Color_4_in_4 = NULL; main_Color_4_in_5 = NULL; main_Color_4_out_1 = NULL; macro Image( id, object, where, useVector, to, from, width, resolution, aspect, up, viewAngle, perspective, options, buttonState = 1, buttonUpApprox = "none", buttonDownApprox = "none", buttonUpDensity = 1, buttonDownDensity = 1, renderMode = 0, defaultCamera, reset, backgroundColor, throttle, RECenable = 0, RECfile, RECformat, RECresolution, RECaspect, AAenable = 0, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, interactionMode, title, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels, webOptions) -> ( object, camera, where) { ImageMessage( id, backgroundColor, throttle, RECenable, RECfile, RECformat, RECresolution, RECaspect, AAenable, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels, interactionMode, title, renderMode, buttonUpApprox, buttonDownApprox, buttonUpDensity, buttonDownDensity) [instance: 1, cache: 1]; autoCamera = AutoCamera( object, "front", object, resolution, aspect, [0,1,0], perspective, viewAngle, backgroundColor) [instance: 1, cache: 1]; realCamera = Camera( to, from, width, resolution, aspect, up, perspective, viewAngle, backgroundColor) [instance: 1, cache: 1]; coloredDefaultCamera = UpdateCamera(defaultCamera, background=backgroundColor) [instance: 1, cache: 1]; nullDefaultCamera = Inquire(defaultCamera, "is null + 1") [instance: 1, cache: 1]; resetCamera = Switch( nullDefaultCamera, coloredDefaultCamera, autoCamera) [instance: 1, cache: 1]; resetNull = Inquire( reset, "is null + 1") [instance: 2, cache: 1]; reset = Switch( resetNull, reset, 0) [instance: 2, cache: 1]; whichCamera = Compute( "($0 != 0 || $1 == 0) ? 1 : 2", reset, useVector) [instance: 1, cache: 1]; camera = Switch( whichCamera, resetCamera, realCamera) [instance: 3, cache: 1]; AAobject = AutoAxes( object, camera, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels) [instance: 1, cache: 1]; switchAAenable = Compute("$0+1", AAenable) [instance: 2, cache: 1]; object = Switch( switchAAenable, object, AAobject) [instance:4, cache: 1]; SWapproximation_options = Switch( buttonState, buttonUpApprox, buttonDownApprox) [instance: 5, cache: 1]; SWdensity_options = Switch( buttonState, buttonUpDensity, buttonDownDensity) [instance: 6, cache: 1]; HWapproximation_options = Format( "%s,%s", buttonDownApprox, buttonUpApprox) [instance: 1, cache: 1]; HWdensity_options = Format( "%d,%d", buttonDownDensity, buttonUpDensity) [instance: 2, cache: 1]; switchRenderMode = Compute( "$0+1", renderMode) [instance: 3, cache: 1]; approximation_options = Switch( switchRenderMode, SWapproximation_options, HWapproximation_options) [instance: 7, cache: 1]; density_options = Switch( switchRenderMode, SWdensity_options, HWdensity_options) [instance: 8, cache: 1]; renderModeString = Switch( switchRenderMode, "software", "hardware")[instance: 9, cache: 1]; object_tag = Inquire( object, "object tag")[instance: 3, cache: 1]; annoted_object = Options( object, "send boxes", 0, "cache", 1, "object tag", object_tag, "ddcamera", whichCamera, "rendering approximation", approximation_options, "render every", density_options, "button state", buttonState, "rendering mode", renderModeString) [instance: 1, cache: 1]; RECresNull = Inquire( RECresolution, "is null + 1") [instance: 4, cache: 1]; ImageResolution = Inquire( camera, "camera resolution") [instance: 5, cache: 1]; RECresolution = Switch( RECresNull, RECresolution, ImageResolution) [instance: 10, cache: 1]; RECaspectNull = Inquire( RECaspect, "is null + 1") [instance: 6, cache: 1]; ImageAspect = Inquire( camera, "camera aspect") [instance: 7, cache: 1]; RECaspect = Switch( RECaspectNull, RECaspect, ImageAspect) [instance: 11, cache: 1]; switchRECenable = Compute( "$0 == 0 ? 1 : (($2 == $3) && ($4 == $5)) ? ($1 == 1 ? 2 : 3) : 4", RECenable, switchRenderMode, RECresolution, ImageResolution, RECaspect, ImageAspect) [instance: 4, cache: 1]; NoRECobject, RECNoRerenderObject, RECNoRerHW, RECRerenderObject = Route(switchRECenable, annoted_object); Display( NoRECobject, camera, where, throttle) [instance: 1, cache: 1]; image = Render( RECNoRerenderObject, camera) [instance: 1, cache: 1]; Display( image, NULL, where, throttle) [instance: 2, cache: 1]; WriteImage( image, RECfile, RECformat) [instance: 1, cache: 1]; rec_where = Display( RECNoRerHW, camera, where, throttle) [instance: 1, cache: 0]; rec_image = ReadImageWindow( rec_where) [instance: 1, cache: 1]; WriteImage( rec_image, RECfile, RECformat) [instance: 1, cache: 1]; RECupdateCamera = UpdateCamera( camera, resolution=RECresolution, aspect=RECaspect) [instance: 2, cache: 1]; Display( RECRerenderObject, camera, where, throttle) [instance: 1, cache: 1]; RECRerenderObject = ScaleScreen( RECRerenderObject, NULL, RECresolution, camera) [instance: 1, cache: 1]; image = Render( RECRerenderObject, RECupdateCamera) [instance: 2, cache: 1]; WriteImage( image, RECfile, RECformat) [instance: 2, cache: 1]; } main_Image_4_in_1 = "Image_4"; main_Image_4_in_3 = "X24,,"; main_Image_4_in_4 = 1; main_Image_4_in_5 = [3.98495 2.30071 0.460402]; main_Image_4_in_6 = [3.98495 2.30071 23.7018]; main_Image_4_in_7 = 12.455; main_Image_4_in_8 = 826; main_Image_4_in_9 = 0.751; main_Image_4_in_10 = [0 1 0]; main_Image_4_in_11 = NULL; main_Image_4_in_12 = 0; main_Image_4_in_13 = NULL; main_Image_4_in_14 = 1; main_Image_4_in_15 = NULL; main_Image_4_in_16 = NULL; main_Image_4_in_17 = NULL; main_Image_4_in_18 = NULL; main_Image_4_in_19 = 0; main_Image_4_in_20 = NULL; main_Image_4_in_21 = NULL; main_Image_4_in_22 = NULL; main_Image_4_in_23 = NULL; main_Image_4_in_25 = NULL; main_Image_4_in_26 = NULL; main_Image_4_in_27 = NULL; main_Image_4_in_28 = NULL; main_Image_4_in_29 = NULL; main_Image_4_in_30 = NULL; main_Image_4_in_31 = NULL; main_Image_4_in_32 = NULL; main_Image_4_in_33 = NULL; main_Image_4_in_34 = NULL; main_Image_4_in_35 = NULL; main_Image_4_in_36 = NULL; main_Image_4_in_37 = NULL; main_Image_4_in_38 = NULL; main_Image_4_in_39 = NULL; main_Image_4_in_40 = NULL; main_Image_4_in_41 = "rotate"; main_Image_4_in_42 = NULL; main_Image_4_in_43 = NULL; main_Image_4_in_44 = NULL; main_Image_4_in_45 = NULL; main_Image_4_in_46 = NULL; main_Image_4_in_47 = NULL; main_Image_4_in_48 = NULL; main_Image_4_in_49 = NULL; Executive("product version 4 4 4"); $sync main(); elk-10.4.9/examples/Compton-scattering/PaxHeaders/Ni0000644000000000000000000000013214762655565017352 xustar0030 mtime=1741380469.760015214 30 atime=1741380469.758015204 30 ctime=1741380469.760015214 elk-10.4.9/examples/Compton-scattering/Ni/0000755002504400250440000000000014762655565022151 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Compton-scattering/Ni/PaxHeaders/EMD1D.OUT0000644000000000000000000000013214762655565020612 xustar0030 mtime=1741380469.759015209 30 atime=1741380469.759015209 30 ctime=1741380469.759015209 elk-10.4.9/examples/Compton-scattering/Ni/EMD1D.OUT0000644002504400250440000001265614762655565023346 0ustar00dewhurstdewhurst00000000000000 0.000000000 13.36944509 0.3808160347E-01 13.36242486 0.7616320694E-01 13.34713589 0.1142448104 13.32147908 0.1523264139 13.27585701 0.1904080173 13.20894159 0.2284896208 13.13144996 0.2665712243 13.05060461 0.3046528277 12.95891882 0.3427344312 12.85570551 0.3808160347 12.73724511 0.4188976382 12.58594259 0.4569792416 12.40646548 0.4950608451 12.20258717 0.5331424486 11.98203209 0.5712240520 11.74982301 0.6093056555 11.50397852 0.6473872590 11.25947488 0.6854688624 11.02068933 0.7235504659 10.79507807 0.7616320694 10.59602405 0.7997136728 10.41950030 0.8377952763 10.24830043 0.8758768798 10.07520866 0.9139584832 9.896749716 0.9520400867 9.714049752 0.9901216902 9.530473138 1.028203294 9.339954965 1.066284897 9.140787720 1.104366501 8.935569331 1.142448104 8.738411330 1.180529708 8.561515588 1.218611311 8.394655152 1.256692914 8.228303536 1.294774518 8.068561140 1.332856121 7.910297932 1.370937725 7.742682296 1.409019328 7.573756340 1.447100932 7.410641772 1.485182535 7.254345570 1.523264139 7.097871593 1.561345742 6.940479426 1.599427346 6.789792236 1.637508949 6.639704472 1.675590553 6.489502153 1.713672156 6.355455259 1.751753760 6.239973890 1.789835363 6.120954124 1.827916966 5.988027446 1.865998570 5.841258977 1.904080173 5.692287515 1.942161777 5.546780416 1.980243380 5.395408983 2.018324984 5.236678739 2.056406587 5.076396106 2.094488191 4.928660100 2.132569794 4.796921137 2.170651398 4.667976134 2.208733001 4.538842525 2.246814605 4.414996074 2.284896208 4.291667931 2.322977812 4.163871229 2.361059415 4.036540109 2.399141019 3.912284859 2.437222622 3.794245903 2.475304225 3.679202305 2.513385829 3.567232516 2.551467432 3.462760945 2.589549036 3.361378745 2.627630639 3.263495724 2.665712243 3.177204176 2.703793846 3.100418825 2.741875450 3.022089438 2.779957053 2.938390805 2.818038657 2.850146442 2.856120260 2.763888755 2.894201864 2.680168113 2.932283467 2.593537368 2.970365071 2.504035903 3.008446674 2.415061089 3.046528277 2.334230769 3.084609881 2.261386065 3.122691484 2.189648361 3.160773088 2.119272318 3.198854691 2.052492680 3.236936295 1.985614800 3.275017898 1.917490125 3.313099502 1.850589025 3.351181105 1.786127365 3.389262709 1.725223654 3.427344312 1.665586690 3.465425916 1.608161480 3.503507519 1.554434647 3.541589123 1.502060642 3.579670726 1.452381398 3.617752329 1.409522582 3.655833933 1.370733010 3.693915536 1.330727243 3.731997140 1.288452971 3.770078743 1.244733351 3.808160347 1.202922648 3.846241950 1.162416103 3.884323554 1.120802947 3.922405157 1.078265333 3.960486761 1.036333665 3.998568364 0.9988444237 4.036649968 0.9649956003 4.074731571 0.9318476569 4.112813175 0.8997748555 4.150894778 0.8695350725 4.188976382 0.8389903421 4.227057985 0.8083465603 4.265139588 0.7786091047 4.303221192 0.7499539424 4.341302795 0.7229939196 4.379384399 0.6965284364 4.417466002 0.6713876299 4.455547606 0.6479272515 4.493629209 0.6251312139 4.531710813 0.6041244525 4.569792416 0.5862059253 4.607874020 0.5694603533 4.645955623 0.5520693813 4.684037227 0.5339913846 4.722118830 0.5158421203 4.760200434 0.4990218240 4.798282037 0.4827316178 4.836363640 0.4659253487 4.874445244 0.4486479322 4.912526847 0.4318071797 4.950608451 0.4171274069 4.988690054 0.4040055540 5.026771658 0.3911671146 5.064853261 0.3788656153 5.102934865 0.3672275819 5.141016468 0.3553093866 5.179098072 0.3434334700 5.217179675 0.3319091178 5.255261279 0.3207857681 5.293342882 0.3100308349 5.331424486 0.2991821951 5.369506089 0.2888413378 5.407587693 0.2790769534 5.445669296 0.2695133828 5.483750899 0.2607814560 5.521832503 0.2533991562 5.559914106 0.2461602714 5.597995710 0.2385604544 5.636077313 0.2307868105 5.674158917 0.2231243759 elk-10.4.9/examples/Compton-scattering/Ni/PaxHeaders/elk.in0000644000000000000000000000013214762655565020532 xustar0030 mtime=1741380469.761015219 30 atime=1741380469.761015219 30 ctime=1741380469.761015219 elk-10.4.9/examples/Compton-scattering/Ni/elk.in0000644002504400250440000000170214762655565023254 0ustar00dewhurstdewhurst00000000000000 ! Twice-integrated electron momentum density (EMD) plot for ferromagnetic Ni. ! First the EMD is calculated on a regular H+k grid. This is then interpolated ! and integrated in directions which are mutually orthogonal to each other and ! along the plotting line. This line is given by plot1d. ! Example by David Ernsting and Stephen Dugdale. tasks 0 170 171 ! define the plotting line in reciprocal lattice coordinates plot1d 2 150 0.0 0.0 0.0 3.0 3.0 0.0 ! maximum length of H+k-vectors for the EMD hkmax 8.d0 ! small swidth to give a sharp profile swidth 0.00016 ngridk 20 20 20 spinpol .true. bfieldc 0.0 0.0 -0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.322 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/examples/Compton-scattering/PaxHeaders/Si-GW0000644000000000000000000000013014762655565017670 xustar0029 mtime=1741380469.76301523 30 atime=1741380469.762015225 29 ctime=1741380469.76301523 elk-10.4.9/examples/Compton-scattering/Si-GW/0000755002504400250440000000000014762655565022471 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Compton-scattering/Si-GW/PaxHeaders/elk.in0000644000000000000000000000013214762655565021052 xustar0030 mtime=1741380469.764015235 30 atime=1741380469.764015235 30 ctime=1741380469.764015235 elk-10.4.9/examples/Compton-scattering/Si-GW/elk.in0000644002504400250440000000244614762655565023602 0ustar00dewhurstdewhurst00000000000000 ! Compton profile determined for silicon from the GW approximation. ! The density matrices are calculated from the interacting Green's function at ! each k-point and the files EVECSV.OUT and OCCSV.OUT are updated. The electron ! momentum density (EMD) is then computed from these. tasks 0 : ground state calculation 600 : determined the GW self-energy 640 : write the natural orbitals and occupaction numbers 170 : write the EMD for each k-point 171 : produce the 1D EMD plot ! use LAPW nxoapwlo 1 ! Matsubara frequency cut-off wmaxgw 20.0 ! response function G-vector cut-off gmaxrf 3.0 ! temperature of many-body system (determines Matsubara frequency spacing) tempk 1000.0 ! define the plotting line in reciprocal lattice coordinates plot1d 2 150 0.0 0.0 0.0 3.0 3.0 0.0 ! maximum length of H+k-vectors for the EMD hkmax 8.d0 ngridk 8 8 8 ! q-point grid can be smaller than (but commensurate with) the k-point set ngridq 2 2 2 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 elk-10.4.9/examples/PaxHeaders/ELNES0000644000000000000000000000013114762655565014071 xustar0030 mtime=1741380469.781015324 29 atime=1741380469.76501524 30 ctime=1741380469.781015324 elk-10.4.9/examples/ELNES/0000755002504400250440000000000014762655565016671 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/ELNES/PaxHeaders/Pu0000644000000000000000000000013214762655565014456 xustar0030 mtime=1741380469.769015261 30 atime=1741380469.766015245 30 ctime=1741380469.769015261 elk-10.4.9/examples/ELNES/Pu/0000755002504400250440000000000014762655565017255 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/ELNES/Pu/PaxHeaders/Pu+.in0000644000000000000000000000013214762655565015522 xustar0030 mtime=1741380469.768015256 30 atime=1741380469.767015251 30 ctime=1741380469.768015256 elk-10.4.9/examples/ELNES/Pu/Pu+.in0000644002504400250440000000472314762655565020252 0ustar00dewhurstdewhurst00000000000000 'Pu' : spsymb 'plutonium' : spname -94.0000 : spzn 444784.7903 : spmass 0.206284E-06 2.2000 42.3450 800 : sprmin, rmt, sprmax, nrmt 27 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 3.50000 T <---- 1/2 electron removed from next lowest state 4 2 2 4.00000 F 4 2 3 6.00000 F 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 3.00000 F 5 3 4 3.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.50000 F <---- and added to highest state 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -1.7999 0 T 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -0.7412 0 T 2 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -30.0000 0 T elk-10.4.9/examples/ELNES/Pu/PaxHeaders/elk.in0000644000000000000000000000013214762655565015636 xustar0030 mtime=1741380469.769015261 30 atime=1741380469.769015261 30 ctime=1741380469.769015261 elk-10.4.9/examples/ELNES/Pu/elk.in0000644002504400250440000000140114762655565020354 0ustar00dewhurstdewhurst00000000000000 ! Electron loss near-edge spectroscopy (ELNES) of spin-polarised fcc plutonium. ! Take note of the modified species file, 'Pu+.in', and the requirement of ! spin-orbit coupling. tasks 0 140 spinorb .true. ! maximum allowed energy for the initial state in the double differential ! cross-section formula emaxelnes -20.0 wplot 300 100 6 : nwplot, ngrkf, nswplot 28.0 32.0 : wplot nempty 20 ! q-vector in lattice coordinates vecql 0.0 0.0 0.25 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 9.13730 atoms 1 : nspecies 'Pu+.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.01 : atposl, bfcmt ngridk 4 4 4 elk-10.4.9/examples/ELNES/PaxHeaders/BN0000644000000000000000000000013214762655565014371 xustar0030 mtime=1741380469.779015314 30 atime=1741380469.771015272 30 ctime=1741380469.779015314 elk-10.4.9/examples/ELNES/BN/0000755002504400250440000000000014762655565017170 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/ELNES/BN/PaxHeaders/B.in0000644000000000000000000000013214762655565015157 xustar0030 mtime=1741380469.772015277 30 atime=1741380469.772015277 30 ctime=1741380469.772015277 elk-10.4.9/examples/ELNES/BN/B.in0000644002504400250440000000172214762655565017703 0ustar00dewhurstdewhurst00000000000000 'B' : spsymb 'boron' : spname -5.00000 : spzn 19707.24740 : spmass 0.894427E-06 1.8000 43.3288 300 : sprmin, rmt, sprmax, nrmt 3 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 2 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F elk-10.4.9/examples/ELNES/BN/PaxHeaders/ELNES.OUT0000644000000000000000000000013214762655565015705 xustar0030 mtime=1741380469.774015287 30 atime=1741380469.774015287 30 ctime=1741380469.774015287 elk-10.4.9/examples/ELNES/BN/ELNES.OUT0000644002504400250440000002553414762655565020440 0ustar00dewhurstdewhurst00000000000000 18.00000000 0.000000000 18.01333333 0.000000000 18.02666667 0.000000000 18.04000000 0.000000000 18.05333333 0.000000000 18.06666667 0.000000000 18.08000000 0.000000000 18.09333333 0.000000000 18.10666667 0.000000000 18.12000000 0.000000000 18.13333333 0.000000000 18.14666667 0.000000000 18.16000000 0.000000000 18.17333333 0.000000000 18.18666667 0.000000000 18.20000000 0.000000000 18.21333333 0.000000000 18.22666667 0.000000000 18.24000000 0.000000000 18.25333333 0.000000000 18.26666667 0.000000000 18.28000000 0.000000000 18.29333333 0.000000000 18.30666667 0.000000000 18.32000000 0.000000000 18.33333333 0.000000000 18.34666667 0.000000000 18.36000000 0.000000000 18.37333333 0.000000000 18.38666667 0.000000000 18.40000000 0.000000000 18.41333333 0.000000000 18.42666667 0.000000000 18.44000000 0.000000000 18.45333333 0.000000000 18.46666667 0.000000000 18.48000000 0.000000000 18.49333333 0.000000000 18.50666667 0.000000000 18.52000000 0.000000000 18.53333333 0.000000000 18.54666667 0.000000000 18.56000000 0.000000000 18.57333333 0.000000000 18.58666667 0.000000000 18.60000000 0.000000000 18.61333333 0.000000000 18.62666667 0.000000000 18.64000000 0.4802983991E-10 18.65333333 0.4187232974E-08 18.66666667 0.1166852820E-06 18.68000000 0.1185389883E-05 18.69333333 0.7384946085E-05 18.70666667 0.3045664582E-04 18.72000000 0.9242656802E-04 18.73333333 0.2095808507E-03 18.74666667 0.3736608862E-03 18.76000000 0.5533811122E-03 18.77333333 0.7624387726E-03 18.78666667 0.1130701129E-02 18.80000000 0.1718257455E-02 18.81333333 0.2493497109E-02 18.82666667 0.3185876321E-02 18.84000000 0.3773753388E-02 18.85333333 0.4163071949E-02 18.86666667 0.4417930457E-02 18.88000000 0.4382860113E-02 18.89333333 0.4265167650E-02 18.90666667 0.4274114406E-02 18.92000000 0.4531939553E-02 18.93333333 0.4773633135E-02 18.94666667 0.4692470703E-02 18.96000000 0.4280908391E-02 18.97333333 0.3707009360E-02 18.98666667 0.3231771893E-02 19.00000000 0.2948639963E-02 19.01333333 0.2934893917E-02 19.02666667 0.3219916297E-02 19.04000000 0.3575260703E-02 19.05333333 0.3751330763E-02 19.06666667 0.3327580078E-02 19.08000000 0.2543806713E-02 19.09333333 0.1654728178E-02 19.10666667 0.1150618326E-02 19.12000000 0.9459602807E-03 19.13333333 0.8998660240E-03 19.14666667 0.8176059080E-03 19.16000000 0.7558026853E-03 19.17333333 0.9037873207E-03 19.18666667 0.1321903948E-02 19.20000000 0.1867767255E-02 19.21333333 0.2223600447E-02 19.22666667 0.2224099692E-02 19.24000000 0.1902702475E-02 19.25333333 0.1439482382E-02 19.26666667 0.9722495061E-03 19.28000000 0.5977864035E-03 19.29333333 0.3478918970E-03 19.30666667 0.2213236000E-03 19.32000000 0.1703656489E-03 19.33333333 0.1539137766E-03 19.34666667 0.1451793490E-03 19.36000000 0.1375585069E-03 19.37333333 0.1278149172E-03 19.38666667 0.1195727132E-03 19.40000000 0.1260018751E-03 19.41333333 0.1695476274E-03 19.42666667 0.3183900566E-03 19.44000000 0.5793807268E-03 19.45333333 0.9115068510E-03 19.46666667 0.1130902983E-02 19.48000000 0.1185230847E-02 19.49333333 0.1088279488E-02 19.50666667 0.9753621739E-03 19.52000000 0.8640461661E-03 19.53333333 0.7562832710E-03 19.54666667 0.6414338684E-03 19.56000000 0.5560142899E-03 19.57333333 0.5075797090E-03 19.58666667 0.4777864278E-03 19.60000000 0.4375588173E-03 19.61333333 0.3777842167E-03 19.62666667 0.3123612299E-03 19.64000000 0.2611515503E-03 19.65333333 0.2373966982E-03 19.66666667 0.2324238458E-03 19.68000000 0.2292782226E-03 19.69333333 0.2212538667E-03 19.70666667 0.2174469307E-03 19.72000000 0.2324020016E-03 19.73333333 0.2755053590E-03 19.74666667 0.3373106475E-03 19.76000000 0.4001468611E-03 19.77333333 0.4277098535E-03 19.78666667 0.4056550688E-03 19.80000000 0.3437894304E-03 19.81333333 0.2756163370E-03 19.82666667 0.2317231865E-03 19.84000000 0.2230530902E-03 19.85333333 0.2569834841E-03 19.86666667 0.3246486802E-03 19.88000000 0.4109200279E-03 19.89333333 0.4913710672E-03 19.90666667 0.5572174814E-03 19.92000000 0.6215124056E-03 19.93333333 0.7215388596E-03 19.94666667 0.8783714081E-03 19.96000000 0.1089505958E-02 19.97333333 0.1309540454E-02 19.98666667 0.1506600555E-02 20.00000000 0.1641843699E-02 20.01333333 0.1683875413E-02 20.02666667 0.1608065088E-02 20.04000000 0.1413556994E-02 20.05333333 0.1149511752E-02 20.06666667 0.8333914280E-03 20.08000000 0.5265343190E-03 20.09333333 0.2595013230E-03 20.10666667 0.9703860137E-04 20.12000000 0.2181874162E-04 20.13333333 0.4267836290E-05 20.14666667 0.8728401994E-06 20.16000000 0.4237144268E-07 20.17333333 0.000000000 20.18666667 0.000000000 20.20000000 0.000000000 20.21333333 0.000000000 20.22666667 0.000000000 20.24000000 0.000000000 20.25333333 0.000000000 20.26666667 0.000000000 20.28000000 0.000000000 20.29333333 0.000000000 20.30666667 0.000000000 20.32000000 0.000000000 20.33333333 0.000000000 20.34666667 0.000000000 20.36000000 0.000000000 20.37333333 0.000000000 20.38666667 0.000000000 20.40000000 0.000000000 20.41333333 0.000000000 20.42666667 0.000000000 20.44000000 0.000000000 20.45333333 0.000000000 20.46666667 0.000000000 20.48000000 0.000000000 20.49333333 0.000000000 20.50666667 0.000000000 20.52000000 0.000000000 20.53333333 0.000000000 20.54666667 0.000000000 20.56000000 0.000000000 20.57333333 0.000000000 20.58666667 0.000000000 20.60000000 0.000000000 20.61333333 0.000000000 20.62666667 0.000000000 20.64000000 0.000000000 20.65333333 0.000000000 20.66666667 0.000000000 20.68000000 0.000000000 20.69333333 0.000000000 20.70666667 0.000000000 20.72000000 0.000000000 20.73333333 0.000000000 20.74666667 0.000000000 20.76000000 0.000000000 20.77333333 0.000000000 20.78666667 0.000000000 20.80000000 0.000000000 20.81333333 0.000000000 20.82666667 0.000000000 20.84000000 0.000000000 20.85333333 0.000000000 20.86666667 0.000000000 20.88000000 0.000000000 20.89333333 0.000000000 20.90666667 0.000000000 20.92000000 0.000000000 20.93333333 0.000000000 20.94666667 0.000000000 20.96000000 0.000000000 20.97333333 0.000000000 20.98666667 0.000000000 21.00000000 0.000000000 21.01333333 0.000000000 21.02666667 0.000000000 21.04000000 0.000000000 21.05333333 0.000000000 21.06666667 0.000000000 21.08000000 0.000000000 21.09333333 0.000000000 21.10666667 0.000000000 21.12000000 0.000000000 21.13333333 0.000000000 21.14666667 0.000000000 21.16000000 0.000000000 21.17333333 0.000000000 21.18666667 0.000000000 21.20000000 0.000000000 21.21333333 0.000000000 21.22666667 0.000000000 21.24000000 0.000000000 21.25333333 0.000000000 21.26666667 0.000000000 21.28000000 0.000000000 21.29333333 0.000000000 21.30666667 0.000000000 21.32000000 0.000000000 21.33333333 0.000000000 21.34666667 0.000000000 21.36000000 0.000000000 21.37333333 0.000000000 21.38666667 0.000000000 21.40000000 0.000000000 21.41333333 0.000000000 21.42666667 0.000000000 21.44000000 0.000000000 21.45333333 0.000000000 21.46666667 0.000000000 21.48000000 0.000000000 21.49333333 0.000000000 21.50666667 0.000000000 21.52000000 0.000000000 21.53333333 0.000000000 21.54666667 0.000000000 21.56000000 0.000000000 21.57333333 0.000000000 21.58666667 0.000000000 21.60000000 0.000000000 21.61333333 0.000000000 21.62666667 0.000000000 21.64000000 0.000000000 21.65333333 0.000000000 21.66666667 0.000000000 21.68000000 0.000000000 21.69333333 0.000000000 21.70666667 0.000000000 21.72000000 0.000000000 21.73333333 0.000000000 21.74666667 0.000000000 21.76000000 0.000000000 21.77333333 0.000000000 21.78666667 0.000000000 21.80000000 0.000000000 21.81333333 0.000000000 21.82666667 0.000000000 21.84000000 0.000000000 21.85333333 0.000000000 21.86666667 0.000000000 21.88000000 0.000000000 21.89333333 0.000000000 21.90666667 0.000000000 21.92000000 0.000000000 21.93333333 0.000000000 21.94666667 0.000000000 21.96000000 0.000000000 21.97333333 0.000000000 21.98666667 0.000000000 elk-10.4.9/examples/ELNES/BN/PaxHeaders/N+.in0000644000000000000000000000013214762655565015246 xustar0030 mtime=1741380469.776015298 30 atime=1741380469.776015298 30 ctime=1741380469.776015298 elk-10.4.9/examples/ELNES/BN/N+.in0000644002504400250440000000253414762655565017774 0ustar00dewhurstdewhurst00000000000000 'N+' : spsymb 'nitrogen with pseudo core-hole' : spname -8.00000 : spzn 25532.72506 : spmass 0.755929E-06 1.4500 26.9237 300 : sprmin, rmt, sprmax, nrmt 4 : spnst 1 0 1 2.00000 F : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 2 1 2 3.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -0.6020 0 T 0 3 0.1500 0 F 0.1500 1 F -20.0000 0 T elk-10.4.9/examples/ELNES/BN/PaxHeaders/N.in0000644000000000000000000000013214762655565015173 xustar0030 mtime=1741380469.778015308 30 atime=1741380469.778015308 30 ctime=1741380469.778015308 elk-10.4.9/examples/ELNES/BN/N.in0000644002504400250440000000222014762655565017711 0ustar00dewhurstdewhurst00000000000000 'N' : spsymb 'nitrogen' : spname -7.00000 : spzn 25532.65213 : spmass 0.755929E-06 1.8000 33.2667 300 : sprmin, rmt, sprmax, nrmt 4 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 2 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -0.6770 0 T elk-10.4.9/examples/ELNES/BN/PaxHeaders/elk.in0000644000000000000000000000013214762655565015551 xustar0030 mtime=1741380469.780015319 30 atime=1741380469.780015319 30 ctime=1741380469.780015319 elk-10.4.9/examples/ELNES/BN/elk.in0000644002504400250440000000356214762655565020301 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the electron loss near-edge spectroscopy (ELNES) for boron ! nitride. Note that a 16 atom supercell has been constructed with a special ! N atom (defined in the species file 'N+.in') for which the nuclear and ! electronic charges have been increased by one, and the 1s core code state has ! been included as a valence state by adding a local-orbital at the appropriate ! energy. This approximates the local core-hole interation. Compare with Phys. ! Rev. B 64, 115107 (2001). ! This example is well converged and is of publication quality. However it is ! fairly time-consuming and is best run on a multi-processor machine. tasks 0 140 ! spin-orbit coupling required to obtain realistic 1s state in valence spinorb .true. ! ELNES q-vector in lattice coordinates vecql 0.0 0.0 0.125 ! energy range for ELNES plot wplot 300 150 3 : nwplot, ngrkf, nswplot 18.0 22.0 : wplot (for the nitrogen K-edge) ! maximum allowed energy for the initial state in the double differential ! cross-section formula emaxelnes -10.0 ! large number of empty states required nempty 30 ngridk 8 8 8 avec 9.674352 0.0 0.0 4.837176 8.378234597 0.0 4.837176 2.792744866 7.899075331 atoms 3 : nspecies 'B.in' : spfname 8 : natoms; atposl below 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.5 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 'N+.in' : spfname 1 : natoms; atposl below 0.125 0.125 0.125 'N.in' : spfname 7 0.125 0.125 0.625 0.125 0.625 0.125 0.125 0.625 0.625 0.625 0.125 0.125 0.625 0.125 0.625 0.625 0.625 0.125 0.625 0.625 0.625 elk-10.4.9/examples/ELNES/PaxHeaders/Cu0000644000000000000000000000013014762655565014437 xustar0029 mtime=1741380469.78401534 30 atime=1741380469.781015324 29 ctime=1741380469.78401534 elk-10.4.9/examples/ELNES/Cu/0000755002504400250440000000000014762655565017240 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/ELNES/Cu/PaxHeaders/Cu+.in0000644000000000000000000000013214762655565015470 xustar0030 mtime=1741380469.783015334 30 atime=1741380469.782015329 30 ctime=1741380469.783015334 elk-10.4.9/examples/ELNES/Cu/Cu+.in0000644002504400250440000000373314762655565020220 0ustar00dewhurstdewhurst00000000000000 'Cu+' : spsymb 'copper with pseudo core-hole' : spname -29.0000 : spzn 115837.2717 : spmass 0.371391E-06 2.0000 37.1331 500 : sprmin, rmt, sprmax, nrmt 10 : spnst 1 0 1 1.50000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 4.00000 F 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 1.50000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 8 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -2.6152 0 T 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -4.0000 0 T 1 3 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -34.0000 0 T 0 3 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -41.0000 0 T elk-10.4.9/examples/ELNES/Cu/PaxHeaders/elk.in0000644000000000000000000000012714762655565015625 xustar0029 mtime=1741380469.78401534 29 atime=1741380469.78401534 29 ctime=1741380469.78401534 elk-10.4.9/examples/ELNES/Cu/elk.in0000644002504400250440000000225214762655565020344 0ustar00dewhurstdewhurst00000000000000 ! Electron loss near-edge spectroscopy for fcc Cu. Note that a special species ! file has been constructed to simulate dynamical core-hole effects by removing ! half an electron from the 1s core state (even though we are interested in the ! 2s and 2p transitions). This is a publication-quality calculation and may take ! some time to complete. ! No supercell is required because of the strong metallic screening of copper. ! Compare with Eur. Phys. J. B21, 363 (2001). tasks 0 140 ! spin-orbit coupling required for accurate description of deep valence states spinorb .true. ! maximum allowed energy for the initial state in the double differential ! cross-section formula emaxelnes -30.0 ! energy range for ELNES plot wplot 500 200 1 : nwplot, ngrkf, nswplot 33.0 37.5 : wplot (suitable for the Cu L3 edge) vecql 0.0 0.0 0.1 rgkmax 8.0 gmaxvr 14.0 nempty 20 ngridk 10 10 10 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 6.83117 atoms 1 : nspecies 'Cu+.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/examples/PaxHeaders/Mossbauer0000644000000000000000000000013214762655565015164 xustar0030 mtime=1741380469.803015439 30 atime=1741380469.785015345 30 ctime=1741380469.803015439 elk-10.4.9/examples/Mossbauer/0000755002504400250440000000000014762655565017763 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Mossbauer/PaxHeaders/Mg2SiO40000644000000000000000000000013114762655565016307 xustar0030 mtime=1741380469.791015376 29 atime=1741380469.78601535 30 ctime=1741380469.791015376 elk-10.4.9/examples/Mossbauer/Mg2SiO4/0000755002504400250440000000000014762655565021107 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Mossbauer/Mg2SiO4/PaxHeaders/EFG.OUT0000644000000000000000000000012714762655565017363 xustar0029 mtime=1741380469.78801536 29 atime=1741380469.78801536 29 ctime=1741380469.78801536 elk-10.4.9/examples/Mossbauer/Mg2SiO4/EFG.OUT0000644002504400250440000002127714762655565022112 0ustar00dewhurstdewhurst00000000000000 (electric field gradient tensor is in Cartesian coordinates) Species : 1 (Mg), atom : 1 EFG tensor : 0.4540892586E-01 -0.1763387239E-01 0.6360381772E-01 -0.1763387239E-01 -0.6707466662E-01 0.5324981887E-01 0.6360381772E-01 0.5324981887E-01 0.2166574076E-01 trace : 0.2255140519E-15 eigenvalues : -0.1057174610 0.4640486884E-02 0.1010769741 Species : 1 (Mg), atom : 2 EFG tensor : 0.4540892586E-01 -0.1763387239E-01 -0.6360381772E-01 -0.1763387239E-01 -0.6707466662E-01 -0.5324981887E-01 -0.6360381772E-01 -0.5324981887E-01 0.2166574076E-01 trace : -0.8673617380E-16 eigenvalues : -0.1057174610 0.4640486884E-02 0.1010769741 Species : 1 (Mg), atom : 3 EFG tensor : 0.4540892586E-01 0.1763387239E-01 -0.6360381772E-01 0.1763387239E-01 -0.6707466662E-01 0.5324981887E-01 -0.6360381772E-01 0.5324981887E-01 0.2166574076E-01 trace : -0.2324529458E-15 eigenvalues : -0.1057174610 0.4640486884E-02 0.1010769741 Species : 1 (Mg), atom : 4 EFG tensor : 0.4540892586E-01 0.1763387239E-01 0.6360381772E-01 0.1763387239E-01 -0.6707466662E-01 -0.5324981887E-01 0.6360381772E-01 -0.5324981887E-01 0.2166574076E-01 trace : -0.5204170428E-16 eigenvalues : -0.1057174610 0.4640486884E-02 0.1010769741 Species : 1 (Mg), atom : 5 EFG tensor : -0.8040555871E-01 -0.3650637845E-01 -0.3047653057E-16 -0.3650637845E-01 0.1498274433E-01 -0.1054253974E-15 -0.3047653057E-16 -0.1054253974E-15 0.6542281438E-01 trace : -0.7216449660E-15 eigenvalues : -0.9277343976E-01 0.2735062538E-01 0.6542281438E-01 Species : 1 (Mg), atom : 6 EFG tensor : -0.8040555871E-01 -0.3650637845E-01 -0.8533708916E-16 -0.3650637845E-01 0.1498274433E-01 -0.1268311785E-15 -0.8533708916E-16 -0.1268311785E-15 0.6542281438E-01 trace : 0.2775557562E-16 eigenvalues : -0.9277343976E-01 0.2735062538E-01 0.6542281438E-01 Species : 1 (Mg), atom : 7 EFG tensor : -0.8040555871E-01 0.3650637845E-01 0.6083835430E-16 0.3650637845E-01 0.1498274433E-01 0.8868811951E-16 0.6083835430E-16 0.8868811951E-16 0.6542281438E-01 trace : 0.4163336342E-16 eigenvalues : -0.9277343976E-01 0.2735062538E-01 0.6542281438E-01 Species : 1 (Mg), atom : 8 EFG tensor : -0.8040555871E-01 0.3650637845E-01 -0.2566982641E-16 0.3650637845E-01 0.1498274433E-01 0.1392643800E-15 -0.2566982641E-16 0.1392643800E-15 0.6542281438E-01 trace : 0.9714451465E-16 eigenvalues : -0.9277343976E-01 0.2735062538E-01 0.6542281438E-01 Species : 2 (Si), atom : 1 EFG tensor : 0.1998888880 0.3247854545E-01 0.9705954098E-16 0.3247854545E-01 -0.1762801640 -0.3077944466E-15 0.9705954098E-16 -0.3077944466E-15 -0.2360872399E-01 trace : -0.4787836794E-15 eigenvalues : -0.1790637727 -0.2360872399E-01 0.2026724967 Species : 2 (Si), atom : 2 EFG tensor : 0.1998888880 0.3247854545E-01 0.9050580257E-16 0.3247854545E-01 -0.1762801640 -0.3344693075E-15 0.9050580257E-16 -0.3344693075E-15 -0.2360872399E-01 trace : 0.4336808690E-15 eigenvalues : -0.1790637727 -0.2360872399E-01 0.2026724967 Species : 2 (Si), atom : 3 EFG tensor : 0.1998888880 -0.3247854545E-01 0.1056039611E-15 -0.3247854545E-01 -0.1762801640 0.8244420802E-16 0.1056039611E-15 0.8244420802E-16 -0.2360872399E-01 trace : 0.1151856388E-14 eigenvalues : -0.1790637727 -0.2360872399E-01 0.2026724967 Species : 2 (Si), atom : 4 EFG tensor : 0.1998888880 -0.3247854545E-01 0.1427804355E-16 -0.3247854545E-01 -0.1762801640 0.1160800898E-15 0.1427804355E-16 0.1160800898E-15 -0.2360872399E-01 trace : 0.2775557562E-16 eigenvalues : -0.1790637727 -0.2360872399E-01 0.2026724967 Species : 3 (O), atom : 1 EFG tensor : -0.4883142850 -0.4644265160E-01 -0.2893374241E-15 -0.4644265160E-01 0.1719771655 0.2307362823E-15 -0.2893374241E-15 0.2307362823E-15 0.3163371195 trace : -0.9436895709E-15 eigenvalues : -0.4915649001 0.1752277806 0.3163371195 Species : 3 (O), atom : 2 EFG tensor : -0.4883142850 -0.4644265160E-01 -0.8665332380E-16 -0.4644265160E-01 0.1719771655 0.1921692501E-15 -0.8665332380E-16 0.1921692501E-15 0.3163371195 trace : 0.7216449660E-15 eigenvalues : -0.4915649001 0.1752277806 0.3163371195 Species : 3 (O), atom : 3 EFG tensor : -0.4883142850 0.4644265160E-01 -0.1075299185E-15 0.4644265160E-01 0.1719771655 -0.4737739850E-15 -0.1075299185E-15 -0.4737739850E-15 0.3163371195 trace : 0.3330669074E-14 eigenvalues : -0.4915649001 0.1752277806 0.3163371195 Species : 3 (O), atom : 4 EFG tensor : -0.4883142850 0.4644265160E-01 -0.1908814821E-15 0.4644265160E-01 0.1719771655 -0.3512425491E-15 -0.1908814821E-15 -0.3512425491E-15 0.3163371195 trace : -0.2164934898E-14 eigenvalues : -0.4915649001 0.1752277806 0.3163371195 Species : 3 (O), atom : 5 EFG tensor : -0.5817198967E-01 0.2576542145 0.1269063876E-15 0.2576542145 -0.2568887445 -0.2865787890E-16 0.1269063876E-15 -0.2865787890E-16 0.3150607341 trace : 0.1165734176E-14 eigenvalues : -0.4336784820 0.1186177479 0.3150607341 Species : 3 (O), atom : 6 EFG tensor : -0.5817198967E-01 0.2576542145 0.1229734413E-15 0.2576542145 -0.2568887445 0.1684989048E-15 0.1229734413E-15 0.1684989048E-15 0.3150607341 trace : 0.5551115123E-16 eigenvalues : -0.4336784820 0.1186177479 0.3150607341 Species : 3 (O), atom : 7 EFG tensor : -0.5817198967E-01 -0.2576542145 -0.4353297598E-15 -0.2576542145 -0.2568887445 -0.8050984716E-15 -0.4353297598E-15 -0.8050984716E-15 0.3150607341 trace : -0.5551115123E-16 eigenvalues : -0.4336784820 0.1186177479 0.3150607341 Species : 3 (O), atom : 8 EFG tensor : -0.5817198967E-01 -0.2576542145 -0.3397294856E-15 -0.2576542145 -0.2568887445 -0.6887664005E-15 -0.3397294856E-15 -0.6887664005E-15 0.3150607341 trace : -0.1276756478E-14 eigenvalues : -0.4336784820 0.1186177479 0.3150607341 Species : 3 (O), atom : 9 EFG tensor : 0.3617984671E-01 -0.1046542712 -0.2284590635 -0.1046542712 0.1873139119 -0.1586476054 -0.2284590635 -0.1586476054 -0.2234937586 trace : 0.1165734176E-14 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 10 EFG tensor : 0.3617984671E-01 -0.1046542712 -0.2284590635 -0.1046542712 0.1873139119 -0.1586476054 -0.2284590635 -0.1586476054 -0.2234937586 trace : 0.3330669074E-15 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 11 EFG tensor : 0.3617984671E-01 -0.1046542712 0.2284590635 -0.1046542712 0.1873139119 0.1586476054 0.2284590635 0.1586476054 -0.2234937586 trace : 0.8049116929E-15 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 12 EFG tensor : 0.3617984671E-01 -0.1046542712 0.2284590635 -0.1046542712 0.1873139119 0.1586476054 0.2284590635 0.1586476054 -0.2234937586 trace : -0.4163336342E-15 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 13 EFG tensor : 0.3617984671E-01 0.1046542712 0.2284590635 0.1046542712 0.1873139119 -0.1586476054 0.2284590635 -0.1586476054 -0.2234937586 trace : -0.5273559367E-15 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 14 EFG tensor : 0.3617984671E-01 0.1046542712 0.2284590635 0.1046542712 0.1873139119 -0.1586476054 0.2284590635 -0.1586476054 -0.2234937586 trace : 0.9714451465E-15 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 15 EFG tensor : 0.3617984671E-01 0.1046542712 -0.2284590635 0.1046542712 0.1873139119 0.1586476054 -0.2284590635 0.1586476054 -0.2234937586 trace : 0.000000000 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 Species : 3 (O), atom : 16 EFG tensor : 0.3617984671E-01 0.1046542712 -0.2284590635 0.1046542712 0.1873139119 0.1586476054 -0.2284590635 0.1586476054 -0.2234937586 trace : 0.1665334537E-15 eigenvalues : -0.4161232705 0.1678290337 0.2482942368 elk-10.4.9/examples/Mossbauer/Mg2SiO4/PaxHeaders/elk.in0000644000000000000000000000013214762655565017470 xustar0030 mtime=1741380469.790015371 30 atime=1741380469.790015371 30 ctime=1741380469.790015371 elk-10.4.9/examples/Mossbauer/Mg2SiO4/elk.in0000644002504400250440000000760214762655565022217 0ustar00dewhurstdewhurst00000000000000 ! Electric field gradient of Mg2SiO4. ! See: B. Winkler, P. Blaha and K. Schwarz, Am. Mineralog. 81, 545 (1996). tasks 0 115 lmaxi 2 xctype 20 ngridk 2 2 2 sppath '../../../species/' ! Atomic positions generated by spacegroup version 1.2.01 ! Hermann-Mauguin symbol : Pbnm ! Hall symbol : -P 2c 2ab ! Schoenflies symbol : D2h^16 ! space group number : 62:cab ! lattice constants (a,b,c) : 8.980000000 19.26010000 11.29680000 ! angles in degrees (bc,ac,ab) : 90.00000000 90.00000000 90.00000000 ! number of conventional unit cells : 1 1 1 ! reduction to primitive cell : T ! Wyckoff positions : ! species : 1, Mg ! 0.000000000 0.000000000 0.000000000 ! 0.5084600000 0.7774200000 0.2500000000 ! species : 2, Si ! 0.7353000000E-01 0.5940300000 0.2500000000 ! species : 3, O ! 0.7340800000 0.5915500000 0.2500000000 ! 0.2216000000 0.4470400000 0.2500000000 ! 0.2225300000 0.6631600000 0.4669700000 avec 8.980000000 0.000000000 0.000000000 0.000000000 0.000000000 11.29680000 0.000000000 19.26010000 0.000000000 atoms 3 : nspecies 'Mg.in' : spfname 8 : natoms; atposl, bfcmt below 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.50000000 0.00000000 0.00000000 0.00000000 0.00000000 0.50000000 0.00000000 0.50000000 0.00000000 0.00000000 0.00000000 0.50000000 0.50000000 0.50000000 0.00000000 0.00000000 0.00000000 0.50846000 0.25000000 0.77742000 0.00000000 0.00000000 0.00000000 0.49154000 0.75000000 0.22258000 0.00000000 0.00000000 0.00000000 0.00846000 0.75000000 0.72258000 0.00000000 0.00000000 0.00000000 0.99154000 0.25000000 0.27742000 0.00000000 0.00000000 0.00000000 'Si.in' : spfname 4 : natoms; atposl, bfcmt below 0.07353000 0.25000000 0.59403000 0.00000000 0.00000000 0.00000000 0.92647000 0.75000000 0.40597000 0.00000000 0.00000000 0.00000000 0.57353000 0.75000000 0.90597000 0.00000000 0.00000000 0.00000000 0.42647000 0.25000000 0.09403000 0.00000000 0.00000000 0.00000000 'O.in' : spfname 16 : natoms; atposl, bfcmt below 0.73408000 0.25000000 0.59155000 0.00000000 0.00000000 0.00000000 0.26592000 0.75000000 0.40845000 0.00000000 0.00000000 0.00000000 0.23408000 0.75000000 0.90845000 0.00000000 0.00000000 0.00000000 0.76592000 0.25000000 0.09155000 0.00000000 0.00000000 0.00000000 0.22160000 0.25000000 0.44704000 0.00000000 0.00000000 0.00000000 0.77840000 0.75000000 0.55296000 0.00000000 0.00000000 0.00000000 0.72160000 0.75000000 0.05296000 0.00000000 0.00000000 0.00000000 0.27840000 0.25000000 0.94704000 0.00000000 0.00000000 0.00000000 0.22253000 0.46697000 0.66316000 0.00000000 0.00000000 0.00000000 0.77747000 0.53303000 0.33684000 0.00000000 0.00000000 0.00000000 0.77747000 0.96697000 0.33684000 0.00000000 0.00000000 0.00000000 0.22253000 0.03303000 0.66316000 0.00000000 0.00000000 0.00000000 0.72253000 0.53303000 0.83684000 0.00000000 0.00000000 0.00000000 0.27747000 0.46697000 0.16316000 0.00000000 0.00000000 0.00000000 0.27747000 0.03303000 0.16316000 0.00000000 0.00000000 0.00000000 0.72253000 0.96697000 0.83684000 0.00000000 0.00000000 0.00000000 elk-10.4.9/examples/Mossbauer/Mg2SiO4/PaxHeaders/spacegroup.in0000644000000000000000000000013214762655565021065 xustar0030 mtime=1741380469.792015381 30 atime=1741380469.792015381 30 ctime=1741380469.792015381 elk-10.4.9/examples/Mossbauer/Mg2SiO4/spacegroup.in0000644002504400250440000000113314762655565023605 0ustar00dewhurstdewhurst00000000000000 'Pbnm' : hrmg 8.9800 19.2601 11.2968 : a, b, c 90.0 90.0 90.0 : bc, ac, ab 1 1 1 : ncell .true. : primcell 3 : nspecies 'Mg' : spsymb, spfname 2 : nwpos 0.00000 0.00000 0.00000 : wpos 0.50846 0.77742 0.25000 'Si' 1 0.07353 0.59403 0.25000 'O' 3 0.73408 0.59155 0.25000 0.22160 0.44704 0.25000 0.22253 0.66316 0.46697 elk-10.4.9/examples/Mossbauer/PaxHeaders/Co-hcp0000644000000000000000000000013214762655565016275 xustar0030 mtime=1741380469.794015392 30 atime=1741380469.793015387 30 ctime=1741380469.794015392 elk-10.4.9/examples/Mossbauer/Co-hcp/0000755002504400250440000000000014762655565021074 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Mossbauer/Co-hcp/PaxHeaders/elk.in0000644000000000000000000000013214762655565017455 xustar0030 mtime=1741380469.795015397 30 atime=1741380469.795015397 30 ctime=1741380469.795015397 elk-10.4.9/examples/Mossbauer/Co-hcp/elk.in0000644002504400250440000000406214762655565022201 0ustar00dewhurstdewhurst00000000000000 ! Calculating the Mossbauer effect hyperfine parameters for hcp Co, namely the ! contact charge density, the contact magnetic hyperfine field and the electric ! field gradient (EFG). ! The hyperfine magnetic field is difficult to calculate accurately. This is ! mainly because most of the contact magnetisation arises from the polarised ! core s states. One therefore has to switch on core polarisation with ! 'spincore=.true.', but in addition any semi-core s states should also be moved ! to the core and thus treated with the full Dirac equation. Also note that the ! field is quite sensitive to the number of empty states and k-points. ! Also note that the hyperfine field also depends strongly on the choice of ! functional with GGA functions usually yielding larger values. Try running the ! calculation again with PBE (xctype=20). ! Experimentally the hyperfine field is 21.9 Tesla [J. Phys. Soc. Jpn. 33, 1591 ! (1972)]. tasks 0 110 : isomer shift and hyperfine field 115 : electric field gradient ! enable calculation of the dipole magnetic field tbdip .true. ! enable calculation of the current density (i.e. orbital) contribution to the ! dipole field tjr .true. ! enable spin-orbit coupling spinorb .true. ! switch on core polarisation for hyperfine field spincore .true. ! lmaxi should be at least 2 for the EFG calculation lmaxi 2 ! external field for breaking spin symmetry bfieldc 0.0 0.0 0.001 ! very large number of empty states required for hyperfine field nempty 80 ! conduction local-orbitals required lorbcnd .true. ! large number of k-points required ngridk 14 14 10 avec 2.368866000 4.102996268 0.000000000 4.737732000 0.000000000 0.000000000 0.000000000 0.000000000 7.690240000 sppath '../../../species/' atoms 1 : nspecies 'Co.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.75000000 0.33333333 0.33333333 0.25000000 elk-10.4.9/examples/Mossbauer/PaxHeaders/Fe0000644000000000000000000000013214762655565015516 xustar0030 mtime=1741380469.799015418 30 atime=1741380469.796015402 30 ctime=1741380469.799015418 elk-10.4.9/examples/Mossbauer/Fe/0000755002504400250440000000000014762655565020315 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Mossbauer/Fe/PaxHeaders/elk.in0000644000000000000000000000013214762655565016676 xustar0030 mtime=1741380469.798015413 30 atime=1741380469.798015413 30 ctime=1741380469.798015413 elk-10.4.9/examples/Mossbauer/Fe/elk.in0000644002504400250440000000425214762655565021423 0ustar00dewhurstdewhurst00000000000000 ! Calculating the Mossbauer effect hyperfine parameters for bcc Fe, namely the ! contact charge density, the contact magnetic hyperfine field and the electric ! field gradient (EFG). In this case the EFG is zero because of symmetry. ! The hyperfine magnetic field is difficult to calculate accurately. This is ! partly due to the neglect of the orbital and dipolar contributions, but mainly ! because most of the contact magnetisation arises from the polarised core s ! states. One therefore has to switch on core polarisation with ! 'spincore=.true.', but in addition any semi-core s states should also be moved ! to the core and thus treated with the full Dirac equation. Consequently, this ! example requires a special species file (Fe.in), in which the 3s states are in ! the core. Note that the field is quite sensitive to the number of empty states ! and k-points. ! Also note that the hyperfine field also depends strongly on the choice of ! functional with GGA functions usually yielding larger values. Try running the ! calculation again with PBE (xctype=20). ! Experimentally the hyperfine field is 33.9 Tesla [J. Phys. Soc. Jpn. 33, 159 ! (1972)]. A complete derivation of the formulae can be found in Phys. Rev. B ! 53, 3271 (1987). tasks 0 110 : isomer shift and hyperfine field 115 : electric field gradient ! enable calculation of the dipole field tbdip .true. ! enable calculation of the current density (i.e. orbital) contribution to the ! dipole field tjr .true. ! enable spin-orbit coupling spinorb .true. ! switch on core polarisation for hyperfine field spincore .true. ! lmaxi should be at least 2 for the EFG calculation lmaxi 2 ! external field for breaking spin symmetry bfieldc 0.0 0.0 0.001 ! very large number of empty states required for hyperfine field nempty 80 ! enable conduction local-orbitals lorbcnd .true. ! large number of k-points required ngridk 14 14 14 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/examples/Mossbauer/Fe/PaxHeaders/Fe.in0000644000000000000000000000013214762655565016455 xustar0030 mtime=1741380469.800015423 30 atime=1741380469.800015423 30 ctime=1741380469.800015423 elk-10.4.9/examples/Mossbauer/Fe/Fe.in0000644002504400250440000000311414762655565021176 0ustar00dewhurstdewhurst00000000000000 'Fe' : spsymb 'iron' : spname -26.0000 : spzn 101799.2074 : spmass 0.392232E-06 2.0000 34.5962 500 : sprmin, rmt, sprmax, nrmt 10 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 2.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.1817 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2816 0 T elk-10.4.9/examples/Mossbauer/PaxHeaders/Co-fcc0000644000000000000000000000013214762655565016256 xustar0030 mtime=1741380469.802015434 30 atime=1741380469.801015428 30 ctime=1741380469.802015434 elk-10.4.9/examples/Mossbauer/Co-fcc/0000755002504400250440000000000014762655565021055 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Mossbauer/Co-fcc/PaxHeaders/elk.in0000644000000000000000000000013214762655565017436 xustar0030 mtime=1741380469.802015434 30 atime=1741380469.802015434 30 ctime=1741380469.802015434 elk-10.4.9/examples/Mossbauer/Co-fcc/elk.in0000644002504400250440000000376514762655565022173 0ustar00dewhurstdewhurst00000000000000 ! Calculating the Mossbauer effect hyperfine parameters for fcc Co, namely the ! contact charge density, the contact magnetic hyperfine field and the electric ! field gradient (EFG). ! The hyperfine magnetic field is difficult to calculate accurately. This is ! mainly because most of the contact magnetisation arises from the polarised ! core s states. One therefore has to switch on core polarisation with ! 'spincore=.true.', but in addition any semi-core s states should also be moved ! to the core and thus treated with the full Dirac equation. Also note that the ! field is quite sensitive to the number of empty states and k-points. ! Also note that the hyperfine field also depends strongly on the choice of ! functional, with GGA usually yielding larger values. Try running the ! calculation again with PBE (xctype=20). This may be the better choice of ! functional for Mossbauer related quantities because of the large density ! gradients near the nucleus. tasks 0 110 : isomer shift and hyperfine field 115 : electric field gradient ! uncomment the following lines to enable GGA (PBE) !xctype ! 20 ! enable calculation of the dipole magnetic field tbdip .true. ! enable calculation of the current density (i.e. orbital) contribution to the ! dipole field tjr .true. ! enable spin-orbit coupling spinorb .true. ! switch on core polarisation for hyperfine field spincore .true. ! lmaxi should be at least 2 for the EFG calculation lmaxi 2 ! external field for breaking spin symmetry bfieldc 0.0 0.0 0.001 ! very large number of empty states required for hyperfine field nempty 80 ! conduction local-orbitals required lorbcnd .true. ! large number of k-points required ngridk 14 14 14 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.3448 sppath '../../../species/' atoms 1 : nspecies 'Co.in' : spfname 1 : natoms; atposl, bfcmt below 0.0 0.0 0.0 elk-10.4.9/examples/Mossbauer/PaxHeaders/NiF20000644000000000000000000000013214762655565015722 xustar0030 mtime=1741380469.806015455 30 atime=1741380469.803015439 30 ctime=1741380469.806015455 elk-10.4.9/examples/Mossbauer/NiF2/0000755002504400250440000000000014762655565020521 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Mossbauer/NiF2/PaxHeaders/MOSSBAUER.OUT0000644000000000000000000000013214762655565017730 xustar0030 mtime=1741380469.805015449 30 atime=1741380469.805015449 30 ctime=1741380469.805015449 elk-10.4.9/examples/Mossbauer/NiF2/MOSSBAUER.OUT0000644002504400250440000001013714762655565022454 0ustar00dewhurstdewhurst00000000000000 Species : 1 (Ni), atom : 1 approximate nuclear radius : 0.7325707712E-04 number of mesh points to nuclear radius : 170 density at nuclear center : 27065.61626 density at nuclear surface : 19469.68536 average contact charge density : 21799.30518 contact magnetic moment (mu_B) : 0.3556682277 -0.3250408784E-02 -0.5961585217E-04 contact field : 0.7942691198E-04 -0.7258729125E-06 -0.1331325846E-07 tesla : 18.66943519 -0.1706177033 -0.3129304790E-02 spin and orbital dipole field : -0.6038677809E-05 0.1166101164E-05 0.6342070908E-08 tesla : -1.419401827 0.2740941271 0.1490714908E-02 Species : 1 (Ni), atom : 2 approximate nuclear radius : 0.7325707712E-04 number of mesh points to nuclear radius : 170 density at nuclear center : 27065.62041 density at nuclear surface : 19469.68809 average contact charge density : 21799.30825 contact magnetic moment (mu_B) : 0.3560239771 -0.3179352632E-02 0.3878445782E-04 contact field : 0.7950635701E-04 -0.7100048359E-06 0.8661245165E-08 tesla : 18.68810889 -0.1668878840 0.2035840892E-02 spin and orbital dipole field : -0.6143126486E-05 -0.5623083484E-06 -0.2821446664E-06 tesla : -1.443952673 -0.1321715651 -0.6631859950E-01 Species : 2 (F), atom : 1 approximate nuclear radius : 0.5278478738E-04 number of mesh points to nuclear radius : 89 density at nuclear center : 469.6748179 density at nuclear surface : 458.0181065 average contact charge density : 518.3705591 contact magnetic moment (mu_B) : -0.2076757064 0.1757535181E-02 -0.5037678888E-04 contact field : -0.4637760353E-04 0.3924882270E-06 -0.1125001466E-07 tesla : -10.90113718 0.9225504727E-01 -0.2644335709E-02 spin and orbital dipole field : -0.3840346331E-04 -0.1592687822E-04 -0.2577673716E-07 tesla : -9.026801516 -3.743640704 -0.6058867353E-02 Species : 2 (F), atom : 2 approximate nuclear radius : 0.5278478738E-04 number of mesh points to nuclear radius : 89 density at nuclear center : 469.6746466 density at nuclear surface : 458.0179388 average contact charge density : 518.3703693 contact magnetic moment (mu_B) : -0.2078531243 0.1740868591E-02 -0.1670018648E-04 contact field : -0.4641722404E-04 0.3887662872E-06 -0.3729442605E-08 tesla : -10.91045005 0.9138019878E-01 -0.8766120359E-03 spin and orbital dipole field : -0.3847659363E-04 0.1653003236E-04 -0.5230842188E-08 tesla : -9.043990926 3.885413145 -0.1229518646E-02 Species : 2 (F), atom : 3 approximate nuclear radius : 0.5278478738E-04 number of mesh points to nuclear radius : 89 density at nuclear center : 469.6748179 density at nuclear surface : 458.0181065 average contact charge density : 518.3705591 contact magnetic moment (mu_B) : -0.2076757064 0.1757535181E-02 -0.5037678888E-04 contact field : -0.4637760353E-04 0.3924882270E-06 -0.1125001466E-07 tesla : -10.90113718 0.9225504727E-01 -0.2644335709E-02 spin and orbital dipole field : -0.3840346331E-04 -0.1592687822E-04 -0.2577673716E-07 tesla : -9.026801516 -3.743640704 -0.6058867353E-02 Species : 2 (F), atom : 4 approximate nuclear radius : 0.5278478738E-04 number of mesh points to nuclear radius : 89 density at nuclear center : 469.6746466 density at nuclear surface : 458.0179388 average contact charge density : 518.3703693 contact magnetic moment (mu_B) : -0.2078531243 0.1740868591E-02 -0.1670018648E-04 contact field : -0.4641722404E-04 0.3887662872E-06 -0.3729442605E-08 tesla : -10.91045005 0.9138019878E-01 -0.8766120359E-03 spin and orbital dipole field : -0.3847659363E-04 0.1653003236E-04 -0.5230842188E-08 tesla : -9.043990926 3.885413145 -0.1229518646E-02 Note that the contact term is implicitly included in the spin dipole field but may not match exactly with the directly calculated value. elk-10.4.9/examples/Mossbauer/NiF2/PaxHeaders/elk.in0000644000000000000000000000013014762655565017100 xustar0029 mtime=1741380469.80701546 30 atime=1741380469.806015455 29 ctime=1741380469.80701546 elk-10.4.9/examples/Mossbauer/NiF2/elk.in0000644002504400250440000000403114762655565021622 0ustar00dewhurstdewhurst00000000000000 ! Calculating the zero field resonance frequencies for NiF2. ! The ground state is antiferromagnetic with moments in the a-b plane. ! Nonetheless, the experimentally measured hyperfine field originates from ! domain walls, as explained in R. G. Shulman, Journal of Applied Physics 32, ! S126 (1961). ! The zero field estimate are ~0.7 T and ~1.3 T in good agreement with the ! results provided by this example. ! Example by Pietro Bonfa. tasks 0 ! ground-state calculation 110 ! determine the magnetic hyperfine field lmaxi 2 rgkmax 5.5 gmaxvr 16.0 ! enable calculation of the dipole field tbdip .true. ! enable calculation of the current density (i.e. orbital) contribution to the ! dipole field tjr .true. ! enable spin-orbit coupling spinorb .true. ! switch on core polarisation for hyperfine field spincore .true. sppath '../../../species/' ! external field for breaking spin symmetry bfieldc 0.01 0.0 0.0 reducebf 0.75 ! very large number of empty states required for hyperfine field nempty 40 ! enable conduction local-orbitals lorbcnd .true. ! large number of k-points required ngridk 6 6 6 avec 1.0000000000 0.0000000000 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 0.6619957537 scale 8.9006099310 atoms 2 : nspecies 'Ni.in' : spfname 2 0.000000000000000 0.000000000000000 0.000000000000000 0.00100000 0.00100000 0.00000000 0.500000000000000 0.500000000000000 0.500000000000000 -0.00100000 -0.00100000 0.00000000 'F.in' : spfname 4 0.303300000000000 0.303300000000000 0.000000000000000 0.00000000 0.00000000 0.00000000 0.196700000000000 0.803300000000000 0.500000000000000 0.00000000 0.00000000 0.00000000 0.696700000000000 0.696700000000000 0.000000000000000 0.00000000 0.00000000 0.00000000 0.803300000000000 0.196700000000000 0.500000000000000 0.00000000 0.00000000 0.00000000 elk-10.4.9/examples/PaxHeaders/TDDFT-optics0000644000000000000000000000013214762655565015370 xustar0030 mtime=1741380469.840015632 30 atime=1741380469.808015465 30 ctime=1741380469.840015632 elk-10.4.9/examples/TDDFT-optics/0000755002504400250440000000000014762655565020167 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/PaxHeaders/Ar-bootstrap-single0000644000000000000000000000013114762655565021223 xustar0030 mtime=1741380469.812015486 29 atime=1741380469.80901547 30 ctime=1741380469.812015486 elk-10.4.9/examples/TDDFT-optics/Ar-bootstrap-single/0000755002504400250440000000000014762655565024023 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/Ar-bootstrap-single/PaxHeaders/Ar_expt_eV.dat0000644000000000000000000000013214762655565024027 xustar0030 mtime=1741380469.811015481 30 atime=1741380469.811015481 30 ctime=1741380469.811015481 elk-10.4.9/examples/TDDFT-optics/Ar-bootstrap-single/Ar_expt_eV.dat0000644002504400250440000000645114762655565026557 0ustar00dewhurstdewhurst00000000000000#Phys. Rev. B 76 161103(R) (2007) 11.6284 0.0621413 11.6956 0.198027 11.7548 0.412014 11.7982 0.723684 11.8416 1.05486 11.885 1.48357 11.9165 1.81486 11.9283 2.10733 11.9401 2.32178 11.9559 2.49718 11.9637 2.88722 11.9754 3.23821 11.9793 3.62829 11.9831 4.01837 11.9832 3.82331 11.9869 4.54499 11.9944 6.22242 11.9945 6.02736 11.9946 5.63724 11.9981 7.39274 11.9982 7.00262 11.9982 6.80756 11.9983 6.6125 12.0017 8.56305 12.0017 8.36799 12.0018 8.17293 12.0019 7.97788 12.002 7.58776 12.0053 9.92843 12.0054 9.53831 12.0054 9.34325 12.0055 9.14819 12.0056 8.75807 12.009 10.7086 12.0091 10.5136 12.0092 10.1234 12.0128 11.5864 12.0129 10.9036 12.0166 11.9764 12.0167 11.7814 12.0205 12.3665 12.0243 12.9516 12.0243 12.7566 12.0244 12.5615 12.0281 13.3417 12.0282 13.1467 12.032 13.7318 12.0357 14.473 12.0358 14.1219 12.0359 13.9268 12.0438 13.7902 12.0479 13.4001 12.0479 13.205 12.0519 13.0099 12.052 12.8148 12.0522 11.9956 12.056 12.4247 12.0643 11.0592 12.0683 10.669 12.0684 10.474 12.0685 10.0839 12.0725 9.88876 12.0726 9.49864 12.0726 9.30358 12.0767 9.10849 12.0769 8.23072 12.085 7.56744 12.089 7.17729 12.0891 6.98223 12.0931 6.59207 12.0932 6.39701 12.0972 6.00685 12.1054 5.10951 12.1094 4.91441 12.1134 4.52425 12.1174 4.32915 12.1255 3.7439 12.1295 3.5488 12.1335 3.3537 12.1375 3.15861 12.1415 2.96351 12.1495 2.49529 12.157 4.17272 12.1571 3.97766 12.1608 4.95292 12.1608 4.75786 12.1609 4.5628 12.1645 5.73312 12.1645 5.53806 12.1646 5.343 12.1647 5.14794 12.1682 6.51331 12.1683 6.31825 12.1684 5.92814 12.1719 7.48857 12.172 7.29351 12.1721 6.90339 12.1721 6.70833 12.1757 8.26877 12.1758 7.87865 12.1758 7.68359 12.1794 9.04897 12.1795 8.85391 12.1796 8.46379 12.1831 9.98521 12.1833 9.43904 12.1868 11.2726 12.1869 10.8239 12.1945 11.7796 12.1946 11.5846 12.1984 12.1697 12.2022 12.5598 12.2023 12.3647 12.2059 13.4375 12.2141 12.6767 12.2181 12.2866 12.2182 12.0915 12.2222 11.7013 12.2264 10.7455 12.2345 10.2578 12.2385 10.0627 12.2425 9.67254 12.2427 8.83378 12.2466 9.22386 12.2546 8.77515 12.2547 8.44355 12.2587 8.24845 12.2628 7.8583 12.2628 7.66324 12.2668 7.46814 12.2708 7.27304 12.2709 7.07798 12.2749 6.88288 12.275 6.43425 12.283 6.1806 12.287 5.9855 12.291 5.59534 12.2911 5.40028 12.2951 5.20518 12.2952 4.67853 12.3191 3.85905 12.339 3.44923 12.3588 3.29299 12.4103 2.98039 12.4262 2.74617 12.45 2.23878 12.4699 1.90699 12.4937 1.51664 12.5214 1.22378 12.5373 0.892029 12.5611 0.755256 12.573 0.540576 12.6007 0.403764 12.6402 0.286344 12.6679 0.149532 12.7035 0.0711618 12.7668 0.0510392 12.8142 0.1286 12.8497 0.245289 12.8932 0.322888 12.9248 0.400603 12.9722 0.49767 13.0078 0.575347 13.0591 0.594352 13.1145 0.593812 13.1896 0.59308 13.2409 0.63159 13.2805 0.611699 13.32 0.708843 13.3634 0.805948 13.4148 0.961494 13.4582 1.07811 13.4819 1.35096 13.4976 1.76043 13.5093 2.03339 13.5211 2.4234 13.5289 2.6769 13.5685 2.44244 13.5884 2.14966 13.6043 1.72037 13.6281 1.2325 13.6598 0.998116 13.6796 0.744347 13.7034 0.705104 13.7231 0.997499 13.7507 1.25081 13.7664 1.42621 13.802 1.26981 13.8219 1.03555 13.8298 0.859917 13.8575 0.742612 13.901 0.878729 13.9128 1.07367 13.9325 1.21002 13.9523 1.09279 13.976 0.917009 14.0077 0.858183 14.0393 0.994416 14.0748 1.07209 14.0867 1.11099 14.1183 1.11068 14.1459 1.16893 14.1776 1.1101 14.1973 1.0709 14.2487 1.0704 14.3199 1.14773 14.3673 1.10825 14.4345 1.1076 14.474 1.10721 elk-10.4.9/examples/TDDFT-optics/Ar-bootstrap-single/PaxHeaders/elk.in0000644000000000000000000000013214762655565022404 xustar0030 mtime=1741380469.813015491 30 atime=1741380469.812015486 30 ctime=1741380469.813015491 elk-10.4.9/examples/TDDFT-optics/Ar-bootstrap-single/elk.in0000644002504400250440000000143114762655565025125 0ustar00dewhurstdewhurst00000000000000 ! This example produces the dielectric function of solid argon using a single ! iteration of the bootstrap kernel [Phys. Rev. Lett. 107, 186401]. This ! approximation works particularly well for calculating excitonic binding ! energies. ! A file with experimental data in units of eV is included in this directory. tasks 0 120 320 scissor 0.22 swidth 0.005 ! bootstrap kernal with single iteration fxctype 211 gmaxrf 0.0 wplot 6000 100 2 0.0 1.0 nempty 10 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 10.030 sppath '../../../species/' atoms 1 : nspecies 'Ar.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 ngridk 8 8 8 elk-10.4.9/examples/TDDFT-optics/PaxHeaders/LiF-bootstrap-single0000644000000000000000000000013214762655565021334 xustar0030 mtime=1741380469.815015502 30 atime=1741380469.814015496 30 ctime=1741380469.815015502 elk-10.4.9/examples/TDDFT-optics/LiF-bootstrap-single/0000755002504400250440000000000014762655565024133 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/LiF-bootstrap-single/PaxHeaders/elk.in0000644000000000000000000000013214762655565022514 xustar0030 mtime=1741380469.815015502 30 atime=1741380469.815015502 30 ctime=1741380469.815015502 elk-10.4.9/examples/TDDFT-optics/LiF-bootstrap-single/elk.in0000644002504400250440000000121614762655565025236 0ustar00dewhurstdewhurst00000000000000 ! Optical response of LiF with the single iteration bootstrap kernel. tasks 0 120 320 ! single iteration bootstrap fxctype 211 scissor 0.1916 swidth 0.008 ! LFE are included gmaxrpa 2.0 lradstp 2 nempty 10 wplot 8000 100 0 0.0 1.0 avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 8 8 8 vkloff 0.625 0.5 0.25 elk-10.4.9/examples/TDDFT-optics/PaxHeaders/Ni-MOKE0000644000000000000000000000013214762655565016467 xustar0030 mtime=1741380469.817015512 30 atime=1741380469.816015507 30 ctime=1741380469.817015512 elk-10.4.9/examples/TDDFT-optics/Ni-MOKE/0000755002504400250440000000000014762655565021266 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/Ni-MOKE/PaxHeaders/elk.in0000644000000000000000000000013214762655565017647 xustar0030 mtime=1741380469.818015517 30 atime=1741380469.818015517 30 ctime=1741380469.818015517 elk-10.4.9/examples/TDDFT-optics/Ni-MOKE/elk.in0000644002504400250440000000157514762655565022401 0ustar00dewhurstdewhurst00000000000000 ! Magneto-optical Kerr effect (MOKE) for ferromagnetic nickel. tasks 0 : ground-state run 120 : generate the momentum matrix elements ! The relaxation time is taken to be 1/swidth. This can be increased *after* the ! ground-state run in order to produce a smoother optical response. Making this ! too large during the ground-state run will supress the moment. ! Uncomment the following lines to generate the Kerr angle: !swidth ! 0.01 !tasks ! 122 ngridk 32 32 32 spinpol .true. ! spin-orbit coupling is required for MOKE spinorb .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/examples/TDDFT-optics/PaxHeaders/Ge0000644000000000000000000000013214762655565015723 xustar0030 mtime=1741380469.820015528 30 atime=1741380469.819015523 30 ctime=1741380469.820015528 elk-10.4.9/examples/TDDFT-optics/Ge/0000755002504400250440000000000014762655565020522 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/Ge/PaxHeaders/elk.in0000644000000000000000000000013214762655565017103 xustar0030 mtime=1741380469.821015533 30 atime=1741380469.820015528 30 ctime=1741380469.821015533 elk-10.4.9/examples/TDDFT-optics/Ge/elk.in0000644002504400250440000000141114762655565021622 0ustar00dewhurstdewhurst00000000000000 ! High quality density of states, band structure and linear optical tensor of ! germanium with spin-orbit coupling (Andrew Chizmeshya) tasks 0 10 20 120 121 spinorb .true. xctype 3 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 5.3451 nempty 20 wplot 1000 150 0 -0.5 2.0 lmaxapw 10 lmaxo 8 gmaxvr 12.0 sppath '../../../species/' atoms 1 : nspecies 'Ge.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 10 10 10 vkloff 0.25 0.25 0.75 plot1d 3 200 : nvp1d, npp1d 0.5 0.0 1.0 : vlvp1d 0.0 0.0 1.0 0.5 0.5 1.0 elk-10.4.9/examples/TDDFT-optics/PaxHeaders/LiF-bootstrap0000644000000000000000000000013214762655565020055 xustar0030 mtime=1741380469.823015543 30 atime=1741380469.822015538 30 ctime=1741380469.823015543 elk-10.4.9/examples/TDDFT-optics/LiF-bootstrap/0000755002504400250440000000000014762655565022654 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/LiF-bootstrap/PaxHeaders/elk.in0000644000000000000000000000013214762655565021235 xustar0030 mtime=1741380469.823015543 30 atime=1741380469.823015543 30 ctime=1741380469.823015543 elk-10.4.9/examples/TDDFT-optics/LiF-bootstrap/elk.in0000644002504400250440000000251714762655565023764 0ustar00dewhurstdewhurst00000000000000 ! Time-dependent density functional theory (TDDFT) optical spectrum of lithium ! fluoride. This material has a prominent excitonic peak, which is absent in the ! usual RPA dielectric function. The 'bootstrap' TDDFT kernel is used, see: ! arXiv:1107.0199v1 [cond-mat.mtrl-sci] ! The scissor shift is taken to be the difference between the experimental gap, ! 14.2 eV [Phys. Rev. B 13, 5530 (1976)], and the LDA gap, 8.97 eV. tasks 0 ! ground-state calculation 120 ! compute momentum matrix elements 121 ! compute RPA dielectric function with no local field contributions 320 ! compute TDDFT dielectric function with local field contributions ! scissor shift scissor 0.192 xctype 3 ! bootstrap kernel fxctype 210 ! smearing width swidth 0.01 ! G-vector cut-off of exchange-correlation kernel and response function gmaxrf 0.0 nempty 8 lradstp 2 wplot 800 100 0 : nwplot, ngrkf, nswplot 0.0 1.5 : wplot avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 8 8 8 vkloff 0.25 0.5 0.625 elk-10.4.9/examples/TDDFT-optics/PaxHeaders/TiO20000644000000000000000000000013214762655565016145 xustar0030 mtime=1741380469.825015554 30 atime=1741380469.824015549 30 ctime=1741380469.825015554 elk-10.4.9/examples/TDDFT-optics/TiO2/0000755002504400250440000000000014762655565020744 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/TiO2/PaxHeaders/elk.in0000644000000000000000000000013214762655565017325 xustar0030 mtime=1741380469.826015559 30 atime=1741380469.826015559 30 ctime=1741380469.826015559 elk-10.4.9/examples/TDDFT-optics/TiO2/elk.in0000644002504400250440000000127314762655565022052 0ustar00dewhurstdewhurst00000000000000 ! Linear optical spectrum of titanium dioxide. The inverse lifetime is ! determined by swidth. Note that many more k-points are required for good ! convergence of the optical spectrum. tasks 0 120 121 swidth 0.005 ! use Broyden mixing for fast convergence mixtype 3 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.6441 scale 8.6806 sppath '../../../species/' atoms 2 : nspecies 'Ti.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.5 0.5 0.5 'O.in' 4 0.3048 0.3048 0.0 0.6952 0.6952 0.0 0.1952 0.8048 0.5 0.8048 0.1952 0.5 ngridk 4 4 4 elk-10.4.9/examples/TDDFT-optics/PaxHeaders/LiF-LRC0000644000000000000000000000013014762655565016456 xustar0029 mtime=1741380469.82801557 30 atime=1741380469.827015564 29 ctime=1741380469.82801557 elk-10.4.9/examples/TDDFT-optics/LiF-LRC/0000755002504400250440000000000014762655565021257 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/LiF-LRC/PaxHeaders/elk.in0000644000000000000000000000012714762655565017644 xustar0029 mtime=1741380469.82801557 29 atime=1741380469.82801557 29 ctime=1741380469.82801557 elk-10.4.9/examples/TDDFT-optics/LiF-LRC/elk.in0000644002504400250440000000242714762655565022367 0ustar00dewhurstdewhurst00000000000000 ! Time-dependent density functional theory (TDDFT) optical spectrum of lithium ! fluoride. This material has a prominent excitonic peak, which is absent in the ! usual RPA dielectric function. The TDDFT kernel fxc is described in ! Phys. Rev. B 69, p155112 (2004) as the 'long-range contribution' and requires ! a material-dependent parameter alpha. tasks 0 ! ground-state calculation 120 ! compute momentum matrix elements 121 ! compute RPA dielectric function with no local field contributions 320 ! compute TDDFT dielectric function with local field contributions ! long-range contribution kernel fxctype 200 ! parameter alpha for long-range contribution kernel fxclrc 5.5 ! G-vector cut-off of exchange-correlation kernel and response function gmaxrf 1.0 swidth 0.01 nempty 8 lradstp 2 wplot 800 100 0 : nwplot, ngrkf, nswplot 0.0 1.5 : wplot avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 4 4 4 vkloff 0.25 0.5 0.625 elk-10.4.9/examples/TDDFT-optics/PaxHeaders/LiF0000644000000000000000000000013014762655565016040 xustar0029 mtime=1741380469.83001558 30 atime=1741380469.829015575 29 ctime=1741380469.83001558 elk-10.4.9/examples/TDDFT-optics/LiF/0000755002504400250440000000000014762655565020641 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/LiF/PaxHeaders/elk.in0000644000000000000000000000013214762655565017222 xustar0030 mtime=1741380469.831015585 30 atime=1741380469.831015585 30 ctime=1741380469.831015585 elk-10.4.9/examples/TDDFT-optics/LiF/elk.in0000644002504400250440000000112214762655565021740 0ustar00dewhurstdewhurst00000000000000 ! Linear optical spectrum of lithium fluoride. tasks 0 120 121 ! the inverse lifetime is determined by swidth swidth 0.01 nempty 10 lradstp 2 wplot 400 100 0 : nwplot, ngrkf, nswplot 0.0 1.5 : wplot avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 10 10 10 elk-10.4.9/examples/TDDFT-optics/PaxHeaders/diamond-ALDA0000644000000000000000000000013214762655565017502 xustar0030 mtime=1741380469.833015596 30 atime=1741380469.832015591 30 ctime=1741380469.833015596 elk-10.4.9/examples/TDDFT-optics/diamond-ALDA/0000755002504400250440000000000014762655565022301 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/diamond-ALDA/PaxHeaders/elk.in0000644000000000000000000000013214762655565020662 xustar0030 mtime=1741380469.834015601 30 atime=1741380469.834015601 30 ctime=1741380469.834015601 elk-10.4.9/examples/TDDFT-optics/diamond-ALDA/elk.in0000644002504400250440000000117414762655565023407 0ustar00dewhurstdewhurst00000000000000 ! Dielectric function of diamond calculated at finite q-vector using ALDA. tasks 0 120 320 ! q-vector in lattice coordinates vecql 0.5 0.5 0.5 xctype 3 fxctype 3 ! G-vector cut-off for the RPA and ALDA response function gmaxrf 3.0 nempty 10 swidth 0.01 wplot 500 100 1 0.0 1.5 avec 3.3637 3.3637 0.0 3.3637 0.0 3.3637 0.0 3.3637 3.3637 sppath '../../../species/' atoms 1 : nspecies 'C.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 8 8 8 elk-10.4.9/examples/TDDFT-optics/PaxHeaders/Al0000644000000000000000000000013214762655565015724 xustar0030 mtime=1741380469.836015611 30 atime=1741380469.835015606 30 ctime=1741380469.836015611 elk-10.4.9/examples/TDDFT-optics/Al/0000755002504400250440000000000014762655565020523 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/Al/PaxHeaders/elk.in0000644000000000000000000000013214762655565017104 xustar0030 mtime=1741380469.837015617 30 atime=1741380469.836015611 30 ctime=1741380469.837015617 elk-10.4.9/examples/TDDFT-optics/Al/elk.in0000644002504400250440000000130414762655565021624 0ustar00dewhurstdewhurst00000000000000 ! Linear optical response of aluminium including intra-band contributions. ! The plasma frequency is also determined and written to PLASMA.OUT. tasks 0 120 121 ! include intra-band excitations intraband .true. swidth 0.01 ! dense k-point set required ngridk 24 24 24 ! larger number of empty states required nempty 8 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 ! lattice constant at room temperature scale 3.8267 ! this is the relative path to the species files sppath '../../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 elk-10.4.9/examples/TDDFT-optics/PaxHeaders/LiF-RBO0000644000000000000000000000013214762655565016462 xustar0030 mtime=1741380469.838015622 30 atime=1741380469.837015617 30 ctime=1741380469.838015622 elk-10.4.9/examples/TDDFT-optics/LiF-RBO/0000755002504400250440000000000014762655565021261 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/LiF-RBO/PaxHeaders/elk.in0000644000000000000000000000013214762655565017642 xustar0030 mtime=1741380469.839015627 30 atime=1741380469.839015627 30 ctime=1741380469.839015627 elk-10.4.9/examples/TDDFT-optics/LiF-RBO/elk.in0000644002504400250440000000201214762655565022357 0ustar00dewhurstdewhurst00000000000000 ! Example for the revised bootstrap kernel (RBO) of S. Rigamonti, et al., ! Phys. Rev. Lett. 114, 146402. tasks 0 ! ground-state calculation 120 ! compute momentum matrix elements 121 ! compute RPA dielectric function with no local field contributions 320 ! compute TDDFT dielectric function with local field contributions ! scissor shift scissor 0.192 xctype 3 ! RBO kernel fxctype 212 ! smearing width swidth 0.01 ! G-vector cut-off of exchange-correlation kernel and response function gmaxrf 0.0 nempty 8 lradstp 2 wplot 800 100 0 : nwplot, ngrkf, nswplot 0.0 1.5 : wplot avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 8 8 8 vkloff 0.25 0.5 0.625 elk-10.4.9/examples/TDDFT-optics/PaxHeaders/Ne-RBO0000644000000000000000000000013214762655565016352 xustar0030 mtime=1741380469.843015648 30 atime=1741380469.840015632 30 ctime=1741380469.843015648 elk-10.4.9/examples/TDDFT-optics/Ne-RBO/0000755002504400250440000000000014762655565021151 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-optics/Ne-RBO/PaxHeaders/Ne_expt_eV.dat0000644000000000000000000000013214762655565021155 xustar0030 mtime=1741380469.842015643 30 atime=1741380469.842015643 30 ctime=1741380469.842015643 elk-10.4.9/examples/TDDFT-optics/Ne-RBO/Ne_expt_eV.dat0000644002504400250440000000153414762655565023702 0ustar00dewhurstdewhurst00000000000000#Phys. Rev. B 72 035127 (2005) 16.7861 0.308771 16.8999 0.402363 17.0137 0.464459 17.0863 0.621367 17.1279 0.747024 17.1799 0.904096 17.2318 1.04542 17.2631 1.2184 17.3047 1.3913 17.3154 1.56445 17.3366 1.87924 17.3369 2.05247 17.3478 2.41458 17.3587 2.72946 17.3694 2.9341 17.3697 3.09158 17.3806 3.4222 17.3809 3.59543 17.3812 3.7844 17.3815 3.95763 17.3924 4.2725 17.3927 4.46147 17.3929 4.60321 17.4036 4.80785 17.4039 4.96532 17.4042 5.1543 17.4045 5.32752 17.4158 5.86287 17.478 5.98836 17.4877 5.62608 17.5179 5.12191 17.5279 4.9486 17.5482 4.74371 17.5787 4.46001 17.5884 4.08198 17.597 3.07404 17.6059 2.22358 17.6154 1.75106 17.6653 0.679801 17.7264 0.159635 17.7882 0.0489118 18.0156 0.0628692 18.2223 0.0612415 18.4704 0.0750361 18.7909 0.104009 19.1424 0.164233 19.2354 0.163501 19.4628 0.16171 19.5662 0.176644 19.804 0.206268 20.1245 0.282484 elk-10.4.9/examples/TDDFT-optics/Ne-RBO/PaxHeaders/elk.in0000644000000000000000000000013214762655565017532 xustar0030 mtime=1741380469.844015653 30 atime=1741380469.844015653 30 ctime=1741380469.844015653 elk-10.4.9/examples/TDDFT-optics/Ne-RBO/elk.in0000644002504400250440000000120314762655565022250 0ustar00dewhurstdewhurst00000000000000 ! Example for the revised bootstrap kernel (RBO) of S. Rigamonti, et al., ! Phys. Rev. Lett. 114, 146402. tasks 0 120 320 scissor 0.360 lradstp 2 ! local field effects (LFE) not included gmaxrpa 0.0 swidth 0.005 ! RBO kernel fxctype 212 wplot 5000 100 1 0.0 1.1 nempty 20 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 8.440 sppath '../../../species/' atoms 1 : nspecies 'Ne.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 ngridk 10 10 10 vkloff 0.625 0.5 0.25 elk-10.4.9/examples/PaxHeaders/fractional-species0000644000000000000000000000013214762655565016777 xustar0030 mtime=1741380469.846015664 30 atime=1741380469.845015658 30 ctime=1741380469.846015664 elk-10.4.9/examples/fractional-species/0000755002504400250440000000000014762655565021576 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/fractional-species/PaxHeaders/elk.in0000644000000000000000000000013214762655565020157 xustar0030 mtime=1741380469.847015669 30 atime=1741380469.846015664 30 ctime=1741380469.847015669 elk-10.4.9/examples/fractional-species/elk.in0000644002504400250440000000154114762655565022702 0ustar00dewhurstdewhurst00000000000000 ! In this example the code generates a fractional atomic species file called ! 'A.in' which is then used in a ground-state calculation to find the moment. ! This allows for easy use of the virtual crystal approximation (VCA). tasks 0 ! generate a fractional atomic species charge -26.2 and write to the file 'A.in' fspecies -26.2 'A' spinpol .true. ! small magnetic field in the z-direction bfieldc 0.0 0.0 0.01 ! fairly large number of empty states required for magnetic cases nempty 8 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 ! Now use the file 'A.in' in the atoms block atoms 1 : nspecies 'A.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/PaxHeaders/magnetism0000644000000000000000000000013214762655565015210 xustar0030 mtime=1741380469.883015857 30 atime=1741380469.848015674 30 ctime=1741380469.883015857 elk-10.4.9/examples/magnetism/0000755002504400250440000000000014762655565020007 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/PaxHeaders/CrSb-altermagnet0000644000000000000000000000013214762655565020342 xustar0030 mtime=1741380469.849015679 30 atime=1741380469.848015674 30 ctime=1741380469.849015679 elk-10.4.9/examples/magnetism/CrSb-altermagnet/0000755002504400250440000000000014762655565023141 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/CrSb-altermagnet/PaxHeaders/elk.in0000644000000000000000000000013214762655565021522 xustar0030 mtime=1741380469.850015685 30 atime=1741380469.850015685 30 ctime=1741380469.850015685 elk-10.4.9/examples/magnetism/CrSb-altermagnet/elk.in0000644002504400250440000000333614762655565024251 0ustar00dewhurstdewhurst00000000000000 ! Altermagnetism in CrSb. ! Example thanks to Wenhan Chen. tasks 0 ! ground-state 20 ! band structure plot 102 ! Fermi surface plot using XCrySDen xctype 21 0 0 tempk 300.0 nempty 8 ngridk 24 24 16 plot3d 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 32 32 24 reducebf 0.7 spinorb .false. spinpol .true. plot1d 11 200 0.00 0.00 0.00 ! G 0.00 0.50 0.00 ! M 0.333333333333333 0.666666666666667 0.0 ! K 0.00 0.00 0.00 ! G 0.00 0.00 0.50 ! A 0.00 0.50 0.50 ! L 0.333333333333333 0.666666666666667 0.500 ! H 0.00 0.00 0.50 ! A 0.00 -0.50 0.50 ! L 0.00 0.00 0.00 ! G 0.00 0.50 0.50 ! L sppath '../../../species/' avec 3.893780680 6.744225971 0.000000000 7.787561360 0.000000000 0.000000000 0.000000000 0.000000000 10.33113270 atoms 2 : nspecies 'Cr.in' : spfname 2 : natoms; atposl, bfcmt below 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00100000 0.00000000 0.00000000 0.50000000 0.00000000 0.00000000 -0.00100000 'Sb.in' : spfname 2 : natoms; atposl, bfcmt below 0.33333333 0.33333333 0.25000000 0.00000000 0.00000000 0.00000000 0.66666667 0.66666667 0.75000000 0.00000000 0.00000000 0.00000000 elk-10.4.9/examples/magnetism/PaxHeaders/Fe-FSM-MT-AFM0000644000000000000000000000012614762655565017107 xustar0028 mtime=1741380469.8530157 30 atime=1741380469.852015695 28 ctime=1741380469.8530157 elk-10.4.9/examples/magnetism/Fe-FSM-MT-AFM/0000755002504400250440000000000014762655565021703 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/Fe-FSM-MT-AFM/PaxHeaders/elk.in0000644000000000000000000000012414762655565020265 xustar0028 mtime=1741380469.8530157 28 atime=1741380469.8530157 28 ctime=1741380469.8530157 elk-10.4.9/examples/magnetism/Fe-FSM-MT-AFM/elk.in0000644002504400250440000000213414762655565023006 0ustar00dewhurstdewhurst00000000000000 ! Antiferromagnetic bcc iron example with fixed spin moment in muffin-tin. ! Rememeber to put a small magnetic fields on atoms with same symmetry as ! fixed moment. This in order to correctly symmetrize the magnetization. ! Run by Fredrik Bultmark, Francesco Cricchio, Lars Nordstrom. tasks 0 ! antiferromagnetic local fixed spin moment calculation fsmtype 2 mommtfix 1 1 0.0 0.0 1.0 : is, ia, mommtfix 1 2 0.0 0.0 -1.0 : is, ia, mommtfix ! FSM step length: reduce to improve convergence taufsm 0.01 lmaxapw 10 ! fairly large number of empty states required for magnetic cases nempty 8 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale 6.6 sppath '../../../species/' ! note small magnetic fields on atoms with same symmetry as fixed moment atoms 1 : nspecies 'Fe.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.001 : atposl, bfcmt 0.5 0.5 0.5 0.0 0.0 -0.001 ! this k-point set is too small for calculation of accurate moments ngridk 4 4 4 elk-10.4.9/examples/magnetism/PaxHeaders/Fe-spiral0000644000000000000000000000013214762655565017032 xustar0030 mtime=1741380469.855015711 30 atime=1741380469.854015706 30 ctime=1741380469.855015711 elk-10.4.9/examples/magnetism/Fe-spiral/0000755002504400250440000000000014762655565021631 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/Fe-spiral/PaxHeaders/elk.in0000644000000000000000000000013214762655565020212 xustar0030 mtime=1741380469.856015716 30 atime=1741380469.856015716 30 ctime=1741380469.856015716 elk-10.4.9/examples/magnetism/Fe-spiral/elk.in0000644002504400250440000000134614762655565022740 0ustar00dewhurstdewhurst00000000000000 ! Spin-spiral state of γ-Fe. Care should be taken to ensure that the calculation ! is fully converged. tasks 0 spinsprl .true. ! spin-spiral q-vector in lattice coordinates vqlss 0.1 0.1 0.0 ! fairly large large cut-off required rgkmax 8.5 gmaxvr 14.0 nempty 8 ! spiral magnetic field along q with perpendicular component only bfieldc 0.05 0.0 0.0 ! tight convergence required epspot 1.e-7 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.375 sppath '../../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 elk-10.4.9/examples/magnetism/PaxHeaders/Cr-mono0000644000000000000000000000013214762655565016522 xustar0030 mtime=1741380469.862015747 30 atime=1741380469.857015721 30 ctime=1741380469.862015747 elk-10.4.9/examples/magnetism/Cr-mono/0000755002504400250440000000000014762655565021321 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/Cr-mono/PaxHeaders/elk.in0000644000000000000000000000013214762655565017702 xustar0030 mtime=1741380469.859015732 30 atime=1741380469.858015727 30 ctime=1741380469.859015732 elk-10.4.9/examples/magnetism/Cr-mono/elk.in0000644002504400250440000000236314762655565022430 0ustar00dewhurstdewhurst00000000000000 ! Unsupported monolayer of Cr with the symmetry and lattice constant of a ! monolayer on the Ag(111) surface (see Phys. Rev. B 69, 24415 (2004)), which ! exhibits a non-collinear Neel state. Small magnetic fields 120 degrees apart ! are applied to each of the three atoms. ! Try plotting the 2D magnetisation density in OpenDX (version 4.3.2) using the ! files provided. tasks 0 72 spinpol .true. ! note that the number of empty states should be large because non-collinear ! effects are obtained in the second-variational step nempty 8 avec 1.5 0.86602540378 0.0 1.5 -0.86602540378 0.0 0.0 0.0 1.0 scale1 5.50836 : 7.79/sqrt(2) scale2 5.50836 scale3 7.0 sppath '../../../species/' ! note that the magnetic fields are in Cartesian coordinates atoms 1 : nspecies 'Cr.in' : spfname 3 : natoms 0.0 0.0 0.0 0.0 0.1 0.0 : atposl, bfcmt 0.333333333333 0.333333333333 0.0 -0.086602540378 -0.05 0.0 0.666666666667 0.666666666667 0.0 0.086602540378 -0.05 0.0 ngridk 2 2 1 vkloff 0.5 0.5 0.0 plot2d 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 200 200 elk-10.4.9/examples/magnetism/Cr-mono/PaxHeaders/mag2d.general0000644000000000000000000000013214762655565021130 xustar0030 mtime=1741380469.861015742 30 atime=1741380469.860015737 30 ctime=1741380469.861015742 elk-10.4.9/examples/magnetism/Cr-mono/mag2d.general0000644002504400250440000000027314762655565023654 0ustar00dewhurstdewhurst00000000000000file = MAG2D.OUT grid = 200 x 200 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 2-vector, 3-vector type = float, float end elk-10.4.9/examples/magnetism/Cr-mono/PaxHeaders/mag2d.net0000644000000000000000000000013214762655565020301 xustar0030 mtime=1741380469.862015747 30 atime=1741380469.862015747 30 ctime=1741380469.862015747 elk-10.4.9/examples/magnetism/Cr-mono/mag2d.net0000644002504400250440000002211314762655565023022 0ustar00dewhurstdewhurst00000000000000// // time: Sat Jun 16 15:49:00 2007 // // version: 3.2.0 (format), 4.4.0 (DX) // // // MODULE main // workspace: width = 565, height = 623 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[1]: x = 47, y = 39, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "mag2d.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node Sample[1]: x = 216, y = 66, inputs = 2, label = Sample // input[2]: defaulting = 0, visible = 1, type = 1, value = 2000 // main_Sample_1_out_1 = Sample( main_Import_1_out_1, main_Sample_1_in_2 ) [instance: 1, cache: 1]; // // node Compute[1]: x = 84, y = 147, inputs = 3, label = Compute // input[1]: defaulting = 0, visible = 0, type = 32, value = "$0/mag($0)" // expression: value = a/mag(a) // name[2]: value = a // name[3]: value = b // main_Compute_1_out_1 = Compute( main_Compute_1_in_1, main_Sample_1_out_1, main_Compute_1_in_3 ) [instance: 1, cache: 1]; // // node AutoGlyph[1]: x = 44, y = 254, inputs = 7, label = AutoGlyph // input[2]: defaulting = 0, visible = 1, type = 32, value = "rocket2D" // input[3]: defaulting = 0, visible = 1, type = 5, value = 7.0 // input[4]: defaulting = 0, visible = 1, type = 5, value = 0.25 // input[5]: defaulting = 0, visible = 1, type = 5, value = 0.05 // main_AutoGlyph_1_out_1 = AutoGlyph( main_Compute_1_out_1, main_AutoGlyph_1_in_2, main_AutoGlyph_1_in_3, main_AutoGlyph_1_in_4, main_AutoGlyph_1_in_5, main_AutoGlyph_1_in_6, main_AutoGlyph_1_in_7 ) [instance: 1, cache: 1]; // // node Color[1]: x = 108, y = 341, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "black" // main_Color_1_out_1 = Color( main_AutoGlyph_1_out_1, main_Color_1_in_2, main_Color_1_in_3, main_Color_1_in_4, main_Color_1_in_5 ) [instance: 1, cache: 1]; // // node Compute[2]: x = 348, y = 66, inputs = 3, label = Compute // input[1]: defaulting = 0, visible = 0, type = 32, value = "mag($0)" // expression: value = mag(a) // name[2]: value = a // name[3]: value = b // main_Compute_2_out_1 = Compute( main_Compute_2_in_1, main_Import_1_out_1, main_Compute_2_in_3 ) [instance: 2, cache: 1]; // // node RubberSheet[1]: x = 467, y = 146, inputs = 4, label = RubberSheet // main_RubberSheet_1_out_1 = RubberSheet( main_Compute_2_out_1, main_RubberSheet_1_in_2, main_RubberSheet_1_in_3, main_RubberSheet_1_in_4 ) [instance: 1, cache: 1]; // // node Translate[1]: x = 283, y = 189, inputs = 2, label = Translate // input[2]: defaulting = 0, visible = 1, type = 8, value = [0 0 -3] // main_Translate_1_out_1 = Translate( main_RubberSheet_1_out_1, main_Translate_1_in_2 ) [instance: 1, cache: 1]; // // node Colormap[2]: x = 479, y = 260, inputs = 19, label = Colormap // input[1]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.66315789] [0.60691824 0.0] } // input[2]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[3]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[4]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[5]: defaulting = 0, visible = 0, type = 32, value = "Colormap_2" // input[7]: defaulting = 1, visible = 0, type = 5, value = 9.2432623e-05 // input[8]: defaulting = 1, visible = 0, type = 5, value = 0.9849546 // input[9]: defaulting = 1, visible = 0, type = 1, value = 20 // input[12]: defaulting = 0, visible = 0, type = 16777221, value = { 9.2432623e-05 0.9849546 } // input[17]: defaulting = 0, visible = 0, type = 5, value = 9.2432623e-05 // input[18]: defaulting = 0, visible = 0, type = 5, value = 0.9849546 // window: position = (0.2998,0.0000), size = 0.6348x0.5859 // main_Colormap_2_out_1[cache: 2], main_Colormap_2_out_2[cache: 2] = Colormap( main_Colormap_2_in_1, main_Colormap_2_in_2, main_Colormap_2_in_3, main_Colormap_2_in_4, main_Colormap_2_in_5, main_Translate_1_out_1, main_Colormap_2_in_7, main_Colormap_2_in_8, main_Colormap_2_in_9, main_Colormap_2_in_10, main_Colormap_2_in_11, main_Colormap_2_in_12, main_Colormap_2_in_13, main_Colormap_2_in_14, main_Colormap_2_in_15, main_Colormap_2_in_16, main_Colormap_2_in_17, main_Colormap_2_in_18, main_Colormap_2_in_19 ) [instance: 2, cache: 1]; // // node Color[3]: x = 339, y = 334, inputs = 5, label = Color // main_Color_3_out_1 = Color( main_Translate_1_out_1, main_Colormap_2_out_1, main_Color_3_in_3, main_Color_3_in_4, main_Color_3_in_5 ) [instance: 3, cache: 1]; // // node Collect[1]: x = 214, y = 419, inputs = 2, label = Collect // main_Collect_1_out_1 = Collect( main_Color_1_out_1, main_Color_3_out_1 ) [instance: 1, cache: 1]; // // node AutoCamera[1]: x = 363, y = 493, inputs = 9, label = AutoCamera // input[3]: defaulting = 0, visible = 0, type = 5, value = 15.0 // input[4]: defaulting = 0, visible = 0, type = 1, value = 800 // input[5]: defaulting = 0, visible = 0, type = 5, value = 0.6 // input[7]: defaulting = 0, visible = 0, type = 3, value = 0 // input[8]: defaulting = 1, visible = 0, type = 5, value = 20.0 // input[9]: defaulting = 0, visible = 0, type = 32, value = "white" // main_AutoCamera_1_out_1 = AutoCamera( main_Collect_1_out_1, main_AutoCamera_1_in_2, main_AutoCamera_1_in_3, main_AutoCamera_1_in_4, main_AutoCamera_1_in_5, main_AutoCamera_1_in_6, main_AutoCamera_1_in_7, main_AutoCamera_1_in_8, main_AutoCamera_1_in_9 ) [instance: 1, cache: 1]; // // node Render[1]: x = 252, y = 561, inputs = 3, label = Render // main_Render_1_out_1 = Render( main_Collect_1_out_1, main_AutoCamera_1_out_1, main_Render_1_in_3 ) [instance: 1, cache: 1]; // // node Display[2]: x = 139, y = 557, inputs = 8, label = Display // depth: value = 24 // window: position = (0.0869,0.1107), size = 0.7949x0.6797 // main_Display_2_out_1[cache: 2] = Display( main_Render_1_out_1, main_Display_2_in_2, main_Display_2_in_3, main_Display_2_in_4, main_Display_2_in_5, main_Display_2_in_6, main_Display_2_in_7, main_Display_2_in_8 ) [instance: 2, cache: 1]; // network: end of macro body } main_Import_1_in_1 = "mag2d.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_Sample_1_in_2 = 2000; main_Sample_1_out_1 = NULL; main_Compute_1_in_1 = "$0/mag($0)"; main_Compute_1_in_3 = NULL; main_Compute_1_out_1 = NULL; main_AutoGlyph_1_in_2 = "rocket2D"; main_AutoGlyph_1_in_3 = 7.0; main_AutoGlyph_1_in_4 = 0.25; main_AutoGlyph_1_in_5 = 0.05; main_AutoGlyph_1_in_6 = NULL; main_AutoGlyph_1_in_7 = NULL; main_AutoGlyph_1_out_1 = NULL; main_Color_1_in_2 = "black"; main_Color_1_in_3 = NULL; main_Color_1_in_4 = NULL; main_Color_1_in_5 = NULL; main_Color_1_out_1 = NULL; main_Compute_2_in_1 = "mag($0)"; main_Compute_2_in_3 = NULL; main_Compute_2_out_1 = NULL; main_RubberSheet_1_in_2 = NULL; main_RubberSheet_1_in_3 = NULL; main_RubberSheet_1_in_4 = NULL; main_RubberSheet_1_out_1 = NULL; main_Translate_1_in_2 = [0 0 -3]; main_Translate_1_out_1 = NULL; main_Colormap_2_in_1 = { [0.0 0.66315789] [0.60691824 0.0] }; main_Colormap_2_in_2 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_2_in_3 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_2_in_4 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_2_in_5 = "Colormap_2"; main_Colormap_2_in_7 = NULL; main_Colormap_2_in_8 = NULL; main_Colormap_2_in_9 = NULL; main_Colormap_2_in_10 = NULL; main_Colormap_2_in_11 = NULL; main_Colormap_2_in_12 = { 9.2432623e-05 0.9849546 }; main_Colormap_2_in_13 = NULL; main_Colormap_2_in_14 = NULL; main_Colormap_2_in_15 = NULL; main_Colormap_2_in_16 = NULL; main_Colormap_2_in_17 = 9.2432623e-05; main_Colormap_2_in_18 = 0.9849546; main_Colormap_2_in_19 = NULL; main_Colormap_2_out_1 = NULL; main_Color_3_in_3 = NULL; main_Color_3_in_4 = NULL; main_Color_3_in_5 = NULL; main_Color_3_out_1 = NULL; main_Collect_1_out_1 = NULL; main_AutoCamera_1_in_2 = NULL; main_AutoCamera_1_in_3 = 15.0; main_AutoCamera_1_in_4 = 800; main_AutoCamera_1_in_5 = 0.6; main_AutoCamera_1_in_6 = NULL; main_AutoCamera_1_in_7 = 0; main_AutoCamera_1_in_8 = NULL; main_AutoCamera_1_in_9 = "white"; main_AutoCamera_1_out_1 = NULL; main_Render_1_in_3 = NULL; main_Render_1_out_1 = NULL; main_Display_2_in_2 = NULL; main_Display_2_in_3 = "X24,,"; main_Display_2_in_4 = NULL; main_Display_2_in_5 = NULL; main_Display_2_in_6 = NULL; main_Display_2_in_7 = NULL; main_Display_2_in_8 = NULL; Executive("product version 4 4 0"); $sync main(); elk-10.4.9/examples/magnetism/PaxHeaders/Fe-FSM-MT-FM0000644000000000000000000000013214762655565017003 xustar0030 mtime=1741380469.865015763 30 atime=1741380469.864015758 30 ctime=1741380469.865015763 elk-10.4.9/examples/magnetism/Fe-FSM-MT-FM/0000755002504400250440000000000014762655565021602 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/Fe-FSM-MT-FM/PaxHeaders/elk.in0000644000000000000000000000013214762655565020163 xustar0030 mtime=1741380469.865015763 30 atime=1741380469.865015763 30 ctime=1741380469.865015763 elk-10.4.9/examples/magnetism/Fe-FSM-MT-FM/elk.in0000644002504400250440000000135214762655565022706 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic bcc iron example with fixed spin moment in muffin-tin. ! Run by Fredrik Bultmark, Francesco Cricchio, Lars Nordstrom. tasks 0 ! ferromagnetic local fixed spin moment calculation fsmtype 2 mommtfix 1 1 0.0 0.0 1.0 : ia, is, mommtfix ! FSM step length: reduce to improve convergence taufsm 0.01 lmaxapw 10 ! fairly large number of empty states required for magnetic cases nempty 8 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt sppath '../../../species/' ngridk 6 6 6 elk-10.4.9/examples/magnetism/PaxHeaders/Fe0000644000000000000000000000013214762655565015542 xustar0030 mtime=1741380469.868015779 30 atime=1741380469.867015773 30 ctime=1741380469.868015779 elk-10.4.9/examples/magnetism/Fe/0000755002504400250440000000000014762655565020341 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/Fe/PaxHeaders/elk.in0000644000000000000000000000013214762655565016722 xustar0030 mtime=1741380469.868015779 30 atime=1741380469.868015779 30 ctime=1741380469.868015779 elk-10.4.9/examples/magnetism/Fe/elk.in0000644002504400250440000000126614762655565021451 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic bcc iron example. Note the small global magnetic field, which ! is needed to break spin symmetry. Check the total moment of the cell in the ! file INFO.OUT. tasks 0 spinpol .true. ! small magnetic field in the z-direction bfieldc 0.0 0.0 0.01 ! fairly large number of empty states required for magnetic cases nempty 8 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 sppath '../../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/magnetism/PaxHeaders/Eu0000644000000000000000000000013214762655565015561 xustar0030 mtime=1741380469.870015789 30 atime=1741380469.869015784 30 ctime=1741380469.870015789 elk-10.4.9/examples/magnetism/Eu/0000755002504400250440000000000014762655565020360 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/Eu/PaxHeaders/elk.in0000644000000000000000000000013214762655565016741 xustar0030 mtime=1741380469.871015794 30 atime=1741380469.871015794 30 ctime=1741380469.871015794 elk-10.4.9/examples/magnetism/Eu/elk.in0000644002504400250440000000101614762655565021461 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic bcc Eu example (thanks to Sandro Massidda for fixing a problem ! with the Eu.in species file). tasks 0 10 spinpol .true. spinorb .true. bfieldc 0.0 0.0 0.01 nempty 8 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 4.30385 sppath '../../../species/' atoms 1 : nspecies 'Eu.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 8 8 8 elk-10.4.9/examples/magnetism/PaxHeaders/Fe-FSM0000644000000000000000000000013014762655565016163 xustar0030 mtime=1741380469.873015805 28 atime=1741380469.8720158 30 ctime=1741380469.873015805 elk-10.4.9/examples/magnetism/Fe-FSM/0000755002504400250440000000000014762655565020764 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/Fe-FSM/PaxHeaders/elk.in0000644000000000000000000000012714762655565017351 xustar0029 mtime=1741380469.87401581 29 atime=1741380469.87401581 29 ctime=1741380469.87401581 elk-10.4.9/examples/magnetism/Fe-FSM/elk.in0000644002504400250440000000141614762655565022071 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic bcc iron fixed spin moment example. tasks 0 ! small mixing parameter required beta0 0.05 ! FSM step length: reduce to improve convergence taufsm 0.01 spinpol .true. ! total fixed spin moment required fsmtype 1 ! fixed spin moment vector momfix 0.0 0.0 1.0 ! small magnetic field in the z-direction bfieldc 0.0 0.0 0.01 ! fairly large number of empty states required for magnetic cases nempty 8 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 sppath '../../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/magnetism/PaxHeaders/FeCo-MAE0000644000000000000000000000013214762655565016424 xustar0030 mtime=1741380469.876015821 30 atime=1741380469.875015815 30 ctime=1741380469.876015821 elk-10.4.9/examples/magnetism/FeCo-MAE/0000755002504400250440000000000014762655565021223 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/FeCo-MAE/PaxHeaders/elk.in0000644000000000000000000000013214762655565017604 xustar0030 mtime=1741380469.877015826 30 atime=1741380469.876015821 30 ctime=1741380469.877015826 elk-10.4.9/examples/magnetism/FeCo-MAE/elk.in0000644002504400250440000000261014762655565022325 0ustar00dewhurstdewhurst00000000000000 ! Determination of the magnetic anisotropy energy (MAE) for Fe_(1-x)Co_x where ! x = 1/2 and the unit cell is tetragonal of L1_0 type. ! The MAE is determined from a set of fixed spin moment direction calculations ! performed automatically with task = 28. The number of direction points used is ! given by the parameter 'npmae'. The estimation becomes more accurate as the ! number of points increases, but the calculation takes longer. The MAE is also ! strongly dependent on the number of k-points, the number used in this example ! is insufficient for a reliable result. ! Example updated by James Glasbrenner and others. tasks 28 ! high angular momentum cut-off needed for accurate densities and potentials lmaxapw 14 lmaxo 14 ! number of magnetisation direction points; the estimate of the MAE improves ! with the number of points; in this case, the Cartesian x, y and z directions ! are used npmae 3 ! very tight convergence required epspot 1.e-8 epsengy 1.e-6 rgkmax 8.0 ngridk 4 4 4 swidth 0.01 mixtype 3 ! artificial strained lattice avec 0.5 0.5 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale1 6.8 scale2 6.8 scale3 7.0 sppath '../../../species/' atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'Co.in' 1 0.0 0.5 0.5 elk-10.4.9/examples/magnetism/PaxHeaders/Fe-AFM0000644000000000000000000000013214762655565016143 xustar0030 mtime=1741380469.879015836 30 atime=1741380469.878015831 30 ctime=1741380469.879015836 elk-10.4.9/examples/magnetism/Fe-AFM/0000755002504400250440000000000014762655565020742 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/Fe-AFM/PaxHeaders/elk.in0000644000000000000000000000013214762655565017323 xustar0030 mtime=1741380469.880015842 30 atime=1741380469.879015836 30 ctime=1741380469.880015842 elk-10.4.9/examples/magnetism/Fe-AFM/elk.in0000644002504400250440000000116614762655565022051 0ustar00dewhurstdewhurst00000000000000 ! Antiferromagnetic fcc iron example tasks 0 spinpol .true. ! fairly large number of empty states required for magnetic cases nempty 8 avec 0.5 0.5 0.0 0.5 -0.5 0.0 0.0 0.0 1.0 scale 6.82 sppath '../../../species/' ! note the magnetic fields on each atom atoms 1 : nspecies 'Fe.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.1 : atposl, bfcmt 0.5 0.5 0.5 0.0 0.0 -0.1 ! this k-point set is too small for calculation of accurate moments ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/magnetism/PaxHeaders/Fe-spiral-supercell0000644000000000000000000000013214762655565021026 xustar0030 mtime=1741380469.882015852 30 atime=1741380469.881015847 30 ctime=1741380469.882015852 elk-10.4.9/examples/magnetism/Fe-spiral-supercell/0000755002504400250440000000000014762655565023625 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/Fe-spiral-supercell/PaxHeaders/elk.in0000644000000000000000000000013214762655565022206 xustar0030 mtime=1741380469.883015857 30 atime=1741380469.882015852 30 ctime=1741380469.883015857 elk-10.4.9/examples/magnetism/Fe-spiral-supercell/elk.in0000644002504400250440000000214314762655565024730 0ustar00dewhurstdewhurst00000000000000 ! Spin-spiral state for γ-Fe calculated supercells instead of the spiral Bloch ! state anzatz. This is required for functionals which do not preserve the ! anzatz self-consistently or if spin-orbit coupling is required. ! The code runs in the same way as the phonon supercell calculations. The ! supercells are generated automatically from the q-points given by ngridq. Like ! phonons, several instances of the code can be started in the same directory, ! allowing for parallel generation of the q-dependent ground-states. ! Note that automatic k-point generation is always enabled for this task. tasks 350 ! q-point set on which the spiral ground-states are to be computed ngridq 2 2 2 highq .true. avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.375 sppath '../../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 -0.01 0.0 0.0 : atposl, bfcmt ! define a fixed spin direction in the muffin-tin fsmtype -2 mommtfix 1 1 1.0 0.0 0.0 elk-10.4.9/examples/magnetism/PaxHeaders/Ni0000644000000000000000000000013214762655565015556 xustar0030 mtime=1741380469.885015868 30 atime=1741380469.883015857 30 ctime=1741380469.885015868 elk-10.4.9/examples/magnetism/Ni/0000755002504400250440000000000014762655565020355 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetism/Ni/PaxHeaders/elk.in0000644000000000000000000000013214762655565016736 xustar0030 mtime=1741380469.885015868 30 atime=1741380469.885015868 30 ctime=1741380469.885015868 elk-10.4.9/examples/magnetism/Ni/elk.in0000644002504400250440000000120114762655565021452 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic nickel example. A small global magnetic field is required to ! break spin symmetry. Check the total spin moment of the cell in the file ! INFO.OUT. Note that large k-point grids are required for obtaining accurate ! moments. tasks 0 spinpol .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/PaxHeaders/non-linear-optics0000644000000000000000000000013214762655565016565 xustar0030 mtime=1741380469.887015878 30 atime=1741380469.886015873 30 ctime=1741380469.887015878 elk-10.4.9/examples/non-linear-optics/0000755002504400250440000000000014762655565021364 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/non-linear-optics/PaxHeaders/GaAs0000644000000000000000000000013214762655565017400 xustar0030 mtime=1741380469.889015889 30 atime=1741380469.887015878 30 ctime=1741380469.889015889 elk-10.4.9/examples/non-linear-optics/GaAs/0000755002504400250440000000000014762655565022177 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/non-linear-optics/GaAs/PaxHeaders/elk.in0000644000000000000000000000013214762655565020560 xustar0030 mtime=1741380469.889015889 30 atime=1741380469.889015889 30 ctime=1741380469.889015889 elk-10.4.9/examples/non-linear-optics/GaAs/elk.in0000644002504400250440000000206414762655565023304 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the non-linear reponse function χ(-2ω;ω,ω) for GaAs. Note ! that many k-points and empty states are required for good convergence. ! Various contributions to the susceptibility are also written to file. ! See Phys. Rev. B 48, 11705 (1993) and Phys. Rev. B 53, 10751 (1996). tasks 0 120 125 ! large number of empty states required nempty 20 ! scissor correction of Δ=1.243 eV (see Phys. Rev. B 80, 155205 (2009)) scissor 0.0457 ! inverse lifetime is determined by swidth swidth 0.003 ! components of the optical tensor (x,y,z) optcomp 1 2 3 ! dense k-point set required for non-linear optics ngridk 32 32 32 wplot 400 100 0 : nwplot, ngrkf, nswplot 0.0 0.3 : wplot ! use GGA xctype 20 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-10.4.9/examples/PaxHeaders/tensor-moments0000644000000000000000000000013014762655565016214 xustar0029 mtime=1741380469.89701593 30 atime=1741380469.890015894 29 ctime=1741380469.89701593 elk-10.4.9/examples/tensor-moments/0000755002504400250440000000000014762655565021015 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/tensor-moments/PaxHeaders/NiO-LDA+U-FLL0000644000000000000000000000013214762655565020114 xustar0030 mtime=1741380469.892015904 30 atime=1741380469.891015899 30 ctime=1741380469.892015904 elk-10.4.9/examples/tensor-moments/NiO-LDA+U-FLL/0000755002504400250440000000000014762655565022713 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/tensor-moments/NiO-LDA+U-FLL/PaxHeaders/elk.in0000644000000000000000000000013214762655565021274 xustar0030 mtime=1741380469.893015909 30 atime=1741380469.893015909 30 ctime=1741380469.893015909 elk-10.4.9/examples/tensor-moments/NiO-LDA+U-FLL/elk.in0000644002504400250440000000253414762655565024022 0ustar00dewhurstdewhurst00000000000000 ! NiO in AFMII structure with LDA+U and fully-localised-limit (FLL) double ! counting (dftu=1). Values of Slater parameters for Ni are taken from ! literature. Calculate the tensor moment decomposition of the density ! matrix TENSMOM.OUT with task=400 (see PRB 80, 035121 (2009)). ! Observe the large 011 (spin-polarization), 404 (high multipole of charge) and ! the almost degenerate 413, 414, 415 (high multipoles of magnetization). ! Example by Francesco Cricchio. tasks 0 400 ! DFT+U block ! here FLL double counting is used (dftu=1) with Slater parameters as specified dft+u 1 2 : dftu, inpdftu 1 2 0.29399 0.30078 0.18799 : is, l, f0, f2, f4 spinorb .true. scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 ! fairly high number of empty states nempty 8 sppath '../../../species/' ! this grid is too small for accurate magnetic moment ngridk 4 4 4 elk-10.4.9/examples/tensor-moments/PaxHeaders/US-LDA+SOC+U0000644000000000000000000000013014762655565017761 xustar0029 mtime=1741380469.89501592 30 atime=1741380469.894015915 29 ctime=1741380469.89501592 elk-10.4.9/examples/tensor-moments/US-LDA+SOC+U/0000755002504400250440000000000014762655565022562 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/tensor-moments/US-LDA+SOC+U/PaxHeaders/elk.in0000644000000000000000000000013214762655565021143 xustar0030 mtime=1741380469.896015925 30 atime=1741380469.896015925 30 ctime=1741380469.896015925 elk-10.4.9/examples/tensor-moments/US-LDA+SOC+U/elk.in0000644002504400250440000000347514762655565023676 0ustar00dewhurstdewhurst00000000000000 ! US in FM structure with magnetic moment along easy-axis [111] with LDA+SOC+U ! around mean field (AFM) (dftu=2). Values of Slater parameters for Uranium are ! calculated through a Yukawa potential with screening length automatically ! determined such that U=1.0 eV (0.036749 Ha). In this way there is only one ! free parameter to be chosen. ! Check the tensor moment decomposition of the density matrix in TENSMOM.OUT ! (see PRB 80, 035121 (2009)). Observe the large 011 (spin-polarization), ! 110 (SOC-like term) and 615 (large multipole of magnetization density). ! Example by Francesco Cricchio. tasks 0 ! DFT+U block ! around mean field (AFM) is used (dftu=2) ! inpdftu=5 corresponds to determine the Yukawa screening length that produces ! U=1 eV (0.036749 Ha) through a secant algorithm dft+u 2 5 : dftu,inpdftu 1 3 0.0367493060 : is, l, U fixed ! the tensor moments are calculated and written to file at every iteration tmwrite .true. spinorb .true. scale 10.36175041 ! fcc lattice vectors avec 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 atoms 2 : nspecies 'U.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 'S.in' : spfname 1 : natoms 0.5 0.5 0.5 0.0 0.0 0.0 : atposl, bfcmt ! small global magnetic field along easy-axis [111] bfieldc -0.01 -0.01 -0.01 ! this rgkmax is too small for an accurate calculation ! rgkmax for actinides must usually be increased around 9.0-9.5 rgkmax 8.0 ! convergence of magnetic moment with number of empty states ! must be checked nempty 8 sppath '../../../species/' ! this grid is too small for accurate magnetic moment ngridk 4 4 4 elk-10.4.9/examples/tensor-moments/PaxHeaders/FeGd-fixed-tensor-moment0000644000000000000000000000013114762655565022724 xustar0030 mtime=1741380469.898015936 29 atime=1741380469.89701593 30 ctime=1741380469.898015936 elk-10.4.9/examples/tensor-moments/FeGd-fixed-tensor-moment/0000755002504400250440000000000014762655565025524 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/tensor-moments/FeGd-fixed-tensor-moment/PaxHeaders/elk.in0000644000000000000000000000013214762655565024105 xustar0030 mtime=1741380469.899015941 30 atime=1741380469.899015941 30 ctime=1741380469.899015941 elk-10.4.9/examples/tensor-moments/FeGd-fixed-tensor-moment/elk.in0000644002504400250440000000204114762655565026624 0ustar00dewhurstdewhurst00000000000000 ! Example of a fixed tensor moment (FTM) calculation for FeGd. ! See the documentation of the routine tm3todm, and references therein, for the ! theory of tensor moments. tasks 0 ! write out the tensor moments after each iteration tmwrite .true. ! fix the tensor moments ftmtype 1 ! select 3-index tensor moment to fix tm3fix 1 : number of fixed tensor moments 2 1 3 : species, atom and angular momentum (l) 4 1 5 2 : k, p, r, t 0.1 : wkpr(t) spinorb .true. reducebf 0.85 nxoapwlo 1 rgkmax 8.5 dft+u 1 5 : dftu,inpdftu 2 3 0.8 : is, l, U ngridk 8 8 8 nempty 10 avec 3.645171 -3.643374 0.000000 3.644982 3.643193 0.000000 0.000000 0.000000 7.111690 sppath '../../../species/' atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.01 : atposl, bfcmt 'Gd.in' 1 0.5 0.5 0.5 0.0 0.0 -0.01 elk-10.4.9/examples/PaxHeaders/DFT+U0000644000000000000000000000013214762655565014041 xustar0030 mtime=1741380469.912016009 30 atime=1741380469.900015946 30 ctime=1741380469.912016009 elk-10.4.9/examples/DFT+U/0000755002504400250440000000000014762655565016640 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/DFT+U/PaxHeaders/FeAl-LDA0000644000000000000000000000013214762655565015246 xustar0030 mtime=1741380469.902015956 30 atime=1741380469.901015951 30 ctime=1741380469.902015956 elk-10.4.9/examples/DFT+U/FeAl-LDA/0000755002504400250440000000000014762655565020045 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/DFT+U/FeAl-LDA/PaxHeaders/elk.in0000644000000000000000000000013214762655565016426 xustar0030 mtime=1741380469.903015962 30 atime=1741380469.902015956 30 ctime=1741380469.903015962 elk-10.4.9/examples/DFT+U/FeAl-LDA/elk.in0000644002504400250440000000124514762655565021152 0ustar00dewhurstdewhurst00000000000000 ! FeAl in CsCl (B2) structure using LDA. Compare with LDA+U case. ! Example Created by Fredrik Bultmark, Francesco Cricchio and Lars Nordstrom. tasks 0 10 spinpol .true. ! small field along z to break symmetry bfieldc 0.0 0.0 -0.01 scale 5.496 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 'Al.in' 1 0.5 0.5 0.5 0.0 0.0 0.0 : atposl, bfcmt sppath '../../../species/' ! fair number of empty states nempty 8 ngridk 8 8 8 elk-10.4.9/examples/DFT+U/PaxHeaders/NiO-LDA0000644000000000000000000000013214762655565015124 xustar0030 mtime=1741380469.905015972 30 atime=1741380469.904015967 30 ctime=1741380469.905015972 elk-10.4.9/examples/DFT+U/NiO-LDA/0000755002504400250440000000000014762655565017723 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/DFT+U/NiO-LDA/PaxHeaders/elk.in0000644000000000000000000000013214762655565016304 xustar0030 mtime=1741380469.905015972 30 atime=1741380469.905015972 30 ctime=1741380469.905015972 elk-10.4.9/examples/DFT+U/NiO-LDA/elk.in0000644002504400250440000000147314762655565021033 0ustar00dewhurstdewhurst00000000000000 ! NiO in AFMII structure with LDA for comparison with LDA+U case. ! Example by Fredrik Bultmark, Francesco Cricchio and Lars Nordstrom. tasks 0 10 spinpol .true. scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 ! fairly high number of empty states nempty 8 sppath '../../../species/' ! this grid is too small for accurate magnetic moment ngridk 4 4 4 elk-10.4.9/examples/DFT+U/PaxHeaders/NiO-LDA+U-FLL-Ykwa0000644000000000000000000000013214762655565016650 xustar0030 mtime=1741380469.908015988 30 atime=1741380469.907015983 30 ctime=1741380469.908015988 elk-10.4.9/examples/DFT+U/NiO-LDA+U-FLL-Ykwa/0000755002504400250440000000000014762655565021447 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/DFT+U/NiO-LDA+U-FLL-Ykwa/PaxHeaders/elk.in0000644000000000000000000000013214762655565020030 xustar0030 mtime=1741380469.908015988 30 atime=1741380469.908015988 30 ctime=1741380469.908015988 elk-10.4.9/examples/DFT+U/NiO-LDA+U-FLL-Ykwa/elk.in0000644002504400250440000000337214762655565022557 0ustar00dewhurstdewhurst00000000000000 ! NiO in AFMII structure with LDA+U and fully-localised-limit (FLL) double ! counting (dftu=1). With inpdftu=4 the values of Slater parameters are ! conveniently calculated through a screened Yukawa potential with screening ! length lambda provided as input (see PRB 80, 035121 (2009)). Here lambda=1.5 ! gives realistic values of Slater integrals which are printed in FDU.OUT. ! Try to plot the magnetic moments of Ni as function of lambda. ! If inpdftu=5 the code will automatically determine the screening length ! corresponding to the fixed value of U (udufix) provided as input. ! Example by Francesco Cricchio. tasks 0 ! DFT+U block ! here FLL double counting is used (dftu=1) ! inpdftu=4 corresponds to calculate the Slater parameters self-consistently ! through a Yukawa potential with screening length lambda dft+u 1 4 : dftu, inpdftu 1 2 1.5 : is, l, lambda ! alternatively try inpdftu=5; this will determine the screening length ! corresponding to U=0.29399 Ha (8 eV) through a secant algorithm !dft+u ! 1 5 : dftu, inpdftu ! 1 2 0.29399 : is, l, U fixed spinpol .true. scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 sppath '../../../species/' ! fairly high number of empty states nempty 8 ! this grid is too small for accurate magnetic moment ngridk 4 4 4 elk-10.4.9/examples/DFT+U/PaxHeaders/FeAl-LDA+U-AMF0000644000000000000000000000013214762655565016047 xustar0030 mtime=1741380469.910015998 30 atime=1741380469.909015993 30 ctime=1741380469.910015998 elk-10.4.9/examples/DFT+U/FeAl-LDA+U-AMF/0000755002504400250440000000000014762655565020646 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/DFT+U/FeAl-LDA+U-AMF/PaxHeaders/elk.in0000644000000000000000000000013214762655565017227 xustar0030 mtime=1741380469.911016004 30 atime=1741380469.911016004 30 ctime=1741380469.911016004 elk-10.4.9/examples/DFT+U/FeAl-LDA+U-AMF/elk.in0000644002504400250440000000251014762655565021747 0ustar00dewhurstdewhurst00000000000000 ! FeAl in CsCl (B2) structure using LDA+U and "around mean field" (AMF) double ! counting (dftu=2). Compare the total DOS and partial DOS with the one calculated ! with bare LDA. Note the opening of a gap and the increased localization of Fe ! d-electrons. Note the non-magnetic solution for U about 0.1837 Ha (5 eV) ! (the exact value of U depends on the muffin-tin (MT) radius used since DFT+U ! is applied only inside mt spheres). Try to plot the magnetic moment as ! function of U for different MT radius. Example created by Fredrik Bultmark, ! Francesco Cricchio and Lars Nordstrom. tasks 0 10 ! DFT+U block ! here AMF double counting is used (dftu=2) ! inpdftu=1 corresponds to provide U and J as input dft+u 2 1 : dftu, inpdftu 1 2 0.183 0.034911967 : is, l, U, J spinpol .true. ! small field along z to break symmetry bfieldc 0.0 0.0 -0.01 scale 5.496 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 'Al.in' 1 0.5 0.5 0.5 0.0 0.0 0.0 : atposl, bfcmt sppath '../../../species/' ! fair number of empty states nempty 8 ! fair number of k-points ngridk 8 8 8 elk-10.4.9/examples/DFT+U/PaxHeaders/NiO-LDA+U-FLL0000644000000000000000000000013214762655565015737 xustar0030 mtime=1741380469.913016014 30 atime=1741380469.912016009 30 ctime=1741380469.913016014 elk-10.4.9/examples/DFT+U/NiO-LDA+U-FLL/0000755002504400250440000000000014762655565020536 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/DFT+U/NiO-LDA+U-FLL/PaxHeaders/elk.in0000644000000000000000000000013214762655565017117 xustar0030 mtime=1741380469.914016019 30 atime=1741380469.914016019 30 ctime=1741380469.914016019 elk-10.4.9/examples/DFT+U/NiO-LDA+U-FLL/elk.in0000644002504400250440000000304414762655565021642 0ustar00dewhurstdewhurst00000000000000 ! NiO in AFMII structure with LDA+U and fully-localised-limit (FLL) double ! counting (dftu=1). Values of Slater parameters for Ni are taken from ! literature. ! Analyze total and partial DOS (t2g and eg states) and compare with bare LDA. ! Notice the increasing of the gap (~4eV) and of magnetic moment to ~1.69 u_b. ! The increasing of magnetic moment is typical of FLL double counting. ! Example by Francesco Cricchio. tasks 0 10 ! DFT+U block ! here FLL double counting is used (dftu=1) ! inpdftu=1 corresponds to provide U and J in Hartree as input ! inpdftu=2 or 3 corresponds to, respectively, Slater or Racah parameters ! inpdftu=4 or 5 corresponds to calculating the Slater parameters through a ! Yukawa potential (see example NiO-LDA+U-FLL-Ykwa and PRB 80, 035121 (2009)) dft+u 1 2 : dftu,inpdftu 1 2 0.29399 0.30078 0.18799 : is, l, f0, f2, f4 spinpol .true. scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 ! fairly high number of empty states nempty 8 sppath '../../../species/' ! this grid is too small for accurate magnetic moment ngridk 4 4 4 elk-10.4.9/examples/PaxHeaders/Fermi-surface0000644000000000000000000000013214762655565015714 xustar0030 mtime=1741380469.934016124 30 atime=1741380469.915016024 30 ctime=1741380469.934016124 elk-10.4.9/examples/Fermi-surface/0000755002504400250440000000000014762655565020513 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Fermi-surface/PaxHeaders/Ni0000644000000000000000000000013214762655565016262 xustar0030 mtime=1741380469.924016071 30 atime=1741380469.917016035 30 ctime=1741380469.924016071 elk-10.4.9/examples/Fermi-surface/Ni/0000755002504400250440000000000014762655565021061 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Fermi-surface/Ni/PaxHeaders/elk.in0000644000000000000000000000012714762655565017446 xustar0029 mtime=1741380469.91801604 29 atime=1741380469.91801604 29 ctime=1741380469.91801604 elk-10.4.9/examples/Fermi-surface/Ni/elk.in0000644002504400250440000000142714762655565022170 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic nickel Fermi surface. Note that the spin-up and -down surfaces ! are separated into the files FERMISURF_UP.OUT and FERMISURF_DN.OUT. ! Use OpenDX with the files in this directory to produce the 3D plot. tasks 0 100 ! define box corners and grid size for 3D plot, first point is the origin plot3d 0.0 0.0 0.0 : vclp3d 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 40 40 40 : np3d spinpol .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 8 8 8 elk-10.4.9/examples/Fermi-surface/Ni/PaxHeaders/fermi.net0000644000000000000000000000013214762655565020151 xustar0030 mtime=1741380469.920016051 30 atime=1741380469.920016051 30 ctime=1741380469.920016051 elk-10.4.9/examples/Fermi-surface/Ni/fermi.net0000644002504400250440000003707514762655565022707 0ustar00dewhurstdewhurst00000000000000// // time: Thu Nov 6 12:08:29 2008 // // version: 3.2.0 (format), 4.4.0 (DX) // // // MODULE main // workspace: width = 372, height = 548 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[1]: x = 147, y = 71, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "fermi_up.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node Isosurface[1]: x = 146, y = 196, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // main_Isosurface_1_out_1 = Isosurface( main_Import_1_out_1, main_Isosurface_1_in_2, main_Isosurface_1_in_3, main_Isosurface_1_in_4, main_Isosurface_1_in_5, main_Isosurface_1_in_6 ) [instance: 1, cache: 1]; // // node Color[1]: x = 154, y = 315, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "green" // main_Color_1_out_1 = Color( main_Isosurface_1_out_1, main_Color_1_in_2, main_Color_1_in_3, main_Color_1_in_4, main_Color_1_in_5 ) [instance: 1, cache: 1]; // // node Import[2]: x = 291, y = 73, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "fermi_dn.general" // main_Import_2_out_1 = Import( main_Import_2_in_1, main_Import_2_in_2, main_Import_2_in_3, main_Import_2_in_4, main_Import_2_in_5, main_Import_2_in_6 ) [instance: 2, cache: 1]; // // node Isosurface[2]: x = 290, y = 194, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // main_Isosurface_2_out_1 = Isosurface( main_Import_2_out_1, main_Isosurface_2_in_2, main_Isosurface_2_in_3, main_Isosurface_2_in_4, main_Isosurface_2_in_5, main_Isosurface_2_in_6 ) [instance: 2, cache: 1]; // // node Color[2]: x = 300, y = 313, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "yellow" // main_Color_2_out_1 = Color( main_Isosurface_2_out_1, main_Color_2_in_2, main_Color_2_in_3, main_Color_2_in_4, main_Color_2_in_5 ) [instance: 2, cache: 1]; // // node Collect[1]: x = 231, y = 399, inputs = 2, label = Collect // main_Collect_1_out_1 = Collect( main_Color_1_out_1, main_Color_2_out_1 ) [instance: 1, cache: 1]; // // node Image[2]: x = 283, y = 486, inputs = 49, label = Image // input[1]: defaulting = 0, visible = 0, type = 32, value = "Image_2" // input[4]: defaulting = 0, visible = 0, type = 1, value = 1 // input[5]: defaulting = 0, visible = 0, type = 8, value = [0.459851 0.459851 0.459851] // input[6]: defaulting = 0, visible = 0, type = 8, value = [5.36756 3.53923 7.97489] // input[7]: defaulting = 0, visible = 0, type = 5, value = 5.08525 // input[8]: defaulting = 0, visible = 0, type = 1, value = 640 // input[9]: defaulting = 0, visible = 0, type = 5, value = 0.75 // input[10]: defaulting = 0, visible = 0, type = 8, value = [-0.0834371 0.940039 -0.330704] // input[11]: defaulting = 1, visible = 0, type = 5, value = 30.0002 // input[12]: defaulting = 0, visible = 0, type = 1, value = 0 // input[14]: defaulting = 0, visible = 0, type = 1, value = 1 // input[15]: defaulting = 1, visible = 0, type = 32, value = "none" // input[16]: defaulting = 1, visible = 0, type = 32, value = "none" // input[17]: defaulting = 1, visible = 0, type = 1, value = 1 // input[18]: defaulting = 1, visible = 0, type = 1, value = 1 // input[19]: defaulting = 0, visible = 0, type = 1, value = 0 // input[29]: defaulting = 1, visible = 0, type = 3, value = 0 // input[41]: defaulting = 0, visible = 0, type = 32, value = "none" // depth: value = 24 // window: position = (0.0104,0.0600), size = 0.4542x0.5800, screen = 0 // internal caching: 1 // main_Image_2_out_1, main_Image_2_out_2, main_Image_2_out_3 = Image( main_Image_2_in_1, main_Collect_1_out_1, main_Image_2_in_3, main_Image_2_in_4, main_Image_2_in_5, main_Image_2_in_6, main_Image_2_in_7, main_Image_2_in_8, main_Image_2_in_9, main_Image_2_in_10, main_Image_2_in_11, main_Image_2_in_12, main_Image_2_in_13, main_Image_2_in_14, main_Image_2_in_15, main_Image_2_in_16, main_Image_2_in_17, main_Image_2_in_18, main_Image_2_in_19, main_Image_2_in_20, main_Image_2_in_21, main_Image_2_in_22, main_Image_2_in_23, main_Image_2_in_24, main_Image_2_in_25, main_Image_2_in_26, main_Image_2_in_27, main_Image_2_in_28, main_Image_2_in_29, main_Image_2_in_30, main_Image_2_in_31, main_Image_2_in_32, main_Image_2_in_33, main_Image_2_in_34, main_Image_2_in_35, main_Image_2_in_36, main_Image_2_in_37, main_Image_2_in_38, main_Image_2_in_39, main_Image_2_in_40, main_Image_2_in_41, main_Image_2_in_42, main_Image_2_in_43, main_Image_2_in_44, main_Image_2_in_45, main_Image_2_in_46, main_Image_2_in_47, main_Image_2_in_48, main_Image_2_in_49 ) [instance: 2, cache: 1]; // network: end of macro body CacheScene(main_Image_2_in_1, main_Image_2_out_1, main_Image_2_out_2); } main_Import_1_in_1 = "fermi_up.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_Isosurface_1_in_2 = 0.0; main_Isosurface_1_in_3 = NULL; main_Isosurface_1_in_4 = NULL; main_Isosurface_1_in_5 = NULL; main_Isosurface_1_in_6 = NULL; main_Isosurface_1_out_1 = NULL; main_Color_1_in_2 = "green"; main_Color_1_in_3 = NULL; main_Color_1_in_4 = NULL; main_Color_1_in_5 = NULL; main_Color_1_out_1 = NULL; main_Import_2_in_1 = "fermi_dn.general"; main_Import_2_in_2 = NULL; main_Import_2_in_3 = NULL; main_Import_2_in_4 = NULL; main_Import_2_in_5 = NULL; main_Import_2_in_6 = NULL; main_Import_2_out_1 = NULL; main_Isosurface_2_in_2 = 0.0; main_Isosurface_2_in_3 = NULL; main_Isosurface_2_in_4 = NULL; main_Isosurface_2_in_5 = NULL; main_Isosurface_2_in_6 = NULL; main_Isosurface_2_out_1 = NULL; main_Color_2_in_2 = "yellow"; main_Color_2_in_3 = NULL; main_Color_2_in_4 = NULL; main_Color_2_in_5 = NULL; main_Color_2_out_1 = NULL; main_Collect_1_out_1 = NULL; macro Image( id, object, where, useVector, to, from, width, resolution, aspect, up, viewAngle, perspective, options, buttonState = 1, buttonUpApprox = "none", buttonDownApprox = "none", buttonUpDensity = 1, buttonDownDensity = 1, renderMode = 0, defaultCamera, reset, backgroundColor, throttle, RECenable = 0, RECfile, RECformat, RECresolution, RECaspect, AAenable = 0, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, interactionMode, title, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels, webOptions) -> ( object, camera, where) { ImageMessage( id, backgroundColor, throttle, RECenable, RECfile, RECformat, RECresolution, RECaspect, AAenable, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels, interactionMode, title, renderMode, buttonUpApprox, buttonDownApprox, buttonUpDensity, buttonDownDensity) [instance: 1, cache: 1]; autoCamera = AutoCamera( object, "front", object, resolution, aspect, [0,1,0], perspective, viewAngle, backgroundColor) [instance: 1, cache: 1]; realCamera = Camera( to, from, width, resolution, aspect, up, perspective, viewAngle, backgroundColor) [instance: 1, cache: 1]; coloredDefaultCamera = UpdateCamera(defaultCamera, background=backgroundColor) [instance: 1, cache: 1]; nullDefaultCamera = Inquire(defaultCamera, "is null + 1") [instance: 1, cache: 1]; resetCamera = Switch( nullDefaultCamera, coloredDefaultCamera, autoCamera) [instance: 1, cache: 1]; resetNull = Inquire( reset, "is null + 1") [instance: 2, cache: 1]; reset = Switch( resetNull, reset, 0) [instance: 2, cache: 1]; whichCamera = Compute( "($0 != 0 || $1 == 0) ? 1 : 2", reset, useVector) [instance: 1, cache: 1]; camera = Switch( whichCamera, resetCamera, realCamera) [instance: 3, cache: 1]; AAobject = AutoAxes( object, camera, AAlabels, AAticks, AAcorners, AAframe, AAadjust, AAcursor, AAgrid, AAcolors, AAannotation, AAlabelscale, AAfont, AAxTickLocs, AAyTickLocs, AAzTickLocs, AAxTickLabels, AAyTickLabels, AAzTickLabels) [instance: 1, cache: 1]; switchAAenable = Compute("$0+1", AAenable) [instance: 2, cache: 1]; object = Switch( switchAAenable, object, AAobject) [instance:4, cache: 1]; SWapproximation_options = Switch( buttonState, buttonUpApprox, buttonDownApprox) [instance: 5, cache: 1]; SWdensity_options = Switch( buttonState, buttonUpDensity, buttonDownDensity) [instance: 6, cache: 1]; HWapproximation_options = Format( "%s,%s", buttonDownApprox, buttonUpApprox) [instance: 1, cache: 1]; HWdensity_options = Format( "%d,%d", buttonDownDensity, buttonUpDensity) [instance: 2, cache: 1]; switchRenderMode = Compute( "$0+1", renderMode) [instance: 3, cache: 1]; approximation_options = Switch( switchRenderMode, SWapproximation_options, HWapproximation_options) [instance: 7, cache: 1]; density_options = Switch( switchRenderMode, SWdensity_options, HWdensity_options) [instance: 8, cache: 1]; renderModeString = Switch( switchRenderMode, "software", "hardware")[instance: 9, cache: 1]; object_tag = Inquire( object, "object tag")[instance: 3, cache: 1]; annoted_object = Options( object, "send boxes", 0, "cache", 1, "object tag", object_tag, "ddcamera", whichCamera, "rendering approximation", approximation_options, "render every", density_options, "button state", buttonState, "rendering mode", renderModeString) [instance: 1, cache: 1]; RECresNull = Inquire( RECresolution, "is null + 1") [instance: 4, cache: 1]; ImageResolution = Inquire( camera, "camera resolution") [instance: 5, cache: 1]; RECresolution = Switch( RECresNull, RECresolution, ImageResolution) [instance: 10, cache: 1]; RECaspectNull = Inquire( RECaspect, "is null + 1") [instance: 6, cache: 1]; ImageAspect = Inquire( camera, "camera aspect") [instance: 7, cache: 1]; RECaspect = Switch( RECaspectNull, RECaspect, ImageAspect) [instance: 11, cache: 1]; switchRECenable = Compute( "$0 == 0 ? 1 : (($2 == $3) && ($4 == $5)) ? ($1 == 1 ? 2 : 3) : 4", RECenable, switchRenderMode, RECresolution, ImageResolution, RECaspect, ImageAspect) [instance: 4, cache: 1]; NoRECobject, RECNoRerenderObject, RECNoRerHW, RECRerenderObject = Route(switchRECenable, annoted_object); Display( NoRECobject, camera, where, throttle) [instance: 1, cache: 1]; image = Render( RECNoRerenderObject, camera) [instance: 1, cache: 1]; Display( image, NULL, where, throttle) [instance: 2, cache: 1]; WriteImage( image, RECfile, RECformat) [instance: 1, cache: 1]; rec_where = Display( RECNoRerHW, camera, where, throttle) [instance: 1, cache: 0]; rec_image = ReadImageWindow( rec_where) [instance: 1, cache: 1]; WriteImage( rec_image, RECfile, RECformat) [instance: 1, cache: 1]; RECupdateCamera = UpdateCamera( camera, resolution=RECresolution, aspect=RECaspect) [instance: 2, cache: 1]; Display( RECRerenderObject, camera, where, throttle) [instance: 1, cache: 1]; RECRerenderObject = ScaleScreen( RECRerenderObject, NULL, RECresolution, camera) [instance: 1, cache: 1]; image = Render( RECRerenderObject, RECupdateCamera) [instance: 2, cache: 1]; WriteImage( image, RECfile, RECformat) [instance: 2, cache: 1]; } main_Image_2_in_1 = "Image_2"; main_Image_2_in_3 = "X24,,"; main_Image_2_in_4 = 1; main_Image_2_in_5 = [0.459851 0.459851 0.459851]; main_Image_2_in_6 = [5.36756 3.53923 7.97489]; main_Image_2_in_7 = 5.08525; main_Image_2_in_8 = 640; main_Image_2_in_9 = 0.75; main_Image_2_in_10 = [-0.0834371 0.940039 -0.330704]; main_Image_2_in_11 = NULL; main_Image_2_in_12 = 0; main_Image_2_in_13 = NULL; main_Image_2_in_14 = 1; main_Image_2_in_15 = NULL; main_Image_2_in_16 = NULL; main_Image_2_in_17 = NULL; main_Image_2_in_18 = NULL; main_Image_2_in_19 = 0; main_Image_2_in_20 = NULL; main_Image_2_in_21 = NULL; main_Image_2_in_22 = NULL; main_Image_2_in_23 = NULL; main_Image_2_in_25 = NULL; main_Image_2_in_26 = NULL; main_Image_2_in_27 = NULL; main_Image_2_in_28 = NULL; main_Image_2_in_29 = NULL; main_Image_2_in_30 = NULL; main_Image_2_in_31 = NULL; main_Image_2_in_32 = NULL; main_Image_2_in_33 = NULL; main_Image_2_in_34 = NULL; main_Image_2_in_35 = NULL; main_Image_2_in_36 = NULL; main_Image_2_in_37 = NULL; main_Image_2_in_38 = NULL; main_Image_2_in_39 = NULL; main_Image_2_in_40 = NULL; main_Image_2_in_41 = "none"; main_Image_2_in_42 = NULL; main_Image_2_in_43 = NULL; main_Image_2_in_44 = NULL; main_Image_2_in_45 = NULL; main_Image_2_in_46 = NULL; main_Image_2_in_47 = NULL; main_Image_2_in_48 = NULL; main_Image_2_in_49 = NULL; Executive("product version 4 4 0"); $sync main(); elk-10.4.9/examples/Fermi-surface/Ni/PaxHeaders/fermi_dn.general0000644000000000000000000000013214762655565021461 xustar0030 mtime=1741380469.922016061 30 atime=1741380469.922016061 30 ctime=1741380469.922016061 elk-10.4.9/examples/Fermi-surface/Ni/fermi_dn.general0000644002504400250440000000030514762655565024201 0ustar00dewhurstdewhurst00000000000000file = ./FERMISURF_DN.OUT grid = 40 x 40 x 40 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 3-vector, scalar type = float, float end elk-10.4.9/examples/Fermi-surface/Ni/PaxHeaders/fermi_up.general0000644000000000000000000000013214762655565021504 xustar0030 mtime=1741380469.924016071 30 atime=1741380469.924016071 30 ctime=1741380469.924016071 elk-10.4.9/examples/Fermi-surface/Ni/fermi_up.general0000644002504400250440000000030514762655565024224 0ustar00dewhurstdewhurst00000000000000file = ./FERMISURF_UP.OUT grid = 40 x 40 x 40 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 3-vector, scalar type = float, float end elk-10.4.9/examples/Fermi-surface/PaxHeaders/Al0000644000000000000000000000013214762655565016250 xustar0030 mtime=1741380469.930016103 30 atime=1741380469.925016077 30 ctime=1741380469.930016103 elk-10.4.9/examples/Fermi-surface/Al/0000755002504400250440000000000014762655565021047 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Fermi-surface/Al/PaxHeaders/elk.in0000644000000000000000000000013214762655565017430 xustar0030 mtime=1741380469.927016087 30 atime=1741380469.926016082 30 ctime=1741380469.927016087 elk-10.4.9/examples/Fermi-surface/Al/elk.in0000644002504400250440000000062014762655565022150 0ustar00dewhurstdewhurst00000000000000 ! Fermi surface plot of aluminium. tasks 0 100 ! define box corners and grid size for 3D plot, first point is the origin plot3d 0.0 0.0 0.0 : vclp3d 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 40 40 40 : np3d avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.8267 sppath '../../../species/' atoms 1 'Al.in' 1 0.0 0.0 0.0 ngridk 6 6 6 elk-10.4.9/examples/Fermi-surface/Al/PaxHeaders/fermi.general0000644000000000000000000000013214762655565020766 xustar0030 mtime=1741380469.929016098 30 atime=1741380469.928016092 30 ctime=1741380469.929016098 elk-10.4.9/examples/Fermi-surface/Al/fermi.general0000644002504400250440000000030214762655565023503 0ustar00dewhurstdewhurst00000000000000file = ./FERMISURF.OUT grid = 40 x 40 x 40 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 3-vector, scalar type = float, float end elk-10.4.9/examples/Fermi-surface/Al/PaxHeaders/fermi.net0000644000000000000000000000013214762655565020137 xustar0030 mtime=1741380469.931016108 30 atime=1741380469.930016103 30 ctime=1741380469.931016108 elk-10.4.9/examples/Fermi-surface/Al/fermi.net0000644002504400250440000002203614762655565022664 0ustar00dewhurstdewhurst00000000000000// // time: Fri Jul 15 15:49:55 2011 // // version: 3.2.0 (format), 4.4.4 (DX) // // // MODULE main // workspace: width = 620, height = 667 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Camera[1]: x = 404, y = 490, inputs = 9, label = Camera // input[2]: defaulting = 0, visible = 1, type = 8, value = [1 1 1] // input[3]: defaulting = 0, visible = 1, type = 5, value = 6.0 // input[4]: defaulting = 0, visible = 1, type = 1, value = 800 // input[5]: defaulting = 0, visible = 1, type = 5, value = 0.65 // input[9]: defaulting = 0, visible = 1, type = 32, value = "white" // main_Camera_1_out_1 = Camera( main_Camera_1_in_1, main_Camera_1_in_2, main_Camera_1_in_3, main_Camera_1_in_4, main_Camera_1_in_5, main_Camera_1_in_6, main_Camera_1_in_7, main_Camera_1_in_8, main_Camera_1_in_9 ) [instance: 1, cache: 1]; // // node Caption[1]: x = 46, y = 444, inputs = 9, label = Caption // input[1]: defaulting = 0, visible = 1, type = 32, value = "Aluminium Fermi surface" // input[6]: defaulting = 0, visible = 0, type = 1, value = 25 // main_Caption_1_out_1 = Caption( main_Caption_1_in_1, main_Caption_1_in_2, main_Caption_1_in_3, main_Caption_1_in_4, main_Caption_1_in_5, main_Caption_1_in_6, main_Caption_1_in_7, main_Caption_1_in_8, main_Caption_1_in_9 ) [instance: 1, cache: 1]; // // node Color[6]: x = 141, y = 504, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "black" // main_Color_6_out_1 = Color( main_Caption_1_out_1, main_Color_6_in_2, main_Color_6_in_3, main_Color_6_in_4, main_Color_6_in_5 ) [instance: 6, cache: 1]; // // node Import[1]: x = 258, y = 10, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "fermi.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node Isosurface[3]: x = 57, y = 106, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // main_Isosurface_3_out_1 = Isosurface( main_Import_1_out_1, main_Isosurface_3_in_2, main_Isosurface_3_in_3, main_Isosurface_3_in_4, main_Isosurface_3_in_5, main_Isosurface_3_in_6 ) [instance: 3, cache: 1]; // // node Color[3]: x = 171, y = 194, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "yellow" // input[4]: defaulting = 0, visible = 0, type = 32, value = "front colors" // main_Color_3_out_1 = Color( main_Isosurface_3_out_1, main_Color_3_in_2, main_Color_3_in_3, main_Color_3_in_4, main_Color_3_in_5 ) [instance: 3, cache: 1]; // // node Color[4]: x = 50, y = 286, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "blue" // input[4]: defaulting = 0, visible = 0, type = 32, value = "back colors" // main_Color_4_out_1 = Color( main_Color_3_out_1, main_Color_4_in_2, main_Color_4_in_3, main_Color_4_in_4, main_Color_4_in_5 ) [instance: 4, cache: 1]; // // node Translate[2]: x = 166, y = 364, inputs = 2, label = Translate // input[2]: defaulting = 0, visible = 1, type = 8, value = [0 1.2 2.0] // main_Translate_2_out_1 = Translate( main_Color_4_out_1, main_Translate_2_in_2 ) [instance: 2, cache: 1]; // // node Refine[2]: x = 473, y = 83, inputs = 2, label = Refine // input[2]: defaulting = 0, visible = 1, type = 1, value = 1 // main_Refine_2_out_1 = Refine( main_Import_1_out_1, main_Refine_2_in_2 ) [instance: 2, cache: 1]; // // node MapToPlane[1]: x = 317, y = 129, inputs = 3, label = MapToPlane // input[2]: defaulting = 1, visible = 1, type = 8, value = [1,1,1] // input[3]: defaulting = 0, visible = 1, type = 8, value = [1,1,1] // main_MapToPlane_1_out_1 = MapToPlane( main_Refine_2_out_1, main_MapToPlane_1_in_2, main_MapToPlane_1_in_3 ) [instance: 1, cache: 1]; // // node Isosurface[2]: x = 508, y = 170, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // input[3]: defaulting = 1, visible = 1, type = 1, value = 10 // main_Isosurface_2_out_1 = Isosurface( main_MapToPlane_1_out_1, main_Isosurface_2_in_2, main_Isosurface_2_in_3, main_Isosurface_2_in_4, main_Isosurface_2_in_5, main_Isosurface_2_in_6 ) [instance: 2, cache: 1]; // // node Color[5]: x = 324, y = 241, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "black" // main_Color_5_out_1 = Color( main_Isosurface_2_out_1, main_Color_5_in_2, main_Color_5_in_3, main_Color_5_in_4, main_Color_5_in_5 ) [instance: 5, cache: 1]; // // node Ribbon[1]: x = 500, y = 264, inputs = 2, label = Ribbon // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.01 // main_Ribbon_1_out_1 = Ribbon( main_Color_5_out_1, main_Ribbon_1_in_2 ) [instance: 1, cache: 1]; // // node Shade[1]: x = 492, y = 358, inputs = 8, label = Shade // input[2]: defaulting = 0, visible = 1, type = 3, value = 0 // main_Shade_1_out_1 = Shade( main_Ribbon_1_out_1, main_Shade_1_in_2, main_Shade_1_in_3, main_Shade_1_in_4, main_Shade_1_in_5, main_Shade_1_in_6, main_Shade_1_in_7, main_Shade_1_in_8 ) [instance: 1, cache: 1]; // // node Translate[1]: x = 360, y = 360, inputs = 2, label = Translate // input[2]: defaulting = 0, visible = 1, type = 8, value = [2.0 1.2 0] // main_Translate_1_out_1 = Translate( main_Shade_1_out_1, main_Translate_1_in_2 ) [instance: 1, cache: 1]; // // node Collect[1]: x = 265, y = 458, inputs = 3, label = Collect // main_Collect_1_out_1 = Collect( main_Color_6_out_1, main_Translate_2_out_1, main_Translate_1_out_1 ) [instance: 1, cache: 1]; // // node Display[3]: x = 287, y = 605, inputs = 8, label = Display // depth: value = 24 // main_Display_3_out_1[cache: 2] = Display( main_Collect_1_out_1, main_Camera_1_out_1, main_Display_3_in_3, main_Display_3_in_4, main_Display_3_in_5, main_Display_3_in_6, main_Display_3_in_7, main_Display_3_in_8 ) [instance: 3, cache: 1]; // network: end of macro body } main_Camera_1_in_1 = NULL; main_Camera_1_in_2 = [1 1 1]; main_Camera_1_in_3 = 6.0; main_Camera_1_in_4 = 800; main_Camera_1_in_5 = 0.65; main_Camera_1_in_6 = NULL; main_Camera_1_in_7 = NULL; main_Camera_1_in_8 = NULL; main_Camera_1_in_9 = "white"; main_Camera_1_out_1 = NULL; main_Caption_1_in_1 = "Aluminium Fermi surface"; main_Caption_1_in_2 = NULL; main_Caption_1_in_3 = NULL; main_Caption_1_in_4 = NULL; main_Caption_1_in_5 = NULL; main_Caption_1_in_6 = 25; main_Caption_1_in_7 = NULL; main_Caption_1_in_8 = NULL; main_Caption_1_in_9 = NULL; main_Caption_1_out_1 = NULL; main_Color_6_in_2 = "black"; main_Color_6_in_3 = NULL; main_Color_6_in_4 = NULL; main_Color_6_in_5 = NULL; main_Color_6_out_1 = NULL; main_Import_1_in_1 = "fermi.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_Isosurface_3_in_2 = 0.0; main_Isosurface_3_in_3 = NULL; main_Isosurface_3_in_4 = NULL; main_Isosurface_3_in_5 = NULL; main_Isosurface_3_in_6 = NULL; main_Isosurface_3_out_1 = NULL; main_Color_3_in_2 = "yellow"; main_Color_3_in_3 = NULL; main_Color_3_in_4 = "front colors"; main_Color_3_in_5 = NULL; main_Color_3_out_1 = NULL; main_Color_4_in_2 = "blue"; main_Color_4_in_3 = NULL; main_Color_4_in_4 = "back colors"; main_Color_4_in_5 = NULL; main_Color_4_out_1 = NULL; main_Translate_2_in_2 = [0 1.2 2.0]; main_Translate_2_out_1 = NULL; main_Refine_2_in_2 = 1; main_Refine_2_out_1 = NULL; main_MapToPlane_1_in_2 = NULL; main_MapToPlane_1_in_3 = [1,1,1]; main_MapToPlane_1_out_1 = NULL; main_Isosurface_2_in_2 = 0.0; main_Isosurface_2_in_3 = NULL; main_Isosurface_2_in_4 = NULL; main_Isosurface_2_in_5 = NULL; main_Isosurface_2_in_6 = NULL; main_Isosurface_2_out_1 = NULL; main_Color_5_in_2 = "black"; main_Color_5_in_3 = NULL; main_Color_5_in_4 = NULL; main_Color_5_in_5 = NULL; main_Color_5_out_1 = NULL; main_Ribbon_1_in_2 = 0.01; main_Ribbon_1_out_1 = NULL; main_Shade_1_in_2 = 0; main_Shade_1_in_3 = NULL; main_Shade_1_in_4 = NULL; main_Shade_1_in_5 = NULL; main_Shade_1_in_6 = NULL; main_Shade_1_in_7 = NULL; main_Shade_1_in_8 = NULL; main_Shade_1_out_1 = NULL; main_Translate_1_in_2 = [2.0 1.2 0]; main_Translate_1_out_1 = NULL; main_Collect_1_out_1 = NULL; main_Display_3_in_3 = "X24,,"; main_Display_3_in_4 = NULL; main_Display_3_in_5 = NULL; main_Display_3_in_6 = NULL; main_Display_3_in_7 = NULL; main_Display_3_in_8 = NULL; Executive("product version 4 4 4"); $sync main(); elk-10.4.9/examples/Fermi-surface/PaxHeaders/Fe0000644000000000000000000000013214762655565016246 xustar0030 mtime=1741380469.933016119 30 atime=1741380469.932016113 30 ctime=1741380469.933016119 elk-10.4.9/examples/Fermi-surface/Fe/0000755002504400250440000000000014762655565021045 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Fermi-surface/Fe/PaxHeaders/elk.in0000644000000000000000000000013214762655565017426 xustar0030 mtime=1741380469.934016124 30 atime=1741380469.933016119 30 ctime=1741380469.934016124 elk-10.4.9/examples/Fermi-surface/Fe/elk.in0000644002504400250440000000146114762655565022152 0ustar00dewhurstdewhurst00000000000000 ! Fermi surface of ferromagnetic bcc iron. Use XCrysDen for visualisation. ! Run code and then use ! xcrysden --bxsf FERMISURF(_UP/_DN).bxsf ! to display the spin up and down Fermi surfaces. tasks 0 102 : this generates the XCrysDen Fermi Surface .bxsf file ! 3D Fermi surface box defined in terms of reciprocal lattice vectors plot3d 0.0 0.0 0.0 : origin (first corner) 1.0 0.0 0.0 : second corner, etc. 0.0 1.0 0.0 0.0 0.0 1.0 12 12 12 : number of points in each direction spinpol .true. bfieldc 0.0 0.0 0.01 ! fairly large number of empty states required for magnetic cases nempty 8 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 sppath '../../../species/' atoms 1 'Fe.in' 1 0.0 0.0 0.0 ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/Fermi-surface/PaxHeaders/MgB20000644000000000000000000000013014762655565016441 xustar0029 mtime=1741380469.93901615 30 atime=1741380469.934016124 29 ctime=1741380469.93901615 elk-10.4.9/examples/Fermi-surface/MgB2/0000755002504400250440000000000014762655565021242 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Fermi-surface/MgB2/PaxHeaders/elk.in0000644000000000000000000000013214762655565017623 xustar0030 mtime=1741380469.936016134 30 atime=1741380469.936016134 30 ctime=1741380469.936016134 elk-10.4.9/examples/Fermi-surface/MgB2/elk.in0000644002504400250440000000144414762655565022350 0ustar00dewhurstdewhurst00000000000000 ! Fermi surface of MgB2 plotted with OpenDX. In this example, the surfaces from ! different bands are separated in the 3D plot. tasks 0 101 ngridk 6 6 4 ! plot a 2x2x2 reciprocal space cell plot3d 0.0 0.0 0.0 2.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 2.0 24 24 16 avec 5.8316944 0.0 0.0 -2.9158472 5.050395498 0.0 0.0 0.0 6.65939438 sppath '../../../species/' atoms 2 : nspecies 'Mg.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'B.in' : spfname 2 : natoms; atposl below 0.3333333333 0.6666666667 0.5 0.6666666667 0.3333333333 0.5 elk-10.4.9/examples/Fermi-surface/MgB2/PaxHeaders/fermi.general0000644000000000000000000000013214762655565021161 xustar0030 mtime=1741380469.938016145 30 atime=1741380469.938016145 30 ctime=1741380469.938016145 elk-10.4.9/examples/Fermi-surface/MgB2/fermi.general0000644002504400250440000000035614762655565023707 0ustar00dewhurstdewhurst00000000000000file = FERMISURF.OUT grid = 24 x 24 x 16 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0, field1, field2 structure = 3-vector, scalar, scalar, scalar type = float, float, float, float end elk-10.4.9/examples/Fermi-surface/MgB2/PaxHeaders/fermi.net0000644000000000000000000000013114762655565020331 xustar0030 mtime=1741380469.940016155 29 atime=1741380469.93901615 30 ctime=1741380469.940016155 elk-10.4.9/examples/Fermi-surface/MgB2/fermi.net0000644002504400250440000001624214762655565023061 0ustar00dewhurstdewhurst00000000000000// // time: Mon Sep 3 18:12:53 2012 // // version: 3.2.0 (format), 4.4.4 (DX) // // // MODULE main // workspace: width = 527, height = 582 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[1]: x = 151, y = 24, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "fermi.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node Select[1]: x = 240, y = 119, inputs = 3, label = Select // input[2]: defaulting = 0, visible = 1, type = 1, value = 0 // main_Select_1_out_1 = Select( main_Import_1_out_1, main_Select_1_in_2, main_Select_1_in_3 ) [instance: 1, cache: 1]; // // node Isosurface[1]: x = 182, y = 209, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // main_Isosurface_1_out_1 = Isosurface( main_Select_1_out_1, main_Isosurface_1_in_2, main_Isosurface_1_in_3, main_Isosurface_1_in_4, main_Isosurface_1_in_5, main_Isosurface_1_in_6 ) [instance: 1, cache: 1]; // // node Color[1]: x = 199, y = 297, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "red" // main_Color_1_out_1 = Color( main_Isosurface_1_out_1, main_Color_1_in_2, main_Color_1_in_3, main_Color_1_in_4, main_Color_1_in_5 ) [instance: 1, cache: 1]; // // node Select[2]: x = 319, y = 120, inputs = 3, label = Select // input[2]: defaulting = 0, visible = 1, type = 1, value = 1 // main_Select_2_out_1 = Select( main_Import_1_out_1, main_Select_2_in_2, main_Select_2_in_3 ) [instance: 2, cache: 1]; // // node Isosurface[2]: x = 310, y = 211, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // main_Isosurface_2_out_1 = Isosurface( main_Select_2_out_1, main_Isosurface_2_in_2, main_Isosurface_2_in_3, main_Isosurface_2_in_4, main_Isosurface_2_in_5, main_Isosurface_2_in_6 ) [instance: 2, cache: 1]; // // node Color[2]: x = 316, y = 299, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "yellow" // main_Color_2_out_1 = Color( main_Isosurface_2_out_1, main_Color_2_in_2, main_Color_2_in_3, main_Color_2_in_4, main_Color_2_in_5 ) [instance: 2, cache: 1]; // // node Select[3]: x = 409, y = 122, inputs = 3, label = Select // input[2]: defaulting = 0, visible = 1, type = 1, value = 2 // main_Select_3_out_1 = Select( main_Import_1_out_1, main_Select_3_in_2, main_Select_3_in_3 ) [instance: 3, cache: 1]; // // node Isosurface[3]: x = 449, y = 213, inputs = 6, label = Isosurface // input[2]: defaulting = 0, visible = 1, type = 5, value = 0.0 // main_Isosurface_3_out_1 = Isosurface( main_Select_3_out_1, main_Isosurface_3_in_2, main_Isosurface_3_in_3, main_Isosurface_3_in_4, main_Isosurface_3_in_5, main_Isosurface_3_in_6 ) [instance: 3, cache: 1]; // // node Color[3]: x = 444, y = 300, inputs = 5, label = Color // input[2]: defaulting = 0, visible = 1, type = 32, value = "green" // main_Color_3_out_1 = Color( main_Isosurface_3_out_1, main_Color_3_in_2, main_Color_3_in_3, main_Color_3_in_4, main_Color_3_in_5 ) [instance: 3, cache: 1]; // // node Collect[1]: x = 299, y = 392, inputs = 3, label = Collect // main_Collect_1_out_1 = Collect( main_Color_1_out_1, main_Color_2_out_1, main_Color_3_out_1 ) [instance: 1, cache: 1]; // // node AutoCamera[2]: x = 422, y = 412, inputs = 9, label = AutoCamera // input[2]: defaulting = 0, visible = 1, type = 8, value = [1.0 -0.25 0.5] // input[3]: defaulting = 0, visible = 0, type = 5, value = 4.0 // input[4]: defaulting = 0, visible = 0, type = 1, value = 800 // input[6]: defaulting = 0, visible = 0, type = 8, value = [0 0 1] // main_AutoCamera_2_out_1 = AutoCamera( main_Collect_1_out_1, main_AutoCamera_2_in_2, main_AutoCamera_2_in_3, main_AutoCamera_2_in_4, main_AutoCamera_2_in_5, main_AutoCamera_2_in_6, main_AutoCamera_2_in_7, main_AutoCamera_2_in_8, main_AutoCamera_2_in_9 ) [instance: 2, cache: 1]; // // node Render[1]: x = 255, y = 507, inputs = 3, label = Render // main_Render_1_out_1 = Render( main_Collect_1_out_1, main_AutoCamera_2_out_1, main_Render_1_in_3 ) [instance: 1, cache: 1]; // // node Display[1]: x = 451, y = 520, inputs = 8, label = Display // depth: value = 24 // window: position = (0.0089,0.0231), size = 0.4240x0.5944, screen = 0 // main_Display_1_out_1[cache: 2] = Display( main_Render_1_out_1, main_Display_1_in_2, main_Display_1_in_3, main_Display_1_in_4, main_Display_1_in_5, main_Display_1_in_6, main_Display_1_in_7, main_Display_1_in_8 ) [instance: 1, cache: 1]; // network: end of macro body } main_Import_1_in_1 = "fermi.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_Select_1_in_2 = 0; main_Select_1_in_3 = NULL; main_Select_1_out_1 = NULL; main_Isosurface_1_in_2 = 0.0; main_Isosurface_1_in_3 = NULL; main_Isosurface_1_in_4 = NULL; main_Isosurface_1_in_5 = NULL; main_Isosurface_1_in_6 = NULL; main_Isosurface_1_out_1 = NULL; main_Color_1_in_2 = "red"; main_Color_1_in_3 = NULL; main_Color_1_in_4 = NULL; main_Color_1_in_5 = NULL; main_Color_1_out_1 = NULL; main_Select_2_in_2 = 1; main_Select_2_in_3 = NULL; main_Select_2_out_1 = NULL; main_Isosurface_2_in_2 = 0.0; main_Isosurface_2_in_3 = NULL; main_Isosurface_2_in_4 = NULL; main_Isosurface_2_in_5 = NULL; main_Isosurface_2_in_6 = NULL; main_Isosurface_2_out_1 = NULL; main_Color_2_in_2 = "yellow"; main_Color_2_in_3 = NULL; main_Color_2_in_4 = NULL; main_Color_2_in_5 = NULL; main_Color_2_out_1 = NULL; main_Select_3_in_2 = 2; main_Select_3_in_3 = NULL; main_Select_3_out_1 = NULL; main_Isosurface_3_in_2 = 0.0; main_Isosurface_3_in_3 = NULL; main_Isosurface_3_in_4 = NULL; main_Isosurface_3_in_5 = NULL; main_Isosurface_3_in_6 = NULL; main_Isosurface_3_out_1 = NULL; main_Color_3_in_2 = "green"; main_Color_3_in_3 = NULL; main_Color_3_in_4 = NULL; main_Color_3_in_5 = NULL; main_Color_3_out_1 = NULL; main_Collect_1_out_1 = NULL; main_AutoCamera_2_in_2 = [1.0 -0.25 0.5]; main_AutoCamera_2_in_3 = 4.0; main_AutoCamera_2_in_4 = 800; main_AutoCamera_2_in_5 = NULL; main_AutoCamera_2_in_6 = [0 0 1]; main_AutoCamera_2_in_7 = NULL; main_AutoCamera_2_in_8 = NULL; main_AutoCamera_2_in_9 = NULL; main_AutoCamera_2_out_1 = NULL; main_Render_1_in_3 = NULL; main_Render_1_out_1 = NULL; main_Display_1_in_2 = NULL; main_Display_1_in_3 = "X24,,"; main_Display_1_in_4 = NULL; main_Display_1_in_5 = NULL; main_Display_1_in_6 = NULL; main_Display_1_in_7 = NULL; main_Display_1_in_8 = NULL; Executive("product version 4 4 4"); $sync main(); elk-10.4.9/examples/PaxHeaders/OEP0000644000000000000000000000013114762655565013646 xustar0030 mtime=1741380469.944016176 29 atime=1741380469.94101616 30 ctime=1741380469.944016176 elk-10.4.9/examples/OEP/0000755002504400250440000000000014762655565016446 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/OEP/PaxHeaders/HEG0000644000000000000000000000013214762655565014252 xustar0030 mtime=1741380469.943016171 30 atime=1741380469.942016166 30 ctime=1741380469.943016171 elk-10.4.9/examples/OEP/HEG/0000755002504400250440000000000014762655565017051 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/OEP/HEG/PaxHeaders/elk.in0000644000000000000000000000013214762655565015432 xustar0030 mtime=1741380469.944016176 30 atime=1741380469.943016171 30 ctime=1741380469.944016176 elk-10.4.9/examples/OEP/HEG/elk.in0000644002504400250440000000070214762655565020153 0ustar00dewhurstdewhurst00000000000000 ! Optimised effetive potential (OEP) ground state of the homogenous electron ! gas. The Wigner radius (r_s) is written to INFO.OUT. Note that the exchange ! energy is only computed during the last iteration. tasks 0 xctype -1 chgexs 10.0 ! use the unit cell of aluminium avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.75 ! note that low density gases require denser k-point grids! ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/OEP/PaxHeaders/Si0000644000000000000000000000013214762655565014222 xustar0030 mtime=1741380469.946016186 30 atime=1741380469.944016176 30 ctime=1741380469.946016186 elk-10.4.9/examples/OEP/Si/0000755002504400250440000000000014762655565017021 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/OEP/Si/PaxHeaders/elk.in0000644000000000000000000000013214762655565015402 xustar0030 mtime=1741380469.946016186 30 atime=1741380469.946016186 30 ctime=1741380469.946016186 elk-10.4.9/examples/OEP/Si/elk.in0000644002504400250440000000250114762655565020122 0ustar00dewhurstdewhurst00000000000000 ! Optimised effective potential calculation of silicon. An iterative proceedure ! is used to find the optimised potential [Phys. Rev. Lett. 98, 196405 (2007)]. ! Note that the exact exchange energy is calculated only during the last ! self-consistent loop, which is the reason why the final total energy is ! different from those calculated in previous loops. tasks 0 20 ! exact exchange only (no correlation) xctype -1 ! large number of OEP iterations to converge the gap maxitoep 300 ! use adaptive linear mixing mixtype 1 ! set the maximum number of self-consistent loops maxscl 40 ! large number of empty states required nempty 30 ! enable conduction band local-orbitals in order to converge unoccupied states lorbcnd .true. avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 4 4 4 ! These are the vertices to be joined for the band structure plot plot1d 7 200 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-10.4.9/examples/PaxHeaders/TDDFT-time-evolution0000644000000000000000000000013214762655565017047 xustar0030 mtime=1741380469.967016296 30 atime=1741380469.947016192 30 ctime=1741380469.967016296 elk-10.4.9/examples/TDDFT-time-evolution/0000755002504400250440000000000014762655565021646 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-time-evolution/PaxHeaders/Si-ramp0000644000000000000000000000013214762655565020357 xustar0030 mtime=1741380469.953016223 30 atime=1741380469.949016202 30 ctime=1741380469.953016223 elk-10.4.9/examples/TDDFT-time-evolution/Si-ramp/0000755002504400250440000000000014762655565023156 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-time-evolution/Si-ramp/PaxHeaders/JTOT_TD.OUT0000644000000000000000000000013214762655565022174 xustar0030 mtime=1741380469.951016213 30 atime=1741380469.950016207 30 ctime=1741380469.951016213 elk-10.4.9/examples/TDDFT-time-evolution/Si-ramp/JTOT_TD.OUT0000644002504400250440000021645014762655565024726 0ustar00dewhurstdewhurst00000000000000 0.000000000 0.1967169445E-04 0.000000000 0.000000000 0.5000000000 0.5488511668E-04 0.3469446952E-17 0.000000000 1.000000000 0.4896786069E-04 0.000000000 0.000000000 1.500000000 -0.5199633430E-05 0.3469446952E-17 0.000000000 2.000000000 -0.1012963905E-03 0.000000000 0.000000000 2.500000000 -0.2218195602E-03 0.3469446952E-17 0.000000000 3.000000000 -0.3515228011E-03 0.3469446952E-17 0.000000000 3.500000000 -0.4853140292E-03 -0.3469446952E-17 0.000000000 4.000000000 -0.6224709314E-03 -0.3469446952E-17 0.000000000 4.500000000 -0.7610246421E-03 0.3469446952E-17 0.000000000 5.000000000 -0.9021721268E-03 0.000000000 0.000000000 5.500000000 -0.1052315175E-02 0.6938893904E-17 -0.6938893904E-17 6.000000000 -0.1213257436E-02 0.000000000 0.000000000 6.500000000 -0.1375171054E-02 -0.3469446952E-17 0.6938893904E-17 7.000000000 -0.1526384296E-02 0.3469446952E-17 0.000000000 7.500000000 -0.1666577424E-02 -0.3469446952E-17 0.000000000 8.000000000 -0.1803112510E-02 -0.3469446952E-17 0.000000000 8.500000000 -0.1937144043E-02 0.3469446952E-17 0.000000000 9.000000000 -0.2061297222E-02 -0.3469446952E-17 0.000000000 9.500000000 -0.2170859016E-02 0.3469446952E-17 -0.6938893904E-17 10.00000000 -0.2269775435E-02 0.3469446952E-17 -0.6938893904E-17 10.50000000 -0.2363375174E-02 0.000000000 0.000000000 11.00000000 -0.2450682346E-02 -0.3469446952E-17 0.000000000 11.50000000 -0.2527208244E-02 0.3469446952E-17 0.000000000 12.00000000 -0.2591930551E-02 0.3469446952E-17 0.000000000 12.50000000 -0.2647980259E-02 0.3469446952E-17 0.000000000 13.00000000 -0.2697481680E-02 0.3469446952E-17 0.000000000 13.50000000 -0.2738344846E-02 -0.3469446952E-17 0.000000000 14.00000000 -0.2766041413E-02 0.3469446952E-17 0.000000000 14.50000000 -0.2777271172E-02 0.000000000 0.000000000 15.00000000 -0.2771819802E-02 0.3469446952E-17 0.000000000 15.50000000 -0.2751492004E-02 0.000000000 0.000000000 16.00000000 -0.2717001803E-02 -0.3469446952E-17 0.000000000 16.50000000 -0.2665700832E-02 -0.3469446952E-17 0.000000000 17.00000000 -0.2593037543E-02 0.3469446952E-17 0.000000000 17.50000000 -0.2496909413E-02 -0.3469446952E-17 0.000000000 18.00000000 -0.2379896272E-02 0.3469446952E-17 -0.6938893904E-17 18.50000000 -0.2246465398E-02 -0.3469446952E-17 0.000000000 19.00000000 -0.2098337246E-02 0.3469446952E-17 -0.6938893904E-17 19.50000000 -0.1933527183E-02 0.000000000 0.000000000 20.00000000 -0.1749490249E-02 0.3469446952E-17 0.000000000 20.50000000 -0.1545678184E-02 0.3469446952E-17 -0.6938893904E-17 21.00000000 -0.1322723692E-02 -0.3469446952E-17 0.6938893904E-17 21.50000000 -0.1080729424E-02 0.3469446952E-17 0.000000000 22.00000000 -0.8196855129E-03 0.3469446952E-17 0.000000000 22.50000000 -0.5413002691E-03 -0.3469446952E-17 0.000000000 23.00000000 -0.2489356678E-03 -0.3469446952E-17 0.000000000 23.50000000 0.5492035276E-04 -0.3469446952E-17 0.000000000 24.00000000 0.3708210474E-03 0.3469446952E-17 0.000000000 24.50000000 0.7015199043E-03 0.3469446952E-17 0.000000000 25.00000000 0.1048755022E-02 0.6938893904E-17 -0.6938893904E-17 25.50000000 0.1411242872E-02 0.6938893904E-17 -0.6938893904E-17 26.00000000 0.1785978221E-02 -0.3469446952E-17 0.6938893904E-17 26.50000000 0.2171062908E-02 0.000000000 0.000000000 27.00000000 0.2566687095E-02 -0.3469446952E-17 0.000000000 27.50000000 0.2973490066E-02 -0.3469446952E-17 0.000000000 28.00000000 0.3391222298E-02 0.6938893904E-17 -0.6938893904E-17 28.50000000 0.3819416825E-02 0.3469446952E-17 -0.6938893904E-17 29.00000000 0.4258291715E-02 0.000000000 0.000000000 29.50000000 0.4707854432E-02 0.6938893904E-17 -0.6938893904E-17 30.00000000 0.5166954274E-02 -0.3469446952E-17 0.000000000 30.50000000 0.5634103585E-02 0.3469446952E-17 -0.6938893904E-17 31.00000000 0.6108805781E-02 0.6938893904E-17 0.1387778781E-16 31.50000000 0.6591105818E-02 0.000000000 0.000000000 32.00000000 0.7080465451E-02 0.3469446952E-17 0.000000000 32.50000000 0.7575870871E-02 -0.3469446952E-17 0.6938893904E-17 33.00000000 0.8076600564E-02 0.6938893904E-17 0.1387778781E-16 33.50000000 0.8581783483E-02 0.000000000 0.000000000 34.00000000 0.9089730484E-02 0.000000000 0.000000000 34.50000000 0.9598967494E-02 0.000000000 0.000000000 35.00000000 0.1010975393E-01 0.3469446952E-17 0.000000000 35.50000000 0.1062325238E-01 0.6938893904E-17 0.1387778781E-16 36.00000000 0.1113913126E-01 0.000000000 0.000000000 36.50000000 0.1165536367E-01 0.1387778781E-16 0.6938893904E-17 37.00000000 0.1217042192E-01 0.6938893904E-17 0.6938893904E-17 37.50000000 0.1268459759E-01 0.000000000 0.000000000 38.00000000 0.1319865620E-01 0.6938893904E-17 0.1387778781E-16 38.50000000 0.1371220771E-01 0.000000000 0.000000000 39.00000000 0.1422432140E-01 0.000000000 0.000000000 39.50000000 0.1473499842E-01 0.000000000 0.000000000 40.00000000 0.1524493772E-01 0.6938893904E-17 0.6938893904E-17 40.50000000 0.1575411649E-01 0.3469446952E-17 0.000000000 41.00000000 0.1626143047E-01 0.6938893904E-17 0.1387778781E-16 41.50000000 0.1676569114E-01 0.3469446952E-17 0.000000000 42.00000000 0.1726635148E-01 0.000000000 0.000000000 42.50000000 0.1776355785E-01 0.6938893904E-17 0.1387778781E-16 43.00000000 0.1825836730E-01 0.000000000 0.000000000 43.50000000 0.1875263901E-01 0.000000000 0.000000000 44.00000000 0.1924736726E-01 0.1040834086E-16 0.6938893904E-17 44.50000000 0.1974099580E-01 0.000000000 0.000000000 45.00000000 0.2023085299E-01 0.000000000 0.000000000 45.50000000 0.2071645267E-01 -0.3469446952E-17 0.6938893904E-17 46.00000000 0.2120002711E-01 0.000000000 0.000000000 46.50000000 0.2168326516E-01 0.6938893904E-17 0.1387778781E-16 47.00000000 0.2216523797E-01 0.1040834086E-16 0.6938893904E-17 47.50000000 0.2264450127E-01 0.1040834086E-16 0.6938893904E-17 48.00000000 0.2312164076E-01 0.000000000 0.000000000 48.50000000 0.2359828977E-01 0.1387778781E-16 0.6938893904E-17 49.00000000 0.2407489833E-01 0.6938893904E-17 0.6938893904E-17 49.50000000 0.2455108643E-01 0.1387778781E-16 0.6938893904E-17 50.00000000 0.2502746481E-01 0.1387778781E-16 0.6938893904E-17 50.50000000 0.2550526101E-01 0.6938893904E-17 0.1387778781E-16 51.00000000 0.2598465494E-01 -0.3469446952E-17 0.6938893904E-17 51.50000000 0.2646501418E-01 0.000000000 0.000000000 52.00000000 0.2694669373E-01 0.3469446952E-17 0.000000000 52.50000000 0.2743119843E-01 0.000000000 0.000000000 53.00000000 0.2791957864E-01 0.6938893904E-17 0.6938893904E-17 53.50000000 0.2841182255E-01 0.6938893904E-17 0.6938893904E-17 54.00000000 0.2890775507E-01 0.6938893904E-17 0.6938893904E-17 54.50000000 0.2940780521E-01 0.6938893904E-17 0.1387778781E-16 55.00000000 0.2991260025E-01 0.6938893904E-17 0.6938893904E-17 55.50000000 0.3042238548E-01 0.000000000 0.000000000 56.00000000 0.3093700475E-01 0.3469446952E-17 0.000000000 56.50000000 0.3145624074E-01 0.6938893904E-17 0.1387778781E-16 57.00000000 0.3198043756E-01 0.000000000 0.000000000 57.50000000 0.3251098006E-01 0.6938893904E-17 0.1387778781E-16 58.00000000 0.3304954354E-01 0.3469446952E-17 0.000000000 58.50000000 0.3359634034E-01 0.3469446952E-17 0.000000000 59.00000000 0.3414991518E-01 0.6938893904E-17 0.1387778781E-16 59.50000000 0.3470921913E-01 0.6938893904E-17 0.1387778781E-16 60.00000000 0.3527522746E-01 0.6938893904E-17 0.1387778781E-16 60.50000000 0.3584983234E-01 -0.3469446952E-17 0.6938893904E-17 61.00000000 0.3643382950E-01 0.3469446952E-17 0.000000000 61.50000000 0.3702684386E-01 0.1040834086E-16 0.6938893904E-17 62.00000000 0.3762872583E-01 0.1387778781E-16 0.6938893904E-17 62.50000000 0.3823975601E-01 0.1040834086E-16 0.6938893904E-17 63.00000000 0.3885972196E-01 0.1387778781E-16 0.6938893904E-17 63.50000000 0.3948779882E-01 0.000000000 0.000000000 64.00000000 0.4012358389E-01 0.6938893904E-17 0.1387778781E-16 64.50000000 0.4076761906E-01 0.000000000 0.000000000 65.00000000 0.4142072378E-01 0.3469446952E-17 0.1387778781E-16 65.50000000 0.4208314739E-01 0.6938893904E-17 0.1387778781E-16 66.00000000 0.4275456862E-01 0.3469446952E-17 0.1387778781E-16 66.50000000 0.4343461377E-01 0.000000000 0.000000000 67.00000000 0.4412311350E-01 0.1040834086E-16 0.6938893904E-17 67.50000000 0.4482005035E-01 0.000000000 0.000000000 68.00000000 0.4552537867E-01 0.6938893904E-17 0.6938893904E-17 68.50000000 0.4623896971E-01 0.000000000 0.000000000 69.00000000 0.4696070325E-01 0.000000000 0.000000000 69.50000000 0.4769074276E-01 -0.6938893904E-17 0.6938893904E-17 70.00000000 0.4842960220E-01 -0.6938893904E-17 0.6938893904E-17 70.50000000 0.4917757638E-01 -0.6938893904E-17 0.6938893904E-17 71.00000000 0.4993392237E-01 0.000000000 0.000000000 71.50000000 0.5069711087E-01 0.000000000 0.000000000 72.00000000 0.5146620022E-01 0.000000000 0.000000000 72.50000000 0.5224170029E-01 0.000000000 0.000000000 73.00000000 0.5302444820E-01 0.000000000 0.000000000 73.50000000 0.5381432140E-01 0.000000000 0.000000000 74.00000000 0.5461074947E-01 0.000000000 0.000000000 74.50000000 0.5541400924E-01 0.000000000 0.000000000 75.00000000 0.5622452949E-01 0.000000000 0.000000000 75.50000000 0.5704153438E-01 0.000000000 0.000000000 76.00000000 0.5786348444E-01 0.000000000 0.000000000 76.50000000 0.5869021473E-01 0.000000000 0.000000000 77.00000000 0.5952324942E-01 0.000000000 0.000000000 77.50000000 0.6036351827E-01 0.000000000 0.000000000 78.00000000 0.6121007707E-01 -0.6938893904E-17 0.6938893904E-17 78.50000000 0.6206157102E-01 0.000000000 0.000000000 79.00000000 0.6291802274E-01 0.000000000 0.000000000 79.50000000 0.6378054737E-01 0.000000000 0.000000000 80.00000000 0.6464969874E-01 -0.6938893904E-17 0.6938893904E-17 80.50000000 0.6552513998E-01 0.6938893904E-17 -0.6938893904E-17 81.00000000 0.6640626947E-01 0.000000000 0.000000000 81.50000000 0.6729288598E-01 0.000000000 0.000000000 82.00000000 0.6818518646E-01 -0.6938893904E-17 0.6938893904E-17 82.50000000 0.6908323199E-01 0.000000000 0.000000000 83.00000000 0.6998657401E-01 0.000000000 0.000000000 83.50000000 0.7089452556E-01 0.6938893904E-17 -0.6938893904E-17 84.00000000 0.7180733968E-01 0.000000000 0.000000000 84.50000000 0.7272672139E-01 0.000000000 0.000000000 85.00000000 0.7365429760E-01 0.000000000 0.000000000 85.50000000 0.7458955385E-01 0.000000000 0.000000000 86.00000000 0.7553011111E-01 0.000000000 0.000000000 86.50000000 0.7647425622E-01 -0.6938893904E-17 0.6938893904E-17 87.00000000 0.7742258447E-01 0.000000000 0.000000000 87.50000000 0.7837680307E-01 -0.6938893904E-17 0.6938893904E-17 88.00000000 0.7933740450E-01 -0.6938893904E-17 0.6938893904E-17 88.50000000 0.8030343067E-01 -0.6938893904E-17 0.6938893904E-17 89.00000000 0.8127413863E-01 0.000000000 0.000000000 89.50000000 0.8224996211E-01 -0.6938893904E-17 0.6938893904E-17 90.00000000 0.8323168073E-01 0.000000000 0.000000000 90.50000000 0.8421917665E-01 0.000000000 0.000000000 91.00000000 0.8521145333E-01 0.000000000 0.000000000 91.50000000 0.8620754311E-01 0.000000000 0.000000000 92.00000000 0.8720712801E-01 0.000000000 0.000000000 92.50000000 0.8821059568E-01 0.6938893904E-17 -0.6938893904E-17 93.00000000 0.8921869680E-01 -0.6938893904E-17 0.6938893904E-17 93.50000000 0.9023172812E-01 0.000000000 0.000000000 94.00000000 0.9124882169E-01 0.6938893904E-17 -0.6938893904E-17 94.50000000 0.9226861937E-01 0.000000000 0.000000000 95.00000000 0.9329089521E-01 -0.6938893904E-17 0.6938893904E-17 95.50000000 0.9431661721E-01 0.6938893904E-17 -0.6938893904E-17 96.00000000 0.9534647992E-01 0.000000000 0.000000000 96.50000000 0.9637992686E-01 0.6938893904E-17 -0.6938893904E-17 97.00000000 0.9741634524E-01 -0.6938893904E-17 0.6938893904E-17 97.50000000 0.9845601757E-01 0.000000000 0.000000000 98.00000000 0.9949948557E-01 0.000000000 0.000000000 98.50000000 0.1005466518 0.6938893904E-17 -0.6938893904E-17 99.00000000 0.1015973046 0.6938893904E-17 -0.6938893904E-17 99.50000000 0.1026518012 0.000000000 0.000000000 100.0000000 0.1037108102 0.000000000 0.000000000 100.5000000 0.1047746570 -0.6938893904E-17 0.6938893904E-17 101.0000000 0.1058434283 0.000000000 0.000000000 101.5000000 0.1069172156 0.6938893904E-17 -0.6938893904E-17 102.0000000 0.1079960680 0.000000000 0.000000000 102.5000000 0.1090802337 0.000000000 0.000000000 103.0000000 0.1101701997 0.000000000 0.000000000 103.5000000 0.1112664481 0.000000000 0.000000000 104.0000000 0.1123691158 0.000000000 0.000000000 104.5000000 0.1134784528 0.000000000 0.000000000 105.0000000 0.1145952308 0.000000000 0.000000000 105.5000000 0.1157202492 0.000000000 0.000000000 106.0000000 0.1168534694 0.000000000 0.000000000 106.5000000 0.1179942691 0.000000000 0.000000000 107.0000000 0.1191424392 0.000000000 0.000000000 107.5000000 0.1202983743 0.000000000 0.000000000 108.0000000 0.1214625838 0.000000000 0.000000000 108.5000000 0.1226353491 0.000000000 0.000000000 109.0000000 0.1238168666 0.000000000 0.000000000 109.5000000 0.1250073261 0.000000000 0.000000000 110.0000000 0.1262068488 0.000000000 0.000000000 110.5000000 0.1274156642 0.000000000 0.000000000 111.0000000 0.1286343229 0.6938893904E-17 -0.6938893904E-17 111.5000000 0.1298635284 0.6938893904E-17 -0.6938893904E-17 112.0000000 0.1311036612 0.000000000 0.000000000 112.5000000 0.1323546461 -0.6938893904E-17 0.6938893904E-17 113.0000000 0.1336163192 0.000000000 0.000000000 113.5000000 0.1348889559 0.000000000 0.000000000 114.0000000 0.1361732373 0.000000000 0.000000000 114.5000000 0.1374695460 0.6938893904E-17 -0.6938893904E-17 115.0000000 0.1387776807 0.000000000 0.000000000 115.5000000 0.1400973572 -0.6938893904E-17 0.6938893904E-17 116.0000000 0.1414290253 -0.6938893904E-17 0.6938893904E-17 116.5000000 0.1427734216 -0.6938893904E-17 0.6938893904E-17 117.0000000 0.1441306467 -0.6938893904E-17 0.6938893904E-17 117.5000000 0.1455001669 0.000000000 0.000000000 118.0000000 0.1468817903 0.000000000 0.000000000 118.5000000 0.1482758963 0.000000000 0.000000000 119.0000000 0.1496825197 0.000000000 0.000000000 119.5000000 0.1511010214 0.000000000 0.000000000 120.0000000 0.1525310191 0.000000000 0.000000000 120.5000000 0.1539728277 0.6938893904E-17 -0.6938893904E-17 121.0000000 0.1554267571 0.6938893904E-17 -0.6938893904E-17 121.5000000 0.1568923099 0.000000000 0.000000000 122.0000000 0.1583685047 0.6938893904E-17 -0.6938893904E-17 122.5000000 0.1598546098 0.6938893904E-17 -0.6938893904E-17 123.0000000 0.1613504013 0.000000000 0.000000000 123.5000000 0.1628559715 0.000000000 0.000000000 124.0000000 0.1643714113 0.000000000 0.000000000 124.5000000 0.1658963620 0.6938893904E-17 -0.6938893904E-17 125.0000000 0.1674300911 0.000000000 0.000000000 125.5000000 0.1689722715 0.000000000 0.000000000 126.0000000 0.1705233436 0.000000000 0.000000000 126.5000000 0.1720833543 0.000000000 0.000000000 127.0000000 0.1736511338 0.6938893904E-17 -0.6938893904E-17 127.5000000 0.1752253172 0.6938893904E-17 -0.6938893904E-17 128.0000000 0.1768060917 -0.6938893904E-17 0.3469446952E-17 128.5000000 0.1783946781 0.000000000 0.3469446952E-17 129.0000000 0.1799911487 0.000000000 -0.3469446952E-17 129.5000000 0.1815940602 0.000000000 0.000000000 130.0000000 0.1832024333 0.000000000 0.000000000 130.5000000 0.1848169844 0.000000000 0.000000000 131.0000000 0.1864385886 0.6938893904E-17 -0.6938893904E-17 131.5000000 0.1880667735 0.000000000 0.000000000 132.0000000 0.1897003791 0.000000000 0.000000000 132.5000000 0.1913392393 -0.6938893904E-17 0.6938893904E-17 133.0000000 0.1929842419 0.000000000 -0.3469446952E-17 133.5000000 0.1946360392 0.000000000 0.3469446952E-17 134.0000000 0.1962945825 0.6938893904E-17 -0.6938893904E-17 134.5000000 0.1979596022 0.000000000 -0.3469446952E-17 135.0000000 0.1996310488 0.000000000 0.000000000 135.5000000 0.2013092176 0.000000000 0.000000000 136.0000000 0.2029945196 0.000000000 0.000000000 136.5000000 0.2046872458 -0.6938893904E-17 0.6938893904E-17 137.0000000 0.2063872789 0.000000000 0.000000000 137.5000000 0.2080945325 0.6938893904E-17 -0.6938893904E-17 138.0000000 0.2098094628 0.6938893904E-17 -0.3469446952E-17 138.5000000 0.2115331447 -0.6938893904E-17 0.3469446952E-17 139.0000000 0.2132664298 0.000000000 0.3469446952E-17 139.5000000 0.2150094487 -0.6938893904E-17 0.6938893904E-17 140.0000000 0.2167620041 0.000000000 0.3469446952E-17 140.5000000 0.2185244986 0.6938893904E-17 -0.3469446952E-17 141.0000000 0.2202977122 0.000000000 0.000000000 141.5000000 0.2220818665 0.000000000 0.3469446952E-17 142.0000000 0.2238763219 0.000000000 0.3469446952E-17 142.5000000 0.2256807402 0.000000000 0.000000000 143.0000000 0.2274961028 0.000000000 0.000000000 143.5000000 0.2293236720 0.000000000 -0.3469446952E-17 144.0000000 0.2311636422 0.000000000 -0.3469446952E-17 144.5000000 0.2330154573 0.6938893904E-17 -0.3469446952E-17 145.0000000 0.2348791336 0.000000000 -0.3469446952E-17 145.5000000 0.2367551100 -0.6938893904E-17 0.3469446952E-17 146.0000000 0.2386432328 0.000000000 0.3469446952E-17 146.5000000 0.2405429133 0.6938893904E-17 -0.3469446952E-17 147.0000000 0.2424543800 -0.6938893904E-17 0.6938893904E-17 147.5000000 0.2443784188 0.000000000 0.3469446952E-17 148.0000000 0.2463151397 0.000000000 0.3469446952E-17 148.5000000 0.2482639135 0.000000000 -0.3469446952E-17 149.0000000 0.2502246858 0.000000000 -0.3469446952E-17 149.5000000 0.2521981205 0.000000000 0.3469446952E-17 150.0000000 0.2541843724 0.6938893904E-17 -0.6938893904E-17 150.5000000 0.2561826632 -0.6938893904E-17 0.3469446952E-17 151.0000000 0.2581923037 0.000000000 -0.3469446952E-17 151.5000000 0.2602133073 0.6938893904E-17 -0.3469446952E-17 152.0000000 0.2622457406 0.000000000 -0.3469446952E-17 152.5000000 0.2642893419 0.000000000 0.3469446952E-17 153.0000000 0.2663436402 0.000000000 0.3469446952E-17 153.5000000 0.2684079881 -0.6938893904E-17 0.3469446952E-17 154.0000000 0.2704820478 0.000000000 0.000000000 154.5000000 0.2725665294 0.000000000 0.3469446952E-17 155.0000000 0.2746627490 0.000000000 -0.3469446952E-17 155.5000000 0.2767707109 0.6938893904E-17 -0.3469446952E-17 156.0000000 0.2788885665 0.000000000 -0.3469446952E-17 156.5000000 0.2810145836 0.000000000 0.3469446952E-17 157.0000000 0.2831490778 0.000000000 -0.3469446952E-17 157.5000000 0.2852936995 0.000000000 0.3469446952E-17 158.0000000 0.2874495114 0.000000000 -0.3469446952E-17 158.5000000 0.2896164018 0.000000000 0.3469446952E-17 159.0000000 0.2917938667 0.000000000 -0.3469446952E-17 159.5000000 0.2939819472 -0.6938893904E-17 0.3469446952E-17 160.0000000 0.2961814341 0.000000000 -0.3469446952E-17 160.5000000 0.2983932391 0.6938893904E-17 -0.6938893904E-17 161.0000000 0.3006174945 0.000000000 0.3469446952E-17 161.5000000 0.3028537787 0.000000000 0.3469446952E-17 162.0000000 0.3051022624 -0.6938893904E-17 0.3469446952E-17 162.5000000 0.3073643239 0.000000000 -0.3469446952E-17 163.0000000 0.3096411918 0.6938893904E-17 -0.3469446952E-17 163.5000000 0.3119328083 0.000000000 0.3469446952E-17 164.0000000 0.3142385646 0.000000000 -0.3469446952E-17 164.5000000 0.3165588416 0.000000000 -0.3469446952E-17 165.0000000 0.3188952387 0.000000000 -0.3469446952E-17 165.5000000 0.3212492858 0.000000000 -0.3469446952E-17 166.0000000 0.3236213246 0.000000000 -0.3469446952E-17 166.5000000 0.3260109669 0.000000000 -0.3469446952E-17 167.0000000 0.3284182940 0.000000000 -0.3469446952E-17 167.5000000 0.3308440703 0.000000000 0.000000000 168.0000000 0.3332888333 0.1387778781E-16 0.3469446952E-17 168.5000000 0.3357526462 0.1387778781E-16 0.6938893904E-17 169.0000000 0.3382360444 0.000000000 0.3469446952E-17 169.5000000 0.3407401206 0.000000000 -0.3469446952E-17 170.0000000 0.3432651519 0.1387778781E-16 0.6938893904E-17 170.5000000 0.3458101623 0.1387778781E-16 0.6938893904E-17 171.0000000 0.3483745552 0.1387778781E-16 0.5204170428E-17 171.5000000 0.3509592346 0.000000000 -0.3469446952E-17 172.0000000 0.3535653732 0.1387778781E-16 0.3469446952E-17 172.5000000 0.3561931067 0.000000000 0.1734723476E-17 173.0000000 0.3588421382 0.000000000 0.000000000 173.5000000 0.3615127709 0.1387778781E-16 0.6938893904E-17 174.0000000 0.3642055043 0.1387778781E-16 0.6938893904E-17 174.5000000 0.3669203535 0.1387778781E-16 0.1040834086E-16 175.0000000 0.3696571143 0.000000000 0.3469446952E-17 175.5000000 0.3724161206 0.1387778781E-16 0.3469446952E-17 176.0000000 0.3751982586 0.000000000 0.000000000 176.5000000 0.3780042805 0.1387778781E-16 0.8673617380E-17 177.0000000 0.3808341770 0.1387778781E-16 0.3469446952E-17 177.5000000 0.3836871302 0.000000000 0.3469446952E-17 178.0000000 0.3865626156 0.000000000 0.000000000 178.5000000 0.3894613399 0.000000000 0.3469446952E-17 179.0000000 0.3923842662 0.1387778781E-16 0.3469446952E-17 179.5000000 0.3953310179 0.000000000 0.3469446952E-17 180.0000000 0.3983003731 0.1387778781E-16 0.5204170428E-17 180.5000000 0.4012921445 0.000000000 -0.3469446952E-17 181.0000000 0.4043068972 0.000000000 -0.1734723476E-17 181.5000000 0.4073441475 0.000000000 0.1040834086E-16 182.0000000 0.4104024151 0.000000000 0.000000000 182.5000000 0.4134812422 0.1387778781E-16 0.1040834086E-16 183.0000000 0.4165814151 0.1387778781E-16 0.5204170428E-17 183.5000000 0.4197033918 0.000000000 -0.1734723476E-17 184.0000000 0.4228467246 0.000000000 0.000000000 184.5000000 0.4260107142 0.000000000 -0.1734723476E-17 185.0000000 0.4291944763 0.000000000 -0.1734723476E-17 185.5000000 0.4323968784 0.1387778781E-16 0.6938893904E-17 186.0000000 0.4356172669 0.000000000 0.1040834086E-16 186.5000000 0.4388558891 0.000000000 0.000000000 187.0000000 0.4421127769 0.000000000 -0.1734723476E-17 187.5000000 0.4453866497 0.1387778781E-16 0.5204170428E-17 188.0000000 0.4486761144 0.1387778781E-16 -0.3469446952E-17 188.5000000 0.4519809663 0.000000000 -0.1734723476E-17 189.0000000 0.4553018587 0.1387778781E-16 0.4336808690E-17 189.5000000 0.4586385844 0.1387778781E-16 0.7806255642E-17 190.0000000 0.4619899403 0.000000000 -0.2602085214E-17 190.5000000 0.4653551285 0.1387778781E-16 0.7806255642E-17 191.0000000 0.4687344288 0.1387778781E-16 0.7806255642E-17 191.5000000 0.4721280909 0.1387778781E-16 0.6938893904E-17 192.0000000 0.4755353393 0.1387778781E-16 0.9540979118E-17 192.5000000 0.4789549893 0.000000000 -0.8673617380E-18 193.0000000 0.4823868070 0.1387778781E-16 0.4336808690E-17 193.5000000 0.4858316507 0.1387778781E-16 0.6071532166E-17 194.0000000 0.4892901652 0.000000000 0.3469446952E-17 194.5000000 0.4927618023 0.1387778781E-16 0.7806255642E-17 195.0000000 0.4962454721 0.000000000 0.8673617380E-18 195.5000000 0.4997408204 0.000000000 0.000000000 196.0000000 0.5032482451 0.1387778781E-16 0.6071532166E-17 196.5000000 0.5067679958 0.1387778781E-16 0.9540979118E-17 197.0000000 0.5102999032 0.1387778781E-16 0.9540979118E-17 197.5000000 0.5138443333 0.1387778781E-16 0.7806255642E-17 198.0000000 0.5174020523 0.1387778781E-16 0.6071532166E-17 198.5000000 0.5209732662 0.1387778781E-16 0.8673617380E-17 199.0000000 0.5245574253 0.000000000 -0.2602085214E-17 199.5000000 0.5281546206 0.1387778781E-16 0.3469446952E-17 200.0000000 0.5317657571 0.1387778781E-16 0.1127570259E-16 200.5000000 0.5353912652 0.1387778781E-16 0.6938893904E-17 201.0000000 0.5390308086 0.000000000 0.1734723476E-17 201.5000000 0.5426845477 0.1387778781E-16 0.1040834086E-16 202.0000000 0.5463535568 0.000000000 0.2168404345E-17 202.5000000 0.5500383769 0.1387778781E-16 0.8239936511E-17 203.0000000 0.5537384980 0.000000000 0.4336808690E-18 203.5000000 0.5574538095 0.1387778781E-16 0.6505213035E-17 204.0000000 0.5611852142 0.000000000 0.2602085214E-17 204.5000000 0.5649333173 0.1387778781E-16 0.3035766083E-17 205.0000000 0.5686976564 0.1387778781E-16 0.8239936511E-17 205.5000000 0.5724778672 0.000000000 -0.1301042607E-17 206.0000000 0.5762746737 0.1387778781E-16 0.1084202172E-16 206.5000000 0.5800890727 0.1387778781E-16 0.7806255642E-17 207.0000000 0.5839214406 0.1387778781E-16 0.8673617380E-17 207.5000000 0.5877716420 0.1387778781E-16 0.6505213035E-17 208.0000000 0.5916397217 0.1387778781E-16 0.6938893904E-17 208.5000000 0.5955262011 0.1387778781E-16 0.6071532166E-17 209.0000000 0.5994319270 0.1387778781E-16 0.1734723476E-17 209.5000000 0.6033577127 0.1387778781E-16 0.1019150042E-16 210.0000000 0.6073040426 0.1387778781E-16 0.1951563910E-17 210.5000000 0.6112710270 0.000000000 -0.4336808690E-18 211.0000000 0.6152587021 0.1387778781E-16 0.2818925648E-17 211.5000000 0.6192676556 0.1387778781E-16 0.5637851297E-17 212.0000000 0.6232992042 0.1387778781E-16 0.9540979118E-17 212.5000000 0.6273544969 0.1387778781E-16 0.9974659987E-17 213.0000000 0.6314337643 0.1387778781E-16 0.1149254303E-16 213.5000000 0.6355369901 0.1387778781E-16 0.6288372600E-17 214.0000000 0.6396650384 0.1387778781E-16 0.7264154556E-17 214.5000000 0.6438187510 0.000000000 0.7589415207E-18 215.0000000 0.6479981865 0.1387778781E-16 0.6830473687E-17 215.5000000 0.6522035576 0.1387778781E-16 0.4336808690E-17 216.0000000 0.6564356750 0.1387778781E-16 0.1051676107E-16 216.5000000 0.6606945623 0.1387778781E-16 0.3523657061E-17 217.0000000 0.6649797767 0.1387778781E-16 0.9703609444E-17 217.5000000 0.6692920830 0.000000000 -0.1111307227E-17 218.0000000 0.6736324510 0.000000000 -0.5421010862E-19 218.5000000 0.6779998443 0.1387778781E-16 0.7897735200E-17 219.0000000 0.6823926316 0.1387778781E-16 0.4743384505E-17 219.5000000 0.6868112135 0.1387778781E-16 0.3903127821E-17 220.0000000 0.6912565552 0.1387778781E-16 0.1116728238E-16 220.5000000 0.6957273247 0.1387778781E-16 0.2385244779E-17 221.0000000 0.7002211955 0.1387778781E-16 0.8998878032E-17 221.5000000 0.7047376387 0.1387778781E-16 0.1116728238E-16 222.0000000 0.7092765551 0.000000000 0.7589415207E-18 222.5000000 0.7138365558 0.1387778781E-16 0.7697835425E-17 223.0000000 0.7184164357 0.1387778781E-16 0.2493664997E-17 223.5000000 0.7230156530 0.1387778781E-16 0.5637851297E-17 224.0000000 0.7276322269 0.1387778781E-16 0.4119968255E-17 224.5000000 0.7322630264 0.1387778781E-16 0.2168404345E-17 225.0000000 0.7369072350 0.1387778781E-16 0.6938893904E-17 225.5000000 0.7415656133 0.1387778781E-16 0.3035766083E-17 226.0000000 0.7462362662 0.1387778781E-16 0.9107298249E-17 226.5000000 0.7509155655 0.1387778781E-16 0.8239936511E-17 227.0000000 0.7556028309 0.1387778781E-16 0.1279358564E-16 227.5000000 0.7602993094 0.1387778781E-16 0.1734723476E-17 228.0000000 0.7650035308 0.1387778781E-16 0.8890457814E-17 228.5000000 0.7697117994 0.1387778781E-16 -0.4336808690E-18 229.0000000 0.7744224097 0.1387778781E-16 0.1192622390E-16 229.5000000 0.7791358369 0.1387778781E-16 0.6722053469E-17 230.0000000 0.7838522354 0.1387778781E-16 0.1322726650E-16 230.5000000 0.7885707869 0.1387778781E-16 0.6505213035E-17 231.0000000 0.7932903928 0.1387778781E-16 0.1301042607E-17 231.5000000 0.7980098821 0.1387778781E-16 0.8456776945E-17 232.0000000 0.8027283243 0.1387778781E-16 0.8890457814E-17 232.5000000 0.8074454849 0.1387778781E-16 0.9324138683E-17 233.0000000 0.8121615103 0.1387778781E-16 0.5421010862E-17 233.5000000 0.8168766312 0.1387778781E-16 0.1170938346E-16 234.0000000 0.8215909719 0.1387778781E-16 0.3903127821E-17 234.5000000 0.8263043012 0.1387778781E-16 0.5204170428E-17 235.0000000 0.8310157544 0.1387778781E-16 0.1344410694E-16 235.5000000 0.8357248475 0.1387778781E-16 0.8673617380E-17 236.0000000 0.8404328251 0.1387778781E-16 0.7806255642E-17 236.5000000 0.8451416857 0.1387778781E-16 0.2255140519E-16 237.0000000 0.8498519572 0.1387778781E-16 0.1734723476E-16 237.5000000 0.8545629939 0.1387778781E-16 0.8673617380E-17 238.0000000 0.8592750100 0.1387778781E-16 0.6071532166E-17 238.5000000 0.8639888295 0.1387778781E-16 0.6505213035E-17 239.0000000 0.8687047025 0.000000000 0.000000000 239.5000000 0.8734229644 0.1387778781E-16 0.6938893904E-17 240.0000000 0.8781444294 0.1387778781E-16 0.8673617380E-17 240.5000000 0.8828697158 0.1387778781E-16 0.1647987302E-16 241.0000000 0.8875991980 0.1387778781E-16 0.3903127821E-17 241.5000000 0.8923333114 0.1387778781E-16 0.1604619215E-16 242.0000000 0.8970723456 0.1387778781E-16 0.1821459650E-16 242.5000000 0.9018171371 0.1387778781E-16 0.2125036258E-16 243.0000000 0.9065688497 0.1387778781E-16 0.2602085214E-16 243.5000000 0.9113274614 0.1387778781E-16 0.1734723476E-16 244.0000000 0.9160926004 0.2775557562E-16 0.2732189475E-16 244.5000000 0.9208657803 0.1387778781E-16 0.2558717127E-16 245.0000000 0.9256494053 0.1387778781E-16 0.1517883041E-16 245.5000000 0.9304439124 0.1387778781E-16 0.1908195824E-16 246.0000000 0.9352485497 0.2775557562E-16 0.2818925648E-16 246.5000000 0.9400642363 0.1387778781E-16 0.2688821388E-16 247.0000000 0.9448933908 0.1387778781E-16 0.2125036258E-16 247.5000000 0.9497370550 0.1387778781E-16 0.1951563910E-16 248.0000000 0.9545948090 0.1387778781E-16 0.1561251128E-16 248.5000000 0.9594676447 0.1387778781E-16 0.2341876693E-16 249.0000000 0.9643578224 0.1387778781E-16 0.1864827737E-16 249.5000000 0.9692657959 0.1387778781E-16 0.2168404345E-16 250.0000000 0.9741908752 0.2775557562E-16 0.2667137344E-16 250.5000000 0.9791336499 0.1387778781E-16 0.2298508606E-16 251.0000000 0.9840939633 0.2775557562E-16 0.2732189475E-16 251.5000000 0.9890697607 0.1387778781E-16 0.1647987302E-16 252.0000000 0.9940609774 0.2775557562E-16 0.2753873518E-16 252.5000000 0.9990698852 0.2775557562E-16 0.2818925648E-16 253.0000000 1.004095930 0.2775557562E-16 0.2862293735E-16 253.5000000 1.009135346 0.2775557562E-16 0.2862293735E-16 254.0000000 1.014185922 0.1387778781E-16 0.2081668171E-16 254.5000000 1.019247475 0.1387778781E-16 0.2276824562E-16 255.0000000 1.024318482 0.1387778781E-16 0.1734723476E-16 255.5000000 1.029396031 0.1387778781E-16 0.1843143693E-16 256.0000000 1.034477987 0.1387778781E-16 0.2081668171E-16 256.5000000 1.039562416 0.1387778781E-16 0.2580401171E-16 257.0000000 1.044646325 0.1387778781E-16 0.2558717127E-16 257.5000000 1.049726670 0.1387778781E-16 0.1821459650E-16 258.0000000 1.054801145 0.2775557562E-16 0.2808083627E-16 258.5000000 1.059867109 0.1387778781E-16 0.1626303259E-16 259.0000000 1.064921047 0.1387778781E-16 0.2569559149E-16 259.5000000 1.069959795 0.1387778781E-16 0.1658829324E-16 260.0000000 1.074981107 0.2775557562E-16 0.2699663409E-16 260.5000000 1.079982805 0.2775557562E-16 0.2667137344E-16 261.0000000 1.084961610 0.1387778781E-16 0.2309350627E-16 261.5000000 1.089914055 0.1387778781E-16 0.1810617628E-16 262.0000000 1.094838664 0.2775557562E-16 0.2970713953E-16 262.5000000 1.099735099 0.1387778781E-16 0.1761828530E-16 263.0000000 1.104601062 0.1387778781E-16 0.1784867826E-16 263.5000000 1.109432863 0.2775557562E-16 0.2923957734E-16 264.0000000 1.114229283 0.1387778781E-16 0.2512638535E-16 264.5000000 1.118991124 0.1387778781E-16 0.2146720302E-16 265.0000000 1.123717958 0.2775557562E-16 0.2683400377E-16 265.5000000 1.128408923 0.1387778781E-16 0.1718460443E-16 266.0000000 1.133064861 0.2775557562E-16 0.2786399583E-16 266.5000000 1.137687170 0.1387778781E-16 0.2287666584E-16 267.0000000 1.142276461 0.1387778781E-16 0.2482822975E-16 267.5000000 1.146833260 0.1387778781E-16 0.1788933585E-16 268.0000000 1.151358969 0.2775557562E-16 0.2797241605E-16 268.5000000 1.155856434 0.1387778781E-16 0.1843143693E-16 269.0000000 1.160328865 0.1387778781E-16 0.1713039433E-16 269.5000000 1.164778180 0.1387778781E-16 0.2125036258E-16 270.0000000 1.169205665 0.2775557562E-16 0.2537033084E-16 270.5000000 1.173613734 0.1387778781E-16 0.1691355389E-16 271.0000000 1.178005926 0.2775557562E-16 0.2797241605E-16 271.5000000 1.182385508 0.2775557562E-16 0.2623769257E-16 272.0000000 1.186754409 0.2775557562E-16 0.2732189475E-16 272.5000000 1.191114016 0.1387778781E-16 0.2081668171E-16 273.0000000 1.195466625 0.1387778781E-16 0.1908195824E-16 273.5000000 1.199814789 0.1387778781E-16 0.1864827737E-16 274.0000000 1.204160484 0.1387778781E-16 0.1908195824E-16 274.5000000 1.208505789 0.1387778781E-16 0.2385244779E-16 275.0000000 1.212853358 0.2775557562E-16 0.2992397996E-16 275.5000000 1.217205712 0.1387778781E-16 0.1778091563E-16 276.0000000 1.221564603 0.2775557562E-16 0.2992397996E-16 276.5000000 1.225930625 0.2775557562E-16 0.2818925648E-16 277.0000000 1.230304753 0.2775557562E-16 0.3079134170E-16 277.5000000 1.234689790 0.2775557562E-16 0.2645453301E-16 278.0000000 1.239087448 0.2775557562E-16 0.2905661822E-16 278.5000000 1.243497382 0.5551115123E-16 0.3989863995E-16 279.0000000 1.247920722 0.4857225733E-16 0.4597017211E-16 279.5000000 1.252359969 0.5551115123E-16 0.3903127821E-16 280.0000000 1.256815375 0.4857225733E-16 0.4857225733E-16 280.5000000 1.261286087 0.4163336342E-16 0.4943961907E-16 281.0000000 1.265773007 0.4857225733E-16 0.4683753385E-16 281.5000000 1.270277289 0.4857225733E-16 0.4857225733E-16 282.0000000 1.274798304 0.4163336342E-16 0.3816391647E-16 282.5000000 1.279334835 0.4857225733E-16 0.4510281038E-16 283.0000000 1.283886913 0.4857225733E-16 0.4336808690E-16 283.5000000 1.288454978 0.4857225733E-16 0.4683753385E-16 284.0000000 1.293037829 0.4163336342E-16 0.5030698080E-16 284.5000000 1.297632930 0.5551115123E-16 0.5551115123E-16 285.0000000 1.302238614 0.5551115123E-16 0.5377642776E-16 285.5000000 1.306853804 0.5551115123E-16 0.5551115123E-16 286.0000000 1.311475502 0.4857225733E-16 0.4423544864E-16 286.5000000 1.316099461 0.4857225733E-16 0.4683753385E-16 287.0000000 1.320722998 0.4857225733E-16 0.4683753385E-16 287.5000000 1.325343800 0.4163336342E-16 0.5204170428E-16 288.0000000 1.329957684 0.4163336342E-16 0.5117434254E-16 288.5000000 1.334559989 0.5551115123E-16 0.5204170428E-16 289.0000000 1.339146112 0.4857225733E-16 0.4510281038E-16 289.5000000 1.343711472 0.4857225733E-16 0.4683753385E-16 290.0000000 1.348252613 0.4857225733E-16 0.4163336342E-16 290.5000000 1.352765978 0.4857225733E-16 0.4683753385E-16 291.0000000 1.357246711 0.4163336342E-16 0.3816391647E-16 291.5000000 1.361690700 0.5551115123E-16 0.5551115123E-16 292.0000000 1.366094478 0.4857225733E-16 0.4857225733E-16 292.5000000 1.370453735 0.4857225733E-16 0.5204170428E-16 293.0000000 1.374764554 0.4857225733E-16 0.4163336342E-16 293.5000000 1.379023920 0.4857225733E-16 0.4510281038E-16 294.0000000 1.383229412 0.4857225733E-16 0.4510281038E-16 294.5000000 1.387379297 0.4857225733E-16 0.4336808690E-16 295.0000000 1.391471584 0.5551115123E-16 0.5551115123E-16 295.5000000 1.395504101 0.4857225733E-16 0.4857225733E-16 296.0000000 1.399476826 0.4857225733E-16 0.4683753385E-16 296.5000000 1.403391556 0.4857225733E-16 0.5204170428E-16 297.0000000 1.407249570 0.5551115123E-16 0.5551115123E-16 297.5000000 1.411050984 0.4857225733E-16 0.4163336342E-16 298.0000000 1.414797183 0.4857225733E-16 0.5377642776E-16 298.5000000 1.418491933 0.4857225733E-16 0.4857225733E-16 299.0000000 1.422138306 0.4857225733E-16 0.4510281038E-16 299.5000000 1.425737652 0.4857225733E-16 0.4336808690E-16 300.0000000 1.429292420 0.4857225733E-16 0.5204170428E-16 300.5000000 1.432805943 0.4857225733E-16 0.4510281038E-16 301.0000000 1.436281005 0.4857225733E-16 0.5204170428E-16 301.5000000 1.439721196 0.4857225733E-16 0.4163336342E-16 302.0000000 1.443131165 0.4857225733E-16 0.4163336342E-16 302.5000000 1.446514121 0.4857225733E-16 0.5204170428E-16 303.0000000 1.449871515 0.4857225733E-16 0.4857225733E-16 303.5000000 1.453205749 0.4857225733E-16 0.4163336342E-16 304.0000000 1.456520689 0.4857225733E-16 0.4510281038E-16 304.5000000 1.459818647 0.4857225733E-16 0.4163336342E-16 305.0000000 1.463100845 0.4857225733E-16 0.4510281038E-16 305.5000000 1.466369423 0.5551115123E-16 0.5551115123E-16 306.0000000 1.469625544 0.5551115123E-16 0.5551115123E-16 306.5000000 1.472869438 0.5551115123E-16 0.5551115123E-16 307.0000000 1.476103074 0.5551115123E-16 0.5551115123E-16 307.5000000 1.479327642 0.5551115123E-16 0.5551115123E-16 308.0000000 1.482542145 0.5551115123E-16 0.5551115123E-16 308.5000000 1.485747189 0.5551115123E-16 0.5551115123E-16 309.0000000 1.488944134 0.5551115123E-16 0.5551115123E-16 309.5000000 1.492132596 0.4857225733E-16 0.5898059818E-16 310.0000000 1.495312643 0.5551115123E-16 0.5551115123E-16 310.5000000 1.498483769 0.5551115123E-16 0.5551115123E-16 311.0000000 1.501644262 0.5551115123E-16 0.5551115123E-16 311.5000000 1.504794140 0.5551115123E-16 0.5551115123E-16 312.0000000 1.507932057 0.4857225733E-16 0.5898059818E-16 312.5000000 1.511054754 0.5551115123E-16 0.5551115123E-16 313.0000000 1.514161157 0.5551115123E-16 0.5551115123E-16 313.5000000 1.517248596 0.4857225733E-16 0.5898059818E-16 314.0000000 1.520313667 0.5551115123E-16 0.5551115123E-16 314.5000000 1.523355819 0.5551115123E-16 0.5551115123E-16 315.0000000 1.526371535 0.5551115123E-16 0.5551115123E-16 315.5000000 1.529356824 0.5551115123E-16 0.5551115123E-16 316.0000000 1.532311777 0.4857225733E-16 0.5898059818E-16 316.5000000 1.535234340 0.5551115123E-16 0.5551115123E-16 317.0000000 1.538120278 0.5551115123E-16 0.5551115123E-16 317.5000000 1.540966443 0.4857225733E-16 0.5898059818E-16 318.0000000 1.543770870 0.4857225733E-16 0.5898059818E-16 318.5000000 1.546532244 0.5551115123E-16 0.5551115123E-16 319.0000000 1.549246562 0.5551115123E-16 0.5551115123E-16 319.5000000 1.551911207 0.5551115123E-16 0.5551115123E-16 320.0000000 1.554527815 0.5551115123E-16 0.5551115123E-16 320.5000000 1.557095695 0.5551115123E-16 0.5551115123E-16 321.0000000 1.559614676 0.5551115123E-16 0.5551115123E-16 321.5000000 1.562086242 0.5551115123E-16 0.5204170428E-16 322.0000000 1.564508507 0.5551115123E-16 0.5551115123E-16 322.5000000 1.566881820 0.5551115123E-16 0.5551115123E-16 323.0000000 1.569210601 0.5551115123E-16 0.5551115123E-16 323.5000000 1.571497018 0.5551115123E-16 0.5551115123E-16 324.0000000 1.573741833 0.5551115123E-16 0.5551115123E-16 324.5000000 1.575948284 0.5551115123E-16 0.5898059818E-16 325.0000000 1.578120536 0.5551115123E-16 0.5551115123E-16 325.5000000 1.580259362 0.5551115123E-16 0.5551115123E-16 326.0000000 1.582365312 0.5551115123E-16 0.5551115123E-16 326.5000000 1.584443558 0.5551115123E-16 0.5551115123E-16 327.0000000 1.586497238 0.5551115123E-16 0.5551115123E-16 327.5000000 1.588525484 0.5551115123E-16 0.5551115123E-16 328.0000000 1.590529569 0.5551115123E-16 0.5551115123E-16 328.5000000 1.592512374 0.5898059818E-16 0.5204170428E-16 329.0000000 1.594474018 0.5551115123E-16 0.5551115123E-16 329.5000000 1.596412243 0.5204170428E-16 0.5898059818E-16 330.0000000 1.598326445 0.5204170428E-16 0.5898059818E-16 330.5000000 1.600217105 0.5204170428E-16 0.5898059818E-16 331.0000000 1.602082681 0.5551115123E-16 0.5551115123E-16 331.5000000 1.603921456 0.5204170428E-16 0.5898059818E-16 332.0000000 1.605732025 0.5551115123E-16 0.5551115123E-16 332.5000000 1.607512330 0.5551115123E-16 0.5551115123E-16 333.0000000 1.609260746 0.5898059818E-16 0.5204170428E-16 333.5000000 1.610975302 0.5551115123E-16 0.5551115123E-16 334.0000000 1.612653445 0.5898059818E-16 0.5204170428E-16 334.5000000 1.614293745 0.5898059818E-16 0.5204170428E-16 335.0000000 1.615896224 0.5551115123E-16 0.5551115123E-16 335.5000000 1.617460048 0.5551115123E-16 0.5551115123E-16 336.0000000 1.618984105 0.5551115123E-16 0.5551115123E-16 336.5000000 1.620469317 0.5551115123E-16 0.5551115123E-16 337.0000000 1.621916001 0.5551115123E-16 0.5551115123E-16 337.5000000 1.623322319 0.5551115123E-16 0.5551115123E-16 338.0000000 1.624687006 0.5551115123E-16 0.5551115123E-16 338.5000000 1.626010216 0.5898059818E-16 0.5204170428E-16 339.0000000 1.627292258 0.5551115123E-16 0.5551115123E-16 339.5000000 1.628532243 0.5551115123E-16 0.5551115123E-16 340.0000000 1.629729536 0.5551115123E-16 0.5551115123E-16 340.5000000 1.630883937 0.5551115123E-16 0.5551115123E-16 341.0000000 1.631993304 0.5551115123E-16 0.5551115123E-16 341.5000000 1.633055442 0.5898059818E-16 0.5204170428E-16 342.0000000 1.634069980 0.5551115123E-16 0.5551115123E-16 342.5000000 1.635036015 0.5551115123E-16 0.5551115123E-16 343.0000000 1.635952185 0.5551115123E-16 0.5551115123E-16 343.5000000 1.636819559 0.5551115123E-16 0.5551115123E-16 344.0000000 1.637638735 0.5551115123E-16 0.5551115123E-16 344.5000000 1.638406629 0.5898059818E-16 0.5204170428E-16 345.0000000 1.639122985 0.5898059818E-16 0.5204170428E-16 345.5000000 1.639792688 0.5551115123E-16 0.5551115123E-16 346.0000000 1.640418892 0.5898059818E-16 0.5204170428E-16 346.5000000 1.641003306 0.5204170428E-16 0.5898059818E-16 347.0000000 1.641551226 0.5551115123E-16 0.5551115123E-16 347.5000000 1.642068150 0.5551115123E-16 0.5551115123E-16 348.0000000 1.642556173 0.5551115123E-16 0.5551115123E-16 348.5000000 1.643018072 0.5551115123E-16 0.5551115123E-16 349.0000000 1.643457609 0.5551115123E-16 0.5551115123E-16 349.5000000 1.643876797 0.5204170428E-16 0.5898059818E-16 350.0000000 1.644277794 0.5898059818E-16 0.5204170428E-16 350.5000000 1.644661305 0.5551115123E-16 0.5551115123E-16 351.0000000 1.645027196 0.5898059818E-16 0.5204170428E-16 351.5000000 1.645375976 0.5551115123E-16 0.5551115123E-16 352.0000000 1.645705698 0.5551115123E-16 0.5551115123E-16 352.5000000 1.646014844 0.5204170428E-16 0.5898059818E-16 353.0000000 1.646300627 0.5551115123E-16 0.5551115123E-16 353.5000000 1.646556957 0.5898059818E-16 0.5204170428E-16 354.0000000 1.646780925 0.5551115123E-16 0.5551115123E-16 354.5000000 1.646968083 0.5204170428E-16 0.5898059818E-16 355.0000000 1.647111815 0.5551115123E-16 0.5551115123E-16 355.5000000 1.647208321 0.5551115123E-16 0.5551115123E-16 356.0000000 1.647251244 0.5204170428E-16 0.5898059818E-16 356.5000000 1.647235003 0.5898059818E-16 0.5204170428E-16 357.0000000 1.647157425 0.5551115123E-16 0.5551115123E-16 357.5000000 1.647015124 0.5551115123E-16 0.5551115123E-16 358.0000000 1.646804524 0.5204170428E-16 0.5898059818E-16 358.5000000 1.646525063 0.5551115123E-16 0.5551115123E-16 359.0000000 1.646177288 0.5898059818E-16 0.5204170428E-16 359.5000000 1.645758703 0.5204170428E-16 0.5898059818E-16 360.0000000 1.645269903 0.5551115123E-16 0.5551115123E-16 360.5000000 1.644713091 0.5898059818E-16 0.5204170428E-16 361.0000000 1.644089665 0.5551115123E-16 0.5551115123E-16 361.5000000 1.643403247 0.5551115123E-16 0.5551115123E-16 362.0000000 1.642656850 0.5898059818E-16 0.5204170428E-16 362.5000000 1.641854103 0.5204170428E-16 0.5898059818E-16 363.0000000 1.640998263 0.5898059818E-16 0.5204170428E-16 363.5000000 1.640092331 0.5898059818E-16 0.5204170428E-16 364.0000000 1.639140875 0.5551115123E-16 0.5551115123E-16 364.5000000 1.638149444 0.5551115123E-16 0.5551115123E-16 365.0000000 1.637120368 0.5898059818E-16 0.5204170428E-16 365.5000000 1.636055072 0.5551115123E-16 0.5551115123E-16 366.0000000 1.634958552 0.5551115123E-16 0.5551115123E-16 366.5000000 1.633833633 0.5204170428E-16 0.5898059818E-16 367.0000000 1.632681995 0.5898059818E-16 0.5204170428E-16 367.5000000 1.631507767 0.5551115123E-16 0.5551115123E-16 368.0000000 1.630312947 0.5551115123E-16 0.5551115123E-16 368.5000000 1.629098751 0.5551115123E-16 0.5551115123E-16 369.0000000 1.627866747 0.5551115123E-16 0.5551115123E-16 369.5000000 1.626616663 0.5551115123E-16 0.5551115123E-16 370.0000000 1.625350196 0.5204170428E-16 0.5898059818E-16 370.5000000 1.624068143 0.5551115123E-16 0.5551115123E-16 371.0000000 1.622771857 0.5898059818E-16 0.5204170428E-16 371.5000000 1.621460776 0.5898059818E-16 0.5204170428E-16 372.0000000 1.620131598 0.5551115123E-16 0.5551115123E-16 372.5000000 1.618786928 0.5551115123E-16 0.5551115123E-16 373.0000000 1.617429036 0.5551115123E-16 0.5551115123E-16 373.5000000 1.616055355 0.5898059818E-16 0.5204170428E-16 374.0000000 1.614663989 0.5551115123E-16 0.5551115123E-16 374.5000000 1.613252327 0.5551115123E-16 0.5551115123E-16 375.0000000 1.611818985 0.5204170428E-16 0.5898059818E-16 375.5000000 1.610362058 0.5551115123E-16 0.5551115123E-16 376.0000000 1.608876055 0.5551115123E-16 0.5551115123E-16 376.5000000 1.607358211 0.5551115123E-16 0.5551115123E-16 377.0000000 1.605804481 0.5898059818E-16 0.5204170428E-16 377.5000000 1.604208500 0.5551115123E-16 0.5551115123E-16 378.0000000 1.602564231 0.5204170428E-16 0.5898059818E-16 378.5000000 1.600867672 0.5551115123E-16 0.5551115123E-16 379.0000000 1.599111162 0.5551115123E-16 0.5551115123E-16 379.5000000 1.597288094 0.5898059818E-16 0.5204170428E-16 380.0000000 1.595393885 0.5204170428E-16 0.5898059818E-16 380.5000000 1.593420778 0.5551115123E-16 0.5551115123E-16 381.0000000 1.591363573 0.5204170428E-16 0.5898059818E-16 381.5000000 1.589216343 0.5551115123E-16 0.5551115123E-16 382.0000000 1.586972079 0.5898059818E-16 0.5204170428E-16 382.5000000 1.584628771 0.5551115123E-16 0.5551115123E-16 383.0000000 1.582183330 0.5204170428E-16 0.5898059818E-16 383.5000000 1.579630327 0.5204170428E-16 0.5898059818E-16 384.0000000 1.576972276 0.5898059818E-16 0.5204170428E-16 384.5000000 1.574208463 0.5204170428E-16 0.5898059818E-16 385.0000000 1.571336961 0.5551115123E-16 0.5551115123E-16 385.5000000 1.568361818 0.5551115123E-16 0.5551115123E-16 386.0000000 1.565284991 0.5898059818E-16 0.5204170428E-16 386.5000000 1.562107087 0.5898059818E-16 0.5204170428E-16 387.0000000 1.558829942 0.5551115123E-16 0.5551115123E-16 387.5000000 1.555453203 0.5204170428E-16 0.5898059818E-16 388.0000000 1.551975367 0.5204170428E-16 0.5898059818E-16 388.5000000 1.548396237 0.5551115123E-16 0.5551115123E-16 389.0000000 1.544713359 0.5898059818E-16 0.5204170428E-16 389.5000000 1.540925012 0.5551115123E-16 0.5551115123E-16 390.0000000 1.537029827 0.5551115123E-16 0.5551115123E-16 390.5000000 1.533026725 0.5898059818E-16 0.5204170428E-16 391.0000000 1.528919370 0.5551115123E-16 0.5551115123E-16 391.5000000 1.524708041 0.5551115123E-16 0.5551115123E-16 392.0000000 1.520395778 0.5551115123E-16 0.5551115123E-16 392.5000000 1.515991651 0.5551115123E-16 0.5551115123E-16 393.0000000 1.511501029 0.5898059818E-16 0.5204170428E-16 393.5000000 1.506932546 0.5898059818E-16 0.5204170428E-16 394.0000000 1.502296656 0.5551115123E-16 0.5551115123E-16 394.5000000 1.497599241 0.5551115123E-16 0.5551115123E-16 395.0000000 1.492848513 0.5898059818E-16 0.5204170428E-16 395.5000000 1.488051518 0.5898059818E-16 0.5204170428E-16 396.0000000 1.483214205 0.5551115123E-16 0.5724587471E-16 396.5000000 1.478339807 0.5204170428E-16 0.5724587471E-16 397.0000000 1.473431483 0.5898059818E-16 0.5204170428E-16 397.5000000 1.468493100 0.4510281038E-16 0.4683753385E-16 398.0000000 1.463526395 0.4857225733E-16 0.4683753385E-16 398.5000000 1.458528891 0.4510281038E-16 0.4683753385E-16 399.0000000 1.453502843 0.4857225733E-16 0.4683753385E-16 399.5000000 1.448449960 0.4857225733E-16 0.5030698080E-16 400.0000000 1.443370507 0.5204170428E-16 0.4857225733E-16 400.5000000 1.438262939 0.4857225733E-16 0.4683753385E-16 401.0000000 1.433126526 0.4857225733E-16 0.4683753385E-16 401.5000000 1.427960142 0.4857225733E-16 0.5204170428E-16 402.0000000 1.422761488 0.4857225733E-16 0.4683753385E-16 402.5000000 1.417528634 0.5204170428E-16 0.5030698080E-16 403.0000000 1.412262155 0.4857225733E-16 0.4683753385E-16 403.5000000 1.406962398 0.4510281038E-16 0.4683753385E-16 404.0000000 1.401630433 0.4857225733E-16 0.4683753385E-16 404.5000000 1.396270604 0.5204170428E-16 0.5030698080E-16 405.0000000 1.390887768 0.4857225733E-16 0.4683753385E-16 405.5000000 1.385486110 0.4857225733E-16 0.4683753385E-16 406.0000000 1.380065448 0.4857225733E-16 0.4683753385E-16 406.5000000 1.374629486 0.4857225733E-16 0.4683753385E-16 407.0000000 1.369178166 0.4857225733E-16 0.4683753385E-16 407.5000000 1.363705232 0.4510281038E-16 0.4857225733E-16 408.0000000 1.358202993 0.4857225733E-16 0.5030698080E-16 408.5000000 1.352661651 0.4857225733E-16 0.4510281038E-16 409.0000000 1.347069763 0.4163336342E-16 0.4163336342E-16 409.5000000 1.341417552 0.4163336342E-16 0.4163336342E-16 410.0000000 1.335691893 0.4163336342E-16 0.4163336342E-16 410.5000000 1.329881996 0.4163336342E-16 0.4336808690E-16 411.0000000 1.323980034 0.4163336342E-16 0.4336808690E-16 411.5000000 1.317976522 0.4510281038E-16 0.3989863995E-16 412.0000000 1.311865094 0.4163336342E-16 0.4163336342E-16 412.5000000 1.305639913 0.4163336342E-16 0.4336808690E-16 413.0000000 1.299297237 0.4510281038E-16 0.3989863995E-16 413.5000000 1.292831557 0.3816391647E-16 0.4336808690E-16 414.0000000 1.286240523 0.4163336342E-16 0.4163336342E-16 414.5000000 1.279520903 0.4163336342E-16 0.4163336342E-16 415.0000000 1.272670623 0.3816391647E-16 0.4336808690E-16 415.5000000 1.265688586 0.4510281038E-16 0.3989863995E-16 416.0000000 1.258573581 0.4510281038E-16 0.3989863995E-16 416.5000000 1.251331285 0.3816391647E-16 0.4336808690E-16 417.0000000 1.243967159 0.4163336342E-16 0.4336808690E-16 417.5000000 1.236489074 0.4163336342E-16 0.4163336342E-16 418.0000000 1.228906923 0.4510281038E-16 0.3989863995E-16 418.5000000 1.221232440 0.4163336342E-16 0.4163336342E-16 419.0000000 1.213477144 0.4163336342E-16 0.4163336342E-16 419.5000000 1.205647168 0.4163336342E-16 0.3989863995E-16 420.0000000 1.197748986 0.4163336342E-16 0.4163336342E-16 420.5000000 1.189787414 0.3469446952E-16 0.3469446952E-16 421.0000000 1.181763817 0.3469446952E-16 0.3642919300E-16 421.5000000 1.173676448 0.3122502257E-16 0.3295974604E-16 422.0000000 1.165520516 0.3469446952E-16 0.3295974604E-16 422.5000000 1.157294115 0.3469446952E-16 0.3469446952E-16 423.0000000 1.148995390 0.3122502257E-16 0.3295974604E-16 423.5000000 1.140626738 0.3122502257E-16 0.3382710778E-16 424.0000000 1.132187109 0.3122502257E-16 0.3295974604E-16 424.5000000 1.123680047 0.2775557562E-16 0.2775557562E-16 425.0000000 1.115108870 0.3122502257E-16 0.3122502257E-16 425.5000000 1.106472941 0.3122502257E-16 0.3209238431E-16 426.0000000 1.097772297 0.3122502257E-16 0.3295974604E-16 426.5000000 1.089003824 0.3122502257E-16 0.3382710778E-16 427.0000000 1.080166286 0.3122502257E-16 0.3295974604E-16 427.5000000 1.071254293 0.3122502257E-16 0.3382710778E-16 428.0000000 1.062256879 0.3122502257E-16 0.3209238431E-16 428.5000000 1.053167671 0.3469446952E-16 0.3122502257E-16 429.0000000 1.043971758 0.3122502257E-16 0.2949029909E-16 429.5000000 1.034660441 0.3122502257E-16 0.3469446952E-16 430.0000000 1.025221280 0.3122502257E-16 0.2949029909E-16 430.5000000 1.015641043 0.3122502257E-16 0.3469446952E-16 431.0000000 1.005914204 0.3122502257E-16 0.3122502257E-16 431.5000000 0.9960292865 0.3122502257E-16 0.3209238431E-16 432.0000000 0.9859825741 0.3122502257E-16 0.3122502257E-16 432.5000000 0.9757736669 0.3122502257E-16 0.3382710778E-16 433.0000000 0.9654085437 0.3122502257E-16 0.3295974604E-16 433.5000000 0.9549000674 0.2775557562E-16 0.2775557562E-16 434.0000000 0.9442650985 0.2775557562E-16 0.2688821388E-16 434.5000000 0.9335249536 0.2775557562E-16 0.2688821388E-16 435.0000000 0.9227016787 0.2775557562E-16 0.2775557562E-16 435.5000000 0.9118198402 0.2775557562E-16 0.2688821388E-16 436.0000000 0.9008992472 0.2602085214E-16 0.2949029909E-16 436.5000000 0.8899555836 0.2775557562E-16 0.2688821388E-16 437.0000000 0.8789986318 0.2775557562E-16 0.2862293735E-16 437.5000000 0.8680337565 0.2775557562E-16 0.2775557562E-16 438.0000000 0.8570607223 0.2775557562E-16 0.2862293735E-16 438.5000000 0.8460778522 0.2775557562E-16 0.2775557562E-16 439.0000000 0.8350823415 0.2949029909E-16 0.2688821388E-16 439.5000000 0.8240674354 0.2775557562E-16 0.2775557562E-16 440.0000000 0.8130271318 0.2602085214E-16 0.2862293735E-16 440.5000000 0.8019529737 0.2775557562E-16 0.2775557562E-16 441.0000000 0.7908351153 0.2775557562E-16 0.2688821388E-16 441.5000000 0.7796636397 0.2775557562E-16 0.2775557562E-16 442.0000000 0.7684263708 0.2775557562E-16 0.2862293735E-16 442.5000000 0.7571108906 0.2949029909E-16 0.2602085214E-16 443.0000000 0.7457081259 0.2949029909E-16 0.2602085214E-16 443.5000000 0.7342126755 0.2428612866E-16 0.2602085214E-16 444.0000000 0.7226216222 0.2428612866E-16 0.2515349040E-16 444.5000000 0.7109337745 0.2428612866E-16 0.2341876693E-16 445.0000000 0.6991530017 0.2428612866E-16 0.2255140519E-16 445.5000000 0.6872827785 0.2428612866E-16 0.2515349040E-16 446.0000000 0.6753244053 0.2428612866E-16 0.2341876693E-16 446.5000000 0.6632773985 0.2081668171E-16 0.1994931997E-16 447.0000000 0.6511336301 0.1908195824E-16 0.2168404345E-16 447.5000000 0.6388853328 0.2255140519E-16 0.1994931997E-16 448.0000000 0.6265245270 0.1908195824E-16 0.2168404345E-16 448.5000000 0.6140420535 0.2081668171E-16 0.2168404345E-16 449.0000000 0.6014370165 0.2081668171E-16 0.2168404345E-16 449.5000000 0.5887062861 0.2081668171E-16 0.1994931997E-16 450.0000000 0.5758535858 0.1561251128E-16 0.1734723476E-16 450.5000000 0.5628870190 0.1734723476E-16 0.1734723476E-16 451.0000000 0.5498068807 0.1734723476E-16 0.1734723476E-16 451.5000000 0.5366155248 0.1561251128E-16 0.1647987302E-16 452.0000000 0.5233059880 0.1387778781E-16 0.1387778781E-16 452.5000000 0.5098726484 0.1387778781E-16 0.1387778781E-16 453.0000000 0.4963079190 0.1561251128E-16 0.1301042607E-16 453.5000000 0.4826022858 0.1387778781E-16 0.1387778781E-16 454.0000000 0.4687535365 0.1387778781E-16 0.1387778781E-16 454.5000000 0.4547634931 0.1561251128E-16 0.1301042607E-16 455.0000000 0.4406369909 0.1387778781E-16 0.1387778781E-16 455.5000000 0.4263887322 0.1214306433E-16 0.1474514955E-16 456.0000000 0.4120367806 0.1387778781E-16 0.1387778781E-16 456.5000000 0.3976027973 0.1387778781E-16 0.1387778781E-16 457.0000000 0.3831126153 0.1387778781E-16 0.1387778781E-16 457.5000000 0.3685924455 0.1387778781E-16 0.1387778781E-16 458.0000000 0.3540696511 0.1387778781E-16 0.1387778781E-16 458.5000000 0.3395664388 0.1387778781E-16 0.1387778781E-16 459.0000000 0.3250973964 0.1387778781E-16 0.1387778781E-16 459.5000000 0.3106688544 0.8673617380E-17 0.9540979118E-17 460.0000000 0.2962732227 0.9540979118E-17 0.8673617380E-17 460.5000000 0.2818838442 0.9540979118E-17 0.8673617380E-17 461.0000000 0.2674658896 0.6071532166E-17 0.7806255642E-17 461.5000000 0.2529795225 0.6938893904E-17 0.6938893904E-17 462.0000000 0.2383818803 0.6938893904E-17 0.6938893904E-17 462.5000000 0.2236374467 0.6938893904E-17 0.6938893904E-17 463.0000000 0.2087224230 0.6938893904E-17 0.6938893904E-17 463.5000000 0.1936324061 0.6938893904E-17 0.6938893904E-17 464.0000000 0.1783794027 0.7806255642E-17 0.6071532166E-17 464.5000000 0.1629883110 0.6938893904E-17 0.6938893904E-17 465.0000000 0.1474900871 0.5204170428E-17 0.6071532166E-17 465.5000000 0.1319180048 0.6071532166E-17 0.5204170428E-17 466.0000000 0.1162991736 0.6071532166E-17 0.5204170428E-17 466.5000000 0.1006525015 0.4336808690E-18 0.1734723476E-17 467.0000000 0.8498907818E-01 0.1734723476E-17 0.8673617380E-18 467.5000000 0.6930881135E-01 0.8673617380E-18 0.1734723476E-17 468.0000000 0.5360126484E-01 0.8673617380E-18 0.1734723476E-17 468.5000000 0.3785523328E-01 0.8673617380E-18 0.1734723476E-17 469.0000000 0.2205205860E-01 0.8673617380E-18 0.1734723476E-17 469.5000000 0.6181582994E-02 0.1301042607E-17 0.8673617380E-18 470.0000000 -0.9775307828E-02 -0.4336808690E-18 0.000000000 470.5000000 -0.2582989316E-01 -0.8673617380E-18 -0.1734723476E-17 471.0000000 -0.4199507547E-01 -0.8673617380E-18 -0.1734723476E-17 471.5000000 -0.5828149701E-01 -0.1301042607E-17 -0.8673617380E-18 472.0000000 -0.7469721012E-01 -0.1301042607E-17 -0.8673617380E-18 472.5000000 -0.9124301681E-01 -0.2385244779E-17 -0.1734723476E-17 473.0000000 -0.1079158330 -0.5421010862E-17 -0.5204170428E-17 473.5000000 -0.1247071007 -0.5854691731E-17 -0.6071532166E-17 474.0000000 -0.1416015496 -0.5312590645E-17 -0.5204170428E-17 474.5000000 -0.1585754131 -0.5421010862E-17 -0.6071532166E-17 475.0000000 -0.1756033706 -0.6342582709E-17 -0.6071532166E-17 475.5000000 -0.1926576098 -0.6884683795E-17 -0.6938893904E-17 476.0000000 -0.2097170946 -0.7372574773E-17 -0.6071532166E-17 476.5000000 -0.2267741384 -0.7016820935E-17 -0.6938893904E-17 477.0000000 -0.2438360339 -0.7521652572E-17 -0.7806255642E-17 477.5000000 -0.2609202318 -0.7589415207E-17 -0.7806255642E-17 478.0000000 -0.2780542673 -0.8619407271E-17 -0.8673617380E-17 478.5000000 -0.2952705092 -0.8510987054E-17 -0.8673617380E-17 479.0000000 -0.3125968778 -0.8998878032E-17 -0.8673617380E-17 479.5000000 -0.3300532115 -0.1230569466E-16 -0.1214306433E-16 480.0000000 -0.3476488065 -0.1257674520E-16 -0.1301042607E-16 480.5000000 -0.3653841645 -0.1257674520E-16 -0.1301042607E-16 481.0000000 -0.3832476782 -0.1355252716E-16 -0.1301042607E-16 481.5000000 -0.4012282311 -0.1387778781E-16 -0.1387778781E-16 482.0000000 -0.4193189273 -0.1344410694E-16 -0.1387778781E-16 482.5000000 -0.4375112312 -0.1387778781E-16 -0.1387778781E-16 483.0000000 -0.4558080004 -0.1474514955E-16 -0.1561251128E-16 483.5000000 -0.4742091932 -0.1409462824E-16 -0.1474514955E-16 484.0000000 -0.4927214523 -0.1431146868E-16 -0.1474514955E-16 484.5000000 -0.5113484534 -0.1431146868E-16 -0.1474514955E-16 485.0000000 -0.5300974000 -0.2081668171E-16 -0.2081668171E-16 485.5000000 -0.5489737198 -0.1951563910E-16 -0.1994931997E-16 486.0000000 -0.5679780168 -0.1908195824E-16 -0.1994931997E-16 486.5000000 -0.5871032516 -0.2038300084E-16 -0.1994931997E-16 487.0000000 -0.6063287997 -0.1951563910E-16 -0.1994931997E-16 487.5000000 -0.6256259027 -0.2081668171E-16 -0.2081668171E-16 488.0000000 -0.6449596246 -0.2081668171E-16 -0.2081668171E-16 488.5000000 -0.6642929649 -0.2081668171E-16 -0.2081668171E-16 489.0000000 -0.6835960143 -0.2255140519E-16 -0.2255140519E-16 489.5000000 -0.7028568665 -0.2255140519E-16 -0.2255140519E-16 490.0000000 -0.7220836658 -0.2255140519E-16 -0.2255140519E-16 490.5000000 -0.7413012966 -0.2688821388E-16 -0.2602085214E-16 491.0000000 -0.7605417736 -0.2688821388E-16 -0.2602085214E-16 491.5000000 -0.7798385270 -0.2515349040E-16 -0.2602085214E-16 492.0000000 -0.7992195883 -0.2775557562E-16 -0.2775557562E-16 492.5000000 -0.8187067390 -0.2775557562E-16 -0.2775557562E-16 493.0000000 -0.8383193131 -0.2775557562E-16 -0.2775557562E-16 493.5000000 -0.8580761939 -0.2775557562E-16 -0.2775557562E-16 494.0000000 -0.8779879343 -0.2775557562E-16 -0.2775557562E-16 494.5000000 -0.8980529145 -0.2949029909E-16 -0.2949029909E-16 495.0000000 -0.9182488474 -0.2949029909E-16 -0.2949029909E-16 495.5000000 -0.9385280283 -0.2949029909E-16 -0.2949029909E-16 496.0000000 -0.9588236807 -0.3122502257E-16 -0.3122502257E-16 496.5000000 -0.9790641933 -0.3122502257E-16 -0.3122502257E-16 497.0000000 -0.9991944214 -0.3469446952E-16 -0.3469446952E-16 497.5000000 -1.019190295 -0.3469446952E-16 -0.3469446952E-16 498.0000000 -1.039075479 -0.3469446952E-16 -0.3469446952E-16 498.5000000 -1.058901795 -0.3469446952E-16 -0.3469446952E-16 499.0000000 -1.078734277 -0.3469446952E-16 -0.3469446952E-16 499.5000000 -1.098615734 -0.3469446952E-16 -0.3469446952E-16 elk-10.4.9/examples/TDDFT-time-evolution/Si-ramp/PaxHeaders/elk.in0000644000000000000000000000013214762655565021537 xustar0030 mtime=1741380469.953016223 30 atime=1741380469.953016223 30 ctime=1741380469.953016223 elk-10.4.9/examples/TDDFT-time-evolution/Si-ramp/elk.in0000644002504400250440000000175114762655565024265 0ustar00dewhurstdewhurst00000000000000 ! Silicon exposed to an intense, linearly increasing electric field. See the ! manual for details on the 'ramp' vector potential. This is a computationally ! expensive example that is best run with MPI on a cluster. tasks 0 450 460 ! no shifting of the atomic positions for the ground-state run tshift .false. xctype 20 highq .true. nxoapwlo 1 mixtype 3 nempty 40.0 autokpt .false. tstime 500 dtimes 0.5 ! vector potential ramp parameters ! 1 - 3 : polarisation vector (including amplitude) ! 4 : start time of ramp ! 5 : linear coefficient ! 6 - 8 : quadratic, cubic and quartic coefficients ramp 1 1.0 0.0 0.0 0.0 0.0 0.001 0.0 0.0 ngridk 12 12 12 avec 5.13 5.13 0.0 5.13 0.0 5.13 0.0 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 elk-10.4.9/examples/TDDFT-time-evolution/PaxHeaders/GaAs-HHG0000644000000000000000000000013214762655565020266 xustar0030 mtime=1741380469.956016239 30 atime=1741380469.955016234 30 ctime=1741380469.956016239 elk-10.4.9/examples/TDDFT-time-evolution/GaAs-HHG/0000755002504400250440000000000014762655565023065 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-time-evolution/GaAs-HHG/PaxHeaders/elk.in0000644000000000000000000000013214762655565021446 xustar0030 mtime=1741380469.956016239 30 atime=1741380469.956016239 30 ctime=1741380469.956016239 elk-10.4.9/examples/TDDFT-time-evolution/GaAs-HHG/elk.in0000644002504400250440000000222114762655565024165 0ustar00dewhurstdewhurst00000000000000 ! High-harmonic generation in GaAs using real-time TDDFT. ! Plot the Fourier transform of the total current JTOTW.OUT to observe the ! high-harmonic resonant peaks. tasks 0 450 460 480 wrtdsk .false. ! laser pulse parameters ! 1 - 3 : polarisation vector (including amplitude) ! 4 : frequency ! 5 : phase in degrees ! 6 : chirp rate ! 7 : peak time ! 8 : full-width at half-maximum ! 9-12 : spin matrices s0,sx,sy,sz pulse 1 : number of laser pulses 1.0 0.0 0.0 0.02 0.0 0.0 2000.0 2000.0 tstime 4000.0 dtimes 0.1 tshift .false. highq .true. nempty 32 ! scissor correction of Δ=1.243 eV (see Phys. Rev. B 80, 155205 (2009)) scissor 0.0457 swidth 0.001 ngridk 12 12 12 wplot 10000 100 0 : nwplot, ngrkf, nswplot 0.0 0.5 : wplot ! use GGA xctype 20 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-10.4.9/examples/TDDFT-time-evolution/PaxHeaders/Si-dielectric0000644000000000000000000000013014762655565021525 xustar0029 mtime=1741380469.96201627 30 atime=1741380469.957016244 29 ctime=1741380469.96201627 elk-10.4.9/examples/TDDFT-time-evolution/Si-dielectric/0000755002504400250440000000000014762655565024326 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-time-evolution/Si-dielectric/PaxHeaders/elk.in0000644000000000000000000000013214762655565022707 xustar0030 mtime=1741380469.959016255 30 atime=1741380469.958016249 30 ctime=1741380469.959016255 elk-10.4.9/examples/TDDFT-time-evolution/Si-dielectric/elk.in0000644002504400250440000000427714762655565025443 0ustar00dewhurstdewhurst00000000000000 ! Dielectric function of silicon calculated using real-time evolution. This is ! done with task=481 which assumes that the A-field is constant in time. The ! corresponding electric field is thus proportional to a delta function at t=0 ! and its Fourier transform is a constant in frequency. ! Note that task=480 calculates the same but without assuming that the A-field ! is constant in time. This requires computing J(w)/E(w) which is numerically ! less stable than that obtained with task=481. ! Make a plot of JTOT_TD.OUT to see how the total current in the unit cell ! varies over time. tasks 0 120 121 450 460 481 ! no shifting of the atomic positions for the ground-state run tshift .false. ! enable conduction band local-orbitals lorbcnd .true. ! scissor correction works consistently for time-evolution and linear response scissor 0.0331 ! remove the constant part of the current before the Fourier transform jtconst0 .true. nempty 10 ! larger k-point set required for good convergence ngridk 8 8 8 ! the dielectric function should be check for convergence with respect to the ! total simulation time tstime 800 ! likewise convergence should be checked against the time step dtimes 0.2 ! Task 481 requires a constant A-field which should be small enough to remain ! in the linear regime. This can be done by using a laser pulse of zero ! frequency but with a full-width at half-maximum which is much larger than the ! total simulation time (tstime). The phase should be set to 90° to ensure that ! the pulse is of the form cos(ωt). ! laser pulse parameters ! 1 - 3 : polarisation vector (including amplitude) ! 4 : frequency ! 5 : phase in degrees ! 6 : chirp rate ! 7 : peak time ! 8 : full-width at half-maximum pulse 1 : number of laser pulses 0.1 0.0 0.0 0.0 90.0 0.0 0.0 10000.0 wplot 400 100 0 : nwplot, ngrkf, nswplot 0.0 0.5 : wplot avec 5.13 5.13 0.0 5.13 0.0 5.13 0.0 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 elk-10.4.9/examples/TDDFT-time-evolution/Si-dielectric/PaxHeaders/EPSILON_11.OUT0000644000000000000000000000013114762655565023606 xustar0030 mtime=1741380469.961016265 29 atime=1741380469.96001626 30 ctime=1741380469.961016265 elk-10.4.9/examples/TDDFT-time-evolution/Si-dielectric/EPSILON_11.OUT0000644002504400250440000007164214762655565026343 0ustar00dewhurstdewhurst00000000000000 0.000000000 12.36684514 0.1250000000E-02 12.36749934 0.2500000000E-02 12.36946246 0.3750000000E-02 12.37273605 0.5000000000E-02 12.37732270 0.6250000000E-02 12.38322602 0.7500000000E-02 12.39045069 0.8750000000E-02 12.39900245 0.1000000000E-01 12.40888810 0.1125000000E-01 12.42011553 0.1250000000E-01 12.43269373 0.1375000000E-01 12.44663283 0.1500000000E-01 12.46194409 0.1625000000E-01 12.47863995 0.1750000000E-01 12.49673404 0.1875000000E-01 12.51624122 0.2000000000E-01 12.53717763 0.2125000000E-01 12.55956070 0.2250000000E-01 12.58340920 0.2375000000E-01 12.60874328 0.2500000000E-01 12.63558454 0.2625000000E-01 12.66395607 0.2750000000E-01 12.69388249 0.2875000000E-01 12.72539002 0.3000000000E-01 12.75850656 0.3125000000E-01 12.79326177 0.3250000000E-01 12.82968709 0.3375000000E-01 12.86781590 0.3500000000E-01 12.90768356 0.3625000000E-01 12.94932750 0.3750000000E-01 12.99278738 0.3875000000E-01 13.03810515 0.4000000000E-01 13.08532515 0.4125000000E-01 13.13449434 0.4250000000E-01 13.18566241 0.4375000000E-01 13.23888181 0.4500000000E-01 13.29420807 0.4625000000E-01 13.35169992 0.4750000000E-01 13.41141948 0.4875000000E-01 13.47343246 0.5000000000E-01 13.53780846 0.5125000000E-01 13.60462116 0.5250000000E-01 13.67394855 0.5375000000E-01 13.74587332 0.5500000000E-01 13.82048313 0.5625000000E-01 13.89787095 0.5750000000E-01 13.97813550 0.5875000000E-01 14.06138161 0.6000000000E-01 14.14772070 0.6125000000E-01 14.23727133 0.6250000000E-01 14.33015967 0.6375000000E-01 14.42652022 0.6500000000E-01 14.52649638 0.6625000000E-01 14.63024127 0.6750000000E-01 14.73791855 0.6875000000E-01 14.84970332 0.7000000000E-01 14.96578314 0.7125000000E-01 15.08635919 0.7250000000E-01 15.21164756 0.7375000000E-01 15.34188062 0.7500000000E-01 15.47730868 0.7625000000E-01 15.61820177 0.7750000000E-01 15.76485168 0.7875000000E-01 15.91757427 0.8000000000E-01 16.07671210 0.8125000000E-01 16.24263739 0.8250000000E-01 16.41575545 0.8375000000E-01 16.59650862 0.8500000000E-01 16.78538074 0.8625000000E-01 16.98290241 0.8750000000E-01 17.18965704 0.8875000000E-01 17.40628790 0.9000000000E-01 17.63350647 0.9125000000E-01 17.87210217 0.9250000000E-01 18.12295393 0.9375000000E-01 18.38704401 0.9500000000E-01 18.66547453 0.9625000000E-01 18.95948742 0.9750000000E-01 19.27048870 0.9875000000E-01 19.60007813 0.1000000000 19.95008594 0.1012500000 20.32261848 0.1025000000 20.72011572 0.1037500000 21.14542423 0.1050000000 21.60189114 0.1062500000 22.09348637 0.1075000000 22.62496403 0.1087500000 23.20207888 0.1100000000 23.83188152 0.1112500000 24.52312905 0.1125000000 25.28686905 0.1137500000 26.13729139 0.1150000000 27.09300798 0.1162500000 28.17904358 0.1175000000 29.43006430 0.1187500000 30.89588496 0.1200000000 32.65146515 0.1212500000 34.81645839 0.1225000000 37.59646393 0.1237500000 41.36636060 0.1250000000 46.50885371 0.1262500000 47.12607525 0.1275000000 51.90044394 0.1287500000 64.71343229 0.1300000000 48.39756991 0.1312500000 29.95670409 0.1325000000 6.659136310 0.1337500000 -6.043839515 0.1350000000 -6.213665400 0.1362500000 -1.039989693 0.1375000000 8.149121243 0.1387500000 15.67965659 0.1400000000 22.67421819 0.1412500000 18.42767731 0.1425000000 14.80488993 0.1437500000 21.17906489 0.1450000000 27.33062601 0.1462500000 34.00612388 0.1475000000 39.96920790 0.1487500000 33.17206353 0.1500000000 39.47558764 0.1512500000 49.31749043 0.1525000000 50.80918038 0.1537500000 25.93640253 0.1550000000 40.83471378 0.1562500000 58.04680534 0.1575000000 75.98102204 0.1587500000 36.93976208 0.1600000000 42.58422438 0.1612500000 8.285070802 0.1625000000 -0.6134900051 0.1637500000 -29.00316129 0.1650000000 -7.399789133 0.1662500000 23.34912873 0.1675000000 -24.75448133 0.1687500000 -57.27174854 0.1700000000 -54.29580536 0.1712500000 -48.49579197 0.1725000000 -54.85420565 0.1737500000 -48.41016493 0.1750000000 -41.49317690 0.1762500000 -32.98199325 0.1775000000 -26.38213813 0.1787500000 -23.60689422 0.1800000000 -19.87321337 0.1812500000 -15.43277715 0.1825000000 -18.58863636 0.1837500000 -17.13763907 0.1850000000 -13.22476411 0.1862500000 -9.522296022 0.1875000000 -5.493068294 0.1887500000 -4.602902578 0.1900000000 -13.27444466 0.1912500000 -9.813769744 0.1925000000 -5.891675175 0.1937500000 -1.991989628 0.1950000000 1.713359085 0.1962500000 -1.676555233 0.1975000000 2.533046246 0.1987500000 2.088353476 0.2000000000 -12.69332020 0.2012500000 -8.306667815 0.2025000000 -6.444344786 0.2037500000 -4.529476977 0.2050000000 -4.235315856 0.2062500000 1.531488047 0.2075000000 -0.2735941649 0.2087500000 -10.66286013 0.2100000000 -5.305576435 0.2112500000 -1.274289900 0.2125000000 0.6071653104 0.2137500000 -2.568024100 0.2150000000 -1.490613082 0.2162500000 -3.452665468 0.2175000000 0.3607110687 0.2187500000 0.3270058436 0.2200000000 1.839749019 0.2212500000 2.201576514 0.2225000000 1.794070050 0.2237500000 -0.6130438390 0.2250000000 7.494744238 0.2262500000 7.542755794 0.2275000000 -2.297474997 0.2287500000 -8.231604744 0.2300000000 -17.69090640 0.2312500000 -11.03379663 0.2325000000 -11.89536503 0.2337500000 -26.30108378 0.2350000000 -21.11108045 0.2362500000 -21.09758026 0.2375000000 -16.17772741 0.2387500000 -14.31479982 0.2400000000 -13.32973247 0.2412500000 -13.67893551 0.2425000000 -11.40051260 0.2437500000 -9.736382434 0.2450000000 -11.91511377 0.2462500000 -14.71122828 0.2475000000 -11.95905048 0.2487500000 -9.283175464 0.2500000000 -6.705443275 0.2512500000 -3.971420458 0.2525000000 -5.870276363 0.2537500000 -7.559290139 0.2550000000 -7.084681941 0.2562500000 -13.26693893 0.2575000000 -10.88881754 0.2587500000 -9.160078918 0.2600000000 -13.55293387 0.2612500000 -12.82163590 0.2625000000 -10.85015246 0.2637500000 -8.653180823 0.2650000000 -8.130720944 0.2662500000 -9.939554673 0.2675000000 -9.142168813 0.2687500000 -10.78373385 0.2700000000 -9.796256911 0.2712500000 -8.386983436 0.2725000000 -7.065024892 0.2737500000 -7.065363824 0.2750000000 -8.611270377 0.2762500000 -8.039129413 0.2775000000 -7.022826267 0.2787500000 -6.036730217 0.2800000000 -5.709167453 0.2812500000 -6.877129342 0.2825000000 -5.921503295 0.2837500000 -4.797403196 0.2850000000 -4.743254094 0.2862500000 -4.615107374 0.2875000000 -7.442338774 0.2887500000 -7.041721861 0.2900000000 -5.859746887 0.2912500000 -5.075608085 0.2925000000 -4.704678691 0.2937500000 -4.765137001 0.2950000000 -6.341594258 0.2962500000 -5.423969106 0.2975000000 -4.607579061 0.2987500000 -4.558899960 0.3000000000 -3.613265967 0.3012500000 -3.909498904 0.3025000000 -4.438317739 0.3037500000 -6.037343120 0.3050000000 -6.407373909 0.3062500000 -5.550077427 0.3075000000 -4.867815638 0.3087500000 -4.408797061 0.3100000000 -3.994774339 0.3112500000 -3.645074080 0.3125000000 -3.002269552 0.3137500000 -2.430848856 0.3150000000 -2.367105387 0.3162500000 -3.971180201 0.3175000000 -3.215314492 0.3187500000 -3.440832964 0.3200000000 -3.858821717 0.3212500000 -2.934213359 0.3225000000 -2.814061460 0.3237500000 -2.790800403 0.3250000000 -2.978428085 0.3262500000 -4.745013166 0.3275000000 -4.069371802 0.3287500000 -2.954078514 0.3300000000 -2.687119787 0.3312500000 -3.238088892 0.3325000000 -3.343839985 0.3337500000 -2.991894717 0.3350000000 -3.277278510 0.3362500000 -3.953320042 0.3375000000 -2.716541576 0.3387500000 -3.060902238 0.3400000000 -4.920124844 0.3412500000 -3.850838744 0.3425000000 -3.390821806 0.3437500000 -3.317052445 0.3450000000 -3.039020565 0.3462500000 -4.025518726 0.3475000000 -4.740826561 0.3487500000 -4.571819020 0.3500000000 -3.769825235 0.3512500000 -3.405281448 0.3525000000 -3.495669140 0.3537500000 -3.361539258 0.3550000000 -3.649981186 0.3562500000 -3.492558592 0.3575000000 -3.263831802 0.3587500000 -3.349699361 0.3600000000 -3.193772650 0.3612500000 -2.907378501 0.3625000000 -2.522585021 0.3637500000 -2.538877005 0.3650000000 -2.689176351 0.3662500000 -2.392742967 0.3675000000 -2.552011086 0.3687500000 -2.303642622 0.3700000000 -2.338404823 0.3712500000 -1.755705140 0.3725000000 -1.101725813 0.3737500000 -1.362044353 0.3750000000 -2.610612546 0.3762500000 -3.112199114 0.3775000000 -2.841575103 0.3787500000 -2.801200877 0.3800000000 -2.664445220 0.3812500000 -2.747934253 0.3825000000 -3.732301538 0.3837500000 -3.641880009 0.3850000000 -3.008690499 0.3862500000 -2.493129536 0.3875000000 -2.774969223 0.3887500000 -2.997411688 0.3900000000 -2.755935016 0.3912500000 -2.948290052 0.3925000000 -2.574607856 0.3937500000 -2.625918323 0.3950000000 -3.141731778 0.3962500000 -2.927429091 0.3975000000 -2.779896468 0.3987500000 -2.522732804 0.4000000000 -2.283318381 0.4012500000 -2.601937346 0.4025000000 -2.595531279 0.4037500000 -2.415332468 0.4050000000 -2.351064975 0.4062500000 -2.215395558 0.4075000000 -2.085469689 0.4087500000 -1.962983634 0.4100000000 -1.845960093 0.4112500000 -1.741897794 0.4125000000 -1.776854232 0.4137500000 -1.632156733 0.4150000000 -1.518777852 0.4162500000 -1.678693028 0.4175000000 -1.531968957 0.4187500000 -1.425195904 0.4200000000 -1.247093028 0.4212500000 -1.074122740 0.4225000000 -1.313694951 0.4237500000 -1.223355857 0.4250000000 -0.8999496256 0.4262500000 -0.8426275669 0.4275000000 -1.279281901 0.4287500000 -1.287738844 0.4300000000 -1.055145521 0.4312500000 -1.752057594 0.4325000000 -2.182664815 0.4337500000 -1.878409477 0.4350000000 -1.556605096 0.4362500000 -1.567561409 0.4375000000 -1.641890222 0.4387500000 -1.487560974 0.4400000000 -1.492368008 0.4412500000 -1.327478075 0.4425000000 -1.394784657 0.4437500000 -1.528491893 0.4450000000 -1.602342597 0.4462500000 -1.523659274 0.4475000000 -1.658908739 0.4487500000 -2.129477644 0.4500000000 -1.913145774 0.4512500000 -1.617449726 0.4525000000 -1.545292219 0.4537500000 -1.506919160 0.4550000000 -1.423167764 0.4562500000 -1.454964904 0.4575000000 -1.740059062 0.4587500000 -1.502854685 0.4600000000 -1.270865613 0.4612500000 -1.347462930 0.4625000000 -1.429456286 0.4637500000 -1.347708366 0.4650000000 -1.228351451 0.4662500000 -1.257397494 0.4675000000 -1.614835652 0.4687500000 -1.513736092 0.4700000000 -1.365337638 0.4712500000 -1.235096376 0.4725000000 -1.256225521 0.4737500000 -1.305745701 0.4750000000 -1.156749143 0.4762500000 -1.161929672 0.4775000000 -1.219812162 0.4787500000 -1.142178359 0.4800000000 -1.281899395 0.4812500000 -1.366182414 0.4825000000 -1.225706925 0.4837500000 -1.111488775 0.4850000000 -1.013894762 0.4862500000 -0.9380535397 0.4875000000 -0.9618128011 0.4887500000 -0.9454119739 0.4900000000 -0.7906498831 0.4912500000 -0.8468581385 0.4925000000 -0.9885111213 0.4937500000 -0.9247284459 0.4950000000 -1.126894370 0.4962500000 -1.265497107 0.4975000000 -1.184095633 0.4987500000 -1.149931769 0.000000000 0.000000000 0.1250000000E-02 0.1046968754E-02 0.2500000000E-02 0.2094763063E-02 0.3750000000E-02 0.3144210257E-02 0.5000000000E-02 0.4196141220E-02 0.6250000000E-02 0.5251392189E-02 0.7500000000E-02 0.6310806572E-02 0.8750000000E-02 0.7375236801E-02 0.1000000000E-01 0.8445546216E-02 0.1125000000E-01 0.9522611008E-02 0.1250000000E-01 0.1060732221E-01 0.1375000000E-01 0.1170058775E-01 0.1500000000E-01 0.1280333461E-01 0.1625000000E-01 0.1391651099E-01 0.1750000000E-01 0.1504108868E-01 0.1875000000E-01 0.1617806547E-01 0.2000000000E-01 0.1732846765E-01 0.2125000000E-01 0.1849335275E-01 0.2250000000E-01 0.1967381234E-01 0.2375000000E-01 0.2087097498E-01 0.2500000000E-01 0.2208600946E-01 0.2625000000E-01 0.2332012813E-01 0.2750000000E-01 0.2457459048E-01 0.2875000000E-01 0.2585070701E-01 0.3000000000E-01 0.2714984330E-01 0.3125000000E-01 0.2847342443E-01 0.3250000000E-01 0.2982293969E-01 0.3375000000E-01 0.3119994767E-01 0.3500000000E-01 0.3260608177E-01 0.3625000000E-01 0.3404305620E-01 0.3750000000E-01 0.3551267293E-01 0.3875000000E-01 0.3701683142E-01 0.4000000000E-01 0.3855753518E-01 0.4125000000E-01 0.4013683468E-01 0.4250000000E-01 0.4175700812E-01 0.4375000000E-01 0.4342040305E-01 0.4500000000E-01 0.4512950572E-01 0.4625000000E-01 0.4688695699E-01 0.4750000000E-01 0.4869556395E-01 0.4875000000E-01 0.5055831300E-01 0.5000000000E-01 0.5247833263E-01 0.5125000000E-01 0.5445904515E-01 0.5250000000E-01 0.5650405478E-01 0.5375000000E-01 0.5861721226E-01 0.5500000000E-01 0.6080264122E-01 0.5625000000E-01 0.6306476050E-01 0.5750000000E-01 0.6540831141E-01 0.5875000000E-01 0.6783838833E-01 0.6000000000E-01 0.7036047302E-01 0.6125000000E-01 0.7298047289E-01 0.6250000000E-01 0.7570476381E-01 0.6375000000E-01 0.7854023823E-01 0.6500000000E-01 0.8149435911E-01 0.6625000000E-01 0.8457522089E-01 0.6750000000E-01 0.8779161813E-01 0.6875000000E-01 0.9115312342E-01 0.7000000000E-01 0.9467017569E-01 0.7125000000E-01 0.9835418084E-01 0.7250000000E-01 0.1022176266 0.7375000000E-01 0.1062742138 0.7500000000E-01 0.1105390080 0.7625000000E-01 0.1150286127 0.7750000000E-01 0.1197613714 0.7875000000E-01 0.1247576004 0.8000000000E-01 0.1300398613 0.8125000000E-01 0.1356332791 0.8250000000E-01 0.1415659151 0.8375000000E-01 0.1478692077 0.8500000000E-01 0.1545784941 0.8625000000E-01 0.1617336314 0.8750000000E-01 0.1693797402 0.8875000000E-01 0.1775680974 0.9000000000E-01 0.1863572055 0.9125000000E-01 0.1958141449 0.9250000000E-01 0.2060161491 0.9375000000E-01 0.2170526085 0.9500000000E-01 0.2290275429 0.9625000000E-01 0.2420626968 0.9750000000E-01 0.2563014515 0.9875000000E-01 0.2719138106 0.1000000000 0.2891028188 0.1012500000 0.3081129139 0.1025000000 0.3292409190 0.1037500000 0.3528506972 0.1050000000 0.3793929579 0.1062500000 0.4094324420 0.1075000000 0.4436858719 0.1087500000 0.4830759449 0.1100000000 0.5288098113 0.1112500000 0.5824959485 0.1125000000 0.6463231523 0.1137500000 0.7233437391 0.1150000000 0.8179392626 0.1162500000 0.9366228904 0.1175000000 1.089503705 0.1187500000 1.293161712 0.1200000000 1.576861584 0.1212500000 1.997861120 0.1225000000 2.686808686 0.1237500000 4.023512112 0.1250000000 7.556829603 0.1262500000 14.94513259 0.1275000000 14.51478556 0.1287500000 29.43206578 0.1300000000 60.92136249 0.1312500000 55.42456180 0.1325000000 59.95712504 0.1337500000 35.59927600 0.1350000000 27.24600469 0.1362500000 12.02326169 0.1375000000 7.318081206 0.1387500000 6.629632726 0.1400000000 10.01738321 0.1412500000 19.43566183 0.1425000000 9.393647287 0.1437500000 5.714194596 0.1450000000 5.423570967 0.1462500000 7.291526516 0.1475000000 15.13256322 0.1487500000 17.75611935 0.1500000000 15.62224986 0.1512500000 19.44888652 0.1525000000 43.19482444 0.1537500000 34.41764080 0.1550000000 22.05189365 0.1562500000 28.97950298 0.1575000000 56.84956859 0.1587500000 90.10927950 0.1600000000 75.41536399 0.1612500000 109.9085496 0.1625000000 79.68779941 0.1637500000 75.60581790 0.1650000000 44.11778247 0.1662500000 69.63801524 0.1675000000 107.4778978 0.1687500000 75.90582801 0.1700000000 46.56969368 0.1712500000 48.95350936 0.1725000000 27.71276125 0.1737500000 20.30070768 0.1750000000 10.13868210 0.1762500000 6.609461009 0.1775000000 6.120972454 0.1787500000 7.059486976 0.1800000000 5.263208863 0.1812500000 7.279077999 0.1825000000 9.754968778 0.1837500000 4.634128772 0.1850000000 3.282929395 0.1862500000 3.380962127 0.1875000000 5.213642191 0.1887500000 12.68877793 0.1900000000 9.251896644 0.1912500000 4.270094335 0.1925000000 3.353613677 0.1937500000 4.036655475 0.1950000000 7.827371020 0.1962500000 10.83574840 0.1975000000 10.27808667 0.1987500000 22.12382599 0.2000000000 15.92517009 0.2012500000 10.03621404 0.2025000000 8.461299070 0.2037500000 10.20241248 0.2050000000 7.169267180 0.2062500000 8.683922759 0.2075000000 19.62286886 0.2087500000 11.62128384 0.2100000000 6.599823948 0.2112500000 7.757649979 0.2125000000 10.94261042 0.2137500000 11.67408280 0.2150000000 12.90535575 0.2162500000 10.08020736 0.2175000000 9.849939734 0.2187500000 11.43635734 0.2200000000 11.28880333 0.2212500000 16.15764842 0.2225000000 15.43257850 0.2237500000 13.98200384 0.2250000000 14.61596848 0.2262500000 27.39009673 0.2275000000 32.40939105 0.2287500000 30.31965395 0.2300000000 24.12193394 0.2312500000 20.27831244 0.2325000000 26.25507090 0.2337500000 20.60612252 0.2350000000 12.46410191 0.2362500000 9.000060119 0.2375000000 6.062219975 0.2387500000 8.013391292 0.2400000000 6.537197207 0.2412500000 7.037572590 0.2425000000 5.440950416 0.2437500000 6.708260592 0.2450000000 10.13577970 0.2462500000 5.617687229 0.2475000000 2.855473565 0.2487500000 2.397840879 0.2500000000 2.836932232 0.2512500000 5.417473329 0.2525000000 9.595591986 0.2537500000 8.060882326 0.2550000000 11.53675568 0.2562500000 9.011640613 0.2575000000 5.866694068 0.2587500000 8.147601889 0.2600000000 7.126330128 0.2612500000 3.925026465 0.2625000000 2.428645075 0.2637500000 2.594170337 0.2650000000 4.837990603 0.2662500000 4.427294818 0.2675000000 4.180792750 0.2687500000 3.508883249 0.2700000000 1.648580391 0.2712500000 1.259410237 0.2725000000 1.666272908 0.2737500000 3.507219957 0.2750000000 2.504113685 0.2762500000 1.404299859 0.2775000000 1.013424359 0.2787500000 1.315536947 0.2800000000 2.420965066 0.2812500000 1.920870037 0.2825000000 1.180322183 0.2837500000 1.581049325 0.2850000000 2.639809484 0.2862500000 3.894657446 0.2875000000 3.807366199 0.2887500000 1.593135526 0.2900000000 1.132294860 0.2912500000 1.509677675 0.2925000000 1.918230866 0.2937500000 3.033744717 0.2950000000 2.081951284 0.2962500000 1.136984857 0.2975000000 1.400543281 0.2987500000 1.411048980 0.3000000000 1.696522054 0.3012500000 2.947907450 0.3025000000 3.744476803 0.3037500000 3.153834490 0.3050000000 1.578160000 0.3062500000 0.7931706197 0.3075000000 0.6459844572 0.3087500000 0.5924755628 0.3100000000 0.6925884680 0.3112500000 0.6029779963 0.3125000000 0.7289935387 0.3137500000 1.374192988 0.3150000000 2.466808889 0.3162500000 2.398610267 0.3175000000 1.685480254 0.3187500000 2.714136359 0.3200000000 1.569825948 0.3212500000 1.487656427 0.3225000000 2.366534611 0.3237500000 2.267320313 0.3250000000 3.180232184 0.3262500000 2.796507784 0.3275000000 1.313119869 0.3287500000 1.305385092 0.3300000000 2.403647388 0.3312500000 2.336111840 0.3325000000 2.403107729 0.3337500000 2.023030797 0.3350000000 3.191611140 0.3362500000 1.910748767 0.3375000000 1.853307881 0.3387500000 3.892555150 0.3400000000 2.239795059 0.3412500000 1.405505607 0.3425000000 1.824058414 0.3437500000 1.844642565 0.3450000000 2.445415682 0.3462500000 2.576500223 0.3475000000 2.398935463 0.3487500000 1.076994168 0.3500000000 0.8199811839 0.3512500000 1.269977787 0.3525000000 1.101498195 0.3537500000 1.485716865 0.3550000000 1.207920299 0.3562500000 0.8773572102 0.3575000000 1.068270378 0.3587500000 0.7908754509 0.3600000000 0.7279071307 0.3612500000 0.5253657086 0.3625000000 0.7308304904 0.3637500000 0.9437027647 0.3650000000 0.8988082080 0.3662500000 0.9670334989 0.3675000000 0.8953232021 0.3687500000 0.9544683301 0.3700000000 0.7508188686 0.3712500000 0.6927418881 0.3725000000 1.303835799 0.3737500000 2.419691385 0.3750000000 2.672346297 0.3762500000 2.084123113 0.3775000000 1.683225727 0.3787500000 1.485134678 0.3800000000 1.822180817 0.3812500000 1.894721339 0.3825000000 2.048966030 0.3837500000 0.8671664840 0.3850000000 0.5968397109 0.3862500000 0.8375488807 0.3875000000 1.430567710 0.3887500000 0.9002050942 0.3900000000 1.062132485 0.3912500000 0.7518841503 0.3925000000 0.7740044079 0.3937500000 1.073346064 0.3950000000 0.8957325585 0.3962500000 0.4902152681 0.3975000000 0.3733440057 0.3987500000 0.2904219217 0.4000000000 0.4585485737 0.4012500000 0.6906905618 0.4025000000 0.3065764875 0.4037500000 0.2478680668 0.4050000000 0.1803062577 0.4062500000 0.1203735776 0.4075000000 0.1042793467 0.4087500000 0.1088879393 0.4100000000 0.1344436590 0.4112500000 0.2204338649 0.4125000000 0.2218846290 0.4137500000 0.1909837848 0.4150000000 0.3533656650 0.4162500000 0.3216227260 0.4175000000 0.2317839712 0.4187500000 0.2452139233 0.4200000000 0.2612872083 0.4212500000 0.4913193627 0.4225000000 0.6571984731 0.4237500000 0.4455267751 0.4250000000 0.5684765975 0.4262500000 0.9686252690 0.4275000000 1.242671922 0.4287500000 0.9123936175 0.4300000000 1.361251237 0.4312500000 1.663365149 0.4325000000 1.029364484 0.4337500000 0.5717631830 0.4350000000 0.6192892116 0.4362500000 0.8085905338 0.4375000000 0.7146504635 0.4387500000 0.6767220452 0.4400000000 0.6372162048 0.4412500000 0.7643943800 0.4425000000 0.9485514584 0.4437500000 0.9477133263 0.4450000000 0.9022519040 0.4462500000 0.8600536981 0.4475000000 1.112946169 0.4487500000 0.7841823130 0.4500000000 0.3801594224 0.4512500000 0.3401586728 0.4525000000 0.4513818623 0.4537500000 0.4952741452 0.4550000000 0.4353461462 0.4562500000 0.7614624652 0.4575000000 0.4252194523 0.4587500000 0.2527101729 0.4600000000 0.3294539158 0.4612500000 0.5738171406 0.4625000000 0.4220101977 0.4637500000 0.3902766817 0.4650000000 0.4627179941 0.4662500000 0.6271599860 0.4675000000 0.5834973897 0.4687500000 0.2866036702 0.4700000000 0.2593467531 0.4712500000 0.2777934736 0.4725000000 0.3868129950 0.4737500000 0.2894385931 0.4750000000 0.2903371027 0.4762500000 0.3740774842 0.4775000000 0.3860564226 0.4787500000 0.3482149415 0.4800000000 0.5016238710 0.4812500000 0.2429889045 0.4825000000 0.1418399772 0.4837500000 0.1230918577 0.4850000000 0.1597057065 0.4862500000 0.1999666068 0.4875000000 0.2984345165 0.4887500000 0.2284729944 0.4900000000 0.2861077391 0.4912500000 0.5031258456 0.4925000000 0.4952987639 0.4937500000 0.4641894338 0.4950000000 0.6536566822 0.4962500000 0.3630893292 0.4975000000 0.2798453234 0.4987500000 0.1611935910 elk-10.4.9/examples/TDDFT-time-evolution/Si-dielectric/PaxHeaders/EPSILON_TDRT_11.OUT0000644000000000000000000000013214762655565024444 xustar0030 mtime=1741380469.963016275 30 atime=1741380469.963016275 30 ctime=1741380469.963016275 elk-10.4.9/examples/TDDFT-time-evolution/Si-dielectric/EPSILON_TDRT_11.OUT0000644002504400250440000007164214762655565027200 0ustar00dewhurstdewhurst00000000000000 0.000000000 -12.09421458 0.1250000000E-02 -13.38340278 0.2500000000E-02 -7.743034203 0.3750000000E-02 2.220302095 0.5000000000E-02 11.88029297 0.6250000000E-02 17.98126740 0.7500000000E-02 19.73332308 0.8750000000E-02 18.42171363 0.1000000000E-01 16.15859519 0.1125000000E-01 14.57737891 0.1250000000E-01 14.16326915 0.1375000000E-01 14.42830617 0.1500000000E-01 14.60411873 0.1625000000E-01 14.28579075 0.1750000000E-01 13.62403233 0.1875000000E-01 13.05600496 0.2000000000E-01 12.88472341 0.2125000000E-01 13.05647448 0.2250000000E-01 13.26652229 0.2375000000E-01 13.24852750 0.2500000000E-01 12.98553261 0.2625000000E-01 12.68454954 0.2750000000E-01 12.56970181 0.2875000000E-01 12.68849086 0.3000000000E-01 12.89034405 0.3125000000E-01 12.97553590 0.3250000000E-01 12.87087622 0.3375000000E-01 12.68061144 0.3500000000E-01 12.58051327 0.3625000000E-01 12.65902230 0.3750000000E-01 12.84611489 0.3875000000E-01 12.98486973 0.4000000000E-01 12.97411427 0.4125000000E-01 12.85377659 0.4250000000E-01 12.76192029 0.4375000000E-01 12.80793285 0.4500000000E-01 12.97711953 0.4625000000E-01 13.14896543 0.4750000000E-01 13.20808232 0.4875000000E-01 13.14635545 0.5000000000E-01 13.06644510 0.5125000000E-01 13.08693313 0.5250000000E-01 13.23622913 0.5375000000E-01 13.42964264 0.5500000000E-01 13.54773496 0.5625000000E-01 13.54379106 0.5750000000E-01 13.48411322 0.5875000000E-01 13.48664282 0.6000000000E-01 13.61456385 0.6125000000E-01 13.82060600 0.6250000000E-01 13.99099724 0.6375000000E-01 14.04839184 0.6500000000E-01 14.02099075 0.6625000000E-01 14.01637293 0.6750000000E-01 14.12437643 0.6875000000E-01 14.33660413 0.7000000000E-01 14.55457439 0.7125000000E-01 14.67871800 0.7250000000E-01 14.69806945 0.7375000000E-01 14.70020712 0.7500000000E-01 14.79268452 0.7625000000E-01 15.00651817 0.7750000000E-01 15.26832292 0.7875000000E-01 15.46619121 0.8000000000E-01 15.55043802 0.8125000000E-01 15.57895167 0.8250000000E-01 15.66621418 0.8375000000E-01 15.88116274 0.8500000000E-01 16.18512534 0.8625000000E-01 16.46578515 0.8750000000E-01 16.63762869 0.8875000000E-01 16.71962080 0.9000000000E-01 16.82033415 0.9125000000E-01 17.04265340 0.9250000000E-01 17.39208457 0.9375000000E-01 17.77059575 0.9500000000E-01 18.06293499 0.9625000000E-01 18.24023416 0.9750000000E-01 18.38907133 0.9875000000E-01 18.63856703 0.1000000000 19.04781846 0.1012500000 19.55240182 0.1025000000 20.01894782 0.1037500000 20.36298127 0.1050000000 20.62841150 0.1062500000 20.95745910 0.1075000000 21.47299305 0.1087500000 22.17231989 0.1100000000 22.92577680 0.1112500000 23.58744177 0.1125000000 24.12929449 0.1137500000 24.68483219 0.1150000000 25.45766170 0.1162500000 26.56183522 0.1175000000 27.92444660 0.1187500000 29.34197971 0.1200000000 30.66295936 0.1212500000 31.95686771 0.1225000000 33.51111861 0.1237500000 35.60038845 0.1250000000 38.13834581 0.1262500000 40.44291554 0.1275000000 41.33108830 0.1287500000 39.59292113 0.1300000000 34.65703267 0.1312500000 27.09099182 0.1325000000 18.60123264 0.1337500000 11.43272601 0.1350000000 7.410342174 0.1362500000 7.113662628 0.1375000000 9.659361590 0.1387500000 13.24942220 0.1400000000 16.19233184 0.1412500000 17.79718806 0.1425000000 18.59737957 0.1437500000 19.77818401 0.1450000000 22.20671777 0.1462500000 25.73833521 0.1475000000 29.29069215 0.1487500000 31.63734110 0.1500000000 32.34499503 0.1512500000 32.14759713 0.1525000000 32.43445635 0.1537500000 34.17402216 0.1550000000 37.03697724 0.1562500000 39.38478717 0.1575000000 39.19808755 0.1587500000 35.34564500 0.1600000000 28.32725806 0.1612500000 19.96865342 0.1625000000 12.26803620 0.1637500000 6.181069221 0.1650000000 1.166396577 0.1662500000 -4.223209148 0.1675000000 -11.14135452 0.1687500000 -19.47621803 0.1700000000 -27.75383036 0.1712500000 -33.94678283 0.1725000000 -36.62096058 0.1737500000 -35.67807052 0.1750000000 -32.28002259 0.1762500000 -28.10161227 0.1775000000 -24.45147733 0.1787500000 -21.79167551 0.1800000000 -19.84216956 0.1812500000 -18.06087083 0.1825000000 -16.11093408 0.1837500000 -14.03587699 0.1850000000 -12.12223842 0.1862500000 -10.63141562 0.1875000000 -9.610153116 0.1887500000 -8.876213191 0.1900000000 -8.141243649 0.1912500000 -7.170661140 0.1925000000 -5.898679255 0.1937500000 -4.463599269 0.1950000000 -3.159449101 0.1962500000 -2.315152964 0.1975000000 -2.135965224 0.1987500000 -2.576765616 0.2000000000 -3.329145167 0.2012500000 -3.957997717 0.2025000000 -4.128975895 0.2037500000 -3.790860178 0.2050000000 -3.187403905 0.2062500000 -2.681412474 0.2075000000 -2.507558779 0.2087500000 -2.626385297 0.2100000000 -2.780175714 0.2112500000 -2.701768794 0.2125000000 -2.314487715 0.2137500000 -1.773402453 0.2150000000 -1.324952682 0.2162500000 -1.102534067 0.2175000000 -1.019939269 0.2187500000 -0.8417530741 0.2200000000 -0.3705958073 0.2212500000 0.3929667395 0.2225000000 1.229729004 0.2237500000 1.818609098 0.2250000000 1.890738473 0.2262500000 1.313175020 0.2275000000 0.7245145078E-01 0.2287500000 -1.783502729 0.2300000000 -4.164335673 0.2312500000 -6.893560722 0.2325000000 -9.657783563 0.2337500000 -12.03118085 0.2350000000 -13.60501617 0.2362500000 -14.16306571 0.2375000000 -13.79294704 0.2387500000 -12.85385000 0.2400000000 -11.81110509 0.2412500000 -11.03053631 0.2425000000 -10.64339958 0.2437500000 -10.54043297 0.2450000000 -10.47514862 0.2462500000 -10.20595041 0.2475000000 -9.607365567 0.2487500000 -8.715845491 0.2500000000 -7.711520112 0.2512500000 -6.854027372 0.2525000000 -6.392719439 0.2537500000 -6.474206757 0.2550000000 -7.077890451 0.2562500000 -8.011263610 0.2575000000 -8.977796538 0.2587500000 -9.694021808 0.2600000000 -10.00116926 0.2612500000 -9.915003083 0.2625000000 -9.590798042 0.2637500000 -9.228220696 0.2650000000 -8.971812573 0.2662500000 -8.858117224 0.2675000000 -8.827118121 0.2687500000 -8.778330176 0.2700000000 -8.633377299 0.2712500000 -8.373002691 0.2725000000 -8.036674243 0.2737500000 -7.692536182 0.2750000000 -7.396392920 0.2762500000 -7.160546058 0.2775000000 -6.948561150 0.2787500000 -6.700640693 0.2800000000 -6.377665040 0.2812500000 -5.997562846 0.2825000000 -5.637120955 0.2837500000 -5.391544522 0.2850000000 -5.313918362 0.2862500000 -5.375679821 0.2875000000 -5.479353170 0.2887500000 -5.518861444 0.2900000000 -5.446070016 0.2912500000 -5.294621161 0.2925000000 -5.142817649 0.2937500000 -5.044584294 0.2950000000 -4.983952581 0.2962500000 -4.891136911 0.2975000000 -4.708951272 0.2987500000 -4.455928628 0.3000000000 -4.232035071 0.3012500000 -4.156349384 0.3025000000 -4.279887994 0.3037500000 -4.538266333 0.3050000000 -4.780830297 0.3062500000 -4.857157608 0.3075000000 -4.701487075 0.3087500000 -4.360344423 0.3100000000 -3.952013138 0.3112500000 -3.593279217 0.3125000000 -3.344529266 0.3137500000 -3.201737789 0.3150000000 -3.125976840 0.3162500000 -3.078827554 0.3175000000 -3.038877324 0.3187500000 -2.998059620 0.3200000000 -2.953328305 0.3212500000 -2.906169118 0.3225000000 -2.867279897 0.3237500000 -2.854482790 0.3250000000 -2.878607139 0.3262500000 -2.927326277 0.3275000000 -2.964007435 0.3287500000 -2.948441878 0.3300000000 -2.866821159 0.3312500000 -2.747453606 0.3325000000 -2.647590868 0.3337500000 -2.618940713 0.3350000000 -2.676390255 0.3362500000 -2.791871290 0.3375000000 -2.915698174 0.3387500000 -3.007788950 0.3400000000 -3.056794257 0.3412500000 -3.077850642 0.3425000000 -3.096663288 0.3437500000 -3.134413090 0.3450000000 -3.201337936 0.3462500000 -3.296188326 0.3475000000 -3.405575454 0.3487500000 -3.503338308 0.3500000000 -3.556434852 0.3512500000 -3.540889737 0.3525000000 -3.459919174 0.3537500000 -3.348299613 0.3550000000 -3.253453886 0.3562500000 -3.202517278 0.3575000000 -3.180048404 0.3587500000 -3.137123546 0.3600000000 -3.028987545 0.3612500000 -2.853418099 0.3625000000 -2.657783147 0.3637500000 -2.505817033 0.3650000000 -2.428291040 0.3662500000 -2.397318120 0.3675000000 -2.347246447 0.3687500000 -2.227965038 0.3700000000 -2.049055535 0.3712500000 -1.878909939 0.3725000000 -1.798133485 0.3737500000 -1.842953984 0.3750000000 -1.982150441 0.3762500000 -2.143818704 0.3775000000 -2.268605099 0.3787500000 -2.346405870 0.3800000000 -2.409383964 0.3812500000 -2.491287850 0.3825000000 -2.590116863 0.3837500000 -2.666232186 0.3850000000 -2.676521220 0.3862500000 -2.614512154 0.3875000000 -2.521954129 0.3887500000 -2.461852888 0.3900000000 -2.474723343 0.3912500000 -2.552393316 0.3925000000 -2.647933499 0.3937500000 -2.710951393 0.3950000000 -2.719357672 0.3962500000 -2.685297305 0.3975000000 -2.636180528 0.3987500000 -2.590719903 0.4000000000 -2.549610328 0.4012500000 -2.504044930 0.4025000000 -2.449182060 0.4037500000 -2.388106951 0.4050000000 -2.324180826 0.4062500000 -2.252551961 0.4075000000 -2.162259040 0.4087500000 -2.048648897 0.4100000000 -1.923823214 0.4112500000 -1.812865935 0.4125000000 -1.736353854 0.4137500000 -1.693328954 0.4150000000 -1.660288347 0.4162500000 -1.608672379 0.4175000000 -1.527080531 0.4187500000 -1.429678669 0.4200000000 -1.343691200 0.4212500000 -1.286774034 0.4225000000 -1.253769739 0.4237500000 -1.224129518 0.4250000000 -1.183248158 0.4262500000 -1.138794530 0.4275000000 -1.117359481 0.4287500000 -1.143622500 0.4300000000 -1.219151662 0.4312500000 -1.318237542 0.4325000000 -1.403926778 0.4337500000 -1.451073470 0.4350000000 -1.458478590 0.4362500000 -1.442358880 0.4375000000 -1.419086110 0.4387500000 -1.392893208 0.4400000000 -1.358158025 0.4412500000 -1.312165860 0.4425000000 -1.265187730 0.4437500000 -1.237761817 0.4450000000 -1.246845290 0.4462500000 -1.292388649 0.4475000000 -1.355550920 0.4487500000 -1.410090939 0.4500000000 -1.438068684 0.4512500000 -1.438389676 0.4525000000 -1.423255655 0.4537500000 -1.407033657 0.4550000000 -1.396654541 0.4562500000 -1.389643352 0.4575000000 -1.379031805 0.4587500000 -1.359819884 0.4600000000 -1.332307498 0.4612500000 -1.301478534 0.4625000000 -1.274508573 0.4637500000 -1.258291866 0.4650000000 -1.257127616 0.4662500000 -1.270151970 0.4675000000 -1.289529142 0.4687500000 -1.301782140 0.4700000000 -1.293496200 0.4712500000 -1.259097481 0.4725000000 -1.205563552 0.4737500000 -1.149924588 0.4750000000 -1.110226632 0.4762500000 -1.095588042 0.4775000000 -1.101880816 0.4787500000 -1.115472520 0.4800000000 -1.121671233 0.4812500000 -1.111710785 0.4825000000 -1.084283268 0.4837500000 -1.042461443 0.4850000000 -0.9900315523 0.4862500000 -0.9303841980 0.4875000000 -0.8676663528 0.4887500000 -0.8074934698 0.4900000000 -0.7553175288 0.4912500000 -0.7133130907 0.4925000000 -0.6782380281 0.4937500000 -0.6414320460 0.4950000000 -0.5896598310 0.4962500000 -0.5067792392 0.4975000000 -0.3873157628 0.4987500000 -0.2637810421 0.000000000 -13.07539064 0.1250000000E-02 -21.56290832 0.2500000000E-02 -29.18756368 0.3750000000E-02 -31.80140560 0.5000000000E-02 -28.67966819 0.6250000000E-02 -21.97771112 0.7500000000E-02 -14.82802994 0.8750000000E-02 -9.600315366 0.1000000000E-01 -7.010588162 0.1125000000E-01 -6.307290587 0.1250000000E-01 -6.177691522 0.1375000000E-01 -5.688728466 0.1500000000E-01 -4.703645940 0.1625000000E-01 -3.661371794 0.1750000000E-01 -3.035837155 0.1875000000E-01 -2.929215566 0.2000000000E-01 -3.056062828 0.2125000000E-01 -3.039004254 0.2250000000E-01 -2.722729295 0.2375000000E-01 -2.255448362 0.2500000000E-01 -1.911998632 0.2625000000E-01 -1.841431660 0.2750000000E-01 -1.955495017 0.2875000000E-01 -2.030628204 0.3000000000E-01 -1.912068623 0.3125000000E-01 -1.637420756 0.3250000000E-01 -1.384055501 0.3375000000E-01 -1.302168140 0.3500000000E-01 -1.386072362 0.3625000000E-01 -1.490618248 0.3750000000E-01 -1.467218522 0.3875000000E-01 -1.293391374 0.4000000000E-01 -1.084076697 0.4125000000E-01 -0.9823018738 0.4250000000E-01 -1.031465344 0.4375000000E-01 -1.141783000 0.4500000000E-01 -1.175537525 0.4625000000E-01 -1.070763446 0.4750000000E-01 -0.8929209660 0.4875000000E-01 -0.7719087180 0.5000000000E-01 -0.7842722046 0.5125000000E-01 -0.8866382861 0.5250000000E-01 -0.9576933200 0.5375000000E-01 -0.9083014768 0.5500000000E-01 -0.7601530466 0.5625000000E-01 -0.6238102770 0.5750000000E-01 -0.5979742677 0.5875000000E-01 -0.6813399067 0.6000000000E-01 -0.7753865563 0.6125000000E-01 -0.7740449584 0.6250000000E-01 -0.6588089972 0.6375000000E-01 -0.5142136781 0.6500000000E-01 -0.4508278046 0.6625000000E-01 -0.5056848774 0.6750000000E-01 -0.6095146587 0.6875000000E-01 -0.6495825224 0.7000000000E-01 -0.5711704448 0.7125000000E-01 -0.4265128200 0.7250000000E-01 -0.3275334534 0.7375000000E-01 -0.3450749969 0.7500000000E-01 -0.4451229833 0.7625000000E-01 -0.5192101631 0.7750000000E-01 -0.4817451639 0.7875000000E-01 -0.3470266024 0.8000000000E-01 -0.2167923018 0.8125000000E-01 -0.1891567991 0.8250000000E-01 -0.2702594669 0.8375000000E-01 -0.3678783673 0.8500000000E-01 -0.3732978022 0.8625000000E-01 -0.2587549167 0.8750000000E-01 -0.1032995485 0.8875000000E-01 -0.2316692455E-01 0.9000000000E-01 -0.6786913875E-01 0.9125000000E-01 -0.1744906920 0.9250000000E-01 -0.2218468811 0.9375000000E-01 -0.1376903932 0.9500000000E-01 0.3576241000E-01 0.9625000000E-01 0.1771343524 0.9750000000E-01 0.1926265843 0.9875000000E-01 0.1009032398 0.1000000000 0.2029758421E-01 0.1012500000 0.6717600716E-01 0.1025000000 0.2528677827 0.1037500000 0.4701210008 0.1050000000 0.5840668182 0.1062500000 0.5516664714 0.1075000000 0.4661458259 0.1087500000 0.4842538145 0.1100000000 0.6940119255 0.1112500000 1.034806838 0.1125000000 1.342703270 0.1137500000 1.491145032 0.1150000000 1.514095350 0.1162500000 1.605175081 0.1175000000 1.982327051 0.1187500000 2.720924462 0.1200000000 3.699225458 0.1212500000 4.729029630 0.1225000000 5.803443180 0.1237500000 7.280150805 0.1250000000 9.820024731 0.1262500000 14.03493085 0.1275000000 19.99567721 0.1287500000 26.89021120 0.1300000000 33.10068831 0.1312500000 36.76797048 0.1325000000 36.62566197 0.1337500000 32.67793694 0.1350000000 26.31330591 0.1362500000 19.72021331 0.1375000000 14.86878388 0.1387500000 12.60910018 0.1400000000 12.40822670 0.1412500000 12.88467162 0.1425000000 12.80446214 0.1437500000 11.89762699 0.1450000000 10.96194571 0.1462500000 11.19825382 0.1475000000 13.25774749 0.1487500000 16.69850634 0.1500000000 20.27100875 0.1512500000 22.85491237 0.1525000000 24.37268361 0.1537500000 25.98198710 0.1550000000 29.34140190 0.1562500000 35.41594289 0.1575000000 43.65359487 0.1587500000 52.14054467 0.1600000000 58.67195224 0.1612500000 62.02961611 0.1625000000 62.60277206 0.1637500000 61.94014530 0.1650000000 61.56051790 0.1662500000 61.85143608 0.1675000000 61.80301876 0.1687500000 59.73021248 0.1700000000 54.46325860 0.1712500000 46.20000589 0.1725000000 36.48659662 0.1737500000 27.39851810 0.1750000000 20.49566671 0.1762500000 16.19900535 0.1775000000 13.88480095 0.1787500000 12.50504296 0.1800000000 11.25996717 0.1812500000 9.919941338 0.1825000000 8.704715951 0.1837500000 7.924630814 0.1850000000 7.679992869 0.1862500000 7.792760841 0.1875000000 7.947011989 0.1887500000 7.893114202 0.1900000000 7.579218030 0.1912500000 7.159472989 0.1925000000 6.905358803 0.1937500000 7.073405599 0.1950000000 7.777355010 0.1962500000 8.908629165 0.1975000000 10.14842314 0.1987500000 11.09134339 0.2000000000 11.44095711 0.2012500000 11.17409081 0.2025000000 10.56260245 0.2037500000 10.01816218 0.2050000000 9.846334511 0.2062500000 10.07069191 0.2075000000 10.44866378 0.2087500000 10.66675238 0.2100000000 10.57177016 0.2112500000 10.26939433 0.2125000000 10.02414580 0.2137500000 10.04687851 0.2150000000 10.33828872 0.2162500000 10.70684404 0.2175000000 10.93982376 0.2187500000 10.98926657 0.2200000000 11.03044499 0.2212500000 11.35554331 0.2225000000 12.19014562 0.2237500000 13.56634313 0.2250000000 15.32568924 0.2262500000 17.21766732 0.2275000000 18.99667299 0.2287500000 20.44843563 0.2300000000 21.36048505 0.2312500000 21.51090924 0.2325000000 20.73173514 0.2337500000 19.02538100 0.2350000000 16.64544505 0.2362500000 14.05806471 0.2375000000 11.77747361 0.2387500000 10.15948810 0.2400000000 9.270170993 0.2412500000 8.900221903 0.2425000000 8.705922171 0.2437500000 8.389139354 0.2450000000 7.822895952 0.2462500000 7.076789033 0.2475000000 6.355704235 0.2487500000 5.897685308 0.2500000000 5.875017460 0.2512500000 6.325313405 0.2525000000 7.126814765 0.2537500000 8.026784304 0.2550000000 8.722066629 0.2562500000 8.969497747 0.2575000000 8.681187719 0.2587500000 7.956619701 0.2600000000 7.030938498 0.2612500000 6.164025171 0.2625000000 5.528586937 0.2637500000 5.154059168 0.2650000000 4.947758298 0.2662500000 4.770086409 0.2675000000 4.515468665 0.2687500000 4.157241445 0.2700000000 3.742623138 0.2712500000 3.352077565 0.2725000000 3.050644892 0.2737500000 2.855732593 0.2750000000 2.733944448 0.2762500000 2.625957650 0.2775000000 2.486293190 0.2787500000 2.316362598 0.2800000000 2.169410174 0.2812500000 2.119430252 0.2825000000 2.209230181 0.2837500000 2.411160433 0.2850000000 2.631260118 0.2862500000 2.760267898 0.2875000000 2.740017417 0.2887500000 2.598329800 0.2900000000 2.425194910 0.2912500000 2.306191621 0.2925000000 2.263015274 0.2937500000 2.247187624 0.2950000000 2.191873905 0.2962500000 2.079594879 0.2975000000 1.968835735 0.2987500000 1.953841380 0.3000000000 2.085706856 0.3012500000 2.316332926 0.3025000000 2.512280444 0.3037500000 2.533478385 0.3050000000 2.322608486 0.3062500000 1.942815346 0.3075000000 1.539525234 0.3087500000 1.256020339 0.3100000000 1.161045956 0.3112500000 1.231321681 0.3125000000 1.388620780 0.3137500000 1.555436951 0.3150000000 1.690002742 0.3162500000 1.786737594 0.3175000000 1.856739466 0.3187500000 1.911638939 0.3200000000 1.960955237 0.3212500000 2.015241275 0.3225000000 2.082918032 0.3237500000 2.159959839 0.3250000000 2.224449711 0.3262500000 2.247376700 0.3275000000 2.216092321 0.3287500000 2.151962915 0.3300000000 2.104500869 0.3312500000 2.122035803 0.3325000000 2.219017868 0.3337500000 2.364554462 0.3350000000 2.501170288 0.3362500000 2.579898768 0.3375000000 2.586555273 0.3387500000 2.542831847 0.3400000000 2.485933225 0.3412500000 2.444590120 0.3425000000 2.427213120 0.3437500000 2.424550070 0.3450000000 2.418251839 0.3462500000 2.387222545 0.3475000000 2.311876681 0.3487500000 2.181278598 0.3500000000 2.003332567 0.3512500000 1.809317049 0.3525000000 1.642836240 0.3537500000 1.534649801 0.3550000000 1.480091792 0.3562500000 1.439375510 0.3575000000 1.365888594 0.3587500000 1.243887628 0.3600000000 1.105422782 0.3612500000 1.009637763 0.3625000000 0.9975640188 0.3637500000 1.057775564 0.3650000000 1.132496351 0.3662500000 1.162274516 0.3675000000 1.135006540 0.3687500000 1.099293508 0.3700000000 1.129255618 0.3712500000 1.266867542 0.3725000000 1.486724799 0.3737500000 1.710909615 0.3750000000 1.861990832 0.3762500000 1.912494381 0.3775000000 1.893494229 0.3787500000 1.859108103 0.3800000000 1.838967960 0.3812500000 1.818271803 0.3825000000 1.759710911 0.3837500000 1.645684566 0.3850000000 1.502986806 0.3862500000 1.388259722 0.3875000000 1.346190744 0.3887500000 1.374941454 0.3900000000 1.426509490 0.3912500000 1.440707852 0.3925000000 1.385197721 0.3937500000 1.271622712 0.3950000000 1.139321855 0.3962500000 1.023799747 0.3975000000 0.9359213166 0.3987500000 0.8646716229 0.4000000000 0.7950680513 0.4012500000 0.7223777719 0.4025000000 0.6514555632 0.4037500000 0.5862834241 0.4050000000 0.5235673222 0.4062500000 0.4580543128 0.4075000000 0.3934432995 0.4087500000 0.3456923826 0.4100000000 0.3324428133 0.4112500000 0.3565462312 0.4125000000 0.3992339216 0.4137500000 0.4313088455 0.4150000000 0.4347483037 0.4162500000 0.4168460392 0.4175000000 0.4043669882 0.4187500000 0.4220249009 0.4200000000 0.4732257508 0.4212500000 0.5392493952 0.4225000000 0.5971599732 0.4237500000 0.6405250822 0.4250000000 0.6846405261 0.4262500000 0.7514797777 0.4275000000 0.8472428952 0.4287500000 0.9519094284 0.4300000000 1.030123295 0.4312500000 1.054901543 0.4325000000 1.025308956 0.4337500000 0.9648055939 0.4350000000 0.9031312880 0.4362500000 0.8573552317 0.4375000000 0.8267086451 0.4387500000 0.8028580825 0.4400000000 0.7841437376 0.4412500000 0.7801222672 0.4425000000 0.8025641118 0.4437500000 0.8516005213 0.4450000000 0.9100112004 0.4462500000 0.9514656362 0.4475000000 0.9566282169 0.4487500000 0.9246967491 0.4500000000 0.8720488111 0.4512500000 0.8200566421 0.4525000000 0.7818853311 0.4537500000 0.7574045578 0.4550000000 0.7379299390 0.4562500000 0.7151983350 0.4575000000 0.6873758134 0.4587500000 0.6589777676 0.4600000000 0.6367605200 0.4612500000 0.6255490455 0.4625000000 0.6261551778 0.4637500000 0.6349863653 0.4650000000 0.6444226408 0.4662500000 0.6443437022 0.4675000000 0.6258344184 0.4687500000 0.5864557172 0.4700000000 0.5338637212 0.4712500000 0.4840688129 0.4725000000 0.4537606923 0.4737500000 0.4508377446 0.4750000000 0.4694792724 0.4762500000 0.4934186838 0.4775000000 0.5053005931 0.4787500000 0.4957452993 0.4800000000 0.4664357468 0.4812500000 0.4264255775 0.4825000000 0.3857249969 0.4837500000 0.3511703298 0.4850000000 0.3264134979 0.4862500000 0.3139216548 0.4875000000 0.3157417185 0.4887500000 0.3320096470 0.4900000000 0.3590782856 0.4912500000 0.3896512284 0.4925000000 0.4150728081 0.4937500000 0.4274571189 0.4950000000 0.4193572986 0.4962500000 0.3815635498 0.4975000000 0.3054189771 0.4987500000 0.2079996349 elk-10.4.9/examples/TDDFT-time-evolution/PaxHeaders/FeCo-Ehrenfest0000644000000000000000000000013214762655565021604 xustar0030 mtime=1741380469.966016291 30 atime=1741380469.965016286 30 ctime=1741380469.966016291 elk-10.4.9/examples/TDDFT-time-evolution/FeCo-Ehrenfest/0000755002504400250440000000000014762655565024403 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-time-evolution/FeCo-Ehrenfest/PaxHeaders/elk.in0000644000000000000000000000013214762655565022764 xustar0030 mtime=1741380469.966016291 30 atime=1741380469.966016291 30 ctime=1741380469.966016291 elk-10.4.9/examples/TDDFT-time-evolution/FeCo-Ehrenfest/elk.in0000644002504400250440000000365514762655565025517 0ustar00dewhurstdewhurst00000000000000 ! TDDFT time evolution of FeCo with Ehrenfest nuclear dynamics. This is a ! two-step process: first the forces under the influence of a laser pulse are ! calculated. In the second step, the same calculation is repeated but this time ! the forces are used to find the motion of the nuclei. The back-reaction of ! this nuclear motion is applied to the electronic system. ! This approach is valid only for small amplitude nuclear motion. tasks 0 ! ground-state run 450 ! generate the laser pulse A-field 460 ! time evolution with laser pulse and forces calculated 462 ! same time evolution with Ehrenfest dynamics using the previous forces ! calculate forces at each time step tforce .true. ! total simulation time tstime 400.0 ! Simulation time step, ideally about 1 attosecond. It is critically important ! to make sure that the time evolution is stable, particularly for magnetism ! which can diverge even in the absence of a laser field. Any simulation should ! be run first with a laser field of amplitude zero to make sure that all ! observables remain constant over the total simulation time. Reducing the time ! step can improve stability. dtimes 0.4 ! laser pulse parameters ! 1 - 3 : polarisation vector (including amplitude) ! 4 : frequency ! 5 : phase in degrees ! 6 : chirp rate ! 7 : peak time ! 8 : full-width at half-maximum pulse 1 : number of laser pulses 0.0 0.0 150.0 0.03 0.0 0.0 240.0 120.0 nxoapwlo 1 tshift .false. spinorb .true. bfieldc 0.0 0.0 0.001 nempty 20 ngridk 4 4 4 ! artificial strained lattice avec 0.5 0.5 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale1 6.8 scale2 6.8 scale3 7.0 sppath '../../../species/' atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'Co.in' 1 0.0 0.5 0.5 elk-10.4.9/examples/TDDFT-time-evolution/PaxHeaders/Ni-laser-pulse0000644000000000000000000000013214762655565021647 xustar0030 mtime=1741380469.968016301 30 atime=1741380469.967016296 30 ctime=1741380469.968016301 elk-10.4.9/examples/TDDFT-time-evolution/Ni-laser-pulse/0000755002504400250440000000000014762655565024446 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/TDDFT-time-evolution/Ni-laser-pulse/PaxHeaders/elk.in0000644000000000000000000000013214762655565023027 xustar0030 mtime=1741380469.969016307 30 atime=1741380469.969016307 30 ctime=1741380469.969016307 elk-10.4.9/examples/TDDFT-time-evolution/Ni-laser-pulse/elk.in0000644002504400250440000000476114762655565025561 0ustar00dewhurstdewhurst00000000000000 ! Simulation of an intense ultra-short laser pulse acting on fcc nickel. ! The laser pulse is represented by a time-dependent vector potential which is ! constructed from an arbitrary superposition of planes waves each multiplied ! with a Gaussian envelope function. ! The time-dependent vector potential and laser pulse parameters are written to ! AFIELDT.OUT and TD_INFO.OUT, respectively. The power density of the laser ! pulse is written to AFPDT.OUT. Time units are atomic, one of which is equal to ! 24.18884328 attoseconds. ! The total macroscopic current is written to the file JTOT_TD.OUT and may be ! directly plotted. The total moment magnitude as a function of time is stored ! in the file MOMENTM_TD.OUT. Observe that the moment declines considerably ! after the laser pulse has stopped. ! This example is insufficiently converged for a production run, and all ! observables should be carefully checked for convergence with respect to the ! usual parameters. tasks 0 450 460 ! no shifting of the atomic positions for the ground-state run tshift .false. ! tight ground-state convergence epspot 1.e-7 lradstp 5 rgkmax 8.0 ngridk 8 8 8 ! automatic conversion of species to LAPW + linearised l.o. instead of APW+l.o. nxoapwlo 1 ! large number of empty states required nempty 16 ! total simulation time tstime 500.0 ! Simulation time step, ideally about 1 attosecond. It is critically important ! to make sure that the time evolution is stable, particularly for magnetism ! which can diverge even in the absence of a laser field. Any simulation should ! be run first with a laser field of amplitude zero to make sure that all ! observables remain constant over the total simulation time. Reducing the time ! step can improve stability. dtimes 0.1 ! laser pulse parameters ! 1 - 3 : polarisation vector (including amplitude) ! 4 : frequency ! 5 : phase in degrees ! 6 : chirp rate ! 7 : peak time ! 8 : full-width at half-maximum pulse 1 : number of laser pulses 0.0 0.0 250.0 0.03 0.0 0.0 240.0 120.0 ! plot the 2D magnetisation every ntswrite time steps tdmag2d .true. ntswrite 100 spinpol .true. spinorb .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/examples/PaxHeaders/hybrids0000644000000000000000000000013214762655565014670 xustar0030 mtime=1741380469.974016333 30 atime=1741380469.970016312 30 ctime=1741380469.974016333 elk-10.4.9/examples/hybrids/0000755002504400250440000000000014762655565017467 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/hybrids/PaxHeaders/Si-libxc0000644000000000000000000000013214762655565016342 xustar0030 mtime=1741380469.972016322 30 atime=1741380469.971016317 30 ctime=1741380469.972016322 elk-10.4.9/examples/hybrids/Si-libxc/0000755002504400250440000000000014762655565021141 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/hybrids/Si-libxc/PaxHeaders/elk.in0000644000000000000000000000013214762655565017522 xustar0030 mtime=1741380469.973016328 30 atime=1741380469.972016322 30 ctime=1741380469.973016328 elk-10.4.9/examples/hybrids/Si-libxc/elk.in0000644002504400250440000000112714762655565022245 0ustar00dewhurstdewhurst00000000000000 ! Hybrid functional example using libxc. Note that the DFT step should be run ! separately with task=0. Then the hybrid step should be run with task=5. ! Example by Tyrel McQueen. tasks 0 ! first run task=0 with PBE... xctype 100 101 130 !...then uncomment the following and run with task=5 for hybrid GGA ! (note that only the correlation functional is set) !xctype ! 100 0 406 lmaxo 6 gmaxvr 10.0 ngridk 2 2 2 nempty 8 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 'Si.in' 2 0.00 0.00 0.00 0.25 0.25 0.25 elk-10.4.9/examples/hybrids/PaxHeaders/Si0000644000000000000000000000013214762655565015243 xustar0030 mtime=1741380469.975016338 30 atime=1741380469.974016333 30 ctime=1741380469.975016338 elk-10.4.9/examples/hybrids/Si/0000755002504400250440000000000014762655565020042 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/hybrids/Si/PaxHeaders/elk.in0000644000000000000000000000013214762655565016423 xustar0030 mtime=1741380469.975016338 30 atime=1741380469.975016338 30 ctime=1741380469.975016338 elk-10.4.9/examples/hybrids/Si/elk.in0000644002504400250440000000057414762655565021153 0ustar00dewhurstdewhurst00000000000000 ! Hybrid functional using the native PBE functional. ! Example by Tyrel McQueen. tasks 0 5 xctype 20 hybrid .true. ! hybrid mixing parameter hybmix 0.25 lmaxo 6 gmaxvr 10.0 ngridk 2 2 2 nempty 10 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 'Si.in' 2 0.00 0.00 0.00 0.25 0.25 0.25 elk-10.4.9/examples/PaxHeaders/meta-GGA0000644000000000000000000000013214762655565014546 xustar0030 mtime=1741380469.980016364 30 atime=1741380469.976016343 30 ctime=1741380469.980016364 elk-10.4.9/examples/meta-GGA/0000755002504400250440000000000014762655565017345 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/meta-GGA/PaxHeaders/GaAs-r2SCAN0000644000000000000000000000013214762655565016347 xustar0030 mtime=1741380469.978016354 30 atime=1741380469.977016349 30 ctime=1741380469.978016354 elk-10.4.9/examples/meta-GGA/GaAs-r2SCAN/0000755002504400250440000000000014762655565021146 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/meta-GGA/GaAs-r2SCAN/PaxHeaders/elk.in0000644000000000000000000000013214762655565017527 xustar0030 mtime=1741380469.979016359 30 atime=1741380469.979016359 30 ctime=1741380469.979016359 elk-10.4.9/examples/meta-GGA/GaAs-r2SCAN/elk.in0000644002504400250440000000273614762655565022261 0ustar00dewhurstdewhurst00000000000000 ! Variational meta-GGA example using the strongly constrained and appropriately ! normed (SCAN) functional of J. Sun, A. Ruzsinszky and J. P. Perdew, ! Phys. Rev. Lett. 115, 036402 (2015). ! ! We use the re-regularised version of SCAN [J. W. Furness, A. D. Kaplan, ! J. Ning, J. P. Perdew and J. Sun, J. Phys. Chem. Lett. 2020, 11, 8208 (2020)] ! in order to improve numerical stability. ! ! The exchange-correlation potential is evaluated using so-called 'partial ! deorbitalisation', where the functional derivative δτ(r')/δρ(r) is performed ! using an approximate kinetic energy density functional (determined by ktype). ! See arXiv:2304.02363. ! ! This example requires the Libxc functional library. tasks 0 ! run ground-state 20 ! plot band structure 341 ! plot w_xc(r) = δE_xc/δτ(r) ! Libxc re-regularised SCAN functional xctype 100 497 498 ! This sets several input parameters to ensure good convergence for meta-GGA ! calculations. See the stdout of Elk for the parameters and their values. metagga .true. mixtype 1 ngridk 4 4 4 plot1d 5 500 0.0 0.0 1.0 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-10.4.9/examples/meta-GGA/PaxHeaders/SiO2-deorbitalised0000644000000000000000000000013014762655565020130 xustar0029 mtime=1741380469.98101637 30 atime=1741380469.980016364 29 ctime=1741380469.98101637 elk-10.4.9/examples/meta-GGA/SiO2-deorbitalised/0000755002504400250440000000000014762655565022731 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/meta-GGA/SiO2-deorbitalised/PaxHeaders/elk.in0000644000000000000000000000013114762655565021311 xustar0030 mtime=1741380469.982016375 29 atime=1741380469.98101637 30 ctime=1741380469.982016375 elk-10.4.9/examples/meta-GGA/SiO2-deorbitalised/elk.in0000644002504400250440000000346114762655565024040 0ustar00dewhurstdewhurst00000000000000 ! Fully deorbitalised meta-GGA example. See Daniel Mejia-Rodriguez and S. B. Trickey ! Phys. Rev. B 98, 115161 (2018). ! This example requires the Libxc functional library. tasks 0 20 ! XC_MGGA_X_REVSCANL, XC_MGGA_C_SCANL xctype 100 701 702 ! This sets several input parameters to ensure good convergence for meta-GGA ! calculations. See the stdout of Elk for the parameters and their values. metagga .true. ngridk 2 2 2 mixtype 1 plot1d 5 500 : nvp1d, npp1d 0.5 0.0 0.0 : vlvp1d 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.5 0.5 0.0 0.0 0.0 avec 4.644946754 8.045283776 0.000000000 9.289893508 0.000000000 0.000000000 0.000000000 0.000000000 10.21472546 sppath '../../../species/' atoms 2 : nspecies 'Si.in' : spfname 3 : natoms; atposl, bfcmt below 0.00000000 0.46970000 0.66666667 0.00000000 0.00000000 0.00000000 0.46970000 0.53030000 0.33333333 0.00000000 0.00000000 0.00000000 0.53030000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 'O.in' : spfname 6 : natoms; atposl, bfcmt below 0.26690000 0.14660000 0.78577000 0.00000000 0.00000000 0.00000000 0.14660000 0.58650000 0.45243667 0.00000000 0.00000000 0.00000000 0.58650000 0.26690000 0.11910333 0.00000000 0.00000000 0.00000000 0.41350000 0.85340000 0.21423000 0.00000000 0.00000000 0.00000000 0.73310000 0.41350000 0.54756333 0.00000000 0.00000000 0.00000000 0.85340000 0.73310000 0.88089667 0.00000000 0.00000000 0.00000000 elk-10.4.9/examples/PaxHeaders/phonons-superconductivity0000644000000000000000000000013114762655566020511 xustar0030 mtime=1741380470.017016558 29 atime=1741380469.98301638 30 ctime=1741380470.017016558 elk-10.4.9/examples/phonons-superconductivity/0000755002504400250440000000000014762655566023311 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/phonons-superconductivity/PaxHeaders/GaAs-LO-TO0000644000000000000000000000013014762655565022152 xustar0029 mtime=1741380469.98501639 30 atime=1741380469.984016385 29 ctime=1741380469.98501639 elk-10.4.9/examples/phonons-superconductivity/GaAs-LO-TO/0000755002504400250440000000000014762655565024753 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/phonons-superconductivity/GaAs-LO-TO/PaxHeaders/elk.in0000644000000000000000000000013114762655565023333 xustar0030 mtime=1741380469.986016396 29 atime=1741380469.98501639 30 ctime=1741380469.986016396 elk-10.4.9/examples/phonons-superconductivity/GaAs-LO-TO/elk.in0000644002504400250440000000352714762655565026065 0ustar00dewhurstdewhurst00000000000000 ! Phonon dispersion of GaAs calculated with density functional perturbation ! theory (DFPT). Note the large number of radial mesh points required for ! convergence. This is because the gradients calculated in the muffin-tin ! have to be particularly accurate. ! The non-analytic term in the phonon dispersion which results in the LO-TO ! splitting is also included. This requires the additional calculation of the ! Born effective charges and the dielectric tensor. ! Note that the dynamical matrices can also be generated with the supercell ! method. To do this, simply replace task 205 with 200. tasks 0 : ground state calculation 120 : momentum matrix elements 121 : dielectric function tensor ! large number of k-points required for converging the dielectric function ngridk 16 16 16 ! larger smearing swidth also improves convergence swidth 0.005 ! uncomment the lines below to complete the calculation !ngridk ! 4 4 4 !swidth ! 0.001 !tasks ! 1 ! 208 : Born effective charges ! 205 : phonon calculation with DFPT ! 220 : phonon dispersion plot ! include the phonon non-analytic term tphnat .true. ! calculate all 3 × 3 components of the dielectric tensor noptcomp 9 ! scale up the number of radial mesh points nrmtscf 7.0 ! increase the angular momentum cut-off on the inner part of the muffin-tin lmaxi 2 ngridq 4 4 4 plot1d 7 500 0.0 0.0 1.0 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-10.4.9/examples/phonons-superconductivity/PaxHeaders/Nb-DFPT0000644000000000000000000000013214762655565021603 xustar0030 mtime=1741380469.989016411 30 atime=1741380469.987016401 30 ctime=1741380469.989016411 elk-10.4.9/examples/phonons-superconductivity/Nb-DFPT/0000755002504400250440000000000014762655565024402 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/phonons-superconductivity/Nb-DFPT/PaxHeaders/elk.in0000644000000000000000000000013214762655565022763 xustar0030 mtime=1741380469.988016406 30 atime=1741380469.988016406 30 ctime=1741380469.988016406 elk-10.4.9/examples/phonons-superconductivity/Nb-DFPT/elk.in0000644002504400250440000000371214762655565025510 0ustar00dewhurstdewhurst00000000000000 ! This example generates a good quality phonon dispersion for bcc niobium using ! density functional perturbation theory (DFPT). The superconducting critical ! temperature is also computed using McMillan's formula and by solving the ! Eliashberg equations. ! The phonon dispersion and vertex location lines are included with this ! example in the files PHDISP.OUT and PHDLINES.OUT, respectively. tasks 0 : generate the ground-state 205 : generate the dynamical matrices with DFPT ! high-quality calculation highq .true. ! number of phonon q-points ngridq 4 4 4 ! larger cut-off required rgkmax 8.0 ngridk 12 12 12 ! larger smearing width required for stable phonon dispersion swidth 0.005 ! increase the number of muffin-tin points (for accurate gradients) nrmtscf 2.0 ! increase angular momentum cut-off on inner part of muffin-tin to improve ! accuracy of atomic force derivatives lmaxi 2 ! after all the dynamical matrix DYN---.OUT files have been calculated then ! uncomment the following lines and run again ! large k-point required for accurate electron-phonon coupling !ngridk ! 24 24 24 !tasks ! 1 : ground state with larger k-point set ! 210 : phonon DOS ! 220 : plot the phonon dispersion ! 240 : electron-phonon matrix elements ! 245 : phonon line-widths ! 250 : Eliashberg function, alpha^2F ! 260 : solving the Eliashberg equations ! number of temperature steps for Eliashberg calculation ntemp 40 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 ! use LDA equilibrium lattice constant scale 3.071 sppath '../../../species/' atoms 1 : nspecies 'Nb.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 plot1d 9 400 0.5 0.5 0.5 0.25 0.25 0.25 0.0 0.0 0.0 -0.5 0.5 0.5 -0.5 0.5 0.0 -0.75 0.25 0.25 -0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.0 elk-10.4.9/examples/phonons-superconductivity/Nb-DFPT/PaxHeaders/MCMILLAN.OUT0000644000000000000000000000013214762655565023445 xustar0030 mtime=1741380469.990016417 30 atime=1741380469.990016417 30 ctime=1741380469.990016417 elk-10.4.9/examples/phonons-superconductivity/Nb-DFPT/MCMILLAN.OUT0000644002504400250440000000052614762655565026172 0ustar00dewhurstdewhurst00000000000000 Electron-phonon coupling constant, λ : 1.053424300 Logarithmic average frequency : 0.6370229177E-03 RMS average frequency : 0.6993860014E-03 Coulomb pseudopotential, μ* : 0.1500000000 McMillan-Allen-Dynes superconducting critical temperature [Eq. 34, Phys. Rev. B 12, 905 (1975)] (kelvin) : 12.44672586 elk-10.4.9/examples/phonons-superconductivity/PaxHeaders/Si-DFPT0000644000000000000000000000013214762655565021617 xustar0030 mtime=1741380469.992016427 30 atime=1741380469.991016422 30 ctime=1741380469.992016427 elk-10.4.9/examples/phonons-superconductivity/Si-DFPT/0000755002504400250440000000000014762655565024416 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/phonons-superconductivity/Si-DFPT/PaxHeaders/elk.in0000644000000000000000000000013214762655565022777 xustar0030 mtime=1741380469.993016432 30 atime=1741380469.992016427 30 ctime=1741380469.993016432 elk-10.4.9/examples/phonons-superconductivity/Si-DFPT/elk.in0000644002504400250440000000247114762655565025525 0ustar00dewhurstdewhurst00000000000000 ! Phonon dispersion of silicon. ! You can submit the same job (with task=205) on as many machines as you like, ! but they must be be able to see the same directory. Each machine with compute ! a row of a particular dynamical matrix. When run with task=220, the code ! assembles all the pieces to construct the dynamical matrices throughout the ! Brillouin zone. ! The final output (PHDISP.OUT and PHDLINES.OUT) is included with this example. tasks 0 205 220 ! scale the number of radial mesh points in the muffin-tins; this is so that ! gradients are accurately calculated nrmtscf 4 ! increase angular momentum cut-off on inner part of muffin-tin lmaxi 2 ! phonon q-point grid ngridq 4 4 4 ! k-point grid should be commensurate with the q-point grid ngridk 4 4 4 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ! These are the vertices to be joined for the phonon dispersion plot plot1d 7 200 : nvp1d, npp1d 1.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-10.4.9/examples/phonons-superconductivity/PaxHeaders/hBN-LO-TO0000644000000000000000000000013214762655565022010 xustar0030 mtime=1741380469.995016443 30 atime=1741380469.993016432 30 ctime=1741380469.995016443 elk-10.4.9/examples/phonons-superconductivity/hBN-LO-TO/0000755002504400250440000000000014762655565024607 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/phonons-superconductivity/hBN-LO-TO/PaxHeaders/elk.in0000644000000000000000000000013214762655565023170 xustar0030 mtime=1741380469.995016443 30 atime=1741380469.995016443 30 ctime=1741380469.995016443 elk-10.4.9/examples/phonons-superconductivity/hBN-LO-TO/elk.in0000644002504400250440000000554014762655565025716 0ustar00dewhurstdewhurst00000000000000 ! Phonon dispersion of hexagonal boron nitride (hBC) which includes the LO-TO ! splitting at Γ. The calculation uses density functional perturbation theory ! (DFPT) to determine the dynamical matrices. The Born effective charges and the ! dielectric function also have to be calculated for the non-analytic term in ! the phonon dispersion. ! Note that the dynamical matrices can also be generated with the supercell ! method. To do this, simply replace task 205 with 200. tasks 0 : ground state calculation 120 : momentum matrix elements 121 : dielectric function ! large k-point set required to converge the dielectric function tensor ngridk 12 12 12 ! larger smearing swidth also improves convergence swidth 0.005 ! uncomment the lines below to continue the calculation !ngridk ! 8 8 4 !swidth ! 0.001 !tasks ! 1 ! 208 : Born effective charges ! 205 : phonon dynamical matrices using DFPT ! 220 : phonon dispersion plot ! include the phonon non-analytic term tphnat .true. ! calculate all 3 × 3 components of the dielectric tensor noptcomp 9 ! angular momentum cut-off on the inner part of the muffin-tin lmaxi 2 ! large number of radial mesh points required for accurate derivatives nrmtscf 2.0 ngridq 4 4 2 plot1d 5 500 0.0 0.0 0.0 : Γ 0.5 0.0 0.0 : M 0.666666666667 0.333333333333 0.0 : K 0.0 0.0 0.0 : Γ 0.0 0.0 0.5 : A ! Atomic positions generated by spacegroup version 1.2.01 ! Hermann-Mauguin symbol : P63/mmc ! Hall symbol : -P 6c 2c ! Schoenflies symbol : D6h^4 ! space group number : 194 ! lattice constants (a,b,c) : 4.743210000 4.743210000 12.64227000 ! angles in degrees (bc,ac,ab) : 90.00000000 90.00000000 120.0000000 ! number of conventional unit cells : 1 1 1 ! reduction to primitive cell : T ! Wyckoff positions : ! species : 1, B ! 0.3333333333 0.6666666667 0.2500000000 ! species : 2, N ! 0.3333333333 0.6666666667 0.7500000000 avec 2.371605000 4.107740355 0.000000000 4.743210000 0.000000000 0.000000000 0.000000000 0.000000000 12.64227000 sppath '../../../species/' atoms 2 : nspecies 'B.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.25000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.75000000 0.00000000 0.00000000 0.00000000 'N.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.75000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.25000000 0.00000000 0.00000000 0.00000000 elk-10.4.9/examples/phonons-superconductivity/PaxHeaders/Al-DFPT0000644000000000000000000000013214762655565021600 xustar0030 mtime=1741380469.998016458 30 atime=1741380469.997016453 30 ctime=1741380469.998016458 elk-10.4.9/examples/phonons-superconductivity/Al-DFPT/0000755002504400250440000000000014762655565024377 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/phonons-superconductivity/Al-DFPT/PaxHeaders/elk.in0000644000000000000000000000013214762655565022760 xustar0030 mtime=1741380469.998016458 30 atime=1741380469.998016458 30 ctime=1741380469.998016458 elk-10.4.9/examples/phonons-superconductivity/Al-DFPT/elk.in0000644002504400250440000000366514762655565025514 0ustar00dewhurstdewhurst00000000000000 ! Phonon spectrum and solving the Eliashberg equations to find the temperature- ! dependent superconducting gap. This uses density functional perturbation ! theory (DFPT) to calculate the phonon modes. ! You can submit the same phonon job (task=205) on as many machines as you like, ! but they must be be able to see the same directory. Each machine will compute ! a row of a particular dynamical matrix. The code assembles all the pieces to ! construct the dynamical and electron-phonon coupling matrices throughout the ! Brillouin zone. ! Example by Antonio Sanna. tasks 0 205 ! phonon q-point grid ngridq 4 4 4 ! add extra local-orbitals for accurate electron-phonon coupling nxlo 1 ! increase angular momentum cut-off on inner part of muffin-tin to improve the ! accuracy of atomic force derivatives lmaxi 2 ngridk 8 8 8 ! larger smearing width required for stable phonon dispersion swidth 0.005 stype 1 ! increase the number of muffin-tin points (for accurate gradients) nrmtscf 1.5 ! uncomment the following lines for electron-phonon and Eliashberg calculations !ngridk ! 28 28 28 !tasks ! 1 : ground-state run ! 210 : phonon DOS ! 220 : phonon dispersion ! 240 : electron-phonon matrix elements ! 245 : phonon line-widths ! 250 : Eliashberg function, alpha^2F ! 260 : solving the Eliashberg equations ! number of temperature steps for Eliashberg calculation ntemp 80 ! use Broyden mixing mixtype 3 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 ! we use the LDA equilibrium lattice constant scale 3.7653 sppath '../../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 plot1d 4 200 : nvp1d, npp1d 0.0 0.0 0.0 : vlvp1d 0.5 0.5 0.0 1.0 0.0 0.0 0.5 0.0 0.0 elk-10.4.9/examples/phonons-superconductivity/PaxHeaders/Nb-supercell0000644000000000000000000000013214762655566023045 xustar0030 mtime=1741380470.000016469 30 atime=1741380469.999016464 30 ctime=1741380470.000016469 elk-10.4.9/examples/phonons-superconductivity/Nb-supercell/0000755002504400250440000000000014762655566025644 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/phonons-superconductivity/Nb-supercell/PaxHeaders/elk.in0000644000000000000000000000013214762655566024225 xustar0030 mtime=1741380470.001016474 30 atime=1741380470.001016474 30 ctime=1741380470.001016474 elk-10.4.9/examples/phonons-superconductivity/Nb-supercell/elk.in0000644002504400250440000000666014762655566026757 0ustar00dewhurstdewhurst00000000000000 ! Example of how to determine the electron-phonon coupling parameters and ! superconducting transition temperature T_c. ! Note that these calculations are very time-consuming and require many ! computers sharing a common directory to run efficiently. It is also important ! to make sure the results are converged with respect to the various input ! parameters and err on the side of caution. Electron-phonon coupling is still ! an experimental feature at this stage. ! Follow the steps below for niobium on a 4x4x4 q-point grid. This is a time- ! consuming example, so the main results are included in this directory. avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 ! LDA equilibrium lattice parameter scale 3.071 sppath '../../../species/' atoms 1 : nspecies 'Nb.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 ! use efficient Broyden mixing mixtype 3 ! larger smearing width required swidth 0.01 !--------------------------------------------------------------------------! ! Step 1: Compute the dynamical matrices and potential derivatives ! !--------------------------------------------------------------------------! ! This step should be run on as many computers as possible which share the same ! directory on a networked file system - just keep submitting jobs to the queue ! from the same directory. As usual, each job can be individually parallel ! using OpenMP. ! The code works by determining which DYN_Qqqqq_qqqq_qqqq_Sss_Aaa_Pp.OUT files ! need to be calculated. These files contain a single row of a dynamical matrix. ! If a calculation fails to complete, just delete that particular DYN file and ! re-run the code. All the DYN files must be calculated before proceeding to the ! next step. tasks 200 ! high-quality calculation highq .true. ! the q-point grid ngridq 4 4 4 ! this is an important parameter which fixes the k-point density irrespective ! of the size of the phonon supercell radkpt 50.0 !-----------------------------------------------------------------------! ! Step 2: Phonon dispersion curves and electron-phonon coupling ! !-----------------------------------------------------------------------! ! This should be run on one computer. You can plot the dispersion curves in the ! file PHDISP.OUT along with lines corresponding to high symmetry points stored ! in PHDLINES.OUT. The phonon linewidths along the same directions are in the ! file PHLWIDTH.OUT (PHLWLINES.OUT). The electron-phonon coupling parameter, ! lambda, and the estimated T_c is stored in MCMILLAN.OUT. You can also plot the ! Eliashberg function in ALPHA2F.OUT. Compare with the results of Bauer et al. ! in PRB 57, 11276 (1998). ! Uncomment the tasks below and run. !tasks ! 0 ! ground-state run ! 220 ! plot the phonon dispersion ! 240 ! generate the q-dependent phonon linewidths and coupling constants ! 245 ! plot the phonon linewidths ! 250 ! Eliashberg function, coupling constant, and superconducting T_c ! fine k-point grid required for accurate electron-phonon coupling; it should ! also be commensurate with the q-point grid ngridk 32 32 32 ! vertex location lines for the dispersion curves and phonon linewidths plot1d 9 400 0.5 0.5 0.5 0.25 0.25 0.25 0.0 0.0 0.0 -0.5 0.5 0.5 -0.5 0.5 0.0 -0.75 0.25 0.25 -0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.0 elk-10.4.9/examples/phonons-superconductivity/PaxHeaders/NiTe20000644000000000000000000000013214762655566021433 xustar0030 mtime=1741380470.003016484 30 atime=1741380470.002016479 30 ctime=1741380470.003016484 elk-10.4.9/examples/phonons-superconductivity/NiTe2/0000755002504400250440000000000014762655566024232 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/phonons-superconductivity/NiTe2/PaxHeaders/elk.in0000644000000000000000000000012714762655566022617 xustar0029 mtime=1741380470.00401649 29 atime=1741380470.00401649 29 ctime=1741380470.00401649 elk-10.4.9/examples/phonons-superconductivity/NiTe2/elk.in0000644002504400250440000000410314762655566025333 0ustar00dewhurstdewhurst00000000000000 ! This example generates a phonon dispersion for the superconductor NiTe2 using ! density functional perturbation theory (DFPT). The superconducting critical ! temperature is also computed using McMillan's formula and by solving the ! Eliashberg equations. ! Example thanks to Jerry Li. tasks 0 : ground state run 205 : compute the dynamical matrices ! increase the number of radial points in the muffin-tin for accurate gradients nrmtscf 12.0 ! increase the angular momentum cut-off on the inner part of the muffin-tin lmaxi 3 ! reduce Broyden mixing parameter broydpm 0.04 0.01 ! number of phonon q-points ngridq 2 2 2 ! the k-point grid has to be commensurate with the q-point grid ngridk 8 8 8 rgkmax 8.0 gmaxvr 16.0 nxlo 1 lmaxo 8 swidth 0.005 autolinengy .true. ! after all the dynamical matrix DYN---.OUT files have been calculated then ! uncomment the following lines and run again !ngridk ! 24 24 24 !tasks ! 1 : ground state with larger k-point set ! 210 : phonon DOS ! 220 : plot the phonon dispersion ! 240 : electron-phonon matrix elements ! 245 : phonon line-widths ! 250 : Eliashberg function, alpha^2F plot1d 8 400 : nvp1d, npp1d 0.0000 0.0000 0.0000 0.5000 0.0000 0.0000 0.3333 0.3333 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.0000 0.5000 0.3333 0.3333 0.5000 0.0000 0.0000 0.5000 avec 0.8660254038 -0.5000000000 0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 0.0000000000 1.3864166672 scale 7.3083546493 sppath '../../../species/' atoms 2 : nspecies 'Te.in' : spfname 2 0.333333333333333 0.666666666666667 0.241916750000000 0.00000000 0.00000000 0.00000000 0.666666666666667 0.333333333333333 0.758083250000000 0.00000000 0.00000000 0.00000000 'Ni.in' : spfname 1 0.000000000000000 0.000000000000000 0.000000000000000 0.00000000 0.00000000 0.00000000 elk-10.4.9/examples/phonons-superconductivity/PaxHeaders/Al-supercell0000644000000000000000000000012614762655566023045 xustar0028 mtime=1741380470.0060165 30 atime=1741380470.005016495 28 ctime=1741380470.0060165 elk-10.4.9/examples/phonons-superconductivity/Al-supercell/0000755002504400250440000000000014762655566025641 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/phonons-superconductivity/Al-supercell/PaxHeaders/elk.in0000644000000000000000000000012414762655566024223 xustar0028 mtime=1741380470.0060165 28 atime=1741380470.0060165 28 ctime=1741380470.0060165 elk-10.4.9/examples/phonons-superconductivity/Al-supercell/elk.in0000644002504400250440000000354714762655566026755 0ustar00dewhurstdewhurst00000000000000 ! Phonon spectrum and solving the Eliashberg equations to find the temperature- ! dependent superconducting gap. This example uses finite displacements and a ! supercell to determine the phonon modes. ! You can submit the same phonon job (task=200) on as many machines as you like, ! but they must be be able to see the same directory. Each machine will compute ! a row of a particular dynamical matrix. The code assembles all the pieces to ! construct the dynamical and electron-phonon coupling matrices throughout the ! Brillouin zone. ! Example by Antonio Sanna. tasks 200 ! phonon q-point grid ngridq 4 4 4 ! add extra local-orbitals for accurate electron-phonon coupling nxlo 1 swidth 0.005 stype 1 ! uncomment the following lines for electron-phonon and Eliashberg calculations !tasks ! 0 : ground-state run ! 210 : phonon DOS ! 220 : phonon dispersion ! 240 : electron-phonon matrix elements ! 245 : phonon line-widths ! 250 : Eliashberg function, alpha^2F ! 260 : solving the Eliashberg equations ! number of temperature steps for Eliashberg calculation ntemp 80 ! k-point grid density is determined by the radius radkpt ! (only used for the phonon calculation) radkpt 40.0 ! fine k-point mesh required for the electron-phonon coupling (must be ! commensurate with q-point mesh) ngridk 24 24 24 ! use Broyden mixing mixtype 3 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 ! we use the LDA equilibrium lattice constant scale 3.7653 sppath '../../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 plot1d 4 200 : nvp1d, npp1d 0.0 0.0 0.0 : vlvp1d 0.5 0.5 0.0 1.0 0.0 0.0 0.5 0.0 0.0 elk-10.4.9/examples/phonons-superconductivity/PaxHeaders/Ni-supercell0000644000000000000000000000013214762655566023054 xustar0030 mtime=1741380470.013016537 30 atime=1741380470.007016505 30 ctime=1741380470.013016537 elk-10.4.9/examples/phonons-superconductivity/Ni-supercell/0000755002504400250440000000000014762655566025653 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/phonons-superconductivity/Ni-supercell/PaxHeaders/PHDISP.OUT0000644000000000000000000000013214762655566024511 xustar0030 mtime=1741380470.010016521 30 atime=1741380470.009016516 30 ctime=1741380470.010016521 elk-10.4.9/examples/phonons-superconductivity/Ni-supercell/PHDISP.OUT0000644002504400250440000012660214762655566027242 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.3394132962E-10 0.1025457845E-01 0.1888579557E-04 0.2050915690E-01 0.3774855680E-04 0.3076373535E-01 0.5656537833E-04 0.4101831380E-01 0.7531361194E-04 0.5127289224E-01 0.9397099299E-04 0.6152747069E-01 0.1125157644E-03 0.7178204914E-01 0.1309267971E-03 0.8203662759E-01 0.1491837067E-03 0.9229120604E-01 0.1672669646E-03 0.1025457845 0.1851580040E-03 0.1128003629 0.2028393184E-03 0.1230549414 0.2202945538E-03 0.1333095198 0.2375085924E-03 0.1435640983 0.2544676267E-03 0.1538186767 0.2711592258E-03 0.1640732552 0.2875723900E-03 0.1743278336 0.3036975955E-03 0.1845824121 0.3195268278E-03 0.1948369905 0.3350536033E-03 0.2050915690 0.3502729785E-03 0.2153461474 0.3651815471E-03 0.2256007259 0.3797774247E-03 0.2358553043 0.3940602199E-03 0.2461098828 0.4080309931E-03 0.2563644612 0.4216922031E-03 0.2666190397 0.4350476401E-03 0.2768736181 0.4481023480E-03 0.2871281966 0.4608625340E-03 0.2973827750 0.4733354689E-03 0.3076373535 0.4855293761E-03 0.3178919319 0.4974533127E-03 0.3281465104 0.5091170432E-03 0.3384010888 0.5205309060E-03 0.3486556673 0.5317056765E-03 0.3589102457 0.5426524259E-03 0.3691648242 0.5533823796E-03 0.3794194026 0.5639067756E-03 0.3896739811 0.5742367252E-03 0.3999285595 0.5843830783E-03 0.4101831380 0.5943562938E-03 0.4204377164 0.6041663188E-03 0.4306922949 0.6138224763E-03 0.4409468733 0.6233333642E-03 0.4512014517 0.6327067665E-03 0.4614560302 0.6419495770E-03 0.4717106086 0.6510677385E-03 0.4819651871 0.6600661954E-03 0.4922197655 0.6689488615E-03 0.5024743440 0.6777186039E-03 0.5127289224 0.6863772404E-03 0.5229835009 0.6949255519E-03 0.5332380793 0.7033633083E-03 0.5434926578 0.7116893071E-03 0.5537472362 0.7199014233E-03 0.5640018147 0.7279966696E-03 0.5742563931 0.7359712654E-03 0.5845109716 0.7438207130E-03 0.5947655500 0.7515398791E-03 0.6050201285 0.7591230814E-03 0.6152747069 0.7665641761E-03 0.6255292854 0.7738566482E-03 0.6357838638 0.7809936999E-03 0.6460384423 0.7879683377E-03 0.6562930207 0.7947734566E-03 0.6665475992 0.8014019204E-03 0.6768021776 0.8078466355E-03 0.6870567561 0.8141006205E-03 0.6973113345 0.8201570684E-03 0.7075659130 0.8260094010E-03 0.7178204914 0.8316513171E-03 0.7280750699 0.8370768322E-03 0.7383296483 0.8422803105E-03 0.7485842268 0.8472564895E-03 0.7588388052 0.8520004965E-03 0.7690933837 0.8565078592E-03 0.7793479621 0.8607745077E-03 0.7896025406 0.8647967719E-03 0.7998571190 0.8685713725E-03 0.8101116975 0.8720954070E-03 0.8203662759 0.8753663316E-03 0.8306208544 0.8783819399E-03 0.8408754328 0.8811403384E-03 0.8511300113 0.8836399205E-03 0.8613845897 0.8858793394E-03 0.8716391682 0.8878574806E-03 0.8818937466 0.8895734352E-03 0.8921483250 0.8910264741E-03 0.9024029035 0.8922160243E-03 0.9126574819 0.8931416479E-03 0.9229120604 0.8938030241E-03 0.9331666388 0.8941999341E-03 0.9434212173 0.8943322513E-03 0.9434212173 0.8943322513E-03 0.9535655315 0.8943189294E-03 0.9637098456 0.8942790429E-03 0.9738541598 0.8942128294E-03 0.9839984740 0.8941206825E-03 0.9941427881 0.8940031484E-03 1.004287102 0.8938609212E-03 1.014431416 0.8936948370E-03 1.024575731 0.8935058665E-03 1.034720045 0.8932951070E-03 1.044864359 0.8930637731E-03 1.055008673 0.8928131868E-03 1.065152987 0.8925447664E-03 1.075297301 0.8922600150E-03 1.085441616 0.8919605092E-03 1.095585930 0.8916478862E-03 1.105730244 0.8913238320E-03 1.115874558 0.8909900687E-03 1.126018872 0.8906483419E-03 1.136163186 0.8903004094E-03 1.146307501 0.8899480289E-03 1.156451815 0.8895929470E-03 1.166596129 0.8892368888E-03 1.176740443 0.8888815480E-03 1.186884757 0.8885285774E-03 1.197029071 0.8881795816E-03 1.207173386 0.8878361087E-03 1.217317700 0.8874996447E-03 1.227462014 0.8871716080E-03 1.237606328 0.8868533448E-03 1.247750642 0.8865461255E-03 1.257894956 0.8862511429E-03 1.268039271 0.8859695098E-03 1.278183585 0.8857022585E-03 1.288327899 0.8854503408E-03 1.298472213 0.8852146283E-03 1.308616527 0.8849959136E-03 1.318760841 0.8847949122E-03 1.328905156 0.8846122641E-03 1.339049470 0.8844485359E-03 1.349193784 0.8843042235E-03 1.359338098 0.8841797544E-03 1.369482412 0.8840754898E-03 1.379626726 0.8839917270E-03 1.389771041 0.8839287014E-03 1.399915355 0.8838865878E-03 1.410059669 0.8838655021E-03 1.420203983 0.8838655021E-03 1.430348297 0.8838865878E-03 1.440492611 0.8839287014E-03 1.450636926 0.8839917270E-03 1.460781240 0.8840754898E-03 1.470925554 0.8841797544E-03 1.481069868 0.8843042235E-03 1.491214182 0.8844485359E-03 1.501358496 0.8846122641E-03 1.511502811 0.8847949122E-03 1.521647125 0.8849959136E-03 1.531791439 0.8852146283E-03 1.541935753 0.8854503408E-03 1.552080067 0.8857022585E-03 1.562224381 0.8859695098E-03 1.572368695 0.8862511429E-03 1.582513010 0.8865461255E-03 1.592657324 0.8868533448E-03 1.602801638 0.8871716080E-03 1.612945952 0.8874996447E-03 1.623090266 0.8878361087E-03 1.633234580 0.8881795816E-03 1.643378895 0.8885285774E-03 1.653523209 0.8888815480E-03 1.663667523 0.8892368888E-03 1.673811837 0.8895929470E-03 1.683956151 0.8899480289E-03 1.694100465 0.8903004094E-03 1.704244780 0.8906483419E-03 1.714389094 0.8909900687E-03 1.724533408 0.8913238320E-03 1.734677722 0.8916478862E-03 1.744822036 0.8919605092E-03 1.754966350 0.8922600150E-03 1.765110665 0.8925447664E-03 1.775254979 0.8928131868E-03 1.785399293 0.8930637731E-03 1.795543607 0.8932951070E-03 1.805687921 0.8935058665E-03 1.815832235 0.8936948370E-03 1.825976550 0.8938609212E-03 1.836120864 0.8940031484E-03 1.846265178 0.8941206825E-03 1.856409492 0.8942128294E-03 1.866553806 0.8942790429E-03 1.876698120 0.8943189294E-03 1.886842435 0.8943322513E-03 1.886842435 0.8943322513E-03 1.897027160 0.8942714923E-03 1.907211886 0.8940892138E-03 1.917396612 0.8937854115E-03 1.927581338 0.8933600781E-03 1.937766064 0.8928132038E-03 1.947950789 0.8921447763E-03 1.958135515 0.8913547813E-03 1.968320241 0.8904432028E-03 1.978504967 0.8894100234E-03 1.988689693 0.8882552249E-03 1.998874418 0.8869787889E-03 2.009059144 0.8855806975E-03 2.019243870 0.8840609337E-03 2.029428596 0.8824194822E-03 2.039613322 0.8806563305E-03 2.049798047 0.8787714693E-03 2.059982773 0.8767648936E-03 2.070167499 0.8746366036E-03 2.080352225 0.8723866054E-03 2.090536951 0.8700149124E-03 2.100721677 0.8675215461E-03 2.110906402 0.8649065370E-03 2.121091128 0.8621699258E-03 2.131275854 0.8593117646E-03 2.141460580 0.8563321177E-03 2.151645306 0.8532310632E-03 2.161830031 0.8500086935E-03 2.172014757 0.8466651168E-03 2.182199483 0.8432004582E-03 2.192384209 0.8396148606E-03 2.202568935 0.8359084861E-03 2.212753660 0.8320815168E-03 2.222938386 0.8281341562E-03 2.233123112 0.8240666297E-03 2.243307838 0.8198791865E-03 2.253492564 0.8155720995E-03 2.263677289 0.8111456673E-03 2.273862015 0.8066002143E-03 2.284046741 0.8019360923E-03 2.294231467 0.7971536806E-03 2.304416193 0.7922533876E-03 2.314600918 0.7872356508E-03 2.324785644 0.7821009381E-03 2.334970370 0.7768497481E-03 2.345155096 0.7714826107E-03 2.355339822 0.7660000880E-03 2.365524547 0.7604027742E-03 2.375709273 0.7546912965E-03 2.385893999 0.7488663152E-03 2.396078725 0.7429285241E-03 2.406263451 0.7368786507E-03 2.416448176 0.7307174561E-03 2.426632902 0.7244457358E-03 2.436817628 0.7180643188E-03 2.447002354 0.7115740682E-03 2.457187080 0.7049758810E-03 2.467371806 0.6982706876E-03 2.477556531 0.6914594519E-03 2.487741257 0.6845431709E-03 2.497925983 0.6775228742E-03 2.508110709 0.6703996238E-03 2.518295435 0.6631745133E-03 2.528480160 0.6558486676E-03 2.538664886 0.6484232422E-03 2.548849612 0.6408994224E-03 2.559034338 0.6332784229E-03 2.569219064 0.6255614865E-03 2.579403789 0.6177498837E-03 2.589588515 0.6098449118E-03 2.599773241 0.6018478937E-03 2.609957967 0.5937601772E-03 2.620142693 0.5855831337E-03 2.630327418 0.5773181576E-03 2.640512144 0.5689666647E-03 2.650696870 0.5605300915E-03 2.660881596 0.5520098939E-03 2.671066322 0.5434075462E-03 2.681251047 0.5347245395E-03 2.691435773 0.5259623811E-03 2.701620499 0.5171225929E-03 2.711805225 0.5082067102E-03 2.721989951 0.4992162808E-03 2.732174676 0.4901528635E-03 2.742359402 0.4810180267E-03 2.752544128 0.4718133480E-03 2.762728854 0.4625404119E-03 2.772913580 0.4532008097E-03 2.783098305 0.4437961373E-03 2.793283031 0.4343279951E-03 2.803467757 0.4247979860E-03 2.813652483 0.4152077148E-03 2.823837209 0.4055587871E-03 2.834021935 0.3958528081E-03 2.844206660 0.3860913817E-03 2.854391386 0.3762761096E-03 2.864576112 0.3664085904E-03 2.874760838 0.3564904186E-03 2.884945564 0.3465231840E-03 2.895130289 0.3365084707E-03 2.905315015 0.3264478566E-03 2.915499741 0.3163429126E-03 2.925684467 0.3061952021E-03 2.935869193 0.2960062803E-03 2.946053918 0.2857776941E-03 2.956238644 0.2755109810E-03 2.966423370 0.2652076694E-03 2.976608096 0.2548692780E-03 2.986792822 0.2444973154E-03 2.996977547 0.2340932802E-03 3.007162273 0.2236586608E-03 3.017346999 0.2131949351E-03 3.027531725 0.2027035709E-03 3.037716451 0.1921860256E-03 3.047901176 0.1816437465E-03 3.058085902 0.1710781707E-03 3.068270628 0.1604907259E-03 3.078455354 0.1498828301E-03 3.088640080 0.1392558919E-03 3.098824805 0.1286113115E-03 3.109009531 0.1179504805E-03 3.119194257 0.1072747825E-03 3.129378983 0.9658559397E-04 3.139563709 0.8588428426E-04 3.149748434 0.7517221653E-04 3.159933160 0.6445074829E-04 3.170117886 0.5372123199E-04 3.180302612 0.4298501573E-04 3.190487338 0.3224344396E-04 3.200672064 0.2149785816E-04 3.210856789 0.1074959759E-04 3.221041515 -0.3394132962E-10 3.221041515 -0.3394132962E-10 3.231254349 0.1251907998E-04 3.241467184 0.2503301127E-04 3.251680018 0.3753664830E-04 3.261892852 0.5002485164E-04 3.272105686 0.6249249112E-04 3.282318521 0.7493444889E-04 3.292531355 0.8734562243E-04 3.302744189 0.9972092760E-04 3.312957023 0.1120553016E-03 3.323169858 0.1243437059E-03 3.333382692 0.1365811293E-03 3.343595526 0.1487625906E-03 3.353808360 0.1608831416E-03 3.364021195 0.1729378697E-03 3.374234029 0.1849219007E-03 3.384446863 0.1968304017E-03 3.394659698 0.2086585833E-03 3.404872532 0.2204017022E-03 3.415085366 0.2320550641E-03 3.425298200 0.2436140256E-03 3.435511035 0.2550739966E-03 3.445723869 0.2664304427E-03 3.455936703 0.2776788874E-03 3.466149537 0.2888149139E-03 3.476362372 0.2998341673E-03 3.486575206 0.3107323565E-03 3.496788040 0.3215052559E-03 3.507000874 0.3321487071E-03 3.517213709 0.3426586210E-03 3.527426543 0.3530309784E-03 3.537639377 0.3632618324E-03 3.547852211 0.3733473094E-03 3.558065046 0.3832836099E-03 3.568277880 0.3930670107E-03 3.578490714 0.4026938649E-03 3.588703548 0.4121606035E-03 3.598916383 0.4214637363E-03 3.609129217 0.4305998523E-03 3.619342051 0.4395656210E-03 3.629554885 0.4483577925E-03 3.639767720 0.4569731982E-03 3.649980554 0.4654087515E-03 3.660193388 0.4736614481E-03 3.670406222 0.4817283658E-03 3.680619057 0.4896066656E-03 3.690831891 0.4972935913E-03 3.701044725 0.5047864695E-03 3.711257560 0.5120827101E-03 3.721470394 0.5191798058E-03 3.731683228 0.5260753323E-03 3.741896062 0.5327669482E-03 3.752108897 0.5392523944E-03 3.762321731 0.5455294943E-03 3.772534565 0.5515961533E-03 3.782747399 0.5574503584E-03 3.792960234 0.5630901781E-03 3.803173068 0.5685137617E-03 3.813385902 0.5737193393E-03 3.823598736 0.5787052206E-03 3.833811571 0.5834697955E-03 3.844024405 0.5880115327E-03 3.854237239 0.5923289796E-03 3.864450073 0.5964207619E-03 3.874662908 0.6002855831E-03 3.884875742 0.6039222236E-03 3.895088576 0.6073295407E-03 3.905301410 0.6105064680E-03 3.915514245 0.6134520149E-03 3.925727079 0.6161652659E-03 3.935939913 0.6186453809E-03 3.946152747 0.6208915938E-03 3.956365582 0.6229032129E-03 3.966578416 0.6246796205E-03 3.976791250 0.6262202719E-03 3.987004084 0.6275246960E-03 3.997216919 0.6285924945E-03 4.007429753 0.6294233417E-03 4.017642587 0.6300169847E-03 4.027855422 0.6303732426E-03 4.038068256 0.6304920073E-03 0.000000000 -0.3394132962E-10 0.1025457845E-01 0.1888579557E-04 0.2050915690E-01 0.3774855680E-04 0.3076373535E-01 0.5656537833E-04 0.4101831380E-01 0.7531361194E-04 0.5127289224E-01 0.9397099299E-04 0.6152747069E-01 0.1125157644E-03 0.7178204914E-01 0.1309267971E-03 0.8203662759E-01 0.1491837067E-03 0.9229120604E-01 0.1672669646E-03 0.1025457845 0.1851580040E-03 0.1128003629 0.2028393184E-03 0.1230549414 0.2202945538E-03 0.1333095198 0.2375085924E-03 0.1435640983 0.2544676267E-03 0.1538186767 0.2711592258E-03 0.1640732552 0.2875723900E-03 0.1743278336 0.3036975955E-03 0.1845824121 0.3195268278E-03 0.1948369905 0.3350536033E-03 0.2050915690 0.3502729785E-03 0.2153461474 0.3651815471E-03 0.2256007259 0.3797774247E-03 0.2358553043 0.3940602199E-03 0.2461098828 0.4080309931E-03 0.2563644612 0.4216922031E-03 0.2666190397 0.4350476401E-03 0.2768736181 0.4481023480E-03 0.2871281966 0.4608625340E-03 0.2973827750 0.4733354689E-03 0.3076373535 0.4855293761E-03 0.3178919319 0.4974533127E-03 0.3281465104 0.5091170432E-03 0.3384010888 0.5205309060E-03 0.3486556673 0.5317056765E-03 0.3589102457 0.5426524259E-03 0.3691648242 0.5533823796E-03 0.3794194026 0.5639067756E-03 0.3896739811 0.5742367252E-03 0.3999285595 0.5843830783E-03 0.4101831380 0.5943562938E-03 0.4204377164 0.6041663188E-03 0.4306922949 0.6138224763E-03 0.4409468733 0.6233333642E-03 0.4512014517 0.6327067665E-03 0.4614560302 0.6419495770E-03 0.4717106086 0.6510677385E-03 0.4819651871 0.6600661954E-03 0.4922197655 0.6689488615E-03 0.5024743440 0.6777186039E-03 0.5127289224 0.6863772404E-03 0.5229835009 0.6949255519E-03 0.5332380793 0.7033633083E-03 0.5434926578 0.7116893071E-03 0.5537472362 0.7199014233E-03 0.5640018147 0.7279966696E-03 0.5742563931 0.7359712654E-03 0.5845109716 0.7438207130E-03 0.5947655500 0.7515398791E-03 0.6050201285 0.7591230814E-03 0.6152747069 0.7665641761E-03 0.6255292854 0.7738566482E-03 0.6357838638 0.7809936999E-03 0.6460384423 0.7879683377E-03 0.6562930207 0.7947734566E-03 0.6665475992 0.8014019204E-03 0.6768021776 0.8078466355E-03 0.6870567561 0.8141006205E-03 0.6973113345 0.8201570684E-03 0.7075659130 0.8260094010E-03 0.7178204914 0.8316513171E-03 0.7280750699 0.8370768322E-03 0.7383296483 0.8422803105E-03 0.7485842268 0.8472564895E-03 0.7588388052 0.8520004965E-03 0.7690933837 0.8565078592E-03 0.7793479621 0.8607745077E-03 0.7896025406 0.8647967719E-03 0.7998571190 0.8685713725E-03 0.8101116975 0.8720954070E-03 0.8203662759 0.8753663316E-03 0.8306208544 0.8783819399E-03 0.8408754328 0.8811403384E-03 0.8511300113 0.8836399205E-03 0.8613845897 0.8858793394E-03 0.8716391682 0.8878574806E-03 0.8818937466 0.8895734352E-03 0.8921483250 0.8910264741E-03 0.9024029035 0.8922160243E-03 0.9126574819 0.8931416479E-03 0.9229120604 0.8938030241E-03 0.9331666388 0.8941999341E-03 0.9434212173 0.8943322513E-03 0.9434212173 0.8943322513E-03 0.9535655315 0.8944054692E-03 0.9637098456 0.8946248999E-03 0.9738541598 0.8949898793E-03 0.9839984740 0.8954993181E-03 0.9941427881 0.8961517261E-03 1.004287102 0.8969452468E-03 1.014431416 0.8978776996E-03 1.024575731 0.8989466297E-03 1.034720045 0.9001493625E-03 1.044864359 0.9014830646E-03 1.055008673 0.9029448051E-03 1.065152987 0.9045316205E-03 1.075297301 0.9062405774E-03 1.085441616 0.9080688342E-03 1.095585930 0.9100136988E-03 1.105730244 0.9120726809E-03 1.115874558 0.9142435382E-03 1.126018872 0.9165243144E-03 1.136163186 0.9189133681E-03 1.146307501 0.9214093923E-03 1.156451815 0.9240114232E-03 1.166596129 0.9267188376E-03 1.176740443 0.9295313399E-03 1.186884757 0.9324489374E-03 1.197029071 0.9354719049E-03 1.207173386 0.9386007387E-03 1.217317700 0.9418361018E-03 1.227462014 0.9451787596E-03 1.237606328 0.9486295090E-03 1.247750642 0.9521891010E-03 1.257894956 0.9558581595E-03 1.268039271 0.9596370964E-03 1.278183585 0.9635260269E-03 1.288327899 0.9675246846E-03 1.298472213 0.9716323399E-03 1.308616527 0.9758477226E-03 1.318760841 0.9801689507E-03 1.328905156 0.9845934676E-03 1.339049470 0.9891179870E-03 1.349193784 0.9937384508E-03 1.359338098 0.9984499962E-03 1.369482412 0.1003246937E-02 1.379626726 0.1008122758E-02 1.389771041 0.1013070122E-02 1.399915355 0.1018080888E-02 1.410059669 0.1023146150E-02 1.420203983 0.1023146150E-02 1.430348297 0.1018080888E-02 1.440492611 0.1013070122E-02 1.450636926 0.1008122758E-02 1.460781240 0.1003246937E-02 1.470925554 0.9984499962E-03 1.481069868 0.9937384508E-03 1.491214182 0.9891179870E-03 1.501358496 0.9845934676E-03 1.511502811 0.9801689507E-03 1.521647125 0.9758477226E-03 1.531791439 0.9716323399E-03 1.541935753 0.9675246846E-03 1.552080067 0.9635260269E-03 1.562224381 0.9596370964E-03 1.572368695 0.9558581595E-03 1.582513010 0.9521891010E-03 1.592657324 0.9486295090E-03 1.602801638 0.9451787596E-03 1.612945952 0.9418361018E-03 1.623090266 0.9386007387E-03 1.633234580 0.9354719049E-03 1.643378895 0.9324489374E-03 1.653523209 0.9295313399E-03 1.663667523 0.9267188376E-03 1.673811837 0.9240114232E-03 1.683956151 0.9214093923E-03 1.694100465 0.9189133681E-03 1.704244780 0.9165243144E-03 1.714389094 0.9142435382E-03 1.724533408 0.9120726809E-03 1.734677722 0.9100136988E-03 1.744822036 0.9080688342E-03 1.754966350 0.9062405774E-03 1.765110665 0.9045316205E-03 1.775254979 0.9029448051E-03 1.785399293 0.9014830646E-03 1.795543607 0.9001493625E-03 1.805687921 0.8989466297E-03 1.815832235 0.8978776996E-03 1.825976550 0.8969452468E-03 1.836120864 0.8961517261E-03 1.846265178 0.8954993181E-03 1.856409492 0.8949898793E-03 1.866553806 0.8946248999E-03 1.876698120 0.8944054692E-03 1.886842435 0.8943322513E-03 1.886842435 0.8943322513E-03 1.897027160 0.8944779425E-03 1.907211886 0.8949145542E-03 1.917396612 0.8956407038E-03 1.927581338 0.8966540951E-03 1.937766064 0.8979515299E-03 1.947950789 0.8995289250E-03 1.958135515 0.9013813328E-03 1.968320241 0.9035029662E-03 1.978504967 0.9058872268E-03 1.988689693 0.9085267373E-03 1.998874418 0.9114133755E-03 2.009059144 0.9145383121E-03 2.019243870 0.9178920491E-03 2.029428596 0.9214644611E-03 2.039613322 0.9252448367E-03 2.049798047 0.9292219212E-03 2.059982773 0.9333839594E-03 2.070167499 0.9377187382E-03 2.080352225 0.9422136294E-03 2.090536951 0.9468556309E-03 2.100721677 0.9516314077E-03 2.110906402 0.9565273315E-03 2.121091128 0.9615295191E-03 2.131275854 0.9666238685E-03 2.141460580 0.9717960949E-03 2.151645306 0.9770317636E-03 2.161830031 0.9823163220E-03 2.172014757 0.9876351296E-03 2.182199483 0.9929734861E-03 2.192384209 0.9983166583E-03 2.202568935 0.1003649905E-02 2.212753660 0.1008958500E-02 2.222938386 0.1014227755E-02 2.233123112 0.1019443037E-02 2.243307838 0.1024589794E-02 2.253492564 0.1029653563E-02 2.263677289 0.1034619997E-02 2.273862015 0.1039474872E-02 2.284046741 0.1044204106E-02 2.294231467 0.1048793774E-02 2.304416193 0.1045990072E-02 2.314600918 0.1040269913E-02 2.324785644 0.1034413404E-02 2.334970370 0.1028420353E-02 2.345155096 0.1022290545E-02 2.355339822 0.1016023740E-02 2.365524547 0.1009619677E-02 2.375709273 0.1003078071E-02 2.385893999 0.9963986186E-03 2.396078725 0.9895809965E-03 2.406263451 0.9826248638E-03 2.416448176 0.9755298640E-03 2.426632902 0.9682956267E-03 2.436817628 0.9609217697E-03 2.447002354 0.9534079015E-03 2.457187080 0.9457536233E-03 2.467371806 0.9379585316E-03 2.477556531 0.9300222213E-03 2.487741257 0.9219442879E-03 2.497925983 0.9137243310E-03 2.508110709 0.9053619571E-03 2.518295435 0.8968567825E-03 2.528480160 0.8882084372E-03 2.538664886 0.8794165676E-03 2.548849612 0.8704808404E-03 2.559034338 0.8614009459E-03 2.569219064 0.8521766016E-03 2.579403789 0.8428075556E-03 2.589588515 0.8332935905E-03 2.599773241 0.8236345270E-03 2.609957967 0.8138302273E-03 2.620142693 0.8038805990E-03 2.630327418 0.7937855988E-03 2.640512144 0.7835452358E-03 2.650696870 0.7731595754E-03 2.660881596 0.7626287425E-03 2.671066322 0.7519529251E-03 2.681251047 0.7411323779E-03 2.691435773 0.7301674251E-03 2.701620499 0.7190584642E-03 2.711805225 0.7078059685E-03 2.721989951 0.6964104906E-03 2.732174676 0.6848726647E-03 2.742359402 0.6731932099E-03 2.752544128 0.6613729324E-03 2.762728854 0.6494127281E-03 2.772913580 0.6373135847E-03 2.783098305 0.6250765839E-03 2.793283031 0.6127029034E-03 2.803467757 0.6001938185E-03 2.813652483 0.5875507037E-03 2.823837209 0.5747750341E-03 2.834021935 0.5618683866E-03 2.844206660 0.5488324408E-03 2.854391386 0.5356689799E-03 2.864576112 0.5223798911E-03 2.874760838 0.5089671659E-03 2.884945564 0.4954329007E-03 2.895130289 0.4817792962E-03 2.905315015 0.4680086575E-03 2.915499741 0.4541233932E-03 2.925684467 0.4401260154E-03 2.935869193 0.4260191380E-03 2.946053918 0.4118054762E-03 2.956238644 0.3974878449E-03 2.966423370 0.3830691570E-03 2.976608096 0.3685524224E-03 2.986792822 0.3539407451E-03 2.996977547 0.3392373218E-03 3.007162273 0.3244454393E-03 3.017346999 0.3095684721E-03 3.027531725 0.2946098798E-03 3.037716451 0.2795732040E-03 3.047901176 0.2644620656E-03 3.058085902 0.2492801614E-03 3.068270628 0.2340312610E-03 3.078455354 0.2187192030E-03 3.088640080 0.2033478918E-03 3.098824805 0.1879212934E-03 3.109009531 0.1724434319E-03 3.119194257 0.1569183854E-03 3.129378983 0.1413502816E-03 3.139563709 0.1257432943E-03 3.149748434 0.1101016382E-03 3.159933160 0.9442956517E-04 3.170117886 0.7873135965E-04 3.180302612 0.6301133401E-04 3.190487338 0.4727382404E-04 3.200672064 0.3152318433E-04 3.210856789 0.1576378360E-04 3.221041515 -0.3394132962E-10 3.221041515 -0.3394132962E-10 3.231254349 0.1251907998E-04 3.241467184 0.2503301127E-04 3.251680018 0.3753664830E-04 3.261892852 0.5002485164E-04 3.272105686 0.6249249112E-04 3.282318521 0.7493444889E-04 3.292531355 0.8734562243E-04 3.302744189 0.9972092760E-04 3.312957023 0.1120553016E-03 3.323169858 0.1243437059E-03 3.333382692 0.1365811293E-03 3.343595526 0.1487625906E-03 3.353808360 0.1608831416E-03 3.364021195 0.1729378697E-03 3.374234029 0.1849219007E-03 3.384446863 0.1968304017E-03 3.394659698 0.2086585833E-03 3.404872532 0.2204017022E-03 3.415085366 0.2320550641E-03 3.425298200 0.2436140256E-03 3.435511035 0.2550739966E-03 3.445723869 0.2664304427E-03 3.455936703 0.2776788874E-03 3.466149537 0.2888149139E-03 3.476362372 0.2998341673E-03 3.486575206 0.3107323565E-03 3.496788040 0.3215052559E-03 3.507000874 0.3321487071E-03 3.517213709 0.3426586210E-03 3.527426543 0.3530309784E-03 3.537639377 0.3632618324E-03 3.547852211 0.3733473094E-03 3.558065046 0.3832836099E-03 3.568277880 0.3930670107E-03 3.578490714 0.4026938649E-03 3.588703548 0.4121606035E-03 3.598916383 0.4214637363E-03 3.609129217 0.4305998523E-03 3.619342051 0.4395656210E-03 3.629554885 0.4483577925E-03 3.639767720 0.4569731982E-03 3.649980554 0.4654087515E-03 3.660193388 0.4736614481E-03 3.670406222 0.4817283658E-03 3.680619057 0.4896066656E-03 3.690831891 0.4972935913E-03 3.701044725 0.5047864695E-03 3.711257560 0.5120827101E-03 3.721470394 0.5191798058E-03 3.731683228 0.5260753323E-03 3.741896062 0.5327669482E-03 3.752108897 0.5392523944E-03 3.762321731 0.5455294943E-03 3.772534565 0.5515961533E-03 3.782747399 0.5574503584E-03 3.792960234 0.5630901781E-03 3.803173068 0.5685137617E-03 3.813385902 0.5737193393E-03 3.823598736 0.5787052206E-03 3.833811571 0.5834697955E-03 3.844024405 0.5880115327E-03 3.854237239 0.5923289796E-03 3.864450073 0.5964207619E-03 3.874662908 0.6002855831E-03 3.884875742 0.6039222236E-03 3.895088576 0.6073295407E-03 3.905301410 0.6105064680E-03 3.915514245 0.6134520149E-03 3.925727079 0.6161652659E-03 3.935939913 0.6186453809E-03 3.946152747 0.6208915938E-03 3.956365582 0.6229032129E-03 3.966578416 0.6246796205E-03 3.976791250 0.6262202719E-03 3.987004084 0.6275246960E-03 3.997216919 0.6285924945E-03 4.007429753 0.6294233417E-03 4.017642587 0.6300169847E-03 4.027855422 0.6303732426E-03 4.038068256 0.6304920073E-03 0.000000000 -0.3394132962E-10 0.1025457845E-01 0.2450379401E-04 0.2050915690E-01 0.4899861705E-04 0.3076373535E-01 0.7347543114E-04 0.4101831380E-01 0.9792506537E-04 0.5127289224E-01 0.1223381526E-03 0.6152747069E-01 0.1467050695E-03 0.7178204914E-01 0.1710158815E-03 0.8203662759E-01 0.1952602932E-03 0.9229120604E-01 0.2194276058E-03 0.1025457845 0.2435066815E-03 0.1128003629 0.2674859161E-03 0.1230549414 0.2913532211E-03 0.1333095198 0.3150960143E-03 0.1435640983 0.3387012196E-03 0.1538186767 0.3621552779E-03 0.1640732552 0.3854441659E-03 0.1743278336 0.4085534262E-03 0.1845824121 0.4314682057E-03 0.1948369905 0.4541733035E-03 0.2050915690 0.4766532275E-03 0.2153461474 0.4988922587E-03 0.2256007259 0.5208745227E-03 0.2358553043 0.5425840684E-03 0.2461098828 0.5640049515E-03 0.2563644612 0.5851213237E-03 0.2666190397 0.6059175246E-03 0.2768736181 0.6263781778E-03 0.2871281966 0.6464882872E-03 0.2973827750 0.6662333351E-03 0.3076373535 0.6855993795E-03 0.3178919319 0.7045731495E-03 0.3281465104 0.7231421390E-03 0.3384010888 0.7412946957E-03 0.3486556673 0.7590201062E-03 0.3589102457 0.7763086753E-03 0.3691648242 0.7931517980E-03 0.3794194026 0.8095420252E-03 0.3896739811 0.8254731193E-03 0.3999285595 0.8409401027E-03 0.4101831380 0.8559392943E-03 0.4204377164 0.8704683376E-03 0.4306922949 0.8845262160E-03 0.4409468733 0.8981132578E-03 0.4512014517 0.9112311295E-03 0.4614560302 0.9238828164E-03 0.4717106086 0.9360725923E-03 0.4819651871 0.9478059764E-03 0.4922197655 0.9590896794E-03 0.5024743440 0.9699315373E-03 0.5127289224 0.9803404355E-03 0.5229835009 0.9903262219E-03 0.5332380793 0.9998996109E-03 0.5434926578 0.1009072079E-02 0.5537472362 0.1017855753E-02 0.5640018147 0.1026263293E-02 0.5742563931 0.1034307769E-02 0.5845109716 0.1042002534E-02 0.5947655500 0.1049361099E-02 0.6050201285 0.1056397002E-02 0.6152747069 0.1063123686E-02 0.6255292854 0.1069554372E-02 0.6357838638 0.1075701942E-02 0.6460384423 0.1081578828E-02 0.6562930207 0.1087196909E-02 0.6665475992 0.1092567415E-02 0.6768021776 0.1097700846E-02 0.6870567561 0.1102606900E-02 0.6973113345 0.1107294416E-02 0.7075659130 0.1111771327E-02 0.7178204914 0.1116044632E-02 0.7280750699 0.1120120383E-02 0.7383296483 0.1124003677E-02 0.7485842268 0.1127698678E-02 0.7588388052 0.1131208635E-02 0.7690933837 0.1134535931E-02 0.7793479621 0.1137682128E-02 0.7896025406 0.1140648033E-02 0.7998571190 0.1143433770E-02 0.8101116975 0.1146038859E-02 0.8203662759 0.1148462305E-02 0.8306208544 0.1150702684E-02 0.8408754328 0.1152758244E-02 0.8511300113 0.1154626990E-02 0.8613845897 0.1156306784E-02 0.8716391682 0.1157795435E-02 0.8818937466 0.1159090782E-02 0.8921483250 0.1160190776E-02 0.9024029035 0.1161093552E-02 0.9126574819 0.1161797493E-02 0.9229120604 0.1162301286E-02 0.9331666388 0.1162603958E-02 0.9434212173 0.1162704916E-02 0.9434212173 0.1162704916E-02 0.9535655315 0.1162659450E-02 0.9637098456 0.1162522668E-02 0.9738541598 0.1162293427E-02 0.9839984740 0.1161969840E-02 0.9941427881 0.1161549316E-02 1.004287102 0.1161028606E-02 1.014431416 0.1160403855E-02 1.024575731 0.1159670681E-02 1.034720045 0.1158824248E-02 1.044864359 0.1157859357E-02 1.055008673 0.1156770539E-02 1.065152987 0.1155552159E-02 1.075297301 0.1154198516E-02 1.085441616 0.1152703957E-02 1.095585930 0.1151062979E-02 1.105730244 0.1149270341E-02 1.115874558 0.1147321165E-02 1.126018872 0.1145211041E-02 1.136163186 0.1142936122E-02 1.146307501 0.1140493210E-02 1.156451815 0.1137879843E-02 1.166596129 0.1135094363E-02 1.176740443 0.1132135981E-02 1.186884757 0.1129004829E-02 1.197029071 0.1125702001E-02 1.207173386 0.1122229581E-02 1.217317700 0.1118590657E-02 1.227462014 0.1114789331E-02 1.237606328 0.1110830706E-02 1.247750642 0.1106720867E-02 1.257894956 0.1102466846E-02 1.268039271 0.1098076579E-02 1.278183585 0.1093558849E-02 1.288327899 0.1088923221E-02 1.298472213 0.1084179962E-02 1.308616527 0.1079339958E-02 1.318760841 0.1074414622E-02 1.328905156 0.1069415793E-02 1.339049470 0.1064355634E-02 1.349193784 0.1059246521E-02 1.359338098 0.1054100936E-02 1.369482412 0.1048931352E-02 1.379626726 0.1043750130E-02 1.389771041 0.1038569407E-02 1.399915355 0.1033400994E-02 1.410059669 0.1028256282E-02 1.420203983 0.1028256282E-02 1.430348297 0.1033400994E-02 1.440492611 0.1038569407E-02 1.450636926 0.1043750130E-02 1.460781240 0.1048931352E-02 1.470925554 0.1054100936E-02 1.481069868 0.1059246521E-02 1.491214182 0.1064355634E-02 1.501358496 0.1069415793E-02 1.511502811 0.1074414622E-02 1.521647125 0.1079339958E-02 1.531791439 0.1084179962E-02 1.541935753 0.1088923221E-02 1.552080067 0.1093558849E-02 1.562224381 0.1098076579E-02 1.572368695 0.1102466846E-02 1.582513010 0.1106720867E-02 1.592657324 0.1110830706E-02 1.602801638 0.1114789331E-02 1.612945952 0.1118590657E-02 1.623090266 0.1122229581E-02 1.633234580 0.1125702001E-02 1.643378895 0.1129004829E-02 1.653523209 0.1132135981E-02 1.663667523 0.1135094363E-02 1.673811837 0.1137879843E-02 1.683956151 0.1140493210E-02 1.694100465 0.1142936122E-02 1.704244780 0.1145211041E-02 1.714389094 0.1147321165E-02 1.724533408 0.1149270341E-02 1.734677722 0.1151062979E-02 1.744822036 0.1152703957E-02 1.754966350 0.1154198516E-02 1.765110665 0.1155552159E-02 1.775254979 0.1156770539E-02 1.785399293 0.1157859357E-02 1.795543607 0.1158824248E-02 1.805687921 0.1159670681E-02 1.815832235 0.1160403855E-02 1.825976550 0.1161028606E-02 1.836120864 0.1161549316E-02 1.846265178 0.1161969840E-02 1.856409492 0.1162293427E-02 1.866553806 0.1162522668E-02 1.876698120 0.1162659450E-02 1.886842435 0.1162704916E-02 1.886842435 0.1162704916E-02 1.897027160 0.1162634620E-02 1.907211886 0.1162423743E-02 1.917396612 0.1162072312E-02 1.927581338 0.1161580373E-02 1.937766064 0.1160947990E-02 1.947950789 0.1160175244E-02 1.958135515 0.1159262232E-02 1.968320241 0.1158209069E-02 1.978504967 0.1157015885E-02 1.988689693 0.1155682823E-02 1.998874418 0.1154210042E-02 2.009059144 0.1152597710E-02 2.019243870 0.1150846009E-02 2.029428596 0.1148955129E-02 2.039613322 0.1146925270E-02 2.049798047 0.1144756636E-02 2.059982773 0.1142449440E-02 2.070167499 0.1140003897E-02 2.080352225 0.1137420223E-02 2.090536951 0.1134698637E-02 2.100721677 0.1131839355E-02 2.110906402 0.1128842591E-02 2.121091128 0.1125708554E-02 2.131275854 0.1122437446E-02 2.141460580 0.1119029461E-02 2.151645306 0.1115484786E-02 2.161830031 0.1111803593E-02 2.172014757 0.1107986042E-02 2.182199483 0.1104032280E-02 2.192384209 0.1099942436E-02 2.202568935 0.1095716622E-02 2.212753660 0.1091354932E-02 2.222938386 0.1086857440E-02 2.233123112 0.1082224198E-02 2.243307838 0.1077455237E-02 2.253492564 0.1072550563E-02 2.263677289 0.1067510160E-02 2.273862015 0.1062333988E-02 2.284046741 0.1057021981E-02 2.294231467 0.1051574047E-02 2.304416193 0.1053230117E-02 2.314600918 0.1057499554E-02 2.324785644 0.1061588700E-02 2.334970370 0.1065484368E-02 2.345155096 0.1069173586E-02 2.355339822 0.1072643604E-02 2.365524547 0.1075881905E-02 2.375709273 0.1078876211E-02 2.385893999 0.1081614497E-02 2.396078725 0.1084084996E-02 2.406263451 0.1086276207E-02 2.416448176 0.1088176907E-02 2.426632902 0.1089776153E-02 2.436817628 0.1091063295E-02 2.447002354 0.1092027982E-02 2.457187080 0.1092660168E-02 2.467371806 0.1092950123E-02 2.477556531 0.1092888433E-02 2.487741257 0.1092466018E-02 2.497925983 0.1091674127E-02 2.508110709 0.1090504354E-02 2.518295435 0.1088948641E-02 2.528480160 0.1086999282E-02 2.538664886 0.1084648935E-02 2.548849612 0.1081890624E-02 2.559034338 0.1078717746E-02 2.569219064 0.1075124078E-02 2.579403789 0.1071103780E-02 2.589588515 0.1066651403E-02 2.599773241 0.1061761894E-02 2.609957967 0.1056430598E-02 2.620142693 0.1050653266E-02 2.630327418 0.1044426060E-02 2.640512144 0.1037745551E-02 2.650696870 0.1030608731E-02 2.660881596 0.1023013013E-02 2.671066322 0.1014956230E-02 2.681251047 0.1006436645E-02 2.691435773 0.9974529505E-03 2.701620499 0.9880042695E-03 2.711805225 0.9780901587E-03 2.721989951 0.9677106099E-03 2.732174676 0.9568660507E-03 2.742359402 0.9455573456E-03 2.752544128 0.9337857958E-03 2.762728854 0.9215531395E-03 2.772913580 0.9088615513E-03 2.783098305 0.8957136408E-03 2.793283031 0.8821124519E-03 2.803467757 0.8680614606E-03 2.813652483 0.8535645726E-03 2.823837209 0.8386261209E-03 2.834021935 0.8232508628E-03 2.844206660 0.8074439759E-03 2.854391386 0.7912110543E-03 2.864576112 0.7745581042E-03 2.874760838 0.7574915390E-03 2.884945564 0.7400181739E-03 2.895130289 0.7221452202E-03 2.905315015 0.7038802791E-03 2.915499741 0.6852313348E-03 2.925684467 0.6662067480E-03 2.935869193 0.6468152477E-03 2.946053918 0.6270659240E-03 2.956238644 0.6069682194E-03 2.966423370 0.5865319202E-03 2.976608096 0.5657671472E-03 2.986792822 0.5446843468E-03 2.996977547 0.5232942803E-03 3.007162273 0.5016080146E-03 3.017346999 0.4796369109E-03 3.027531725 0.4573926141E-03 3.037716451 0.4348870416E-03 3.047901176 0.4121323717E-03 3.058085902 0.3891410316E-03 3.068270628 0.3659256853E-03 3.078455354 0.3424992213E-03 3.088640080 0.3188747398E-03 3.098824805 0.2950655398E-03 3.109009531 0.2710851058E-03 3.119194257 0.2469470943E-03 3.129378983 0.2226653205E-03 3.139563709 0.1982537444E-03 3.149748434 0.1737264566E-03 3.159933160 0.1490976643E-03 3.170117886 0.1243816772E-03 3.180302612 0.9959289295E-04 3.190487338 0.7474578252E-04 3.200672064 0.4985487587E-04 3.210856789 0.2493474715E-04 3.221041515 -0.3394132962E-10 3.221041515 -0.3394132962E-10 3.231254349 0.2795954070E-04 3.241467184 0.5589940460E-04 3.251680018 0.8379994864E-04 3.261892852 0.1116415972E-03 3.272105686 0.1394048755E-03 3.282318521 0.1670704431E-03 3.292531355 0.1946191269E-03 3.302744189 0.2220319537E-03 3.312957023 0.2492901828E-03 3.323169858 0.2763753375E-03 3.333382692 0.3032692364E-03 3.343595526 0.3299540244E-03 3.353808360 0.3564122022E-03 3.364021195 0.3826266559E-03 3.374234029 0.4085806852E-03 3.384446863 0.4342580308E-03 3.394659698 0.4596429013E-03 3.404872532 0.4847199987E-03 3.415085366 0.5094745426E-03 3.425298200 0.5338922937E-03 3.435511035 0.5579595760E-03 3.445723869 0.5816632978E-03 3.455936703 0.6049909708E-03 3.466149537 0.6279307287E-03 3.476362372 0.6504713437E-03 3.486575206 0.6726022415E-03 3.496788040 0.6943135155E-03 3.507000874 0.7155959382E-03 3.517213709 0.7364409719E-03 3.527426543 0.7568407771E-03 3.537639377 0.7767882198E-03 3.547852211 0.7962768758E-03 3.558065046 0.8153010344E-03 3.568277880 0.8338556996E-03 3.578490714 0.8519365893E-03 3.588703548 0.8695401325E-03 3.598916383 0.8866634648E-03 3.609129217 0.9033044218E-03 3.619342051 0.9194615301E-03 3.629554885 0.9351339963E-03 3.639767720 0.9503216946E-03 3.649980554 0.9650251511E-03 3.660193388 0.9792455273E-03 3.670406222 0.9929846003E-03 3.680619057 0.1006244742E-02 3.690831891 0.1019028895E-02 3.701044725 0.1031340550E-02 3.711257560 0.1043183713E-02 3.721470394 0.1054562881E-02 3.731683228 0.1065483012E-02 3.741896062 0.1075949485E-02 3.752108897 0.1085968074E-02 3.762321731 0.1095544906E-02 3.772534565 0.1104686425E-02 3.782747399 0.1113399356E-02 3.792960234 0.1121690661E-02 3.803173068 0.1129567499E-02 3.813385902 0.1137037185E-02 3.823598736 0.1144107146E-02 3.833811571 0.1150784878E-02 3.844024405 0.1157077904E-02 3.854237239 0.1162993726E-02 3.864450073 0.1168539785E-02 3.874662908 0.1173723417E-02 3.884875742 0.1178551808E-02 3.895088576 0.1183031954E-02 3.905301410 0.1187170619E-02 3.915514245 0.1190974296E-02 3.925727079 0.1194449164E-02 3.935939913 0.1197601059E-02 3.946152747 0.1200435434E-02 3.956365582 0.1202957325E-02 3.966578416 0.1205171326E-02 3.976791250 0.1207081557E-02 3.987004084 0.1208691641E-02 3.997216919 0.1210004682E-02 4.007429753 0.1211023246E-02 4.017642587 0.1211749343E-02 4.027855422 0.1212184421E-02 4.038068256 0.1212329350E-02 elk-10.4.9/examples/phonons-superconductivity/Ni-supercell/PaxHeaders/PHDLINES.OUT0000644000000000000000000000013214762655566024730 xustar0030 mtime=1741380470.012016532 30 atime=1741380470.012016532 30 ctime=1741380470.012016532 elk-10.4.9/examples/phonons-superconductivity/Ni-supercell/PHDLINES.OUT0000644002504400250440000000062014762655566027450 0ustar00dewhurstdewhurst00000000000000 0.000000000 -0.9092470720E-03 0.000000000 0.1818494042E-02 0.9434212173 -0.9092470720E-03 0.9434212173 0.1818494042E-02 1.886842435 -0.9092470720E-03 1.886842435 0.1818494042E-02 3.221041515 -0.9092470720E-03 3.221041515 0.1818494042E-02 4.038068256 -0.9092470720E-03 4.038068256 0.1818494042E-02 elk-10.4.9/examples/phonons-superconductivity/Ni-supercell/PaxHeaders/elk.in0000644000000000000000000000013214762655566024234 xustar0030 mtime=1741380470.014016542 30 atime=1741380470.013016537 30 ctime=1741380470.014016542 elk-10.4.9/examples/phonons-superconductivity/Ni-supercell/elk.in0000644002504400250440000000202014762655566026750 0ustar00dewhurstdewhurst00000000000000 ! Ferromagnetic nickel phonon example. Note that 'task=200' can be run on as ! many computers as you like, but within the same network file system (NFS) ! directory. Once all the DYN_Qqqqq_qqqq_qqqq_Sss_Aaa_Pp.OUT files are ! generated, run 'task=220' to generate the phonon dispersion and compare to ! arXiv:cond-mat/0609352v1. A previously calculated dispersion has been included ! in this directory. tasks 200 rgkmax 8.2 lmaxapw 8 beta0 0.01 ! this variable determines the density of k-points for the phonon calculation radkpt 50.0 ngridq 4 4 4 epspot 5.e-7 nempty 8 spinpol .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt plot1d 5 400 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.0 -0.5 0.0 0.0 0.0 0.5 0.0 0.0 elk-10.4.9/examples/phonons-superconductivity/PaxHeaders/MgB2-DFPT0000644000000000000000000000013214762655566021774 xustar0030 mtime=1741380470.016016552 30 atime=1741380470.014016542 30 ctime=1741380470.016016552 elk-10.4.9/examples/phonons-superconductivity/MgB2-DFPT/0000755002504400250440000000000014762655566024573 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/phonons-superconductivity/MgB2-DFPT/PaxHeaders/elk.in0000644000000000000000000000013214762655566023154 xustar0030 mtime=1741380470.016016552 30 atime=1741380470.016016552 30 ctime=1741380470.016016552 elk-10.4.9/examples/phonons-superconductivity/MgB2-DFPT/elk.in0000644002504400250440000000327214762655566025702 0ustar00dewhurstdewhurst00000000000000 ! This example generates a phonon dispersion for the superconductor MgB2 using ! density functional perturbation theory (DFPT). The superconducting critical ! temperature is also computed using McMillan's formula and by solving the ! Eliashberg equations. tasks 0 : ground state run 205 : compute the dynamical matrices wrtdsk .false. ! number of phonon q-points ngridq 4 4 4 ! the k-point grid has to be commensurate with the q-point grid ngridk 8 8 8 ! larger smearing width required for stable phonon dispersion swidth 0.005 stype 1 ! increase the number of muffin-tin points (for accurate gradients) nrmtscf 2 ! increase angular momentum cut-off on the inner part of the muffin-tin to ! improve accuracy of the atomic force derivatives lmaxi 3 ! after all the dynamical matrix DYN---.OUT files have been calculated then ! uncomment the following lines and run again !ngridk ! 24 24 24 !tasks ! 1 : ground state with larger k-point set ! 210 : phonon DOS ! 220 : plot the phonon dispersion ! 240 : electron-phonon matrix elements ! 245 : phonon line-widths ! 250 : Eliashberg function, alpha^2F plot1d 5 1000 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 avec 5.83170 0.000000000 0.0000 -2.91585 5.050400347 0.0000 0.00000 0.000000000 6.6594 sppath '../../../species/' atoms 2 : nspecies 'Mg.in' : spfname 1 : natoms; atposl below 0.00000000 0.00000000 0.00000000 'B.in' 2 0.33333333 0.66666667 0.50000000 0.66666667 0.33333333 0.50000000 elk-10.4.9/examples/phonons-superconductivity/PaxHeaders/Pb-DFPT0000644000000000000000000000013214762655566021606 xustar0030 mtime=1741380470.018016563 30 atime=1741380470.017016558 30 ctime=1741380470.018016563 elk-10.4.9/examples/phonons-superconductivity/Pb-DFPT/0000755002504400250440000000000014762655566024405 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/phonons-superconductivity/Pb-DFPT/PaxHeaders/elk.in0000644000000000000000000000013214762655566022766 xustar0030 mtime=1741380470.019016568 30 atime=1741380470.019016568 30 ctime=1741380470.019016568 elk-10.4.9/examples/phonons-superconductivity/Pb-DFPT/elk.in0000644002504400250440000000245514762655566025516 0ustar00dewhurstdewhurst00000000000000 ! Calculation of electron-phonon coupling and superconductivity in lead using ! density functional perturbation theory (DFPT). tasks 0 : ground-state run 205 : dynamical matrices and density derivatives with DFPT wrtdsk .false. ngridq 4 4 4 ! large number of muffin-tin points required for accurate derivatives nrmtscf 4 ! increase angular momentum cut-off on inner part of muffin-tin lmaxi 3 ! large cut-off required for lead rgkmax 8.0 ! add extra local-orbitals for accurate electron-phonon coupling nxlo 2 ngridk 12 12 12 ! larger smearing width required for stable phonon dispersion swidth 0.005 stype 1 ! Uncomment the following lines and run to determine the electron-phonon ! coupling and superconducting T_c. !ngridk ! 24 24 24 !tasks ! 1 ! 210 ! 220 ! 240 ! 245 ! 250 avec 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 scale 9.3541 sppath '../../../species/' atoms 1 : nspecies 'Pb.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 plot1d 7 200 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 elk-10.4.9/examples/PaxHeaders/piezoelectric0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.021016579 30 atime=1741380470.020016573 30 ctime=1741380470.021016579 elk-10.4.9/examples/piezoelectric/0000755002504400250440000000000014762655566020665 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/piezoelectric/PaxHeaders/hBN0000644000000000000000000000013214762655566016535 xustar0030 mtime=1741380470.022016584 30 atime=1741380470.021016579 30 ctime=1741380470.022016584 elk-10.4.9/examples/piezoelectric/hBN/0000755002504400250440000000000014762655566021334 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/piezoelectric/hBN/PaxHeaders/elk.in0000644000000000000000000000013214762655566017715 xustar0030 mtime=1741380470.023016589 30 atime=1741380470.022016584 30 ctime=1741380470.023016589 elk-10.4.9/examples/piezoelectric/hBN/elk.in0000644002504400250440000000304214762655566022436 0ustar00dewhurstdewhurst00000000000000 ! This generates the piezoelectric tensor of hexagonal boron nitride. tasks 380 highq .true. ! Atomic positions generated by spacegroup version 1.2.01 ! Hermann-Mauguin symbol : P63/mmc ! Hall symbol : -P 6c 2c ! Schoenflies symbol : D6h^4 ! space group number : 194 ! lattice constants (a,b,c) : 4.743210000 4.743210000 12.64227000 ! angles in degrees (bc,ac,ab) : 90.00000000 90.00000000 120.0000000 ! number of conventional unit cells : 1 1 1 ! reduction to primitive cell : T ! Wyckoff positions : ! species : 1, B ! 0.3333333333 0.6666666667 0.2500000000 ! species : 2, N ! 0.3333333333 0.6666666667 0.7500000000 avec 2.371605000 4.107740355 0.000000000 4.743210000 0.000000000 0.000000000 0.000000000 0.000000000 12.64227000 sppath '../../../species/' atoms 2 : nspecies 'B.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.25000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.75000000 0.00000000 0.00000000 0.00000000 'N.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.75000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.25000000 0.00000000 0.00000000 0.00000000 elk-10.4.9/examples/PaxHeaders/batch-calculations0000644000000000000000000000013214762655566016765 xustar0030 mtime=1741380470.032016636 30 atime=1741380470.023016589 30 ctime=1741380470.032016636 elk-10.4.9/examples/batch-calculations/0000755002504400250440000000000014762655566021564 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/batch-calculations/PaxHeaders/spin-spiral0000644000000000000000000000013014762655566021224 xustar0029 mtime=1741380470.02701661 30 atime=1741380470.024016594 29 ctime=1741380470.02701661 elk-10.4.9/examples/batch-calculations/spin-spiral/0000755002504400250440000000000014762655566024025 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/batch-calculations/spin-spiral/PaxHeaders/elk.in0000644000000000000000000000013214762655566022406 xustar0030 mtime=1741380470.026016605 30 atime=1741380470.026016605 30 ctime=1741380470.026016605 elk-10.4.9/examples/batch-calculations/spin-spiral/elk.in0000644002504400250440000000235714762655566025137 0ustar00dewhurstdewhurst00000000000000 ! Batch calculation of the spin-spiral state of γ-Fe. The output data is stored ! in a standard format in the file VARIABLES.OUT. ! To extract the x-component of the spin-spiral q-vector in Cartesian ! coordinates use: ! ! sed -n '/\bvqcss\b/{n;n;p}' VARIABLES.OUT > vqcss ! ! and to extract the corresponding total energies use: ! ! sed -n '/\bengytot\b/{n;n;p}' VARIABLES.OUT > engytot ! ! These can be combined into a single file using: ! ! paste vqcss engytot > e_vs_q ! ! which can be plotted. ! run several consecutive ground-state calculations tasks 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 batch .true. wrtdsk .false. spinsprl .true. ! spin-spiral q-vector (x-direction) and increment in lattice coordinates vqlss 0.0 0.0 0.0 0.03 0.03 0.0 ! enable high-quality settings highq .true. ! spiral magnetic field along q with perpendicular component only bfieldc 0.01 0.0 0.0 ! fcc lattice avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.375 sppath '../../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/examples/batch-calculations/spin-spiral/PaxHeaders/e_vs_q0000644000000000000000000000013214762655566022502 xustar0030 mtime=1741380470.028016615 30 atime=1741380470.028016615 30 ctime=1741380470.028016615 elk-10.4.9/examples/batch-calculations/spin-spiral/e_vs_q0000644002504400250440000000147414762655566025232 0ustar00dewhurstdewhurst00000000000000 0.00000000000 -1270.57813430 0.558505360638E-01 -1270.57816082 0.111701072128 -1270.57818027 0.167551608191 -1270.57829904 0.223402144255 -1270.57849428 0.279252680319 -1270.57868777 0.335103216383 -1270.57888266 0.390953752447 -1270.57914167 0.446804288511 -1270.57944851 0.502654824574 -1270.57968396 0.558505360638 -1270.57976899 0.614355896702 -1270.57977670 0.670206432766 -1270.57969384 0.726056968830 -1270.57953381 0.781907504893 -1270.57939773 0.837758040957 -1270.57932521 0.893608577021 -1270.57933866 0.949459113085 -1270.57935348 elk-10.4.9/examples/batch-calculations/PaxHeaders/DFT+U0000644000000000000000000000013114762655566017601 xustar0030 mtime=1741380470.030016626 29 atime=1741380470.02901662 30 ctime=1741380470.030016626 elk-10.4.9/examples/batch-calculations/DFT+U/0000755002504400250440000000000014762655566022401 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/batch-calculations/DFT+U/PaxHeaders/elk.in0000644000000000000000000000013214762655566020762 xustar0030 mtime=1741380470.031016631 30 atime=1741380470.030016626 30 ctime=1741380470.031016631 elk-10.4.9/examples/batch-calculations/DFT+U/elk.in0000644002504400250440000000273314762655566023511 0ustar00dewhurstdewhurst00000000000000 ! Batch calculation of muffin-tin moment vs U for NiO. ! See examples/DFT+U/NiO-LDA+U-FLL-Ykwa/elk.in for details. ! Relevant output variables are stored in the file VARIABLES.OUT. ! To extract the set of U values use: ! ! sed -n '/\budufix\b/{n;n;p}' VARIABLES.OUT > udufix ! ! and to extract the corresponding Ni muffin-tin moment use: ! ! sed -n '/\bmommt\b/{n;n;p}' VARIABLES.OUT > mommt ! ! These can be combined into a single file using: ! ! paste udufix mommt > mom_vs_U ! ! which can be plotted. ! run several consecutive ground-state calculations tasks 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ! enable batch mode batch .true. ! the U is changed between each batch calculation dft+u 1 5 : dftu, inpdftu 1 2 0.1 0.01 : is, l, U, change in U between calculations spinpol .true. scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 sppath '../../../species/' ! fairly high number of empty states nempty 8 ! this grid is too small for accurate magnetic moment ngridk 4 4 4 elk-10.4.9/examples/batch-calculations/PaxHeaders/energy-volume0000644000000000000000000000013214762655566021563 xustar0030 mtime=1741380470.035016652 30 atime=1741380470.032016636 30 ctime=1741380470.035016652 elk-10.4.9/examples/batch-calculations/energy-volume/0000755002504400250440000000000014762655566024362 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/batch-calculations/energy-volume/PaxHeaders/elk.in0000644000000000000000000000013214762655566022743 xustar0030 mtime=1741380470.033016641 30 atime=1741380470.033016641 30 ctime=1741380470.033016641 elk-10.4.9/examples/batch-calculations/energy-volume/elk.in0000644002504400250440000000407514762655566025473 0ustar00dewhurstdewhurst00000000000000 ! Elk can run a batch of calculations while varying a particular input ! parameter. ! In this example, we use this feature to generate an energy-volume curve of ! AlAs. Only certain variables can be varied but more can be added on request. ! The output data is stored in a standard format in the file VARIABLES.OUT. ! To extract the set of volumes use: ! ! sed -n '/\bomega\b/{n;n;p}' VARIABLES.OUT > omega ! ! and to extract the corresponding total energies use: ! ! sed -n '/\bengytot\b/{n;n;p}' VARIABLES.OUT > engytot ! ! These can be combined into a single file using: ! ! paste omega engytot > e_vs_v ! ! which can be plotted or fitted to an equation of state. ! run several consecutive ground-state calculations tasks 0 1 1 1 1 1 1 1 1 1 1 ! enable a batch calculation batch .true. ! Don't reset the muffin-tin radii to the input species file values for each ! calculation. This has the effect of keeping the radii fixed to those of the ! first calculation (smallest volume) for every point on the E-V curve, which ! in turn reduces the relative error between points. trmt0 .false. ! GGA exchange-correlation functional xctype 20 ! these are the lattice vectors and their changes between each calculation avec 5.0 5.0 0.0 0.1 0.1 0.0 5.0 0.0 5.0 0.1 0.0 0.1 0.0 5.0 5.0 0.0 0.1 0.1 ! Reference lattice vectors for generating the G-vector set and derived ! quantities. These are kept fixed for all volumes and the G-vectors are ! transformed to match those that would be generated from avec. This improves ! stability of the E-V curve by keeping the G-vector grid size fixed throughout. avecref 5.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 5.0 ! use avecref for generating a G-point set and derived quatities; this is kept ! fixed for all volumes and the G-vectors are ngridk 8 8 8 sppath '../../../species/' atoms 2 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-10.4.9/examples/batch-calculations/energy-volume/PaxHeaders/e_vs_v0000644000000000000000000000013214762655566023044 xustar0030 mtime=1741380470.035016652 30 atime=1741380470.035016652 30 ctime=1741380470.035016652 elk-10.4.9/examples/batch-calculations/energy-volume/e_vs_v0000644002504400250440000000077214762655566025574 0ustar00dewhurstdewhurst00000000000000 250.000000000 -2503.93008100 265.302000000 -2503.94166580 281.216000000 -2503.94929958 297.754000000 -2503.95362747 314.928000000 -2503.95513399 332.750000000 -2503.95436183 351.232000000 -2503.95166758 370.386000000 -2503.94743418 390.224000000 -2503.94190837 410.758000000 -2503.93539579 432.000000000 -2503.92804966 elk-10.4.9/examples/PaxHeaders/ultra-long-range0000644000000000000000000000013214762655566016403 xustar0030 mtime=1741380470.037016662 30 atime=1741380470.036016657 30 ctime=1741380470.037016662 elk-10.4.9/examples/ultra-long-range/0000755002504400250440000000000014762655566021202 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/ultra-long-range/PaxHeaders/Cr-SDW0000644000000000000000000000013214762655566017402 xustar0030 mtime=1741380470.038016668 30 atime=1741380470.037016662 30 ctime=1741380470.038016668 elk-10.4.9/examples/ultra-long-range/Cr-SDW/0000755002504400250440000000000014762655566022201 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/ultra-long-range/Cr-SDW/PaxHeaders/elk.in0000644000000000000000000000013214762655566020562 xustar0030 mtime=1741380470.039016673 30 atime=1741380470.038016668 30 ctime=1741380470.039016673 elk-10.4.9/examples/ultra-long-range/Cr-SDW/elk.in0000644002504400250440000000347314762655566023313 0ustar00dewhurstdewhurst00000000000000 ! Ultracell simulation of the spin density wave in bcc Cr. ! See: T. Muller, S. Sharma, E. K. U. Gross, and J. K. Dewhurst, ! Phys. Rev. Lett. 125, 256402 (2020) or arXiv:2008.12573 ! First run a ground state calculation with a single unit cell while keeping ! the moments in each muffin-tin fixed to zero. tasks 0 ngridk 6 6 6 mixtype 1 beta0 0.01 ! Now uncomment the following lines and run the ultracell calculation. !tasks ! 700 ! ultracell ground-state calculation ! 771 ! 1D magnetisation density plot ! !beta0 ! 0.001 ! very small mixing parameter required for ultra long-range calculations ! !ngridk ! 1 6 6 ! reduce k-points to prevent kappa-point overlap maxthd1 -4 nxlo 1 lorbcnd .true. nempty 10 tplotq0 .false. plot1d 2 10000 0.0 0.0 0.0 21.0 0.0 0.0 taufsm 0.001 ! start with a random magnetic field in the ultracell rndbfcu 1.0 ! reduce the magnetic field at each step reducebf 0.85 ! Fix the moment in each muffin-tin to zero. This is done for both the unit cell ! and the Q=0 term of the ultracell. fsmtype 2 mommtfix 1 1 0.0 0.0 0.0 1 2 0.0 0.0 0.0 maxscl 2000 epspot 1.e-8 ! switch on spin-orbit coupling spinorb .true. ! keep the magnetisation collinear along the z-axis cmagz .true. avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale 5.4897 ! ultracell lattice parameters avecu 21.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scaleu 5.4897 ! ultracell Q-point grid (see article for description). ngridq 21 1 1 sppath '../../../species/' ! single antiferromagnetic unit cell atoms 1 : nspecies 'Cr.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.01 : atposl, bfcmt 0.5 0.5 0.5 0.0 0.0 -0.01 elk-10.4.9/examples/PaxHeaders/magnetoelectric0000644000000000000000000000013214762655566016372 xustar0030 mtime=1741380470.044016699 30 atime=1741380470.040016678 30 ctime=1741380470.044016699 elk-10.4.9/examples/magnetoelectric/0000755002504400250440000000000014762655566021171 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetoelectric/PaxHeaders/GaAs0000644000000000000000000000013214762655566017205 xustar0030 mtime=1741380470.042016688 30 atime=1741380470.041016683 30 ctime=1741380470.042016688 elk-10.4.9/examples/magnetoelectric/GaAs/0000755002504400250440000000000014762655566022004 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetoelectric/GaAs/PaxHeaders/elk.in0000644000000000000000000000013214762655566020365 xustar0030 mtime=1741380470.043016694 30 atime=1741380470.043016694 30 ctime=1741380470.043016694 elk-10.4.9/examples/magnetoelectric/GaAs/elk.in0000644002504400250440000000174714762655566023120 0ustar00dewhurstdewhurst00000000000000 ! Magnetoelectric (ME) tensor of GaAs. ! Note that the linear ME tensor is zero for time-reversal symmetric sytems. ! Therefore we have to apply an external magnetic field to break this symmetry. ! The second-order ME tensor can be determined by calculating the linear tensor ! for at least two different external magnetic fields. tasks 390 ! high-quality calculation highq .true. spinpol .true. spinorb .true. ! large external magnetic field bfieldc 0.0 0.0 0.1 ! small change in magnetic field used for calculating the magnetoelectric tensor deltabf 0.05 ! k-point grid ngridk 8 8 8 ! scaling factor of k-points when calculating the polarisation nkspolar 4 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 10.6826 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-10.4.9/examples/magnetoelectric/PaxHeaders/NiO-AFM0000644000000000000000000000013214762655566017460 xustar0030 mtime=1741380470.045016704 30 atime=1741380470.044016699 30 ctime=1741380470.045016704 elk-10.4.9/examples/magnetoelectric/NiO-AFM/0000755002504400250440000000000014762655566022257 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/magnetoelectric/NiO-AFM/PaxHeaders/elk.in0000644000000000000000000000013214762655566020640 xustar0030 mtime=1741380470.046016709 30 atime=1741380470.045016704 30 ctime=1741380470.046016709 elk-10.4.9/examples/magnetoelectric/NiO-AFM/elk.in0000644002504400250440000000253314762655566023365 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the magnetoelectric (ME) tensor for NiO in the AFMII structure. ! Note that the linear ME tensor is non-zero only for systems with broken ! time-reversal symmetry. NiO is an anti-ferromagnetic insulator and thus has a ! finite ME tensor. tasks 390 wrtdsk .false. highq .true. ngridk 8 8 8 nempty 8 ! limit the number of self-consistent loops maxscl 50 ! small change in magnetic field used for calculating the magnetoelectric tensor deltabf 0.5 ! scaling factor of k-points when calculating the polarisation nkspolar 4 spinpol .true. spinorb .true. ! DFT+U block ! the screening length corresponding to U=0.29399 Ha (8 eV) will be determined ! with a secant algorithm and therefore J does not need to be specified dft+u 1 5 : dftu, inpdftu 1 2 0.29399 : is, l, U fixed scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 sppath '../../../species/' atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 elk-10.4.9/examples/PaxHeaders/strain-stress0000644000000000000000000000013214762655566016046 xustar0030 mtime=1741380470.047016714 30 atime=1741380470.047016714 30 ctime=1741380470.047016714 elk-10.4.9/examples/strain-stress/0000755002504400250440000000000014762655566020645 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/strain-stress/PaxHeaders/quartz0000644000000000000000000000013214762655566017374 xustar0030 mtime=1741380470.049016725 30 atime=1741380470.047016714 30 ctime=1741380470.049016725 elk-10.4.9/examples/strain-stress/quartz/0000755002504400250440000000000014762655566022173 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/strain-stress/quartz/PaxHeaders/elk.in0000644000000000000000000000013214762655566020554 xustar0030 mtime=1741380470.049016725 30 atime=1741380470.049016725 30 ctime=1741380470.049016725 elk-10.4.9/examples/strain-stress/quartz/elk.in0000644002504400250440000000330414762655566023276 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the strain and stress tensors of α-quartz. tasks 430 ! write the strain tensor 440 ! write the stress tensor wrtdsk .false. ! use PBEsol xctype 22 ngridk 4 4 4 autolinengy .true. ! Atomic positions generated by spacegroup version 1.2.01 ! Hermann-Mauguin symbol : P3221 ! Hall symbol : P 32 2" ! Schoenflies symbol : D3^6 ! space group number : 154 ! lattice constants (a,b,c) : 9.289893600 9.289893600 10.21472560 ! angles in degrees (bc,ac,ab) : 90.00000000 90.00000000 120.0000000 ! number of conventional unit cells : 1 1 1 ! reduction to primitive cell : T ! Wyckoff positions : ! species : 1, Si ! 0.4697000000 0.000000000 0.6666666667 ! species : 2, O ! 0.4135000000 0.2669000000 0.7857666667 avec 4.644946800 8.045283856 0.000000000 9.289893600 0.000000000 0.000000000 0.000000000 0.000000000 10.21472560 sppath '../../../species/' atoms 2 : nspecies 'Si.in' : spfname 3 : natoms; atposl, bfcmt below 0.00000000 0.46970000 0.66666667 0.46970000 0.53030000 0.33333333 0.53030000 0.00000000 0.00000000 'O.in' : spfname 6 : natoms; atposl, bfcmt below 0.26690000 0.14660000 0.78576667 0.14660000 0.58650000 0.45243333 0.58650000 0.26690000 0.11910000 0.41350000 0.85340000 0.21423333 0.73310000 0.41350000 0.54756667 0.85340000 0.73310000 0.88090000 elk-10.4.9/examples/PaxHeaders/Wannier900000644000000000000000000000013214762655566015001 xustar0030 mtime=1741380470.062016793 30 atime=1741380470.051016735 30 ctime=1741380470.062016793 elk-10.4.9/examples/Wannier90/0000755002504400250440000000000014762655566017600 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Wannier90/PaxHeaders/Ge0000644000000000000000000000013214762655566015334 xustar0030 mtime=1741380470.053016746 30 atime=1741380470.052016741 30 ctime=1741380470.053016746 elk-10.4.9/examples/Wannier90/Ge/0000755002504400250440000000000014762655566020133 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Wannier90/Ge/PaxHeaders/elk.in0000644000000000000000000000013214762655566016514 xustar0030 mtime=1741380470.053016746 30 atime=1741380470.053016746 30 ctime=1741380470.053016746 elk-10.4.9/examples/Wannier90/Ge/elk.in0000644002504400250440000000217714762655566021245 0ustar00dewhurstdewhurst00000000000000 ! Interpolation of the Ge band structure using Wannier90. tasks 0 20 550 highq .true. ngridk 4 4 4 plot1d 6 200 : nvp1d, npp1d 0.25 0.75 0.5 : vlvp1d 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.25 0.75 0.5 0.375 0.75 0.375 ! large number of empty states improves Wannier90 convergence nempty 20 ! choose fewer Wannier wavefunctions than there are Kohn-Sham states num_wann 48 ! extra lines to be included in the .win file xlwin bands_plot = true kpath = true kpath_task = bands kpath_num_points = 500 begin kpoint_path W 0.25 0.75 0.5 L 0.5 0.5 0.5 L 0.5 0.5 0.5 G 0.0 0.0 0.0 G 0.0 0.0 0.0 X 0.0 0.5 0.5 X 0.0 0.5 0.5 W 0.25 0.75 0.5 W 0.25 0.75 0.5 K 0.375 0.75 0.375 end kpoint_path avec 5.3460 5.3460 0.0000 5.3460 0.0000 5.3460 0.0000 5.3460 5.3460 sppath '../../../species/' atoms 1 : nspecies 'Ge.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 elk-10.4.9/examples/Wannier90/PaxHeaders/graphene0000644000000000000000000000013214762655566016572 xustar0030 mtime=1741380470.055016756 30 atime=1741380470.054016751 30 ctime=1741380470.055016756 elk-10.4.9/examples/Wannier90/graphene/0000755002504400250440000000000014762655566021371 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Wannier90/graphene/PaxHeaders/elk.in0000644000000000000000000000013214762655566017752 xustar0030 mtime=1741380470.056016762 30 atime=1741380470.056016762 30 ctime=1741380470.056016762 elk-10.4.9/examples/Wannier90/graphene/elk.in0000644002504400250440000000203214762655566022471 0ustar00dewhurstdewhurst00000000000000 ! Wannier90 graphene example. ! Thanks to Jyoti Krishna. tasks 0 550 ! large number of empty states required nempty 20 rgkmax 8.0 ! relatively coarse k-point grid improves Wannier90 convergence ngridk 10 10 1 plot1d 4 400 0.0 0.0 0.0 0.3333333333 0.6666666667 0.0 0.0 0.5 0.0 0.0 0.0 0.0 avec -0.5 0.866025403784 0.0 -1.0 0.0 0.0 0.0 0.0 3.2265697 scale 4.64890 xlwin bands_plot = true kpath = true kpath_task = bands kpath_num_points = 500 begin kpoint_path G 0.0 0.0 0.0 K 0.333333 0.666666 0.0 K 0.333333 0.666666 0.0 M 0.0 0.5 0.0 M 0.0 0.5 0.0 G 0.0 0.0 0.0 end kpoint_path sppath '../../../species/' atoms 1 : nspecies 'C.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.333333333333 0.333333333333 0.0 elk-10.4.9/examples/Wannier90/PaxHeaders/Cu0000644000000000000000000000013214762655566015350 xustar0030 mtime=1741380470.058016772 30 atime=1741380470.057016767 30 ctime=1741380470.058016772 elk-10.4.9/examples/Wannier90/Cu/0000755002504400250440000000000014762655566020147 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Wannier90/Cu/PaxHeaders/elk.in0000644000000000000000000000013214762655566016530 xustar0030 mtime=1741380470.059016777 30 atime=1741380470.058016772 30 ctime=1741380470.059016777 elk-10.4.9/examples/Wannier90/Cu/elk.in0000644002504400250440000000204214762655566021250 0ustar00dewhurstdewhurst00000000000000 ! Wannier90 example for fcc Cu. Thanks to Jerry Li. tasks 0 20 550 highq .true. nempty 20 ngridk 8 8 8 ! These are the vertices to be joined for the band structure plot plot1d 5 200 : nvp1d, npp1d 0.375 0.375 0.750 : K 0.000 0.000 0.000 : Gamma 0.500 0.500 0.500 : L 0.500 0.250 0.750 : W 0.500 0.000 0.500 : X ! extra lines to be included in the .win file xlwin bands_plot = true kpath = true kpath_task = bands kpath_num_points = 500 begin kpoint_path K 0.375 0.375 0.75 G 0.00 0.00 0.00 G 0.00 0.00 0.00 L 0.50 0.50 0.50 L 0.50 0.50 0.50 W 0.50 0.25 0.75 W 0.50 0.25 0.75 X 0.50 0.00 0.50 end kpoint_path sppath '../../../species/' avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 6.7603641080 atoms 1 : nspecies 'Cu.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/examples/Wannier90/PaxHeaders/Si-Hartree-Fock0000644000000000000000000000013214762655566017624 xustar0030 mtime=1741380470.061016788 30 atime=1741380470.059016777 30 ctime=1741380470.061016788 elk-10.4.9/examples/Wannier90/Si-Hartree-Fock/0000755002504400250440000000000014762655566022423 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Wannier90/Si-Hartree-Fock/PaxHeaders/elk.in0000644000000000000000000000013214762655566021004 xustar0030 mtime=1741380470.061016788 30 atime=1741380470.061016788 30 ctime=1741380470.061016788 elk-10.4.9/examples/Wannier90/Si-Hartree-Fock/elk.in0000644002504400250440000000256014762655566023531 0ustar00dewhurstdewhurst00000000000000 ! Interpolation of the Si Hartree-Fock band structure using Wannier90. tasks 0 : LDA ground state 20 : LDA band structure 5 : Hartree-Fock calculation 550 : Wannier90 interpolated band structure ! large number of empty states nempty 20 ngridk 4 4 4 plot1d 6 200 : nvp1d, npp1d 0.25 0.75 0.5 : vlvp1d 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.25 0.75 0.5 0.375 0.75 0.375 ! bands to be used for the Wannier functions idxw90 1-32 ! choose fewer Wannier wavefunctions than there are Kohn-Sham states num_wann 24 ! extra lines to be included in the .win file for band structure plotting and ! writing the tight-binding Hamiltonian xlwin bands_plot = true kpath = true kpath_task = bands kpath_num_points = 500 begin kpoint_path W 0.25 0.75 0.5 L 0.5 0.5 0.5 L 0.5 0.5 0.5 G 0.0 0.0 0.0 G 0.0 0.0 0.0 X 0.0 0.5 0.5 X 0.0 0.5 0.5 W 0.25 0.75 0.5 W 0.25 0.75 0.5 K 0.375 0.75 0.375 end kpoint_path write_hr = true avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 elk-10.4.9/examples/Wannier90/PaxHeaders/Pt-SHC0000644000000000000000000000013214762655566015777 xustar0030 mtime=1741380470.065016809 30 atime=1741380470.062016793 30 ctime=1741380470.065016809 elk-10.4.9/examples/Wannier90/Pt-SHC/0000755002504400250440000000000014762655566020576 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Wannier90/Pt-SHC/PaxHeaders/elk.in0000644000000000000000000000013214762655566017157 xustar0030 mtime=1741380470.064016803 30 atime=1741380470.064016803 30 ctime=1741380470.064016803 elk-10.4.9/examples/Wannier90/Pt-SHC/elk.in0000644002504400250440000000316314762655566021704 0ustar00dewhurstdewhurst00000000000000 ! Wannier90 example for fcc Pt Spin Hall Conductivity (SHC). ! Adapted from Wannier90's Pt example. Calculate the SHC as a function of the energy. ! Try the 25x25x25 k-mesh first. Adjust the iteration numbers gradually to ! obtain a well-converged result. Then add the adaptive mesh and reduce the energy step size. ! Compare with Ryoo et al., Phys. Rev. B 99, 235113 (2019). A high-quality result ! is available in this folder. Thanks to Markus Meinert. tasks 0 550 spinorb .true. highq .true. nempty 15 ngridk 10 10 10 ! number of Wannier functions num_wann 18 ! select the band indices for wannierisation to avoid the semicore states ! check with EIGVAL.out and LINENGY.OUT: first 20 states are p and f semicore states. idxw90 21-62 ! number of iterations in disentanglement procedure dis_num_iter 500 ! number of iterations in the minimisation procedure num_iter 2000 ! extra lines to be included in the .win file xlwin dis_win_min = -15.0d0 dis_win_max = 40.0d0 dis_froz_min = -15.0d0 dis_froz_max = 15.00d0 shc_freq_scan = false shc_alpha = 1 shc_beta = 2 shc_gamma = 3 berry = true berry_task = eval_shc berry_kmesh = 25 25 25 berry_curv_unit = ang2 fermi_energy_min = -7 fermi_energy_max = 3 fermi_energy_step = 0.25 !berry_curv_adpt_kmesh = 5 !berry_curv_adpt_kmesh_thresh = 100.0 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 7.40772 sppath '../../../species/' atoms 1 : nspecies 'Pt.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/examples/Wannier90/Pt-SHC/PaxHeaders/result-shc-fermiscan.dat0000644000000000000000000000013214762655566022604 xustar0030 mtime=1741380470.066016814 30 atime=1741380470.066016814 30 ctime=1741380470.066016814 elk-10.4.9/examples/Wannier90/Pt-SHC/result-shc-fermiscan.dat0000644002504400250440000000714114762655566025331 0ustar00dewhurstdewhurst00000000000000#No. Fermi energy(eV) SHC((hbar/e)*S/cm) 1 -7.000000 -0.64420820E+02 2 -6.900000 -0.54512826E+02 3 -6.800000 -0.10187362E+03 4 -6.700000 -0.10249680E+03 5 -6.600000 -0.84417228E+02 6 -6.500000 -0.14811739E+03 7 -6.400000 -0.15367557E+03 8 -6.300000 -0.18609261E+03 9 -6.200000 -0.22599667E+03 10 -6.100000 -0.20341417E+03 11 -6.000000 -0.25825261E+03 12 -5.900000 -0.31999330E+03 13 -5.800000 -0.32625742E+03 14 -5.700000 -0.43100629E+03 15 -5.600000 -0.54163425E+03 16 -5.500000 -0.64589983E+03 17 -5.400000 -0.63877582E+03 18 -5.300000 -0.64159341E+03 19 -5.200000 -0.68308165E+03 20 -5.100000 -0.71992871E+03 21 -5.000000 -0.90840285E+03 22 -4.900000 -0.93657999E+03 23 -4.800000 -0.98217028E+03 24 -4.700000 -0.95187617E+03 25 -4.600000 -0.11075396E+04 26 -4.500000 -0.11834585E+04 27 -4.400000 -0.13401652E+04 28 -4.300000 -0.13432693E+04 29 -4.200000 -0.12661510E+04 30 -4.100000 -0.12995142E+04 31 -4.000000 -0.13550536E+04 32 -3.900000 -0.13329058E+04 33 -3.800000 -0.13589137E+04 34 -3.700000 -0.13656227E+04 35 -3.600000 -0.13218376E+04 36 -3.500000 -0.11316793E+04 37 -3.400000 -0.73408299E+03 38 -3.300000 -0.71839257E+03 39 -3.200000 -0.65061448E+03 40 -3.100000 -0.64926485E+03 41 -3.000000 -0.57484460E+03 42 -2.900000 -0.52496882E+03 43 -2.800000 -0.51295046E+03 44 -2.700000 -0.49263553E+03 45 -2.600000 -0.55700237E+03 46 -2.500000 -0.55308906E+03 47 -2.400000 -0.58336739E+03 48 -2.300000 -0.47214414E+03 49 -2.200000 -0.43172618E+03 50 -2.100000 -0.32352987E+03 51 -2.000000 -0.25580899E+03 52 -1.900000 -0.26856207E+03 53 -1.800000 -0.26846334E+03 54 -1.700000 -0.26319201E+03 55 -1.600000 -0.26308236E+03 56 -1.500000 -0.15431687E+03 57 -1.400000 -0.29373523E+02 58 -1.300000 0.33864898E+02 59 -1.200000 0.16392072E+03 60 -1.100000 0.25101568E+03 61 -1.000000 0.28505114E+03 62 -0.900000 0.46638331E+03 63 -0.800000 0.60776519E+03 64 -0.700000 0.65784962E+03 65 -0.600000 0.77984191E+03 66 -0.500000 0.85840777E+03 67 -0.400000 0.10667632E+04 68 -0.300000 0.13355981E+04 69 -0.200000 0.14480729E+04 70 -0.100000 0.16027665E+04 71 0.000000 0.16522162E+04 72 0.100000 0.16579298E+04 73 0.200000 0.15191823E+04 74 0.300000 0.13546122E+04 75 0.400000 0.12365177E+04 76 0.500000 0.10521897E+04 77 0.600000 0.93999229E+03 78 0.700000 0.86035954E+03 79 0.800000 0.78560357E+03 80 0.900000 0.73315146E+03 81 1.000000 0.65665042E+03 82 1.100000 0.61999658E+03 83 1.200000 0.61335192E+03 84 1.300000 0.54026010E+03 85 1.400000 0.52909464E+03 86 1.500000 0.52537830E+03 87 1.600000 0.49149928E+03 88 1.700000 0.41467983E+03 89 1.800000 0.41849296E+03 90 1.900000 0.38364913E+03 91 2.000000 0.34496804E+03 92 2.100000 0.34754010E+03 93 2.200000 0.37139482E+03 94 2.300000 0.31332344E+03 95 2.400000 0.28822847E+03 96 2.500000 0.28805569E+03 97 2.600000 0.30017416E+03 98 2.700000 0.24880263E+03 99 2.800000 0.23709018E+03 100 2.900000 0.23446456E+03 101 3.000000 0.20783671E+03 elk-10.4.9/examples/PaxHeaders/Born-effective-charge0000644000000000000000000000013014762655566017310 xustar0029 mtime=1741380470.07101684 30 atime=1741380470.067016819 29 ctime=1741380470.07101684 elk-10.4.9/examples/Born-effective-charge/0000755002504400250440000000000014762655566022111 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Born-effective-charge/PaxHeaders/GaAs0000644000000000000000000000013014762655566020123 xustar0029 mtime=1741380470.06901683 30 atime=1741380470.068016824 29 ctime=1741380470.06901683 elk-10.4.9/examples/Born-effective-charge/GaAs/0000755002504400250440000000000014762655566022724 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Born-effective-charge/GaAs/PaxHeaders/elk.in0000644000000000000000000000013114762655566021304 xustar0030 mtime=1741380470.070016835 29 atime=1741380470.06901683 30 ctime=1741380470.070016835 elk-10.4.9/examples/Born-effective-charge/GaAs/elk.in0000644002504400250440000000110714762655566024026 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the Born effective charges for GaAs using the method of ! R. D. King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651(R) (1993). tasks 208 deltaph 0.01 ngridk 4 4 4 ! number of k-point subdivisions for the phase sum along k‖ nkspolar 8 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 10.6826 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-10.4.9/examples/Born-effective-charge/PaxHeaders/hBN-dynBEC0000644000000000000000000000013114762655566021062 xustar0030 mtime=1741380470.072016845 29 atime=1741380470.07101684 30 ctime=1741380470.072016845 elk-10.4.9/examples/Born-effective-charge/hBN-dynBEC/0000755002504400250440000000000014762655566023662 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Born-effective-charge/hBN-dynBEC/PaxHeaders/elk.in0000644000000000000000000000013014762655566022241 xustar0029 mtime=1741380470.07301685 30 atime=1741380470.072016845 29 ctime=1741380470.07301685 elk-10.4.9/examples/Born-effective-charge/hBN-dynBEC/elk.in0000644002504400250440000000366714762655566025001 0ustar00dewhurstdewhurst00000000000000 ! This generates the dynamical Born effective charge of hexagonal boron nitride. ! See C.-Yu Wang, et al., Phys. Rev. B 106, L180303 (2022). tasks 0 478 ! avoid writing direct access files to disk wrtdsk .false. isgkmax -2 epspot 1.e-8 autolinengy .true. nxlo 1 swidth 0.005 rgkmax 8.0 gmaxvr 16.0 nrmtscf 2.0 lmaxi 4 lmaxo 8 lmaxapw 10 lorbcnd .false. nxoapwlo 1 nempty 20 ngridk 8 8 8 wplot 20000 100 0 0.0 5.0 tstime 800.0 dtimes 0.1 ! Atomic positions generated by spacegroup version 1.2.01 ! Hermann-Mauguin symbol : P63/mmc ! Hall symbol : -P 6c 2c ! Schoenflies symbol : D6h^4 ! space group number : 194 ! lattice constants (a,b,c) : 4.743210000 4.743210000 12.64227000 ! angles in degrees (bc,ac,ab) : 90.00000000 90.00000000 120.0000000 ! number of conventional unit cells : 1 1 1 ! reduction to primitive cell : T ! Wyckoff positions : ! species : 1, B ! 0.3333333333 0.6666666667 0.2500000000 ! species : 2, N ! 0.3333333333 0.6666666667 0.7500000000 avec 2.371605000 4.107740355 0.000000000 4.743210000 0.000000000 0.000000000 0.000000000 0.000000000 12.64227000 sppath '../../../species/' atoms 2 : nspecies 'B.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.25000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.75000000 0.00000000 0.00000000 0.00000000 'N.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.75000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.25000000 0.00000000 0.00000000 0.00000000 elk-10.4.9/examples/PaxHeaders/molecular-dynamics0000644000000000000000000000013214762655566017015 xustar0030 mtime=1741380470.082016897 30 atime=1741380470.074016856 30 ctime=1741380470.082016897 elk-10.4.9/examples/molecular-dynamics/0000755002504400250440000000000014762655566021614 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/molecular-dynamics/PaxHeaders/NaCl-rotation0000644000000000000000000000013214762655566021467 xustar0030 mtime=1741380470.078016877 30 atime=1741380470.075016861 30 ctime=1741380470.078016877 elk-10.4.9/examples/molecular-dynamics/NaCl-rotation/0000755002504400250440000000000014762655566024266 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/molecular-dynamics/NaCl-rotation/PaxHeaders/ATDVC.OUT0000644000000000000000000000013214762655566022776 xustar0030 mtime=1741380470.076016866 30 atime=1741380470.076016866 30 ctime=1741380470.076016866 elk-10.4.9/examples/molecular-dynamics/NaCl-rotation/ATDVC.OUT0000644002504400250440000000012314762655566025514 0ustar00dewhurstdewhurst00000000000000 1 1 0.0 0.0 0.0 0.0 0.0003 0.0 2 1 0.0 0.0 0.0 0.0 -0.0003 0.0 elk-10.4.9/examples/molecular-dynamics/NaCl-rotation/PaxHeaders/elk.in0000644000000000000000000000013214762655566022647 xustar0030 mtime=1741380470.078016877 30 atime=1741380470.078016877 30 ctime=1741380470.078016877 elk-10.4.9/examples/molecular-dynamics/NaCl-rotation/elk.in0000644002504400250440000000261014762655566025370 0ustar00dewhurstdewhurst00000000000000 ! Molecular dynamics example of a NaCl monomer in a large box. The code reads in ! the atomic displacements and velocities in Cartesian coordinates from the file ! ATDVC.OUT. This file is updated during the molecular dynamics run. ! The file crystal.axsf is written during the run and can be used to produce an ! animation of the atomic motion using XCrySDen. tasks 420 ! read the initial displacements and velocities from ATDVC.OUT trdatdv .true. ! time step in atomic units dtimes 10.0 ! total simulation time tstime 200000.0 ! calculate the forces every 100 time steps ntsforce 100 rgkmax 6.0 ! small k-point grid required to stabilise calculations ngridk 2 2 2 sppath '../../../species/' ! atomic positions are in Cartesian coordinates molecule .true. avec 14.00000000 0.000000000 0.000000000 0.000000000 14.00000000 0.000000000 0.000000000 0.000000000 14.00000000 atoms 2 : nspecies 'Na.in' : spfname 1 : natoms; atpos, bfcmt below 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 'Cl.in' : spfname 1 : natoms; atpos, bfcmt below 4.99885462 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 elk-10.4.9/examples/molecular-dynamics/PaxHeaders/Si-phonon-mode0000644000000000000000000000013214762655566021611 xustar0030 mtime=1741380470.080016887 30 atime=1741380470.079016882 30 ctime=1741380470.080016887 elk-10.4.9/examples/molecular-dynamics/Si-phonon-mode/0000755002504400250440000000000014762655566024410 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/molecular-dynamics/Si-phonon-mode/PaxHeaders/elk.in0000644000000000000000000000013214762655566022771 xustar0030 mtime=1741380470.081016892 30 atime=1741380470.081016892 30 ctime=1741380470.081016892 elk-10.4.9/examples/molecular-dynamics/Si-phonon-mode/elk.in0000644002504400250440000000224214762655566025513 0ustar00dewhurstdewhurst00000000000000 ! Molecular dynamics run of the optical phonon mode in Si. The initial ! conditions are determined by the displacement of the atoms away from ! equilibrium, with the atomic velocities set to zero. ! Atomic displacements are written to the file ATDISPL_TD.OUT and ! ATDISPC_TD.OUT in lattice and Cartesian coordinates, respectively. ! Forces as a function of time are written to the file FORCETOT_TD.OUT. These ! forces may be used in a subsequent TDDFT Ehrenfest calculation with task=462, ! and will produce a back-reaction on the electronic system. ! The file crystal.axsf is written during the run and can be used to produce an ! animation of the atomic motion using XCrySDen. tasks 420 ! time step in atomic units dtimes 1.0 ! total simulation time tstime 20000.0 ! calculate the forces every 100 time steps ntsforce 100 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' ! atoms are displaced along the diagonal atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.23 0.23 0.23 ngridk 4 4 4 elk-10.4.9/examples/molecular-dynamics/PaxHeaders/annealing0000644000000000000000000000013214762655566020751 xustar0030 mtime=1741380470.083016903 30 atime=1741380470.082016897 30 ctime=1741380470.083016903 elk-10.4.9/examples/molecular-dynamics/annealing/0000755002504400250440000000000014762655566023550 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/molecular-dynamics/annealing/PaxHeaders/elk.in0000644000000000000000000000013214762655566022131 xustar0030 mtime=1741380470.084016908 30 atime=1741380470.083016903 30 ctime=1741380470.084016908 elk-10.4.9/examples/molecular-dynamics/annealing/elk.in0000644002504400250440000000716114762655566024660 0ustar00dewhurstdewhurst00000000000000 ! Simulated annealing example for silicon with a vacancy. ! The initial positions are randomised and then a molecular dynamics calculation ! is performed with a force damping term included in the equations of motion. ! The crystal is then slowly 'cooled down', simulating a physical annealing ! process albeit on much shorted time scales. The rate of cooling is controlled ! with the atomic damping force coefficient (atdfc). ! The total energy as a function of time is stored in the file TOTENERGY_TD.OUT. ! and the maximum force magnitude is stored in the file FORCEMAX_TD.OUT. ! An animation of the atomic motion can be produced with XCrySDen using: ! ! xcrysden --xsf crystal.axsf ! ! Note that you may have to change the 'ANIMSTEPS' parameter in crystal.axsf to ! match the number of completed time steps. ! ! Molecular dynamics calculations can be restarted with task=421. tasks 420 stable .true. maxscl 40 ! use the PBE exchange-correlation functional xctype 20 ! atomic damping force coefficient controls the rate of annealing atdfc 0.0001 ! time step in atomic units dtimes 1.0 ! total simulation time tstime 2000000.0 ! number of time steps between force calculations ntsforce 100 ! don't write direct access files to disk wrtdsk .false. ! randomise the initial atomic positions rndatposc 1.0 isgkmax -2 rgkmax 6.5 nxoapwlo 1 ngridk 1 2 2 ! Atomic positions generated by spacegroup version 1.2.01 ! Hermann-Mauguin symbol : Fd-3m:1 ! Hall symbol : F 4d 2 3 -1d ! Schoenflies symbol : Oh^7 ! space group number : 227:1 ! lattice constants (a,b,c) : 10.26314134 10.26314134 10.26314134 ! angles in degrees (bc,ac,ab) : 90.00000000 90.00000000 90.00000000 ! number of conventional unit cells : 2 1 1 ! reduction to primitive cell : F ! Wyckoff positions : ! species : 1, Si ! 0.000000000 0.000000000 0.000000000 avec 20.52628269 0.000000000 0.000000000 0.000000000 10.26314134 0.000000000 0.000000000 0.000000000 10.26314134 sppath '../../../species/' ! two conventional unit cells with one atom removed atoms 1 : nspecies 'Si.in' : spfname 15 : natoms; atposl, bfcmt below 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.50000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.50000000 0.50000000 0.00000000 0.00000000 0.00000000 0.50000000 0.50000000 0.50000000 0.00000000 0.00000000 0.00000000 0.25000000 0.00000000 0.50000000 0.00000000 0.00000000 0.00000000 0.75000000 0.00000000 0.50000000 0.00000000 0.00000000 0.00000000 0.25000000 0.50000000 0.00000000 0.00000000 0.00000000 0.00000000 0.75000000 0.50000000 0.00000000 0.00000000 0.00000000 0.00000000 0.12500000 0.25000000 0.25000000 0.00000000 0.00000000 0.00000000 0.62500000 0.25000000 0.25000000 0.00000000 0.00000000 0.00000000 0.37500000 0.25000000 0.75000000 0.00000000 0.00000000 0.00000000 0.87500000 0.25000000 0.75000000 0.00000000 0.00000000 0.00000000 0.12500000 0.75000000 0.75000000 0.00000000 0.00000000 0.00000000 0.62500000 0.75000000 0.75000000 0.00000000 0.00000000 0.00000000 0.37500000 0.75000000 0.25000000 0.00000000 0.00000000 0.00000000 ! 0.87500000 0.75000000 0.25000000 0.00000000 0.00000000 0.00000000 elk-10.4.9/examples/PaxHeaders/Delta-value0000644000000000000000000000013214762655566015370 xustar0030 mtime=1741380470.089016934 30 atime=1741380470.085016913 30 ctime=1741380470.089016934 elk-10.4.9/examples/Delta-value/0000755002504400250440000000000014762655566020167 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Delta-value/PaxHeaders/H0000644000000000000000000000013214762655566015557 xustar0030 mtime=1741380470.087016924 30 atime=1741380470.086016918 30 ctime=1741380470.087016924 elk-10.4.9/examples/Delta-value/H/0000755002504400250440000000000014762655566020356 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Delta-value/H/PaxHeaders/elk.in0000644000000000000000000000013214762655566016737 xustar0030 mtime=1741380470.088016929 30 atime=1741380470.088016929 30 ctime=1741380470.088016929 elk-10.4.9/examples/Delta-value/H/elk.in0000644002504400250440000000130314762655566021456 0ustar00dewhurstdewhurst00000000000000 ! Dense metallic hydrogen is surprisingly difficult for LAPW codes because the ! muffin-tin radii are so small. This requires that the cut-off rgkmax is also ! small to keep the matrix sizes reasonable. tasks 0 mixtype 3 xctype 20 rgkmax 5.0 autolinengy .true. gmaxvr 24.0 nxlo 3 lorbcnd .true. rmtdelta 0.0 avec 7.57324755 0.00000000 0.00000000 -3.78662378 6.55862477 0.00000000 0.00000000 0.00000000 9.45443212 sppath '../../../species/' atoms 1 'H.in' 4 0.3333333333 0.6666666667 0.17498 0.6666666667 0.3333333333 0.82502 0.6666666667 0.3333333333 0.67498 0.3333333333 0.6666666667 0.32502 ngridk 10 10 8 elk-10.4.9/examples/Delta-value/PaxHeaders/Os0000644000000000000000000000013214762655566015751 xustar0030 mtime=1741380470.090016939 30 atime=1741380470.089016934 30 ctime=1741380470.090016939 elk-10.4.9/examples/Delta-value/Os/0000755002504400250440000000000014762655566020550 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/Delta-value/Os/PaxHeaders/elk.in0000644000000000000000000000013214762655566017131 xustar0030 mtime=1741380470.090016939 30 atime=1741380470.090016939 30 ctime=1741380470.090016939 elk-10.4.9/examples/Delta-value/Os/elk.in0000644002504400250440000000227214762655566021656 0ustar00dewhurstdewhurst00000000000000 ! Input file for a very well convered hcp osmium calculation. This is the result ! of very careful comparisons with Wien2k to determine the true GGA equilibrium ! volume and bulk modulus. With thanks to Maric Dulak. ! See: https://sourceforge.net/p/elk/discussion/897820/thread/aecdbcf1/#cb4d ! This is also part of the effort to systematically compare solid state codes, ! basis sets and potentials and encapsulate the results in a single number, the ! Delta-value. See https://molmod.ugent.be/deltacodesdft . tasks 0 mixtype 3 xctype 20 ! set very high-quality options vhighq .true. ! parameters from Delta-value dataset avec 5.21365989 0.0 0.0 2.60682995 4.51516191 0.0 0.0 0.0 8.23342334 atoms 1 'Os.in' 2 0.0 0.0 0.0 0.33333333333333 0.33333333333333 0.5 ecvcut -3.5 species 76 'Os' 'osmium' 190.23 2.4 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 2 6 0 1 2 elk-10.4.9/examples/PaxHeaders/GW0000644000000000000000000000013114762655566013541 xustar0030 mtime=1741380470.126017127 29 atime=1741380470.09201695 30 ctime=1741380470.126017127 elk-10.4.9/examples/GW/0000755002504400250440000000000014762655566016341 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/GW/PaxHeaders/Si-GW-band-structure0000644000000000000000000000013214762655566017370 xustar0030 mtime=1741380470.102017002 30 atime=1741380470.093016955 30 ctime=1741380470.102017002 elk-10.4.9/examples/GW/Si-GW-band-structure/0000755002504400250440000000000014762655566022167 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/GW/Si-GW-band-structure/PaxHeaders/elk.in0000644000000000000000000000013214762655566020550 xustar0030 mtime=1741380470.095016965 30 atime=1741380470.095016965 30 ctime=1741380470.095016965 elk-10.4.9/examples/GW/Si-GW-band-structure/elk.in0000644002504400250440000000205614762655566023275 0ustar00dewhurstdewhurst00000000000000 ! GW spectral function band structure of silicon. ! This is an extremely expensive calculation and requires about 3 days on 200 CPU cores. tasks 0 20 620 ! type of analytic continuation used for the self-energy actype 10 ! use LAPW nxoapwlo 1 ! Matsubara frequency cut-off wmaxgw 5.0 ! response function G-vector cut-off gmaxrf 3.0 ! temperature of many-body system (determines Matsubara frequency spacing) tempk 2000.0 ! large number of empty states required nempty 40 plot1d 7 400 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.5 0.25 -0.25 0.5 0.0 0.0 wplot 800 100 0 -1.5 2.0 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 4 4 4 ngridq 4 4 4 elk-10.4.9/examples/GW/Si-GW-band-structure/PaxHeaders/Si-GW.jpg0000644000000000000000000000013214762655566021035 xustar0030 mtime=1741380470.098016981 30 atime=1741380470.096016971 30 ctime=1741380470.098016981 elk-10.4.9/examples/GW/Si-GW-band-structure/Si-GW.jpg0000644002504400250440000040251614762655566023567 0ustar00dewhurstdewhurst00000000000000JFIF##C     C    _{!nR2)5pڶJUiȪ1CfJ[`Y䖜+=dU=^Ur5NDT7f2&S -tƳ <*5Νvf]7NsT߉Vij(Z22xk>W|bk ZE7|Ҫ1*c}e00.6A]He̕lMqQVnJyNdu rAVN4rNn^*@Z:fތn#.)2VeL۵uny۔xW|orJˎN-KV껫M$lnjț&/@y+p٥K"5fR%5vCUΫ7kNdM)JS3f0ʫڝ"Q)AUې ꍂCtcc|g]+r͑{F%n+M%#}9c/6SUJwV-jn<ҳ+'w˲lJKn];K^g_:ir|rʫp{^^ End%i[i]չʲ+V&yJwwƮL觚YYA3)Mm}z_B>Ce4I9^M~qU0@Cm3~YWg4opʔʭNҲu,OtdOMxNGMm5]ivc7c;ӧ]V+Ku] *;ʺ.(e+NȆKG9y31 ]vrUqz=cg!Y+r9dU]`Dhت[JnP7td+Mf&&B֮,RtЩET6 TiHDh N(WRKf2P -<<.WFxS!Ole.n4]S,c抪ubPŪinAZLUUpڶʕ0H+o2`&FW%gkM%t,TBey/O8}/jhцUm)m)dJ֦HuVHiIMe9M*ɺ6w gVgTld EMŔdºVS(i7+wsӥ[]W3)H]]܃̫UyoCt7^[>c7ӔJX 9>o|NN"B2ّ&ZY:7ю6ChȧDGZWYWl6ғJGIwdF|<Yshj\]3Nl姞iջkJ5&ˆ4iRe:qxN1w.쎝KLLU2D5^2>cNʽtӾmwZrјSW6WnM+պIuce6DH@ ѽuJ޼0CdEj6kD*ЃJnSUj,ztjmGJ*J:38J͂ӆy_Gz~ў;y <'W^."yJV,W{-UmGP:[,G;>@Y3vynZiWlfuZF!"5c:5϶uj7~ym>NRMsy3Ѧ])숮--)k>S־2^?ʭRUSzjkZh*r5eߔ7NѦ]]{'II3a"QmjymHC%ɔѥ4!H@@JtզY)&2&lb)TL[vD"(Du!"]o1dºGPKG>5m` MZh*~+UdC)AYun4֛JҴeѦ^o3l· @duWJ)B ;Y dfɖS]]0+"tTWm[@h+':IJM%;s΍t򞗿+V+&]l3ӎ^Ra(ZGlCrWZ<5ӮRoJJth؈m*bW)ϮiU~yYZ*WPڷ"wdJyѼg)-J3S=Ѿ2?+y>C,3ͻ=8u=`+p%uM -xYz5,m/ +(Xm%Vі{ybo^v%jwҩ]2ɥC/><ݖe.ȋ;[iYһKo6xzt^a*u-ўPJ2jz+sώm,\f=@}]ծ~Co<~|}:imm WdCHs;om<<άpm;3Ӟ3$OV* =nq,dVjRR5cӭWU֖ƹv&n*EoFYn›FTVOtxIn ǾHe:1Fjў?GhX5]dxnϡǻkO]U[%,newL5hHmcG@]WFu^rw.7g*No}\\1OZS2"f UMͮT:rɎ'#ʣ])*oLmՎ^J6#;F?Mdꪯl]mU]73V9j5ͧYڍuib5ڭ>s]jXtDcK7rɾz<((pcֻ/.}t`~7M嗣NˏOR*'^|喜pOӟ[cW>E%uM:jiܙWlo]Tg;&-l]ݑO89O>[rz]~~L,Cm[ӓz:\y;6TӣZz9=\NJsգϮyre?۪)s]*6yiUtssr{8y>[UmkWZszKk X᳛Yfn1oG9o՛MN;ӭ+h[-1?'o%-sJVLi}4L5SҪWvxG:,ګwim]\rqr p6.nutt7m\}o;ݲ]d}4gX5j<9 Ϻyә٬2˧˿r;(kfsnIՎ Zty5tkҔ+&-y+ʕ/z:dnIcaߵ@Sŷ+z-e%u"x֍*ŧUwh$O2_?yw_Wxܒv-_=vqlkvi6V{vӅw˺7e].E\pVNk6c) s43^̛tJ[1e/3|eתpy9=}YKf%)Um.s3NL<|}~4b|;5ϯV.kUxMe-sY1<{\o#oC.9}gi uv9ZwU(б(]zéÍ:խr;eKfcӢJg׿6R:DcÇg,;$qۏVip- ]9r6G@XiyyzNV=G}t޷c y6ޝ5e=^NW|>N 4K>zއ/^m*1ϓppuygӛ^^u1j8x^/ϷmrtڣZϟÏ/o^GC%&Sn-[󝾕wjDv0<.Q.勨8kKBPi}K7uu:{qѓnIKnlE=a^g>k..v'kyopzCݼOnWd羪tda{@nRc󞇩aˑ:LR_V}^W^k/ǗW΁M*cVבu9kM9ϣr;:g;?_Ş.x>Rkwb]=o|5rz{veӢtP)3ݏ7ouw_*y[yۡJZzyn?tC:>MZ؋$т7d ite\ξkUh"tV:ɷJRϊvszy?Sm۫,UgZtSg;:n_ïnݕק޺MU+#;>?'<tQ[_2ϗ?v=9W/{ޯ#pp2Wg|]m9]]G?י[Fz= |Z (Y1xKr7]tF:1*gϠz\hUzYљ?:=}[ǽ {vo{|ҺnϽ'G]<ҭnI#ȭy]{sz:rmo.O̳޵rϜuˬ_35p#6#] +ǃz5gg)h+c;g>'pɯWsusvϧ4珷[?i?ޞ}gOJe>] /Gy->/Z0=/͛Wd|a|q7䯟uy;~~g yṣI׷F}tpAcۥ[-X|_7{MNXx}k ~j#.z+x>l'rvtRqg<^ vvGy~ޛb_Ƿ&\~׃>27&sÂɼhʸ}'?s>e JO?qkMNz߃@[j+{67{|V=^Nn~ݞ3כӳ,V4tMߥcx{//|w\7)2'~oD_wnO׋}-x@wxs>v.-oMßy_c^3jӯ_E:ە׷ؕ`û ߟMti ) KFyt9=wgz|Gq~Ow}WǷ&~[ö|ݛ]Ҩtgۗ?wΎ6[>mk] Knޫ}wy77w]Yoj:ܛ1us:K~n^Nv\ޞ `܄lcï k/KUўpqq}8OtSz+{1ûq{;oԭj!m椣zxywezEl.7=<[<;|5^vw{&8it=<!ZVIU+VZ4u4i^<ޞo3:GyOVYoy|ϮbNnxG[qñƵ|~ή~Tފ꺨mݞ}~N7=jk/%Ϯ^97.zIf}#ӫFVuںt2R8F]:9]t^]N9mUںe6jCz_3qjMwVt1r5t{m=nO=Ji-s-m2뵄tymz]nsWG^b(ݔVݨHJL2Nh ͔15+]_]~klNW'>#/?/L<͓F}NnMsyGwY1޴*Ԋɍ9g;+iG1\ן]2k;yګҺtn6R2Rbꩭ*vҩ[D Ѧ<ͳZc a>/uyO9[3ZoMYgcW:<ގkEȄH)@@wIVlMWZۏ5,o/?_ϝ9Fh* :SužtiU:Vp4GUUvRu/3dR(wtiu`2O1tE.fSGKy|=~jms:xg?5m]Z nL6Ò +\tfmYÇ^j^^OU^4yܾTmU JZ3EMkKjDҭY *<Τ/ ,v4i^% hXƚh _1)^ hSFP:Ro㹧ƞ$HYEQE!4q%-"Fi6%^,"Ӏxu5oz\#g l:8bHee/t 0,zti"9(MP]~rHC 8װ1̰O-^d/+ZSXl>WV,"o.xZB{K2"Јbmd;^%=&⁲!'Cc'U/ӹ 9q,S1OsnȦ'B`&hlv@rMq٩opˍ* i*iv.Q,Vs:ٽJY͗KdS:&k#G"}@ (' \{؋%8@ l.z$7eh/BD-`Prs-O-af3H@'@ d'e,B4ZM"ҋyP:k tRߤk. pW6 26 eM_'cr; vܦa_ |'@,裈;;3c$Q/--)rZcH\$k|F+57V@X7YZ8ȹ__{8ŧTUxDYSYbkM tqo8gfɨˇw9ܹۥZ%eb8Z lN!$ot^ ak(ԛ"tv!S.0嚾"PIu4My=Y_<t&V28IR'NŒ5ı\HLp,gy%Sn m,ta*?zjXSew&T%Vd,lr{` %\#&HȌξ1@`ۡݘ얬V7RFc_%|=>(Vo:@aGΕ]i|/k>Q9ÛY"Dzn7dbSʲcL1d=@w=.R1rc3[tG({\#kZe4ϝm={kd; ⬏'TuM:Me7i<]ýq+w \܋". G..ibcx[z֯G]=䀏~-ВOn 84bFBiXY&ӏR VE{+(ME)Nκ_*ɩ#nmȺȶɃ"O_ _k.zJ)7y@-_(쮊(;%{ ubӏKgXyXdP<XuOwyo`ȫ.r.Dҭi_۠ *Y)%]5wvV[~EYy]=/\ˡDݠpg_7E~û-Odk7.=6knBF6Xq~2WWVAfQ/ JNGu\z4~I4+ 1G[D^0XbrWDaRt?yC \yܲM&/A"X`|-7X ,m@pd_:;cmiz<')#)(JI- 7(G9]sʈ3Ovmd{,JXIsCn)f9njg<7KGls ɍLjŬ ,$,sOj-D &36b'g`Wot.AbW@suito9 q,t4Z@&F8?%l\{( pA7DZeA2#p]6ƞF#fp(t _dhߎpI寺xĞ&vSٶAEڐYY8ns{d<:Y5޾A<4p/.d"^Ҝ.Sw@YYjXK^bSw%բڝBVOƘH[ BAhbt9YM <2vJׄntL96$r |Ӧ'#w1=ᵢZWqL,7cs,md:r ^ut&FK@P`)SLZ#rWA17I1'QdҀc[-u$Ro]F2&/0LZ6Oix&uM@f{UE5>:܌-E2bHp6:KByύKi*@@&3 [*z&Ә$}#beD>[&*9M?) tn^j2р1 A+y)mHc2HJ/s!ߣ#GaRKw59ZZdXO8+%ut,d#_<7lxC -z|9:IDa?!0'FHdQ\l\n&KeM⒵vՆ>#et iT `ُe3ƴ92BT:̍w64`.kWl#V_7S)JގL *Bk6-'ENi15(݅.j jw.EM<9ɓwܶ2U&="n=I[.+" :D!OPe'eePR:k&dќqLdjS`W(+]SApzy!) W>k&bt"9쬃nEt'Ǧii`Pu;$jʙVJ}M9Pc4zr) jp-^,IMJ:Xԙ ύ!-X+"YuGRȴWMTU=+FfSjr׼4v##n(0\PHWjlTQmN[KƇq'1;LF(ᄘi!QޡENsSe r[t-N8b7 B2SiC(P1mzWM^I'̤J&s'*W869TU9Ҕ]t\=KTl*0EY,NNQ??|@ĶЎ)t~>=6Bd o܂OHc,$A &FNZSn*LeUjq^=xwTQd$yU.j5vƺ3|Өmhx 8)(ʮn2Vn};ON]6(qAzlLzuEЦt9N}=B~HˠYF%5L :Ѧjyvkp1SjѼJZkMf6++f54k\G$ϧ=#XՊ@EW$yTq:WF:'o:[^!>:LƸӪQyk/q KtHKg[ ԕSIU F}՚ڥ;c6mvp*St(Wtb5rVWQjj5gY_yr\ET4S^K&E[M%4z{&ktP#m%3Xu薥].7@bl%-3!AS3d?oPt;2:Fd ֚朽RjRS-3St4q}42HU斉oѲY69)fLwvʦ>'1\ud#.4z tx{􌤗v4aLt0TkU5rii2(.6+SkmI)hi30Y~PT>R=a`y4W_zLiN6IC\ԵE JN~I.EjI4iڳdsdv#*_& l&3NO?L~ri#DJRO'@dIS2-~C"lu74tO]Px{N0Qӹ}kDglkJ9k$t"yq>@* JJ!KN#$1eQU4| gӮAKS'إiD97nj3HV*tY⦆:* *K6z]6:NRovMw4b)?tJ-VJ4MsSxt08xJjpR>4J+qo*mrk^M"¢)[be|ш)oުëԂ&f diIzWya)}RMPti)R4P:q6r 񪺗J(eS&izSu-rj':{\ cBM7PM V/[L~3(%FȟKO*SP>dhҺW(kl*MEO J}E<,ruQښ>>ʟR} V))XHQa c5 Y`X, ĬJ`X&JKEOIJ}i <j]SJمsEQ. ~x Cc6LG9DFUTjm-tu[ƭo` zs#Y@ǿ"^&5uDj=Aҏ M:vNrAxIcP/mR,R4=2y>tJF 5eJʊJtS 7G؝j*:.MyiP%Ne2ot cl8 QNve&Q34-_ (YAR\ WLjlйJI dUAR"Hm -t2qqAGI$iN`RątNbd v1}MUgd%#5ZRΚ~O_*uM>R=麃i)2b^̭ŸY&BS5|1+0lt$QԖ(5Yas(54MvN5E ]V7)5YQ).r2#"YY`X"(S"4-Xud븷!3mY jNLCXiQWи(ZS:Io.7*:TNYi*MEFcRi1:">KEfYx[#ĭ#B2Si>G&[g@Tp(i>CNFK5J ZSj7'N\->Pҽl9lVX+"ł̬uK5&ȺݮAX3qrBb:}iDRh)tױ:F"b"mma)Ozne hC:NuQӹnl*zLY(k\œ*D$*Vv&! ZHߣ[K*'QȤZPWb!Ay\۬ ХyLӞ4Š%:'ṰzѨ2;&k BUjIۣz:9GGr:Ktt!D֭j5ѱ?QyNsy+2*;p).̬Б2R hx89%̭· )jQ)6T+W݅j'Bҍx!9}F:[kmm"Lszux٤NM\)(+xDbBwn0MkR/9 d*xIhrPaMs(IB(dh5BM_dȠtj6jWFQEdVe dQVqȶbx$)\c-[}1h9 e V7!QI*H;Jx_lz jrPSVDk"צBі0WWA:17Q(UD[4mS uKޛP+l:9IHѫ[t *\r3]]]dBbju)}BuXsPyOD5Ĵ"wFJZEIOe(@SiIB f~ixԗ'HJ%9iku%!҅ 4-fڼCV 9vd`!m-V[xr +`LPB/[L axV *t 2lƶc[q-ՀGdp"o@$! A^!xҳ%_(]05Ҷc[Qb ,YFe$HN.NsqY[oW*ωX X`)XR(L+} r,cфŊ-X,JbA-+el B-Ѩ[oV[oV(LP[૰-`[m[` )2*/dWY $M(J \1"ł-Nb`X, `A,V+#B$ A+n t-зyoeE$\WY,J%fLyn M[Kildt,{+z!2ri[ #NV۲[kmm]l %l VdYK%[,&/uuuuufS3fFrVE%t]eϋZyu[[ofd.\[o-庌4\~WYeWWD~W~3Y ?o]]]]]_<f庺dY,K%t\Аz= Y%76Yzzd^E4 \9 VB+ܟf.]/MwL||tdZAdY 7qD[0o&c>{p [ddMV"nOlxe?շ@..EA"|]ck:9[teoOLU=-v,6 ާ:8XqXn,o)m;[{c ǀ-竐g~]ԋEo6磅jod[eldpGyߣxns߭ueo6 Zyt;ӿKl7v(tߨDrCeeo5yVVV[q}ؿ{DtR䓺*6NC;_~yG_ߡ<,7KsY s_Cu~w o u'|#K>[=Ơn{uotKpKt `&G[{; [Iɦ~:||7Vc<ݲI;VDYk+ :[$:]_]K] onnX+"=[KucdKYZKM(,9[bÌy,Xk :%_uu>RU]]]]MtYY[uH.Yq߭釥_ Z U]|z+ςn2Ew%dPzϜhAȬ o{u'(u~WA]_zYW@r'E.AV_DܡY",.w鑰69u%]]_MFk"Autdf?&5!1A "02QR3aq@B#P`b?v/Y~LY~Ldś'e3g'Oɏ.Oɒϓg{'Oɝ쿓;?&w~Ly~LyrL6_ɝ3wrLd11?;?&w~OOɝȗ_ɝ;?&w~Ld3gw/_ɝ쟓Lv3g'Oɝ쟓l?;&<'g{7eeȿُ6Oɒ?wLe3w_ŗ/ŗ#u快gw/y~LY~Ldw~L3bϓG{/_ɒ͓g{'J?\;W3:R73~Կ:P.FQVi{V<=%_c-sB{>YgJOsTyCHJɵй+qO:!c"Ք]&e77K(&pj-9*=/qP՚lkqb\/ PȺ$図NŽ>_o %dO=,H,̃qoK$1=.,ybW҅WfEOLߵ/譄 v$"dHƷMbϱg5㢑%KcvQbcUtzV/^zx ҶOĢ6$[&-4Rb+bK?_ۗR .X&h[1I%^-CZRHPCpi%GF54U4U2FƊDQ&],BWҊ'oۗnēn)F9il! KK%+NKBQ/oa#L({ n/Sƫ]3QhOcd]xGMe"N)>Yccv>Mt'c<[fPOJv9J\Q;oSl/YhIط\tHIBJO~ć 9YjMF9V7r݉o)S#+/܎ǒx9V%7L66DltH%LrhH]c୺%҇ˤ-z44F'lr< ]ziaLD*Lllz߁PCձtYb}>=W҇B&.zҬӎܛ|{>ȟM\L{7>l!+"O=GWNNHhgDrxy.%E> .B(qэPŋ+ϱt[zLC,nQ$5"2BkhamBEѨ,:7FDQ" z[ űtQhKbʶ4QtUģe2ѻ$z/LDʶF {e8_1Hƍ6( I8YcKRKa+EUrf 1-J+a{BC5Gszrt-ؿw# h;w}N‰(Y,?amr D7NЧy= Ս}2} &;YfNbtN0hn^_\u 4mC;B,9Qer$85&l/1;ߧfXƒC!ɡKQgm-$ȅL؊F.[MLJdbI!P-F*Lckljcvб8&$FY %pIGf"f9bp$j(nF7ۣI4zJoٻ4Ѥf@<Бq4qߧoQq3DSQIn9mNDgJ̙"8rChD2RPŎCr7DIt)S,LS-˴.])XPfѻ BQPoɨ\}=ǦU 祉l8]9!2Ujě[WM78ղ6eoq"\cVKhE4QŹ,_7*'wP%hKHK^O1KӰJT,>,OZ]D1kvo&hhؽ,5|<Dwѡ8Y DBJDx4Em!GPeZbLQh)T8ۡhK}"ѨsܕG}i4 $d|:=cIpi4e%p[ʵn'z+hNT|Lwlq޳^7i1i!zCi%x"vܧ:wcH #<*Jb7r\'$ce%*bMHؤZ,)[;g~#W-tC*eʇ&759X=t}Q mpz9cw8KNKr9$nJTIŵHJ T2-YդY=TbpKc[S1rzkrMc)t^> SܷE%rFǏSb%vm:|L_6ÏBqZ(O#CBRӦQ\V%#&%lkNQE6iy5#XTð;q0G!Eqԗdj5-ri2c%lc\rN&;}qbQحD!p[}}[)N|sӲrtb=20*YUgkVCK)Q fNOCRG0_ֈCS"v8 jD 㬧vK#"3z6-ru[IE'䢊%x ydžMĭY(94,"dَjjПK"G[A,vK WGi_؎4RCFiix45吟D"_(A#,W&΍obggbXģTG:=ErO:(d.c4Q()-zxR[,2ŽTuHzgú=j$̸Iы e/ب˅r95.OCVT},+r8QcFL$0J{~iDF?Q%SC"cd(w'vD1(nZ2篆+sӼ y~ʤj%4{D{jF-rfʖ [,gf\ \/}O,,{%Ew17.IG18^ޏ1e܄۷&?Oyƒ$Eq.LrО{$ŃW<Q HSM)!MHD5YeTd"G^inc£6u y/Ov#_ 1,^e#F)+c/V}TyyIɣHk58.hԱ~zuOzV3|O#[g2-CGkT$INŪVvm!zW_M4GEx4)8Gc%D梷'hօN\, szmNmnv`X|15BKe?D)'"cs*hY~QVG>'< *Q()V}.9"^?+[/sѭ0iBĬЊ4Pm\KEezxE$O4bY;DKslB7ǙH&j/-J,2ʮ"dڎ'{fK"ԢhǓF^^^UV/K[T6j̞x59o2 ҢG 2^N8E t8v*FYBsvOꊥ,LxQڊ螷JQUDqpُ:~#WkRL҇DE(X4#AFMNm9;$.-1G$̎*Ўgb#g`CXWc'9Z%ɨJ'U1ZfF)/8ɡcx}\ɚ1sǎikU#1Q@hm .ֈ)ˑ!*O2XeEO]_R4L Q䬆[1愅lɞ1,̄TVPcfXF|d)!r?*HxFEyV~"0BRܖ5#zY^Y,ke~=K%3&Elr},*ĖwFȎX14l4ӧdjDDb^LlxcQj5#QjD'rtGI)O ȥ3#2NSġ1 2Mn\?~35]2^Fɥ/Oҍ.\D^5R| E˙E[#JcB$2c$M,3s(\#;呎8nG󿰧9+44̬d|$wayr3(18S'/PSD(oBw5_ϒX\d3)Y2D^b/~y&i"/e=2} Њ$| <9IXD"2f7C(,TG%k?~$ /"?Oꇂ^ۙ&?cGG;yb5e_TE c;PgTM4D]?P HjCd#x2kJfOS'nY`\Di4LGKKY/M%Q!,LQ0IpiFv;?ao5;q/V^%ۙ,+b(LY%"Khl>G<I#GA#I^4i4B4Ii1?K?K~.Y~Gc"c;_">y#;C(~,8g$>/V&9YTGY藑zX#CSGlE ~spL5|#G,H#+#a"~1r͛ջ@wdaFIM2gb |3#%"4M(ЍK dOѯ%XBXdvez.Eգq?YT>)Yk5dF< ͓uo6#&^vF?K1^$eёY0E&v~?H?H,ȇkHh^.,zygo!O1O3܎:Q_O Y.iE#J4c!ygs,9G~yj^ԥE&~?Hd4,Ds*gpwQGywQCΏgvl6wf3 A駮7F6Nd; y y "؍]D9thpLxQGehFW]DKܗrgs!yS4ӐO#J4B;H#hԍCs%2'mv;Hh(7Yj52FFk;#wNFk>&v$vGmvGm x𝦸>4k;t#`wFj,P<7b 4QEQEGxr}ŐR5#Qj5#Q6Yfyrlhl C;bvбM&(((#4Gk;#<9v(X }+8pgčmedw vk5#YsC!@i4M&IF+E2JOEi4M&5Knifv4#I#I]ZFA#v ѦVS&hgmvРh4ҽi[JUҊf˭ui4%WHi4QEWDW(IQEWDE#OfHVi+EUQV&IQ.ǦIE/?VlHNʳQn][Kk5'~߳R5 }/9d˱*%W Ѩ'| ^Ln禢z-oK~ߨ_$˿je|WF7}|{bq/bۢؾ]%2丹K5u؞LxR" ~߶5l7*]X.Y~_ȲȊ%]kW~诐W{1]4%|Ҋ Ij"TWJkغÏ2C_#HgҺ/>C%~&?6KJ~cɗK9|4>=y侖_Ktx-X׵ÏՏn}dK>m{KetE{LY./_DUu(֊Ïebt]jYBC]keYf5c#QekE{+QEt鏎YeH"&"UKQ]+{,,5n)ҽu/n(H({)M&H՚QE}cUt|{EJ(Kb~E lQ]PJ(cB((q4/+!OF(QEJNI_ (j&@!1"2AQ 0aq#3@BPR$CbSr4`p?,I|$OO܆fkKɋ4Oe9Ky%kɮ_&?s\OWɮ_$䃚^iis$S/\OߨI&ЧUjf:2%*lӃPdPIWG&j\jk~Y;ɥ.?29f'5$Mr:N?K$ŗ.dOc̿ɭqW<\C5%#4\d9,dJ55;Tq哶77hҩ--QVxnc$Z?#I w.Í OcCV烓{| Fkʞ9IU["[#.eأ<8l,4%ݢenUih҉Jۑ4 Q(jT"(LP~̒q-Âۥ(oBsC4XtlO$&Y2n.SjxZvhd%{ cŪ@g)%F[!w'##_d.2&o[,Pd}Ξ-'nCfK"TIU!ZtcLJX݉#4W,PPa? RFihO·yE1]-!7+Bwۂ_LGg33<}3ˏTF.R^ݲSQT^¢*ٻ.J[mz]vkblxuwn!ZmneJ8*={>(Qtc~9 *RJ3Rt2?wly)$d{_iI> Dו/,~oۑIԏ7DTJMWfK([5oFOl߻x n٢^bR9Fl.SirC#Ǖ"]N1Ey=M˲А<4(%Ҕw8,bqFUS#jm 52<:RHڈ®Sہ<;2l=j=JQ-ic4kaI-.{$(6r%fl7(TUCll̯,Mjd(\Of&#^̉Mo3O-VQ7{&j5NX["*WuٗY&[[P jp7Jw EH;d^'lN~BQNI:vݎpG%7rn0RxidztR#kJZxjwe[?_DFJ'У# ܋Q'KazBz^y=Du_Oو\v]9l9RzlOP-ZP|==$/*[%"BiH-HutN wtiމ%f8حI*92=cmr[Q%u()JбK-ڪBDcɶA_gɭH2 ^Í3ܕEo}ӖӾvM}zjDkd;Pnj! ^N4!Cr&'w1{i㲫4vʾ؏C*+=q ) Wձ‘nG_گ}meDPtޗ~&:" {P"߷B_$W=~j$a_f:5'1 ?$0Gg[NQum[ao{Fi]E{ڻUTu]ژ-cquތE]+55tI[Dd(5fkZ))$FEQc4[<= <9qܖ=J P$څ(Bӻ8"mweeY]٢ʡ6<֐{!}KbD/߶;KZB'ShUzX32ɨFRGc&X㎩Bj vj{$}бcK~˒K&hi*6- INQFEk%ئObw%sxԮKⓒܴm6< (j)DJʢixyTB(я5Y']*[CQCǩQnn >s_tIQkEU {QT$,Pҩq-6;Bߎ"y,`r8dթ % 3`M*wde\z1DQJE48Ǫ譅Ѥҍ&xh"QTr{$yēi(q$4B^$u<69??rOJB^&7JtfTpčHQk/R$j$4KJn8֔z*(SubkI[5gEl9R:_Gg)ԑMTE1Gj)]qH_,F(4mCt:[i Wsɗj%DiVp%( j-d*D7VvH3ODu$I4Fv(r-Xc) M4rxn~ ?K[+qSMLs#kkc1e{'"iYvԨHpLJBmXJvdģm?Em.ո}|rX{+rQ7kqrYci5E+ߵz}E?,hBY4TQ2Ųv,vW>=wډ _y~BپAVݜgow7H|{> l?1NȻV&+ttǴ/,1#w|gGP]F&i>P\]K~Ԕvbw%vev/{Âj˳բ%7/vJ/(CC[{]We LC[j.+7l(ʿ1!L}Qr#ߵPVܮ9(g:*ƍ.Hx(V/:4ܵQTi#,ܫReg(K%n(DDQ(Pj^5-ˑvt:rW](o}b$Tj=P|mUf&x݊o0tWm/DcEM| ;nmg'v-m[\ĩ Q]-Kt,FVK-#YlY[jUMpV;ج]摒RJ6v(iһw*XerR]Yز?q4Jy8ob;# @Vjӹٸˡ^Ğ|#MCӻ1t^lĉR^R7TFqݜ<"9~a*7>bc*VZpcMTx< T·A|evpz`ϋ5 ukInn+J<~#*>y2,$jZPg&2+&ι%xM-;.\/&ה̅w(QtM54ɖXyOaJY7X~xn^N:Tɖ1rmcI.7JXNXá3^de 9ቮ,~fetu;f<U)iE o'UU#FOGEl:oQxIr.hsIɒ8fLs75!KbGb8,DFw)N5"\%.)Apj}K<1 uq쾦dIJ*brv{9c5hL8Q1Gݍ~2Zj/rvB[fO8]Ajw"qR*8ovIm#o$XR^ġzXx%.e,y8,Rh]EEFr%IʹLݚRJ16o!/aK$0uXx^'rhr7Vкll5=^n5_T85!%ip(ݢ'2T> <%=Ze1#Iy~%=#,\nXg!usߡuDzdbۑ' jJr1k.> y#=Ї Mu匸c/^„ȠC}Rqr$/R#vi4L vy:DžTiQĺlMzE/mm(WY`VW ~.KR=fW&e4jvAlK>5-E\w[饒Pj,r΢rd'txw͝zO$axikʊ:pĜڼ;a?&> ; QB+8J2tT 1%x5RB-8C4U j,7Q>Nk|8':!̅ԕ3Fn~Q4r+T)p1uXW|vC [3{< &G B. 1iE}f,RǶ6k%|͌]DۄC>vO%f7kYh)|˗u.ȞM]b=PߞjCЎO؎$,jL]6UHSܬ}ɹ..-b=_S\[D~Ǫ^IKu #D̒Ǐ%VrK>5ΧgˎWo< ?T,Ҕn,_q%V^L2П}d UO:&?0"h_itVpcu)1c9.J#$Vj?l8G>9^cQ>,e&}4~σIF^lQO4/.? p1T$^Vz4HcļTd ~K͖7C:N-7JRD&K/͑tѽLQ*.Rҷet?E}$/!<_Q'/1M.Bԫt>Cɍc\c.~gf>'qIÃlv}.X~]MV`:lVxP|q`R}.9ָ}Tdp}#=MY*`))5<V)m>ԏ6ݏ.{'giZ:nM 8.j5)%xqLjуR֫Q57b㏎J/])GN\vBh3tGW,qmo xzRaV6cȦ}F\RrbĢ%]IaxrC/tZ%`t_RM_mk,F14Y9xWIEC3]{| ۷S1N1`%_N̽^ٝOI qSqr+?0FQ㛒*J=fOŸ>`5fl7KZ"uɍcܡ>ώukuZa=W.&r,P%蛄V_b9 5hћ40ngB.|t,0J)} Yt2j(xe^W*[2qMhŕIYǍԥDNo"L8%3c^l/L_oGd&=/M4t䍏/cYJiarjcka:3ux5=,y5hGN(+Z2`;2X-g=>Uz~azjfugF?0M[ud,2u񫛢}d74LmُǏҍ&I:%G_ftG=lxUB4iG#\]69q>ㅻ} U \ lnC3OL5teB:,>i"?2N)f3tVNPٮWsgW.$Ү$eTPp'(Ê8*ΣR-u[Mc޾ec2e :WCT<]?S ʌ[tOPx_)G=8\?,'ٗAAR}M#rgB=2- E4ӄ7KU 𤎫y#̽|=:u?x_T^'M鷊bB_9)e/T4:xd"_gi_/YZ1~2ۼF[O&Vhφj,yYyszvF<k5EYeDGos&\n?лt欸?y!8Z) Y#YVǃ\[?k_pST>j5ߴKP,p՞v.WQoTX1UĦGgEѓ"SHƅ3'O'#s1lbK2B}O1ddcɿ њ>Y}G4g28 K>]X+/&/K렯Kt/r?27KJ"?^c(Â'X,[>E/rXB^/ȇٙxhNwKQƐ }6XqȾk}b=n#z>,߹/m.O۞:dz?qM2ǹ ,{LR/C-:2lY1DQh2})z=O!/>;> 4GQQ> ycY{nxIrubfYwc|Mo0z5XCsGg> fr4.N؎E. c\>¥i|#͞k=,1zQP4M%IП(ө(ipkFF'K"|!> 'uldc7M#rqs6Ck>|ɑ`Ƒi)w7}j5j5QYeQEIi4EC}-'uI-&OM/:E(Q@Q* GbQ_;[uH};d1s[Y(i+IKQ9χ)HqKC\MQ S5FYT{.o}>UI/A5N!0M&x8&K.b>c.&}:H:x=QEg$zB,Qj/NCQ~O#WW?cYI4K< 4K;uD>(C]f?xO,PloG#8ϸًpȼ_̨UlllljǑ/J<7/SaG ?Kgg}HR4$&hq%Xz}.Pb걿sOW^x+.0 (+K+QEQEWt#OeoIYi#+h) i4WtiQ_YbwUjW{5'MX_٫Qc(E_ BC>{lgvh-q/QeV6_ҘWٲC/c}d˾} {ǿ"?ezoWG?C>,{?/tH_]~ W/F6(%_K%hST% _c!~+]_X _=Bc\G,ıj_U~8,E5RVWYeYF5vw"(QJ][veYe }:J(% }QiH*GϏQEW}4Q_CB_CE8v|Wj(hH/+ ڊ(EPtW;J+E!1 "AQa2q#03Rr@BbP$CS`4c5s?KSL/dϢjL/dϵGsO^ɟjlWo{&}3菢gڽ>7轓>^ͿEQ`jLWgڽ>fϵDϢM^͟jL3P,P,Uʒ=gڲLGqdߵ{&}3^͟jL/dϵL4 fϵ{6}3^͟jLWfϵ{6}ԙh^͟jLP-/`g{&}wlQlWg{&}?;rfϵf*R`wl4^ɟjlWg{&}ù~9g{&}3^ɟEdWid!05 k nE !LF}Dm .A8tO$d@B s&5. 'J+[PPFs ,gU5ǓTvg逞(qhq+gÅ-ۺUd]鎰!A,%$ [~숟0~xʲ<ӽ ~R%yckp$rW/44;?0.6%n`2P~JS\&/ekJ-@qꉀ%JT~4B> [hGg)'Pjۚ%C^F1Of. n`jB%Y*xF ʲd'*xC#bו& ny0s/%*xIAd]JlO8_he(D<,X<Lχ Cey9ƵhNJ>#z|-~dp`ɰ8مaS!4^!nTsVie'uS&N{Dx(h#P3p 6l7+NyxlJ[9jFת$pA2qٓiXjio$Nqv\V@b7/p \y( ll3`o0Iʈ[}X;>)|As( uVfmLP@u %Giٛ62#cm'8S di?b}}R,) I1nqpkCc8_S~)Cfm7/ET6JCn#*6m˭j~)CqzFK_r5,5??߇ _dlJwTU CtBɒٶZȏYTaVv yiY%3FUL)ETT/l8m.&83v'溣OQm[\P|8 4SN  Ǩy(Qy&83z1԰lXPQ6儆tnpm+.v د`߇y\G:u>.uCo0'椕#""gſ [m\ŦTl6&: ef+$lQ=N3' QBQlIexķ)E.?4RKjⵚQflv VTa :zH sU>&@Ɗv TkCn/9N]uAʵG沊 \GqU`꽫RZlBseyk,^)eQRi'K.MBg"N5дL+vQU̹ss`enfeӿŽQx|`+C+qNQNmG=ݝAuzπ B+cg4Gi o}Sوt~N+)q#:*fzELm:˝cc䁩Ok.*.vVggWiiGRQM:@L5_-aDǮ#ګَF7s\'WDa#Ov{?4Cbڮn7:e` 9IMhj(w}i}h֨9;>m{}G;r=AaNh#oj|V".'k%?pvjNeK;-^J.sBd[#ߙ>\i9s 8t׼tN%0ڦ]p Yk7wŔ}=}8 {胏mgilLvr A i|P:b2tN5/Gk{|\5MSi1'D@DN8 |7}r{i Yr9Aߥ%Ce3;i}VvS.#h9CSGSdH#HG>,Q.ER&vQŦRU?NmUl.o}LiiU\9SBJB=nhڍWfS]8Sk?, n^oת}[ZIL~GDE;DF7j{Kvnkn3LߢhZ(M K3'iiPG%%k&d/KG ѫWvZYȳ5-h5*=:p0ߚpU{U"Wq8 Yٽ:;ӛs۳H~ID>KZ(.Zu@.jsيl%5DܱUiV\srˏ\ujq{RN^t k&Y2=T1 TMA*S\sE??0:) -.?I>&o;`*Κᦎ~Sɭ{NcŹq\V^?r.s'n֢FvNNz=E Yrzm@~^*_^//JnþjosWS̮ fYG5o?%1+w~KvlUڴ۰5ѻ0ISPcWyy!nPn/^"-yg^0oe_8|{?ף)0~ y<[[k \v [5S9uo"Sm;ƮvULgq)s˼kUy?5$r+~[>NW\PX ss~#YSCR4+S>+/ID;MD`hېg]F:! 1H y2AxA #,wAZ>X\֫_]Z㫣/ ~v1i%z*^ s*N"@x$(=Jd;渷 bGE^@^&ɫWpK1_5` |M[n_. ¼+´Z-?5Z7 zXiZ-ja U߷N+ѳUw-v/pV~7[Ԙ~J~x]_jVuZhphh5;2^KaCޥJng? ^ ^jxk{r[Ky(r S2Uu\AZ>C 6tV ^rI^ܵ:AWxW[QuJ)\W'zjg/+_x[Z跩[|ղ#EW2nUK[O5pSbuvYF2Jc*bVU/Z/ սuoÖi:-Mط୆\0:qk?u+k-ꇗy~:߉?X:-o`I8R?Gs?(0?A0?c[h5;Gc`",!1AQaq 0@P`?!bX>WbX<W> `/'B/x_ c?+Ù(7Y~fTHc/!*Y@ZWJ͜LTP7oZrV^KǨR[7ׄ_ (%\;:G)T &M$qa ['0O8{D .P|HHgJٿ"j_Dx1:<&[rɈ༘}ʇ~=b]5h'$CS*?jj޴z.XS y$E<+iXvee;!UXxy~?w3̌n8*`E,evOx/Q DĥK$5@6L5S OIț0E/%c/gT[&%GfL#h&c*u(2(,ҪE9~ ٚ H f#_S#?RkmY~H+Z4}fp 7Rċua`Zl@ʜX_oyTHp. *R6|mԸD'})#C=Eoy ]C![ڠlY0r9Tpb; K|F8E]1kmjRå/z-~f)̲h-Z`W jNq$n0EPu4) #YCkggs$y2NR 1#Ϙ"i"ь1uWQ!;*3ʿŬ `C)dL^$%Q- c\!.m 4,;d@ЇYG3{a \pZEi02 %EG‹-g (@7&cwX4aF͜¨Fmj1* nCzM`M$V@L> 11ú9껝G0sT Ѓh-0!ijԭK%p i\Mokka^*jb%0V8lɄ< lfU(n].[;u-v &n8'@>%̃s3R"^O7;pCatuXrXhıkLO껕@טa GIJX#*ZG4Y- !D Q`xnP1̥!s̺2 ^Yy53Q"11P\"^J Kļs)ڏS#M,hרmZs R%Ƅ3AD8@S"Vźr\ʋOspǴ7692~bΣZBqaf7I ssJ4B$6-FK&R*;`xT]CA= |@**ܬM_!Vs'C.sLz^euC9&ֆR2qVuG]!`*\ >挲\0 ~͆.wE~!PN-nfp+O12Q+?{1 .NP)zNe+O0fL&&8OQ1  ^ߏT+={@W1xmGΈR1E.3cCFKVxäeq KM"LyLs98F̘<1M1s)6AԫbҺp0| /+xj^h[3Ya-f~y 3 1NQ yf5 O~_ߙf)9YrW%]t/K . ݑn`_pυ\/)v fr\ø-`QwD10j{W.!r 6VW}b$xyI 5n*\O7dT&9kYA5?i.T;a4/9~?w 4-ZĪ7K\/ڦxV9JP[?qa̫c{#Pt:* V~bwԬ|Haj]S 9:<ƧJQu>w}@#(2jpn.1Jˈ 3qwSp E/"p3,yj-| /8My/2{K:Ľ&Uw DdЗߗ_)c :( 3 #L/c38wa[)2Ay,NjQr>7134 ]W% ,D?є郂YdQ,FY~&`TN5ŋ=|mZe"˝E9KM@Q_ O9q %^PUlj ?35. z5_0|&\=s,7(BV!G^#VZV!hj4Nnd8>kPb R=oTق l ]'HU yNj&W9Q1ct?^k7-ul!& We9 \:!8#,U Jbfe+ X)PW0[t1wjJy{C#/o|C$|) ŵyδ| rPncq-DXQ/, ?*h1qp9שQ%&2&ܑxwYjh`"@M`ʬ܅MrL@@/gSu8XAP~-J̰,h5c&chR馞#uL,f͙sp7,cN{16n:gv k]C{4RGR/-mASDc0/+ aQDhЊ/5EOaP3x|rn% s`+O^YoWȨRFdf8Q@f-X4 ehbcM|Lɖ,N2Ň/ب_KP=%?2(̲+0΅2e lp-@ѨWѕR&RE6#̿<{ԱMbY/Is qbwPF!&6K3ڸMxo|.c06Z13M*]=Ƥ-@Cy~\ L1 7O¨b+ SgQ^H?4:u҇YC_U 26j(&/P{&.\)S~e%h`5PNb@^xhPngjwfF ܣSK&g&n-C\8=Nlw(9m+;ewٔ/Ѣ W-;`L9XIĵ0ٷpVSQZ `<ʰs* Qy}Eff8s$^ШT2 !Ř8B={d%u21\#Cmiw+~UT}A1:R!L 20N t6,vSn!hZD7V}ew<16G; _0T;XhZvr«Qn rYZ]M[l?տeרmbj02:FrYT3@]s1bJJrd,Wnĵo8#u L~4ÙP^vdn/HC{&O o%N@2jvgTet6VQvq[,RO/Kr$=A[ X%3ͣOQ  Zc/<Ƣ$^ /5w eQ:_ZT9!m}CIFwrјU}vlwp i-Z2d2A9hw Kfڗ/⛋sJ k3G UVćY5aC:YD@MKFe(0MƼ A0c 7%+9C] .ν/B`Yeob;/s'%%w RSB̢Y%\vKQZȕV%2q0IVQN҂3&av-ShxuE7`0_j@g+ m0BPYv0kp!fJ"j'^ P^Za`ۅ`*YԽGlYFtи #㘶veM^__frEkjI^(`+y¾%SvH]''.Rf?\69q*&2u klSiFD[J X`@w G2_f.[b(ṣ[2&X;Ù˩fA,b``M^xĬzmt0KeKj"3Wo19ԣ1OsyNP*[jr|;"%P] s'h JỆfj[m:c߸V9t 9JSZX\}Ι1]MbiK'F\njJsW>/ʫ[ˆBu(;Xl%.X!QfX[M9q.{F03R<&qh 31K‚l_*&e(Py.YВ[8oï|q&qs-C~ uPYWf7Rb1SwcWU< ;wD+ ϳqH̷^lwmԬS:Ll]H5ԫf|LŃ P,Jy(q23/wwXo38[M#Pk2fX!^=B/*`ġ;P*8re\,LED+{;LWZfY6Zc\Q-BQQeYŀ*&"X傈uM©LF+Tk-[*lG >+p#4jvϺuGQ* 4=&>WMQn6{)ZRZ/q~w&]VcĻYFT+W./ye+%Fgcʗ <ͱ2#{W-g'*mQ+nfQ+HWಢјEI\u Vq1*Q2 n)&8&H"bBs p" ,=BAܽo\b2S.ᝢ=A6}3acAx.,9m2#zf Ȼ.ƪy`جHRP 1O @ܲ[Əp -}Q њ`Ĥ8KxXSh@[dw3uT#;@)ωO{8xe5,cbt!:f_"  H4-Lo Sv!-;A'- J.K ^%P[%;[ 孬8f^3͑zG=C9CYa 39)sUbنd^r"񎣪L2[[c V-5C^,ykKh](eKM9¢,_zSGux)&*4"'RdO oW Z<4:1aQ(3^_24f}]bqEx jy!nyܬ% MQH& (\xiGL1\c̪\_ N<,îRDnB2c ,gUA{l:)Sp) 7! *!/VZatPӲ{BGeJ(9nziTnt=5o6@S-/;X8kqʰ#l\29ġK d?(-~ R^R5 B^-rͥpO?!FJ(C.iyCpc OJ-%o'VHtKC7PލTA9]AUV*eAi`I mdK@en?Sp| .C^ BUqE^ep(y~2vW/evΈHXP耧QtX!<KNqeMF:beZX/r5o3StUDycR2ACʽĩȢt"ZbnhI)pWc`1eiT# ]\'9.0ݘb|L$2xT4jjXJwKj\eZ*/PP}Ap5X_nb&]NM"yIp|Gm c2~c`m{TAtg')vph@R"72ˡ?"8$WQ @.X.B|~dd.ۨ6ÊL1V9f}W\3z_F҄Q 61>8%b,fP%ܪzpK1$Gk%ne"saC^ )REZN)%m8=BaDFh}(E!7"T; auUlM489\Lx!p;}%'R̽vsR2e[ZM39%Hƣ 8<0JJkqFRA/٢=`}fDyB^RySSps)G-zA*Ȧy#v($טӺR8DwPo7CQ0Z6= Hf?z(S2A4qzcU,\@‡(?t>q=Z˕*:8&e@{h ]TFLJc /k'2vY r+`pG 3 PjYh^Or? qW5EҮ\׳{qL&8,~&lxd‡]QsH/zZL:NO& %D`ddȮ##A/G1\t_23̗ૌ0Hˋ9Tx3S4m# azcOV¶X ]0U ,"0@rjeoi[3Mк/:+.1uٱ.g˲싼\kqpX5P|⎦]T=AR߂7KWz18.q(a5ߚ^ʖ@^+fS:Hͺe v ?B ]]>_< R,7d.΁#_S&TX=MS?sL%,e#d1}舏z}ŵ YBS| kHǮl2:xZ/n˟"N9%Z1T~~/4o (GجEDZyb"\%&^x"ünگlyR5W;N=#qqaQ`Rm`U2eޗHD{e\?4ܳ 6?1= 5+(cx' ዁@]"!A;S%??zo29n EQb#wڗv=#}.!M&gP]̎}X \8s&^y#gm50/ 9nz>s"^A)-֢& ZThvh&VRSO4JhvDCkJ001*"l`=(.ҿ*(% z)VۚM>5t˞>1٣q爴i¿U"5끠4$Gn.U/GS+ p{p$ L^SB}~z ˆ,@Ȑ ;>jOmD~/,ڿaj[WLOՉ1;J)pCSޔ%δc0ZQ7q+"Y̱?]G* oXWEl IFO{{!q[,™RUgZ,4}rʹ*載{1\>KX%1>r ]|Yrȏ膎b{e_9~ ?#\YɿFq0bbo,ywga .q2ͫHԿ- S<2%-wU i_kQ#Rḏ'rU;Ilӯ3 ++-іSďFB.ۗA5a?PhИ SPxB0/R-- 6u4qX #|EOHʇU r) %i22Z>zxL8A4팅:s=on`n^CV#TC-b݄Ko!O1cV>;x /D۝J6Q{]`$c~ذDg\s*ջ Ye Ax?ɑO"sc⡟Jc㨌d|$t?Aq/|p ?x1Fk> i[n\Pf*# =L4>&ʜ~%W @ZO=\bmúqe4_d*fkr(wV|h>φYw72|2V'C՜!uup/s4 6$.EKꙘX1;#M'rZ#T4+q) = O4 \N0}…^  g?r#&\'@eo*5sHC)EGk0sb[:)G*1y#+e"tWc郖p{'D|XS=0.\&#+Of$}sUNCkCu3A!Jz-HlyY sNĉ+߅* g($ZK&CX|dy؏ 3)b+q˝:fܾCsypO| DO\M㜢!^7Kw/---.-uG9<*1O 5&JuU6ܷ DS#)B>3VS8nzm4sjU|\rn9"_8fW56s/?hA~/nKV#&%L!ҪKɧo gv {C9] %y̏CE*/!00<4eZ?1AЂ`%@ ka\:,Hj5\>0š[KKJE +#_9+k&1fXc=FBs q\y~/sV7 "<_Dg6KܷS/r qxi;Iyyio\p.B r'~ ?w&zx-|ϼ`|%ZC̫G*,#/#u9FW>?P֢bvtÌ\SJ3ۛf}9CQ]"MRV 1}(4H%c rݳ< 10(^x3y6|#'$?''#&vZ&zlr#]ojvftFhŲRqg#;FNېIX2AG|ǗGuK+Z4"tA ~"CZ39ɦ.q^Z ֹ̿3Gue6 WemiSئcV/I8cetKeLmW.($@puJ}sw>&q*kq&{üJuA8a"D"\l[/qO3ٞQ 51SpR2+w~D8hk D7;Yf?4NvVLD`6|x' \0TsS_w'3a||cKs.#S3n#S*foKg̶ܶ%Ŷ*\| $]hEw ̿g0Z4*o1ع卉s4ωEE)mYbm69Hܶ-S/2_!:K|~^_[68B)o |hc7 ^Z+U<̾RnX gB-hf/1´5/5PpR^+;/@c+oQ"&\`kZK+NxtZq)nPsQ:MxsO.,nXRT*73 !l8?;_Pnp'D |ϸ5o~(wҦwswO_*sElޓqهƦlnbu1>h .RCA!W.9R- Q08D~o5?+/Yéj/_d4=,S=)c7)).'p+_;[a+Y3Ӹk:D?S=* Q騕+/cw5s6Fh/iQWGfU~!\¾̩i4*b%0+r59^g[eemuk TA?@0 7_Ə_2/엚3]HkUV}ŷRB%6s/X% \\mpaHkh^#u,?xQmotB /$n+s9 WѢ TShW?HjO)_h3r aM}vu+uyUgS+V>S>B4~IFaTK+2vybbZ{ JiY#M~T+DѣIeJ|M?E|Mt>t&C1 !|37LO.sb8ͩ~qp"q]pq |Ç:XÙl?Cn@VaA &LX1K? (~eP2 *6?.ρ*sM!FdS\W2.]p 1&X? eM@N1W5Kbq"ļKHri_zG8g9۩q~(刢V/nq0l0Qg2^`\XJq7/ ̠@bK@C@]RsQQS2R*[{PZ2ۙ!e2R&jPi*4\J^eMs2棂*T@ .} xLT[eNeOS/ /~%Xs0/Q_SLka39tmarÇ?k Z(AϨ P#"S#Ԝlfm UPIaq<`%w)̯i;kF0C }2(-#Q7J&ñ숋Txp#RưɦBpd+7sL euT&0 ِhOFX$N^^!ǂatb86% WTA"T>}h9:,7cށ ' `޹q(H%o3^.e.KP{%VbDYۇ}Ru願w }Q2c{/^ܑ@ֳnnveW@VAsK$j ЭGQacWxE+i_Lg| Ϳx@ŝب-Zmr(8CV57-9nj-u\V hӳKo2>r¢u7#$aڅ"cOhM*l=r6ザ$~Z`{u*{9n+7\W y4k'O*L:՚K0KjO)Q'4ywC_ QOǨVnA͎~ܟrsp?ybo݉+ƞ>/AfsyQ}c;33?yv6r/sOֿf*L]G^`# R xvH\(7̾slU+#3 =iO¸4|ic]̅0'^9cvGc6s3aܻhEb N{5Jbsltmf"2!G\1r.:?/ِ8]ÛCۻuQ;\g0D̓' I ]x ]x&l#·moV| a|Yyvwvaip9,t$#xM.DQPX-& \liǽ@DDx\9%&g.obp1y6ܞb\fX>[L U `m) 2pBn̈́hrdn1,y,ɷ9Gp(^,v`8ߛa&Tnrm 09Z5ptn6%˒Oj7ܻ< NI8AȄP8Bz~]c-^g;"2хK0x23ϖKF#`lh̜vᒎN"'I!.^m[<IzxCëHxvވYpj[h7/y" e'Rl4\ujZx0_}ǛF1ѕq #X|߳g<㒇 a3ԹH!a&ᇼ<,t+GI>qnɷzޭ2r2xpl=1Nn@S8[`S. .R^..YXG='+sˉs%p|o{E'|Bd Dg!ϙ6.a:l5Nғpc!xO(ydvT09;B<a-rX3*x'Ԍ[a2~m2 \a03n>q_0 ,)`q8Sob@/=7!o[㨃2qcr-1. =Tݞr0~3y`=?@. BWqj $NEF^;(laIդդ [͋xzL3^P {ipnpл ,m7ŴP3.-'#zGQ 9|dN&fJ\xGV#q~c$)U?1`>/t_ [:,iP`BLJr_K#u',x`WlA]2^fr#)4;N@Jq7}ץIa;>S 8 ȹgf}jZ7%v!&ڲy7zx ՕnFMϥq0⩳t2 FPdיcB y8$VDHR0d5,RӍ8?tq!n3ɐi2 5̓!6xHl{8A`z6 pwr9\//7'GFGs!\!m= >mpm0gq-:8s8u (ł⟉-V']ڈiLs V5y{b8p p<܁L)aoXm na<05af3`Ia$t%7wwħSX.P}EWe=9jް62Cc' ND$;9`s))029ýpECK-R>\1o>a .v7[le42ňGHaymmQזKIL뭾C:e"Uw'8-bqg$MFω$0!ySL=;#ĽzKg wX< nUY=sɧ &s(!\m8c /5|. !OP l)7L{a͂L]͚xƟCB{p1j68m2cY$Qzca yFetH6Ď#dV%y"^c ˴,`leSR^ 0ݱp8mt\~8h> n׽PeyYd_/Ǝ{Žcs2&0<DHŢ`:]?kFpp'~fI\xmdJ⻜rT/8-8`CiBk~$[o}DڃM.w!Osra &y (r\a2Lr(/ۋaò˶zq, r^G xq+$iyPT;~!6p9y0ɇ<#}xdnd]6~ ^Eu|kI5@t=``[_G^yi~!O3.iLc0hnx^TB7ȇLȱ@IJ {qierdR2`e5k'nlW@,Og~3X(umfy'`o4m*Y}Ώi&Jya#:C[9!8cO:Alxˀn9Ͻg'td"/i_֚1]s>q$u4toC_! y Kf&Kpe3NB8.ǠwIInŶa0L/>v,m!W{?X#)1*ޟt:Ov3˞|G q%fq޿ղy}fӬ7ȡO`;tI`@xvƜq[>,OSϙțڠ<0|pssnJIdwE6lqparN5{3f&/_6Bɱ8"ĶOh|BxG8$,PԛiOĸo^J9 x^'n 8ZŜxxCj 2ϥWzd~Rs! epnNDQ>dl-Znek9upy:*صa)uNl qgQdK7Fءqp=?׽ mP|?6;V,Jq8*!v nf>Zh?ц#߼8lR{܇p6C鋊<\#b+, Dw9{~wc}> "|J˗FL'ϰX{}1S#xriX1|kE|ap$<-7nA@vAH>rNV>?\<o/O aU9ë6!`\n''F`}}w}Aqhn]:@{Cz jNc@䜠æAqmmɩ'G_fa13\2rzE3}~ ?[ .P9ݏԁp`" {Nܡey_6f Փ;$ܸ]w '7-] ]XhgFuq2 O}ԯ_è@݄gQKi|2L>׋!xrop#6gNc (L [{gQ"|t}\!hs$fw =2NW!xzݠ[h@@p/:$:.'wR1~$k,#ϡq&zGGvwşpq>"0sq/3 d=\3,OIo$Պ63LI⑞߂6~Pd9g 98u[//#&7'Œo 5+^a,lYcOK97>lb/)gS%7y9!^a~dŞ>)Ǣ ;wW0xo-/G$'9ŹU{I|{ق1GT9t},nnMtK^A'_?ED  7_̆7_̟~Vdh>^K|Gx[x:9n2w؞޾nV^X5r? |7|Ő şiȑ}H>8pL]|oh.0_/7 !e Gi,/Qf@c y1 A3pw8.$v' WKO$KApjW|]+ =w ע;^'+(yy[q-v`!>9pI:=ރY{$f/'~~ ѱKV?&w\t D 2P|x:;mI6gOO0<@iabś6 s-yW^ 3~K?;)aY_7?ăADhW2bzn' `6=c6l C|Guꗙ>$w~uU>Spvi48,o.$ВM0^o7 o>=K)fŘƃO^7ONjK ^Dĺt0X-KOQً֗̾n۰*wc?%ʦ,{I3du{%p~R;Oww|>]juy݀gP{73erJ2G3%\/;cyOAbIϜb;7y]sC (OУ_r{vpv},ʉ_z 4lYg1- ;ᆛKW~PH}*d]1.XV5j7yC+0>^r!̧ܸωvw>߽w3`,z$ջ:t= ԛOW0ݗ0.'c/R} f&ޡW#9\3o|L+G.!;Aof 9sok, 7 K ǒxf̖;o&rW{r,aI\j'Ggp]lسbCv:'|:`:i.Mt@nӞ,t7~<i?s=<6Cu% >Ng޾x0-r b cש)d<{`c7Ğ;C"=?Y/| %pO7J}Ԕo'܁}@s=:/"EAHt^4A=6l"i q@eqg݂Nd𽹜{?vY|˗)oA`SωR|=^/GnI,a^jǒ=wb̿Vba,ٸ=,Xc%u u.n A_J<$#,,ZϢϤI$CNޘS$CV@y'xB& -ujݻYfY^ wy- ς{2He̋^z_OP6Zߣ>6{r:-i {AYd1%L,&Ha 8w=LlxXǼ@Gޒ6ra;уHI/ pgswvz6> 7 x,;, ,B텁lz%OfXYq*b:Yͧ,iw['0"vcţ,ǼLKAXu!wVX67`|Hu+5b5p,YhtK>N 9G?Aqb-aXr̰M1yν:0.$N3pg6s}pe|\ 2Pzmcaݠ200 vے xIU$c.s0*짹4?y8H:l.Pl~\^_Nu!6Xcrr=-BPrp,y\\ˆ ,={8p97*9-2 Bt$ϱ9<ɶ+Go2[]ͣbaיQ! vNQyۃ!KMgShgӠ.Ofg҇ے~Ɯ=ku2~=9|Ʉ̀)yZij&FEx-:öm 6.F[zoTu]!8 .%[Ϧ_b62raUeFJp3:M<^qtKkͤ͏FPlA߫l9x3?tMϣ^'Iur[BZu"=Y}̵rOxߣ.:OM=ME]VK&gI5~.7.%,KŮGV}avm7>ϠC7l!E}W}PwvgK9Kiv-epxxwK.Co6u 9sأS}10ͼ'kqs<[o< uxj c}ſLe;;BPxSضA} -rIOM#OˏX`=ZnXx s R<-x萳` Pd:tϮyQi4YY[2hexyt.n^tc +za ag2T]Clv Bq8SyZ{v5eid ISl`#G`ձyysb#Y:xmϦXC W'i8z;_@!< LZ2O>|]pl.Ɍ6%s@nN2J-!$,A΃gtj9NCd-M1Œv7}vNٍó{睁oYťY`L>$ X̳vdXH]X;,!1AQaq 0@P`?Μ"?r ,:eV2Ʀ#|4b_ YoYRUX%ojw21 b,evY/ve7Scx\%.M{z,`D51~XޛTVp3dXA<2ĮTk- Z4EYY݆Y>vmߖC - fU@3X0W,虃^Xَ.|s(Ua1W,cזZR5\˫+w,Lfk߬2ʼX0{Pα~c  fAݏM-ze}t* /@Hqz_Z&!8nչs7Ig x74FHP3*mosX1*7Q6]WXc9XaTؑR߈[/ & "2fڷZEc0'H A"8 K1Y*!9u/ºLwT8,ZFqиy /z!UP2TM*%&9D,N~K D I|\*Zv̻NꭁijyƲaS5<*PRxGw0#)bBRyjJ^nZ(n`vL9XF7u@"Dp Y }9^RgLc:CaWBzàh]R*K觬t_y k7*W  _j\Q1 Y SVToYN~Z6gc}XJNfV5@<"%jRK/g2fV)1] .ܢ/-L+ +x ɢ:B`9p@wZ=ԯ;U b+FXET` wH]̠ x=EV1>e9|ʐA D3g SU)1(f?No>!Gͺ2 *.R#"!놫iN^oP89``EHөfl((7/E6Sq-S/2H(q .X. .eV b0Q +l0eR9J--;ghc8%AW)pl9PP`(C,$f(DƵDYjäm+,{IE̼<芀a_>=bĿV Ӭsы%d 00Z)`I=fh 0PMH9 (bZTEC6҆c ZWL@wBRJRȍ+OAf~ SVZØhbrkQAt!Q!bi|D.\8%Bڔ\#RL(&X̲CdbJqyہL*5a̕BbR– " `ʅaX!jCtJ a nVub9Q 5,Di(p+Y|C46v*w%R.j6 _SKNh:?Ҏ~!=#5W #mh%kWA6YyfPK^u;iCrB\BZR.Q.>!0D&n  +|\`pZe@%q7Y-˙JcW|VA]&Ubb ES D5.60+F [$cRgRN駴"0GXRDļȂÈFNK_?ĢXFө/+,p AW,^#`-t.(/M£*ًm)px*8LF˿2,L( B鸴AǠ`AZ`ALE9UXSCufK+xƺZi]M8_R!P-s!j aAUJ1zDV+ `85m|9OpvU -̊觱GmhK9w+Qe ,+0TV˳c, ʅ,N^p1*JEIB]aEFUң ɕGRe:LUfqԱ•wo[}7,#n(.%E]`V * $ZH X]Ĕ%C1S4$=Tocp**UW(ĮbX)̆ApV.9 #%po c5/NZ2FѹFrRLGpW/X+2wq*)^"3CYE0mU+yP9a1 Wbs6~(^q,ve'DEjGBqؼeݗ*!9cp .J<ܹs:Es pKW+1U4 Qz}-"FF'! h J5Q1^:RwHhXJ] bħL*`e)wlqD@b]Иw/e^",t TP6[ϲ_GYR0Jj`Aȴ_hH69Ub6YT-LXY)26Dtdd̨2ĺEf MƷ D;z} m AP"l4ˊFa, ksi0zJee9)}R1HH:@1^˪cXlZۊH H2ṤAwJFU *Zb~bUzLll˫boRF#UD5D$!qSUBR7*(D*spb=/OQf)F&f"lLnUU[7q[$iC%o^"n q.`BضL zM&T2s .6ᅠ-]jsм}N/]V^ <0 $`AK!QlHŎ'G[An%5j 3 =[ɨX.ZiiNg Hp#Bf@ 59Pmb F` و,#9YJJb0PfWITAz P.-CkqpX goP e]J̺rbi-fysjD9_YZZB, sm}1(T L}G"T:Ef]q`T0cCQybl(*PWp$@#/? vK-& Ql#3rlWIԢUB e1 *[*2F6j7)`b)FF%­ˑ[+)7+ؚI1/Qc IUDRvfOh%^1CUnWoJj9b0Yhb )U pw`7p60"h6fnAQV̥&XBzЄ)cp9+AXm\vD.fD8*6&/ӽ@E R&TU_2 ^Caٔ2X\eTd+w_/*l5 #@VCg\jPTc IT-IzGZ&*`;%2(ƹD%x"Ss33iEm&m(sM2V_xra)ޡ A.Y"kEzGt *0ˆ5@ eDdH gZ||5* (9A%-bIi UqB=YWe̺c xPϏ",B3=Ƒ A&F6i*vV]#B㬺[nbRί~mvǢT|oW.3TrT^5q [12Ab hA0 z!W)Hgq~H)`a Y?T\) .BҺ}"-:7.[,2ővϼ 3 VB`D/ɦY/1ln֙+V\K0aQEu7`*lEarK%S& B + mJ !xA2CND3g,aꊃ6<Ύ'_jQs݄].̧֡-~z: *8+ 7QoV_xBr_/2Ta7FF Vj\Z8Y/fP\; &|Np1o3g+Iivl9\;~3秘ӯ[8W# z<5a+AV~;%|Ppt59_쎶ty| uZY0\:$TĚDmWɸr,,YwfZ.ucLyGnce3]Z3! H{N@ѣPrqb591U{bDnܿye?t"{_Rr}E AA7JM 8<%+JT4:}Y8 5JoLZdqce3p8RۅD__ڕ8* S  gJV0a}980XryV jЀ|L"q3 GK !s9Ҽm6٧1>UU7Pz\=\:^ F7+pmDh2̣c慔UUP1}c F@1HZzv|Bb`)Z΋/{xAϵ%mͽTUX+(.{etzj-Uu(b)YTy'~)Q7t&{f$8ǐ"BJA5 Dor!]h]^ JNz_%s%*dL~ ~4Nm-rx>2\_l?@ڣtx=D|DTIc! TMڠWCB3wϷ [YS0|Ln=px*ب][Ћ_?lH*g9MmuHhe|ưuqeQ/W:1/^-^KThp1YChRD\4T^k}X ү~T}ۍoȽv}-0w!G@5 t^M8qs @E:ϴc:BH%u+w}))%i@| 1Gpqmmv}"y+{G26By\_kB]/)%l~dj~ p*‚4f$$;v{O.`^ WS,󘳏mC! ǁZ:P \l:&fJ{:`}%3|_B6=u#ׅ8|xA_rYFa 1D Rk!e{үz"F,6ZXCcC rZ$٠/7 jS,Ζ DvžmM~OO\~b '%EnЩR8BnW*_dC,1m^k>`Z>;췆v,ye# Y }.2t(/uK-{D@GUJ XJOǹ)ǵ]=g*)w}ߢQ͌F{TBmŸK*Kӳ^ Nj%k(t:J%oAF@ D:~Ro({+?wr KWZG8sq9T=vA |T0`i;f 2X&ߛ-wZÊl>+1W=>h.h*Cyhݸ&!}A:0hqSP;-vr8, PAqϷ`t1 Jq׿ ":T1q֏3f*-x,oIk41!OW1߶iQ_m]?۷ڈ=J58T7 q4Xeh|[S2$vQyE<lBUdvVյ{S9'{e_v /ӣ)YncYJwEHU˃QaƥW[_~iQhf?;>~̨,l|z1{}DjN=`gegtLs;2}x2K;|x ̻a%DZ' .BOb@Wh>TPWyEKMJ7v4 ]A;E?>2w=T#h(!LG_=@@j[=u@Úrdp1Dw'䚦;yu-EJ#X /z:kه'3YC?q?/zU"N_2=\0׃8Xpw(nt!]},s=NvrEuOƦSr~WȅYʚ|˚}A& 7dx 6t=Jj_l"iF`nd:?z^'Am谐@:AL? ~xb]Eu ֫W/O* hjԼ~GUMJ懁 ߳GWP^#Da0FQ=:A2_/h X:x0Ōp Όt2ħHvj[zȆ2fzևw b~DbP!~uܨjF~>0_l7ҷ堖Xx0-A;` R*TY)Dߥ\aK9MK\-VWxyp̣b"Rȩ^)s@DFcֱqpˉkZy@ cAQRP(TʔKJFQ-d rIXIIRiUL\|@*@ QRJ%Rp(QF4+3B4 .x%9=")(De`7)RZP(zhʘHeef6*R fgx҃(M4%UrG#iJ`C0+=2nI\@M XBϫ"ѴZ;\A56 PncX؍ ]*]pEqQ =n$.R_U:)%@(Ř\P. kfzSKeZQ] Z@H=BXKZ6z7Jڏ.]CDCI n&LXcz MEMM}ZzO\eJ% t7 $zIA K%/ V M(mdt}`ߠZ.j_jilGooqٴ\\ԷPZZ諿QDUxXj,]ܿEz0s4KE> qbg˃/F3G?1-._2ˋȨ`%Jc%J%G^ME%YoïJJkЕe@@J[Z#+֞TS3oSϮD2(Nc\ʕ(0"J~cM1誮ZEfVcTKQW+Ҡ\]}yDi+鯠n$u$(gЗ T0%G>?"~QףxGPGmMz~J愵\>_~x N ¾?ZeYd[^.[PEMe澰"Iw*ߣg0bs.\~r^*\C6D3eY2R25Yyf8/` w&}uRjs^0u7zj<m͇s qm an#yX#=/M}Rc#[bĻe1.UʩR@QuE5 uu6@TY~_EJTEF*6"J+*3PץKD..6, B} \ j"n'Dyqu0Īi#/5)jm40 n%FnªTY3Rs\B`r¤pJ`WHSIAAOK%LC^z= I!3kx-K+Jf* Jb\8\b0%L2-qj1AEzlm*46),%?)w,̤c̽:ҁK^k K"JJ*,!1AQaq 0@`P?`\h,Ja*(_pO.O+Yib6b^ڼ/u;W7mƫ c7"u#yK񋶌,\o#;?qyLBF$8v.Tߨ[hߟ`Amf-smJ7OzK 'YLv^j^m0{%0Y? 0U[?񋯱imh ˛"&jm"]V!~?R*ȭ~! :k&p//!&x a+vR\ UxQ)Bjcb+_n%;98g%3K[QC ?`"D(/.cn"ɢ rĵG_!ZAC-j&% >/HSLRa9*vlb7nK hBRXl Y`5EJSnu27e Kp˨W"r.P64$$(@siC,hV#S*R."٣)_od}JhGR]g21L,Dx-~{.fl.(pG _dg+is)otj̫@ *oE-X h2[SKV(BR:A*ͻ[R-31F%II+e\qȆk/ 1) -OUܴD=)R&_jelXp.6 erYP3fC!k 0iTz3yPN VD(P1}$Աcep4Lmh¥EYx Ȼ2 )Q-}c|!wIf`\;i1~hK\kW1- Bs3,jX"+|PU QĬ) c(Xw T b_AV9l.L& \p )Up/(3R̜*GU ^j!p!Z.*)rmKעRw4F_luAV,Jp"`[ 1}ȽmL<(ȰdRo?'00:%ϥ_qhU"j]l/hVƔDArAv̬@#* ;lXơw0)T` }vմv/=].MjUyF[Al\![QԼm d [' a (N1`ɷm꽱f&99K޳[k [>˨RMð;^bXtX JMY3qcx],tq91%QGRc9V7|TIh!CC*P/Ro95R#K)ycZh*EI%m@gܶPş[u,,)Ws%p3 रG/1몀U c!@vnFx%클7R8,oF0x[en9)% J輲SB'CauQh/Z( *x-%Y J(x(43>(_S#R*'ė}MBkKј)B iiT}aYS@J·+Z c5@7^9{c~K CnaJHSԩ.Tht2K@"sep@_ rpz9= *n/a.-\ҟ a8 EqDZ(qPuY+rdQJeg~>1!jE?PQQ QN̚ Ƭ y_4r(LuX԰'7̬1]@e܄ms#QW '1c64.:(*;k@NMK5a1-5YcF(9ƖWp¡K;M-t.mPdE%bX ~JTzh^@Ga378;e@"yĢve@ Dbǐn+,[p8 J3~ mؾ"Q%0qLfCmBnfd LZ/L`U(e6kÌ (/ݸBbQ)р&.e1ebǘ+Qb*j B`S J") t%eE5m%PV-. m/#[6qI^Z;nU0U8^Vmqĺ:еSC2b}~-eU6,%\ ,DK1,NRF"b€Vޑ# PDT[ BEL UQpYqqP@1i6(C9b•XykPe/ap&x^OPT8KB' Y2+pЗer`Vq(Lz;f`[r_yU^#VG7`P8D]r>/ehUVKDXP,v} d͐DnWZ`Up-F] d,%&jb9*u 9Q' uy35{Rs#ȖAy tS6KFuD}zVgL &QU/n⫘ϓԘZJnu:[kyJjqʍ7|po$56{`K=ˮWVhye U7CxU}0_*Kp ;rB" ߘbK`r' k# &|ĒUOh%s3rUebU..Tw˂1>%zZ/C\\_ZyxGhvDR,pJa$ Rz-[ESv%K@ )5hR8Ns#c ol?Zics P0`{V9P&}JgKP dmռJGq\Ѻ0%sm1lvG1]@ \:%5CK7+< +-X` %G ifbȪ4z13%B޻IB^b-zۙ+ 9*_0nİULc,!.!UEJ"Jm3Wʘ\,9 s˱%(-0pFoZejT]O1S'AqՅ̸p 4TCH%oS^&-_ iL"<@VSeYR3S+q;FqгQqn7ͦ"[bM@Jdk8Z5("ܡQom=:kDFh`f Xm9aAl HʩP@%S71/x#\ =FQBDER 5`$[ .U[^fa4&S^.Џ/2P}BRyB R' ˪\%x2`Ȧ 冱5!mHS.S="稉Xc礛- r"7X!1-k+JC^WK2siKV9 aBuڵ>!w:5D*BPn=I`*Wmw)V`\vc[z~x+-PV*H+Q@2ܨE YZΟn(9\*>r*swAiCHP%.ZiCh ̩ V[8g]QW䫲7ɘp+FJ6%.H EL"ƪ "RRϨthr-iQD;m%mhT t8c.]*6%|Z/k7f{kw)A u@p-7aSmg Z Bb&v1េؿhf[$qޖ%Ҿ*;QqME<\ҶTMiDHUUQ)vG*bk2ۉAQtt5B 2p썬&)9#{ Badeyk aq@vLVe8S|>ArxGeM*jWsT4wBpT_qɧ8AXj*#Ĭ,dU=$Vs.zl~,g}+!BR%VZ5|(PSTZ dNJ>]Z(ęVpHS@t3t5-B"G` UK,?QK/ĽлDK hcE-9\s.7V;ۍ䁧b:A[0f dO;_p9d?^Fr`S,z7'mcA>@VR!, E8\ZnXSA+QS^kmܭfrFc_V^YAd"x`,eVhJЖ0e 8.g|^ŃQ )۸.` Kb`Ы EN6l0 ]3/@_XӶW"Xi JmVәnFmI6¢3 f Hݠ*1`^&o%E-WB!yp@|(WԴش[DJ }*)6Bn D(S&*dyhu] *d.~vTE PdKt/R;Xp ';;G&t STd4XR[a 7G{ZƐ Ȗ7*ca`=9<#qTIH(ЭS)xeKJbQ& r٬JFj1vW֯QʳhLT ;qE"у1/ܫ;!A[a4)"@A7a-$3^EL(hEJud.aKRR|?P.AН\|\L(*8]WxАqy'Е4ܔ*mpA% ж*KR%M;/XR/1 d} bty`nw*_3Sj[ 99ew/g,Ck==M"٨ \ KVe i F.aaOnA;t_@f 4tq.Vi($rCJ2)MaCgebKtVXTaJ^(QĥNp˺wDYB1X טKv1;k֣MLj-A `>@ȂQ\E5[e.^Dhz7`[M WmPN/NIdPY 2]bkJ]\*tMY. RU\2m2!غA܎ف a{UTP0bTl` V6dSE86 P%Mxp}9ə*)=2-]pP-jj)IbE ptP16DGD h '3ӹz-v̙+H׸ 6DEӢ/e]9(ы kV4E̴`62Cw 4 = , ̏1r6 vyrF%G_I8`K̖y;e:R-[b61Kn tL@x\~aUupz#=S+~FޥbXޯJ**(xwνG>BѬ^ |Gy"`[PZʈ5BWfZ嚜@v@uQB#s n<@ m BY@q,R1M%W\_TjPA_*)*jèRpu-o!YDEh7 N"-B%R&0{Ι_s1Ái`No/vP$-jU+GG;UD8&G$CB˛/J[4hdfD`Ic]ۥJiX0[k!+QQxo̱] ?wS|_z‚쨹\,䵱8"Lr`U%EQ|On%aW- qTh8 3@r穠( UD#b] {~RbG,#2Y,(Րʭ>Z 㲫RAx( dUlCXSܱ-\1v2D 0&/(eE[ +V42ܭpf+EY2kn یAP5t$CL.SGpʔPq6 >c3mY?YnB"5]V)]oP\ /u僈cNKE4i4 1*WD qsaE\pC ::ǘhIE5Zhڻs~U.3tmZ/ԡ).}` -Wܨ% -SqQQ5]A\eDl9`qw@ub38usT ¿ 1.I{^aB9n1EJjq*6+nvQNU-kymkQ 2قY|[Kf~q*GtYÙxț^bPQQՃ!h3-ЫdGJ w0ɑ.Y ŒUpZDv@D[2 rZWPA8bn] !"#V,P297̳xEEk.M<,<#LIh] ̲ sUPQ2 BPԫJ = 2esy^fI VI2rE `7 6Avp3>VlslmNM*puEKh K~ t0@:"Ƚ/j錈,U\mQL axԺQ*(Z[:w{QTe֔5*+1xۖJSSYxVY"l󕉇*P\-B *g VpOTZ:Qϸ ZZ-cjPc"G^23PS!]*oPlP/Jnls` &mL#USfIPPrt?0e"Vg1n!wVL8x\zX ~ `G8l]z ^=C*1ڙ_ B+WP"+ g|MpT.b4.ɼ Tf-:fm4Pw#p!{YZl-Wx1~g[Q +5Wc g$U!ZHKyYoQZ ~ڮ*3vU)r-Kc`TCES9l{Yn5" -pƼ Pg-tĺW"2E䖅\v%E6pa,<@@呗ۛ춏pb]Vm7`<U )6\voQ$+@D BVIE eD'*\C Qo.H 4J8@gR"LZ^wDp @EUϨ`a"ljQuslMes0T Or`vb5Yo %qJɡO03m]pah%,tC7F [s2S,JNy.0q2aPԨ9E׈:!v&NPoP a>60/G@!ġDD檎I@A)]TO{`9/L DK }0⯅iݟr̪أTkbU|DhDQ8(h~EzrpgfX+JCcJ/AL\@{AH l*xP )Mg&0Kh\1/-<"qRSoAT7 ?H Aq jVNaj_c;eRc#ox)u C㓣.g2ZPO)L3"']kVU6AFv**S6xa]p^*+kJsX_,J`%)a0-v,kKn2Œ'-Oi(?#և,\6ڳ`Z?qSϘ]8BiVk"hBW.VCo@'UĶ*#̩[ssJYG5սFgW0c zW9+3\*~ 1RvKad+D^߅rxl> ʃR*Tgu;V;2݇ 8).I5. lsx}n@CmD O?*'z;V,hcߘ`ejAgwHrqr\#5+)\NLgF(BE USn] =D.9]Lr}#lޮo[Q—g`݇AՉOU kyV E)6b=*ށǧ'_α]MţTZ]#\Uܱ@L>,ƱWϸAĨRD\BdzL4<)&a` "n'ܰTacm2*h r!}-Lsec2eUiszĵxت Zw6*z u;ˏe<75o| J +;l|1Bj@x[e%DDEoEnSUϰXԻbݰigw"EFן*vz"F)V,Z]}%kD8cҼNP]QM+ZNBpkڡTD1 节4Ę[w?jb:wc'@g' 16CbRU& o;  )|Ų6XsP<If !4Ȯ;,o4y<\Ws_ƼBRsYRq e') (Fo@Q\!DWUX`r wbJTWEg !.[_n rzBUcmMo Ej^{4EŌ&\kkZ<> a߸͕ YQtaj8Wj85 (T^a-n(:*, [Z,vm{mr $Ǒv#ySKF]x*/!$@tS)M/2EwJ{H*,NnG#pjeBݐj,N\媝:,|+]C4^f)ULJ!Ա=rB yb3 >)ʸS <DZ|X]b̞\=[*FX>Ny\FTy(([TkJp nVq3I LkXJE3|7+ 7ӫ$/>} h*AiT.d4߀[< R<Ʊ-6~IMʃGRRWR hKħ]^%<γŽJnZ&Go4iir{~y/GWumCq{ ݅Bˋ;\Alܴ2q1vUI遫+/@ 8>`=*mb5͖yP .Ls:W#Z*ẛ~7X(4)Q{ybč`cc] [-!kPח Q %f&\{_Fd%Z"^YRYGf[oPs4H1-૮z_E5B=ڢՠ_b)WnY(^M=m.}B\)O5 xL<מ^ ڠ9@HUE C4 +]j]GTJ-?R7a9c@<ьgY2z 96uR7MW.У-3%"\ 1wtƍ D-uBZJߓK"*ss)k]SaT\ 'cc 7PFmĮ0qr ܶA4{vySbiqy+{7 ȈmXޡ%Ac(ZެB4-(FIKE ) rCMv \zG+j8w F.xw*tf1)|m/ mrQ{* 4֗䔈QQl-vZAAɳ*8]VR֗OQ&){cMt7*fX,K~芅캜qĵ;5V)D2)95<(P%-pFo TEƥmuQq UE<\fj8@Bİh?@QΕΌТ].Rċľ_#m.XVQ-Ѻ8#Az`[Fr] z2DP"lCCky&!/Rň>0ecޥ3_89 +/E_5*)6W^ h?xeU3F):ヨXI l%<  \Z\'1O WTW$)oϜpFJA { JXϗB;7X.g\8d/8ĥnl^j_jhh<1ZH!a%XK g|4J ^ٿ|+Aj[y\f`P4׸bຊFb7GEZK kJj-\6;o뀊n wP Z2P1pl&fsd1a';T6\ (n $}<I`f0X]p kADN\2)@x,WnO]P•x0&m,/򖄅zvЪL_/$]u.m3BXE5ܻ% / j=00fc`^[c1"UA7~  iVu]zi34-Z\-vYSQN# /6vXLe6[Yfb`l@\NRz&O[=|Ui.\f3\2;huuq"zj?Pt@YQ}ĩ]nT BUu+zOH@@7t`Bŗ}Z0ļ\ yV4\eJ6`zܸ28ҩ]7Ar YI!qjRb;e<8Jƌ/moѠt-[сR VʝajJߪCe\RDgT`b$eES, ƨ'W(r/0qH8 oFs5qacgP5-nISc]sPa*$ҙ  rI{ZR>e8mUCb=Hy'X R@v:0Xw)i.zwٔ {\%u:6պZ~X%Kpo!ߕ(4`2+o"u @Wq?E_>92ej'Z]?f  8%aW 1cBtTXt,+Wx#Lv mhj0o ^A1%`l*'JPoVRګļ|o"t^""X H)T܀6#V59!NcY jKɚK-iVo# lJD OKx P3M=\RLr/e8V)e(ՀW/ -T6~H?@@+?Ji=R9Kj)qP)7kU Z:QN|,ċ˥7C#`cxj8oA9/ȯd0P0B)ij,Tz"% n`1q:{-v?0`"/Y܆wR1i b=@5:sR4m#l]Ol F$3gꃫohD |\GUA 7Ua2JP} |aP0 ݥav>bPE.ڼb'^7K%K\x=dH>l:g~>)؈̗k&T}bħ>Kjeg*`6^tп0X_r7]3`>Ώݰ.Xp|-2T_,?\[nC pY_@Ǜ@fk|أ fiP]ݻ+Y2zToGvJ% VfOGKV m{Y3@ѠEe=Jn`5{˃-hc.^K·b9!?T IctƃV{S Pe/}E2Ŋ1rӓe7MTw}51T (ô]dl!)D `K*Bȭa]H yRS]"L<9D+%y,_p ?{鞦>؊_zܗs!`GWv,@I/_KX'Ǟyg+Vt^%r9Om,eILUdPkп.Wh) qZTp`G(ȣDKDOa&Ҷ6W|F"".iTe RZҷD<$l[q=ΙljFf"QQzA&Y@c0CkPJBg^&>bd-J޸%Hgs2cgg1 &!1 61x0ͥ{Yp`sJSzv9IqӚ1">߇kC!^ߧ_QKVˊٸtbaqnHJp#KW W:z~d'Ϣ׶NQF"qkQPGKlfJ|gע F[ᄩ^ rqv.bDZ0J2 QcCqebz-VGx 5Zf(?t\43+2O' _X)S&i4&"*?֭ W_xN'lDl©hA# =Y$%ba+Zt2C!Um*o?d&fOqMy=[/()Fw~ofjB<,eYeJC"j!3!0 8ԅY1Z4.<<_`IP dCD y3~a gBtX*EEL;z!0 RtGK /3}ƼLG!tN O'IKXҾ>#2.8eJbgEyH}/D4[ eHbnYs:/? S^g@@"eEx~&n;XS71v`SygԽo9{G~?E[UU2/pȿjTN% Dze\1|)郚1`z)࣊H $oRsW&. ӵJ>yRj'mŶܿC9 u 1^bPGZGWTNkqMJd0__940ӨgxZawi*vKj2{bX(fs^%)CԬ6x{zF)B@YGo,IT2a-aA"J|B^[A 1(^#^GԷof0G~&ݿ=e~"I\Kcev^ng,vNݹKeEݗzj IJC5&qgsS꺹[ nx j%w66D9S#eF'f f!'f@|Bp$0H|}\sJVF j7 E:[7?gBP`5A9 50 a[/[ ^%QUw((% bT\- )SVYFe< OB,iU1̑lO3J *.٪!U{*س+ܫ̦ `jȫz#pb+DsA{"Dn-i720lw/AoRvo7,OPH,zQ ZR,[0p Ě$E%dA)YfG c59Z]5q:~eh2䊀"l%Z hA"jQ8,.]agǘYu`\8ExQ\\F Pu`L+wlEMq*T)~ӪL^Q?Q62+T{kB!7'V5Qbt;glwebF~礋7 o:7QK:Ej(6hVR˫Q8)\(!Xg^_q~$jYmwU4Ef*^P/lzw Q151ZzO"FTԴisb4ǸWźm V15i^?ȨkO;_hB8[D ,Sx)ͺ3l|-蘖^37E=ʻ]¸ /"]do?̮vEe/&CM'S9F& Tj[gQ֮Pxy U t." m`o#eժTQL^e1Cf.x7`X ?:*!xp]ռʥ c!]|Jn=E5UǸwAtPTˈ+\ZպĠS=q#m?<5W)+s 4x<- B-Щ遢%-f kSnRu Wu cp(@4q%9UP@= 7(SBv56.űe-e%R)iF\ [*P؜TU׊(\:Π6|JK &cQ* X:yi^e^'P}+⠁p1U[?!|C|\,J9fVj$Giy)T-+ Zg~"sXH+-a5s4 ısZl4x^ynh;4riJ A .U7PI t ӞOb>hWDi- (wZ \(4˺bF֥,Nj&n5 S&a$2p0Kc`h#e gI=V0- ψZP-+^+1-\ vZ*i'Ĵ^%P77rsss$D? q0ᤍQ|uXlF޹*+#e%S 4oP6BODCw|ElG&l%T i)+ܰ*o㉊; 杸bz&O)*PJҥjcfP[~"SN%xqH;;h 1+Y@jy"o1B1-~s4QG̴V|UWK\昷/Lx#VBܫ-2xgRst{*[.> Q(㬶~̱2ze^!)\J^_( w}5LY#h0-a0T&VjfNgDi6n՗B&Š]TZR+˪Y jeiNs,QDqwÔ &)T]0ɜ-b8 C4.^:g̢s9iDp#k (N*"9Jsbbo>) WxS<͕Wߏ"^ յΥr&XmWlWDU.0Sqj2&,zS0.~ f* c7C EJ% bAK_.ұFSO sbۭD5=U__yCm矂P_,=Acx(l| D[A),"(髬|V4àXqR;q(i0YnVBi\Ɨd-TAWЁ%#y5eC:.MGQ}b(l*hJ+ޢVCW(G h& kMZ(Ĥ# %H(d<Q= l9uY7d|GAfA$ۺ1͞"Vi ̸AiY-zTy"DF?; ) &n6s 8Ơdδ D( bB'2ن8 vq60iˁ\>e.(!W9 `xW#^< HU r?\w2٩| ),RATpGx]PFF@Cr\R- .v| CSi u d$xoL2Ò[k*5 ,V9'?+fL Qӗ(ەk7F_Fs^Y.KҢGvf{5/fs%0 XЮٚhIAN%9PRU0i L]DU]ei{]sZ`W3Fb[1JA^"ZYPT1}xkIu :om53 k,kff]*=b"*V uP߹Tұ_RYZ]F#2eP7 W#MT-TSxjZ-kB;/'Pb\eL Bܱ^Yϸ&uTqRsU)w ev&sbDӎ+;34{[{26sUPQvS'LQG&+ֈ_:j J 4v Ӷ+/\ph` #{Mn=&809۴sOp(D[[JԵBch \x#/!8B|@\/LneZq.:0Tr (#8yuBiYMӋ0o@ BVܹ b_62䥄ŕA ?(Q\ۙaY6pf_{%KmuC*M:mS|jae! C˨NZ1l'Q arD5x |HR Uw) ( ) { // // node Import[1]: x = 56, y = 47, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "plot2d.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node RubberSheet[1]: x = 276, y = 45, inputs = 4, label = RubberSheet // main_RubberSheet_1_out_1 = RubberSheet( main_Import_1_out_1, main_RubberSheet_1_in_2, main_RubberSheet_1_in_3, main_RubberSheet_1_in_4 ) [instance: 1, cache: 1]; // // node Colormap[1]: x = 387, y = 153, inputs = 19, label = Colormap // input[1]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.35833333] [0.056847545 0.16666667] } // input[2]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[3]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.0] [0.037634409 1.0] } // input[4]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[5]: defaulting = 0, visible = 0, type = 32, value = "Colormap_1" // input[7]: defaulting = 1, visible = 0, type = 5, value = 0.094054289 // input[8]: defaulting = 1, visible = 0, type = 5, value = 6684.0454 // input[9]: defaulting = 1, visible = 0, type = 1, value = 20 // input[12]: defaulting = 0, visible = 0, type = 16777221, value = { 0.094054289 6684.0454 } // input[17]: defaulting = 0, visible = 0, type = 5, value = 0.094054289 // input[18]: defaulting = 0, visible = 0, type = 5, value = 6684.0454 // window: position = (0.0200,0.0744), size = 0.9706x0.5844 // main_Colormap_1_out_1[cache: 2], main_Colormap_1_out_2[cache: 2] = Colormap( main_Colormap_1_in_1, main_Colormap_1_in_2, main_Colormap_1_in_3, main_Colormap_1_in_4, main_Colormap_1_in_5, main_RubberSheet_1_out_1, main_Colormap_1_in_7, main_Colormap_1_in_8, main_Colormap_1_in_9, main_Colormap_1_in_10, main_Colormap_1_in_11, main_Colormap_1_in_12, main_Colormap_1_in_13, main_Colormap_1_in_14, main_Colormap_1_in_15, main_Colormap_1_in_16, main_Colormap_1_in_17, main_Colormap_1_in_18, main_Colormap_1_in_19 ) [instance: 1, cache: 1]; // // node Color[3]: x = 142, y = 190, inputs = 5, label = Color // main_Color_3_out_1 = Color( main_RubberSheet_1_out_1, main_Colormap_1_out_1, main_Color_3_in_3, main_Color_3_in_4, main_Color_3_in_5 ) [instance: 3, cache: 1]; // // node Shade[1]: x = 320, y = 256, inputs = 8, label = Shade // input[2]: defaulting = 0, visible = 1, type = 3, value = 0 // main_Shade_1_out_1 = Shade( main_Color_3_out_1, main_Shade_1_in_2, main_Shade_1_in_3, main_Shade_1_in_4, main_Shade_1_in_5, main_Shade_1_in_6, main_Shade_1_in_7, main_Shade_1_in_8 ) [instance: 1, cache: 1]; // // node AutoCamera[1]: x = 440, y = 352, inputs = 9, label = AutoCamera // input[3]: defaulting = 0, visible = 0, type = 5, value = 3.35 // input[4]: defaulting = 0, visible = 0, type = 1, value = 2048 // input[5]: defaulting = 0, visible = 0, type = 5, value = 1.07 // main_AutoCamera_1_out_1 = AutoCamera( main_Shade_1_out_1, main_AutoCamera_1_in_2, main_AutoCamera_1_in_3, main_AutoCamera_1_in_4, main_AutoCamera_1_in_5, main_AutoCamera_1_in_6, main_AutoCamera_1_in_7, main_AutoCamera_1_in_8, main_AutoCamera_1_in_9 ) [instance: 1, cache: 1]; // // node Render[1]: x = 251, y = 352, inputs = 3, label = Render // main_Render_1_out_1 = Render( main_Shade_1_out_1, main_AutoCamera_1_out_1, main_Render_1_in_3 ) [instance: 1, cache: 1]; // // node Display[1]: x = 204, y = 461, inputs = 8, label = Display // depth: value = 24 // window: position = (0.5225,-0.8433), size = 1.2888x2.4800 // main_Display_1_out_1[cache: 2] = Display( main_Render_1_out_1, main_Display_1_in_2, main_Display_1_in_3, main_Display_1_in_4, main_Display_1_in_5, main_Display_1_in_6, main_Display_1_in_7, main_Display_1_in_8 ) [instance: 1, cache: 1]; // // node WriteImage[1]: x = 431, y = 514, inputs = 4, label = WriteImage // input[3]: defaulting = 0, visible = 1, type = 32, value = "tiff" // WriteImage( main_Render_1_out_1, main_WriteImage_1_in_2, main_WriteImage_1_in_3, main_WriteImage_1_in_4 ) [instance: 1, cache: 1]; // network: end of macro body } main_Import_1_in_1 = "plot2d.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_RubberSheet_1_in_2 = NULL; main_RubberSheet_1_in_3 = NULL; main_RubberSheet_1_in_4 = NULL; main_RubberSheet_1_out_1 = NULL; main_Colormap_1_in_1 = { [0.0 0.35833333] [0.056847545 0.16666667] }; main_Colormap_1_in_2 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_1_in_3 = { [0.0 0.0] [0.037634409 1.0] }; main_Colormap_1_in_4 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_1_in_5 = "Colormap_1"; main_Colormap_1_in_7 = NULL; main_Colormap_1_in_8 = NULL; main_Colormap_1_in_9 = NULL; main_Colormap_1_in_10 = NULL; main_Colormap_1_in_11 = NULL; main_Colormap_1_in_12 = { 0.094054289 6684.0454 }; main_Colormap_1_in_13 = NULL; main_Colormap_1_in_14 = NULL; main_Colormap_1_in_15 = NULL; main_Colormap_1_in_16 = NULL; main_Colormap_1_in_17 = 0.094054289; main_Colormap_1_in_18 = 6684.0454; main_Colormap_1_in_19 = NULL; main_Colormap_1_out_1 = NULL; main_Color_3_in_3 = NULL; main_Color_3_in_4 = NULL; main_Color_3_in_5 = NULL; main_Color_3_out_1 = NULL; main_Shade_1_in_2 = 0; main_Shade_1_in_3 = NULL; main_Shade_1_in_4 = NULL; main_Shade_1_in_5 = NULL; main_Shade_1_in_6 = NULL; main_Shade_1_in_7 = NULL; main_Shade_1_in_8 = NULL; main_Shade_1_out_1 = NULL; main_AutoCamera_1_in_2 = NULL; main_AutoCamera_1_in_3 = 3.35; main_AutoCamera_1_in_4 = 2048; main_AutoCamera_1_in_5 = 1.07; main_AutoCamera_1_in_6 = NULL; main_AutoCamera_1_in_7 = NULL; main_AutoCamera_1_in_8 = NULL; main_AutoCamera_1_in_9 = NULL; main_AutoCamera_1_out_1 = NULL; main_Render_1_in_3 = NULL; main_Render_1_out_1 = NULL; main_Display_1_in_2 = NULL; main_Display_1_in_3 = "X24,,"; main_Display_1_in_4 = NULL; main_Display_1_in_5 = NULL; main_Display_1_in_6 = NULL; main_Display_1_in_7 = NULL; main_Display_1_in_8 = NULL; main_WriteImage_1_in_2 = NULL; main_WriteImage_1_in_3 = "tiff"; main_WriteImage_1_in_4 = NULL; Executive("product version 4 4 4"); $sync main(); elk-10.4.9/examples/GW/PaxHeaders/Cu0000644000000000000000000000013214762655566014111 xustar0030 mtime=1741380470.106017023 30 atime=1741380470.103017007 30 ctime=1741380470.106017023 elk-10.4.9/examples/GW/Cu/0000755002504400250440000000000014762655566016710 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/GW/Cu/PaxHeaders/elk.in0000644000000000000000000000013214762655566015271 xustar0030 mtime=1741380470.105017018 30 atime=1741380470.105017018 30 ctime=1741380470.105017018 elk-10.4.9/examples/GW/Cu/elk.in0000644002504400250440000000152214762655566020013 0ustar00dewhurstdewhurst00000000000000 ! GW approximation applied to copper. Note that this calculation uses more ! k-points than q-points. tasks 0 600 610 ! switch on spin-coupling spinorb .true. ! temperature of the electronic system (determines Matsubara frequency spacing) tempk 1500.0 nempty 8 ! Matsubara frequency cut-off wmaxgw 6.0 ! G-vector cut-off for response functions gmaxrf 3.0 wplot 1000 100 0 : nwplot, ngrkf, nswplot -0.5 0.5 : wplot avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 6.83117 ngridk 12 12 12 ! q-point grid smaller but commensurate with the k-point grid ngridq 4 4 4 sppath '../../../species/' atoms 1 : nspecies 'Cu.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/examples/GW/Cu/PaxHeaders/GWTSF.OUT0000644000000000000000000000013214762655566015451 xustar0030 mtime=1741380470.107017028 30 atime=1741380470.107017028 30 ctime=1741380470.107017028 elk-10.4.9/examples/GW/Cu/GWTSF.OUT0000644002504400250440000011021014762655566020166 0ustar00dewhurstdewhurst00000000000000 -0.5000000000 1.824301379 -0.4990000000 1.858733095 -0.4980000000 1.894652577 -0.4970000000 1.881545001 -0.4960000000 1.885725810 -0.4950000000 1.896416216 -0.4940000000 1.906538765 -0.4930000000 1.948783662 -0.4920000000 1.940545496 -0.4910000000 1.911214233 -0.4900000000 1.943414329 -0.4890000000 1.979079144 -0.4880000000 1.966975776 -0.4870000000 1.975660865 -0.4860000000 1.954034829 -0.4850000000 1.987496531 -0.4840000000 1.985981863 -0.4830000000 1.990621853 -0.4820000000 1.973709207 -0.4810000000 1.984131510 -0.4800000000 1.974721729 -0.4790000000 1.949946186 -0.4780000000 1.927193453 -0.4770000000 1.942874762 -0.4760000000 1.920629055 -0.4750000000 1.932931741 -0.4740000000 1.947159926 -0.4730000000 1.897853380 -0.4720000000 1.901676484 -0.4710000000 1.888057303 -0.4700000000 1.826150143 -0.4690000000 1.830563933 -0.4680000000 1.807247173 -0.4670000000 1.828849365 -0.4660000000 1.803964693 -0.4650000000 1.802756576 -0.4640000000 1.799428032 -0.4630000000 1.787414853 -0.4620000000 1.772837956 -0.4610000000 1.788826563 -0.4600000000 1.752298242 -0.4590000000 1.777745060 -0.4580000000 1.714158508 -0.4570000000 1.746942483 -0.4560000000 1.736456447 -0.4550000000 1.703930855 -0.4540000000 1.704459329 -0.4530000000 1.718164049 -0.4520000000 1.703780991 -0.4510000000 1.757487497 -0.4500000000 1.634487572 -0.4490000000 1.603115695 -0.4480000000 1.618201128 -0.4470000000 1.579752055 -0.4460000000 1.601013667 -0.4450000000 1.586478901 -0.4440000000 1.552705758 -0.4430000000 1.566139471 -0.4420000000 1.540358970 -0.4410000000 1.551575847 -0.4400000000 1.549041515 -0.4390000000 1.550852367 -0.4380000000 1.548506697 -0.4370000000 1.551524406 -0.4360000000 1.528811918 -0.4350000000 1.553973852 -0.4340000000 1.543903954 -0.4330000000 1.540870365 -0.4320000000 1.548448370 -0.4310000000 1.540286715 -0.4300000000 1.522833632 -0.4290000000 1.523629269 -0.4280000000 1.514300360 -0.4270000000 1.536403608 -0.4260000000 1.549657328 -0.4250000000 1.557880902 -0.4240000000 1.560783697 -0.4230000000 1.570349765 -0.4220000000 1.560563619 -0.4210000000 1.578748362 -0.4200000000 1.566551097 -0.4190000000 1.585427101 -0.4180000000 1.582327305 -0.4170000000 1.584654118 -0.4160000000 1.583757824 -0.4150000000 1.594596234 -0.4140000000 1.597077155 -0.4130000000 1.607215796 -0.4120000000 1.613585819 -0.4110000000 1.643852581 -0.4100000000 1.663370920 -0.4090000000 1.686190830 -0.4080000000 1.741252523 -0.4070000000 1.718760093 -0.4060000000 1.701658841 -0.4050000000 1.723552602 -0.4040000000 1.736949522 -0.4030000000 1.735784729 -0.4020000000 1.754654715 -0.4010000000 1.759892479 -0.4000000000 1.806559455 -0.3990000000 1.791921506 -0.3980000000 1.848912591 -0.3970000000 1.851792914 -0.3960000000 1.838308096 -0.3950000000 1.861145740 -0.3940000000 1.867528489 -0.3930000000 1.877375278 -0.3920000000 1.913102105 -0.3910000000 1.919315812 -0.3900000000 1.972401635 -0.3890000000 1.997793604 -0.3880000000 2.022326557 -0.3870000000 1.987275403 -0.3860000000 2.003936362 -0.3850000000 2.049582059 -0.3840000000 2.074606273 -0.3830000000 2.090585085 -0.3820000000 2.136123560 -0.3810000000 2.143072203 -0.3800000000 2.150982570 -0.3790000000 2.161331202 -0.3780000000 2.157754623 -0.3770000000 2.198342579 -0.3760000000 2.246027255 -0.3750000000 2.312593499 -0.3740000000 2.321561372 -0.3730000000 2.340958888 -0.3720000000 2.450613684 -0.3710000000 2.378245076 -0.3700000000 2.415929047 -0.3690000000 2.407399107 -0.3680000000 2.465994586 -0.3670000000 2.431417120 -0.3660000000 2.456425467 -0.3650000000 2.512991995 -0.3640000000 2.519504313 -0.3630000000 2.545345783 -0.3620000000 2.573993719 -0.3610000000 2.555908518 -0.3600000000 2.567294286 -0.3590000000 2.609311245 -0.3580000000 2.625977200 -0.3570000000 2.607536645 -0.3560000000 2.601178139 -0.3550000000 2.559506832 -0.3540000000 2.567995811 -0.3530000000 2.592291020 -0.3520000000 2.567633638 -0.3510000000 2.537350057 -0.3500000000 2.532998140 -0.3490000000 2.527546214 -0.3480000000 2.503728628 -0.3470000000 2.528743075 -0.3460000000 2.465325307 -0.3450000000 2.521930652 -0.3440000000 2.549652417 -0.3430000000 2.522601774 -0.3420000000 2.484825230 -0.3410000000 2.484197344 -0.3400000000 2.475249992 -0.3390000000 2.493109212 -0.3380000000 2.506696207 -0.3370000000 2.453715998 -0.3360000000 2.448482714 -0.3350000000 2.445918029 -0.3340000000 2.448624135 -0.3330000000 2.416506426 -0.3320000000 2.443909676 -0.3310000000 2.467024140 -0.3300000000 2.460161303 -0.3290000000 2.440380408 -0.3280000000 2.439656059 -0.3270000000 2.432236818 -0.3260000000 2.449826591 -0.3250000000 2.471418638 -0.3240000000 2.476077667 -0.3230000000 2.552124680 -0.3220000000 2.517722763 -0.3210000000 2.542384581 -0.3200000000 2.595839441 -0.3190000000 2.654737985 -0.3180000000 2.604060081 -0.3170000000 2.707578580 -0.3160000000 2.691434376 -0.3150000000 2.720622223 -0.3140000000 2.757492083 -0.3130000000 2.804516453 -0.3120000000 2.823426884 -0.3110000000 2.809755210 -0.3100000000 2.840149337 -0.3090000000 2.970139616 -0.3080000000 2.964473577 -0.3070000000 2.952362425 -0.3060000000 2.962746194 -0.3050000000 3.037887653 -0.3040000000 3.069811767 -0.3030000000 3.180922403 -0.3020000000 3.138610711 -0.3010000000 3.227641049 -0.3000000000 3.216584008 -0.2990000000 3.316355695 -0.2980000000 3.379846432 -0.2970000000 3.412631690 -0.2960000000 3.447416841 -0.2950000000 3.477438310 -0.2940000000 3.444201281 -0.2930000000 3.499438389 -0.2920000000 3.602785052 -0.2910000000 3.648098010 -0.2900000000 3.702128694 -0.2890000000 3.701399058 -0.2880000000 3.702764868 -0.2870000000 3.756779118 -0.2860000000 3.863505180 -0.2850000000 4.041595869 -0.2840000000 4.118489159 -0.2830000000 4.091314645 -0.2820000000 4.126985003 -0.2810000000 4.355781210 -0.2800000000 4.249370217 -0.2790000000 4.432297581 -0.2780000000 4.554176180 -0.2770000000 4.431465337 -0.2760000000 4.602779120 -0.2750000000 4.643531479 -0.2740000000 4.690024755 -0.2730000000 4.783385767 -0.2720000000 4.862197583 -0.2710000000 4.860152784 -0.2700000000 4.874011533 -0.2690000000 4.975602626 -0.2680000000 4.931077554 -0.2670000000 4.979516049 -0.2660000000 5.021829247 -0.2650000000 5.111906924 -0.2640000000 5.098016996 -0.2630000000 5.018988873 -0.2620000000 4.987198326 -0.2610000000 5.128923451 -0.2600000000 5.256627468 -0.2590000000 5.123004222 -0.2580000000 5.067873630 -0.2570000000 5.100312627 -0.2560000000 5.000291045 -0.2550000000 5.220199546 -0.2540000000 5.165040083 -0.2530000000 5.164526873 -0.2520000000 5.076767812 -0.2510000000 5.006091482 -0.2500000000 5.290552051 -0.2490000000 5.125205186 -0.2480000000 5.071316430 -0.2470000000 5.046963030 -0.2460000000 5.051462711 -0.2450000000 5.118594473 -0.2440000000 5.120591326 -0.2430000000 5.115746745 -0.2420000000 5.157434153 -0.2410000000 5.113510139 -0.2400000000 5.106531075 -0.2390000000 5.214623586 -0.2380000000 5.222066506 -0.2370000000 5.247154297 -0.2360000000 5.403306389 -0.2350000000 5.539292551 -0.2340000000 5.634267714 -0.2330000000 5.772772270 -0.2320000000 5.906612063 -0.2310000000 5.964377208 -0.2300000000 6.033953081 -0.2290000000 6.159702923 -0.2280000000 6.301076775 -0.2270000000 6.243042152 -0.2260000000 6.218906625 -0.2250000000 6.367086350 -0.2240000000 6.384798553 -0.2230000000 6.363885903 -0.2220000000 6.307868875 -0.2210000000 6.328114521 -0.2200000000 6.377410487 -0.2190000000 6.406671037 -0.2180000000 6.668572853 -0.2170000000 6.700831919 -0.2160000000 6.749186520 -0.2150000000 6.820953421 -0.2140000000 6.829888887 -0.2130000000 6.741797398 -0.2120000000 6.929712989 -0.2110000000 6.920917291 -0.2100000000 6.984373300 -0.2090000000 7.175694063 -0.2080000000 7.216699604 -0.2070000000 7.316071704 -0.2060000000 7.350512510 -0.2050000000 7.465774418 -0.2040000000 7.531929387 -0.2030000000 7.610419613 -0.2020000000 7.857020742 -0.2010000000 7.945975626 -0.2000000000 8.210831727 -0.1990000000 8.539140436 -0.1980000000 8.783157374 -0.1970000000 8.833611394 -0.1960000000 9.190617383 -0.1950000000 9.562471043 -0.1940000000 9.763903619 -0.1930000000 10.24986650 -0.1920000000 10.27621122 -0.1910000000 10.80668846 -0.1900000000 10.75369035 -0.1890000000 10.88094180 -0.1880000000 11.34367423 -0.1870000000 11.65757479 -0.1860000000 11.42437944 -0.1850000000 11.67783313 -0.1840000000 11.69687986 -0.1830000000 11.79558358 -0.1820000000 11.97055012 -0.1810000000 12.02561829 -0.1800000000 12.51737942 -0.1790000000 12.62917071 -0.1780000000 12.87035483 -0.1770000000 12.91318355 -0.1760000000 13.44756421 -0.1750000000 13.54671944 -0.1740000000 14.04316244 -0.1730000000 14.08900791 -0.1720000000 14.52286161 -0.1710000000 14.99378288 -0.1700000000 15.48819062 -0.1690000000 16.63114559 -0.1680000000 17.27273923 -0.1670000000 18.03832859 -0.1660000000 19.10531402 -0.1650000000 20.02908064 -0.1640000000 21.01553388 -0.1630000000 21.72169770 -0.1620000000 22.29815018 -0.1610000000 22.57148369 -0.1600000000 22.15526416 -0.1590000000 23.06511847 -0.1580000000 23.86157824 -0.1570000000 22.92787900 -0.1560000000 24.05443629 -0.1550000000 24.65139826 -0.1540000000 25.30175453 -0.1530000000 25.75020140 -0.1520000000 27.12949781 -0.1510000000 27.92565136 -0.1500000000 28.66738635 -0.1490000000 30.02109081 -0.1480000000 31.72068594 -0.1470000000 33.68698380 -0.1460000000 34.80356411 -0.1450000000 35.82285577 -0.1440000000 38.65123168 -0.1430000000 37.80279765 -0.1420000000 39.81096832 -0.1410000000 41.04020744 -0.1400000000 41.87412830 -0.1390000000 42.20743466 -0.1380000000 44.17701776 -0.1370000000 45.83032651 -0.1360000000 46.42364766 -0.1350000000 47.13381221 -0.1340000000 47.61323504 -0.1330000000 48.52657472 -0.1320000000 49.60347023 -0.1310000000 49.27234210 -0.1300000000 48.11300883 -0.1290000000 47.57122213 -0.1280000000 46.74859077 -0.1270000000 46.29146194 -0.1260000000 44.55796951 -0.1250000000 44.37314696 -0.1240000000 44.80213046 -0.1230000000 45.81955118 -0.1220000000 46.93142425 -0.1210000000 47.11166277 -0.1200000000 49.99913678 -0.1190000000 50.46967028 -0.1180000000 51.24804643 -0.1170000000 52.85964503 -0.1160000000 54.80482725 -0.1150000000 56.99847821 -0.1140000000 58.19558948 -0.1130000000 59.90351570 -0.1120000000 62.36056991 -0.1110000000 64.59297199 -0.1100000000 68.06318041 -0.1090000000 69.57941279 -0.1080000000 72.09129136 -0.1070000000 73.93832767 -0.1060000000 75.46199484 -0.1050000000 73.86653882 -0.1040000000 70.85440054 -0.1030000000 67.64028892 -0.1020000000 65.51257509 -0.1010000000 63.57960431 -0.1000000000 62.16490148 -0.9900000000E-01 60.90941491 -0.9800000000E-01 59.84463743 -0.9700000000E-01 59.06588001 -0.9600000000E-01 58.96119285 -0.9500000000E-01 57.27958240 -0.9400000000E-01 56.56950391 -0.9300000000E-01 55.21777146 -0.9200000000E-01 54.42779536 -0.9100000000E-01 53.53574469 -0.9000000000E-01 53.65696230 -0.8900000000E-01 53.94286994 -0.8800000000E-01 54.24460148 -0.8700000000E-01 54.28970265 -0.8600000000E-01 55.24698911 -0.8500000000E-01 55.88244227 -0.8400000000E-01 58.45634603 -0.8300000000E-01 60.13191027 -0.8200000000E-01 60.71038618 -0.8100000000E-01 60.05762028 -0.8000000000E-01 56.58087225 -0.7900000000E-01 53.26817640 -0.7800000000E-01 50.49839559 -0.7700000000E-01 48.01936633 -0.7600000000E-01 47.57945792 -0.7500000000E-01 47.15012068 -0.7400000000E-01 47.64318193 -0.7300000000E-01 49.38464294 -0.7200000000E-01 52.48811811 -0.7100000000E-01 54.49994367 -0.7000000000E-01 56.24245144 -0.6900000000E-01 57.72474032 -0.6800000000E-01 59.59921907 -0.6700000000E-01 61.41333008 -0.6600000000E-01 63.04035819 -0.6500000000E-01 64.40176758 -0.6400000000E-01 65.23990698 -0.6300000000E-01 64.55495875 -0.6200000000E-01 61.55456664 -0.6100000000E-01 57.33466824 -0.6000000000E-01 53.27432002 -0.5900000000E-01 48.69041120 -0.5800000000E-01 43.08376334 -0.5700000000E-01 37.06876840 -0.5600000000E-01 31.67191241 -0.5500000000E-01 26.83695800 -0.5400000000E-01 23.05438008 -0.5300000000E-01 19.86289777 -0.5200000000E-01 17.56175142 -0.5100000000E-01 15.97854434 -0.5000000000E-01 14.95543451 -0.4900000000E-01 14.33145818 -0.4800000000E-01 14.02843805 -0.4700000000E-01 13.63114111 -0.4600000000E-01 12.70942311 -0.4500000000E-01 11.29743329 -0.4400000000E-01 10.11652053 -0.4300000000E-01 9.421961628 -0.4200000000E-01 9.253417042 -0.4100000000E-01 9.480776309 -0.4000000000E-01 9.728454333 -0.3900000000E-01 9.561708581 -0.3800000000E-01 9.093848401 -0.3700000000E-01 8.769841063 -0.3600000000E-01 8.575916143 -0.3500000000E-01 8.206309807 -0.3400000000E-01 7.481007066 -0.3300000000E-01 6.583117927 -0.3200000000E-01 5.772556933 -0.3100000000E-01 5.186254162 -0.3000000000E-01 4.829308418 -0.2900000000E-01 4.680179360 -0.2800000000E-01 4.714383869 -0.2700000000E-01 4.932743523 -0.2600000000E-01 5.276241071 -0.2500000000E-01 5.563227485 -0.2400000000E-01 5.617779600 -0.2300000000E-01 5.511906606 -0.2200000000E-01 5.470351713 -0.2100000000E-01 5.634924000 -0.2000000000E-01 5.998743356 -0.1900000000E-01 6.392550566 -0.1800000000E-01 6.621393101 -0.1700000000E-01 6.613561759 -0.1600000000E-01 6.414607022 -0.1500000000E-01 6.167824829 -0.1400000000E-01 6.129703823 -0.1300000000E-01 6.440454417 -0.1200000000E-01 7.177106622 -0.1100000000E-01 8.295688894 -0.1000000000E-01 9.572630982 -0.9000000000E-02 10.62917209 -0.8000000000E-02 11.17988289 -0.7000000000E-02 11.06729641 -0.6000000000E-02 10.32283017 -0.5000000000E-02 9.208983211 -0.4000000000E-02 8.079370847 -0.3000000000E-02 7.065745590 -0.2000000000E-02 6.085799250 -0.1000000000E-02 5.183803809 0.000000000 4.454987035 0.1000000000E-02 3.939446956 0.2000000000E-02 3.622453517 0.3000000000E-02 3.476186637 0.4000000000E-02 3.495564752 0.5000000000E-02 3.664606708 0.6000000000E-02 3.935114558 0.7000000000E-02 4.159182952 0.8000000000E-02 4.158178920 0.9000000000E-02 3.971924378 0.1000000000E-01 3.810708227 0.1100000000E-01 3.781445389 0.1200000000E-01 3.916621181 0.1300000000E-01 4.197812418 0.1400000000E-01 4.654235974 0.1500000000E-01 5.217626863 0.1600000000E-01 5.576269094 0.1700000000E-01 5.357934461 0.1800000000E-01 4.673180533 0.1900000000E-01 3.913393976 0.2000000000E-01 3.327487036 0.2100000000E-01 2.938827560 0.2200000000E-01 2.715011693 0.2300000000E-01 2.621146418 0.2400000000E-01 2.644807165 0.2500000000E-01 2.789324221 0.2600000000E-01 3.078098530 0.2700000000E-01 3.549859232 0.2800000000E-01 4.228975152 0.2900000000E-01 5.045222131 0.3000000000E-01 5.700201989 0.3100000000E-01 5.842473427 0.3200000000E-01 5.558639224 0.3300000000E-01 5.183870298 0.3400000000E-01 4.824946481 0.3500000000E-01 4.312408067 0.3600000000E-01 3.707108852 0.3700000000E-01 3.181986404 0.3800000000E-01 2.806255469 0.3900000000E-01 2.587650731 0.4000000000E-01 2.500305820 0.4100000000E-01 2.514546263 0.4200000000E-01 2.671063124 0.4300000000E-01 2.939527472 0.4400000000E-01 3.397447053 0.4500000000E-01 4.014567499 0.4600000000E-01 4.703447673 0.4700000000E-01 5.182136034 0.4800000000E-01 5.257020709 0.4900000000E-01 4.963728893 0.5000000000E-01 4.533207117 0.5100000000E-01 4.237500050 0.5200000000E-01 4.216894586 0.5300000000E-01 4.536873528 0.5400000000E-01 5.101825157 0.5500000000E-01 5.692855087 0.5600000000E-01 5.846762519 0.5700000000E-01 5.407792503 0.5800000000E-01 4.782479500 0.5900000000E-01 4.304419882 0.6000000000E-01 4.122584785 0.6100000000E-01 4.254280068 0.6200000000E-01 4.717846160 0.6300000000E-01 5.527802343 0.6400000000E-01 6.615741272 0.6500000000E-01 7.660249075 0.6600000000E-01 8.241964409 0.6700000000E-01 8.141369129 0.6800000000E-01 7.900714255 0.6900000000E-01 7.735487281 0.7000000000E-01 7.464045245 0.7100000000E-01 6.749931248 0.7200000000E-01 5.738827070 0.7300000000E-01 4.871940265 0.7400000000E-01 4.388377694 0.7500000000E-01 4.299639790 0.7600000000E-01 4.584192735 0.7700000000E-01 4.816629571 0.7800000000E-01 4.834822092 0.7900000000E-01 4.539764769 0.8000000000E-01 4.389523454 0.8100000000E-01 4.634345989 0.8200000000E-01 5.336960399 0.8300000000E-01 6.158473946 0.8400000000E-01 6.496828022 0.8500000000E-01 5.879809132 0.8600000000E-01 5.026034417 0.8700000000E-01 4.515850374 0.8800000000E-01 4.512495217 0.8900000000E-01 5.021885984 0.9000000000E-01 5.740109136 0.9100000000E-01 8.928123562 0.9200000000E-01 5.334368601 0.9300000000E-01 4.262890499 0.9400000000E-01 3.377523393 0.9500000000E-01 2.813579034 0.9600000000E-01 2.508493232 0.9700000000E-01 2.439228114 0.9800000000E-01 2.583544357 0.9900000000E-01 2.962271610 0.1000000000 3.438061154 0.1010000000 3.561441488 0.1020000000 3.122796808 0.1030000000 2.547095402 0.1040000000 2.132034368 0.1050000000 1.973485793 0.1060000000 1.956280488 0.1070000000 2.033293624 0.1080000000 2.310728472 0.1090000000 2.680279408 0.1100000000 3.635022566 0.1110000000 4.872064665 0.1120000000 5.825988946 0.1130000000 6.585406440 0.1140000000 6.548923812 0.1150000000 5.341886390 0.1160000000 4.195462228 0.1170000000 3.559177831 0.1180000000 3.339610673 0.1190000000 3.554222307 0.1200000000 4.275840455 0.1210000000 5.599622958 0.1220000000 7.129593016 0.1230000000 7.480894364 0.1240000000 6.550711155 0.1250000000 5.503441972 0.1260000000 4.328488857 0.1270000000 3.241849129 0.1280000000 2.443242769 0.1290000000 1.998098475 0.1300000000 1.758556631 0.1310000000 1.582890686 0.1320000000 1.529443015 0.1330000000 1.560491477 0.1340000000 1.820620622 0.1350000000 2.175213634 0.1360000000 2.296177287 0.1370000000 1.990093576 0.1380000000 1.638937107 0.1390000000 1.530257828 0.1400000000 1.407194347 0.1410000000 1.580394747 0.1420000000 1.518397318 0.1430000000 1.687389872 0.1440000000 1.964192770 0.1450000000 2.371611044 0.1460000000 2.979172176 0.1470000000 3.693322819 0.1480000000 4.305969287 0.1490000000 5.114652254 0.1500000000 5.922629410 0.1510000000 6.096989519 0.1520000000 5.606900204 0.1530000000 5.197318529 0.1540000000 5.405990078 0.1550000000 6.255537812 0.1560000000 7.208443898 0.1570000000 7.042289446 0.1580000000 5.104508499 0.1590000000 3.603378641 0.1600000000 2.833218983 0.1610000000 2.652726114 0.1620000000 2.757538226 0.1630000000 3.232119684 0.1640000000 3.636022290 0.1650000000 3.745784071 0.1660000000 3.634538415 0.1670000000 3.244380752 0.1680000000 2.781008044 0.1690000000 1.978681739 0.1700000000 1.865497582 0.1710000000 2.025013721 0.1720000000 2.556737565 0.1730000000 3.861607108 0.1740000000 6.669196279 0.1750000000 8.171301930 0.1760000000 6.211594831 0.1770000000 6.163320722 0.1780000000 7.450189661 0.1790000000 5.693648087 0.1800000000 2.467535867 0.1810000000 1.868001108 0.1820000000 1.810760028 0.1830000000 2.108543730 0.1840000000 2.587069209 0.1850000000 3.734521883 0.1860000000 5.052190274 0.1870000000 10.33624942 0.1880000000 14.05362704 0.1890000000 9.416019064 0.1900000000 4.692583015 0.1910000000 3.152036967 0.1920000000 3.119810076 0.1930000000 3.226740231 0.1940000000 5.567267562 0.1950000000 10.97111379 0.1960000000 9.830825633 0.1970000000 4.407084380 0.1980000000 2.868273564 0.1990000000 2.791822838 0.2000000000 4.106956313 0.2010000000 10.33019088 0.2020000000 21.36173054 0.2030000000 11.67993069 0.2040000000 4.969709073 0.2050000000 2.672080551 0.2060000000 1.987456526 0.2070000000 2.515156955 0.2080000000 2.680740156 0.2090000000 10.13344391 0.2100000000 3.204056934 0.2110000000 1.310314487 0.2120000000 0.9362583122 0.2130000000 0.8501808582 0.2140000000 1.036800422 0.2150000000 2.543871172 0.2160000000 10.78486495 0.2170000000 6.061179109 0.2180000000 1.563639427 0.2190000000 1.057027367 0.2200000000 0.9612742151 0.2210000000 0.9838979982 0.2220000000 1.113894453 0.2230000000 1.414176925 0.2240000000 2.114588629 0.2250000000 5.097844543 0.2260000000 20.30931141 0.2270000000 7.625661067 0.2280000000 2.851110625 0.2290000000 1.921856307 0.2300000000 1.979314081 0.2310000000 3.942726664 0.2320000000 54.04569475 0.2330000000 17.14655122 0.2340000000 1.838564117 0.2350000000 0.9828352175 0.2360000000 0.8669671792 0.2370000000 0.9870793100 0.2380000000 1.108145624 0.2390000000 1.009661054 0.2400000000 0.8944813850 0.2410000000 0.9342640473 0.2420000000 1.028188905 0.2430000000 1.165126941 0.2440000000 1.720175499 0.2450000000 5.628346527 0.2460000000 31.97674215 0.2470000000 7.008932983 0.2480000000 6.526289164 0.2490000000 6.973960962 0.2500000000 3.464253168 0.2510000000 2.731750313 0.2520000000 2.899196906 0.2530000000 1.479026941 0.2540000000 1.643678707 0.2550000000 2.887472478 0.2560000000 1.762478835 0.2570000000 1.688785307 0.2580000000 1.748265418 0.2590000000 1.751946157 0.2600000000 1.788745893 0.2610000000 1.930514745 0.2620000000 2.313428311 0.2630000000 2.367736973 0.2640000000 2.585242629 0.2650000000 2.911852292 0.2660000000 3.746948431 0.2670000000 5.125951413 0.2680000000 7.685806445 0.2690000000 11.82079963 0.2700000000 13.90989517 0.2710000000 14.02694424 0.2720000000 13.57206490 0.2730000000 9.997877245 0.2740000000 10.10053279 0.2750000000 6.447001067 0.2760000000 5.551610267 0.2770000000 8.543511023 0.2780000000 9.700541301 0.2790000000 9.772820120 0.2800000000 4.629527332 0.2810000000 3.674902564 0.2820000000 3.638522717 0.2830000000 4.288685589 0.2840000000 4.698516361 0.2850000000 4.255264535 0.2860000000 3.379321151 0.2870000000 2.987018660 0.2880000000 3.182332858 0.2890000000 4.074684275 0.2900000000 5.382380173 0.2910000000 4.626357817 0.2920000000 3.399819965 0.2930000000 2.841939573 0.2940000000 2.696321620 0.2950000000 2.898824589 0.2960000000 3.312277944 0.2970000000 4.107920423 0.2980000000 4.984800539 0.2990000000 5.405542833 0.3000000000 5.657715448 0.3010000000 5.963308167 0.3020000000 6.067751643 0.3030000000 5.795259409 0.3040000000 5.594960553 0.3050000000 5.237531240 0.3060000000 4.802981830 0.3070000000 4.690949790 0.3080000000 4.910909631 0.3090000000 5.541043340 0.3100000000 6.419255783 0.3110000000 7.223223059 0.3120000000 7.547932505 0.3130000000 6.357885172 0.3140000000 5.293349440 0.3150000000 5.220987246 0.3160000000 5.325238914 0.3170000000 5.137831051 0.3180000000 5.556817175 0.3190000000 5.091845653 0.3200000000 5.573343613 0.3210000000 5.545629260 0.3220000000 4.891881000 0.3230000000 4.345546010 0.3240000000 4.287160844 0.3250000000 4.652027241 0.3260000000 5.016664653 0.3270000000 4.683976438 0.3280000000 4.282864288 0.3290000000 4.235229753 0.3300000000 4.541442970 0.3310000000 5.088922429 0.3320000000 5.861363370 0.3330000000 6.411810587 0.3340000000 6.728270441 0.3350000000 7.269147432 0.3360000000 7.743747623 0.3370000000 7.942936308 0.3380000000 7.449546026 0.3390000000 6.188980635 0.3400000000 4.952866702 0.3410000000 4.099795752 0.3420000000 3.683945629 0.3430000000 3.564935710 0.3440000000 3.582869039 0.3450000000 3.695280798 0.3460000000 3.849399940 0.3470000000 4.330466774 0.3480000000 4.741716712 0.3490000000 5.812499261 0.3500000000 6.361572883 0.3510000000 6.769070981 0.3520000000 6.583121667 0.3530000000 6.727755216 0.3540000000 6.986547794 0.3550000000 7.268091300 0.3560000000 7.163849285 0.3570000000 8.063649141 0.3580000000 11.03167018 0.3590000000 7.100073980 0.3600000000 7.050338692 0.3610000000 7.266460393 0.3620000000 7.729518587 0.3630000000 8.248496470 0.3640000000 8.517325317 0.3650000000 8.560411699 0.3660000000 8.453456856 0.3670000000 8.841594463 0.3680000000 8.268675059 0.3690000000 8.191692167 0.3700000000 8.210376280 0.3710000000 8.361906142 0.3720000000 8.578908753 0.3730000000 8.224769446 0.3740000000 7.638723408 0.3750000000 7.331855967 0.3760000000 7.107040431 0.3770000000 6.930295817 0.3780000000 6.583687788 0.3790000000 6.070456262 0.3800000000 5.601289913 0.3810000000 6.219666672 0.3820000000 6.226227960 0.3830000000 6.208047856 0.3840000000 5.978244299 0.3850000000 6.345652418 0.3860000000 6.652906460 0.3870000000 6.947154040 0.3880000000 7.439536841 0.3890000000 7.462600245 0.3900000000 8.163649379 0.3910000000 8.658346032 0.3920000000 8.906701193 0.3930000000 6.918323246 0.3940000000 8.212522579 0.3950000000 8.829458730 0.3960000000 8.743411708 0.3970000000 8.112000115 0.3980000000 7.741453707 0.3990000000 7.442534103 0.4000000000 9.593802327 0.4010000000 7.515192555 0.4020000000 7.384505405 0.4030000000 7.334270706 0.4040000000 7.353205206 0.4050000000 7.726965721 0.4060000000 7.146795698 0.4070000000 7.399181663 0.4080000000 7.069100946 0.4090000000 7.099678412 0.4100000000 7.001050877 0.4110000000 6.811483998 0.4120000000 8.107037116 0.4130000000 6.418773690 0.4140000000 6.326365754 0.4150000000 6.086840728 0.4160000000 5.861474003 0.4170000000 5.647330499 0.4180000000 5.429043209 0.4190000000 5.607524618 0.4200000000 5.494813570 0.4210000000 5.838624365 0.4220000000 6.388163313 0.4230000000 5.982127523 0.4240000000 6.262960515 0.4250000000 6.469619716 0.4260000000 6.518412232 0.4270000000 6.886477276 0.4280000000 7.264649635 0.4290000000 7.574240746 0.4300000000 7.861834366 0.4310000000 8.095926891 0.4320000000 8.106916668 0.4330000000 7.918829814 0.4340000000 7.649132039 0.4350000000 7.338772383 0.4360000000 7.995432951 0.4370000000 7.120692064 0.4380000000 6.776562989 0.4390000000 6.653550696 0.4400000000 6.530312246 0.4410000000 6.414948404 0.4420000000 6.513434919 0.4430000000 6.560860172 0.4440000000 6.794314673 0.4450000000 7.005376375 0.4460000000 7.033860570 0.4470000000 6.822275677 0.4480000000 6.663583382 0.4490000000 6.812468846 0.4500000000 7.401929084 0.4510000000 8.143097618 0.4520000000 8.704275201 0.4530000000 8.275394951 0.4540000000 8.663193553 0.4550000000 7.933315810 0.4560000000 7.485759551 0.4570000000 7.395437841 0.4580000000 7.217237392 0.4590000000 7.508813584 0.4600000000 7.800673069 0.4610000000 7.897362755 0.4620000000 8.941079122 0.4630000000 8.084513355 0.4640000000 8.062609790 0.4650000000 8.088200911 0.4660000000 7.823917894 0.4670000000 7.623340885 0.4680000000 7.406428381 0.4690000000 7.122547903 0.4700000000 7.798422727 0.4710000000 8.793900187 0.4720000000 8.166138996 0.4730000000 7.745081458 0.4740000000 7.563817961 0.4750000000 7.263355883 0.4760000000 6.794822729 0.4770000000 6.366449121 0.4780000000 6.197978587 0.4790000000 6.244912348 0.4800000000 6.741929883 0.4810000000 6.724658143 0.4820000000 6.766111663 0.4830000000 6.952481707 0.4840000000 6.993472459 0.4850000000 7.031681944 0.4860000000 7.130220592 0.4870000000 7.410078705 0.4880000000 7.716552287 0.4890000000 8.426977069 0.4900000000 8.058825934 0.4910000000 8.139458324 0.4920000000 8.299426586 0.4930000000 8.338038236 0.4940000000 8.362398726 0.4950000000 8.826504153 0.4960000000 8.591906881 0.4970000000 8.385221839 0.4980000000 8.205248976 0.4990000000 8.292365405 elk-10.4.9/examples/GW/PaxHeaders/Si0000644000000000000000000000013214762655566014115 xustar0030 mtime=1741380470.112017054 30 atime=1741380470.109017039 30 ctime=1741380470.112017054 elk-10.4.9/examples/GW/Si/0000755002504400250440000000000014762655566016714 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/GW/Si/PaxHeaders/GWSF_K000001.OUT0000644000000000000000000000013214762655566016244 xustar0030 mtime=1741380470.110017044 30 atime=1741380470.110017044 30 ctime=1741380470.110017044 elk-10.4.9/examples/GW/Si/GWSF_K000001.OUT0000644002504400250440000010066614762655566020777 0ustar00dewhurstdewhurst00000000000000 -0.8000000000 1.233645995 -0.7983750000 1.234174789 -0.7967500000 1.082149685 -0.7951250000 1.052030490 -0.7935000000 1.322191902 -0.7918750000 1.557510429 -0.7902500000 1.805241092 -0.7886250000 2.093871872 -0.7870000000 2.446310307 -0.7853750000 2.895651872 -0.7837500000 3.420703366 -0.7821250000 4.072064806 -0.7805000000 4.946048548 -0.7788750000 6.048673689 -0.7772500000 7.598366858 -0.7756250000 9.699416375 -0.7740000000 12.53349555 -0.7723750000 16.13107096 -0.7707500000 18.14959514 -0.7691250000 16.42342744 -0.7675000000 12.64425931 -0.7658750000 9.801527119 -0.7642500000 9.341045938 -0.7626250000 9.983502760 -0.7610000000 9.893469598 -0.7593750000 8.529133893 -0.7577500000 6.754611882 -0.7561250000 5.685335598 -0.7545000000 4.987129003 -0.7528750000 4.424231971 -0.7512500000 4.065725912 -0.7496250000 4.102841109 -0.7480000000 4.317742439 -0.7463750000 3.984125121 -0.7447500000 3.572598359 -0.7431250000 3.243673378 -0.7415000000 3.016243379 -0.7398750000 2.733133886 -0.7382500000 2.430960225 -0.7366250000 2.269961265 -0.7350000000 2.171591561 -0.7333750000 2.182219901 -0.7317500000 2.078968705 -0.7301250000 2.334622917 -0.7285000000 2.736027983 -0.7268750000 2.353793285 -0.7252500000 2.148712809 -0.7236250000 4.137178349 -0.7220000000 3.732123430 -0.7203750000 3.607432655 -0.7187500000 1.566334339 -0.7171250000 1.199443030 -0.7155000000 1.306590599 -0.7138750000 1.099981379 -0.7122500000 1.066199340 -0.7106250000 0.9535726450 -0.7090000000 1.019606033 -0.7073750000 1.025092663 -0.7057500000 0.9857759820 -0.7041250000 1.009249479 -0.7025000000 1.035346419 -0.7008750000 1.083592848 -0.6992500000 1.234511200 -0.6976250000 1.039922461 -0.6960000000 0.9783661125 -0.6943750000 0.9294540482 -0.6927500000 0.9254229847 -0.6911250000 0.9470869120 -0.6895000000 0.9607108157 -0.6878750000 1.010698836 -0.6862500000 0.9337524166 -0.6846250000 0.8883658587 -0.6830000000 0.8352754710 -0.6813750000 0.7995445680 -0.6797500000 0.7553268398 -0.6781250000 0.7069977389 -0.6765000000 0.6868709786 -0.6748750000 0.6766995188 -0.6732500000 0.6802556356 -0.6716250000 0.7284599988 -0.6700000000 0.7876219477 -0.6683750000 0.8309171467 -0.6667500000 0.8506946696 -0.6651250000 0.8411708941 -0.6635000000 0.8098471661 -0.6618750000 0.8065834328 -0.6602500000 0.8271119589 -0.6586250000 0.8371924088 -0.6570000000 0.8350046722 -0.6553750000 0.8289684693 -0.6537500000 0.8299786618 -0.6521250000 0.8449440703 -0.6505000000 0.8512573372 -0.6488750000 0.8588548275 -0.6472500000 0.8657762923 -0.6456250000 0.8740824508 -0.6440000000 0.8900581388 -0.6423750000 0.9108157074 -0.6407500000 0.9394712372 -0.6391250000 0.9928343115 -0.6375000000 1.006815980 -0.6358750000 1.032572294 -0.6342500000 1.055540304 -0.6326250000 1.107537771 -0.6310000000 1.173102812 -0.6293750000 1.142576253 -0.6277500000 1.126997457 -0.6261250000 1.102377237 -0.6245000000 1.062452561 -0.6228750000 1.015569262 -0.6212500000 1.016770355 -0.6196250000 1.016943201 -0.6180000000 1.001309186 -0.6163750000 0.9134445869 -0.6147500000 0.8507184760 -0.6131250000 0.9256717690 -0.6115000000 0.9892081108 -0.6098750000 1.040976022 -0.6082500000 1.086863909 -0.6066250000 1.127669249 -0.6050000000 1.162829033 -0.6033750000 1.192808101 -0.6017500000 1.215655837 -0.6001250000 1.238834724 -0.5985000000 1.285131114 -0.5968750000 1.321563638 -0.5952500000 1.358962201 -0.5936250000 1.399576574 -0.5920000000 1.437998531 -0.5903750000 1.434648990 -0.5887500000 1.481143883 -0.5871250000 1.377274406 -0.5855000000 1.373908300 -0.5838750000 1.334283395 -0.5822500000 1.387051852 -0.5806250000 1.434873222 -0.5790000000 1.448473189 -0.5773750000 1.711601416 -0.5757500000 1.493970365 -0.5741250000 1.435434279 -0.5725000000 1.407542722 -0.5708750000 1.447678946 -0.5692500000 1.440328869 -0.5676250000 1.438416360 -0.5660000000 1.410905753 -0.5643750000 1.519215625 -0.5627500000 1.455752890 -0.5611250000 1.494886379 -0.5595000000 1.512123602 -0.5578750000 1.493698077 -0.5562500000 1.497250878 -0.5546250000 1.524087146 -0.5530000000 1.522763329 -0.5513750000 1.541304415 -0.5497500000 1.560716269 -0.5481250000 1.580557873 -0.5465000000 1.597440531 -0.5448750000 1.630269535 -0.5432500000 1.679986866 -0.5416250000 1.734923060 -0.5400000000 1.795449733 -0.5383750000 1.856355363 -0.5367500000 1.921779587 -0.5351250000 1.989331189 -0.5335000000 2.067493353 -0.5318750000 2.165246560 -0.5302500000 2.280472737 -0.5286250000 2.419310696 -0.5270000000 2.542194260 -0.5253750000 2.581120950 -0.5237500000 2.634260541 -0.5221250000 2.764514480 -0.5205000000 3.100829970 -0.5188750000 4.221628081 -0.5172500000 2.381019714 -0.5156250000 2.462858350 -0.5140000000 2.614964290 -0.5123750000 2.635501612 -0.5107500000 2.743317861 -0.5091250000 2.970727890 -0.5075000000 3.234372781 -0.5058750000 3.498878260 -0.5042500000 3.709503204 -0.5026250000 3.839432376 -0.5010000000 3.904086934 -0.4993750000 4.025471105 -0.4977500000 4.196687871 -0.4961250000 4.338153650 -0.4945000000 4.476666247 -0.4928750000 4.629833009 -0.4912500000 4.822418939 -0.4896250000 5.055991266 -0.4880000000 5.329442504 -0.4863750000 5.668697960 -0.4847500000 6.046587828 -0.4831250000 6.475058612 -0.4815000000 6.962859111 -0.4798750000 7.496899614 -0.4782500000 8.062844914 -0.4766250000 8.638793673 -0.4750000000 9.175247962 -0.4733750000 9.643601540 -0.4717500000 9.952635703 -0.4701250000 10.04724457 -0.4685000000 9.879931873 -0.4668750000 9.682777281 -0.4652500000 9.856646824 -0.4636250000 10.39232236 -0.4620000000 11.21627874 -0.4603750000 12.00547669 -0.4587500000 12.97348115 -0.4571250000 13.97567288 -0.4555000000 14.96647592 -0.4538750000 15.89275501 -0.4522500000 16.67693684 -0.4506250000 17.27945284 -0.4490000000 17.63054288 -0.4473750000 17.70127807 -0.4457500000 17.59716246 -0.4441250000 17.29098672 -0.4425000000 17.00879126 -0.4408750000 16.77879620 -0.4392500000 16.52247133 -0.4376250000 16.08694359 -0.4360000000 15.38722552 -0.4343750000 14.42386067 -0.4327500000 13.36422602 -0.4311250000 12.22139602 -0.4295000000 11.06925532 -0.4278750000 10.03402783 -0.4262500000 9.130065801 -0.4246250000 8.159403830 -0.4230000000 7.334667565 -0.4213750000 6.595843045 -0.4197500000 6.033594792 -0.4181250000 5.713102341 -0.4165000000 5.516007018 -0.4148750000 5.224479787 -0.4132500000 4.974508108 -0.4116250000 4.715829295 -0.4100000000 4.457419102 -0.4083750000 4.159130762 -0.4067500000 3.825250217 -0.4051250000 3.536916887 -0.4035000000 3.277738124 -0.4018750000 3.102207449 -0.4002500000 2.857070405 -0.3986250000 2.626281225 -0.3970000000 2.442525254 -0.3953750000 2.282279070 -0.3937500000 2.148743260 -0.3921250000 2.045395258 -0.3905000000 1.956368870 -0.3888750000 1.884801954 -0.3872500000 1.848561943 -0.3856250000 1.743075429 -0.3840000000 1.586351220 -0.3823750000 1.446276435 -0.3807500000 1.291352717 -0.3791250000 1.069692068 -0.3775000000 0.9386810728 -0.3758750000 1.313867253 -0.3742500000 1.305368686 -0.3726250000 1.256408440 -0.3710000000 1.182757033 -0.3693750000 1.127578957 -0.3677500000 1.080533350 -0.3661250000 1.052812986 -0.3645000000 1.080658363 -0.3628750000 1.081193565 -0.3612500000 1.059847110 -0.3596250000 1.022276503 -0.3580000000 0.9687916276 -0.3563750000 0.9274912069 -0.3547500000 0.8914918842 -0.3531250000 0.8644440308 -0.3515000000 0.8497591687 -0.3498750000 0.8279646570 -0.3482500000 0.8261230445 -0.3466250000 0.8511352746 -0.3450000000 0.8784249638 -0.3433750000 0.9205401498 -0.3417500000 0.8381129633 -0.3401250000 0.7463547540 -0.3385000000 0.7087708420 -0.3368750000 0.6718457274 -0.3352500000 0.6567580715 -0.3336250000 0.6645462784 -0.3320000000 0.6987356090 -0.3303750000 0.6481813911 -0.3287500000 0.6566070158 -0.3271250000 0.6076837925 -0.3255000000 0.5826202415 -0.3238750000 0.5844371565 -0.3222500000 0.5764516323 -0.3206250000 0.5622386815 -0.3190000000 0.5489126731 -0.3173750000 0.5413759464 -0.3157500000 0.5477448381 -0.3141250000 0.5923387325 -0.3125000000 0.5755928869 -0.3108750000 0.6202886841 -0.3092500000 0.6560515473 -0.3076250000 0.6747001313 -0.3060000000 0.6923734596 -0.3043750000 0.7609351036 -0.3027500000 0.6312652151 -0.3011250000 0.6004425191 -0.2995000000 0.5592183739 -0.2978750000 0.5593312932 -0.2962500000 0.4904959605 -0.2946250000 0.4375036468 -0.2930000000 0.4258657702 -0.2913750000 0.4490348746 -0.2897500000 0.4114058181 -0.2881250000 0.3978577618 -0.2865000000 0.4022370268 -0.2848750000 0.3855556296 -0.2832500000 0.3715351536 -0.2816250000 0.3315160429 -0.2800000000 0.2967524246 -0.2783750000 0.3228707103 -0.2767500000 0.3060293839 -0.2751250000 0.2984848897 -0.2735000000 0.2846012719 -0.2718750000 0.2768485816 -0.2702500000 0.2423416731 -0.2686250000 0.2851768057 -0.2670000000 0.2971084640 -0.2653750000 0.2898620945 -0.2637500000 0.2872724161 -0.2621250000 0.3084663251 -0.2605000000 0.2939573788 -0.2588750000 0.2937200244 -0.2572500000 0.2964852887 -0.2556250000 0.3064056499 -0.2540000000 0.3020957902 -0.2523750000 0.3101561374 -0.2507500000 0.2948596459 -0.2491250000 0.3091821727 -0.2475000000 0.3300629500 -0.2458750000 0.2880027291 -0.2442500000 0.3187592598 -0.2426250000 0.3119947689 -0.2410000000 0.3094171270 -0.2393750000 0.3118591543 -0.2377500000 0.3127170211 -0.2361250000 0.3234636188 -0.2345000000 0.3202181308 -0.2328750000 0.3131887483 -0.2312500000 0.3263352593 -0.2296250000 0.3597637741 -0.2280000000 0.3461509673 -0.2263750000 0.3596932249 -0.2247500000 0.3877036009 -0.2231250000 0.4150217294 -0.2215000000 0.3777384734 -0.2198750000 0.3970662611 -0.2182500000 0.4297445147 -0.2166250000 0.4117412855 -0.2150000000 0.4119243494 -0.2133750000 0.4155184408 -0.2117500000 0.4158429903 -0.2101250000 0.3993406703 -0.2085000000 0.4044223280 -0.2068750000 0.3924243231 -0.2052500000 0.3853717201 -0.2036250000 0.3561362780 -0.2020000000 0.3719698354 -0.2003750000 0.3722555825 -0.1987500000 0.3640783412 -0.1971250000 0.3540215793 -0.1955000000 0.3396462804 -0.1938750000 0.3377683475 -0.1922500000 0.3555337813 -0.1906250000 0.3612931479 -0.1890000000 0.3621747646 -0.1873750000 0.3532286884 -0.1857500000 0.3624536299 -0.1841250000 0.3641565759 -0.1825000000 0.3644079137 -0.1808750000 0.3634390685 -0.1792500000 0.3785658194 -0.1776250000 0.3806075089 -0.1760000000 0.3886157965 -0.1743750000 0.3955045974 -0.1727500000 0.4064837150 -0.1711250000 0.4150428114 -0.1695000000 0.4261183169 -0.1678750000 0.4326207701 -0.1662500000 0.4416299270 -0.1646250000 0.4577031390 -0.1630000000 0.4773543330 -0.1613750000 0.4711457627 -0.1597500000 0.4762123194 -0.1581250000 0.5540824415 -0.1565000000 0.4878365448 -0.1548750000 0.5071181383 -0.1532500000 0.5143395153 -0.1516250000 0.5335619871 -0.1500000000 0.5429506548 -0.1483750000 0.5685414170 -0.1467500000 0.6035251621 -0.1451250000 0.6166860581 -0.1435000000 0.6075198977 -0.1418750000 0.6509163620 -0.1402500000 0.6589714123 -0.1386250000 0.6778881061 -0.1370000000 0.6011338271 -0.1353750000 0.7143798169 -0.1337500000 0.7252924392 -0.1321250000 0.7118303263 -0.1305000000 0.6674211308 -0.1288750000 0.6859255241 -0.1272500000 0.6828246411 -0.1256250000 0.6886261882 -0.1240000000 0.7093714032 -0.1223750000 0.7057709012 -0.1207500000 0.7092400623 -0.1191250000 0.7125117994 -0.1175000000 0.7424229028 -0.1158750000 0.7643590312 -0.1142500000 0.7889689500 -0.1126250000 0.8142089383 -0.1110000000 0.8398482401 -0.1093750000 0.8573103791 -0.1077500000 0.8821178679 -0.1061250000 0.8916601639 -0.1045000000 0.9071733320 -0.1028750000 0.9337121629 -0.1012500000 0.9559136458 -0.9962500000E-01 0.9867304325 -0.9800000000E-01 1.019811867 -0.9637500000E-01 1.035368722 -0.9475000000E-01 1.087031036 -0.9312500000E-01 1.111996675 -0.9150000000E-01 1.141749211 -0.8987500000E-01 1.177627819 -0.8825000000E-01 1.214675755 -0.8662500000E-01 1.271771822 -0.8500000000E-01 1.300582765 -0.8337500000E-01 1.361891832 -0.8175000000E-01 1.424334405 -0.8012500000E-01 1.483499848 -0.7850000000E-01 1.537611006 -0.7687500000E-01 1.600991970 -0.7525000000E-01 1.668820407 -0.7362500000E-01 1.780664719 -0.7200000000E-01 1.923501470 -0.7037500000E-01 2.113146093 -0.6875000000E-01 2.240179283 -0.6712500000E-01 2.736138092 -0.6550000000E-01 2.796025377 -0.6387500000E-01 2.560687896 -0.6225000000E-01 2.372753995 -0.6062500000E-01 2.384002788 -0.5900000000E-01 2.495913264 -0.5737500000E-01 2.588478454 -0.5575000000E-01 2.741572287 -0.5412500000E-01 2.871439951 -0.5250000000E-01 3.111678856 -0.5087500000E-01 3.340784307 -0.4925000000E-01 3.597869331 -0.4762500000E-01 3.888088496 -0.4600000000E-01 4.217889714 -0.4437500000E-01 4.596114382 -0.4275000000E-01 5.026214075 -0.4112500000E-01 5.526746139 -0.3950000000E-01 6.112348679 -0.3787500000E-01 6.803189637 -0.3625000000E-01 7.626367501 -0.3462500000E-01 8.618784879 -0.3300000000E-01 9.832641578 -0.3137500000E-01 11.34056198 -0.2975000000E-01 13.24949236 -0.2812500000E-01 15.72108100 -0.2650000000E-01 19.00868618 -0.2487500000E-01 23.52931083 -0.2325000000E-01 30.00969765 -0.2162500000E-01 39.80395009 -0.2000000000E-01 55.62154138 -0.1837500000E-01 83.12983075 -0.1675000000E-01 132.3183983 -0.1512500000E-01 197.5877094 -0.1350000000E-01 224.9260793 -0.1187500000E-01 285.9924798 -0.1025000000E-01 85.30694486 -0.8625000000E-02 3.671201094 -0.7000000000E-02 162.4176827 -0.5375000000E-02 245.9500598 -0.3750000000E-02 288.8156348 -0.2125000000E-02 212.9691149 -0.5000000000E-03 129.5249901 0.1125000000E-02 81.87328852 0.2750000000E-02 55.85691160 0.4375000000E-02 40.60642799 0.6000000000E-02 30.97940990 0.7625000000E-02 24.52285837 0.9250000000E-02 19.98215836 0.1087500000E-01 16.66647552 0.1250000000E-01 14.17343135 0.1412500000E-01 12.25433655 0.1575000000E-01 10.74146307 0.1737500000E-01 9.531459533 0.1900000000E-01 8.555637007 0.2062500000E-01 7.751210953 0.2225000000E-01 7.085294890 0.2387500000E-01 6.523344970 0.2550000000E-01 6.060232477 0.2712500000E-01 5.664285113 0.2875000000E-01 5.307790652 0.3037500000E-01 5.035835293 0.3200000000E-01 4.795019363 0.3362500000E-01 4.590870610 0.3525000000E-01 4.417411327 0.3687500000E-01 4.278443356 0.3850000000E-01 4.163551237 0.4012500000E-01 4.075287756 0.4175000000E-01 4.009445065 0.4337500000E-01 3.959060873 0.4500000000E-01 3.926666857 0.4662500000E-01 3.926892569 0.4825000000E-01 3.936888916 0.4987500000E-01 3.966733627 0.5150000000E-01 4.012851811 0.5312500000E-01 4.081705736 0.5475000000E-01 4.172755663 0.5637500000E-01 4.286390053 0.5800000000E-01 4.423503877 0.5962500000E-01 4.571227140 0.6125000000E-01 4.777088246 0.6287500000E-01 5.008360595 0.6450000000E-01 5.275498041 0.6612500000E-01 5.589189112 0.6775000000E-01 5.970389636 0.6937500000E-01 6.419649270 0.7100000000E-01 6.948796777 0.7262500000E-01 7.615794842 0.7425000000E-01 8.339629296 0.7587500000E-01 9.233612422 0.7750000000E-01 10.14203990 0.7912500000E-01 11.74484803 0.8075000000E-01 12.89049991 0.8237500000E-01 13.00290982 0.8400000000E-01 6.533766224 0.8562500000E-01 6.038647276 0.8725000000E-01 4.715143905 0.8887500000E-01 9.749790167 0.9050000000E-01 15.16837632 0.9212500000E-01 23.92483687 0.9375000000E-01 35.65079034 0.9537500000E-01 52.74977070 0.9700000000E-01 79.12623032 0.9862500000E-01 127.7721667 0.1002500000 211.7244301 0.1018750000 308.5887367 0.1035000000 354.8008682 0.1051250000 330.3708040 0.1067500000 250.0746949 0.1083750000 161.9228045 0.1100000000 102.9615314 0.1116250000 69.41164219 0.1132500000 49.96569947 0.1148750000 37.94128904 0.1165000000 30.16315597 0.1181250000 25.11320914 0.1197500000 21.69453043 0.1213750000 19.16296174 0.1230000000 17.67070945 0.1246250000 17.14876625 0.1262500000 18.02827036 0.1278750000 19.95070881 0.1295000000 23.63584791 0.1311250000 30.48432963 0.1327500000 43.53322626 0.1343750000 63.03821025 0.1360000000 95.10526971 0.1376250000 139.3846623 0.1392500000 142.9325975 0.1408750000 99.09262728 0.1425000000 57.47468169 0.1441250000 36.90150927 0.1457500000 26.09035012 0.1473750000 18.84691654 0.1490000000 13.88038296 0.1506250000 10.66278001 0.1522500000 8.618397214 0.1538750000 7.347016452 0.1555000000 6.256327372 0.1571250000 5.229526294 0.1587500000 4.712336033 0.1603750000 4.352893316 0.1620000000 3.968997399 0.1636250000 3.568584940 0.1652500000 3.301211450 0.1668750000 2.965244492 0.1685000000 2.761553111 0.1701250000 2.663228159 0.1717500000 2.495876430 0.1733750000 2.398385244 0.1750000000 2.329317843 0.1766250000 2.165254801 0.1782500000 2.045402383 0.1798750000 1.968130479 0.1815000000 1.884178543 0.1831250000 1.904250026 0.1847500000 1.761632674 0.1863750000 1.742768482 0.1880000000 1.689974121 0.1896250000 1.607053276 0.1912500000 1.575166304 0.1928750000 1.528169590 0.1945000000 1.461381724 0.1961250000 1.477506911 0.1977500000 1.486235829 0.1993750000 1.418696934 0.2010000000 1.384788075 0.2026250000 1.399416222 0.2042500000 1.389195372 0.2058750000 1.303514500 0.2075000000 1.359069628 0.2091250000 1.364404567 0.2107500000 1.365585987 0.2123750000 1.263862776 0.2140000000 1.267720607 0.2156250000 1.317686777 0.2172500000 1.283527790 0.2188750000 1.293262353 0.2205000000 1.383950528 0.2221250000 1.352750667 0.2237500000 1.373311424 0.2253750000 1.402624165 0.2270000000 1.400416457 0.2286250000 1.434334353 0.2302500000 1.518711724 0.2318750000 1.491252805 0.2335000000 1.493386084 0.2351250000 1.527866124 0.2367500000 1.616390337 0.2383750000 1.433700214 0.2400000000 1.406369100 0.2416250000 1.469279079 0.2432500000 1.357593958 0.2448750000 1.497208357 0.2465000000 1.417357503 0.2481250000 1.734137843 0.2497500000 2.315548817 0.2513750000 1.802914656 0.2530000000 1.631495261 0.2546250000 1.611069967 0.2562500000 1.837738787 0.2578750000 2.752979537 0.2595000000 1.910586414 0.2611250000 3.656167563 0.2627500000 1.537020248 0.2643750000 1.638940418 0.2660000000 3.113717255 0.2676250000 1.200343801 0.2692500000 1.647966741 0.2708750000 2.536259602 0.2725000000 3.690303542 0.2741250000 5.794971781 0.2757500000 15.83421465 0.2773750000 12.22589538 0.2790000000 11.47943742 0.2806250000 10.68415622 0.2822500000 15.52998970 0.2838750000 31.81482462 0.2855000000 605.2559892 0.2871250000 81.41688130 0.2887500000 38.56012664 0.2903750000 28.65320807 0.2920000000 40.81990965 0.2936250000 74.21750093 0.2952500000 157.2132802 0.2968750000 311.2399557 0.2985000000 177.3413822 0.3001250000 142.1055123 0.3017500000 64.49910739 0.3033750000 35.05980488 0.3050000000 29.32492676 0.3066250000 19.41811557 0.3082500000 10.68474122 0.3098750000 6.938832325 0.3115000000 5.166535560 0.3131250000 10.06221336 0.3147500000 3.830943699 0.3163750000 3.790425683 0.3180000000 2.839748602 0.3196250000 2.026227603 0.3212500000 2.013797442 0.3228750000 1.650698645 0.3245000000 1.888107912 0.3261250000 1.520298242 0.3277500000 1.347253393 0.3293750000 2.619396060 0.3310000000 0.9018385344 0.3326250000 0.8832667182 0.3342500000 0.8565585689 0.3358750000 0.9954099362 0.3375000000 1.233894425 0.3391250000 1.540413885 0.3407500000 3.057499187 0.3423750000 1.658812131 0.3440000000 1.414833028 0.3456250000 1.254069909 0.3472500000 1.660696094 0.3488750000 1.894661819 0.3505000000 2.111420739 0.3521250000 2.376092265 0.3537500000 2.660252305 0.3553750000 2.659840761 0.3570000000 2.833102053 0.3586250000 2.992591420 0.3602500000 2.908690353 0.3618750000 3.339033117 0.3635000000 4.417426267 0.3651250000 4.000119803 0.3667500000 5.085818340 0.3683750000 4.484758726 0.3700000000 4.047073140 0.3716250000 3.932068022 0.3732500000 4.501613244 0.3748750000 6.565232054 0.3765000000 9.501522693 0.3781250000 8.626529949 0.3797500000 10.44047172 0.3813750000 10.28329947 0.3830000000 7.991488159 0.3846250000 11.58878644 0.3862500000 16.61819193 0.3878750000 24.13660214 0.3895000000 25.76852343 0.3911250000 30.71424402 0.3927500000 40.51142341 0.3943750000 58.97296096 0.3960000000 77.77894772 0.3976250000 106.9231858 0.3992500000 183.3090670 0.4008750000 109.9870598 0.4025000000 151.4182416 0.4041250000 239.7831576 0.4057500000 224.4923457 0.4073750000 201.4927646 0.4090000000 281.0298055 0.4106250000 347.7077363 0.4122500000 244.7484073 0.4138750000 146.2596851 0.4155000000 86.08806822 0.4171250000 62.65561342 0.4187500000 53.38070839 0.4203750000 43.01333445 0.4220000000 34.88786312 0.4236250000 37.56776732 0.4252500000 35.71306817 0.4268750000 28.87161138 0.4285000000 17.45356246 0.4301250000 13.56150406 0.4317500000 14.12036679 0.4333750000 12.91028213 0.4350000000 11.76303977 0.4366250000 10.66747181 0.4382500000 9.579208511 0.4398750000 8.580800642 0.4415000000 7.850298873 0.4431250000 7.703482797 0.4447500000 6.866150293 0.4463750000 6.150321216 0.4480000000 5.620706184 0.4496250000 6.039247869 0.4512500000 6.060103436 0.4528750000 6.882720474 0.4545000000 6.977903104 0.4561250000 5.702774510 0.4577500000 4.590788089 0.4593750000 4.742108513 0.4610000000 5.959436892 0.4626250000 4.361682197 0.4642500000 5.751934614 0.4658750000 3.709682661 0.4675000000 2.636925558 0.4691250000 2.432392367 0.4707500000 2.549257781 0.4723750000 2.673988226 0.4740000000 2.722321569 0.4756250000 2.657313761 0.4772500000 2.570848433 0.4788750000 2.530018475 0.4805000000 2.564924757 0.4821250000 3.191469845 0.4837500000 2.991905089 0.4853750000 2.733508574 0.4870000000 2.547840564 0.4886250000 2.405592954 0.4902500000 2.605873081 0.4918750000 2.677796930 0.4935000000 2.672249847 0.4951250000 2.616822391 0.4967500000 3.266705386 0.4983750000 3.260215422 -0.4490921551 0.000000000 -0.4490921551 210.5166950 -0.8880371772E-02 0.000000000 -0.8880371772E-02 210.5166950 -0.8880371694E-02 0.000000000 -0.8880371694E-02 210.5166950 -0.8880371694E-02 0.000000000 -0.8880371694E-02 210.5166950 0.8347326035E-01 0.000000000 0.8347326035E-01 210.5166950 0.8347326043E-01 0.000000000 0.8347326043E-01 210.5166950 0.8347326043E-01 0.000000000 0.8347326043E-01 210.5166950 0.1082471941 0.000000000 0.1082471941 210.5166950 0.2722011482 0.000000000 0.2722011482 210.5166950 0.2751215087 0.000000000 0.2751215087 210.5166950 0.2751215087 0.000000000 0.2751215087 210.5166950 0.3985573554 0.000000000 0.3985573554 210.5166950 0.3985573556 0.000000000 0.3985573556 210.5166950 0.3985573556 0.000000000 0.3985573556 210.5166950 0.5441096240 0.000000000 0.5441096240 210.5166950 0.8291470074 0.000000000 0.8291470074 210.5166950 0.8291470074 0.000000000 0.8291470074 210.5166950 0.8291470075 0.000000000 0.8291470075 210.5166950 0.8700428382 0.000000000 0.8700428382 210.5166950 0.8700428382 0.000000000 0.8700428382 210.5166950 0.9259938135 0.000000000 0.9259938135 210.5166950 0.9259938154 0.000000000 0.9259938154 210.5166950 0.9259938154 0.000000000 0.9259938154 210.5166950 1.070509290 0.000000000 1.070509290 210.5166950 1.070509299 0.000000000 1.070509299 210.5166950 1.070509299 0.000000000 1.070509299 210.5166950 1.246855885 0.000000000 1.246855885 210.5166950 1.246855886 0.000000000 1.246855886 210.5166950 1.246855886 0.000000000 1.246855886 210.5166950 1.385428722 0.000000000 1.385428722 210.5166950 1.385428722 0.000000000 1.385428722 210.5166950 1.392200748 0.000000000 1.392200748 210.5166950 1.470137005 0.000000000 1.470137005 210.5166950 1.470137005 0.000000000 1.470137005 210.5166950 1.534907205 0.000000000 1.534907205 210.5166950 1.534907205 0.000000000 1.534907205 210.5166950 1.534907218 0.000000000 1.534907218 210.5166950 1.608859956 0.000000000 1.608859956 210.5166950 1.608859956 0.000000000 1.608859956 210.5166950 1.608859957 0.000000000 1.608859957 210.5166950 1.633749355 0.000000000 1.633749355 210.5166950 1.645568484 0.000000000 1.645568484 210.5166950 1.645568484 0.000000000 1.645568484 210.5166950 1.645568486 0.000000000 1.645568486 210.5166950 1.650509122 0.000000000 1.650509122 210.5166950 elk-10.4.9/examples/GW/Si/PaxHeaders/elk.in0000644000000000000000000000013014762655566015273 xustar0029 mtime=1741380470.11301706 30 atime=1741380470.112017054 29 ctime=1741380470.11301706 elk-10.4.9/examples/GW/Si/elk.in0000644002504400250440000000130214762655566020013 0ustar00dewhurstdewhurst00000000000000 ! GW spectral function of silicon. tasks 0 600 610 ! use LAPW nxoapwlo 1 ! add conduction local-orbitals lorbcnd .true. ! Matsubara frequency cut-off wmaxgw 5.0 ! response function G-vector cut-off gmaxrf 3.0 ! temperature of many-body system (determines Matsubara frequency spacing) tempk 1500.0 wplot 800 100 0 -0.8 0.5 ! large number of empty states required nempty 20 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 ngridk 4 4 4 elk-10.4.9/examples/GW/PaxHeaders/HEG0000644000000000000000000000013114762655566014144 xustar0030 mtime=1741380470.124017117 29 atime=1741380470.11301706 30 ctime=1741380470.124017117 elk-10.4.9/examples/GW/HEG/0000755002504400250440000000000014762655566016744 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/GW/HEG/PaxHeaders/elk.in0000644000000000000000000000012714762655566015331 xustar0029 mtime=1741380470.11501707 29 atime=1741380470.11501707 29 ctime=1741380470.11501707 elk-10.4.9/examples/GW/HEG/elk.in0000644002504400250440000000143614762655566020053 0ustar00dewhurstdewhurst00000000000000 ! Hartree-Fock ground state of the homogenous electron gas. The Wigner radius ! (r_s) is written to INFO.OUT. Note that the exact exchange energy is only ! computed during the last iteration. tasks 0 20 620 actype 10 plot1d 2 50 : nvp1d, npp1d 0.0 0.0 1.0 : vlvp1d 0.5 0.5 1.0 ! Matsubara frequency cut-off wmaxgw 5.0 ! response function G-vector cut-off gmaxrf 3.0 ! temperature of many-body system (determines Matsubara frequency spacing) tempk 2000.0 wplot 800 100 0 -1.5 2.0 nempty 40 chgexs 10.0 ! use the unit cell of aluminium avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.75 ! note that low density gases require denser k-point grids! ngridk 8 8 8 ngridq 4 4 4 elk-10.4.9/examples/GW/HEG/PaxHeaders/HEG.png0000644000000000000000000000013214762655566015333 xustar0030 mtime=1741380470.120017096 30 atime=1741380470.117017081 30 ctime=1741380470.120017096 elk-10.4.9/examples/GW/HEG/HEG.png0000644002504400250440000125745314762655566020076 0ustar00dewhurstdewhurst00000000000000PNG  IHDR v pHYstt;(tIME &1 IDATxk++){`}?v#]X2vIcJb(################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################ע|ow /7|'|Exp|ݦTwׁg'>V_flk5ӫnk/D;~sd[7j 6oڎ50qCbUE%<ͮc1v!E1!XeUzq kxTWTbFjq,cjEB,Τs2 :KmNBHTl|{o&ο }߯}py#ϸϝsTl!b!buam`OwU~ FvΣf8R5Q Xw0NJEQ1e+>W ߰zwn1t<)-7TtƪTwO}SŘ"Tٴh [Pqk8&Ah)UA‚jwXXW*D0MLݶ(1u9hP֩ pJU̺G#8 UoN[ WeԔ;8]ŀ84ת6XJ5o˨ U\Fvu>ۑrH{눱|ǧab&7¡ )!/ Lٟck_Ѯ5MyY<[`,[f9=Ml0d-i̲AUc 2xdCc+>Q4DSզ5N2i.WXpBa%1cxG1ذSiz?gcVxe*M0}" &MEy4Ы6շg+Xi AG"#ݡ!XX}ʰ%+1:ŦDf$a2o-)6uhTSrl>MLLe>c)Ԩ gH?6V0i|,ߦW\@}Jyc TյiP,f.;cxjfWUbc6o"W+*A%JwVGYꅖ1lj| m8RZHST֫UH"<}E(Ndxb;ِJYejMM14ϭV㸖E3YtHWk}Xjp#UAcsM_1&l[i{t5<n@S# Wfն<$`oML"A oYu&wX$ɩ9>W0h6iYPu[ƭP٦I]MpXE+v7qdoCFݽ_a q5hq>a>*\CwܹoV"TfXk@_l_y3_X*!=[;m R~UsTvyf 7θ(G-IɶE, 0cM%Dj?!¹j4Ŋa9 cWHq~= uSVf7up5nph#{U{(YUs c.Y|QePt5heI!rl 1̰H(Dϳvp*\ѣJ;JZ 噖\?ANEpO8T5vͯҀZ1@˘+A6@r gR9Xs8GX9FRb6IGWV< [R W.;=XGMpDsh+YҝWIeH]'t%ٍa%KǢ5B,U![h!]]V !HW2XuņiK^GmusΩ Xa w$]f?a5!"w 4[Q{AVq⩑P#(tUxǀvj"-[ )B=%2 c'%)]EHZ398Q]Eo6v)_Uc*vs>,pOrXjkua F+2rh5FHT&G8鼠ݏBngi`Ld9hQjZOEod-&Š0A-XdlN~d?b֊OH S$Ég_D>u:uӡS"QU'ꨢ>ENX-rU~BXEuDNQNR#$Qu>ۑ:U誺G9̝d_ GYE[I\ U^9Ss(M☤ueRocHZ)kg˅_UȺ}%a} g mL/EϒSOlG*oZ8D_ZJτtEƏ8ԝ?d8~q: lEBUrQpN'JHW>PdV! y^T>Ե'5MTTN_l`GWc͡UmJI`Ȱs&4$>\@ dXꏄ1Rc6(7DFfY茯EAy 2& X`My }ZQdsrtuUȁG|s>\c *_ WsgB&֧"CW!Uu}.)p8؁?4w<>l-7GWdHD9C (ުAWu&53ѕ?ur1G5Ck"KsMoohq*JSO`\14f [hp !]0k?c!/, TkrVjKs@I5f5;[5r/<͗+jʹ-E,\2 1F@F怯SʐW2> ä5v~u$~p58S5Y|58mrօt;w o_AV]qMءUY?hV FVF4aixA9'tEkѲ u5i 'nQroJNGjBlsT 6n ކnZE@sέ; U X@"ߠ~K9=lC" ß*^lc:g*Hy$Pwd :BNuBP5,-\_ZUi7LHY/P"p}nr|97O[ \\s;;銴jm+t(O .2ТE_#*[}FqQFdd)~lyFX~kZ>)NbM!b.B+r'[_GB#`X@n)?Wzu\ }¡JmT{;2b$U4 bX<\Wt)\Ty3mO*Wdhy>dCRRґ:_ f$rg3u%3SbUSV \%5sH BHgHX^ a5\q[y \ţ4s+ž5[ Wxc s`+̈́zY)EV:in"tEQЙ)``Žsoԍ} (T a"UHpi.;v9Ou򽮤 {ZڕmʈG#YיִiCM5n*N8U 7޽}X4{2:Bq9r()bsp*se|5M=R05~[|oPFJYlx}@cuͳ}ggE|]V`Ż9]ۻSZX,*2Q5P e[ ѱZWQSc i=:19}ezKgk6l!!g:]W]w?Cs7$`ݡ` u. 凢xfΈ^Uq]v%ӭȘ1 l8PD%gtRnl2V4j}g06 4,)|[nTXlp 6R,0YQ v٥EM3.X&[QW[|e%ZBgmiP=9%<Uh -RZuo ժ,VYR{ezl,$'i<SV(zq܂аNÔf~]uJq䠆ł7h>.WRmp\IoCYcx ,Wu83|y@لkeYbTJ&QE kvzjǥ,u4*bB{Nv\YN]WFq,@mb:]B)f"g:#5>`ψ+$7GիC|P >Z p n,~e M*lD,=-y}y~ RꛖK*@+u@q6gNJ j:验SF?pr,.2ʏA30^*:(]J@+*x2k_U(}+d.Mj N ,A> 0&sT*=$ KXtq@R4/{u?璅=R9j NZpBgQRWqVd,z، &Xp\҈ЪۓF9Ve-CJT Je,d]d N0bZPXspWV) 'bks/C|6tac}VD@ 6ԡcNکk hR*@VбT=D+t֛ZtT #b0V C6rPŕE2n?dra.Ulqb۴+ ^Shi4%A-7,ыc^>XaUMb;++(uR[6/#Rf<أ׆U!T|6fGբ <!QôO? ٕ{ > %%3hUafp,WrluZ}*`U/vwXixetHWdVg2YX!#Ym>E;-tEW3E1:~ykhUf 2xh Q䇧 nIwْPIfjUja3M0,4Xjcf ,[SrȕNr&5Ғ-/Ҿw͑5*q7S݋+N jVS#bwwrBMddGЕ?Z]Dő\a>AW f9a^E KBOWF*A+'GkHr[$?o v`>Εc#T~j-bېz][x&۠,IZZ9L\ Xִʨi$.v*5&&?Hgu})XdvmbjZh*qgd::HWl`ZjO..zu9y)M2'ܰg[Td8JXf "0)!Vq_bw>1\# JTz.i#Qu-GzsSw]E ~kEOrRjg!)n^5 kjSݰ:)lz64w'Wp̙Wni-<d]9Ou!wi IUd{x:oN8b.d61_ٰ7+D+d:AW,5q8z#ΈZ IDAT u( Րpd6}KFσpYږ~}db"\_+,*@)'8Rk \N}‹(vdj2X'vҾrYG3uhu9UKـ pE!]VhO&n1R{A6#Uo8X.nڣfQ \WWÜfBB%_ σs1`_g+ҧOUvP,;B9Xhw'XG3 \-bAWQVjSeN95 +m}Qp ]i5|(\Z1uE,נ0wl$>ΙqER@?[#ujX,,װDiJMe :?z #f n8[-\ Xe@Sǁ=& z`#h»Ձ+nCO#yZK~5hk|: ;ŸE ӂj9I53^x Dպ{ ۶fXCkk1 8Eo9:9H6ȶC|DSVBgKgѺg'ls9qg)b^zhSG+UIbCflƺPT bdbpءU~6D] V2eq$XU7XZģcf3N?prSFPB7N bam5 U,Z! NVƕ`%bh$4yV&ZRN}I1|z-t~1UgUd;D]5YY%8YbMXecl0P[?}x^*"o좫iJkeX˜IE0qGrHE[=E @F^T#7Xd. [U A`6xH[vkϡa9@.i}.e7bmIq@雞[pj?aՋƯ@!j:¿?f|'`)F[0 82 *Ga BWW3ݚBjQ3݀ӻmY\ Z=Nm{ϰTw~ۜ߷!?8`PE?Yst]>"ku`5^;;|3]pnJvJҐˋHKgu5b՜.lmSfIG[qrU CE؋vpU0֑`'=cY1߸;ZV0'i*a 2zT"mƊ/|'j js Bm)3bӻ"zq}b?ܰ1"j-,< gl"C Ɖb|,K,6De*yp"w.bqʪb-tK3P -*Ъ+M!cUi ҢV+2N5`W*C-t%rˬS[9kx G+ Yyقtt2KbhKeX*L;ǻ%?{h0ԨwaWՐ,'y@rι(5Eb5!ְEI=B5I@nҰ ]Ɇ\uĻfhbFǓƞ{9jζ!J]'zɫpxjZl5PSdz~t̤S.XB4r+OWN lo\ jB1m;;Ye$-{qh:AR_<pmvkaBG-"{ՋDsc.:jNƵ5,cK\QRpNE$kh VHaN*Y-~rfoϪleI?pM02Vڦ",O,ܼ dˁz̓֟&, mPC;1%~! :׵6 n8Qc] ў/^ w4TO+V+ʣ`9;2IEe^ #UTx$eTnnӆsE;_f(X*Z)B!jUCb39ņK4Wė_sK(Xt0,ґe <7N/Bn5T'jbϻ.[M&:$H?!ז8'MClz8Pz M;-R!}@7|_@ R9+ 緁=hFnvF-V7;r:-+,+qcb*nY:!K,(LtX况'iUqIrl),UkBݾlVL]Y[x򅫨9E9>O6h5mD!}+Th̸x 4͹¡btW@ӾO>{ڢQW4Vmrn˿}o>I Q*U"MI 2H]=ҡjvYQmv\Eؓ3^vC;8|BzQob&T5+v+QHvfmϯ-P]߷רmPH ]⅓*Tr쑺7QEtx ۓ"Q+ Uurz'U<;]Ns~Zuy4<]$-Pԑ:\̾'8Wk϶=x$N5a WE?NM).kM;d:%lcso{q3pՌ+_}Ǣ]AԟkT1L򨆁e~p+▼+nh~u[o*n%] VUdws߱g/,DG\ۍ&uCժġ !*P/jO4:/t;<O~s&``Ȅ;2PX|NȏdZTjemi-,*r6GhXI,e v8A3ȎPud2k.wy+{jkAmcR%'G_Ol_dN%/J$Vm\8\Ho4+Bj8Z蜓%,~uUFY'<4۹sT!Va,pSvF3lT{DRUpm#i9۬tOEܤ-yF=q'!ؓ#.J+[%VcO\lq {6HO g9?q=%HY7N?YJkl֖U"Tsۭ{::.T| FƫgG٧UoPx)9E^\Vy`hjiISF}Uh/&`a}~*E(UPig/:Q՝Xֵu1ao-&gi0Y~;uɄ3|3Z4QWRkX`ٱ'?ugTuwWspompiF`Ť5\9_ZrfScY.F*[v>.Ó{ 3[@\lr&ʕu0y(PO#WsqꦲIʲtY9q֯U\Ԯ*XEU;;0{z?])t rKK=\`u|D<蟇Y$,ar-=mopo+_!GmWW8Ӿ-=6$=*Yf:C#b>r.M_Å ,7TKT:S-r 7\{bG"T' mPuWV.*QYAE1˫{ t^bz+^\;*]C3j*GHMppu4xf|*`r}Cq.MCpLaꏡQuȫQUu-Nl!5G'P: jbU5D PYj=2z3!uPh&YYn,%teRŬ6k>&x7Tb:K 0od;h`_Ti:[("Z1i0'JZr/XCmd5ڈ;UJD /6kv%wCm:kr *XF#,T"RV0.Ҷ΄0sVӦ+t,׆a [H.kV5DojULDbY9U5G#M x;{Qj[0$*6(ۘG4<]Mԃ%#B"V3JΥZ8մ5bX--AE&kag:;xO3ާutv;ȯ;/<~:SHРd p^IX7)VuBzϳgGB71ӳnB+!]TFņ";$q喂N6\$ ܏w!UhYULd{@8ՙ,>f sV &pW}Lp}t倅Z'3]|!Չ<-c HC[`Cʲ4Jyxq?\GG٦* 𦥷! KM+tU{QřZ5K:Ώ+sQ>yX8#-B\EZ*Cl쏥4X F+sDen^%AˑXW8Nϟoyvb4Ő A۽#yc4(sts+&U1kt[to^X1߇N|*g:1kv%wR" *=0Q("~,v^s B#ͪ9mtz=3PT$Ǭ'եdU;rx1ܕJdڝF90W'E4$sXTB>eU#bUdo dm^#xAWW>XT:~1>_j(hhBсx UmB" fo+ռH >e4xv}_MڎbqWYȢ-|isT^F\LT*KjlҚr3VMwiAڌNWWMvGM(f'Db/uTP6oTYֹg(#]:\2$FWu.m  8,(V[Zeq:U矢C\ :s03kŕݎ0aNmF%iњњZѼiB^5!]GW4К\Eg(WJTWۺIźGhO 6O3h잜fPujWEtlܿGbcaАp-ozu,R*[ZY3&{fkJ܂4-HA\MR c#E' ?yS'*TNDVAÖٕ0>kPzIJ; vWs%Z mݹf Rb`QùcEڞe4-Ti᎚w!q{/)p5m T`?|O)c2L?;sҰ^.폰jUYӈ!Jظްu{~&(j Zue6mU}(,}XKf``DbmnhEL eucUeT+YCxA]wR+_%$mӚ"QUH#t.Nd8)NwXJVxc2]K^"U]uT"bD/,^"c@IY1ju$ΜWOVtBKT+p!D3%:aXUC"T*\r _r/7nۓy{5d VhU5x Upy?}P cmDs5]vp=#de ~u KXN,[D+̈ R;VZDnavP 6N :"@:`'эpyUAʷ|#U67U~/uƣmFV@$`]EE$W-DbԱ\d]~jrbW^?k| cTv7{,#BZC wTY+E2QHc;VZ-~OcS=QM`NW)jY6[PׯB8j_JhknV~ˈk{6XNcS Xӌuu  :>< ީ2{&pՈEr])qY[l(OD%'xUvhcjՄ!A:l?>vm9[ (تUڧ>mk׾ uW_t,8t3o3l)W/xƁt-]a5UjRpg]GvոTH*XU˯H\5UB*o8UtFF\E\ 'f?M_6}TIW_XrSghnQ-DDzӮ$WQzhY- E:;A~L{W,MUXٱPLȆ|&f0;C}{ɚm-]~@bb߁ pIig*`!\5EcȉjK&,oB en9UT9g8T֪#']'ս梈+6UWV[l8t,_SϷD986֠W6uXljoAz[jd^mkj(I\ǔ"U?]yhj!xRsUü<jQ\g>oFЊ=kODͩU50L~+iPgj~+,FJ;UE{Mz2Ҕm/~\Gd#POvJ %bFYEl"GƝ:fy]UL2ʒ84' _b@d'h?9,_RM3@ 6`j2 dWmL`_5^O_wrRO# i)>Kxdh,(8VHwl퍂趪*VQ uD$*Ʌ!13.FǀpI=KYV;NW ̭ -g;A2VIq+X귷ԞVQ9VネQW\PLWǐ,ҏ}v>܁_t&,?F YSmtfXu)~յQK96KRSpg~A]mG+ڔ5Ԯ|XtJ@Xl# gpHaYl Ĭ-UuŪv@+uP{t&qYh}QzP_#Gb@,%ge5SS.HqD+k4MȁմСdgWzo[ e5*Rz e-YmvldO[v&s"lF~}~0/UBD*@Ti8B=N+`ˆCWY]&`>a@J0],T7#D51:6!NW$D,@U0”R BB:5x OUCb5D[+ Պ|vW4$<ժ&,TH3p "lBK)5*XȤ+l5q6Ūjey _uw(bmpEn$ AuЂ}a_U(P|Z$-Cuq+D&l*AZ+rSݧ㼆YG9A.GڕVݛ%ȘK2>U]+V$-W?.DHuo@ -] IxPfp g˂-}ރ8M+!kW0*etOn BUP+I"!\YN֚]uj#j(4 W 4삆E]hX(v-xYoYzN WB:5w3 E] r%CVߝS8Q!'FM!T!•^U{KшTց[O~s.5P]) L՜kpZ䯬 }2pT@"R$ u ES,nEuVf }[SWƖ"Ћ %EjHW'Y}<`|DEQ搮3)eκv5AW K;_~oH%RE;K=3ìv=T #t5׾߀VQIf,>aUjg[*$ҭ<?"YVN9KB ׶n0-@, H+t éWhJnP߲fJܶΒHoh5܈/b &eY^jxWW?C˼eӈr!++똹p,繐T2R:bMf 9wFf6kӜ ?g|'`5Ql'.JS(&i sE]bXM Ls:f mcqHW-o6=5W4m+cbPjIE~HR QY-{z+~BEQ5$RJer԰Hw(LD#VK,kc -gذ,2 Z,A幵 Q~l 2fGqįZ3q*v}j: hU Z*h#XWb6Pu,r::\Ac.f_Rv 1EZ ]M0x"e.fU֒ŀ9 J->»i-c2a~= ؛2FЊFdj-a圙jln${} Pjȼa3JWf X+.+>6ۊ1U!T vZ+<Ѿmȼuz;r2Z oy$zTƢTDiM ,X첂]ZKVQX@DaJ o s qՊO IDATҤ,΍-:o$Y(&ף񀹊G8iv$$8]LEYPYf1n@Wse$`Qȭ!sB2{AUX` Bg?Nc]I} 7& ;} Zgn?RJus;IH+I fRJP% 'kA6,[:V3}9P,c+4$㯶Byc&̊U8٭k#u弄+OV++$@6̩sUI++kg.RGrZbSr%75TUievR&fhUd2\[+Xvr1kbvshE[WD}:.K}˹!,2X΢Ûrg9^bJԩyjpL`P5ޏca U<{`YFPכjSآ%v- N 5!{m8Ŏm 5+WE(bo1,Ȇ_\2}[5bhC)4N}[CQLi˟HjJ+k:"wU"PTqKPvx?<2BWSPܝ%>^dC`,a-/ii`u7 14실 d#5CLo'}^e~-j-mgfeyf` ]!B~&2 }q'sQ^t%"ϗboߩ=3>{^gmPm[ejԶbwf)6 heuTktGCiPj|B;(cf n# )_hRV93jL< cYBy867]~6NcQ1q*/2ank(XTQͰa YUӄn嶚q]M5( +?a4-{3+:.e,LƲf -j!-S\!u]ŕs\ ! ǟNr9^wJD[h~]z&$`-(.] +5K6ͽZ.6~6 c@ YFw .֢ sv5[[];#46Kr֞ zx2K6CkQ6e8uI?Z0k(5,%Tu 'T=2M,[ D=1 FCpEL,6x蠪äbhZ4|IZAhf qES?7s v_XO;ezNIըd1$7v2˅gtH::8=EHl jk+=_ѩ< _7%Z5{HՆd2YX f`;CaXuSS'=|.oU/bR' `h,2Rб|ʈ%h8|+ӂP5"V4 -D2׎?߉b;Sgu ' Evֿ"M*#vOZ[yŔ躲%`ݪs|:y`x l+[844JmZV<Ju@8~]ZPAܹb_+o滮{B_Z4(e[U`bcVz. C]~[SֶTXGrw*XJa!ŦT)v>ɝ 1ҐqirUFs(6fUQ~%QVf3[ pjC!nP:![e$h.i`0^esV㲦[KS!W݀U!WMQl( Aq!(_/Ҋ!Ⱥshi8z."خ,?ڲYϿd$9tU0N/:"P:f#~ey(tu^jUN4@io΍hc l! 0⻮ ID™XȶÙì+9{ŒESOirPzt Rs Xt.PhUwHk 3V|MԜ,x=HV3ٰ_yN)Ehبp_a&fڕs5]M`VZ,nyBIOWE2"sq|e4TpKzI-Zy+ci+^!nz"VE7'"|`,t!jV<0v;L*~Jo#/Z99`i/m[/3xBq@Us+omEusGTQ[!v5jXƋ8Q iZJHkbV*X` ~Lz 8-]58u r9<ս,4.m'@UZKU[[t/i|ښE3DnUΩWB,Z:IãXKYIc0RuVx䂾 ׺alJ-rT+N|6|(zzX#.vuq?iXƕ [~oiBgTO1:ZS77@;` 1˚(SIM hUgkW5,&{%+WȠ+)b9{4*vBd" ڛa]*gb g&`o%cm<߭X`:5hEZoʙ+,T+Rf~RjJ0*ӱlŰ^,@&h.1 VqYi}hp`v%\.#RA( 뺻bKve)%)Uo5UP)„k+}b i n .?%}TOiTj@ªERב'aOc==Wvշ[z?cBW{=ڦ^RϿ~t:YW;rR΍Oel/ϝϼrFU'뾒8Y/na9)7n_7CTޑ ]f=QŕĊ7JX>ŐȮ<ܱΫ:`.$q]*\E%~uouvFKG[3c)1d<~]b[V L2{/v$S;O!]yrc,|GTVC م]y|lRTԻv{Hmwr-+ѨLcE#UjR ;"MgrR ,Zfɞjn;-"T9jTs%q/1ߌ3R m: )ɩ+:V]ZtՊ(YL\ooQ:"ORB'Q`b7_Ξ~"eؚ9~$wVX_vZ$q7:E|psjM|fI <@Ub*t핚7 w)E^)& ]/+5$߁Y芭:6C,r5btSz}tH.WQfWiXASܯbյ5;Ns0jX.-V2"i]1S0cx+߾|7;_#\}y_rB혍үe(_P <cq[}a-GսbG 6Q>X+^ WuSc,:A!1'WȻPUH;t0|f_6~z<`B;[|WzN. 5=N j?e;<]=LbhÇv.!آ%'˪\FWКA{#&Ⱦ@dJKזc҃:3WmdX['r49 oծ~ WR}Ĥ%bMWpϟ%,\IT+UJЫ޶{_4SBZ#sZN˲!d:Ω 4Qw~޲iݶ1:ZK6Zv}RK./Sojţdu 3|ժ^Y sά-O_p 6r`4/k#N@r.,kB {kVobް~iNzPup _U+j-ڭC^jFeh7xWVQ<.]&w~Xa}~ӂ2&ʠ׏*R׵YE@~"]=vjs޽CE9՝e-Y+qka4JE@޷o3Ws# j!!Pk10Ff^oSWw'tErA--?ޯpu=mKgwL}:JZɇw5tЮdIW 6}[l.mOѾZz>$`ͷV.}h\U ͺzMF7eXw JL\0ى隀ϋiY^ful2W ;wP4 8ƺOus_y`BLQE{}zG |}qW"(cx~$|q*t$Fܢ0F }G'^GW:mԡ6o%lvȰ)~귨둥 DsĚ Ẑ2AuZȶfPw*e3\w@| e$k=}"隆hVxkņkVFͥ) qnHsZ=cwm b?e ӴALBJ-w9 FUmX13ِ&l{Ğ_[G5Z]*:~-ҊꐋVl(U]L*\3D ԛUd^\&}Սr+琖9ڸ\+ UV p҆qM~`jSS䋷{rϟT;mHbˬI@{beBbFV~Q\ 'QևޯA%8IioUy Nc(G{{+lWU^Ω>W]ҭgN ]bvd.n]Kj̹T!ygy K1^y ]thW*H˂LW45QX0"`Dׅ8Fy7Ixo4-!dK]Yx& ۾ t,K"#}`= S+XGD8Osms[m,Orh]BYWO l|bxʖu6o()}h_i wPz1"̓&,oPh菥yW9GqWQS9*lՑ R1"4alab^ٝcio˽.mD3pj% ,e-,Z}'`hT";hWvI9  e1^r [k.V] y<&Kg汏n8"K-h7DgXY,FE3̓/H~vDuJţo|,ߘt5J~n3?/IKNriA-5^{SA] G-[1pk;Yz,UCjWߪN,oEg9 >KX RHi }'& o"${!a7Q(Hb#~yM/:\X:RMMF ޹Ѭ!HԐbUhdliI+!^KHbdj1l |تBοXwM~3BMTȦ+\C歓KZ*NHCT6d[vڡOShZβm'7vfmǶw|V}0}Rke̸:C+scS9gMun@[y뼁4zۯ?~7W}`95իMT(Y9o9/˹Ej*)YI<*H FtBUոv1|Hj&̽.MD}`F*sXdj j͠ ѶhL"I TVZ3dz;sZr*XUvLsXUSH+FkF=HYf`pM/Vұ{<5 D yY>]0XlzcՄ|̸j'2h>~ IDATu 5s\u=VXrxS =e0ߕufuUD; :ǗѪMT$T \#TKmʁKFUaل$v^'r` 3FioV˯ǞdUҚ-$kJ6"??FLjXz5cÑV 힃'O>5/,PY*@KC[l h s6 xZ 0րV۝/ŗN`J<})jA"YBYS.VBRv"(X&%=1||%Y~p\S?zD6X-3չB6l\PYX k-E.@iO-rY9MO`2laTp{J eu}E_ jNyZ[ rVdPVQ_$*K%! |tG䢫+z'X߃G#rc,a8LލZ*85[va}|;kWl+lIR݅jc%Ne9Ń*%+b&B.bev1q2,;'WPUCrղ7:v|{u^1j2,hwB9_(D%V+ af>> `@g[6{2Ĭ~㭼h]wd&T;՜Y$?Udcʱ.LIviSYK:ogiS5~Be.}wȱRONyGHQUSou'[ }Wׄ7LުLEn:u5crDim8`?k|U̻f &TKa@pN$&PTTc9*54TIt/6E\7ܣRg}V$X |.6 [*TuAC ,h~|el\:Fsxg6h#@[`O& 9WjC׸ܑ`#.s2ӭ`(L΂Y8՛URFd< W%Y@W5CRql0SQDi&eE=x"!ٱj̖ʟVE!hjq*S TڞJr*ܴsf9e Fd|U~`3ns* *'|SZM\eMq {cg/FW4瀬F,",k;)&0a]b0˻?Sya&C=o/}V7̢̂R<>9H㈻E4)v11ৃlz\"xV! t6YVM:鱟z@bZ-!~izz1$[y7)VXIk|vV2M+uvGWvKq5F`PJO5o*\GۡTwĈ=̏8~]ǣ/ݿ'LN<$8ʁv}]Y( 4@.Q$o7ZbO.W|o6jg*d{WyzGk%Z9xV6 B9Bb,q5U)TzDSB/$=gtmkkSW/OLr>Ɲhnk2=BnB[EZnXKt.=y]cm¿=r4YnRWDJy%;mХU#Hϕ}o'<ȃ0o]n )xaRp *@A+l)ǩ "ܕWG)c, ?gA_\WT؊`T[è)>?Z.{Iwgv@[8׋"$UN\}ʻ\~ߓf9p`M_RSR˪1:KFHFb XMKJ_EVԃ"o tZjF=aAbqXcMX`\QHb,5e [pR8fF7@W ,[5?> *f"BJ%.Kw̦a( W;69 3QN?ȶ&XɖT%TJu^5cO9~蒇o?*'@ +[W*rR_ݓޒ0l"|Z9Њ^ ZM<ȫGe ,!HkrOM_BbUr*x)IBUkIk vpFcq*~B%g?2'x{EuoK1}D!$rJaWej9 H1>&`眇1W* `BGZ$V(;̊1T\D8V%nU%[ l9&Bۙ('(;)>^Ns%ʠW8+sɘ`SUy!^t)LHU}O2lꛪ %KMeʼnLD5j=*`` uU[Z&?R;G;NmiU iA9p;H64q߄qhƂ*koqt//9i̗>KxHg!˘N]{_xㅍsw_4#=` *`wPAfg0g cuϼ$aNF<|pԟ;6tbRά|7y|7}>Hlڦˇo'B~G'Fgժ`j=zFba,[E"X5$ ƚ " T9:h[Ko_rc+Tܕ3Qh:,%`v+Cse7+47Q^M2rB2vS Nujg:*gḓ#0@+>r*9B(&ޥ#dT׬_9[#`mi]DદA@<#=oUOa{sn xgs]X+ Ś!-ޓ 7(&Xyy`UYr?g calKTa*r(3d}_tԖzb{1 F~ m_a?f%aH +%)Y- %Uu!_Џ$Ph4'C9 /򇚅pU3бum;_C5G9@Xdy'9ȡ]q-{vMb,XVX3._)B}9㽜UL&X Wꔟ$UHby]Rb6a0?gd3}8IX ,@bErYn5A2p c'Zцkr;gr^kdquD,kZb[A5Hl<(<f!Z^xO1(`w/aOK[ el'+a[Mrz| lFnV~{vOj6&c;k@$bbT%0+2KhqT0+%O`^;̳PqM퀻6f{,Ű#R JaTIaX-lk6ea6-0ڃ繯0bß'tVQtIr +Jf_KhMq\l,es H99cK{)OWAvH'N&1 Kb%-0`Ɩ@.ެM칛r9Z;_o|[vr=#e`,$`w^)_a-WƪB k¬Tu[LΠs5I5s' Z/v*"hT4E0~tm^g/dzp9[ʧ>|brIKh|@CZjacf9S=Bkɑ̞U\vp+ĩGc}40Wx$1n c駻;.pzuI)C~d,IbUW2Kzh.h^h[@+GK]lVc᜵= j?qs$NX}VIp_ՄShcA#xހ|g՛^Lﴯ?'y䢡G`P4*J(ى͉  B<5' S63SM]ǹC}mW\z݂2 ԂY4!nS)Vg,iƒC0"XWH+^K$( 1k|P};r@i$wrfcԅ+\ۜwp]7:Nyw57@Uɾj)sИ"D;y +iRIk9y] 7]lcHTxO0"?۝ÜՈӢJ.lFTP2KB5 [lM 7}6EZue79-A`ɓOaBZ>%+ 1epW`\&f(A5gHϖ86)!;6mibUNBT 9M.N1 bs>SXB.Z5Q(}ԅgCYy;q̚a,*kert'Æ=*.30oH!@HmhlH0K˗z^Orz/=V]>S+)ifVm= 0@R8T֔AdWul4\@v]`ˉdtnݫ)f&{qr2WX)U%8r~ uNwX&U{6*Yr@C-ҽ{yU5u` *2Mf &ι2tzC2%g*j , .%-= MG88>n~0{*oui;[+w*ŝўM"#` #c숕k~x)nf_vSTQkŊTaC@EZOz!8g{iqz@^W8:?4-o!un҆Կڞv~;lFz}{=8e> f(َc>B'u_LN^9~{^._r cf[pĩJT$ֈ_w@ƚW΁\ ]06X~]`Q`K^!v }ԏ;8KcTsy60Vqp`̢⾐]%عBNfKeWUH %T,\2 qUr,,iA8ł1jֶcm`u}\t35Å$X`\/va\WB"qd*\GAJ[*qb:^"\*<ݟŸEM d?z..Rk$2 "'Mn [4EW~危9AŲ$Z͵p9;,JaM̅6X]N#d*J?%o1@CTc#\ Acc֟h˿\,e@z+>9'*$C!?:1Vr-/n˟݋k b;}ZZC/eqtoeh%&`QTZw# I*aO @N.[y<ڼUE>r@UpgxwςsXk7)cjQj8{Wgz&Nc2 KGQ]+fPY@EW${ {aD0. Ւ'm; `l-^˖,8*6h+.U;/ǧA_ɥJr;+HY%Q\V0%#5h+ yr`9~_j 0֯AXpbV{Pb\YZld`JiXP~wRAU~E諭;jY]K>EoR٬ G%כEt),0\iTeI=w[} o DCRĂT-\eV1>U̪OI*UL"(fQTDA)4>fbEۭ6zkVb~Eb,D[jC0ZcYJ҇QV~JqoIJr:X[]աwNh{D: 5(B`nT ^}Uj;h ɍhUd:d56TUf2=W-Yvo4"@s(IwRi*e;FMr ]]fz5D|ydn bKm$A>; e@Wywʚ,</U/"{ g+9CHc(0$Т.vup>z^CW! YSثEl(ruA&?&4Vq=j]/h|$ּĞ{F֙:̃0i7x R^\OiR"ee9jr_Sc)c:6GMx IX'QeZgs-YmVO\%i-)Ӑ<`妫zf*Wb -ì.הX`z ZNW{mf˂#IL]`i *i*|0㱖|ɮW,h;ػf #K©d0RhZZAUb4yWTʴtWWJNz[X?TNvg:̖ebњPvJBJVZ]P(k~;!N3GRjo' (ŹM8W5~1K4iUMelA+H n9dgH5 if܈ wI#$³ޥlGfݴT 5.j$m܊@M (,Lӕ…+ja ϡP]t `tgye _K޽@]I4(D+[efF$_U&6'XsOlc9Xa,u9:9泮;sGt{g# B!Z>TP&lOpZYECoyJ A6qA E| cݔ-Kh4X `!ϏFْ]2"IN%V g\ժolzMte=$vy}I!#*r&Z9ްRCcRfy/Jn$!tXAla~/(pT|u9KZMuجݪS_) #U@]UT"=E'~+`MoG%\C1 ]]5$ # V2Tŭ+ߎ"Am3;` ^/㋺"x<ҜU^aXr4$`H!Q0BZW?\+81'a#v,lݿi}9EևVtaTb",QlM6ƒN-ٮ3&ހeCkv3SNBl~0n$isA9M'w'ٖb0K%]գerӴ TXtQtwHoS<ʐvJ2jWUg@؂XVh fT. Xoһ @Wq%x S #Q˥PLBE*v㙺r7UJ=QLq ˋh ire2b;< WA8M?Z-Sfy{F, F+C?Z4H,}@XK)ZaD}UnqffC2 ^cȜP3Ԗ8SKN:dv{XI&qp4 }k}r?ukv1T*`U*nߜJd}R:*E+3\5?Ot?V  &w[WRa+F-egVVd3e_gMՋsvt}]URX:䀑kEvQZaJyRZR`.,y=nYl Q]'3ZZ`-hjl*omKP~?nI. 2ɦT0T PջR:<9;>˥X+dјAVWᒾh{uIr_ya%,9f'}8輟/Li/uG6h9DfT`%Tke_rPCF^JcC5\d~-ܞ\o*iA$ۛ3VycU>l0U pեWKp Uְn {ƹ}a.*~抣!1+Peӂ21ZYR P?X F\~EMlRJf{;;헜wG$o&RxTVN_Y\ib{E%C,MB S2$+1ג;ctԨ\oGe`r+=/7T͠Lwv&NPNb^:% OV1&24ž}AU0m$T}JKEo2ɏnPLW0O*ʄ5Xnro{G .'#K*gX1vux֩p [Aؠ,QAzK#r :DUQʪvcuzu:.~=ǿ~z؜*Ӝ+pSݫȇɽƅY_}lVJ-xLUv bVdBWXWWc-v2W+US,'dPc*v4Xɨ0rDK]}0ݤ1U>Ʋ9_*uU$/j86,]EkY ESg]b,WQQtP" Yrh\Ə%q?,$^rPcfq93r+ 5FVU#izs8dA%ǮCT6X}LRjHlQk(d~b{Q5$+jqڹ")iihie>G᱇& z[}Uq\HWƨo:b]T\9bxUªxl ~w2M)͸k}'= J5>Dk@BV z5>>}Of&#^kp? yNY.*mVլ\DEBNb2n }&bcVϯY1ǃ-T q(3i [s&\֫IĸFLUZfyo;( 6A v~iv Xet| 5ʝC*3u.1:waC JeT~c@$Vi]VMAGqr^~;фp#Glwx* 7婲%&W wf5 j_'h|lA(4˪?(ꚮzDsK*]݁#hB(ӗM#Uj[Ho'4f*fCt"ncm<)U(lU&{~"ho UIdUlMk` kh|n89AWKN%Fsmlvʲʗl\ _͒̂V`HөXeqMIwczuZ]/a8v@<8[1h*8ttuLlhsCW/r@U V}m|[x숚] jO3G8*՚ZR<wQ0鵭س!PےW؋;E+~IdB's+i(U4f}^kЁdjXY1* [m#4rCy=,A6jھ<;k"C ܳ & 惰$qxX+18xwjU՛L1Q2ΖD]Ag(Ώmڄ`#xWM/XӼiU%*L˷B;Тyp4y~>BkŃfZ;,d96qZʜ}a Iw17H%#a9h(,ѐ7A&JKAKAvAU:(qh r,uA+T"3-(ܡ;Toi-YCEc+7o`Y# q1:X~h\g obl`% Tailm=\S\x k[34mJVP _} T?S;RĪ JْqQ39rciz)9"pj7TN!XPVƒ.l̴m#6f-*V:z1z@S@+ ^e {0{xxlX(=+:_Yfs(Ě|c#at1 [⭡տU xicVWW)EvB(.+]y>Ng#dr NI^9kc4hӔy]wԗj* ]d"Zn<ߴXyY= UT@x~$C=_9o( T%<5Ra adž|sR ߈!9%A]T٭}=2 ,oj)Xං>7QeEA@H,W5V,HKIƲ\'r]a]mg1۴g? ] w-UfHKϡlU>˃K3N0e~>j1IeYwt): Kb`C r-P%ۊj0K)X!@JTrVDW2 cU@J==Oyo;'QT[XˬJhtր!ZW.H IDAT`qhtࡨkL*# y,u ^'U JDU{fM"E fus, |# z>?;-밯]aEn3X4J{Y+F=J]#,=`=8 b, Zɗ`2:@W0VV²-"إcx~[q>L;\I)ajZ)`U.TcI;sMh r"2P7X9,c=N'd>3 /3/x#7RUA9dp[âFafUQf`&h(48޷ڿ3僪&Nq9? aDgaXgĈ7 g2} bs2 TmʡVuYJI-tʐ Gt0q6sN^̠ŜgX/eϻZK++vT}rlT$ЩGV8Z`/K+O?(G=i~LZ?I%oz3gRRKb=-$xbw$;ICm!Rh*B)(`ld2GgTB7w.{4Eb9GYc6H~ډZНQYôszԩP h,y e9i/#` TbIYѿܚ_eFe |N b=.qԏ~s8‚Pc}Qq(`֡ol"ao!Lr>ԤC+j pMkQn6w` YПEbueҞ4ZLQɪ+XI{ZHhg4iLETV!:">3s_g>D#dnM/Vw\ҞxDB2gW8IEZPFMVX OcE>*Z*WzWy ز?WqRo@VUWg (TD,Jxc롾]vK~MRs') Udz.w X{&/i4q2׫E@sM6.PM#!G˴0 NZz5&ݬ}/& ^ĂIJ{eC4<8kh)')]aZU{r/AuU%᤮7TѺ{;[,xʭtƭg R!qpXDYQFK_,3ʢ1UVxշ8Cuibm*TfKb,V`qR_:SDanM1 \d$Yw=U|9Y"kHqQ?KZWPFV, ܲ2I"VY로Հ7m_5ߴ c,#]@J*rfҲ ɖϩe6+j Yp9miWx`sn6Q>sdVX-Y8,N6IP!X`h Y4CmTJ"5\T0AW%bBF4+K./A[A%ރ]hUtۮ𬞪_`_99maYIUUS=bP&&q0 -f[t@U2+=4ݬ`rD<'NY~$1g,:yYb)++iWY4 V9*24pjN 9OuP4ʪX~b2vW` KWFeP*V=p92Ufw(6kaVK5٬51"-)`)AHX&G#qvz9 DUڌג#'GQ|X!>D*q/gODu( m$WfϒDl#c)nV9ǠJ-T gorf<y `V*j&ŤsiDE$ƒ+К t#[hw ?˼@Cu$1DAcA Ĕ+teATrmX,fd}$it%v0#5& O:"}cue\]*l r:yhcJQU/I*o]CGK8UV3p苬{sWX?]%eE鰯:aS/ƲX\u]sǷkHB|ʏ5PUyp"1Y`ܸތhxvj'mD}Z۪^McNU "sU57@b,ЦTtUZRA:pe3$Cn hوd^d eK"۹bl錜pU=s6҃[1ej$hUv$-yRbĿnDὖBW$zeC&)W9_i.$wVV}\1I-titwe`uyIi.~ NS8i@n{evmR^X6Es~8v=' a~tyZn!aˬޘiT{}J8% r1Vӕ9JXIK݂\NGD`<8?5`u#8ڏX*˂M4R.WK-tl& I1Rleѩ{6 xډ% +vUٔak}Ta-l.8 cI(Cb2/k̂OeQ$jDrE8vm~TxbWԏpXy<,kSr$RZ% YUМ.ij7 ZUǴE%%IF6ԨYàRQYBqyJo90pEQNUrN2C%+<А*a%i&"T@%dL:WzN-m^y E0XWΤHǍݲ5y_JQtXӁNJY9`33jM"-`"[bIL;fTE mKJEX&'m¶WZZ{|G 8r%9΃YKSA (4u`,+܄^ 6H,hUevj.&Zx)Bu* ]Ǐ{K#*- ޲s8u>ƣ4tuJr] u=&18YnL*eGTqk.8B9(î NMJ{\VUZuaܛb#iN(T(jg8ط$DJ#3Q`ٱj*v͞'Cid<cA)eQV.7lx(#ʎIh5ǩ*4Nڇ__A73j&E-b\ɥJv dvGA#Bݾ-qi"1*z騸 N7]`_~.-qj LjX [kD%0!t0}ZV5߷QVg60U4ml[=sdd 8AhDWjCՁǂVZ<YBqV("uߋFWLoq5yt {CWYʙJ]Rt4TɕH,P "Kp= OWѕT]b &"IW!q$BԦA)a$3-зڿ<q?h'pTڧ@^@Z,srQ _rkU]y|UFM- mguzWA+`KB뀡ZߒZtdf8l 9 /ҺXsdJh38;~XrW]卽X2UhC?] DCT9dTIHt"XPi \5,HO07(ja; z)B%i=lGeZ6D}KyثKUkJt J*D[*ځ KݢQ@Tʸ'.J-bֲY0k?fБ[=E?@nvtxQHU+ңEJEoB"I_q)E$Щ\Ap8u&frnb%fK*kw,"4 XQ"\zڅn9..%٬ ?dv$Mu9%IwəAIk%-2,󀬩9V;v9-C?pC 7QޏϾW/1ew,E@I3f[`+b-Fd o{OCφ+M$$}Sݍ1j"-ËZFDeMhB*BΦO\h+|mdߞBWVcx|3pA5}>"c3Ʈ/`,x!*O 52R#T:X+UAUDQ1\2U՜`"g,_ w~Ti`1~]IvhZXW{8l˕Z* /HG2MF'FP{}B.tgS.jëI^g7$eT3r຾>MuiUr;23#+J^QpO?X12"hu0,I(cYZ-`c9'?  'tjxIh2cd9BBp)o#FozWV3qAdX Fz,MRuB=8t|Ѩ  -I].pITaY@T{gسx.cW-wنGTh%wWHۧ@TcrckItEYe߅ 4ftty~=p5<9X8=魷yF6z9x.E&,hl[C"GWZN{374,s?>> p LbQ)GBY|* Y%}u[KYq& /]#nqt=MX߼ Y8@3-s^3/:/UltXH5T}hyD5sxJC{bJ]SVu H4=l`e%\VyR.eH+ii^ {IeMB(@ԙ ?.6 SrY8|ܖJrEe <M=n:.0s|7tݔG+UX9,OshHqMJ%7 ]a`Y4[GF{`@'#A̧&ȣ횣9Os^|3vζ8 #Yd+/>GVΰBue_a7J `AX=@(R#LT7 ܅JTm@ErKNsߧaQXy[0 . chu0崦,qJp;=T`,V*U)wWui _r5]۟F#B_qGœjj$Ml,*x1y/?7ۈ.}u4m%[vDg-WQr2GZ=૚|r4URYQꚂVcY7"$_Q]p _XĊ'g@W)kوPma2i k")6TjuPu)4mYLtPTųҋ-dK\BWw'\,r4^[k$HiZa0Nw\C+?+]=kIJP| bOޞ@Re T(U !&!хf(LhYl%|73`ěW9Wi:b?Cj^u0x1\RT2j mrƢ45ya -?[n,fwWn,j cާdxꊤxRԠ= P*̍GzP?[&߾2X͙AlaG&cWh5ɝ +1PsDUVehu-y5eUd**6h!c?d?U6I^XK0D [A+t6* c h|Vy<=i^oU`IbTçwf(y_wZ[Q鈆  BTТEj & Ys'dQԴCL²1!,)UJ5tU-kW0`^ȃe8p@jС}m&g%PyTI2Ww*M%7DXA97"=X3yI.llyPd傭Za\3 F.zk|=l+V9|H7[Hga+v\Lir˒!e.Nry2\3rGrq=,uBH zV޹z/?ɦ/| ndFi~@cP*a?c<hq9h` ,WU[(`_W!4CXfIs B9'Ih*xծYLd͉I10WʙU<{gptǟg,`$ɝZաԦVY4.TE#taQX6$3]>E{PKqFb??Ԗc$EsHR.o lrMoYL bCCuį4:щB&,P%b8qZ  eTF5w W0"R'b2J)`NƖ&k(ǽ,9. !FPĩSr`nRQS8F_'ƆcIƺ,4{J',֓Ǣ]s0^td&1YX94vVR JUJb}YW.ĂRcU YHgYȮKp4M*-jv髊"s* trjdo'CGdb>3-iN:zOqQ_OZ?B+l&G~Ӕ0>9XkCg]Pe@[S\ 'V/}j Ac0i2ä1+U3ZJX$ZCzUxO-PJiVj=$m&wp9ٯgz= cg[?B]qJj:'-ay@՟sEǻng+hUZH3`?~@~?% PMr&ƪ~8UY7fyW ZT%T%Q;E h4$4 ܩ1XGQd.[8&*IT05KgɡKQ(~mj5mb&Ʋ: C]Y7WXg[^Z= 'nSp2-nXIw )Kzo,nC<`YU ӭdp/eUa}gZw3!iق29i\v8f>0w\յlVOFqoNXAW]zkFNΦd՞{UuP`2<"L-H,֮B FfIxg.sG &Ƃpt} @]( c0&Dx5!S]DFNW]ᩌ.m<+2J(pFW_<Wgޫ$@Gx.)$8\ [8jaπu+ #'G,K=M~s-#<&>8} 0KTU];]}ɸwV B0uye> $Z :AuVI"LJb?Y1v1=Vp_e=Kr!H3 mu7+mEPȴz}WnV_T&'|cX>g@E֎l~m)]}ݕ ïRX~&^h iwM&]%MEJlk*>H2pTiWݏgdW/WI2-PGrʯdWK6ϡXGTH&DW|Xn5OP[0K@VK4i!(7ud1(|+ގ<'rz9RaWU& YVcV<=)IQ'$zcrkƐ9j r j ]m,2rrF zGZ ]@[eOX^lŢARc*NN ,oĒٖL884a4b'O{CoEWOg&! YAsz~ chP!*/H4Ȧ,1K6!IF(s(t '(RsĹ2j&]8b^W>ozy)=k=AHKo,TBFzm%򑟄*LJEd1p&eݱ|DZ=;zg ڟ>fE03]|)fD^~c%2Jg uDqd/7m9zmp-6p /p>Mq&آufѕ'C+b~EwQ c0 Fr>_Ov ՉB*ɐ+'⛏L]"I?o\;fn;ߛ_z!d*kY%_vD:Z]KelT $۳[wRT ,T׵ |MS@]1ѥ*`KD>}<垾i.]Dzxl^2ӝ%3-(+T@ d +Yq|z6́N< ~ƿ7{Ký٬rjYKl pɂ/OWY+?}j+%#fd,^+S:{$ &PTM| M&c_VڷI_oh` 'GZo7Mv s(e C_:˲c-QQ.\B[c/J\g.Y#6* ,~q棛|h([%Z5[T*Pr%u Z >8-8ùz>!]J)(S";l}2+spe,Wl;J9ŏ5X]l<`}ϲ 1K"JoZfY.\^"UHPB"|h8IgR`A^tk_7l΁YcFJv!->3ժQuN"*2خ"m6b,WK}vF~MNh–=ku?GXMfeqO>Vo1EW2Zw2n眴\"+AS҂F+)/Mw rY0s;X16*8)W lٌ%G$,/Oڳ-#課}KM6`(=**fO90+pʵFMc)Ũ8`T,!過G/lSBxqBٮTu+up֑0ZU~/P, YgTt%wZHY^Y itv K:tX<eeҠkƘlf.-m*498JX4Qo5vo?縊R+d,P vPD4 éԜ@I0#DF2i'4yE'+!ޞ%I̖V Dv̎eISAݠ| 'R$i88x;oXÖ ݫ_6hxj2ten*Ȫf*"t` LF[eh>(+UkLn4r<߅uiAVU+I JO8 +k> }\+@k/Wc4VJ3+\S+|< bA'}AzKp_.똾417 fR@x#*stA%p[." i'r%i#Ě"髦mvUU)BbuY}de2HÕ09cرhq7~vaNiړj$p+Ku'up_܋4,he,TqgS XeYmJ|>(&Ȫ^p? ՜Dۥ*C)"!tr*0+NVT繕\ Յ61<<2;%!2XК+Q+JsK$ x l뽑m)K.Rq2 1}%d9UfrKIw(dXlrc*v2=<#?frtel`lx:|t%%s6ydpI146`f wAeP@ƂN#9>R~~aiv: .r5nScxZQGC9[F8ZvohQ _Ug^|"DPW߫1#7NxzkH;|0=o-A+BN/TreTmTj-L JjdVi]6N*_*O[繺sC~*8noDgd2̋VĖ0n Gjc]C)oy)X|"luJY=1?d"G^D~‚V߈)'C}SPˢEEy&dU1BUr{"cU&G2w"?a'EW L&Ax٪e6T0{P|T UE~dyjq:3x3dqO5|asim2~&c5Ҵ;Z<!(>.LIyTY$+YÓ ?S^(Lv߸NE!-VOFppStf7ȩ́v-J5ޭ*!`OHoŘW_tQkt5kUkoswM3YYħFMR% ߖWFf@ *%#U E05s9^N%_TRԄ~83On~W+ڙ:SX;{׫+ZUY|['u jDNN_ iEqUQ1ak8=eլoc m򮃳f%EHEYƢSl+|'iX"1B=tJUSogL0Xu2V~rZQDj鴖\rT:4O2Z֫ƾ(46~Jd_-RNC(+Cu+ְixm~&曤x{D3rӚj95+ڂv 'ܼV?~}'p h&z'~yjhB[os==`rMi T\`z_CcmfR}Dk#v\Me`\kwA.bC w9d$<"cp7{L4lo[XT2U#.߀~,۞f_D76V<(+Ux@dC`X=ltXd:U!mjR.TQ-YX-vdL M࿦p &L{d's7~Ň{ŬVfBfĕ?i}x\ Wjûm\ .TTnGq|M{>ߓxNIp25`~JV~&8f5j|ua$P?SXOcmNkQ8-gk~.KOg-up*r ЫW2_St8Vvϡ餻Qsh3u,^l o,b=`]bk,_vw6s-p%hͭ6a d3&O.89v\=Bбrc ;)wZQd!|i;jic;;?8tu9f)X&cmξZWiV-]IM3gYYBOp |{H Xƺz"֥UxtܼhU;ZymM"v Sa9Xj}VLS37۽*UyWTXn%~lg'8zly|R>V{ퟣK3E 8&`^8}BNdvX7]WĨN$>&^'L*6թƟySߧXI/ɻ.>HQS:Q%]l.vcFfQZVEAӃ1~ڤnBUHbur!ڃ\|vF+ʗ'{?W|DqBצnPW /\u{ur2SU+gKk$ O3͜ E)ad%'̍ͤ ́I^2V X;ݶx'̾ Gj}eEpN s+UmUBW@{ꅶ2q^]nbi$U)s5EIݹV`g>HrWO Xw9֝u,鵪tcR! s* "##J^if8Xujs0aA5'0L< jb-dV7~,ǽ㱑Z)[;m`?mUどoXsdhe1 6괉ж}+ ' ꎄ>3oS– ~E Xd>L1]:~gNfw`7mW޲@&9f "Ɨx `c6A YY.47hZGB{(|o`uPy`REPZN_Y !P6b=9RbYi VN{u]eJ]z֋}CVMREŏ 2^WJ^rjÎS|r1+1* :h4EHG4BJ>_HcP"3&خ>9cm!XSsVdz!T}qhk  !_g(.Y=؁XRӾPHqMڜ; &g+ݢA(aU9Xy <*XýB<:kJ؋ "K Uf>~5ICѷIYxx6X_f"1?  EE`:4gSt.ì䪓?9Z gt裡G'c'`WZ2+:Y1YxSˬx%ҍu="+HlS'Sx=׳"ЮGC:U-[X'K*O ViEoz)T`mpk3EYuk\A7V>S"ԝ46M"$'2( ! =v2V'ccU'Ԯ|n/ -Սr[*6JdAYRSt:" g Z{SGmzyzp)XQE|;_e.V*N=(#֎>d>r rz\ `OYg?=CB6Zsv:Zvj2w9`Vvs^妳Gb][puYئTtjXᖢFB҇WBµ;)<\}؜2,9PkΧy]~N:0o6gHaVٚrP} +/NώI/[\%3G}D+8gޚ~ֹcC՗ IDATM~YY)>h緗R\A?_C{Yq%g#pאxJ u/&WӄH^^>|:]J-;Zì^ʞrT3L߅w]/IDE =?qZ) ֻ 8//*pƢCZ"¯c,=$YRe2c Q:k roK?<oOLt!Wk!U(YMmoj G_@9۝xAif'볌[zBW+iTG r V<7!ǰJVygYY3AvPlz߇CЈ3Qi3+X9AP4C{xHMFa3ɚ <UH52 ;trxr9٪1eu/ת=0{Fw8HH'ߑ5~%i llSaWA}D@I+UYtLJ#LQfMVWМ˖|)nzP̐2 |Ɂ'eRUL捛8eMO0vCmyС؏<{28k zQklvhΝ,q0_k똵Mrt4%iǓt=s"jh M\W :59S+Lɐp2{䫞) GWP4Z6WZ+"CV7E>>cX|X3=ɧZ ֵh " l`vc)Yzź4F4yS}v}罖h .X6F!7i N@fwpzhE+Nd [.OSO~x>r|g]e=!\:<;XPqNgP=JjE>zC*+F%mf.K t1]M}Q 6W0^AȚ7]{3hg ֢ڏx>d4FVtHU@jQ:w}Q5@Ṳ-3mƳN\%Η|JY2{}hTg ϘP}q= ʒ B ?#G%VJoR/"4Gtcu!T OWDy~`f)86cmO*&ղi K2gdt V(X%lz9VZъ/yNtհjj#S4rr8z:6O|xI€ubii֞kBJ мtMY4ZE%cBH;J6WEj>cmf&=\U?v4 fiwlman!he,-6.&: GqѤ3u|ozU4B:Kn)\ )m :/>xfrlF蕮# S4=UxuBp2~,RF9cõ'9r`mEn(OjgJ )#gdʣ `pϏp~Vj*mjltڶN#ߜǃY*;)T 2:*xb ́0gѪaXڸ-K w$3!>iy,(aRzz#s(XCzm0})Y%aAn'?e0^1=8sk-yvGsܩcE /Y5/YV/ /#'XcWd90'x-jO [{-G.ċOItR`b**ZѯZmN[簹H#=Յ=if7s҂ccn*_vj1siă_| [U^6*_Ee?u408!º%\Z[㒵|?P؎!z v:!29"^6;_4-xYb&;JN|%qyLF5)X` B62L2-Ո)/X\fyt,s5&TK"&ZuNJV6,LJÖm`z@l}U7?rxȬ~KjT,FgL⯹:i-t/n&:xsQaNm`}m::Xuqԋn%xo?)b7f&ߙ_g <a*K{WБ߀2(c$R _~iV\@!Y.C-&.;iʻg*-Ă'('a~,:Fh`8k|q}m_BYtr::-SFCrR~ "Y:ɲ)|i,bv>PٚC7 ʿ>8ZAEƬU?MT ߩZpv=>ff!!8FIx%{X˔l]75y]J{x6-TlF/Xæ8uMcEvj{QR{rIWkO`\iy#9Rgfb@:Zݯ8}KOTbߟ=1J/gU=|peyco5wt'bpxh{Wq! Ch [ oYbqEf70EN5^??x+z isyx* z3PdXQDqC= z:V91U== YkR- o;嫢v?ӳx9N{pf{;<~&؏4(u!Y&: aUcqju+jd>ϼӃ}?]~G3a,jF;֩ל|")UKh\z-Z: z_'S!}EPb 5JG'g檞eyKvA=$XM[*f!QЯSOJ=q芫TZ-N}yNO2MOi!z[zK>ek<[EP~~/"܌zkOUr&Y-3V b6uzI<,uݜ9Qe57dt;k[v1YQ* tag?{<~pg, UXۛ l6:A=/ـ*vʴj" ~S~7T/S…=_cgPg\|[|=aThힱ>p=*YUz?`Yx{!MsJTpEVn{qoxf:&<>uϹ=)Y0nyb۲ՓrӉЏр΄I)^D=2%!HW9:J(Z;2]ԫvgf2bj/ѧ|+2 >fG dKµּ\gwh&z_3AZǦ|]^SJn6Gv0h W,zswiXx)ZM-,uϊهl7C.YPU9T/ }+2v ZN/[ <O.+ :X='Nmޠ{z=-Pe%0_ / gG 7A2$wUD}B=vuhUgJڒUԍNA睊uH1D`BIpwKo* RvZ!.8㑶<^oV,ŴAWѪ'V(Y p6@)Z-/L8W%(XGTD9U{D/_-H-\i4JQoZ<~nXrUh WRWUp~\.@?`izf.ʌ:Zcϻ9EΏw )Yk]&hY ׫afUu!vc%cZ`E<9wps*{^λ=#gEM*tuv3S0:4c&GKaׄ ^twD߈ݾR-]'4{F^t<kl}r\O(VU)x o`HQUZHBe/TM[m̀njH1pQ_zEWjU?\W)2ƚ5̧΂S6V;3V(̏UHW 5@aB$!3etx b5kl8?X8VW!JeR5qr;Loa9jm-:Y\ՐMꔯ:|zz.9U慴˕w>r+@.8Z}#z7`Uyb^* I5f0{v7JC5gUN?Xd6=X és> lUxwoxuBZ3J+1 Z\[YSK t>OZ;.ٛhX4j& 2/ePpjKQ&&o/oDU_B<>QcXc{Ps=]7} mBpЁKSf'j%xxb\@$ `sLF\ITGW,ӕ !7?`ʘC>IjbIl<;Ԥj7$om*Xm,!q6elq#U^|t%(|#f:S,a 5®t$1' ڜkZ<O;`+8o^`Rgjd_-5\l_niOqJSWcbgr#ȼ֡rR~YeLN[۸C LT_oʩG` AcZAdDdO^LQp@IZ@p}"IWQ}"SBW >NQ͈%Ys57r8MYKV Stq.qԠ T}#rVFJAuy/H3 tMHX VխK@!v~iưu2^E sghT]q+]UGD+3܄-Sb VA!~F_Uo>x_ 뗚RHVL6EQB=`$_DN-;~^$UmGVԬ"݀\6}+N+"XsFKN8w24RC{(nPqK7߉~'+OxEe٩<$7 ` Y*-҅7-@S3&OyE}{7k6OqN Mk"ۼLjWur"ءFΗJL z]c}|Z+ [*BM}g(U71KG+BU6u|yP1\3hh.N5SQ|(w=0siڙ;fH]|iX+3yv,t%4Byde6{[/>h$`ǘT-]9qTP}G!ߞUH%]ZDix6U6{`.гENNt:R}*Y]"kNNs_/ǝ/vX(?Erz%\"!8qChdẹ)'rgȍOD*,33`܃YL׫ B YWkOP#~;U??dJr2d!!)'!.cogwOCnC IDATNgF#YPcZtJk}`=`=|->;,MWQLi"eՃ\thN:ä+Tɝ|cza?g)YO, 4RTsmRYr,Ǝ\jClʍѫ}Դ-Y93 F-Zҳjzb>bWnI" fgrd%`hR O jg5 Dd! wa%4JPQꋎp{TJIZ:[ǎQ͞=Cyk譨HGjpWGry_P' 9gM'͘ӕj2\p[IS0ҚȕU.Q :HZZ#ѷP_i)YQ*T,ENUN2mET#$|vyLjsi+Θ,̾B6+31THie]}͠-E3ﰥ=tUB42ŰF"{ԮqՅv1{ic*R=uz(6ӆ{#x,!\D+Z(H Ɋ "Ke?*[7T{U3[k4l6Uy/*XE 2Ij 1`ywm4C7ty5!eT5)k3 4Hݧ Vk53YPb݌<Άۄ<( ѭ,mj{aS"[ڦ+lXsK|. ͌m,3?OB]ѷBAà4!.E^S|sF& @tNݯ{77f2Ќ.QD"GSOIJYa]4fB_|6͎oQOQ3LQQsDNFkyT{|woDoPLAyy9VuRP٧+qf}9k55`>;=_d# ,0u Cφ%e#+(*h#MdEE"db1Z̸"?pl*z؞WÍAU1䃢~,\%j<=~*)Y>,_`tۚd''0@bqQH#?ʯ)_eE7U<. N" MTxEWRC)JDcq fzƺXdukTgoDe~NWo ]}y'$ ~ؐj V~~[R1[䝌u)_=k`N^(k*}2qZԾ^2,:>a$YR7Lg)@4:goͯMWl-OBv^AW\qYYc&D\?s*=2g8ƽfõXmTw1Gu50늵d5Ei5+Z3u~F<:Uχ3d^Uud%LUZ\LMj4 >ZFV?L*g!vϤWSIX1?ցnߖ/˪t X0Q"\,Ό$H:Mz$ugF4*k{='DXyO@r  U|gB.,L톏t],^ҘUc1z`~;0c8ȩT #N"zDpYdUU3 5HeLK=`m0֝s:c|TzGu|W\U ѣp@ j'lyIwUT"Vc}9ϲe(1lnvVRT4s\"8Hexr)޹A]mxD'<1+v6kl/Xt4\xcy6qC`S)MũV eGt T>z~p)|0U>aP b-L;?M%IR"(RjX^ӕGũU:qP z]^elw[ØK{i-Zgʻ4X]m; |-\h𩿮`V']a&#ޜGGutw_\'ce%bj%? ŦaⰅJ䷺z[0ٹϤZKm2 )9aA!q^P "|o}hx|c_-'qaX IQ!{suGPZvO}tVnnA)[>lQWQ,݈nUsŦd2snP?:\^9-MjT_uc?B׿;t A&E,MWtwOQbb j f>&E囏+众KL#gbU>5Cs1_rjQµ}>8E~*eYQ=].&lu23UK tZx= bhRRVV➕/v;|RƲMgrH"I9lUo>|ua@ U7iX\P3B_a6ޟylia׸="VcmG6 qXǞ2^9S*(g᪸`%GJNq煪ًbf7zanj@-Ⱦ<k""bn1VTГHy.U ԯy&'ô̪bx[Y\UįWeX='Uy-aZ5Ěy3ZUTb-^a`XxsN~WjWucԴPc{n,7z=ܓL,@""ؑD(9ဏ~3MU!).~}dI՝0no6u3 -}囤3yg PM3N9ӌFjXK2=<)V%nEGkev +1t(Z2߼a**C3UuZxY]>H+oa>Cvr=?ajyO╭xWG$eE^U )f@A)9P":#!7-'h],?t/AMk抱A/ (iX 5n(2]$*hԼVf*XG 5,_CCS-RSڃ܅)e@ɘ ΐ?J4po37RϪZP8`}7KT̆fRR֨`]X4…ݍoXOؘdYc(6A-#"T}w,ewP6f b35|ՊOFz~_N=7d ?߉~$\gT䁼tˬYR0Ƭ]naؠ&615!R?;x_fը,R4f8x:>u[ !ZC6ӍvLM xk洌/-Vͪaq\O7mJR0)sg O}ҧL˜* lT*gB(UQԴ" k`Guh¢Lj0!:S{:_pҼP@ʸ~=T\gAXI2X|E[u=ϛQALU?,/]c ma|!ɟE)8&]U4> vv&6RNQfx1 -OArCU/* YşHY"\WWĬ+aOmHdyӒ OMZ!f'J2^qޱ3}Q)q 쐈ē(gToqOjuXe?0=ȴ>?ρ l;5X͘,a.ҾN9`҅cYb{i2F_~~3GbS[ic7337a{\~`?TOB*cLh+]j 9}HU#z͹}sbϫ%>wЇ\ f9:><)\KiitN FaΠa c6;.dY6ԭ@b $ v2-vfw$9̦'т﨧#To!!b=v_>-7,AiݢuF sP77D²nlMRe~5$~t#sN7qo^\ПaLO(Y*kr{l \7rʖ}U5cŧofgnVU9N‹c$EpguVy-t_ ?ž[OpuM[cU{U)MJĊVWu42M2N{JKEܾz`א%PcZּ*4V=6TNP:JKS(9ԆJPE ^İ8O8`={@=u,S2o4:&DJ˸(*TN +&i>5:֫`;":d4~6\UUk¤thN ^+<Ӫzj!jj&?qO-\["0e1L*\xB'!>u 3Z5?fkOqPʊO;mǬR_ Y^Q"5`Cfb8+DnhffVF\~8 c&y<SXOVK})1D7 ꖪnj0Ʈ 4aؤ~DS!x'qioojG'X;c]DWYcq^'m4t,Dsj[IY",x/XDpZ&'g}z'!#2Vǚ:NHϨ%\O H]iS$6.2 -ߚo;p μqfM*X0kd?6w0Vc:nLoYQ7͢$Z&0lgw26*s#UP kmekjǥuRmƺ'MApz Fe:.` m9ݱʻ!3 U 1o.XyZpHYfunC{y׆/.}RVT~6`;s`V򓢪r]/Fi֦5YZC*SĊ~DZӕu,o6r+;>sC`Ts/Շ*pun̥Yxo^;9{Wa=BXQ@\9DύțoT ,">dP[xzj݀*ψڦ6?u6=Wz^O>ob7K*k) i Jh`.28CZ{G)[,*}5P{K6cyը\BiE559X]H /߼Z]mkrL"RN Ugҡ]uM/GQwmh0||NCjUF^^4&"LhOT^ۓXהNd, "r镫t–ve0UC_'޼,z603szB{UNsM^f'虬 5WgJ848*m݅÷%eY/U7Et'Աŧ#X*_D#x/峗i#K{VDXe'@2WV$^x<&/}`Q,|@:~HEZWgCoZTm z`_ .aiK"տLp]- * O^X'b.I-l0^Io2VOnX{O_n/R=4ʊl- Op\D_D%X)C?AmIQPyj/:8.^f扶; Rkq;n,3B;+:`Qd,"=}mLܛT7oܪ27^&E3 OfJꢎԝYUϦyZ53pd,[LxsEKHV3O"zikdWQȲZSJT,ӫ>^c}Ĭw+i`M 5th$Wiz-E;dp3,RV@{Vŷi +žZ=9!鯥Xiz [\ lRB޴<6#Xc{8);3aۺYI&EWHZ&mhF' H(6z9zH6ޒ%qK< :_Y{A1ކ6YՊ,U6r-}ĀdR>o`6`(mCeKuDY|&JVB!+G w*U-fy.B v,{&YL~e9?MRVq0'7kǍb!:Z ** %op=FE2_kGj٣ m!b}Y깤=.q+,kb2j _5n6{t%$焵ByxB/'?SL̢qc=`ўJoCP5OJ۝ iE]z!˚!s3yjD6L?=1Palc{ ][kb_袃72Gռ8"fG3X$VT"qYNp\I1Z_rRSozt>J2q*/*Hܤ}0[k0_; zmxߧvuo7y?^A(IZ IB{e~y+ClAYzhřcPv۝&f) >Ъ1=Z:@`&E 3\pUmaud|He=֒o>'a{xSB4`VC-OSm>hPtxkPE*'𵻩Q*4 *U)CsۦA]G+[#4v0B|h$ V6TJjN NbN[ 7s^\%_gvnHMzUШ6rc9 ~"}-j+(Ӟq2Xp% o5o)X8`n<<gDP`{ ۃ>regiRUs*ͪZo(Tc;B"hL_=gu~mVlIZykYgk EVmZTT Cr*{ZBs?feuF,MN簇exgW{V fBw]H`;eA#KdK_C)y66%5[tv0=kL7@i[tb,zWUU3'3ъDdi%buJYX'҇ cX9N"G+I7Utpx[=D~^fʝCWY Zzgufyx{={9wP':nb )ʄYrfBRز]Ĭ+<LZcnQtQ!kd|5]LIqp7Ix8 ZNh5k93V蟪7Ѫa`%奮A'j4!U+hv'(պ&]wIQmj3؉h5E{X:1T.ܮh}'YE W)R`1AXVo% ݙ6p)*R:zQLjmlj6;[)SҫFYf )n _]Zy6#[>O-~q'@FϾ>vwV"9]$P&e[3 * ~Xc+_ H=_S:=xU$`_o9_A~Fo?R~ogGiו rXGb8W`ϯM G%'5eG x{ftoޔȲq'I|,/:-y,GN|락!WRlS|AM~O?,JW?o-T)NO;4iP j{U` )ӱD퍢OױR8&Z$_g#q]PyK޼LVQ9`iJdg~fDFUW<:VQvYO"ꗸlt/VC^3VVtL)-W~~~3OK~`RtE4fDr: } 1x;S R[Vqʓܳ]!`e2''6~#Dh5-UutD  tuS}n93-eN-sMԑNkeR uy/4/+RU^h R{u5ӥ/RE fճ HJI_to %3Ӷ#5FՉcfSImձ&:2`3q&L706jOd%Ud Wђ7'תqK,oIVVD巢.3x%a+ ojdym+Ɔ~{zN7X 8aa4,{꒵6uƦ7²S0NK3j[Ux]5`}-kt:a+=lx┷fUt[P؆uC3]f*WiOъXAY!Q౅NCgtQܙϾ.f=ptfvr 9/|ڥg~^ S޴NMG/GPNgH 4( gtPt$]YAc_$1vwN(U|ObkNG9luh_rG<NjT.J[P I+4cqƚү5>u'}3}׹$XwjE[y aT說WjG5ߕf=lTnX>_qB/0]<6;(*^.`RD>Cݻ/1E Hb8`c}:7n^0@—5+w0ɇ*S!Z)#R&9uj9<^5a1wE{l鬙{V/iXtqNX&ϺԪ&N>x{3N}&)2AFcM9DsH EF߲ᑳouRg2o'fpV0Lk AJ% oDʜ`NRۿ̟'M0WP[ħ,#N鐃YErh%Ć 44~}[<{,$E)݅!'r(j]xHyD7Xd-W$456c;|Fhu cS| Bv394Bd{fS]Չ*ȧ>uSЪOLj+X {ڬ d5rV!!Yخj`dhubtX:X\(Jv@VQ5iCDDĝDofΌΤpJt!4E<o+PhX묚)kzf~;lY(~$ǮmrI򁉭uj2klcR1Me+Z +sM@kiA#HZcEE U', "ca阅U9f5,zֳigYizT)g]o biՑY q-*$/  :,ʑNUgn ؞oHkzK'&kLZxn\G$Pˍ/T1`PD.XE:+U0"i*Sj3^1t{߯#aϦOlB/2X3ȺQ2$3\-6GG`]vOm>ukWjLIҳr b(.Ö(_"'$()@!eo2XZE~v1]ݩ}ajl.8[~d5D_DyY$pLV̛oRK2klc}=Ƕf-pg׊[EtUsʹ(vaU,u'}aa`<*'6 !d\ˑt[\۷Α~!d6": w>F;pU+20@cnd]Sv]݃ҁ&AWQI۴)=6ЅyF)w2>]u–+E_^q"nQ]{KUŌ,2H_(! UaX[W*D ]vf8RQā:Y'TČE{+uC('DJ+(U+opuothIYCW森әPlxE{sa+EHUZ9B%ThbIe85H%MS^cSdS!^Ej8NR 8]iZWK~Z@ÈUu{8lҼnH\XXeJY{] XW@6{vr%H{ y"=goIBCXUlvK%Ahɲ,K毟zMTB'Y vjPzCaS7T2ߕVcJ)ìX3iQ Wh0&F"S#/6ǖ:Z]9^&r +#(쯜N)^!DCrm}_.Y-Ͻ/k;Y⾓`Hy`?pN󥛀5cDEaҍU-g'91X9MeQ0k=kWA[ q6Ÿp05F( (Tt4>߱usn+[VƐMf #VX%3&]=nWsbh3J'hYD ۈ_NӊQ$ܳTf.2i^&OgKPk izM58@ ]-WAJAuYH_ûX鎴O3KzS.3h~*]OEG:VUGCp!^=ęt5&`%TkAtu=cɚ~JREZYekG˪)0j*X3>9jc+dުi&rb1ҕ,l'mFBiT5UQwKC|3 Mi/f-^i5R Z4Unz&—XNx$:ŧQwJFxˋ8Jvֹetdu͚45QZEsfA X{-'ˣZ3t%>ID`%Wy[ٳmaDאd1d8kb9 , ;=՜6Jh:55]G Jc_Ҵ4v]mi  c5ƼNB׈od3l"~]O "d(:X"]F+d|`9^iVPE:{:^9{N_FFC_c'c}u}s|W2([VyfDyR*Ff̸)"/[a4k@ "1Vx`7ܨ ƊZV|4J%1BoVf X0UxSȠl}*W799g2edpf$#`  Q߬}|NtʳmS銺C S 1"ZnnVߎeg}c]q{ߗ,뀏ݭX#VCN[֣DDpU( XYf|I?@RZā8te*ŬdEbςTk3DŽ} P'rx/dg_c=J(H=oLIIcht0kӹM=`zgh~ڛo;zVk#D Q#\M5c+ؚx**JkCg=ы6AIVDd@UD&UƓvY ]$A S2?eYRn뤯¬{@].ͦFptk^ˤa\'`͘qøy~"ކBWw&X KUJU6|YֿgsK6{1J ڃHYNCd TW ~7f*[Y E+5 +vmi un7kƌw_d/R* GyOɐ"Zj*o\RJ.tꢕ7VJ))j*ҲlN?HZ5kx4DQ2JF sGT^o=8ubfUJ[E[`o="jRT(c-{ixɠ?'A_ҝ4W"8cY?=aQƽFی4N77r([-D+6~_k2 +}?Y#hsx4푅HxXn\DU"DڈN G?ѹ> 6J}ށ9}q\REoHWˡ7mfӨqk2֌f,z,uzKУWEnI F * uLr`Pt)'*a E~3NAJʓJv[gY۾)h9T5TSwU/_Q0O2w 5|֌:nʒfe4Ila׮24czU|!I,?w|׫ _P5R}ǠBN1܁oc]{RڦhI^Kl,/ߨ XSĚ1 >._.Z%MW4`hŠ#N8v6Txe.ew'%sfIߌNk˛jح˳3ցl U$n:{ASAyL{p3\*ߛSF+r$`%u[ּ.6śxE7` %i\8m-:k' ?9~6qbo=[Z9l}z%L5 sU?xL .T4u`MkC'a}hiA^5jVZI0m-gC>Oʑ.DLH59cencQd 56s ]UԬ~XJoȒl`&*=Uj ˜.f̘e*M WbUgsզJUX˫Qg%F$=n~0 Z(=XTs(< ,y)pe7Yxs}B14U&?H|*.7=@զ)b͘u^#sKQZސa\'HyƼH6uZsrX4p)Yq |mAt#6_'hWΑ>.TWSsAf×_Yfx6̢+ZNIn6š@X0g,+dH"q*sɪ0d57'R%$) 㗷kȟL[ei!c} z@L0+kU/+\ pM1iI 'q*'p|McUL32SVq'J%`5(c Uܛwρ iSqa%@x: #.c]C]q e a8TyqP:V2Q"5cSSvb٧^崛Ĺjbb2m Pg5$*ߝRd܉/ {Pb9'TF'5HfPl.*QmWЮJz:QMx˰k5cƔcԂfPiA]PxY]4@xA yHbjM:\%]W,a'?awokGe1Svw@{9C*d꼙1w&;?kƌ/U3  vrm˰|BT2:R͂*}U+U F?: w]OA=OBŕxuJTqǟ6@0tC  @2Rq[pCԥ,f brx4~.{irކ0&pTvI.WMzVX3%n(z1]8 u)N đ\!sHAΞ& Ix:10U+Z>C AK\LFpdSA%P]cNcuW;\nPj-i&'JL1cc[~eբqҀɒ;;cTy,t_-U.VMiT[ `exj{e[2V_fm>cXĸ0v:V3ʢ+2nPl.( w\|;5E"n%<э&FH[ꉬ\A4"TtE[4bV(#hԈvR#>m)nT5'x_d eqO_Jzߕ5YX#sFtc<7moLlMfJ# \&`͘q{ɀBKЉCU܁ݽktY𮞬[:V'W"<+wBWk0`H@Sؔ #7: w}dqLڻjnz]б+9#̽CTH`qf̸8 -ROu~2AZ5mر&KQު◮Td"JldE%~@W X:+V}Ն @ߥ_I,YX9m`^[\U*MzY&_?Е=)V"Xwzb,?v:w8̨Z#f!T%_3nSbe1G/_S5IFu=z sj۝!s(OMR\JS1cW Wv &JC8x.7/]r=NWz)j:%3dj kC%fs惟ɐ\?uPkNL6$%kHc$lO~aݿsսYWgF*_m^,%L+-j֌3v vEAS}J]=a,]nr"LhPShxﺳ53kF>*"aYMi ,s׏кT)}fţ1t5?h/&:+`k&cHœI "fg%phٟL^hW9c4X2 j %4 9 vե38_;~YxR3ޏ@խ’6;V0wXPEbzŸ'Uy[ޜ4J:n֌3>vuDZ S})J&YGdzs͓ Efazܳ"ֺ-SzyỈbx%)=\n ޖ?Ew6[ڕu=X15aq?K)s]X 9u]wks V4"1X1[Q,~m#g+[Ubw9 BLͅy (ĢmǃجWR+ygEf9mPt3͐NYz2% h}-o90G`ցu: X?}vif]:t7^+bs=TR*d**'(V]ա.լ< Uo<2?I .\#3HN 4Dbuq`b`#?u?q}t^&cy!t19+o-i%723(ܳS8 1k֌yoO@W/D +Z-p`UCW}j<3vހ Q}UG s@QMdUQ\և5Z_v_Ǯ:-6t UF,;RPnzv:!:^LwNc֌ߝ:uڣZno/vz|L̓Id GM"mN/9ړH[HZ%JYhFrx W]9hWָaRq"q$|Pe4L[+=ٝm Xtp -v5C;u׎hpQ(0re{&Ł{°dR5O֝d*Amj.2mr2BCBMVFQ\셃CvHcNC7qkPF?nNu/ n/gocn^t{ͦ'UwLh5cW_.cwz8+| |{eIWK{&ҕ&AVh*VoN8DUe%tJbe"T>Z,>rn[>`ChVnXw|kAs%9WjI3N&Y] c%IW3&].U(8JttʉT"DÛǵMJcŽaVP%銸Jb7>,X&)4YV<%c!UW]X@#GN'*}hG>'a X^3rו'N'&URVfP`}誶Q(,2: iFy Nx\=dAeE^Vبhu"cBY- ,Q%>*%ai>[c{usXh)81OWja|ARɀ4!V<*TiIl\ANԬ4|ܟ n @wBg]WH3 gH者ƦQRF0K]Ǚ,*VeN% 5&f}x,Fҽck3ץ1"M9LҠ0($yѸ&Dk=N0x'C=8qO!N*Lާϊ1iR9Adm&4qGMQn<,GO ]N J*Ne9nm'' C-N\D6&͸[ʡ.N;Dʃ`J.޸R~T2Hle,V9q y'èG(juWx(=,M9В$-ڬpֶK]{VȨjd*M*qK!䚰\zPk^Bpi *cѰq E&7PՄ:ZNi.o,T?sfX*]Ӣ=m&`=F5IWw'nAǸ9DZW2C.6{#CDM;X ܵՋj'χj7e^;i94BB)χxQ9fI;VYτދ;W^Xw`ЗFKE\S+趐JƺR'`x}kzXzF V$N.IZp j"+-]:hOZ`,9Pi|yTrZ5X6X-5ki6bC^sQ<C Z! xxI# IDAT+aـ)XxqC_g|.mU=`Zi% @Z9QPЊH@|KN,VCL]mTլ~pEK_qS//d7UK _hUdf[-_u*3<$; pW>o5 Kҕ%j8<f30u^e ALi:Pю/ٶHV*c C|ƹ$n/!0ϕi 6 ) 3.lx=Qu5%)b}-c5ӝO7ځ~P"* NDX'#?H˰$Z0VЖknKAR"X(y1@sx'quq&_6+]xVY5n{IJ{ě>V@jD/+,g3V>[_E'`xqq6Tj2(T<\̕- [#w|(/%&r;6HWK 3|ZZpKމވ~ /p 4qA%7ʸүR:JFAC'J "omԪuN3{oj۽iHQ|$*<_;=%ikNyd$<ܓ،⑃Afl"< gwwg3(f_8l5;JaD?H7Cy{\Hu\6ʫUM6|P X3%֕1j3kw]> ;kʃ! 7V#Ek&WZ {Kc9w`>'ܳvDV_.-On*2iߒH@ĬΗ&N71a#c#PrfgssJmD(ƒԊAM`$Қq0 ZeH±%99AWIo+,JZ%VQ93>f|8Ǭ`)sU|V'J6kWX̓7+-t.ď#i?Eܸ –W^.s?hǨVKY̊{p]~tHS TIK2`SUe(k4O,kEc# oX ?['T*Z 3`UoZvkYMiM1cƧix_ J.$ha1=**rW-ޙEYVk֕@UĊ.:֩{;_qe#bEռ##4%~L|:kQXa9GT+Urf#bAK9[Ƭz ֌gu?\5"_u,p[jQ$S4ivJd]}]}c5먬\a?nN R1 ߇ZT{v ,Z)Vy=g? b&fcc5NHqaT&]5-j}pj njTf<c,->ԩ:+ Jx.8{6Pe9#tu~bA"˝+3Ъ^.]#-"Q6T5y$+]Jfa#kkD0 ;4N  ;۪| ^_/p if6M,H[6&`F5կRFUjzmnY*UQlɮ|'Q`TߖM5DheM0z:qd*ۗ ;fiQPT|wnXzcq75:tѡ=wu3x1 uvN"wz '`8Lwl `rU=E ^JMHnBWTʃ%2L[!4EUwTr[ՉJVriĊϧ90 #tF"t;jϻ̮s&ߔd9m[jWNsWrQk%_Ep|i5iÿd6]{E+_'?%:%;2q"h+Wfŵ`T_ׯ\2$$\bP6b( cRY}90Pe./S:*Sm#0Tmx_Y|WW/1Atg+}%PE JS<2Ykшڬdx&aEP9"ZL":%k*c& @ax+< sגe0 v2׼Vm;jJAi֌5q"0nZ9ZtWbw4>B'PBV~ }1I*;hk&n$E k "eEK?k'0+u}Uu ɚϻ,ꐍiw[|LJԗFJ" (lXf>m+y=)Ya="y~SnFe慎) +I`2V0Q1 lDnݕzT\!+a _E(`CZfv\+N[﷋vmodiEG1Ю"\UqƢ0|GД"E@~. yx˧0-ÂY>geˏK_ǵd8NZYPr&_Xw&LVqRp2t:n+Ky!v,ijͨDϰ>/ǫ2p7z H b3n# E4w4YƮީb>OIl4wʾh\V("hp1kƽĜcH[EWA;%L\pIݺ>]_w@jdeR5،af$sa+N XzLx꫺fruOD( 0 K$WudEU3ǡUSY} V B.$lfMj<2g,"~\5cxPz}uhA1)*" ZE#Zj=*}aS/NywnN٫sM`됴amƎ#u#3xHui ZABb>#tu5kuhO|nēAG Q+HR6TaG6ܓVfpƌIW]-Z*ցcw66gJx_'PCB2t RUZ\Ƽj*vnlx>+o5ZJ Suտ˚`{{:kYWe{99?)]Mq/JW5tYTμlƢrH﫽*Zr)a\Jm`kQ zI_AJރE68' M"tg]b#X{%ս.>$JK1rS vfH{ ~:S3f|x5fR vd K`"jhWUI|YQز֭_e+:θ=,ê ̇.≵Zr@$jZҸ&эSS 6]%øiy{[?eWaqNDinXNȖY,^x#/fL.4 Wċ/T _T*IRQ@|qúu |aA+\G]MBJ:w)[UUՆ#{v! ץd,[)`lFj$N f QCӅ4P,%q "9hQd46eɖ,qS'N1cƍ:z$HBjdb@hXVdfc.$QؙyDP`da TEEBU2&,Hvp/Fdk/kts/fm`Q28Kp|"(ZT'TaSi]5c-fEQ1ȂWyH8~(Ժpqu;Kl7;e4hIEA,,"J1,rJ\;=/b´=s̚OjP{MTV&-XUEELMBU=!GW*W%`I X3f0 "\Np[1KjiWW}I1V3k5uTs<⥸XVeAvDMU:Ȭ!:4Qd P;;i]^MhV ̛c%I´= Qig X3f<^`9##9)Cժ`tgdu[X9HWwkSˮ1Wa\U !t7A0&;_e))WԼ #9`N =PhGzU,\CԅVN f欏IQ!y `]T}> E(ml6W;N5%M=2o|¦*9k֌3z1hͰ@U3r:w׃T,i+GQ1 WM,ԾB2fy^tbɒY:{[lt-IԪ;@K,d$]WhgxlcwTdzi 2 W#:N1Qw.K?ӭiġjy#c 5>ؠ̓M2XxOnZ}Am5CKfAR I|:S,ϭؓ9hua,QkHZ}V_Z~}1+@[eہ8hAtrB\]'1e&\<[G˶ܘ X3f8HW*prIbʯ L_EWEEÓYBUc$Zj;Vb IDAT!F_o X3fH5\Z+VXe ,,C -oRh>yY^qp#Da8ICd0t*c캷Gq\M1cUMhHO e N,d`mWIW뿹zh &fEKV_(]o\>h!qUwc^-%4L݉DU{3#(0r;ol·A+.K "J$KΦ+JG䴜Qw%|ip憎/| ja\:o:2g1yV#a W)k֌MoZk'F>·|,$HYz*%* $rܬ)/qMphoD?މ$OwZIj|uaZD!\!.դV඼2@g "Yy+@=Y+e~]6 HX$fLiioXz~'lIs=Z*ke!5W5cƤۄzl{Yk;ՅJUDfr>w2ָ: ~ds6\Շ*QLt.UʼQ]#Pug#]M_|$ ὐѴ0x"NuZ"`x1YmD%"))@iPOĚ5ag|XwW:0pR:Ajp GHI+`6RXʗ\ll" :\% n:IާN<+tjZzf;[*iEFCU٨Z5FK<`0Xtm5cƧBթ~Two^e+GFdGGgұdo dWTB@1RKI;rfԗNL2ݺ\ch?0yw:-c(=#IRJFX@\ŸD{Wq#S|k`Yɮau蠗P|" [E>sLJ;Ȟ+. Շ'<#3RGC~S#q,"!AW.d̝\.jDj֌߻?M{ᲭװK;4uʎ1hV|BYy:EЃ V%ԅOW/%N8!$MR+"@3+n-\npqMl\4ʃ]!XIPZs-jjϘu*ϡ+.I@1AY:X79&v+rmX!Ymz)*73|s/K`7#Oʍ E(8UP`$mgIV_g0i"g&iG+QMARlg (ExDPus-B ^ps԰ i,p,*j\3+tBj`cx@U8m0WG.AqdaSf UQզpt5kcDR. r]Yf2_w$*$VmT#y=A?Vuȼj>CqZEj|LE5DWfT+XO'kǢAڤk'5=N Qr ]thuX46BgWk fTj:/xQHJmtL'K!s(Ҹ9 Fw!p uƋ,k N(U"DSJT^IZFYuuR2󨹐Kt&c ;veWV_+D%Pu7jBA:7PefUh5VȖWf̸=_BcPG:vـN]'f-]D|@}ʧ&7+ENNeU^]Vqn}NT E2̘KE'jq8^ʏ)X|@z) J ڿNJs߄q3fwZztF,e`Jna|Ñad-mO['s 3N~ǚPXY4\.?,6q37 DZ *Xj jD{AJm>HpŸm2ɃfX֑bW[3;^?e7|ye a7툆 V4ѴYX4n#X$RZVNXD8ᩜ6.Bi|á_૎g+^&Pu;i* W(vAڬp[^Ѩ|SOB]0Ъ.kQ93fX`.D\yCjeaW>TZUY؝E&QV hx1BtJUR_ j U3?֜Zr$ʚ9CզU^:h5`yAW(GaϠCUY,Pz AjWqCEЊ+i8kƌ/^~Jl7N]rz8ۜ܏ӳa}-cY4"3ĻqNQ-$mTK.+/^)BʻXT#稖~dzqIKSAUF+#'te54suCPh+o8kƌ{vjK\YU &=uy18 Z-lq82}̸C6өO6Z(eMOU rʑ?ESRl`1%_!c9QAǒdd; /ZaZF@5FƊj֌_mA'y Ibw0]}gZ7<=TnUZAPYEc #lc[T#NU?Uu,+,#-4{`HYǪ#ZE>(c+:TtEϒ:5cg]Ͷ/ /@ b|X=5JoGTLQ0?z䧷=.KL! ˠT70hj@7֋xx X3A %X m"jaȨW,m^ cK ZS3F">.]M1k"p@ϷwUˉ;GkDz{ҏnxSb,-c`)ۗw_4 ,ɉKa([l9:`9͆>koNhԬ>QMq ޒ%x2Wqf5w*7)3fTNFuM֜{)N?gM"MV9m Ю: JW^ ^|L2x6WzZ)9WujD:9yƌk7փ ޕ7*^D t6׏US˪U_Nt ֡޾`]"RLzZ*wꆲӓ\11Z<@+kXX-Ҳ+ H xrf{e!$)i6H"%$>i ifIg"T:m6aN2I3z3pR d1bzvOyQk:5A@SjU{AI݈;l|1ߩ`͘i)˫&5F uj},ta.BT6c(4p=ӋZ:Mc^ydsK_ WDo|,tZ h%3[aG^%z㚄FFql}2EUVcׄ1|7U͜ӴO5cnxݿ_-:!orgmmSg$r.u*U|§p?&S`m|GQDd˘"?y|_NK/?I)Pʑ֩PxQ9ZNu6 rchNqKm (?p!?A uҸJ*sm}֌Nj/p'kIjV*T,%Ate'QyyOaS ݻke(zZm] 69wC+7j{y!9/<#<#ڼ֎w{lbS RVרdԅħ"u9?eсfz8䚀5cm6k/;8n, uJZ5偄b^k'hHYd jT^e?gNH*5d:;rsdD"6 ]DV:%Wa"*>"kI||楟MFUag&`xBku?uJWNyk i.v nZzzլ;!񪬽ETXP{[%Z:Yف SC~5WPkܗ]-%9 5XNu'v6GSЗi+Zc@ 0x9VՔ'8ymi 9G1k]`YioDD ;qRʡmpL\u֮7ߗ" h =i)p7kw_? W̕ E4&/:6BQVF5P:1dP2V3{;R$qQʢsf]}ƌWHЕPOp IF T-c*XoX{0 ̒|Ь^A܉hwuo](oJg9Zj~+$#d6g6ks+,"p*]P/Zi,LAe49HvO_1&`͘q3ZuMʫF:=MOIWX‚=LF~ٜS,4 n эeT Y3kA*>&(7&Pa,"FQGiKc%אy}BN,@?X}ƌ]ἿEpv,WbǬ3gè}C=PfqX ly ]%{FY JEj&RՔuGSqDrY3z-Pu.{\v$CZX CZ}K0>tme-Ɗ`* KV# V|#3vfԣIv6ÊzZ (GuW-_=:cìU}j!0,'ꜹfX;s" #naqKGۧ1 qZ7$]yi&  'HQU l^:=rl"'xHI3nLW]$}7c}!cŬWN^,q6J9E7eq>i,*KBo,F4&>: #\A+UW/bVG%gUUA)>5kƌtu`h4Dڻ*o̓cu#UShHYM0ixUBI#BT_Е,/ :*x "TG, 8s:Қz㹪Uן|̍ӥN'$ͺ=^!b=zݾԌ {}R `5"<قu#5~=c%eY_t~9܋JTV=gmrY4wU0TPurڸ/PƁf㉕ſKR=n8n&W(& р5bN$A*l ~+05c>\5esuY=?Ǹm~t0(w :` ~eF̪ )ǡ v'0ϔEє8` eWx^O߄9 6cQ,qJ*<6[pa!bֿ5YbOn].J$]<`׫huS7هLJ3;[IO?Ixūj5cƎ8mEנy`sfyz4r,u@?Ԯv|c%"msm>$oU%ٷ`ӿN?JBZZNZN_Vrgʑ⻒%L8J'GwgZ^0nxr56sk쒮j0]=3ZXu'ٕ;,fU,Ns:ֹ{;87Z T"AEuuG`XZz.D?:'6މ]MJe%L [j$2lȒl+Yk|̲ETjmxx3ǿ:sF"~JNBC2x4QZKy";y2l&OKK3I٪|mOI]ӝa֌V2. S'h\z/ jն.RSoLzKO :`b,*Qص#`!|EK%֟A3d 7Z7:D_P՘D3MRo7R38䃜 D'觀$x+U1s äcd X3f|p9SE,D@ ֩H!Z8Tt5cܻa<2oʐnʙ(LRq+?oWZ~P^W]7+A\j:9]Q.({Υy=PԦݨGQ X3f<']5B=qڅS4)B*\:;Јpuv5Y"֠^ue|9!/[^ f.e%VD;Fh_i+^Bم37ro~RLjVS?@UI%^(f9[UV}ɃJLΘtu}`t䪦j R莏de1Қ1kqD(+Ka\$ij?&_( -PAU~B Q&F{r+h噓E"a {44T5T:bUsjTc睞jXjչOHۧ|bunh&Wwp.rdW37Dpm&$4eTn^ryiSw~%8R"ZԞ̎ 6:Dfn\n1m Aop4hlG"YxQTxf: ԎjSY2\8kĥ j5.Q%)P4*ČtZ~Yֿ/Li1Q7=xgg!~#L\? i==}+ 'zLoo4ĶBR=`ڂ17=AVZ{% b24ú#ղ;1#!c]Vd,,>Q 2&CN-3O7o+_U9HxfyUOr[_U߱wW 952"Z<c\I&MFRRJ-?;Fx,0kO?<]/ҡq*FBZyĂ!Uw"%Êm|paΛ8Q͵cSp4,:Iڪ*6(xeֈ+[ x -šGySaڃVsD>bĵ*c>זUT)ڨjJn_I+@7wP3O@t!ΈqN{G7?(EӔŠkj%G*J[p&}ֈ=IW`jsXrPTx:}Zio\wՈ$z"ڰ>А狙RHW}.غ'-yPп@}>t;M{7oL[WU3Z|ׁAkֈU3`gLަCvZ>ժ")00D#>d\:Ax7^ vz`MylCWsTw?/{(w5je Ыc',"ױ׍1?ŬKU>{U/RPw”9Q <:jW#N۽L՟(?Ggkb햻Zc'WCg};O!y=X`-6GT1PAU蓔sjU: `tk}#ddIL.mTrh5 F|@RBZbhHGzҍ0@,' 0tSOX{p :xݼex5W [F:N-_4*:Y4.5FVFk*N.U{U> i#v[&*7nj3b80Ps/#i$ QT'Q-N{l4u8k;z>Jf 3fMIxz#4:]p`^~wNXTm>|&i\z15{1W)1%4>as tY~5:TD `RoK|L֣Ztuv5#nR:\ =? pYHOBC?ӵ('GԠdc5:jWXuX/GZVvؒ`.?z~!_/_$]E Wh-Y] jMejCprN ȭ Xvulq'}W %*p*p=)P gtwP !3fnu1N=?d,r(*/J0Jh=#SᙌqAO'(E;wlU+Tz)0,ZsZ.;gB IDATI_S~+jpuTk#^Eԩr*M.Xt[]Ni#k]sZȈ`UE,?bz/uW4O* hNNF wG({Ka10K%3_&rʯ|*e [8U<k>]W/ˌ#ޛ|e} DUd[kmU5uxkts›`k3=xM5Jȩ<]m;lzD2)ߡXx#7PXRk(i2 )9E[w5bϑzզf\DҭPg۫؞o]:˞BzS"deTHG//ߠ,@O:[(ļL;Daj*Eeu̳|HTd*c*Ꮞ#~tء A+Њ^FG2Lq*:ʝUc߸xJ*x?*yoT"X-F>T3"w/ 1av/NED6cRcr3>HLħWv𨁔 D+ߦ|cF\jz,Qu:)zM"xaFۄn} DPjKSI,=x&PyCx!$2xܧ%+&bIx2Aqf B*>"Z6j9ݡ*v%x X#IXU93hH@jl9QI"ꧫγGՇ^{7]t}xKɒm.W)~<^[ҋ!_1АtAhWkp\ ߊn+2~0œx \Ѓ414oX4TZ GKymL#`q܅{G&U:-YaKjfNUa(ŬX#FvD+:GC7W$=G "V_ _] ::$Q  G 5@MW2hU$#tW{CZ򕙢 SH.3\(E*X-ƒ_2%):G *ZAΐۮ݅҂AWW{8)_I* ZjW`"狫X@&]5ּttd]1vI]ϵDrtM mQX#ߕ d++%V"E)jNKk n#FR!_OѼRJhζ9N&-f-ә<)*P ?C F{:7ْ4fOFi6W˒U/hE|_BWV|% E5QNˆ/PX +i^E5(_-%WirDMX Q'hCSҵJt ǵ9-)',/kQjzk7;th`WPOM v K3%?wx_1ѕI iRܲ$3 ij05Ʈ=p- S4tUWZFXZ`CZt՚P<\%i*lTI|mO/jFcZyvСm[JWhFԵ&wi:`9|jf UWqPcD,,ѵ8՛Y,fm9-/z+4 :}7G2G,e-_#IT {U/ERQy Y=8Nmw\R0}qQ 'Y5YWYB]18.7|*"telWiB./)ңɌ/4o0\Cs\qֈ눟r"/N*!i4b((ZiwٳڮX8ObTΞ*49Md{.dVV? U-:ALZhl^:#"v)b,+Vj9;` lb.]:zE$(-Ci[ooprc$Z'"c^4)#X^UIhrh7vBG2 :Wȷ1""&]. D*u>5p$ҍgrB6xkֈ됯$cU`͏L |;>6;;n.=E%J?}jOZe7\G|R{CЪ%ȧ˕wrst1cq =sӥ?j&Uɔh թsutLCX#FP5O %yQ1md o^^G]CjNW=+ )g7 )Ti2so+:p([ kjOej&X PF7T**:,"6 ˰` 5ܥ7\DJ]*XC\u3tuԡ<_&:jC-mriaL TU: R{b% uͧ4SVEۇƌ;u#58Uq#Ղ=d"1򧨩6]ikP%=&J0֜i>c\LHi%*3T>ժjAIWZӕ's@"pRr%_~zO̻g"jHe|x^,1=AT#w [F\Ӊ`,jּM[idҪI#q$3x+^ WeE|8EIRmpj]Vb)>[Ј.BR㫉J@yH;X<3 )Ub#zz/Td"~"v5Pf?yš?5#nOTIV+f5‘~ Wc RtWdK@ E YMvzD:Mڎ:X ~, tUdZL!tV ,k".?t&LQQ9.e+|L_KPҙU4b-%2Eh]x0nw0g)Ti9U})NqJ< /Zݾ5WYB*O {]ڛ] !_}(•ɣ;(*XӕoRGz.0jS9xTfU~1x]Yw ĭ+n^h1NPPM`3G 󰀳f?DHb51BR!e,\F׍[!񻩭] QL 9.tpAj|GÈ+ 95{UEUy2 E~+tW'b:O!aaВ$o=Y`-,]lGo?m U='B#%3(5H_k]Y1rv>ծ69p+JW#F܀t+4i.K -U2}DUE+Kߧ|s[1g MKq8NҒ`;f߄+7_1dRw-It5%Z-:4ִE0htuiWfQZ} *f&1ș}HZOt풩@au~+Z_:%8AӼQj<)DNJo"36 zqcjw3/FgPPZ^1 e2ְfեNK \*/Șҏ4D iAK}xCW#?8 Gj'Cr *XAêE8pѣ`kYTڐ=h?<jXa|3d#P@oa' T׶n tv/VO/AKP%ۚ}WM%Q*:I>0D:|hs͡0ڧ`\{0a>AAo5k|^=#OsO0caVH<6=4H](&h~yTyi>qJVP[Oo`ֈwKWhwzQynӵ"9h8]UVЕPE/f2 ۋ+/\#i"ZAW7P  E&/FsF <&։ /_a?CACm7~V; 03}roFXEDP~DWrqT9(C@ ઩}HYC8]ً]L`dFmY+U+): *욠Us J&vY ƂZ }Ȋ $\jECӿ jJ\etea岖UTikUw`$Qxnk UwY/҅3ωE8'jWkoeU!_xک"/Bm6nqU] ZN]UW(BcLA0\PPDd #\ pl"àr;8s=3x;ȅë7uyz n۾fk+2u]|p[BesE^=t5U2]'Zh\(fӠ@ W_ZA7Ы Ccs?]a1K`C*5p* 9!˞'[m@PYJ[A cv_;'/Y 5W;'g +uzRo:U~82Gl>3^`NuqJ3 㹭X,LBUܢOU[j`zRwP' IyVΒ]@ Ftq(lTzG{n)[t]^>:` z΂vUFWI/ZŻr0C\CZ%KlLLCj\Hjܐ[k D òbÖ~@=_ bV B{k uC+LM{WƬ)}|w{x#|Dp{`M&j5V;80#8wO3wG? H"_ՑG3~=>|UP. ۭ/8e 9(C@AW9X.O?o1*I +jU\e!lɡfU:=/ w>Ђ7ra{_Xejg$y;GþĩÚ+EĽn O;/UFT9l V̺:mtEwW^VRNJB+{ߘ)r2Z]5ZKWX)%N)V [fr"WDZ1{OK4e) s"̤y 'uӀ?wփ\V3;.AUP\okF뤷y''mҕѪTZ 7Vӕi?@WfQC&.Zj*X YX0XE} %]^#X4kzULYTut|2djCT_oZ>=R ^(`+C,\F1ht5 v'eUKwl h/%C?EPbN HYyv4|t-/v&M) 0L,lm6>yP+i1jQ8gU]uͦYr h 39Pb]cgNX; gZJ}R j=\'MJ®ժ|(rZ`,VXUZ. RE]HGc):1RP;̄10f_xsp-r#kOvwHWedߘP9.]]u6'RZWMT-BCYIp5pu/  rTKB#;+P'1@.]Ѯ ٓ[H6+10Frn.DK 7wFcaٛVr?|7mDH#, Aյ_x9!Gaks˪t68C^{ yf' )eJ>GiZ N"y,C 5'r&}>S7 0f@Wi T?ohe'/"չ^g`;wҠA^^IPPSEetkW~pYKڜb4&>ZPպ\gǫbU(i_~؉V] ~5"F*R_M&6JlTq '5<0m@mado幅hn^>|Rĩgtx_u]'KҲ Qn% tUĘ$8ꨟ=] •JZ%tO."tܨ= WU~jTG_pRzEU>!,Ce,:j';q:_x-ՈATu^l: 4 PTzj^Xik\EC*cړmIpa(>p|UݖJUr"bNV"v' ٘/|Lm*K~,?_ Ěpj7}8nWo2b 2ZNz9;q|t5ʏނaW 5qy4(.i(r8B<0ho]ڞ:! âKբ+4-p W-Vͧ,&sKP^Cu^q<;; 3dO|W}Dƚ.|D.R/i<|h$*ׅ^~ \{iQޮxVndv-XmWz^ڍ뮛}>3\@I`Vh"y^a?ĕS*zXF~,o cq;g78 欽!08\01?.}~ G\ŵE1kBOP}AW1]+k^% bU9͌?jP>I,bQШe ,Kvd[rkS;,-{ ظh8#2ӵǙAꔸY{﷤ѓah/péaĐ>ves]fR8- g%CB+ gRNT_9zD.r᤿d Ր(,s^8f̯W2i/BD2O6ֺ M RWj5z {7+[[ً%zPnX.O6@AWY{~ W-keW"$jWx]mJ vՏPLjZ 56 &[Qc\2q*Cjp9jwceۨĚvv$Z6j}WѢ(F 3tgZ'HdQnkW-[|Ea/@U+$COUՑ;F7B2E'&5PU/uoD<6 C:pfI &diMȡD5F|5]0ȏ3*N|GudNP% dJUVK6S*քh_ؾ L=]5& ̪jW:-UL"0\NGPED[0՝#w2< Cbf |i e AWnk9GZ8;Ⴎ OZae:;-LD BM͒2UX|JXVg{r[0) yPԦj}Ծ U+d|NN$#`2T]ޕ^uy3i{P::~tˑ{4wd ?TL,n֞Yҫ"=} ,QN} q+z͉qAEK:-/@GRQȵ ULz"]J6273-N%z:X࡞mW\u^S*i!H,B U~$ jX 3TY2'Gևo~ҙx1˾O]|A}//2Jg\U PeIWPx*cPW?TE~LPu:;angO),-=`}wܾ%[ha&} te\ op^Yy_0Z-oBG049N ZUprJWS>e⹁?ۺ?VzgBG&3*b?9!}(DNKA}?G@Fb_`.9Hh2dP9e4G ˫k<.Z5j0Ɍ"o]5̴f0gһtSCRT. &tmi. `hD&ָlՈ׈Վ_֟4rH+9F"E푪5[`ɳ>}&ZAOysG*eKU5WL' ]ܚ um*빞94t?cCՈr`~ Qm/]]tu|V g,*+˳,-IV;s*Su"5e k~WXd,8^ړrD^Q,iъx/fODu\ӎB ՊVYb 4.HW#1hK`~j=Y Ͳ.U՝^5QXj D%( SP?YjHSe3oxU~|@3+%ն5XCa&#:LÈD!=#]Kk4Bj\t|Ut*]JS (5u58t"uuW öI" PǼU$pűb]q\Ү>j6j`xo,,٦VAe V[;K[|8 8"R%nlUkL͙_D,–:㷊m, /F|m˗iZMWH@XjĠXc-L=J GSQnkTT9X[dI2]_T{+AZqGTEZ+X$6qK|X(I_|B+ Y~Ԡ+aU:y]>P :$Z% >bL-?e/:k JퟠZZ-\ .i/m=ku:6ӋTIW*-!] &m(^1ojňo5Br ԥZDӉܓho3΢4xQ[lѾz;,r|wjȽRQ%HjtU˼|>\\ ˒{SkI:,aO A|h4쯆|E=fIE]/fATT9X3.u_p8]~E3(NZ#&z}~xJ]n5-jZ#*בNXuZ*/)O2d綁#]͚^yE}yATɲ8jQ[ijC=H.RU^-ǡEW Y@GX ZV1̣_naĿ~pQx6۫?G,*z`Gul*[i٢̓ibQ}5[\|yKsft'b:>Ռ! S1gp&9sޫ \uz `kmhAWy%HҢNKʴU+j4a0VVX3<Ӌa^"f;Þg [)s.2D]½S/(ռOq3RyVDO' ߁#j. b[KiW'28DZPԔe)BSյ6.Mt8-\j[4 ʉ%CUhͮ0 ]Vkm՟VȩVPA/z`'>'x tQE={uW\JA\%P) ʶ%\iҵ]մP Xw%8ȕks` Z8cUkCpZhe/㢨b3l7c*;G]# 笼GMȩVV@Br;ߥ74wCJTPмKtUF ~ ^{DN_\e* 0"fJ").SMmgWXw>U֔+[`gY jц7C&"KDvH Yt55ߌOXOek'ci. r,o9Hڜ-"(bw~G2)K*,UWLV|˿ebsUQ(ucV P2BO/Tfk[`}k&勻,:ZQTTPk-݋*fnt5΄-wSf zB+MiN K'AzԷ4ˆtcv+֗I`-k(j\cꮐ`i\ gJW ǹ3h7r$k%EW ^h5D[ 5"!k^+Gs"Rsfb˒!R, m?CO_oJW 屫ɽt\hu`hnkil8`D,=Y(Hj<+Զ6.x|e eF+Ws=IPZI(ELU|s /P_>$V83Wb},/7@ tus] +][EQ UY]4Xc]$noa0=ӺuK+˰gYe-2PJCh ! ;8`&XK 3Iqi:Jҧ>;j1VmXoQKR s05|{0_?ACBo6MY@!/hg| o=srJLwCx^umȁE"mA^x>eDCW#n2nW* 2IPmcƒ׷FimG Q2F/P ױݩ:l7bUfM0zUTr`f scҝ(QbĵQ=2Z=z*ZI1,aIzy 7QO~AIZ$Y >8M-[aN2kĵ2tҾRѵ顴05W6ҙVkcVaР暜ŋDޓb'2z~){-EWog(I@d-cCnA+#3pôfd1YXd`5 ּH0#xCp3Yڑqkԑbqnص]@+Z}uX.[5sb."h5l^-n%1vt0)jҤSya{92xV߼o-W^WѪڻH/QAt_֦QuU.a<,>h yRN cTΈet^e+W_&V S.8W!*يDMP\:ZӶ'՞d-ҫ6Wx5J' h¬ܩFaffRek*`ݢl*{Z" q4JWW\2]g g@AW$ޕѨiedAWVycIK9*?Zs8SG8&ǯ(`=V'7UgXOlq0K]@^ZNKW5#-ŽW%8kI1gqfpY:a}/_u,*匶ɪ݈,!iq}8ec*N ¢V3eTڪz V|E_%EڷjU$ '>gP rNՓh5튖Q>b5vW]EM۩AMC\ޢ%\ ׫7'3nd#S挶BQoTZwKWO(LzL~'@jNlB@8Zņ3 aPtZ,8Lֿ= koTy0`ŬwEZ1+! YY^+;Ոۋ3*]k ZmӉ֦ShTTy:WOeq2QᬡYni_CkKUYF@h`Q#}{NX*?kiڌu99T.ꢶ}9c\o71`[wlZ(<X 'fCWL| $F~ާ"]8ӎ*,8㴽 UHR$iQjo`;|d,7\7sjϷ M˭5Cvj릭ZE cWhGwKT7qOAZRJ,Ciܪ"IyLQ$4rQo+?F}*@W]C%XQƾݦ3EBQt mƢ6kONc4wkJF\F7:ko؃VXzxcJ>H0 IͤCe{2K| 5BUkN \uZv%pu.dZUs$En}G4 N, Tfaa.*rF\XETH=_^оt5j UnNF mqDusZ#3=7q(MW=~z e`&}mVtm +^?inTMY'7`A64]5 ܝI$uxٳ(tuY8L,Vq<`͒y?0fnM n'4\3jb S2*ִN턶_ K;4L=3q`) O$J얗qHj}"7u{R:bvìcO-Ϥtu}_Sζtv8lsm̫کt8>'IW 5 'IUX,UVJ@w‚a"&F PE Zkm:kqJvÑ>ˉ{8QXt:ބr5X =BFX|r{!VEe__6]VM/g8?՜-mī=r| g+o|z^MDˤ$Z)EM޻Z(]@ĪbNXA@Vh( dQ!ں9ԽvTt%5v1Ͱ3NRX\,7+& /P[\tPt5?0% EOq& t;U[=O/KS~3_eҪrUѸWL,6h=(|tUAk%iV=W+Z?-*Z qձ{JWՀc)uI*qCqlL.e=-Z,` ?Ϭ(`: [}$ŜO`Z=Zx|ôٳEЊVvB0I#E8juȝ)Tjp:Qا%8f\^#]83iU}tVM.xU4PK@/ v;_|*ڍC™Əa>:%h%Y3+ *-* Ut9HpG* ؔS2X5\O9۟DKgU/FWEwBW0VjIRGѕ^f4gRn)'6,`=a0dfG;p;Z`hU Ш4A+:4^W7 h W8NQUW 8˦ct#7oO|)OV r?+Z7F8*P@i[R JAia|?`2EQLɪ`}LJl.U+œE}6IG3dhE˪F?lH+4+ϧzNT!_qQG-OK鰤VWu}yx gs"rrndB,jJNχA'  !kqD<$ڞ7zܫ-YPȏ {{`o=c:yF_>\f-4$:U3"}%3mohmu:80nA 81]gp/e~ 9NvUXCj]{XH&pڈsV !=4iC~O(*4oI מcOau "ݪteHU/@,7j#ϻZ \jM֠J;O‰lOX@U#%U:gX߉ӕ̋O5H搻TUZ;zq8t[j9] UUV,u/Tdw'Sg޾@j&EUj=X#. rܝ`d\*3W܏l)hc;~aþW&fHkkeq+?R=77Gj/R*\v႟Q/3 h2(f@X3PfbDxzމOU41;E펯3pGcM$C\X#:Frp]hD*ߋe(:mF ilR{Cځglv\R#1zLڃh!|%ǼaGjWp-0 |!mJTQ'M'JY҂{^'{qV 5 jxӱ(]-Tny?֎D`u5:/g<;<=UO/>&N7/ipCNHR9fUOLOqs>N/Z OꔡQ\Q> TmpeyEqnQ/e,ǹ[EW}S䅱VRF\SL=`*DILtMVayoXHZ%|Zg{b[4/eO𰑹JN'Tg&~Hyh,Z+a:5hQo.+߂ٚU9*{(Ds,LezёKBղj5k|E6mֵ%zƑ5w "tucd߭|uAʈ@(QIù)=/U,N=ή˳qQVu5SpWO0[-L$u[ )It E(Ъ0b i.:b\P$TgMÈw}j#p(G2c4Sq6(Uҟ*cQ#ꞔ *D|NH.'lE9g>~10ԞVU]ٶUJDݘ'&mZc`NPj0}NvG|כEjU*f>{S{^$lJAOys.dM]ԏZxN76(QY>F^iRnY`I_+n{d]5bM=Vuh5Vo\Z%?P{|ֱLiZDH%_tŇU?UX TI9{ސ? Y N-_]z~V/~tUbT3d OVV=6 + IҕAUӁvPAW#fbS;p8 |D3}=h_/)])[%E6s(r\z ۰%OxUIz=尿Oŧ,+ym,聪;nvb<ᣘg80)" ;9Q& ŵ>ҫvhd]U^ӑ@P+Wo.ٶ=ԼsnV1 2F <u/ooDW8]?2k~[ʮ"9džphuV^n)5BUM)E+ 7p?n    kDvivwe{DR|I*IS9ڸۇ|u?D6ӚϹ3?7_1-IM -¢>t,]ŗ-ձEtU(Uʐfܠ]͘Qg/ПWY؀O'_zZlJ_J٣Zըt&_Uc"?U@ IDAT\eup*"Ȏ V#FFV"=?C/oWkm7{7=So>̝} < :HjNNlhdE 2h1.Vӯ@d콁2{1?b]`)f2̋ߧe}EX(\OUVLxYt|UAÈ:W_@;"P?!>"<"@ؗݭs29xsUJ?VMPW5!uL`пDo='V^Lku2Z6 3{'cVW+)$+z-u >^Lc9vUq]TU_7PB}=Ĭ=Gty#Έ3~{WLCνwUSR Q[h_aw!@n@PZGtԧTU쉙!f_  91#@L&wK 3kOG+@̈TA)b%GK 9фhJ8%& WSL)הkŒ#ſ6]{*X]ei8֨=q6Tex3lo 7>QRAYl2Q!5TX pzj`Mjsޒ]hZmgoX=Oezr+3UOcknOې/Q"Wqzo-\/6ҹ.kI\t6d$t5YZT&2px $duN]RFf9nt\6JrNv\T͞te8ָ=ig+; :Lab<F)_3 D]z;_Fz%8~0AO` ⊰V7jjMdafbddy5ןZUѭ]U3V>/qRhLD y %?W o{.)VҔ l 6.Xa\<2ߘtMڷEkܞV(fTz4PJL`KZnFEgT5U{#m$.8;5N(KQղ RT%,?sݴ`mӂ+kr|Bڋ{KͲ#{HqVK%$N'Da)OqEJRd)EA!_s6J,XL?U6ʂ+kCwv:c3˿']lFK8[hg,=x5aԩ rE-ќhN8BUFD1aL+)2\]JƱ=(s5BKtV!rbS#`3]w6&]L[JUJ:G *ᯕ)qވVgbUMZu6zC{HSeu lO=ޣ,u@ډ\QF+:HyZOgz-hJoѪ0$'T  )*<(B"&/6)Bܙn1Z\夫stOl~#>'>}Xk \nR#C\/]-]-}Ό,.eU%PIS EɌghwYgغ}]Ծh]g=K lк1ǡ%@~׾r;659ٝB{blp*+ԙnqU@nI=:W5VvXg R,SGsԱF:m6F*й VSrN7=}%:TCi~{J6箆_t>a3y#j8ZeЕUe P1 ŸwyBـV)GVj(;ÃS 6+uqaۋ,cG>&0Ǿ[ԭ]xZS&Oϣo13UAm9-Yu(cScd=j/һ- 1C8 (\ us=ӑ׳³vJA?5&(+#-QX[,gU9\\q0 M氺*X,D@7d!\U=;;ʰcTIW(J} .n E$L$!$ NE1~_­©Vq BؾqsNjT8 s҅VUo1h55֙opu~JZjiu>My"Zȫv`pa-Uʷ*puūˈ Cf!ӀD)YQi5`YvUNयs1_X=hep15!D2ιh5ӄit$`$> &H+xэ?Rߖf]U.|a=9BX-X! rjkS5X~.[{Ez/HW#]QE&c| o^E\f0 L'߲TyMyE^UdUe͑@ɪtuCħF+h`?ٔi$d0 H|&W_ GZ'dd[bs ];*8&q{Z_پH b a7.ǾKWZ=w8cErlpg2?o񾆷0/>PDwbWS NhV\f~k%Yz5оzT86OEp + xZLeFqC-;jʕ.υ1 l.6֋yUw]10X JQplD)bt2H ڃ1]*|oJ^MZ5ۍ,*#w#kpPQ]VET=71v'rz &F .ThFO#2XKA޴ ֔hi ֽX_ոuU"ڶ*P3AEIGckQ:XEE~00N|U7F׊.Th{٭W^j֯+K=WvBNUÝBn@0 M` _WCJ*U!hpMWη]dU l<X ,/ B|)lEp8f3v-dJ*=}5+K 9=מdi7kXRnu2G+.(ݟzEl@N|]2 "]ź ־O! mp)0&H|"bMX/)no?}"ek]cVa[Qš]nőn_WXXZ˟lP Xn׾Sz+Cvߘu"[wh+s5{/&o-Պ*Ul\Rh5zEaeAۼʩZju,PΠw)k5^\4U-ʌ,eZI ,805.pվhL9lgOWɮ1k]={0\[u@HO$ν),BU좫:09 Gz2F:[ Y0FKJ.0\\<GjNAglrvd˖P?s tf-V׬>.wb;OUD4˳AmW)%/DWFs_}K /m5k.v\R]S-79Y&#-HS6),6ִ`; ~wg ;P)|X#`u%_CxS}G7}߲8gCY<jTP/(d\XNzg6Xw6=Tm:EZqjW5x|[j^(D*[ⷄWTAxx>^@\ST/+Ҕ4%]ِpgj%7.\%BwUj?5nOnKvkLD$V IYЪ%X#Z=V΅5=R, 4Y"4rkj7+26e4iki&YupvnL`9*ge$N ST] f)`TfnjEt='ev{ZE8ֻ\\UY;t5ТtY`j=-XpN" Dτ%chE)jbu%\J5n4K`4^f>X| l`>,'ZV{`qlC7~A%H/D A !UAZt\P}Dd;蒕)Z t#Xh夫p$bYg/fD+hl`ՙ3]jf˳9KI@7|"W{b-ڣkuFkUHMQ}|=&VT9 qOe@/ٗ@_OR@,r(MY98ePWdad92ѽ^YV^%qu@MS =]uV[/Uк.uLx 9f!;XtwqFb/C?W.yT?Gb`Pe CXE%\8=RVgoZuUX,%KvܲZz]ΟZ JwRfU P"%-*RQD*JsT l.*Jts]U~Tp*XC?׻v(>'?!92:RuΈDzou2.rЬdڠ+vN: Z!C^#QW6c:^VZ6qBש#Jw*)s򜬺\_oe0N!zʨhb^hx5>xYm 5Sjbohtl k*Lw\\00 z @f_C>3%F`C}v5]f=teHV`Q4qG_3lv% W:N!Po`M^S_SRlvHve8a\˨ u>bFdbV %2sTQ>nv-p,rgAeWop9c3'ā ӜUz:;YZΦ24:{z%+ 4FV=oUvr3K=2#HӻTVN#CauWz`oW:N]%h%]RVlUg+cOSm %/x5bEDdf 'U]te|w']$f`YpG9Y*%;gZU5P@ŋl<,<51{솫|ß]⽆+.۰ˁrI]SwiyCxמ}[=Bu0*|V+.^s1a6a>a3L"&XqT4P/+[O?Qﰩ m{agPo /]9#x\ IDATʏ[(F{9|Fbi6P*5딲|tVPϧ^~q?g$Y}O tL%\"8^ [+Wx/AoVH &J$8HUU`1XV3O \5HBU3]UNUg?Q3{3CPܴ͹K_!c(KۉVAWϷf2irSA}m(z^ۃyh B͎=nH:ݺ:EJvZG]Ϻqm՘Au\YMy(]UBh^7 0eT^f"uBP$5VʜF5|&[ސbi%R8bh%Z Nsz(jo.2csg f#`RQzJa>݅V=;^!vxYD8샞<}hqεlyðw D~p$Ԭ㡑v[j=mCprju6ca}KzRȬ[{2jR>+wm#Gzvt_`;sP*r @'6eK!#^lRՒՒ-kn,w|7>ܾBEս&Td:JG8 d@sU RcrErA2#>4!O&RjMؐdYJ!ݐIlnY`\唬rkSܨ2O\5koežsN[hp5=w>srQ$ZJWUZ|OhtUxe1耪E%xFӕr 釻!`uՂO|, lWUwh]םj'Qё{'&OCc5wt/Cj5|/ėlU + ՆzE%_֤k[k/ YdU x+(*)!Aj*cj}z W_$huf/[@&Ή$t+S- ]t*tAmJ`v\pU}(sXͯYαC댃N1.!Bj;3\ Z!^?IģUTk jEBqCvM׎6u)+2 {};7d`j*_C^YZ}RoUtwu :Cb̺:XOG9 |oJ64V{J]21]LҫƷrd'VCv! GE--ƨ5PeS(|DBl*_VO˿|M+K&sɔxJ<%l*KskJpg YIV|mWBV)`Rnۅ:V?H yHW#`]ыVodu% 37Qڒïa_Tq_tc/JoOArսwG WFU]yJj}/@e%߅֥꯴\o3}r'✔lꃓ?eLa+&L.H$se0% <Şv¥gkViAll2L08U%zWYKg^t#;X3jNd=q>ڞ] ?O4 #Z=w_[;ɑau Z=`3GQ\ AGb;/H[nDl#&ʨ}BSXQzM}K /s,SW)bKe@Ri@ehW^"=7D|i4b8zֵSU p7"(ƋO@P'./5k sVL(˾$%;į^" )xT77w(]c۸pqzOQj((JU+'Lgx*E2H*s*NSzI LmHoԗ_a9ce.}0nWVhuL'ɨ`=}bC{Ԫw/?bf+7ndu-lƊ]2T.1yKhNxA8#5ފjE8T Vzj5 h2O6dHU>3]/7~oxu%/ϙI&[J7,,ފe0rո=M*:"_;,eVU>I_y2$]yf˄ U)LC&Sc0_z[$/ɋ;*Ѫ5bl]ɪ]rT=pHjl pAY#c9ӿox+^+..h51%+EW\X>~_3F`de7!* G 9G}9ՆrEXR.)n)n( O~$/kWӑ%@m˄ Z`0 $L jyyIn؇l_[˅9{ixa{r>x.]_8agFj7ϸX~V*}nn'>㏼G8ߐ@<#_)bkȾII[H i.-RziY׮7Ir_Q?`=#Ӿ3ޕe|mj.ug?G>~l2kO.Fj5Dګ=řnϧ@y Dj,pNЅ$@\0J&H#dsl*"]IMQá U[ l}у9` ⽃*BR~CqK~M~C^dyNlt2 yW)7`CmmXt5n[^+58ˢf_w>ȡB?=m12ֈV,[' :nK uHi'b?0\m?m}j]2nHj@2jT5[ۼ͝j")B|E"[WyM^KJ~\eZI~+uCW^\UxP]9nAoR? 92x;SFuUJrOrojpoLW +_ d@IY $?D\L{#mFe^TUڸWUYC$.oȡHOZ0t_ϙ^ݥL$S ("6%ŊbI6]/?$O: {[\A#pUBY;GFzNк视mV,\⥺Cq,YJOm.wc>fc|t|| #] ͯ@%jbEEP+_-]R Y"*X @~2 @ rlII$n_Q_ H}C&]NAKu-Vj J1iWR:. 9Zz֓uj0>QaUUTq/n lAc-Nq2nKzO8{ኃ+C,݉Y+i~*D`s z`UK򻿔b%#'.jDդ &Lwp %,eym*-/eepUmr}9Ūvվ-#]Z-ZhtR_sLIuXmX޲a%\T[R~veo]i;U,Bgnvwda k@6F}^P%,պ:eVC誕 C!ixHW#`YOz߃P-=v|!V\콵!%]}llmJOTU{)_\x2EL&Vi:ghURlT)ܱ ڇm+cX>8α6P5>G)~I2:崫;%Qս{qHW#`~mh1]vgΐW4'T,y t;L:GEW~~w9p-%W\N0EbM^DPCVl .xX6-Ew}|~ow-VjKt5+f@u" ,"_l%Zk*t8u7T/^5HHcPYIL66]ރĪtkUׂsPW/}|Qv5uyI;pp9aoj1 $oH])*ʒ*7)KOdL'M} y;&лZ l*iO\.ﴷG~hi_QfpQmrՖ2XK(\uЛFzTYL{||Ҁ5EW]|UڼgL^롫hXDK1jd0 {^+S͙5gZF^%*ދ-Ab WlA7-`͔^5&$cwxo_]'PuKEy\)j-\*ʴU욁UYB)Y\%%+_g.N<OG:#i#RҕsBǬrՃ£|d0zЪ[\:?I357\+U?kt8K[3냥u%~ [WDeO"%BrUkݞ*DD+7W/._)7Z[U[u -[peKB⪺cW oF:t7U|5֙u5`Ghm1~V} iUՂH(Rn Q0; Ż»{xsf0aMZqAvQ-^-UΧz |qOg$!xC`N0#O=5|eg4F.@îbHߒ۸s`:Y;Cfz39"[ \audpg?UHWO@A5pm*+pu_">!qMs߭)p%ˀlu=f8Zymi8hfOԠhޜA^3E` ,XNQ 9ʩN=duOL6n#`=#^-Jр޷BN]tܞκJA+:*"adpF$÷ZcD@KT zxz"?*N*0j\XUPX+\hE/`aM Vb}tXdtvU%̲}' _uqU9ZpV.-aV #pl,j;=׵ݥ0ѹvlUBN4 j5F홪4$|U5@:FDCWao@**= ]̾3'O_F: rj0lr9zJv Azu ' ~C|P ,B80؊ı/ UAXQܒRR,?DJ$ VU[:,zԝjY *Kz hu*r{Gz[zvAtbj{HJ6Y:|,~E֔p`֦h%=>UzihBIMtKp+0m1Nz:݌q`ߒ/gkb2:уA'W%o! n~ad0vu5@l*{TWXfW!&cK)]FJzOKSڏS;Ѫ7X•DPX(-_>kx2XUʸSUoB'hc%G5|7nud_+0+]reyꕳxpj<u_6y݉P5. zF:ՑCѝtՏVFSs3)*֯Ft_}^h{nmѕ8זX.Ƣ[B*dYS ig¿J'=wv6?[8 g +7p lFjk轛TK+Q._nUuGPz3 TA0v] *Kw 'ZѼQߐ鮥W UU W.<z06ݪ|&h"=֙S ncBIy!f IDAT9|\…r6ro~,B`+yng<qppҕ?|Dmޜ݆0o+x6.UF'j]؈( \Xv̛C+sZ[A:CVp%%Tpc9mFK:~rU/}Q4'k0pKWN*$Nf%6kͶ'5%PUvD8rή)\GHW#`Z!/[kjxR'+q| j.'ܱX E+O_I~z>QO84pUTЕVuXu o̠?'%;_ )lLHLe㔯O,k+H#C7D /zU4%*J's,ؐ{dGAdۭ_;eV ʎWtX0<"]ݷj5XxD ]Cn{RV^5-TM5 .ʼnαŞ:3: =s @2d?\tuJ wܢT$M'<}k鐾C{O5-\ݰs7F83@v2ZPv g0[,Uӕ_YwV',E NjgXQ- TupzBWCj3)um L5CjheϞ-*,5rrU,ŪB+[2$\ xEW'1/ }<+U'Bd˵)g&N8UVM+g ZIz#nq:2QY#^2\ dyVZn5a={A/`<ʧFN'#@}X#-RW5TV)'\  PFQ2X>y+O%]}hf,g+Hb#? JSnnlF Vzlt2S J< ݶgEWC@85Z#outruAkFwX#2V*Wtqj_ z P W <*¯kj{aMRm(SuYS)הK[kʏkzrj2VFKm$$1$bB( :܊ )o{dZ껁~m+Zu[9jgJ][c=`>s]Gz)tu7K;Ѹ` (=IX#]I5/%*-V@hT#mY4 7KkǾT7=$*ZSXɃ6PCA@v.fxͽyjM+ ŚbIy۫ Sk]jUJz J"p8=ָ%_@`-?M ƺmJQt(cNq$<0lt+BxE$Gb } GyA&X߉aw[ T>a 2sWBaUIMΈgxҤ!VC˕V3"H͢g;&TJUS$T:WծrS`#& U]3}q9嫓'h.X|zT=eND-'~XgUcM !A{=wNN*pR:Snׄg:'_j"(sHE{c\U+[y OP`0h86GzҚG~ФU+%\*E^|BoHW', ӕsZIWЫ$]]m5Dn*Mҝ-X[wP ^;ˇWVg[& O'D1qLFQTE"#S |E~M;+#Hc5zK2n+pm'WZg#`=ixhtUB9VHVNh}I|tuz=[ΐ@o\ ,*QƙU4*ԻwnuFu8&e7H_]P +l#*wJFZUKFj_:Z̯6a(U_V^W{~/W{/׻gw=};|˔K^ -2-[$"Eݬ]I;;nCO' L7GF. D w eVΕV f"_HW-ZD`tl7.Hp=/.TT&lo>SwM9VlF0/b "~W. B^J-UbU]auw,e_t{xkH I*xaNh?ճ)wS{]d^>Zպ~*g'^%&"7pZ͕lxY ĵtF^f:>^xqp${ :LHWS|+40ETӦу] ^Khu _`I\Sϓ ڶA;6jtCDcn+ ohJ(Y,25EJҲEiNRъ6u'du92 D.bgXV,b5ո̞@>|{P? /k%bejy:R*NG*wȣK1DeյUx˙z11D5^w-nLQhNR쾒Oz+jkg*h`CX+~j.Lz$^ BFRf[ɞYӼ\]z`x4o )ޯ_b 3='j!nX: *bsUsX('!T1-!{2EWi'$x]E0Y08#"3D\bj*l/XR^S,(~0u ]>;x//‹J"(srCQ Od=S^4\;kj(y.s}U{N >/sQ]1=e}>i`tu#)\(aK:䗞pၵCso[+ V+uR ՚!\PHzEY(za o؊4ʾ^CTb/bJэ`iGX 3y0 u_+'ZUhEQp:x+h' {}T{^f[{]`U`EɌXA}c?s wNB'ܝ txKP_ jPim0R`=7j:+[TinluǩAidR f-TR[ALYngwRjAh-\w6]TumHepկ8N4@zRV/Y?]CXDu*0{ j8]9e'8 D.%RU}o*U=b)b @HOwP[ʏPT=S-W5ż[BUwSeSz -)_fq;Jک]:fٌ85'EV;E}xHW{ }nX@b&*>!/m^b?}s CWULtUtExA8{7Wh5Qhmjҧ% g&ZIJ.>jo%B@+NvD&"NPՅV6]mgzj#=a.D HWg'?gC=OPKz+_^SgT9uuwCUn=Xk z]hEw|Eo, >mhZIƲ˂p U{ℳ?F߀.Vt5(cl+(J@ywRJr"Aa&Jp% W`UET!,y!\uEtAD TE>Q@xS DY>!-+`)uNUPft0*=XDX ?_tVrTPvLЮU{Ta0?Iy{Ղ^zE o^nv|+uN҉,NO*/+~.TLxBm~%Lov^ɶi`X0Ċ("t!a)}Z2Ф;K:.KVL]O)5\hz+gA _BT$T z[H Ӌ.ſT҄iw+AWKgwieI^gfAPV7#CsU:KωVCt `jOgyL|7yUO٠XvȰ$YUZ3QY>rz\SЮdpCWM$"VST\j@օZT}鎋КkK/ ^\,ΐ6b8Е[&fՆrMQ4EAQRhP{"#_]5>Z}J iX^H y W]I?|<ן(]u#w(J@,@ 䎻VC[~;7S<]< Z紽97Q׮Yt"ʵ!0OZ4sŔt &IIfL$dNpajJ012YѸP%UIUP׼BQ*~mzѪ*6]}}}#` ZvB41\ՠUh0+{[ ?û_1+9}uu3c|q\=젫{(Xzk!eŶKV gT}EpI kPX@U_HL"&$1@W01ūPeAV;-jwDtoA I]JְkZuW%#>聧O bl~v# IDAT4֧FɀrUnvd.:.b(||JWG/8[(Vbxt586Qtٓ*0H2yHRD 2Ֆۛ 5tJF5TLB&1$f%Vq&lTNQfw\Um(o~@cj;%퍂UvL=<9UUQ=gd{ǏsX=d^#UZ셵#b5:-h]g)M(No2z*9]%zPOďV^Xeo``(DP8CT⛑|1t5Rs.ԛ!(XSA~iG`A8#l J:yig_ w N۪߯vB-je0bЃG*3yҫO@Z>F498Mѭ5U3VU98+L/'=I<iAUhTth n''-(!L 1kd3_3,|j^}b7kg_fpP^YkiAYYU:AJv ZN휊Y;COFzbo"U)iGDy*vH5G!F*:]fЪET-Ғv "W:kB8#-h"ȨjoOrK%%͓ *5RY T{YzwT,:0|0#\v!LJ{oչ7bi[h5`fd=VzL=k|yqF&9v1Ÿ>YTV_B'_YP9%"ψShBG9xyU"Ms}]i[Be,iΡcHuQrU88F=o xJ&HH9VcќHn 4M5W\DP .aN@*qjB%"u6UXn6un؟՘;V EjjҩZt.Q>ޢ[¬auݥϒKGhHT' hIWLXQkWʩꚇzFa Əյ[Lr$2${U4@&˭dWJ\K3N\gU *RDi~xMP2ԏ_O ^\d0Z ˜0qemgUX;ص-|Y\w[6{\U-\ȩg ݉.:Z-!eY .q&k<&"K״ylLW/Vhcp*`>2 򑃜%fZ\,L pKA!QAH DZ4Jkm>0gT@U!&ʡBҊJQ6Qy{b#Ps+7Q*yt W]WYwHWBF3s}M&k }v88U$IeNWO:uS+~Oqj;AWպs)$;&1Id+$ NKmۙgTk ~ /Q שQ"7c ثU9-:VUNY){5VW|AufzKzJF,UFĬcg=Ι,eV$Cb1p0V#^^7~ԝ0 C8]{wi1Vpn DLSGߊ!TpLکѧ.4P5A _ cNԆ 1vapvՖj0\nP)ʜjO\S}I>}E7ZyV^+}v#*>چRX#s}/}@ ѢScZ>g6]fAffƚ`ETqD}vG'rU=ӟЕuw`Kpb_IBI$)dJ'ı Uӗ.pۊWd%1mT%Ju“h:H̘ݫTIzU3[%ϻ8uWyt%y=Xgi"gj2[W P2QAGyI{O*b vKEfO*rdsr7;&+ &) Ʉ$%IH8&l)cZבH:Nmױ[߈˵^ ZJt/ C _6=o W@EeEhO(\D@UG+/<4rXJU+xPBٙ\Avr|sهl-1hrYjx o0I*tjcAW8!nFDDaNSW/| C[(k%SIjd=Lb%,)5Ԕ ,(_p-MμՀT NkT){ BYQVh5[t%tV07ʁ.9:<|/SҮ?zN>Qdku3Xog~>+a9}u7PZcb }\KTrsƜH-/ ̜AkjFz֡z WjyEn7-vާRKq|AWYgXʏ LG骕l㎒V`m A8Ze6f*U| |bEMAeU@sqd3UagЊG>p3W4֧UÂHBUسiCCgw]^;98ĥYT*~q,^4@޹Q^ [h+3vƾ'>rB'3KwmBTmam:WwQ)se"+t4,m>Sko=6\dOFSӮ!~+ǿ{*GOßiׄyW~U؁P=OK:JW==Y&9(%W%B84Dp'Ī)vz)juM:3 Tn׃ҩOqUNUka {JGV#]Qk>o3VU) g NWg߱gx2U?]Ljʫ`:dq l9itUMs79e!&mjeo((49\C r3a`r *RxJܔ'l`0TWnr𨦮i2Ƅ#`}^Ѵ93ჲ+\9%$\%þGn?tA=v2I"V9]*WrUe K%Bb*X TIbwPEA* Tؔ>鐇(YUnZhUrtᆟ$FD8h_Vr> cN}f."-|{؃Z `M}Uӫsq jWbk{ 9)jړ)vd9deפJPri4%}zLqѪkf n]rvz#Z SsijrݓH/]:Dg];tSGolAUQ>g_=~S](kj.nJ & " L}{P/Kk/jk$n(ߢ MI]) CrG nM2%onQ\U٣#X^(ZcTCpz ij}sƝ'%M J`#t-a0>W=^G?æ!:&J --*춑 Kl` &WLS"&$$ZΉ3љe ˊ,(w(m*uH9Ş=2r%1*썫Xj%պnѕ[}5dչ-c@/#]1֓F+75#fbXYGjEP 3;'>6Z}{U Vf[P%*Go> LIL') 55%Q) tI(sʌrR7EF)ޓ/CirgVlbU=%sҕ.|a|iFcGA137jX#Ɣ%T;`1|սWЇ]EC+VV}JBZuZWLϙ͘NNH҄IBff1*K6\3=\oP(^{JU;YU.[PK!YӮ86Ek84gEW2E8X?.f^|[剸L@wSN?.8>>Gw.Եjj}ӕFA *Z]՚96T SDHZ3P=u UP3=YվWfU_vHl㢕P(W0o/t4'+ >jW5Sx /4+Ot{cD5<3U<6dCg=JW Ti{س.z^nQ77duՆlCTBkrvf >aO]U(]=pWl#B13.ZaB0{ U_ʝ!w<]aO _ \qCcGV.Sӕkl-J5W\g̮-.ΙH)tJ|I !8G*G W+_ߵ"x+0IJ>UU4PUן ^bæ|1F4#*6IW!T` bHsAgMһ-:@}>V#CUsvU8Rbs/_1]021IIS&sN.u)P;AoP }ZnP?sWwke>E+"2(Q8}l󏁮c'+G0!hmR-ZsG '/EWaVssyx -ԍM;cOS%j+҅cשL^>v61?CVou WWv ^ U]սSyEh[#&pڦB R}=xT,azFxf5x_l`W9"TI9/\yڡZ W_1_0#/"yArMrIrIrA<'̠244{ !: FݢwoV޲vZV 㪆;.[\u?c3D@M3:i0.5E.: U[NZgܽ'UOٓG[UCTpfћ^ ŪBUxfU1̾قٔل%ɂdN<'h[[J[r +3g )[;\ hkm̪~Kk]C!m=NW#]+R#`}HgkB%*95f?8ǭcDy7>R/O}ؓ&kApS:GדvrK rS|5Kssff iL $ ,n|S_7&6 ZU{ tǪ{҂] "t1kB"31~nt<}cuN:rCP9tjڌvm;^8_&ҥg]) FZ."JYc!$ħTɜ4}n/B=l6E׾xB:쁡Ǧ*f2Vv: (I8ʉ7MmҜ&( IDATsW=P*rIy~CTΧdZsq{CT[v;kKY=Ƚr*Q>蕬ck]1^p8]=c-1XU&Noy`JgF˃᪲cBEV_t>;ٰ;Csa=p젗^}hȅR c-_(055sImw&W$?#4 e5ܠהo\;gl7lo.;7vm9A|bj1P7#MZѱ>.7d1:ֈAcɪV9Th:hոVF*Jvmszj51ꙬgtLznt~ 0VKjʷQLQg"apLKB@Y G(w]wS%mrK}Cŕ[%c.V׻g*z;`c>V^jr}c>5{zZ}3 S}N)5Q$ͩx%YGEtoЕvL١NP&hK;}0u5s*m4Ob3"yIrM|ydOsJQ ZDiߡm'GE s{`fВ{T+űq4CЪYr=vյ1T5Rc| ֐ha}^ڳƴű3ZaG>L!9AYnia8hGW]P従Й'>?c% fsfs zK=Rה+Sk-G;IR*.I;3GaoUwEWjQE+R)-t^dHW㤑c;7zVHV3s^_rsiVeu*E%OmO5 svUr*p=G-7qhCWk .._2321MN$W$WDS-wrQe(GW+r%])=zǝnsnzWfPN'9{%Zj؎)j1h0e *mjĖm 4; f}\tgV0 WP &aVSV%/o6T_r+/ϘϘNLSҔYJ:!PT@ʨT[QmTKߢE+W +#6W*zM,Wun%lH=HWc1cU+*0S.ww?l)VםBOr;}w5dr 7/<*SE$ָ 펿wnbQse1DDu{ix'T;Ⱦ&<5OX|Nzc,K7ސm%L zc|+pϲ}8jeD1J.ł)S.baMs`]YTĪ6Xɱ)pXJUtX%Y Z!,V-If_"v'4WLbM"[ga5)6W/%k& K ͚͊lyxºJa*duyz! DGaj1F:g\~O"*rEEf^ #xWŧsUO%VOvINJRV|E%g6_Xw Ŗ|K!+tY~7roӿd5T]1<@dN:'(Jm;\ nWrZ}p s<:&gؽc ~vOJN6hH<& rŶ` 993my⏯y$y!&N*st-@ XEJWAdxXtoL*Cip3_I9+k+ChN4'4ΠՆ|MvK"{߱ 7O%5% 9ɜɜ,c)tN zNP)ŌbN69pvU'XTJSUma3 Wc1yAUXm:gθ-Xyl` OSTu3hO⥫hղNf[\庮>QkPr*GRV/~FztN:#3WD ahs l` +~?Ry>2[AŔqʪ`r˛ j <*Y^RVk{|ʙ=Wc1XK~m{V{n,3)?bVkz)1jq\jѕd) 6]EH~sW 3 ҔtJ2 zAtE|IC[l![r.(ΕjcL C$K뛄e`qUUPMa{تpذd5LQy( h<G1Q5k6ڮJ:yW_1{bfջt=\Zctu?:I*}8%v"\r嫰Z / + 33T՞ ɄIBjGQ\Zk]5BH/Fՙ ex(*m#V"ʋVGek.iH1c,[uBvȱ,a lΧ3=H c݊zD4쿭Qqs ]hEWLoBY|YdqMY##{s9!(LT@Մ4a2!Ṅy8#!{K}Ʈ`lیM:gffuTU.'{v[vk6k6+6+7n}o-_rx2pꄆ3η1비6;9#Fﻏ8b䃮I{x~0W+촠5Y#۳ߒmm/پf{vKϜ7ὓl.Yۿ>lq@(m(9fpϢwkz1|t\#K]"HC]klajkR|2լi)|Ud;^"B983 }_ .j RuTL8y.ibsU"2ؒ6d[ ٚ-[7޲S;_BE&1Z Oܤu}"o{Aȏ}?&!=ezlj1F?[}BU AK= Z:0QǍЄB ViUéV_Tɧ:JV"a9XM>2Pp̑&*#ŖbKXmدVnؿc=?I0} TEu222T OekJW1N=EɆ1g-P5#`}NYt |ņОzžN?utIo5 ]>a(墕kLլ!Ո{XM.4Of"#s$!j MTM>S)ف-+UUBؑ=pUXߒ/ٿgkvݿ9HJRUj%%Jd9)Pwt/mn %CjȠS7mv8e'ڝ|{)1C1}Uc1֓Z!}#R&J[2(Lk{S:]cn|&:t%PƶHK",Irq-# ]hV79^,0id~pR$L&1I$bD$ .-*-,) jZSPK{w?P|Mؿ>fǸHHizV03pXSn HVcS8j Czj1Fz.t F%;ua~/.{=z8iuXML=!ƠJ\cj\ Ҧ^ hL&aa;#w7 v| UiB32H#& &s&SIJ2!]|a*u-5mk3f Kx?77_v2Wiś++3m֏݉Y;hq ^ o;#Z=St5#`=;B+#%N9?n,EDSRfDŽVKDpėSg\j+Tݲv+@h~ZM5ӖZĆ4b&LB&ɔdF2%z Bh4l᝘P2S%T7_5w#loJy׽.ʼ= 2ax7jCph0c #߁@tt4!MHW%IH2Wpm"6Xbf!n"ߑoɔК2ϤqnS^8Up+ B%Ϙdztq=jM"=>lG:qmqj1 @+ת[ҕ{c~gt:|/N 窰C8캥Ny[\l̠;b-ONMHjJHc&AJ&I5ITҿ*1PJokސg{rU{J'2J9?f%x fW/-^0[03TbKUͦ}V#Q1#`=5]|/]fao;1ַ5 sgTnZ D䍱eX򮼂kнN/رm p$%*d1EӺ*6%fDU87ɹAp-(z'ۓ3- %v߳TnNkJ0c)OI^$&$$ Z_ g3x/5fx~#j1F0%|n1M).>*Deogǽ. așC^;:Ԭ~ʫⅪб: 9kZ,`0I8 _pO/9C!i}HC&!!'TMTbƞr誆)twp -6wCvʯTِvfTe/]_nAl̮.R'] Fc>d4tb5As>R4U)sxPZ '}k}?c [^jͨA+^UEӂ*WyjK2e y 1%+ ~/n&mGM@_H&!i$4#;*LA =Ŏ|'jM&_ݰ_ݰ{o:QkلZI* |]#C_q#uZf_ԥԼ͜ ¨&#U yq*W\BkStx-w!}U|儞;#zUv~F+٪/Ŋ[-͊{Vu8ґ'IVƬ1cg_\@QRSB*lq  v&Pr cPPv@UJMOU{`C \zj4^Vmkkalf71Dc0 2RP U T.(n?PU.\kJ`SKjUtsD+R;,]IJ7ܼa3h.oY~\;\cם_8̴f)dvpme @Qi%Jz䫞wuSP:c= KS}2׼hq0uQȧ* 1ym{R BM9C@D(9*G=jڢ7TKȖh宫=$ V,{U^[ {ux,@̄Az̖#]1X;lKɆ1nvBX6sb>]8l!Sz:<;:jV^%ËYRͯ0#kkj55V##thLc=-5*GjS>bOn%o=Z5hL(2oFQk7v#qNm[)=U4 q!R޶"/ {'@GшVc1騜_k`/?J@Ud]nX'L? A>r*[Jjxl\jf׸r_dJRm4 TasiF`J{(`ϝ356`%*3P#P[ԆCW/T[x ;9HGJ."X_+ԖbMB%#\e& zoZk'?o `ҠU6:Ĺ(yn뢗?y׽t=cQVf#I (c*ve+ta]Ǭ>UlUt;ML5b1o",$JdF!TF{& jCFݢޣn(AxX,Y2M_w`iW |jlU _Sr ;<4S|v=fUi|]E/'iӣN-#1XO(SWihYasuo\=\ժWܣpG,zBl*U(* ?s/͘$8VG0 L1Tf55SJȷ7A* jXRE}CRi5J 6Ъ IDATVc XRXXw>_IVt4 )6sAJزw=D0X PN"']~<c{ p3W:DGG.'*2:Pm $@B _"}BѴŽ7f/b~ٌiB ԮJ%&(65-- X߷sj-^zJ ^[T|(}PU9# إNmJV B۸)SJ4ZzpIH?c1' XhLѝ^ AiRINiKXU*o0v*5ε^5g\k..X0`>c:c6c2MIDTsܖ"W^ϊR@&ߐߒݒ/nkT‘cPx>o V= WMxv J69i_Ui޶j] l=*]P5c(+z* ©cEjxyhE/ZE`P{n7*nѡ/S.>cq% fsSf3SS)iJ w]UfŊbC%7Sb[d߰?}Mful҇5ac(U:vtOKZ~g\ghn $W7V߲VA[fsXӇc1Dk.[mN*yE[D]'N]5ę'n*IV]OBDUS~a{6(!Khuf,T勇TXQܢ(~俿T-$%(퓑4$&m2݀nm.h+o⪖b*X_^s)H-`%7U]ew0|>X#Z1?FĪRMZ x*ނ8CYCK:t?mUvuvk\`d#ԙ=gL \$hy^]ëZRT[TUk5--zIqC #ݡ/|jʭ UVV<8VЭZy+Z2_PJX.xVJz8vzvq2Zh[ +Z[Fc1~U:P TۭD }f4[@\zѪU[8[UTm3m~>Y_|A23m.}3mRJMZPZQzG[o)~}gUp`H;.Z`x!iSK_g%W´S2Ve'y5_kK_=y~ _\ Pm+7;>'_eOKj1 `a[lMN놓6,qq}bNH.GM,{@*&U9'S얾3''+V609`F,_-lTR-Qws7܊9ܚ!\e^ š=즓[e}Ro҂AjcUOn̯-mL~'QZQQ.=M;EЪ둱c+JǑ&&k JQli`*k/Z7_ Ⲕ'NmMM-Jm9ƿ$gWpMpp!jN,zg'9ԯ?;ʿTSh6bFdd*aСEUcwvR;Un͋CJ\|??:,sj%zNˤVc1#`,m6Ev%;dn$ $[S.WlRR*׎T}ETqMp 3PU6Tl{seP庙 Bm0$-*|""tBIelKW_dK3o[V5+ߞj0ij졫Y=|5cpa={a6WIy$KP9 DGzfvN65ÕPR%_B>#>2w Ly'f7b{7-ߑʂx7Цi=+w)zн5P;(tN$ _KWLH|K!ߒmo6VVllnXE-tՠUkFc1F:s{[˪'6,RC5hA4!J"V)]۾Kj>j2ä\Fe ?&ׂNPVnي|>?HV;,V}Ti \ w2D.--+G$%[o]Uv]J.<-ozߘ[k+6޳a77~s3r]:< rl2-CtBIU/',;tl&b1.^td3lcDU&~ezpUܗFTc1Fzwao*ЙCRZPȹ*^S/eA)|C=Un߰{[v%u_YUX5WӿPO|BX媳@eZfӢ"D8#&p+~xQh5cAC$!G >qDy/#J+ Ua}J2%Ūoo~u7(8UЮQr/G3+얈zHEh5ҮX"=: U> yA+k6&]i7>JUq22c1ֳ*_u|AUhvmL%6Q%"1G,%@sTړ-nؿa#k&7Lddt"L5/n5P|CU-:ux j*LsG胪F:XsU U}:Sw5ܗac9\]b8Yc{:SVqsx,PUSnp*Cg=jڡvK'w`G vp0dbe[t԰͎0ֽRWXVW cG.}>jȼ5)]F;MW]_lc:xmU!ZM]#^˦ Yk"!OLI<v`X8CD֫K5zxM̼FMWQЪ5ڥF+!ڒʺ5dm]hU#*B_/cKG֫r>l/q{m\'kоID-RڮFj1{G_g2IEb*m lYWPDGQmaK hJY{_L6zzCJrUsJuc'b */Z?IQHW&߳ bM}\W?e\ I6nfo//Z1cw4YϦ2SH6T\E︛ "!9k] OV{6U=O LN]FK[_)Gܴ*ի^XJz)-k+ztLB;5tL^7ITޔ0GϹ|⚋+.waٰYmo=F^j1cvwTI-'޹PU KX%#J \,$3L} j [xO~# 3F׻ JN /TP%+|t֧WhZq/$p"!Y5]9?|3^~KY\b fsfsf3fee=0NxWe|u3XA5ckKJOE̤HrN AA!pOaB8ӻL5zCyXd=L]FT;PT]Ât[f뉁x.Ҿ+/tcUϱg};!>Oy[;pr-wN}ILf$ qB1qtpO!QC%[xC$xKQFc1Fz7|]\G* X]@Y<\+BE;龻8Ha6Ԯj%;xCG߷ !2A qXjkw6S)ӂNuUYl{&1{%b|U= '266ja Ae<̠V`{y{/?1cw`#/ Jm HrN- sZ0+mzH_PTAjk$[^Y>r<'9(6BX{m*䨓(i;s7$T\v;Q'o:!sc1q*Q%qZBйٳ,EnCHPEo}X"3 Hp^ڕLu:兎n<1vvT+ =\å=0AAS)2|Keffdw{ֿ1+-=(_1#`?h3Z&,X奫>w!)r)'ؗX@^B-j .EoV]Ņ3ǍVav*[ VԁVEIǪkAJ@|$뚨OC+l"mvח{mBmo3; YPsfrhEo{]Ǒ4;ōw&.]33Ҍ4^<,X+`7~0],kw%z.=U;qCč 2ɼ!@D2YL2Ysw(*XOZZ5]ƪEWQj$:EgF,6('*ie*T3T(TɄJӂYjNI#vӠ?q]6TmtKAY*d ֋Tu[nj$$>m+U+EQT.˴bH45*S-Ҫu,NJW+OU}6"װ*H̝dOw˥"OsG!'UishBA{z~˓9ieL¯)(oa-r:xUzI+ ) U+EQT4۽R64@NtA27紸9u\s%UR,>KQZJ*MX8<9S׉1`W{WyƋ{FY'+[-oajkWؕ(+zxUVOcU=I^?CRUí!:VR ]R4~TmQKo0m "U*,4i׮yQ%g,$:bҦ1}rD^5Fޣƅ(*Xg#.`{VIʚb+NĻ{>ɫj;UJ+PIQ-vev`l`,ʖҗͲݰZrN)qL4˻jCUN"nkmKXUK]\5|*tW/0U{-yXZ׾IjUҫMkJUXZk=^ ۾EjR9^%5~3i]v WɤTbbĺ?Gt,oWٝ+zvێ!2@%PbeD*u/vծEQz+X ٝԣ< SRlŅʯkH[].XƴI~R,TC&c sU쵫> 1lRM DVU,%N|+EQ!XiQl iv9O_ayL+HĊҺ+cl7v8j:9$U%UQ=gn%bSUŮvxRuOlLk9]pUuAaaAA@Z5ͮifKTx[,γoP)'@Qo~T~PJQ&wZBdʶ)VZl7r(`6<F<[R+*Nd{jVp牢{UzR7ͅ^%vUU;}=FÀaOg:& Ťqa1id+n՝TL+EQA()U=.KN9ҲTvrfNKJ[(]ZXIsf0>UM|zUt jf]nS>\Yfr;aCУ{DYB%d iDƤ>q@DלWiݟ{h)])lH<;6iP&j8I=vDm FUZV\wB|oo9VR7P,uhkc^õY/ ~-O7)YJJQ$X,=:MɫBQ$XS顿k+5+ϸbYRU z$ ΄z6o/x{OŃuLEZڝ_ i0eáKl'/YB]#1{JQEy9_֐ڬ R)#RQ]^26UmȪΰ{;}I՞0UIj*>$8RpI͊*?4+;^]%.u:ډ&0iwrL,&PY`ɱN@'(lXBdƆCG4:nu^bKjY%t{temsRuH IDATExhV?z[MjEXu\Į(t3}3pf ڗd X G?.6s,EQzOh#;ƫtW5^Ebo]_嘥d t CҾoWwPl/K|gC!q@n.X!,ܫ 氀%Y\&ΜMJEQzNy go㺦Yu6{ ?+;_%d5;Pj6߹_ZfU*>jVA]P_=p#N Kb+Ά09La ؐS!;tUWRujW`=-ːӽFU7?c5?+uAH||K n9]-=Ӊt7vH7t`w_'ĹL>%ݻUʚH?G+EQT`R)5*$uӲɷ:BWV I>pΣJUtI-EeNЫ8-s[1^L/M$tS:^D\p*dffbb`6r +XG Vfڕ(*XOKU^~*>-_X{Hz^LSmBD6ƮLwxmumOI,pbrb(Aı՞@pjRJQKulj)^i+(U{$Aiӽkx%n;y}_"<~C{U|APCҫd{)-[$6 \YgnζxVg(:c(*XO]~c|qr+Bc9$ǿ9W'ֵSZJ3}{ɃUbJF|Xk6 |ǁ5w^e;ṋ̏ h,EQT̬ M4O'UIjV \|(ǜ'=~WS`gaT-1 \A1LUYZӶ(Uy5,'Į"+EQ#XكvԳoqiy{/k-$nvGҽA|>_VO<*&f<38(69mL b͉Dq{ ݮ4?( 3cߞ{Wrp|2-!!Ǫz[:oЫU=7^7xjDoaJs#UYUҌdK(MYI}TWS[?xQ = Kxrz_w$]/yO[;W6/̊V/i4|(yu+jJd%ÙѩLLJ:j V\Y'Rm4Xj2|Ԙ+?k :v~c7&c\ h;#WuW6-(vpڕ(KFph+ji(ߦ+j28)~ U?!Ѧb~*:m3'aαK\U_ !ȥ`?I]Xլ=yҷEs:?.X^,4ܝiɼvZ)ݧyiڕ(*X/RepkI\|!; yW**VSک~ v( K?~VKĶcZ,٢_K݋ZGu)\>_m 6Gy SDaޚAjxɠj(y VECUݺ$V9bH{A?:dZS=8{gznͪ}C1Iu7}֢]"j>X%K/ Mˆ; v(dC̬7_L ɿFEl/m-|8ߦGE9\pQ4LR}JL~+%Y]mX/Y/Y/X-XXMY0LoȐUҠg+ _)].DCA( ps?M9VNjr̥Bjm?P~NaZ6oQMSlYXNY޲V\6(`=^ j3q%{ousrSxN=SigX~CJ]uuV^qGEm,jg< Ὠ])`\KBɽ*O}>oMfkT˵{3_J'NZ"5ūt̊>tWI:f݈P+Uyo"Ѣ+EQǨ>T&6XK[/:":9Ϛ>T˯ܶ; O/Y wvWTlŰ&pc[Tj=Ɖ(\=|4ɚR/fd}>:T?nQ:68H~م5M@:f@S 49ЩTm"ړ3[ަ Ct3YJQ3, : &6EP qi\6 qũMLs]*ٕW*hZ~cdg_pK-N~j~mBn>w|l=؞; jF( ֞id/VB+ߊ^S1Y [Uի{&3-׌'q;JXY̘MYw}neºdWICMԖEWjT(*XREbWɃK)n񒘞_=jƮ\!:-?狯x+&'ƌF  )5%*Wt?. ӹS])`_67GN^~\NbsA<׳߫vdW-yG~5 +#C#}͚8,-FlZ>OYlj(uP #ZŗQ9\:z.t8@eTJn9N1IDf>[w?*).a$o67ŋsiGNS'|& Jk8(Jf D ,xE(5U͚:( !h*{&]oNx__KNY 3#;--24eEʆP:( ñ?$U[^5?d/G6bV(vêڕgD#AGH SYښqq NTV'DUEQTv| o|o{`:]q,+kLJƫvW W?ܨtk ˜?u"];AS(*XOjt^OG 2ؘ1'MG)~,&~_3f4$ɮa>e6w+kՊZi_&G*(u/ǢY^G^0 a *O:<{^<.Q! ؑvoxGz kW  wjrbA4/]b~REQTfY'|ڌ jFeP2Ѓ0&5dWL//_10b4f8b8d0d0?'IجXY-2Rt YLy )xVR+*9VW(`=MӒf2kjiF` +X.|6X}28%(/MkORQGܖ$1N[ʜ% &| lլԫ𕪕( s"laVwMN0[6 Z8ՄWcIrrڀ fBV{RYEQAp{?s˭SԡHP֥vO2\+"XaֱؘbX 6ah G` \+Z(8q F0hԶ(i5,a7G+f+Q=+6S\7R1^;ĬD[Vkk++8)7|ovU~0vt EQG&37 r`fN-x0Q X%>9AK>X5h&'19᜙Q(db``>ez>w'ڬL+C/Qtv(Tdb7]m/Tj2i*+>uv *]'֟$n ׻8yUbzƢKVI*<7EQEQ:qF.|b݉ED/%{?COtcU\)S(&SqŠTڕTEy8/5q쥺/AUǢ20iHD#$X&lVf`Gsz&pecTVȌi*h5D/ Ԯ,v֮((<EUX\5@R-jT N:K ܫ0X3j˷QE9{1:( #Kid.XSʭ,bt'-VT[VIWuhgķbsED*MiV{53(BX@E,&x蚫Gk] ^uZ5ٕ\`971;& |'X~;J{EGdVHĮ4(uAd/-ZT ~1zvuƓ{r{`dD|QG?fk׸ݝ.' ,o~` CR hY*x++EQsbVGԕKUiNTA, ȱJR[ة߇_s3&e|p7V+V sY=4c+ZZgdW( yhXl4Vʹ*(U*=VuOx#&ozhш'ܰ^Z^WQ1F6bUR4G/>EQ\Ѩ l"'z㕗g塬TF|Ql/ϓ`v[r,W4ˣV?1y5+F#F#}z-AL%d #Ⱦ!}O?xNGHB(u5Kq^TtĊ3ZeYb,eNrTE웊u$6W=wc#9>n7u qB ױiՍQzDEQ XլH\YsI'OzƫkzU [+U%B| Wh`2tBxqbF6 S'>cLbs#u( /Q=`BVAk1Q'S 과|'[jQUO=v;,x j{p_|upnz8㓺D)QL%lmEl"- NJvnhnQEQTάY)WҤ6/&..?T!7z57^q>`G, m<ܷ0hn % Y (ceزXD762!4 XGFú&UWREQ5'W]&W0A߿.a3w3s==O`5K ]"_&W؅db|3;XF,67nOw+C06Q\R~9TEQTPIxNx\UF>C! #࿇&|U\|0xN:ae"_EL&Ӕv꫞ Elu#Whckֽ  X, ͖GVeJ6m_TQEK)\K~{INbB &䁫E!)ShUj/׬6;o^3"j X«rMUZ]9 b)`=XGhWKX,aݔ:* b'UBԟ=_N5Ruoys&f|h?͊͂Ղ.(wf?A 3bhḁUxA;lQREQ:~"ok'HLPt}au_;e#YUrb5Nl"6N0OٔlFm̦,14eR=W- }n+(*XGsձWb4^_oDoF9>+"JWiӰg 1D" 8),$+09U,Ҕ2pUV*>OMG3Rἤ=1Wbr9w+fu6 ^;ʼnp&} F"ې$Μb=O.T^5=ҴԫEQTSN ;ؐJq궤;Cr6{Uiy JjՃ-l\>A?Vl JXoX6,,W̗Lg[f bQEgӂ@[Ux)z+(*Xm.#'V202uW-=W=ɮj*\1_gR` Cӟݮ?b  YXX./Ϙp-oZ^ UJD0֮"?FQE;ԇM/t ƱbU/^;KSR~)FGV lt3n?(_ Y̘0>X$mUDܲWԮEQ>g^Լɽժw(/%u%~nk: IDAT3*;p0λ;"NيꫭNѫJ+[uЮZ~SEyK"TA9|NͲ.UmTUGV{j[\V6L2S,a`X CCѱ=I^)U+EQE 1}!J֏U頗*K<4SL''ԕ^2jhhȰGPQ,cffda/xUVRA*WhZPQEyaXʶDǒ;7C?#ZCEWͲ?k^]3jxȨǰϰϠˠo:daaM٘EK+*JUYCZgWMWtXQEQz59u+~;&2Q*`nXhج<S'|S޾ɘ!>>>...lB6[b# (`u;WKDa{RҎgw+fۣAEQyMk?qݑ+&AQ&C#wy8n]cZ9]+JuBH6%!vV"z%ZԼxݧXoj(r,ڕx|JCA\ \,WG[ :%۝\^\\F=g*-يtA2'ޭ̽k],;-ZR!U^^U(*XjW"jWIJB\5nE;wrU!\Vd+EH+#֮Rhg? KQEy%*a3v쥽v]j?H|g^ɮJVtx=.^ 2%%ՂՂ՜-f}k.V?Q}IJQE3UdXT&iľ+ #Yl#'Qj=jWR/m -'֟v;ӐՌՔ ˏ,e_YgV*vcOJh7,:( #sUaQ8R&MphLwR=Pl1uBȪAzF|s;:apƦƮ,rU~';9S2cQtƨJ"HRZQy2+(*Xωrd X7 3U+âzбru+٧+"#R`U.pEa[E]{ZjبdTUz8jW(*Xcl+)3*۳i( D&Pю{^'O +;tDVViM3  +-~72Ivj(`+R+ kh۔tgBf0'?+~\Nh _ʪU`ҮX-0b1-9,Djkj\Y04U'(4 #nNIL[N(W)ܚBoqac==l`vv cHMsizҙ5ryU$gڕV-JJQEQ:υprH8y ־yF4bo[#"CQGO h`o+j6”۶`0TM{\,5X4+,(`6=b`!rR6kjUnmw+S61jUQ˳_sU'-Y׻NWi]UZFdݕ( Җ~l!v4p 31Yfs^70Gj4{hJNVv,5 70ٜ#wK%-]*np-:YQEQm&1Mc6DO[n+^U?pc*h}Vy𧢡ŵê,9ٔtZӠV$Rv+EQ'NjӦ%榎)VFrJE6٣t<(v ; 翃%W&Y8EXE"[-r,LԪ֟jcREQ%Xr޴Z6I_w)Eڣ@ԭC6DYJbrIӺ[]W8 K5q8cn`EٜlF6%!H=?]+93;i](Ll[KW\ӽPHvWknbԑLV4=3]VmCƟjMEQKzb|WRg֭kc5Xj%#|lx5|?7d ̠]kQ.Z)`@^^r"(}BXgq˭^Qim!/-^ͯ&4\M/ GXJQE+\tƲJoJibWRnqs~]:"u GʴcZiB?ӆ7fZڕ(u_3SpЮeLI3D{sAeu[IiS6g6ܳ0ju 7XVY-ئ9 ^u]Z)`}.D&{anpZ,A @/]HEͲ950@ ([lf9oMҤXv BW( S $n0&r,v%i]o`-&3fv`DbTvt1RREQTN޲A72 ̗6Fşu&WN1 bP速ý>zPUEQ5]]N(?U%GIQ!:rlo}j6E'R]_2%迥5+:c:#`?cnѬHU)9?x} wEQ,^t*m}FSyB'n>;׻vm1O8M%d+aW;f"'7®Ny8:( r)lVD+n+Ooӄ>}ou#y6غ@(Lzj?:KQVU|Z4KKQEQzfxZoK&)=ߧ'ժU nsj*4%MHc҄4!Ic$"W+]KQEK93;2yTԎw$E=Q+W%XR˜- d19[}`7_39,ZH}G`)(*XIUnKNn5"-KYTޯ/ykrMr9!qî?t ,g_YgV{VyaM( r)Suib'6qWf߫4jcZx (tWu̷rms7~CT- fl`Sg +EQEQjchɓb)}C'<kBSoΪ*1Sm K n`pJUB(`}^$=Ҩu4 9~q #)B;'7<2tm,lWZ-LmYX|MvuTW)(*X$jQH`"(U+^04R7]ynV,-vj+hQR(`E)~1H^^uZ fW02vUuZu{I`^/?A]QEKyOBUJ҅%,+IϪ+;ʶh͊bxEs7:eMk`6eovvHnMmV.a2U BRky- ( r)$iNUʫ&jWM#19@\f|phȠϠG٩Vkk6KƥB˪U+/5ix c)`)=c؟׳Î!薴USJAzj8yj ^erxxhȰǰGˠKKbNu:dIbTr bMHQEQTZIob *Ѧ"+V.EZUuK\jՐQQaAV]zc.-QD5ۆG'ِ GWlS*5Eشڕ(0 ev|z8o\,/,#ۚtN ݕƻH$i0SH)(*X/Թ->OH8S&9f#_YHѮ|{_9#^5L Z EtyL #SҞ4]5aų}u(*X Z6Vd03 ՁWp4)CѤv% xEp{x]^/pXCK50%Gd?ސ|,`ٺ8: k](9((*XO'!ۄ@v2N~i>mC525m,wR|/3^'mHdr@KzU\)odWREQRΦV4ĮJ+v0:ޘIk^e'%>/kWvb*sv's-Lnq`fj!نti$;ƧyFծEQTyUZ5yr?/LW!+;koZ1$)L6e \(locNw]$ 8$[Hݰ]~S**I m>eRREQRUδJѦ'|Qjwc~ [T1r|'[8u@<V!5 %[~M^.ZHķڨa)(*XW5V 2*_!VfJ* H=VƊ튼]ҘՊՂŌ_5l+YBVi%9H^L*(*X*Ug֬5FJƖJE+QG԰+'*b={q}`J8%H8Ɇ?B(*3i!Q*r2,u,EQEЩ*A-.+ mWwvK`ZQZak~|b>d0]׳4+ 1UUroREQHU'o׹1^>4ĴqOMJmoZ恱j-CWf'^`alM( JuKcW( g!Umj1|igiS5y25?†G& l ҆rӲsb`9woWREQRٮ'5?F.sLUbL+Regz}hdv(m[yD8V\뜜Zzv(`]]#I,D=*^lA".ض춰]F2L+:&EQ,!?[ElIܷ|!RV+UM­h eREQ,Ue(maK1z`z_EwW+\]{l~4wJD׫*ZV+;~P󃊢(*XCUWi#[ҺFzhWs7+z|0[R`ZiVɮ]K]F֚JJQEKyٕ[gN%QD$8"wB-тXl)X+XۆQM3ѮEQ,jѯUWԡ'tK = +kF)!& 焷o,vmKJv[kJQEKZŇnmalWnEjtzr=7k2^52:Fb%%uX've˳~ -> ڕ(u6jdǮJ^U+n5qygscp8C>΀'Y]w$sr`\,g$b3USr%>RREQT.V}["Eq 3L|I6dFlm{\)ߚB]vUνW9nWV( 㨕M+Jk+oOTqE&ڱjWsڕ(yyҫZ?*ܥd(jQF"RiΡy86v(`p:M^5ٕ[ PyƱ]F±\ 'lI"[-s[ ])d IDAT[:A*+`zFv((`qcٕkUg,5s;ƴvŻř^),`S |a[ fOiq I4v/(YUzlT^]n3u+@ -XJٳΟ]K74^%K(`6]HhgJKSHU)CpN8xdYLFIFn1qx:W-REQ^`5FW6^y7>}.3RҐ0d I:beeڰذܰX0js <.ފ`z< 0QSEQ^`=զ)%j%.7;&l7lLT^A7V,,&蛜`Ue풀yQXO}( ֥%^ݾ VyuWC3f`"URƫtvu'U-NX*HWWt"#g.TEQT^iӝɮvv\&^076-ٲ hGv^ŷw1 ` ^1%SU!X~b~7˹֫b7+r>hBoNթ٠AJQE]B9Zqh v8gzv'2z`nOZelVlll)ι`E^`av2tSՔېF[ܣ^(`}GdnN W5k~ ^1f4f8f0b0?m>͊p3 Z-NZcsT~Q9jQ( ֳ훶+`]t?߼fWY1OC!H]ź_jOX|o b Ͷ[BkHD+_?qծEQ3g{쪔(zum@\pbQ{WHnٖ'v$i 5U>V/Ο$Ě>WHUɱz%jW( Ž[mJc]gDvp֮2#q #|ZZR6&hLN Rq3-GJQEQzdcWKD:ŨU 걬`>nLq=\' -Ֆerbbl [XVr kْCXk oMx\)|}l(uqzvYqEݜRWO_ 5}.tR )#q ː ^[393;iQ;cr`mLyd 16~ Ӳk ' )®EQUmԪjWn]!WYWZg]kk| &IY.Y-X~/%4"eosyrMvKx.lC5UA]-MXcUS2씈]"Dʭ+^+e(GMŐ>GW(g*Xw+Vnrq(`=W|rԊCWvL{G’ӝqʽcPiab-O]ժU$"Xv_mH5t=O;vj}#liV>VV+(*Xz-iqUۜ]ڕ5*O tE]x>n2lcF.[JH#S$n] YHESқezE숮Wiީ;KQEQTT /J'˵{}!𮗨Ӄ.Nή2۵S(1;1ۘmL/$Ji;6;/֫l3vpN~ hQEQEEA*U2ʫ]ѱW Zu HWg |n|?nHӻT`R>䠴+_ڡ.&7O95u0[`հPkPQEQzQj6|m.fatDŕo҂`- 0^>nI;0XU&Ԫ,7ypc.&/CYㄉNڄ4(`=ᵸm*yguD=눐 L9Nvn`JnI `\l7SYQJB٨$5L*/=)4#RaT-~|G^c)(*XOWhqۃ/J. *5{o {ٱ&sҥnY%A a`~` Ȃ 7QߤsNfƕM?0εI#/"̌ yʦ6 &)&)XXXXṉv nn3Zte{w>]t5v.*i,uN_EQEY) ]t1Ξ&{RCIAgz5忕LαZpG.nVmf'^6H CIkAV7Q߀zZd,(uhQ͝t&\dA{Z\\eX3v,,X`]FTZ$X㪪2'On`n9g n=<ҾTJNJW s(X,@Uh_tt3[-X]gkޟފEy#j{4֌>p#2&ϬVQ NۛE("`=9BG+UYkLE5&Z^X(X/`+e:9qʪDze@&}`%SrA4F L\T[ 0a EQTh`'`iͩ u;|ϑ}GvgT5 kl>︤BrqSWuAjoMv= ;+f?ap7o0]!qga2QE]\`Y>YFZ`c\!IZ!f7~X W`qdy)bEQE:&WߵBOMpq_ic5' g_aw]!@vYVsL̑LQ?7OH.ȫR%f]Q't"[ sekF3tG|iŲ2> -3E+("`=K:(a);&ۧ=F| *nn`.<_&]D`YuHHTvJy+Y=Up џU -%2{ąEQԛ=XËo\"X -.U5C mR%2@-*lpAp|UP)I#/Sz""u$[U+[.LJ7Þw(ulƎ}$`f2g/T"`rS6h ʎ*8MD{!thQQ_$l3/CXEQԛ{EQU o&jnTMC,aV@zzzzܠ>O6( r| UoCWHU2m(z`ZJ\MfRy- ("`= Q+3ZheԜD% 8WMW]M(EYU~=@YZV(D#X?8WU*wT[XcX׺jVRp,i׺Ltf,( 9X!NuNvVqweTpgVϾ5L'5#=Ϩ-l [ޭRBz*w.j\NWP2=(>[tY=g(Y1+d,ʢ(XHT!]E+Fj 8΃8S)0 Q(ى?(+yĶD^a[aSaz]hkN~k}P qSaf3)S!B("`=WuvT}שPԐ-ҟb01-20LH)(nP~B#[K,V[,6]nKSKeTt}՘)5y͈Tby0OS5q gT(JlXldsl>DrՙU*-堍D4((aՉY?BXo&T旘͑e͐MwTADc{@jR7((X-^`_b~U!Fu|geiղRe1]eAݷT=YPFF=TNDגeUjCSZnv"h+7'PXREQ+Hs(E#^4\gDˍ\QPwicwAKT{Wk- #r9 383՜cIrk]cQEQ!uH uj-G X;c% zho- tWU#N%aBm3(VJhOʼ(Y-V|ޭۥAw0`.a`af0s &7(77خYaf-XwXî=W]nu z":Nܻr(CjjzAgH(#bƢEQEzXVyyNCv9fh3`fU[TQl`6 l>c Ŏr+j ]AqD5pTI/[tj:A.뱋.cĢ(X`Ehq|sLfcvlllii&P5QPUaW+O|J*҇*W:J?8E+Du-( >u]#Ž}EQԫħ(n_K~kg瘝a6G6Tja:L̪jz { {ztk jf}ac(>)U{|CՌ0+V% SʬzА; ͑0VrIQENHq?Z0':g. ~կ֨Fqg IDATQKjYcE[㚫l5ΠyVK\7RX\KGlEQE*+Ѫ/** BFߜҵC  ]ypwVV k?KW{Q8ØU&>5,++bުh8(z뀕!IвL *@FBWtθXUj`g?{KaP{:j2!Fqj&4ߨ4ܯeMjkkX Ҿ(^`Mz*VVcY> {rT00q}WLHbؠ\X!_"_"_E~g䟰w|wyTY3pCW%jTX2IsC@D *ś+·Z+QokEQEiJ{vU3dϫ Ihg>kTkKl6wZª&~ 8.7 |wͭc @O}С,(V3U\Dr$f5ݠ"/jj%I+f\ٮW 3oU-[KGnėҮd$V&:[5Ъ:ee++ )(V[3eVMt 9 Qh(C4A4A4E(s9vmJl,6  ]W֟3XvGWteb}WeTE_2Tw )7 XSU +Yi=ss$s$S$SS$-ZllYcf%V_6ZT[GWAj2VBXe{X s(^ `})e-iʕUm_٠D.>^Ap;T.h?:#EB+FM\9-j=XEQwB]6av} V]}e<.]D0'.Y\JpJn'G?``k$L-{Jxlz>fgVk Lg ZV-p4cLaQEQn`4誏*ٖU?}'B}Ym;EcWiykt7πse\6hDtKO>WXlâ( `EmV%p w *RV뀫ZޕFа=?jUU'Qij ɀ/w$cו<ikx}cvX(XJv,jjտo'7 ` ,5 *} m}(t*2u9Բ]Ū+"1@Hu(`͔!WP6wFUz\wq. pj t5RUV,V뮟#z*˧0#cQEQo滙PU2wj%4T GRIVּYIpu`뀥q ʾ M,)(Lˈ TWM}UBNxcwUe}PKZC$u.S5.b;EQk@ -{6):l5E0 0֡tueϻOGus,6\Ń+鷻ne2R@ *U"lQ*!(WX6h̵*Z#{$1 utղpO&sO5[!fj8 )(֝S5@TeozIr{HT Jf~t,*`%Ku{"; 8Z#+Y5 ( XuY#6ƗjZ==jf (?JU.y nHRU* ZgӁZ(uvq wn.')w[-)c ݃WV>ǏPIl2T*j*\~sSܡu.NQE!j*)_pteBf8zt}s(c qiǍbhpw_uZUݾFƢ(^9` *l6QoaWr=7QЅczUځa}P5S)TmNXMJ?{"d R#gߪ 96@ӣ^(p jo 9:Lv5kӪN)UH_} si˅apF-oŻ(ҿ'ݎTuhiEQEjOUg0mDըs ]367`W7lo=ܬ 1Vy}U*k*V^TG<3XGEQE^߁ @dkpsa [Ĺ7P֫2bEgZ!|ҪNyU,o5l5'šEQԛ_s`Uw\5AL)-GT& -_Ur[}*J齎FܦXq ЕQU~b+9I0w(emژ]`h|+Wpޕ=ZğdTDŖz%ݺa7]jTuQeXaÜQEa XMDehz|((3QI׈? y\ps/=Z,/I'BZ<" 'XVH˪7&0ѿ "ս @N,(k" /.sA9pF5 nRfBO>XAYN,duT;rD߲j%frREQ,2$)A#Ĉ $"*7D&07,͝{᪈XNsWw8V3:ñ*eDtޚS ]LXHRl&EQkL&@j1-14U7۹ fdiޭHwYˍcU'4~BL@*ulBB(bć*`hd 0ά*qӂo^J(mֱ׳d0S@*Y.D0(ɐ(X  6MQ' l QX 55Bl D D7}#o#f@.ӠM)MJ"+ٯNmO]ZWnuB)IG'xhTucFKHvuJHQE*›s7 E|yXKK Էo`?#0; r3r)7(JXaEe;Ƃ jլ^~].W7 ͫXd,(F*ψ?joPBGAf9j+168XϾJ1 >0+΁sV5HneCsޣAe(zU ZUV_~GEY@T&k |0/>DӧDf5Ewp)h3A2YE`EQV{oQj-PԉS,ߵa3tyW ]ýƩt\5_MH[\Vd<8Y-UB(k Ud S_# 9(F]dHe{t# U+F] TV`4,REQr`"wXX M'+?'H?HwPFZk J/_q|{ZnN/***dlGd,(ȁt۸5o&_~}{ { {{9ll-QAW~2x j=!J4u1bu*ɘ(]4tct\lQEQ/JY`o$=AJVe$A&~V-1rtʾm$&c' W;U.Y $,[6@!>,D:mXEQkBFEF 4TAZ*R\']{ڿ#}.;ZK[ f|jbhÿӏwb+U.T)?ί[-κ;kU]Q[EQEQr=R펷n0ZpOLT]90s` ,zڝ) Xo>lh4gJTVV"# #Jur)(V+M3DXjA7&E/tvOQw/a/P_>C=G=5 koe_EaUTZ#y-2 "tyZs%NQEQ//G<}Wrj{ ?R5.TiL Ga>Uj !TbȚT|K[ |$(jl%]c~3=&s1V0phEW TeM\Vi)( NZIݧ)ˎvN!NcR'2 >pSEQ3W+ZЧV T@۩@ n%3Bv~b53 cE |O$͵,Ԏ>EQrVuceq:V\ :@}5p+P#=7 Xf,rShDxDV4ȟeYZEQ+,ebeۧ (,hBa |P5X32V.O38Sh#[4PEQ0$Mqտ}UF $Wc*ìO+JZ.]RSk("}9ybCV-y$Rr! i$YKՃ1N)өXyk@`Sc~އrm4"cQEQx^i AБ"MݬeMDZh6ƿC[*})gSo39EWVB((nW׷FGdY5PA*7@, DEK`-8 aj+L gY]MD2/|hbQEQ/K_U>i+}@K K6 7lqM^o۳Ra{cTvrb5JFZ&pØ(Ƭ~/[V;JM:h Y\GԵmcAU./[u)ZQEQԫ,Yla=j.MԔDKI5P=?U]sxGao3L9V S?mِ4(X/X}ptЊQW+ta)4븸vwJH=uͶ{Y(eV"ʅNS]{thE+n{,d#h  R n&ZICOI("1 Dg(Xe8UR*eFW͏D*۽1/WhVii/uo%ǟ'(ګŽϸZ^ ( sm0{]^L٦BTnJF5VSX<|mEQEB Ik#ubB)0f>ZR:[ךb{|hb1%"WQEQ"VyK:W$0 v: S m"5?Z滟DzP#u*ʨ RiMDc˵EQoAɽ-7 ƿ?˖IUjqnи)|*k{˩ebPEQoZw>jw᳗Utg9p&hlBz ,wTX(<р EQ<<,trVQAAPdcj =鹨Ģ("`bkܺT-gpqs\|lU )S9-Ln0T߳k TW(ziHQ+Աuب6p \g*ҐK#K&։22EQv # z3 {W%pzK?ɿSXOabF^6OAWd,(֛,3t֨>.}:SI%.1dSRP,(^[n3Uì+o?I"օb]Z5-p|>?! >1ի~df8(jDhA^/"[@ܢ b]5hu |~V;e׉))|,z>EQE: z0= U+,^7YȨT j`hNrB@z#cQENZO[883IsobcY0i]Q8h QԗUd2U,Q  PT2O. },kb,XEQWEZ.Wf- I,Tq`uxTOu3 SEQOŽ'>V&#*?**WjFWz;N+hn+G92(XGN z oAF""W4ZfBNt*NNѧgdEQEz[>V,ߊdqSO ڰ yAlLdׁYt ?!`QEY}5Q#BX R ZcO@*W+ }cP+UX~D>EQKcAX +'Zij,+VRjXÀucሌX#EQE: iոV"3*J^4`X/0V<)`Ģ(:q7]°"؀esjFo,aee+=ўai~#pzQEޜՉG8++Q0+>ԋJK-lAL/z杕5=,+kJ?cQEN0b+r<+;VjTE];uW{ σN1U +}i=`EQE:eXu'tXZ--ӽ_N8lb2ӳ` bdܿlB(mWl0P=Xx6=ؕ(>lƢ(z)sFU^ -98e֕ |)} PX c`ܒ(ްX"lSΘ#WuP*E**j?#tQo \o~?ar ]i⓲PHQu>Vt5Fչ_ Nd9xO‹u ^(kb~z+9Bl.Kݣh^.f%uZ!(ta/3=d6^^-]YQh$tu?Vڻ>s*꤆TC)Əm7kz\n0 \\d>B3-YEQeR1f,N‰ S5OdЮ{+Fx0iOXxJF*냉:鮪[9(["li|Pa9'9ps`̀L[j ])fp |5DNV&‰ZHjԾir?CQ;cU`'[S: Jr` 7bPDd7h.E1/SW d'rr%|-LGk(u5F<K, ө Y$9BA|kZuBB0 f=EȒ~7mMe]BAy[/Bd,(30Zq!E\ \!:WM%"[U 0F VثP#IەD9,fX?!'$TbBZM: \g@ieQEFv1{WUW~Mm7Ǎ|N}b(ӏY阞wC^pWvƓVdv Ilp{bEQ8jU =kு ZkU=Qh 䈶0[D+*7Zme~~պq܉XY%iT09v+9gK`!Z5:ӆVEQe%Idsnk3p ӠU[rskUWtᐊb%j:YOu`h>Dcײzx 8cEQE:zZ` D@l }Z ZlWHY$ZOUP2]\*B޸,6%TS95ᮅVZ GP>;f(XOp-cRh%쭪Rs Lc-U=XtLrϘL?ca\{u/7?S\\EqFf]%+ɻ܉+q. Eǣ1ՕJpgx b@m%ʵa5U}P<,EQEzU:aQ]-(+ cEO(Cݏj*;q9TAVh_YY¬'=P X%c"Gire U[>WcX`bB(t?jv T j`3V:ZIT$=@}Y?cmORTKD03[ ]\1D (XQtaicҾ)^tּ>Ba׵B},x6a\VHTGe5s+t;ΥC*P1:)1(jV@ 1bյҺ7fV>QDV!ŞF`cbs+L1(ҍd2Lq"["JMռk,Wm+5#tBF UYeea/ĩ:F5c9jsB!1(De'2}c[g²d/MUdi&wBK?50=H|nCgp <@>$x}AM. xjx3XZY;<EQDMtV̧BcA~XoWR&ci]\V"Cu\~4CemӘ.C oɃHЪɏe2zDݕuZ9nEQ,Jg!W 9F5E8|w].fiJTFžb{kw>t;A,5,]|H:ʯ6Qwet{aqz^REk`-as l'UR8fk{o U:ӺJeTƂbaVu=ܩzRj~0`尻G?qC#1cVEQuY g4~Dݸһa,꿅 C|#1'L%ANi%c՗z_c,*G )e!Ho=V;i=cS% A+(X^[i3 ҆DWK=p\k5&[bMJ'^*5 9n-bh%"o'^ixzZan'>X4ET]\)(Z5rV<$=?CU9p&"Z/,q* L RrcuiJ0c0 ]֘@S3V3PܳuC9'"cQEސ}]hkT?)װaP_@} |0kD 60&fsb#1ƿ۞م#1k|nfʞ_niW:[[$w^h>V@̢(E=jr,9 VhĈb*ݛ{ZU iKO־@3re3ޭUh?F÷5O"5@+(4r.[oѪPO_$.#4ЇX]Zi*o9C+QP=[1)ϓ鑋 bNp_LU0w.[Gv~gt2YEf674KJl(BlvdH%Fp)Gjz :+crp8*[ xw$›5} q괲("`Qc ҠXePEQ˗5PoPoP,%%[5kD?"1 0S@YeY:e:@ճZ+ ڳZ}oI[FNkBM- KsiP7 ?HF?oĿޥU"UM]I(mwJr*(8ՙi5Wn5YU6XK؜B+UXG} IDATo>ǔP ,XubYǻ[@e3KĿ%pgtv_너TR~RӴ4=` 5T! ]XD/r;FU/S X/b2,Xu?'XngמD Tߣ?TjGi5`wW ܗ`> Z &NM#_7]W5*NNzbKqxB1J멠URbɏTbTg#yEƢ("`['[IV[lY׻s˦r-S/~ W`ޢE} Z6^$)`kxV8Cu:l#r#̣SoJn)[zbEQS#SWFV^F2ν2"y 3s$s$F]n`UVu k[sva_=a7k.L-eϾ>VʸN(TY9[`;zcI@̢("`=oGB,H  lz!3Cz id$C2E!J ®aK ګK5QwbXI'>t-D:0ogথ*G0T̀+O F*ġ/;(XLZOYU*BQ R[ @rɟz{;G=PeSSTSK0SD9"lm`)uh, @O{zuyD?iu.E*ϡuhJV.l&^P<ʺ"`-IfgM`91( -h\K{3+- W09p.cs$7ȮaJrS/[R*U=l4?УdFkQwB r|TJ`ʅwZ&VklWC'Q3W!Cu]P4_W7,#ȁ5C"[UƽV+ \fHQaVA[ Ӟ\XMXs̿B3_\D}93ss`+Q8GEEAFFDrߡr1QZ\tPVXnN1]xҾjŖ%鄪֗xwӕ[HXe5*$U~|,ZYEQGƬG%ݗIAFu[%PX}>?!]!]77 UXK`l-PTe}^wqd9~IVUw>HGHkc/X/6`6ah=Y[i$[wuׅdfDQodD&,VuuwHY,Lz7g3CYt-dDhL)?.όє6]053}"ZGUZjU褬Aٽ& &bpE~ gqoRGKzru^4+m/*#<+, -x%?0O}* ' u!C^?#D~ȇޫQHVqDڒVoāvFiLlg,7)YjժIY'f 'c9we+^ ӖF=YlM*ODKK=1ql iTS3~8UGɎI ˅qu-ZJ>|ө2$5%j?aìfժUXr=OSq`6f9Wؿ~=Ýq˝Moq :l[n5|VwoXꯇfZN'J*0BU./)e •ݸLKσm`.]ёa#څ7pzqJfsљU1VZ>liF"D˃dU݆ў̿D)g282eni^xvg7jG%'tv[wr^1R$i 5pE)م۠GJPa"Ѕ[Pì2`VŬZjUz)0k < xq7ޡ;xӍ6amZmn&^7蟢-T} /Ù55+xebl{IB4|+ H !*=U(:ͼ:ֆ"[/ЪώF%>9cQ1VZ*`[)+.$r<;KDΰՂ%חwEonXc>o ^ oGoC#]VYF`Yv܈{~"c П$`Y۵!ٲ͸s0MbVZ*`}R̳K#m#NvrfxEm) ۫6莶)~W6W*AxsЊ}$e0|rD uIIq]X1VZ>(SF؎|D2"|Fvj6Ӊ;F\u,c(Li¯P= Kvy.ME AT3k,T'G+v $TMfz:p(WT5Y7 \T)`Y1w#WIYjժUԱrƲ$jjbZ|;.m"=ڞ6[n-`n7k- 5;W_OSb0q%ߕmN \p:]J2da"TPK6tHϬ\et"Zϸ1 UVZUMR0PuΔ*vB!~ /QCsLĪ}Ƽ}]QN\EY]A>{:x褛`}.7ʚX{HNv:c)T f)[1,ƟA#ʪUV XZ D, D%7kѯi^#v  P__s8/x; u:.Ā:RRn*ՑSV0b#n5RM+I3U~E.uP%C#v{{<ţe,|Z*`ۚ%\GӄqҲ345+l^IL:ӂ/eD+c9V* pk`ZcV4d&nFdE@0l3ao@TBpp$y2GZN!Ig3#:Xtp}*cժUև bd$d6sR$ӧ#P51F3 A ֨N[چ5}kX9Կn$3nt@e6U._.k5'cm۵g V@Zd,vaeZjUz"Ғq.1Q‚ҧ~KbdK ΂ ڭ3x0E[pp=JeQwJr^UyXìjfuLEby)=KINwo9 cQ'kժUՠK8FZ-ͼ#df62T}NVO|9;`h?%OBYh;2~SM`|Q!?Qii^Ut?(Qy^@c^]Kn(¸A=fXUʪUVZ!b r IsHM)ַgPSӑH`1e:;h^|G}O s3s\`gѱk W | ϰq7z50-,?Mnj3ZL"D+DVcNW: Fȁ)t,;E`gaL2t mhMy;g`JYjժU]`llJGv3l& E Ug,QKi_C>V8; LUODܡAsB 9t5_MxQL}֐Fq[!>)JZjժkLBH dЉi&V%`Zĭ-c-֜Bu.eZs:EfEœ Wr}91yF/I]dP:BՄUbVZ*`u:a&S{[1/: X;8Ks %Ĵڄb ϦRPjդft%OuZ ӉAGUc1c8+35-[9<)1qm`U #pw;N~{8ƢbVZ*`:yI*Xf‡%i2>YN0Y1fW[I  ŀ6ǾDYB Q#61C"KښGj{0uV:dCZslrT2C;e5n&:lVrH",xVZ*`=k̬({D(LIJ/ƳxS#hm#`9]A2 fm9[X: s7uiȢ TBҩdr=U@=lS: 6\}4ZP*"qD諔UIVZ> K+RJ :ìM`8# eZKܩAgA: 'e@a0/FP0kQ 5| _k[*H@=vܗB͝ǦP4$J2⌟a9iHi֞U.Ia^Z$/+UU\UʪUVeܛ#~G_]q:ZPats%g_nW࿁!@ swܠnh.]Zh~c#YM3+Q2pWhf0l$cp ЧhS*|9,RFt#cLĪRVZ*`'~>38M.UWÍproĄu[>k~/ņxlJ߃O%6hV4E765ι[C^$Ք>TVB ж4]7~ٗDo'^38sXҚ5[: 7,;1bVZ*`:Jz7 HFdAڴ5p@P E.ys!.p_ڦwiC*+i8v&M=6۝blU"2 cX5?S7DZjժUʻ5Ȝ-suɯ<|ԇIeQ Ri40l=_ThоQAEҟ܉ͦOa0+fDL<,>;%ƚ ekݟ3gDp=tމՠiV8)L7߉#*x%Z*`պ{D.R4:7%5Od31wsA/c4(v͚zxzO݇Ʊk43Po B} '!} [K% 7iB6<'${Tf-A|5TަOy~0mլMxg300ǃY$jժUjlf)kژTQR0œ:z\*+CP- wW^d\g7omJ P] )rBO2`K|[AƄy؛0s։@hUZ8xf=ۻĬPeZ*`*Tq-F!cV&|V]gwYth_Igk__NNmmzt KgCHSS; YjUuJO_ƌ  uzȄ s4Zx`Kؖ-:`۩2{ O3X?$Pe:*ŗ:!yb`ˊ!e IDATWhڴ+ڥj*@'$B{ cBu*fժUVPK;XBJNZ)1R˸P~ R"%J\cİu9}NhB),F¼嗻Piqb%?RF5+bm~C[pqEV<.1rh򎦲 7UV Xvv&<څ:T&LJ%o<@++VJEv - U7BjuI7?v UUv`W4״ofĹK,WgZ('A+n:,h%q֔^SL!7~9éYC[jUk4ca Ǯ㪁3XBx۠RX \ i%d'?d|q:ѽuC`Ew<_>יOUCkNIaloE&4(IUAٳȳ$95ppx)bVjժUkT.f4,JYi Z:=Y*lN\Z:дz4[Y=K ss3 w?CӜ@((hҠQ 4,zom ߧuW2?6V2n_N73 *#iTyaѧZ]ڎIYӌŻ*fE [jUk[#Y͈I}0ebӧ*f-V[mS5Nе]B@z[LJ^ }dgM4i*Q O ^1=lLg:AIIX멬YG[jժkktK8&b#vcE}^Ys+(/J(ta=O&8zh1t%[ l` V5Z % JcAC]M w?FDq/I$?Փ].$.VԺ)_ցeb,ޝiŬPWZ*`5(1FY)"#UOgL}4i,F?Rik`1fM[-Qר+kO!]N~u#z*+9sEgώXAV"IL"672xcN[jժU\lzaQ;6 i68z1Ө&\`, MhMvpW!5|_zgQ'<{a~ ohKRR=U..,ⷔ˜,tJW&b`om]Kq܌ {%pC3VŬ([yUUֻV*JYcEYE̿Hl`蠅5|PGV X>#^{XG0DUT&f bH~KNuUUdM5 .VEͧ/11pv=+,.Yrh>?0YvJ\(;wWGZ.Z2<v|sԓN0^fXrXZj@wynk&a|@ʯ/9"ʥqtG4cTIU1s !\0{>A}N|/Eh]ua`3s[/ vA.f@90 ;n腯N~ї|wq*G.@zdҪ~VZ_槳AK&ܸQއėjw}Ot{%G5*m $c1b^`^ 9q77Kx o؍ϛRe^XJ?,wCz1&-iaZRYPxіtJ\Ecȱㆴ*iU1VZe,su8Vn0Qca2ZMpoV:_Ɏ7,6MiRvZXea^\:ޤEJ!2K'9pp(Gx]Yn{[TkD_U9GiSDwK >΢]jp4f5NhUgZjU"C18l8?Y\qo+Jx~C{[b[lk 5؆łv6:_ h[b|z8+Bu'>T޺HݔP2v\b Cgn^t~‡֦ Y'VS,lh]h͎| PU1^̪UV03uDU eR>[QGˋqLJozTEjrA_c}x[5ꔨ4f7m8^lTC-b ! 2NBR)`yqmyLDDt8hƪUV XBL$<ž1טň9#:gxG7.RgN5j-Jh{k~yI]lx9ǜa0K ¯k ޑS+R;1+&ǶLx`>iFD+_±3jJ mMY4f5YtŬXjU$!S QϷ'Y6T褥/qXae\gALF8?gςE6\d,a1b͚~AsFsFsNsNk yمÛ:?|6kpM$KE6zJLɉ1uIXb 1zf9.ySYO UIVZe=cE/W>?aO[N\+!\'>ǡIg,_><"\F^n`}uS-fEώg V>J_=rb=BU#lTK*s[spF_Ȥ5m>W11JYfVŬZ*cXw5}dn{3v"c`DZ8|[\姘YPt:P74W,ޢB>%p;*SN*=t9KCK+.x|tnsimڈ++Jע(GI)7pumU>VZqA:s|HZ3I]z~uq(v:[ {d3~! 8_Ak`CuuJ;VbJPUOebS>5.2 L:#JI+:G ۇOVZtXIY{=i.e&Nӥ)=d~ /wS @/ @7h0k|P7k }~57Ҿ;[ '+/̜;%ˇz|S!q!p[tgCMoK|)㦲4ͰVZxVpTK )݋Yit(mOK^9N̞ka@anz .o0 VT ~aᢔBiPF5fDNeS͹SXtD~N `(O=d2fbV?㞔+i%*lUU]Xn$kMdlBf8FzPbi1;}{cw\ ˴xW,:5~SHFDmB  m8XE؋ހ?䬺O78lVJ?EP-NIn{\Jl܄b=?TVNZ>bUwS{f NWŤ&=ܸEɏT6vP;Pv_54w7 +XoPbFdHl[|_݉mѕކsT3oV1\K2Sl)rZR7JCv\: TJz452VŬw.?2~1AX$k)Y#gj> '֩jFl-XKw=m[ _`㛻IbbgeFEwKNOdK} JUڽ4x@vff;bÏPyuy8MC_~r[GXy!ovYJ*qNH -:0A'u;Zk_ῃSOy~1MUw.sEMdPY:hsX6tmpZ;#UjXpL`fM|3>U1+b^~hUg,N.֨{Q[& l ,vt9o__!N\ 3 9 }^x5 dJn&.AOǤ&j.SVXZ0nէt kuVZO3j'tsxjSsCZ@Z}UwS wvᡤ5H)/Ӷ$.M16LY[EՐtjig?A\g(ЛZ39}~y+WIpq[g/y:4CڮΩXSiS/tLYkINa8`Srr/ ZE9daE]lXQ@{M*Uuk۱# )%IY2 ٧018=M6}B q@~0P(KYDwRtv֘7,.іδf[/DT*nIv`r#BE/dtaUiEB dfn}>&fUҪGFUU 1GaO0#&z\* *򣀴nיECKb>)ς;w0bioPf-ҀԦ#pzv$Zӗ\56d[/+1,,Zg SI4{B?)̢iUتU{Xav7ȧje1nbއo!&v`U1Ng!\s~:9lmGoI ĕO'ٽ*wF*)]مڕP^$}"FA"Hlݳ܏*iժU{XY{oP$cwi~lC#!#[.]6 G0kpp + by{^yNĭnB f#dg8׼ V*Dno@}?b [g>׎|EUV3$56k},˼ө?ܼX'E& ՑtEK`u:꼂W{ cp A0tpu¥GjL?W)f)M.TDlA/1:xzT*V-)_r8]8GY![jժU񤬃,Yߋanޯ֩ѨP|x&u{NιlhƏ5з m?uvuHDQU><-D(20+p N+ԂV#/J[qyOAkZʚh)rZjUuz:Z+3`?\*4:f#mv@,^?-qK[|5t-Guһ*lժU֓CIk{2V^Y"P]jiQ P6CP1^‹ѣW4oY^_2lɊk,SfpIW4mZMq@^+ŸĦKb^.k څcU HOGcV$|Z>:;ȉC" ƳƸjTV˧D0 pϧto?rbojժT! O"eu& {Q:;鎹d45g*I]0iIҳ0K9ȡ= "T{Vpf#Y&D:)X!7B"ugթ^e?_zu8ol=4YRhOC`G|ժU֓NywAAGU.('‹^] jЪ:eF$,=KG3PRI9m_grBxJ _JjCKty߷)T91&P$f t~/wQ͚1JZ*`Ղ5S{3[b,d'~~ %:<ѡ'l[̭m5\KkOF7,_^a~ӱK>DE'Vl&^oM8}I/La3L|CIX*lժUY8HNX 6i\L'GXenJpMs=kx__/߅Iy:-5\n' J|*_0Rp˼Zslmm}KYyMC3u5)eU5V X\O=|nG幪_XsKg12.ȓB+dLa,5;f ~ ? "py4zMsEܵ:ѵYqݖ@jY.UT7A& j"G%0h+J 5TȐHI㨎!f'ͰbI`V XK=Bp0Yd~l0ifdq4Sh77,3uIE%|/Y Ugp9Y,Q ZK5Z K}g/9-µ yD-I>Èt" cv*.[q`,ޅ{*iժUcѱBК12Z3Y0ӑ[.;4"Q'fm]7p+ċ F ~b^1gXa.c ^<]K &*feW'"Mz|X>kemT՘;#JZ'$Y*`:cnUrR2'RJTͩ]o+RЄí 䄮_`hddSz))\(z7l:?d'T 0Y޳:P5 6p%#z㪱!) M,jbV X&1_}[ n:v۱Po_:l~ # -*h\-v].v]bo7 :8tg})$'MWB?rmnZ).'v\ FNܷ%nWOθ},5wTkhSU}v<iu'ӱ翱DJ.YKɵhi&3T§ !] MV?vIlq1f暦 RkOm:Ǧcӱ`&]Q jE$6#]0a#.^RWҙ_9}É1TnyZ1VZ"'>Uĩ½:Buɇ֙.S,*Na dE4 Oh 1%b}mpЮzC/# E)7 X* xm!>=^9A#3v99fqbÃ8WĬX*`պf=٬~½:ؖ7:ҳ>anMVME ⎷ _>?ggh6-2}L:WgIwAo,E+FitnP-E/Pghp_YXgP1&Ԋ7akL*3.YMc#&vi:N$QWeZ޳v_~Ͻ;5c/X.*d}#ўTgiMI7C'oQ[pɊFY[goB2'b-.)TξĽJ6ewu Y5%,nM =MC 'ʍYoxIVLG#cF`]X{YOOlsBJv)Kc}J: #Tiqշ$c-=X C~"tUjWh0,pq9NV>LoēB ˡjLdM!u;髖9x:Yiw?x$?C>UVgR\d3XdYd;^6"/BX}`,#~W/f\b`]%Zҳo !~/8 S }↋r:aܑ+ 0hFtz+aVr˦3'Wgt8chTNn{a̖#jɪ6 OT1fM.0lqE2PzOlQ23xzСEP?/S4q+[%5W]ܹveRN,v܈8uH^)m֣Yk𩕃aц3BPx)h`T VUĒXGd1Έ`M("n_7*^*N>_>ݗq>)g;GSҐ`{F:M][xڠ,| xDF ̆{{jEJKv!V 9E-2k9 OJц)I;'Z:wHZUߺ᪀Ui1֡vcT.6|י!]@++\IۋcMPtkVb^\u('MGsC0k2K^z  8+^%A v]?T.\>7=?s0ˌXG}RIzRI?{?Zz?VXak/o"ԲAO ~۾K[)U\#\i`\Ѿq47\cI%,QrIJ) i6 n=\B8`,JуTi+$AՀwKuf'(ԴiC31~}0kWH}ԪU뤌S0֠7007&n鴓 )5QÆ4nwxEG,jQ/PQv?]mP jڠV5}#/^c_2通N$4e}86XoXVJTP[5L4w PNF;?'%F,^qV''b D^a,F"I-h ,Drb{х5:Z=[oƥ@DD?1~'M T ^b)S .q;Y',B NyžԍWE#>ؚC|^c9i]AV˧>9STS:KwDҎ*C4r<"QXf;deYb-T>%>E}\U)Ezgs a72EX] XNm M =O U̋nH:5OdiM|GW}wժU0c`,F!- !:9m2lD&Rh,wCmL L'>GD}zzz@_.KqRVb-GELms_E#֊VlxġW=+j^Śsp5f1CӚ9 73q0\58YanioV*}:nR0:r!D t .Ua&Dr"zͩ9ݽ{l@ZjU1~,huXLv)eRZ`8l7b]0pzJ[>3[0w RBwn] _ï3>;ȗt| ڽĝX5,;n֨B66m倀?Or㘕3iWU{nO2V Xf=*c )vL "v<⊹Aw)+Z}\JUt=nb*?H[ `v WW3 sx`n%xDUϪGwbX1PKi[U&ڗ/1'kPLvfqT <}*N>BZj}W8?Lb]HZ u5}ZNJ^X9 3wx%0+㬥ahEz aޢA1U.A>Ї'c֘5O.nb~mY;ZBPt5l*AbOn밷&us`RXV0d2\tHw$f0`~9-E5 *Le16^ )6ʥۧ::vw;&џ/|7CpV뭘~Ք6FX eF ؚ|siQ>umo^ZzcXOe\ 0քk;Ȏɖ=:FV-?yZ|4}5\6YУ-z>*,TN$Lty*±\dTigE+&2V0HY\~s^-y :>==O]lXVe&߫ccHi9!{5Feԩ\ \GqYLxxI[Z߭Ci`;hڪPZ6C^&ey]42lFC5]6zil@$Wit|cDeKL–R-fQJߪNZT{+`UzXco~X)+'|5bZɕ҈Pe<=,uGFV%_xӬhV4Ƅd/@}y;yH }×| XǬiWU|ڄgݧ:T XNg~ ʦ4.J;Ȼo]ᘬ%)hN26%[kʣ[i/L+گFa`ōw Ao0 tnn3MhPbDbow[zNݥ8MQ" 6!zvRLlh&JRUR&})NQ*:>cCCXCb0~1STZuHݟ(b1`U+F<ƌ'4 ^DDZ}pYTCciiw JmҦυM!q0 ΛZ{䶔؉n|E|X63 9ޢ<줤+5PFmJM){1Z2Y*㳟Nf}(`f1wnRW4OOvdCc@;kw,/Ҳ  ]я^$'JlnKL4iTcӘu*䬶wȬb*`:6/%,'1ԥsWTYeNcV4x j M߃'ÉyOBbnYޭ.3R+rx; |UI.I#(J'y<{zŎ`5;~{ :T:V X*c=ue噸6ξCFKNYvB_ qȽ U5U:Z 3430|p>IS lww+ }\'*rYx ^H}>iqO^@3ﳛ/kgkGe!j=>=5og_GoIғs4TH=;)MNݧ17,ЦF E-0wawߣnWaJjsԧТ4ʠ4AA7o MÇDReא%ߒX3g?sM?~ywfr⾮N!meUj`9>[7XbVT{+dl'o>BcQ4.D#%/ ÆK9Yo|*ln^^(X}fJ)ݳz1z0 %ꎪ$X"oS2z8T(:[jtwu՟C(?T~2Wx/*|{YeZfTQ: &mz@tB1L$ņ\ذe< |z첞ݭ7Eh2J 73"^U˻]mFZ9K{ ^;y+#l5=OyL9glZ k:m>t{XNs *.$?IO ̸Ø.ݲiLø-a tg~?>Oy@(\6FҮ;ECTL%dsS܃ƓN ә9sxN1}_~p Au4+XoY wW6H{BViɏ,P4Ha]: ?qegT3\*`ժuLmE9핵$1bErObpS+zʳzA2bЭLOsKi֘H8uآU`Y2]tz l0k.I,l:_twzԥjn0Sr$եtp><|U=mWUE'!bř֡BfC3Y.Ț~бrWFUK.uxKS ɿt€hNV u^ϰKD-r0* C9zV  -M{A{tC&NV:U|ELU=@UF Zn2pHz>ܐ˨1 qUVw,h#qdŁRWB- -TV&]KQӃ򩣩DP-V1Ұ V&\^Y4w?RV6a%\ڭ0th>r@Ӓ S*g@h [Zh5kT/uU\GVYa|P) U3T1=[1yPN_91>_Ȇ_FĒAvމG~=Ȗ!̬Yӷqgлpط}  paƽ]U!' 24# p$ccI 0;bM3#: tE9eғ霞Ki*.]-R!ۖD0¬=.o(% Z GеtJ ihN[ CVWю.,Ct*+@v@@j~L^+L1|0˟xv-f]ithKtZ^UKяIp ucY-Ak]㈗ةzHK@C{-ֲ x1K\l;>sB_R5FþcQRO z-|本/L# `apqm|~~~wz8cvphVq_ W-JIN\$+[-3-,8,2=fҗH]}簾ֈ8*Jv1E Yk8sO%o0#:onS@Ӧ: Ub,i;m8(Alࡕo_W oJWp_~z#:feG$_U&:j?砫qj$6H]a ($j|WkiWv*rZz,#c>qFR1Vk ɆL8JʭJ;Fe-(PTX % I <0Au 7X[0/I🁏dq𪼹g|S{rO+9ǧwɖ)zBx!Qaۛiz8YkWXW@m"sYg?U#E,nE:(ǧ~;H.alo+AUX,|EugbCʛI C ^zH[f pl Yx2qNu.2b9s*ܬ b=hНaO[hUaV_gX.98Ýa?v~Lk X*bfeڝZyoKY94g,t05-KHJ t*t>& TMf׿.H,~ ϩᇤWLp{g=G%mUtk2JrC$lu*Q*-Utz0SRfpÖUq4[J:^bwX XXYWXa3f `R67ߏ%TӰu,\Li)rƐJ3VNɼ2>n)@pX(la0 =u8;c Xa@xmV$ĘTh>0!*HWdN)rNe~H8vHB}p[Ζa#Gv 4NXXqq(Q]E ]:@S,6h‹an,Su#tbBLPgH`_Y}+1q,Qr =v` R "`QDj(NBp:b;%(NRpGǴ9N]n8TRƺ(c.c!ey:cQ=HUb?KL}.ͮ\ipOmhgv8kK ӭv`u<c~C@&~-F)}MfKe-[n/HZ|:c-G+h*vHւX5bpI묪m*{ RҸ%Ƃ X8f.D|YrJZUć*Eŧ .e/wn˚0NW/-E4u!Xh`pϘ)۟RW韁oo  «|6\j&f +Z%5˲Ec(<4k%[[D)V_c8Y?t.34^0I,ƽaUݣ:wmWi[2v1ɂyɩo"d4qsiΐ|#P7ỢtAW_ _OCEH3SleI_հsX#pKeMt}\iB2m~0Myn@ٺplbt[-,JZTRHwfaW˜XR98t{&iXjp{H8!6Ҟd$^v.1҃~ .Ah"7|>~-frx\JBfVJ5V1 *-,a U:ZD4nFhUF-FcNzs;D,)`i(fmsX8f3Gb$ATh ej-bTYX6d*iYx*g<C.~~'{iŃO+C=;g< Jjիr>ѕgsoUպDWh+R(?DV:[RBc U)[%_]bxs*=\koZ䮡quu .m},jO#4A kUyNcikY*[Ȫ!X} -s3j1է/?`# qB|FtpqsS{g~Rc?GC,>`7_^:U_Zϥd6f1(G.;ZBZ|Qi 45R: AAH&_9G V(]nE,%k]w᪲rX?P};3%V~ߋ)쀤!37Q=]}ϊiUy]>c7c頠Db-q߁̿5(}gx@]Fo,˅a$պ/(B{iqBCk+؁51.᜜ܥt*`i6u]9~=]D:f 5S a3#P5Y"cU-!`=t&VeXhEN fXۢ_ N$Sa~ WiaWpaaw$wL Kze{('D3dNqy+.qHB蹬&ESnXNXO˄=?#-,3b NNN^7AVK)Q񅃞jGjR^܁H׃&gݟËif`0)ݨas1gj.s XKӈױ8s< ew~7k#Z{IgmsX XP.. b͛-O)<->ش =J4(캳'Ol3D%_VӆHf}=̯`>|xyy,0TUyM~0!XFX $DLϘ ^b,:2ѕ&[qi#ڧZ e{ ^PG! Kj˧Ϊ)`iuR֑ekKU )Y"cآ+]5۲N)#r-ZF`P6[<0bpϘӜ4Z{=#<<הQF\Eՙ'=Wcsi7RVh}~JD5>v+\ QVb{a㕭Ab4DAZ­0˗X=WҶe,ސf>Af`e^rbE`6C hV 5~+`ݡN 9NG4ru>8*~X^X7NegR5a䗓 QNmgqZC3ltTҸ[̺*q:mԯp\Z,t oyJ[e\EÚ}:֔zLտE}Ҍl0La; xB 9v6z-.44I3v6[3N09o/4K{AD/pÈ"Qxukc0Pf޸j8,ӫڃ!}S)7^5!QK6ró Bv~ `ihܥu85pеQvK[.Y)"NFeА8O3-DS}T,b<+f^0a]j=*}^ |M?RbÔlb"O/z /X Ӏ*e%Ѩyfl6͗*QV(;dD^J~ɨt&}!>} a.M`<tv;ޙQKC2 'U%Yv6䤅n?itJr,2)ܘ}2oNR&RUJ3k/L h !y:@l|:v,;$':4]b3TeML[B4RR;VgdNX77li,/x@+t3za쀜Њrfmp9fP8 c:0|x>ړc`k^|L[|6Rr@.%]jKgè+G~ߕ%ԦҦ(9Sz!G?og~=L 0,Da` yw5Wj,kaYKju#ܰ= -.V C+W}~FxMy2 [>#VC( LW.kd/G 3 :k\X X+eu.TY]+hBJ&:-Z'U$} opIzH;t,'eKw%ٔA תޖfdFL{L{L-FDkL>6TmyX\ QsO=w/g x.N;/:V72VAPfQ6r$$03,J3;jΩQ7RP[p,,5FF R2q1Z!Xi2zO˳&vɷ]ρfIۨ< |IEeۗf _/)==vnΒt'؏0`>H} -+^m?@^lp61HmN/gCbq̈K, 1ь.٤yeO'җ: 薜L0(QBJlMW(`i\ccf) +3XtMox1i=iWަ;rzӹAW6I|KSPL|u`Is a =>zFBFb 2i f`;}DgD̈@ bvW9AUgwER%]c)s'Z̃ IDATe)lltHht0R+V6, ;Ĭ딲>l-hIЩ Eg{!=7n{ Lk b45|  &p*Brn4cKQ-)w%QUUKl|ڳdܷ0~~ +v?ß@~6-+K-,*ƭh(ck6zouujIYG8p3V/ [۲g83&KAbۿMYޞpU^Lr^c\f~~3|t%}SUa=D6qP拲hő璐|}t @*6`+!5Ik&TV5Xd4n,gn*8RnnĨ؋ TUfRD+Oh\XҖY|*0`q@'7eT-;&rle*"U~Zseur'`,FWAWmLf)FVlST 3ъ,6Lʟc_m=+UHWf44]]LI $N',4?uzr>KS떓@øc9i*UIi7+=BSi0uW8 G͋+w2GR)w҄I*|҄b6†e$2+3>`͵\U9D+ThX-]vu΂m.T444nIZEc#[,H3 6;"~[GPgɬC_RLKgQK ^IrzRĬ@(Z3#Myupu7 ](Zi|\|]>1Vc85tǰB%oSjY 7ϯ'Ob+c/OG{b I'^cF);l8eۗʈ 4KXNbu>JwzɂӜ+V{CL>T 3|boҴ ^*qُ׮[X}]uu*:S!LF?!$D G}f3*KsN!ʖ) a@܇TeKJ\%Q`U(7Deє\!lp3 .>pշtિ'S>+ޔs2 +_ۏZGCKN[,K~E,StQ)`i4c=Yb[1VKKY`Y xD͢EHs9;"1r&,;OSoV") ք453Rq*F$39$J nǽŒÖgv}kU6L>WU V80fU3X))`i4\`gc0 R!hoCF@ʂ!%@:x r+*G1#ylSi] WEMhʲQBW gmK_/q8!qB"^`-)u%EZ `axXꯀ}C{(`VAn#*'XU]q/lŶ?}5t1ffC U(~}( b"ca. ڬfxSK,[fxHJ#ܕe-lE[]PjU}QZ>q.آ]KYYOɖ“*n~YҨzh` u10*,,̈{=sAHN0z,vVkQj 1R},B9WtUPJcf]N☵AA*[lߟK+'8@x`A#ΊǖDS识.C +Te4:o~Otwh TiLI"/WDz8VGX 3R/B /}9?0ĄqfY"S<&bE2AN}dW 5,7 G[k3bv>VM+EKCCEkNY8 y$ ݪ,42tODDZw`G\j3$⯚C_ [V,9PVt-Ǩ̠*O9tcUa?Xؐސ_ZD,uZ2'q2/1G_!~BZ_zWQ(\ ^2ĩ}Z4U2VиjIakMp*Kܠ²PnS~5 *3sjV#hNG}bY (2d5˔P/Ǒfk%Y.og%~>Myd0{K^D;'/_F7F`Һ{JLwmJ -Ѫ/޳?)`ihuŘu*MH{ҵ~cA3nȒ;VjO\ѕ/S!TE ht+6\b RTQ-l]]m(4yHMN0ŕ]'Yܖ|sr3Uf&vs'1*[Z\SF/ Qq2crl>'؏;B, {Rnk!i_CcAJAZ(@Lé$*󚎋s UӦz/TFYU%D؞[\K!7|Ewp+`eoW}H7fNPIBڿp8 Z`F|% efE:UY; hX7$e:m.~G[7ùzN˜`Ű'bǜֹl'A ZOR<<B(ZR 1#i3*jC4tpy#ߗ `q/h T˿ZxbaI%灟w೬5֣XB>3[{S `?XfdKp*7י% Yf~,d b~'DŽS eKʣm cnӕcdUpG&ZxK\ =d%ʁ#9MeTHC9BWmeQh(q#>}mef|>$kߚ)dH¡?Ԕ]Wg|-IPL/LOT ~jelP~_U44TʺؿiyÈ74S}B ;HH]:9ƦEUK,'s\d( c` Öb*O&/o.r\Ual˖8hI E}*'f@roM ~ӫpQ~Km K<,s@ߕKIUdGw*ځ'23r7U#Y`\yEІM2x, ޜglA*?oIz D5_V;́ Qg-CCY/тvжU~̌k]ܻV抪Yl5%Yӟ0=Z^M9,YMal|IgqZ`h݌?$-]͐ᇦHTHoN*~J->O vDU\2(YU444n$.fMmf,zHG[$M9pr!J/r:P$weųz%]KuW"&\OU*Z]Xg %-Ֆ[v=+3+9ܔ"Q* dW>8{Y ft̫'DUAD4iN~鄲-lq:0#Tdղxf q1mYȶq0Ӗ j+sFJMTUd ݣǮXTh\V^Um"TXsB&N>>)gO%D>M+o|,*JWq_pIIU~o5Q}L_TiR X+hǬT444FdO eU?-(4قiOYڅWV|qBW⯅[͎[QYi8cfUN ߥ|ZCc̎Sf]3yuM4`g,UK-\Eqg3%sKPL Eϗ0DKCCCWUutMc9YKq\ΆDTU*З}1Yv9]Lf~ qMf XOX`ăjVUi03\ːʔW*%Su+ISж؄UPr\Yt#Uӌ-%Ck:(UK[akRc *U})+OQx]2}HU.G U&}Te-V ȵ*6WgU>ُFΦ4ZaSX>׶>S7z}>e(矀twY.*'Ds.kNsIOgVm}(`ihhu0`HuկdL9 Y((ffXab)G@RcU*a-qaeXlŒM+HJe!P88қ01آ&/}|K/VE/y v RH˳_/rKUy|=AɔX XX'æ~Cк,qd\1i+sQnAUhrryӧ?**OfkҪ![6q%Tі/>}ԦSL5z$v֟O!/h'ǺQMjftUBU٧ IV6MkJ\`/#qpt%QRZ[+s)(2x m$1Xě9n O,dmB^SDj-Q+v2lDS ]]e!]KsQCUa=??Q~/OyB|+=?m(}/F Uи:^81k:]=Plr嘅GGwqRZXiۯԮQq$U\DΊlrЊnRչ^1ĔK?K}{3F@ 8ngѐB˕V(9h 2b:<دm] KFeN`B=aK6muXW2VZ`w ]q拄\B钕+9L"m-$ Lz|"$,V$+eE#k!$k(MU\9WQE+BUXYoXiMc+OBZ M{esj])V~NE(7.’jWcVd*bJd`Ϯ7\BYeg:`ǰ)k\Ç֖&f jVG?Us9  K}Im)(Yq oqόU.\#,ĿZѱNJIaNvJ4꘴g-#& E`o-|h EyR^-(T&:i/FfFE0k1;Y)XաG BCmwjΫ -[RĪF*`ihh\o'.KW@QH JPGC<2}ָPAaiJtXeO^v(ai)cIZ(ePeeb[`ɓ{n%HZ ̕O` AcDXx٭*i!qIN+f` #Dբ+#AXdQL̹*wncDVفx_M XXs1!=5nK(id/d!\UÇhW&Mq_v:}ZTj*"RV`\EqѴ {hE|n0X'h,,JcU͗劮ZQ1V(s^Ija RNPKCCm*oTg:\E]DJ#BzP\KhTSn4,S4D@pתn޸SU9f偟&J̷Z~2m VPjWf@2IJԍ'pJ,RPBq5XeDی!(uq e+NTѕ); W~ IDAT[k&8EGƪ<-+:`ڲW;-ZeKff$ 2i|Ϧ@+1w&(AU*tz򰳺PЯҪʓ3̒mD i\} W$f8hTt5VaV;==HTu0+_qHlNRL:V$H0K+t To' ,!窊F0sQ^x  0H>uc `iZ*i&P"xh[`)TU~JEJl<l?HKCJ㑭ݤӵf O[F4>!:&w"g;XFr ]鄓 ֞U `'I pD4^ȓ;lѪOThVN3Ǭ PfcdRLC2RBqՊs҈pR򭕂_;@,;{sKPI׸בceJdKj>!!xcX6C"-v-V TEYKڮ*1RW=XnHKaUi:J U}$T[RxwtqӘ5XB2 m!d&UmJ5; |c54 KDթKte%s1+2bD,HH3~ V`\'8^?D54+(vo}B*kW12}V=)ˡ%jV hZQ`:Gֳ}<.WY1QVĨ Lв*Kd&,  /Cl@R8/*`ih\V=QE~smNUK1MsfҺrj2hFR5~Lr#>״Tr|U"N[>GNM$΅4lMmGحW8faD!V\CVB*}y`ncDd`JBl%Ol5%LThHw8쯩 F4YBbH}Xl?1VG mGZ}ᣤ͵Qxwq"և? "z?9>Q\I^a"3тTb asDxW38NZv`_$TZ~ޢ+ItgJZuj,ICKCKb_p=X(isZDP$ꢦJ) +y>gē5h%bVK COzqm|Sð:x CK2f+Ş•KYoe:*wbա\~po'."Z2mnjTgy9W`hъoj{NZI-"Y9Ute}W, [ŬmYz:-cWw-2V՗3%W}$@dÑM9 Ѯqg}}g9vPx-CW# ]ґmK\ MK.R^QB, S2NǍ0k5$↕©XZ%Q!z=WHQa202گs{AfAj*x=9Jobh߀=A/xNSXz߲-2f[!b- $t^sYUIյ& X4ҡ{Ը4b%\k P%Lw=bJF· :cxˌAͪ,, qƚj6c*jAʌaI1-jKA},m=Uo꓃aP!d=c?WH-l%?L/VWy1tNu}QxD`%ͥW8s,, wXOm>Kƹ1kZZ4ll@}ctO.W Cc۴&vVQţ7m{uBߠ4a8no XXta<.f`֢E٫SJ.τ[A 4>TYҥ+`6_y+Gؚf\>Vӻu`RPkoXl^81V P5<$xt+ʚ-# 0 m8M+*l`y2K#i֬Xg}bɀk!fU\U1VZfq'_+ e%-M|:g6M<7LWc@S1P8444+yvEg,: SC,ŎUHTYm(hUǜҫD;T ]pï%}'(`ih,n}<: ;s;ICX\V ˴9@`5H,EET\U1^p$I*</3ӑ'Ew謹*ow_)@ԔIڸ6f6c1KBtlN!o8H3UZ~y.k44NF 䏇 EIk`,D/(fs$H{S2Xt ;u)`ihhS6X$m5fqKd,O幤 aP^FRPz@TQZ)B{w"8 MUf,fuQkP{WL=qXpTTg*9QM6_#Xp9*7d6witg~s: XU¬BHf 3%˱H| K7C*;_M$Q*Z*S`_(#Gl?&!yz0M07S*c$H;풥 Ԥ L IrD貤/"\ƺ$% zO{-u׃:khܽ#_{\[O=\#eU,;=rM$-i< 츑uO4CHGm_OD cݓ*u}yUPRB{0?UuԩzP7J \51lGPAٲ0HçЪ-z+YZ:gq, eu͘ud7EƢk,7dvenZP,3SNe'ĊS@["i]%!i{XBKCC\u farmO=!#q":@w+SMW<_0|50b Y@\OK544&q\I5`:Tm ќLڲ*R҂( iZV}fꜼ(~>'|kr>n\?,wMo(`ihh {khxuZ|)3\gV&oK򉥸M%*_ci'.Z_ @We%}~;|')B [Ŏ.XV?6QUeXMC9ِa%DeYu|,Kʔ'fqQBbi9jn>q'$%$4Eqx|ORV5W ctEj[AęMeXxȳIʪ KS9De3~(6NcNL-|xPKC⣾ kⴢWk[Ca"K*I:H,Jġ [Rzg;Zd*,u`,޷鄫34>TZڤYf,ŬubF1RpUv0`%5UhP0 %fҴ XΈ%qi( Ubۛӥ^Ն*XPAK kSטɔs@\e6;+̢iTc@ ] e: S:wÑ-u=VHn{444E(`]GXhؾMrd@MeRZEd *bE9ûa5oN$t5`ihhhg<]kumY%VX˕rb.&KCqUUem*ݳ*KRْ̕D=cѸa:wUuVM7r XgE=UIěR.:,8m\B+$ <,*;ƴA,E;K^( =NOȤ8uxLpK_bۜh`LIK-sv޸DVFj}Lm?2yw, wOXc\U=w-f-2"FY-#.S%S)U 5ɏt"W);Xҡb U |FPPzEŪWa* xA}sߌ8 IDAT$2Sa N9tU ](<§_KK-Z5XGšq; Og>x>4Lu8ydY˧UY}XrKV&Z3 'R X$fm>7M Ig4aS Kc~T5[՟H:r{0z5[*i(`ihhh/U" +Y%)J!s5P밐a:~ՙbwk'5X'm}].n-Q~!IS( ɒR$V[jXjRo{~>lE.ևߚDg")t\FHPE%W5ѝXZU]`~a&,,, g8F/x+Òi,[ R3 MIK(.ۘUFj'z,՝.W)j94448st92WwK3~:!|Fk[!Blyh5a3'B444A+k`,f/0D<';@MAa&ZJruZTQ D Tl%QTDeDŚw,+,, EkX\D6 O)b)YEiZ')7P5P"VšODCK54446o;xbUT5^4̱!: ؄ݗ3V5З952 cBƙ+WḇUi)gxe`zO+i>xzo\huǾ J" iVf")RdKʖRJLVG $E1kboXF+PҸFpg"J Ekoqhu/fxwQM'TYt#LʢBOUeb,ΰTkb yaIuԖ6wri1Ƶ0OpO2Ħ>P-w@,CT4e[ԁ\0x0AmtKSgAM?/a)4< :?zBDz)s#'K E9Uͤ=ѱ0V hf|Wh㰻_H'ڋPCCCCmkw"fN՚|DM_`cZ\=ɽ=8yCoG~Q*Ŭ[}R۹_WwjʷͰ-ڤm a[V},ᘒ(Œ"VDŽhZP"V5(ᬘչ]CCCCc{Rju eWDBVTCKCCQ IL"PvYE3ᙘѩ|?J+4444 ǬzctY+4j@LMK:ֻvԷ\l ZYU`taP54444¬+B8oECLjvZX3G\ZDG創HW1WX`ihh㪏Zeu8wxbqFj*G#N'U[%N0ǰ;7eA:TMnkhyh/B E`GnÛvsx8+,IMV`=\B9202%Tтz!(+, i7c)`ihhghZ+ߎ9ÀeLa,-2cU(Sumy E1()-̺cRиxTĺZ[~`+ 3kӕ%P) I5 'Jtd3-,ATWR =ۍEL0P"Nted} u0 Z 48S.Tĺ8&iڷsgt pQIF:Gޔt2KH++?HRficنneX`ihhhhpPLB,i0D( $H$樞JMu*U(K*kd؞TKKCCthָ~qk*a`!޲&Բm! w^1KKCCCKGE]QZ{b"ծrFd唜h֜X_rmZLa-xWhU-l؃5hWz~V9A!AM]NOk^CgG^ Ze, sfTRz??c+Bٯ0ʞT$*I#2VAx c),B wV|cj*yWN5NtG?h, Vs !ٸtƢ'! mig(}(5鄫g&O~Eq]XxJV4ZjIf(UMěD)-Eɛ֕Q;l{ּ=oX3!f)`ihPx icj^?,fql&JdWSU°DTo%+;, Ӑakp5w5 ¬ԧ\!nmeю0i{wiabQHwAb8v(ZKEAE;\esX8 ;.T5s0 AV:cYTq1*Jőkgxn`a[!%v,QmU-B!a HAlWVm48-kdWj55YVR|Й%Ɠ^>39`ԎXA*V'8īJ ;5 W):h%Zsa V.Do+KDe)Mxjq t ߌBر@WUzW~ ̳s"L o\;+ìhzA4=P) m%Qj?O5Xi h̪cŊƭ=㐏%b71ĩd9w~~Z:[g,iBP5[ZXd2`utd Yjp Υ!jcYrGmf,QB h'Jo),f `'ݞmάIѶRZkU^A<Z-O뿃eIٰ -R}sn쯊в31 ]!cR2 Sc Rc0%e2q ZdiܓZ:F Ρ<`AK?0b]CĬT*ګ){a볅%,l֩!aqՆhŁ(`/\ -ŠE/ċO,A`w, l)XscWr Aj h{˳`V}]k 1I| ?V2tf1P `z-o}Пr#1X8?{&?AC⅄q,IK6pK086X^?o i]R!:aVrB6S\$BR,j"MV-֬*SX,nIZ`kb'k"Z`rI [ՀTջt8ֈKAСZ|xcמ>SzA8Thr!i 6CPYf5.Y.䅽 3o%X$kV' ::Qh59=UN0J! Z%8By%R̅ɖS |ϮX,!KX0 G-Y.LF3@ƿSe [['gR6f{` $u-i|l,Z 7b CP~Q1TC0qka% 3iIC`pBnXaUS.5.ܦ b!!$M+rL!Łeؘ8=W-QUr!At=-ADBe ,ɜAm9Bx!81X[p3f5A3/S\mU=,N~䷐Ed0+׾iaѥ`Y…13ULܑI\/LCR)7k" # ~G ʐQ^k >Dgxܚed|b*S0|c6D&|cвc, +62sz-# VWcm2Xa^0^ rrAZ`]+tp*`%A]lL YZd1>b `6ޥI°x 6P4,!t7O|1*s! YKι f4tM4 s Tt̺2c%+; H%j3QًSLPZ'نíϰUR[y 5܇ .B.4#Bw:ueN6$K*x+8+ĐsAU>h5Ե?q&_Oq\3;'J;EA.LҕLYsX )Kȃ0h\fcFE-b]:D-NN<rM < ,4zZTZO=s+ʕN2v\BID!0\Q@WIVt.ͣLbۘ*r/2b)`AДӺ#tM=Xs.z-؎ܤp6[|8/gY!Y6 %X.1{Bw K,XO)vGt)#ToǢ\5NEXMhGo /{,4Qj+Z-1-ʕl] v,Ag`Z[Fl],cqUplX'[wql{XC3ɫ|r)N|>ɫD*erf̲$CW2\Aūgb߭;nja(Y8MY_!=K@oIQV?t,v> {߶Crk ?bǠK-:U;^V`A=śj#ሣdp8']',b3ĆE$9)1kTYj oHrʆP`oYoer`AiƢH)kSt,Lvj3(BH /!oXaXYboKZY\UY,b,`(ڽXNE.C‎%J3SeJ= 3i (&p}+)RXAY` 21Ǭ5WJٱA3\ y؜l'sqb$)3~:|DBt *fmp9&s0+eE,ԝ7j}v/$bR<ח@x@)+Y)%jƬټr+ 2L cYrbA6k' 5䠊Xw$p+syEĔtaƚN1XABv2WQ,Rs&F)8f(}1v UDR,HXCuI4C IDATAЛKX%0`a,4n5"ՔE1P.`OxbIK۾ܳ3]n.N52%qk!?A Y?%2Xޜ! UJB cXIQ& iih<Za;>*x0%6U >c%e'-'2Ć $tE B$eHX$zƝ85Qۂ1=( *30cYzEpnļSMŹx,}U]C` ],QS.]XAX cĬ*"{ڱ5ɆIw\:'.qkx,[{!8tL< jc,`ǬW1ϡն rlah=JR^Co{mD5?81p|݂DgKY~Q H*}A0V3fB^@+Y/ 5)XAPwJ@|^X$ر)R>!H$ >QpL*H%abyJRj L`.>)'uj"lsܽAP78ȅY&g!©>Wyq$]F%8ӛ+N},,=d~,Xcx54 {>+ i H&ү{3r+3QР1ZlxRufJ{YXAwՇ 0X"0%! ePORUJ\uR5WЈY+[Hbd m,!o+|Q̆CWAXHiĩ<[XXؓ(\.& :h|q7;i{ ~,6 G6R9ɎļSlF 3KR]Xp0#\41\\ w,&QO W#թb, +г(GT! l (ct5KIh9* 8'E^!Afj>JDʤ¾^0lg)B Fp:1!QdîM XyJ޲29HJBYK1CH=I [W 3 ? >XA1Vfy$[ 3IJXw$.c Uk Q3f\4#'' G?%lfmR!KDqd 'Q.Qš +>DT嬬W[rS)7`AAP}s_l(O!\Yig^:;Kc%*2H"X`AA7FQ/D-Ĩ%YbZl FqOt:V9'dŔYV!W- >Dl$S$lA6Z-q*bv)'y2/pJ&ICUFq0 iaX;%z/G1,qtU.H+[X/CyܰLH\IMِAfk+~u—\.~k$.f$gfOJVƪ-;hBW[5W0xt:P僣1NePj`AAб\uQbg'_TZ⪅-I\7aa*~s_%y.@`2 5XAt*Z) 8oRwJ-̒c%`.^U[;+:1l3z9&AP?zHU."[$ kl!6Z%8, z=tŽ p mZ:]-A!h$ MB tq=M 7&z`AAZh+}Xc'FZ4ƵCl(GW3Vì TQL~>0z A 3ѻخXAK;0*Ft%3 oVxddR= _ gހXA1upO[bƲS j8 L25m8@*$![s> Pۢ)&ЙK N T6K՘%;]=wA4Y)V+ @W8!V[DBY#2Uk RNȕ_8#|hJp w KwaS($+lZQsq$;7wYN*_YlUthf 7\9VmD_c,ʙƀr윫 W Z 16-Z9% :IH1zR9>욄891XcSɾ.jJvɔj5bQ\zKv/V[ K s'"+\r,luoDqC@E[06+$y_cf5ǖ >]v'`Efe32P=VIJ ƀ…0h} ro\tZ"5 Ǭ^:cQ fmš׸`UK] EB4XRQg-[I9bE SXA<[9X;8ƢfaXg\F{X-RG5SUtwc ' #Ua,.){H$m8)gjIBC=uQގ4 AV`}Kh'cBbWu^s=WAA侲;z XAtƂ0y]Hq"'@U6VU0Iѕq Ӂܢsc9A{ )|һX [C9FQ䟶-=IlmS3] 쏂Xm B,4rA56ȒXE ɳ9ﶕɻ\ki[9MD_DZ腂 ] E2_ͥЖQvvaSE%I <''=/*@$ ̂ǔR u`V(.LO%򹠫CXzK"A)Z}߶s=cq-^-bCbTZs-b}>h%qc, tVtuZ$PmZE-&tS‰[0KT&\MUɖ`A@W՞:RՒi8Eg ] [ Z& RNXr8 AMw\  E$ξA 7S% YNZ9`A},⠐#WפZ7e5dϪ܄ujs AAVK$kPu]1Zʼn>86MVY dRVCWUT%UJy6P51_aRPA)tUܸ#i!bk:`Z bPmi`;3xk]\z"`ABWɎ?/v5VmBfg?\fy+KNoxdQ-γ V}tung368% !l؋s,렶>98 VF~Pw׎]**z5.ΆUEW<9ORWHA:YjJ*[0J³•a -/Ϫ!x%+AtuuXB+W)UUI!*2C\TAl>UXc9~ȁ AWk}Sl`A@W}j:eW'_$YU%R"TlZٻYX –GaQ+U.P1D%1V@̸[x; pUpXo0]Nt5 P"WBT$5#épe?nka`A] e<)Z:팥Y C`6-\n{" zJ8cejb4=1֫FOEr% K8:弁VN\fBZgj']d윎D%^m櫎W]Y| a0T,uXd,AбhuNЦb\Utw{Y+BTY*R`lZew`AtW]O8ъbvg*Ms'n{c f/)=.+rn876S1S<e%VƾDW 2 u2c~w7TGo`/Zw=+#372՘$MfR4U6NBWnrΏ&hBYݫsGUc h;bX[<Ŷ?Z?(W.1wdڠ*ъ,)K dtf] JDK :UC%W3VHT_OS(Ye?_sR TQ HmAE t]YEqd1^p>ƌ#N+ch|6bWA{hRr.,*@|peI z k-[_G; 2ŗ-d+J+4;1`[IDYÕp y TA/pj8m!K fJ.k&yЫ T&A jpKBjfa賓H]r R`ؾgy=fZwA'k݅ hU$A һ!lyUB4ЕB jP֕ždmA&wdՀVoU,zs<ٷ;⑑Nvfof+cA(,uNny| уXC0[Е`A0ԖktuG=I:Pe+KN]}J)LA6pZfh&`s~5tK 263 ?X{kVI' C1>c[ʗ`+zAhro ^ʈ]zV [P@R5y7+RJi?kIW[Z:KlWs\lC=;/^Kf_.JT΢Ƃ@W]a~u4_ǸۍVʡ]cH{Q}Z7Պ8 IDAT7N@/ Z9!BB6jsX%0.5* WUV)|eHWzJwNBXT0V>V%b,=h{Y (0P0*peԟ_s)$p||eQ]; Z|MZdcՍtGgq.QkP q CG\`b }sY*R3WI/kj?T ]*|2V8ʶlD^Xq $%yeb.GF*A\oU, ~]v]t5j,qc2`BZъR! ϸjϲ=XX25/ԟ뻉^ס+ Z+|02ZI||k)gd/9Oa&VE˅:;utMTV,USkwҕ`A[!\U,?\ c 9W)6AOg)\HKD7XAw73_=ƤZBWc cqIӇm5_Aޱ6VmjG+EJ%̒?cN:vz!FZV~XtW!)S5_| n$ϹmR6JE=8 hսXfg, ]*Yk_! :5U|XRujTynH'$_jn-]%/`X]veidjmW5>W*l5W9$2ZQ]KvtT/) ptWfDSlBbʗ83Ka:]y$AʔeIў8W pto2 sx5>tc1*y])aU TeXX:t RE*Yj8`A Z5|W\N) |XSrt'ӉS_R(&Up6ƢRpI޺Z @Wjװf>l!DwعB6X,]%*[mPe`}ma<뽓!, @W*WciW῅!Q٢Xْ/kk-g[[W"C.w5b t éj!Z%ƒtUU,tS6^X",{u&!K9?dЅAѢ*CvEŝdš7 [EW6WZF"/uu1ԧ  6Q.sxF"QV vn˭"#?Mo\ t:hJ) U߭t՗U3]͆}I)0  *UJB6Sf P'{0cACʈYSiP4oICl+YXrr$r2xX hE*ZR"8%NZ\%Z+n*Cg@WUۘѶ$͑pmb B+:]9E%fÕHWFҒ(ݟe/zz{ E*ON2QxTHW Z95rTEW&9rTo PXS Taj tuZLWSzmX%.Aq5`VZѾɃEZ -w+w1 議i?!},]Q< ˜*cVق9K|,t XPVgΧd2x9B[B]Iʰ<+b<s1!% A/C+0tΤY]-Nϱui,U.7Gbj)z(ZeR(=\!c}S WTSgAt}1_],GPeD+mWY:z.*3eю;`p*d$Ѩe X ~*V9NFJWB9tfsDC2aXPN QR.v=,cVG1𼘰Uvo o˕b[+^ yc%NW=XԶ hRRRPj4VZ%P5P5=Y*,O4>u hT[tBSzz-f2{Xt"t5ռ;,V+*1+ le6m9ٍ}^e, |[+;fB],V+U@bOƭخ5eHsYf jc,ŎU*Z,PxN^rZԋi)D~A\T][ֳ3$>< ]-*!r= *EZjP AViHRc@+pЊ*L0h,znKBr`kV]ً4{[@Xf) A& tuQa2mtLѱ_`mAXf,w׸W +4E*x阵vRAoEW|ϋI|turdk T*Nek㪁qr\dt6J(jx2Md{+U}*ƘXol2;ѕ&ToTeܸiB{$e4 1iQ7»VFNF;x|-*臠 7{ЕƸ' ]`{[}a4z#RyܭçU/*,qb*rc12r8a$ϠDBUte`j>>LmN|?ң"#E.)՘)nr?ex4eaX,XCسbpUZq"m9j[x`A7\dD'Sy\ WhUD IcIčaFڬ*R-^GUmk څ@Z%z(^3 FS ]Uq2ZQ.*dM^*֦?hIP*"X- zRjL璽zЍWc d@9锣N+T $L+7S:Wj/UtU#m0 svХ]jPU;VOcKXY0'iBoz*t^FBbFE:pUsYC뫊BZ2 ]q1J0K+AU^BXd+#N|E:Ԛ}1Um?r]]t4 ih5V.QƩ"]IXĞ^<"7,骊`P{]a<X.݂]՛.tFbl`@5)/X\ U,tU]:Q8'="}:U_fU<{\$ V"8h73Z؁內R iɂUqӕWwj~B ƺSWXkheW.J2\H6STv2`Q +8l"Ѝ4U CO hE)ԎNW`e f"Y⑬Y4W:]-7 骣[}"]X{h$ZQp6crDҕX| `)@bsJj!ůЍL)hՑ~_3~}p:(ЊWøxc93WU%a7]]ι,Tp.1%xYzm++ Vq5neA$̜o_BZt5rF6hE'q?]j?-X+Ѫj9Х}B@hUDbhED f Jh5~͖]Yf| 9v$a?}oDW w"S#忮_eqJjb]ƕ O^!Yvr*XxJRgX h,@]e݂;p+.334kg*}tMJteZ=N4^aYN!T,[F"*a`u1cm65b>֞is@WX{cֿNϹ]_F6ڃV](req5%KU,ƭø<|'JbՍm]#߫+Ôp :Fñ,he+=+AJ f7pc0|b"Ts-h 1k}l3.c;OF}#]phkU EFU ġᡇ(mcQdrHWY6l 9v+R"SW~m3ZqUV:Qb"Mڲ'֋%7fe_]nozx eh5޽v>he*/ % BRbvewڹ1\`V f_C+Xqx^{>.g`&FWǵ3VT3Z)t˗Z̾-dK5g#8f,`#PE F*(gtX9XVNw 771֪ hU̘"8Z9TQ$ʗ 3 CvʲQKXKW6FJTx `wÖUhW>q6-ḣ3qU,*`BWxh*\l;v+GWE+<rJݿ22\`.ثY)0R]d2+fr*l!VC,\UZvo_t MwNBp D'} ]UCm`3T)C4ъZ-X.XYl$7NWۖJ@./͊tE,V}]W L. ߻u|zkOƓ݅dt06`r!]†VcLW̴\*Kn;#9Q)K=M8Ul ֫ >y-ec€V%`tŖ,ZwSm\mhnmH]* XCXtjZYtEڂ+X_^?[ʕ1|՗ѯCjA} KQ! ]Det9n(c%%giEHjSZT2P3{]v Lsk2^K'W+sJ}tjfKTsa$>z*^-d"`3_ߙn,"T +\G|EtdjhY+֩H&i] j1\VXvjSgmf #>k jU.^)1VhښZsN!hP,ŭ%"v.ὒ2@ 0>׎]y06;nڊmPUP 3Rq(hR-HZCTV eU/ꓹJ{W@m|jrMx!\ WnAzRy!.ƋX ]9`-r%f2 }tUU$ҺKfZ{oq_s~Y֑!$1Vqnp  âg%~ tY֫i3QuT_H. W]w>M ZM~|=:f*QW9—M˕ȯJGlUR9% n[O.f ,g0`DԟEW]v` t@@nL+({Lz=&8OtD+>ZsߤypL~{[hi,VJU^pUezӬ`@W@ϙw >720@,դho5JלiUъvDW 9vvҽ{sGV0 f\X܉V#7>tU=q: cKPLq(ޠfa+ThX}L:"@teG+~ ]lЕ}maޕQ7;U,}c2٫tDȟHG+-v_z_Fa2*l }qx)\ 3;ꆫL$ xHvz؀V{U[lrxnk.}K+ 1k>>nY]`} ciUMNǒSiTM,ΜR2wơ^ho!NmJJʳWqʒV~8E*Qn-C1 C*\}ܰTԁiSr`>oƍow8K=LWv[N25=]#*4b1c) :Qe{UܥJc|ݝ _`,z.lSNZ`4 II+wtzsɶ!׾٨}YQr[)Ape;%R/ѵAWXk79#[ F]3ij򼐮>1Te hچct%M<;tyaqk|؇q#!;]}`}_VMy9!_Ţ^)`<(E'iөG9 Zc 7IpJT|eB+W [ i , iNW}]tg?8]Y<٨6c#1v NJZc"[bBKػ7a9-#&3i.b`wm}{tѯ3JF%Ĺ[YTYp!V7 y!ku.IGjdsň+$A;ZjĚ !0`l`?Y~/"eu'մc)c+ף( WX$gY0;j78ȝU ՂSUc)tUnQwo ]Y~}o׹UUhE6ەkXk"9k qT!3 OϠ AeZlkc'3Uk u-}v>u?;dx,tU "ì=N]!omEC{`×6ANl$g*VS5Ǎu8x݉nPn<~𒔵Ѫ#I+kg+Ml%No teRoQn|~EЧj=7 >jţslbyAM0 \Ej6=LY x8>&^E؞l\-WcRy7h3\XW&}AVwn,;]% Co~J?ǹĐQЂUm8*A/4Kr)cUEBKHv5țB :H?cf oӉt<҈^~]}.X:RtiBC%(r`aaqʗX$V3]!Ue fïVY7 t!`)FAWg|^՚9W`*nɜ Raer{%G| + "t2 I ЧVL}W{>CRwvÄ^52m+Ev#E]+)&a_ 3VmF+#T% UtESp(njaz ߽p락GMutOة_ӎmp- c+ZQek,8(epf!cզ0)]E=a_NϴiX!gLRC="psUlohbF<zeMV|rI^cDb4H " {ʩJڊմSFXE;y 6U{8iU!d>:J_Õ3eɘE9Y6U1m'e d? *Rc5  UO~=0oiAJ͍${R!=kڱz/ҕc]rf6rWdcm[_@+{UA{ .R]ѧrޏz= T}549_UqdW_,fM6Uƚz{Erদ(qZ١8J.ŧYVMyAL_s\#l)F)W;nr}qw.ϯ&yս썞] eZM}uujmMMPqʮk"ZP:T /V<U$η|+;Ƴ TE~)q u;7u }cɈVFÕk諸0[G%Ij-( ߍ&495_)ZYaCֆ^pNtEr޹Klܫϵ; W%G_t%ŏ7p*橢{̺ *`K*VHU_ bXÉJV7@==s;@j8ai|%{lKS}qyUܵ歄FU `g*jJuZNc1\CS'"yJZ pjzo0Z{"+`dj0.b2v~ɧ]Kɐss mp%pUՄfW[D_ҕшeA+2,UۄG?lVXs6d` ] jI߮i2̑ -wv@+aT螿;8bǢis}̫h/ *9>Τ+R'z\e$ LPgsoAhڼ߹ o7s»Vf| untC$;=y˙F"- ŞZ;KeʘP:r^r\뮘uM8*>&GBl꜋6\wKhe!*pNNgZ'Qm k>gĒJP^HBuG[}M AW,_MﰾuTv2лl_? Q CCK,+'UVyԣOsίk\-=܉zS/L팪G?eZeQj H³v{<;%$Гpʈo *z1&E/~p1>9kl[QzXoG%}3)^zbO̪3w+~},ټw-aXKiΠk;38itRL)/TȹʳYW5& ;J!8i~ XSM/ö~:붜FӒM~mcyWޛκ8L~> [ђI',Ʊl$}]$IH[m@@K3BWgW'5o]>*z7FX޵3o[6$YKdm/tƅh(q+u,2c-DBU.Γ =6Rs. l{]tGw䱾mc z%]Uc7]9X]Ъ8]ejTK窇g"b9n1lm}eUT%%A-K (yAZjf =mĶ>Ll'w {i:\f[_>a:;t#cM̥^yv&QsbtͻONW9V0'D=6")NSHtz#T/`㿅_쳱q"sOYƲ@t>n4-cs4@R.Y'-$3]d>ժKy\}p.Xw?KT߈g,#b6t!ɧCd6w9٭VF \5kəX\k"_⪪'^= 3btd?lǶw$ߟO)H8΃˚"Eݲea cz6H.V 9>0swm k磔aR9u$;pOSO!uXP {r'fu x:c86u,;W!eUU}G3Ni՘WV{zr-5,uHk33ZiIL6ma֘T0֤!*ANEr4lXUy+֖2֞l'TsaĆ!FZ/7_6ƂXꞩvm)vRp_tRzYoqOXӷQ=զk?,J˭ ;XtM_- ^] NqW|<Ӌf1r;FTK1cg\ {hDaFTH h`I!Kx(cM 'C a#:1$ !N%hGݕV Sj儏8\t _Fe`5m.*r*47[Ԍ\h:RM1tzR;B^o~ƪ@#4wa㫯o|'*#]96s=ArbzÒAg]1!_ݯU\-O&-`uq'Z]MCBW- K4ӗ.J9T ! P7ȡu[OX&a,1K+:E)\;W_]O0_އE.ܔ[!hz쾤TCo#To,18% ]k~s%rՊwL{eI>) 8r5pBW^ t`oב}Z2$? }5eU'[$(7W9PG ]W:]QH\e ՞$Uc]-b{|@w)]4W=Joٯph y_y̺%B xx<."NW L?_t&ZahJ_| N+Nec' 9k엇m߬+P銚KDbIZ&[{sCgq*D䥾󺩬 p5q`xݮ52tcb]r-'2^& r9v"UWZX* yqF]vv'k4U>cC1 `A]/;NGvRw>vt_;]S9eԹlD'UYҕ3ˡ9MeNQXгHWF EZzyR[`9ui]I(':#|3$lHo5f*kĒ`e*c'DUd) H DS6.v]A 2֗3cȤcX#ơ*oWZW ^at9W-,JfrfӍ.fcCqYЩ7%5bJϭH;^.Q wƽOc[3G6kq$K@@Õ^HWdgNWY#nJA;_K1X˾+ŧtѐȂV+itE7+0i 3fLWG5.6{$n8aa tUu 25\X ĕSȆٔnGƯ]<@wQVtL f=<߫G0 UlPƕE%ex@;nGv9N;@XʬC,m.Y W }(rS~iv:BKPѫpeA~}NakREn>Nko"]-4+ɩW74Jdvh—טx3U_KvmZz~XkE9Gb= vR<C8K,t'EKRrVf7;1F— ɔC 3䪱L*0(IҚ*Jqh%mnӄE' Vtiz~Mڱ\tOIUɚ)NSZs4@"sv ]+ף44%"lQOzɗ.щW``݉vUϱvm/ڷ\*c 6tEãv'llL07i(z]$R¹-Y|/Uv6>E*ܚ uwb=+c~,}x\n-o.Eh%**N{9ղB{uN{ 7x#h) D.kz(PWh=N" , s]RNۇ+* I*&/y*]˹JlEH%PJr->G_dxi&UN'ǹhe1 ׼;y C$X %VkRxJz;ƖСymddVe)F_QgC(G{^**U}>3$:W٫~Wu乾hUX4 X7<;Z:{r-qg7zǿj:ĺ 6c.S4^}֓cA&f-% բK,n/t_WKki# V z7ثq*Mu4Πv3tSMS˱[7ݢ*zV, IDATIgKﹰ>蔚>>FUB՘cI55UÿqhTi ]I@Og/VԎyÁXK5%b~\E јkiEO^"鏥+x .hWՆVT:KYBl{P5Y ęvgxKJ%%AUk]qyRգ\=7arC˖5'>Y߽[ui;NL%TXkثb'/sVr]a1Wƕ.ZG/;Z=/!^ YPݑ^*yZ+WIO%Te[,|oh-cWWخO,c۞GFj9 V`qЕJ5&*g;iyeWGӐ$g\ z$j j]gV ЀVbOsIٱfCcrPT:˜ag5Hrm:O۩}]DQvUr'yS?`R ;+֬%n\)orjmz{nVz, Rq"Y L 4UbJqr- DEXc%rDZsY t5DgXc7a* uVmOLd5ӣ&RiF1'5iv}OR1'6,Ip3VG711ϠkJ7k^룯t*U5t,^WŪ8Fܫ@ ^BU1`/z )yj;P` =PTKmPNQ)LÞtmUh;ex#Y*N0L6nK2.EUxX{z˼` `~teaڨ=4|j|v^-DJ\Mi5}(Ury9wmT!Ceⶫ7#{*?,KAUw /KXECw+-1[n/q "._[˕4v ܓJJm(>.B­Qh!s(Qt5g.QBU8i;RB6 v}|f*&e)=үFFJ3K,HGCB [Y˩o~шpHJhjgfX8NoVߗD4"Ҍu Z%#OdO`C_s6*+Z J\"fV sUmafm? T5ʮ-mj*vkcLk|@3+}Siv^3pi:)b@9(G+V_Ħt+/2Vr։lJ h%ZfC 餗Jyi'P/vWҳSX.Nڙ}^-M)k+tdjMDS,}y=+]z씶,R]{dA.M+ǰ ʸowl?djė/پ\OG4oWKK]%aޜwwZ W83c. G\~3ٳtf㮚* |U-t{0=9We> ^e" ca!Xrn) Xr1 /1C𔅪G^yJ4_\5t߲΀AٸQ`mnL_ U:]dp?NQq+u$nVY8"S>\=ZG;)T8DbQ}ΓHWN%D빪=g7ȑf0'%9*j\lFf"]-︂F_lOuv~YW k +VzuޅH1 +SNBudWb_¬6#NO/Cv;9C4(7gj;5RRQ,hC 񽊌 bQ~U8mݕ\KKF;m1?x|7JKxωuU (&;- t;{L[6z\屚Gr#%onE4q77H:Q;]}Ve]]Xm F4թ ʫL<8)ױ?%vzNӘ&Iӣ1~+If.dNiEN!5Į,UzHeIZޜ}^ξ.7"̻4kuoW\U%YvX+=6 l&N 3R>ʢ^ :g7/$W^ Vbhj7 U88$CrX*N8ZY_ 7Ojĉؒ]N_ ӪfP`~|t~V5])/Nb$r!T+es mEj7JHMݘ=ɽ8dn;ΥZFUڍ1K2>(Ʈvㆺ>VȔmʮn!Ub."RC{K=.LjajW+庬8|84[JDt !f?d+g$%X̮&W Jxh?6VHytj]>߱l'j|眦|NgS:}# Kd㲱nm2 epm\9Ζ++ǺNlW7gT4@S]Λ^un3ѻn3ή .4bJW0ƿ~Wp([ᛵr;8mW BX,3lt[޶VEZ Z [-g{wUvTcW"Uu5W-~oj~,YVTp֫c\;߳9X2 )cnuRC%~)Ub׳.&#lNIGAY6焇j_ &T%H\6;݆NK:M_:,4$߿;j7zq*Y\4Wuz&F :Ӳ:U : G.Pۜ3"N.cis 78nߞm;\c]f 񃗾5E;V VÙjT0&X>[{eH+$Q8}4+_UYy,7ohb:c;UO,7CYZuV=U]?.omOj"q,.m]CwU+`WsaU>KRVJ,?c?EI6E[[4RsU X8j&0`T^.GlRY]VĻa' &S:>~ žsj-/$O20}%*V=YXc~D{X V/Q̓?i~u5 *z+5O?Қr浫xFJȺס^Lw"\jw,$jXڕ6nO_fWrJi-/x22N2s:τvS:Kmmd9K n^\!Y.u'mtE9ݗts,Z]&E@1usYxĮ&._/B٫v*;}1A )Vff=;>q%ͦV.KҽJWsR'S$_ũ"V^uۢ~OOEoeߍl vg[VlBbWVQPVU_ѩ+OOV}f2^V-_dNc5&ҵĭؕA=}a嬒[Հ< Щ\V\K=K~$f9}sS\A7*`c,rY`WGN6dyfث!'lք-N,a?%fLeNbgb搻®n,HC5k2s&I nWJfWM¶Nve孱֫j=nNժ9`z_r]$hý,%fBJ=Ab/^i(t:f9vjWƮ̃9|1 vZ,P'Zga+Z}ed*TH_XP`ɧi;;jL n q-IN3W V-۠]A4Hi%.}Ȑ;NVvR3/n"庩V2RIK:0zEXuzj*8s:cW+QiQ˧Bn1j\P+x`)c m,c GyV: \R6堔jƩQ 4""t]KZl ORbtXsFj2j!cUPM M_(W~?Q*i. /lnQTj5mj{P83ֱ~Q՘1[w?G~J۫jI_3b5sn9Qo_ʱ +>m@DQv,{wAr%:Noi;8JY@'z/W~~F%H&urv3lEj!u\î1s3 r|fR6vJ5J6ߎ6/˄ŷVMS0OXA==_<.uf?N$J7+IV9t9QwG28(3UMj%$`XDOJXUrUg1UXlT!hRǗC O6l#XPl%+JcWwKupNeNTtgL |}o5:Uo7xN;ZMR]B12Gc/9mgR_&tj[Q}SF`BfIʱy|؎ e('B@̊siДje8iSAڃ]r3X’U. Fe6SvjS2M4ms_mUmuR+`˃5h%^:.c+gςm*Te^eDje,;h]P5qi'OQt%oN1fIjBLӪqPGn[Ru:JbḆJg뎡Ʃϖg )؂;$ñlk'Qs\BR'oXfߒؕd ,u&@3uhrKe9ԙr-߇ele>,Qg9*$#rKg[:L:XvH"ɦ ARYC6#9hvTtP9Ѩ.o[Ԫјz Xs h;NRŢjgHNj "rXJ_u:g5\8z燂b<߫YoJ%DDRe:jvjNvDטquh<_b2W,ڟG\.i$]Zvu ):Xv5 f-A pһ]A5%@bv̓i]єN ">s>gת3q\ NK_; ]̱{[bJQO92u%űFWu`ᜓXxUK|[q6x,T]J;:ڕ, ,Gt6p4Yho5hpJ_CnWUξO6)VOV$֥]ݒRW ЮJ@zqq6| *J`-Wɛx[dcE(sKMG}wԑf9XC\j_]PB~q:ؕ˿h&ϨJoVX*C_ΤJ9MU8-ep[(})K}kV{y!r:unKt2Шڜ5 $-0yoA>jWlnVvuن9!U3b[a%1C KVAXJlW٨cMPTRkn4p2ֺlCYZ9Zy:j$ٕHՍLXgLR&',[P^Ŷ,k2WSP% qJ:.B[2VYJV\4vWm{WN.JVsf? +HrAM_Xc=fLUfJ.) ܭWhKKNSe4Fafn{sn XYtì,aͽ-1B`^UD CӥQjB +e4*ux|rZ<5]Yic.#4WYILl'6s~ nj[X«r*î.K@*,EuZc N%bv,!ql$_汔&vc>Z<akWy.,T-P㡝`g;yۢYu J[o9e BMv üUAE_[fg N*C?$&qI@! 孩P`-WZ:'cMwvuL\}&Ӓ΂rTf{r 3g֊hb籰+@;XmYjV{6]}*֫Nmz`ΓAIu^eWUX&M2z+$5Ɍqص0}] X5ؕN Cf A$Ǜ ] Lŏ rؕa˻ -?1Fq'L] ^Q %r.oWX`fWǻ@y^l[(r6IBR!–we%Pv*KJ:qTUlG7r4m/O>bw r㧸/'QrΖmssdrND^iZYS?]Btk8r.!*8VXauł=^bKئmv0mQӮT} zsŰ+uU%ul+#ueE RepmLƧ6'?4L^V4XL2_?V"vLzPi8I9]rs;Z&=R.PWlgo* 2Xe@i F$B㞮c6GYo$B)1($CQ˼]Bdk^-C@ە0]|fex='~ ʱRJ΢9uVuy<8hwu/c X9ڕ}%`ֳбr.V{ WBij:Ofי?GcŻ'ThF'O1/ Wp 9F*[s#u]%Ɛ>Ǡ˵ +x6RfE.Oevj@MtuwlP_y|KO|VNg"N y#u,Kx^gCNVvk(5)*/p]JX˧CE;"8yEu]I\jNϨ6:gj[7;[J1cEeʲ 9*otqj `u up.Tn1b=s U]MWfG*M-¨xg{KfWEMU6ј=1 tu6zy5;]gO]$*j,ۈVq։0ZYtzM5%^C˒W;}-|t,CK{gu~C(njq3u*X F0.&2P紗5xPΥY&+\Z_ K@"ֽ@oV kxJUԯiET+/y~ d IGmH8~vY--ɉgZ6ԡY@vڎ9<Ǯ>ϟ4^/]E8x72^yd]挓q6 Δ<^hxUoٿsC-o9FOl9 v5 i?U3;rv^ӛQyv3V^2Z>9XP<^ VW_ڔĨ$C=&%51uyTM_eMSMmgSu>e602;/iǻfcWVm̛ZݻNcۇ'{> =ErecgZuFȽ0֮(K ye3`N!Uı\nMK>`fgA͡&lc'5ÓMpgc?ƶuCO@zkOqQ0 9Y&;Kea)4]av3Ĝ^A +<@$GIP/jJWߡa<4`-+zߪv+~۟<}O߿1Rk7dg %C} )f7SI:qz M !0b*3TAb՘sovu\ij[A˺TܪFݙn$υiO1D;ϑ*+]L+]MN\0|@*@Iݧ,wevLJ^E]69FQ>6όLFwuL2S^@AM¹yv3h v`#w@ fv2V1'ݧ'2pXJcE%F+;~>.`̖5CcWHpUf5Jd5tH zf0 `fbĊt+\+=] XepWe99WAx֩Ǯ3jOQzkspm8]u'CH=?aGcM]RG4+%[_xis ABtbݚ2< X:?9 4`LpjL땥]৸gmp 17^t>|_%x?DC Dl2Bz$.kJL_* r8P^(NV+չ͸Uc)4 ¨ ei;%\c X*OT_ w aP5м3>`=H0߉ӝ_E*>`=.EV߁3^`$ƱP+뉁ICQ't(ͮOSTXE%n*c X:]!a t0-(W +ey`@Ӯn gd,W @tP)!mY4Fַ X]wf9rrIDAT޲Ol 㙁p[f{QpfOp|1b'`h$I0+wi{]j@Z>7A~_/ˇ!շN: XHU}d5ʔTD"oV\>k~wf,超xۇʠVvxQ·x"cjk= ޝCpLYxUl(H^]c Xەƨ0Z:>|'N0GP_S*Ii824lXYPSlHuQjn@ߴ{xkoE uh ]t٦<@v8VR>s˿ְ8Fai%Ujy2;zwL.ry#%6hw=+N_&Vt ]M/H+a͘э=iuv`Ն||i@ !)VyV]PDzғ8}9@/P(G#A* *ZkbT^7 @2Y@jk' ]0@J+Ȋ2X$9`|ꓭ"L ^E1b5նhرMFU$H_vf<:`{ "S]ۜF .Oj«Em`|Fj`m N:<@0 FQ?̾460@&~%ó{(U[<G@C%w Kăa2Dp `Mϯ/w5>5U0 `eWa_@\<ܓc XkV#q1( ~rjaj%23X:X>^#F6yҒY^M+F:]1>x֞de9J4d`@WaDuoƘv`=*! 6rЬN}R%"xWJ5£`;@<:#`C@2T&+c>l a~w}U.HV8#}5x?®F&X9Uњ5p@]PDcU`,4f]N,@W$X;VF5>LsD/}2I'X ZFЧc`WO$^0x3C 6U] X9(!T2*ȟ`m-C!@nZ;/+!su]`U;vUoYd*n; =e51rYBb1i@JVvg#,xlWS-* }G(3ŋ ] XVA5dܶ/lO(v`=α*hp]x<$9 HHF|fkqs8=w:0 }Vw9}kN9ϩ̺'<TAñ*>kdEx!}`IWUnN3C@!H7VVbMgYr ;Co֮N4rvǮ&ߗJ?8oc Ů%Bw@*Q+ڇ@!xl|h|mH$zWUGlWLu `Cz[V&V^s,qzQ5u Ҷ*/B^`Uy~ 5Bl!cOc7e _q޹?U]ŋ4#3&+P|3,H ,J ++lᘓW.OƱ ʽo@WsTgX`ԣ7ls"$7QP!<Hs!1BWJŞ՛ XLkQ:+u"e}삋Ѯ]e=GH*O⢺W`R[c %u"n{) E_]U|(JΣoɱhWcsY\S#O^+/4 ᧸W C}kd*Z<;僧>/Ʊ `M7ЮT3ߟ9>]},2-n*d(s>~ {]!sG^?oGZU~>K_ζg6Rް+x`M,ܨ\~Os^]UMr7NuP\>nSP7Ue˜UDtd2n ~g@*,)`]eHգL rd&D3|6sh*HA>=]_P9+]Ad&7ٟX/t &X.p /TBiE]oi;v2:wᑱCHQuQj,8]IiL/xi[P!vU]>χ({*6rEn "+9K (xO4W)yZ XJqC=y;HQ,㴛d #9]yUj?az˞dw$bKX柏*w^Lf/C{xmp*UBR)OS;==ߩbbSuo4B,>jﵖ64Qaڀl+dc7lno[M+{#'$AjXxkk2VI,> karKuP+ 2Aj˘<jŗc-Lijn,oN2΍TUT`doM9,5+Ws VzHx YO%L =﫯U8*s o7xǘZTZ2D Pf&<\};lDIW6J9d n]_xc]1󫘷ֽjֽc ")p#މ,@C޶8+\_Ut5PNSq k*VٻEW XP] E֬&u|XPx%X89srQun/]Jߌ/Ln Q2>oIe[_qv3w5*t^ڹW5jU= ZY2o1{tcN{yL.C˧JNP+ ȣ.W#fAOUc UM2Kī†.DvئǷsJ BefUJtZ 4tV/sЍ_nm.scyTTg>okq~ʖMF#X@p}ή潺;v7jdѐUfUj9w'X]"*CgK}>2>m5sݔsϖLOx܍fxj: \riWVb j+wcv>A)F:J~!@DVӶXVvUM>ۯ;s3z!nё*=^ J5<^^e|=Sc vYn'DZ;]s nQY*v2^|<@ *0DP5r" nC%÷0re"XDj8 >?[G#ÌE\k6.}|Bmaȸ%Fzd[_7{h2$R ew\宆 Ã=cNe}NlL"qC9An= 7 {-!X(^^5JTֱ4LOFnx̰dFԉ_e~Ջ;{={r0L")0>'ck뜱CaV5gpͅ<';=xU]d xJq4s$%Fz-{[]Ge>;^W/.8_Gʚd<<$ىc1>[1-KГS߭cgE 3۳>vnqң,B{^u53[yR6[5r>qC~r-Lx|zY)˟.%fMO!K\gp?ܮl[;ǜE/w'̂#9uְɓEZf`Ÿ?Z4B"|ndOîv㾹}y;Ma<@([3 r8\F*hÀ[)x;>#ȀbFC$\㉳^}8kW1 7>9joDŽu#oo|1#Yno:>i[R!ˆwcL-&[k샕]]>A"[XyF.B}9wP}9S.R"XiqO^8B_+piT \[ f?uoWN&XVR̳iH1d6CJ+h]=v VaCź2 9)hVScFs8xUܕ쭄`yCd,oViVZQ!eЬX|*`WN{{Xa'/:UofNh!X\XAo8{:%Aq/uO]Gж{'U6g/j`zi[n%gcpdZQT]>!Ɂ?*u?坟ZYy CK-o. x>DkHYl2I'7Wu,P%@m<CQn^f]n-ce)gck5kk+:12CAvNN#d u8a0̎b kW*;:6?'`q3$[֥OK˸bFN1f ǂ;G}דnAL?o1ᴥ64X*s`A xXS6eV%iL 0*J5j^ֳW}6{s̾Ex2Gu#3xc1*s2ZE*jI*~.l9s,g*p0f-{B9꯽X#Nx!W)Z5ZÂTVsueklƱw熙P_G6 OPk~,=5_+q,yH*TuN䨚oZ'N{F3Z6ji\at-Ʊ c4Q Ӆx`nXxI!l93y!ZJ \B#pP!vOOyc#fY^r,e寎+.?\ K.O׊p1$OF2jj]YQ`1D!Xu}Wٜ=4o:eoN}eMQ;VO U^& L(sCLR5yVÝE sb6IENDB`elk-10.4.9/examples/GW/HEG/PaxHeaders/plot2d.general0000644000000000000000000000013214762655566016765 xustar0030 mtime=1741380470.123017112 30 atime=1741380470.123017112 30 ctime=1741380470.123017112 elk-10.4.9/examples/GW/HEG/plot2d.general0000644002504400250440000000027214762655566021510 0ustar00dewhurstdewhurst00000000000000file = GWBAND.OUT grid = 800 x 50 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 2-vector, scalar type = float, float end elk-10.4.9/examples/GW/HEG/PaxHeaders/plot2d.net0000644000000000000000000000013214762655566016136 xustar0030 mtime=1741380470.125017122 30 atime=1741380470.125017122 30 ctime=1741380470.125017122 elk-10.4.9/examples/GW/HEG/plot2d.net0000644002504400250440000001457214762655566020671 0ustar00dewhurstdewhurst00000000000000// // time: Fri Apr 27 18:31:27 2018 // // version: 3.2.0 (format), 4.4.4 (DX) // // // MODULE main // workspace: width = 462, height = 562 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[1]: x = 56, y = 47, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "plot2d.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node RubberSheet[1]: x = 276, y = 45, inputs = 4, label = RubberSheet // main_RubberSheet_1_out_1 = RubberSheet( main_Import_1_out_1, main_RubberSheet_1_in_2, main_RubberSheet_1_in_3, main_RubberSheet_1_in_4 ) [instance: 1, cache: 1]; // // node Colormap[1]: x = 388, y = 153, inputs = 19, label = Colormap // input[1]: defaulting = 0, visible = 0, type = 16777224, value = { [0.091397849 0.0] [0.18010753 0.16589862] } // input[2]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[3]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.0] [0.077956989 1.0] } // input[4]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[5]: defaulting = 0, visible = 0, type = 32, value = "Colormap_1" // input[7]: defaulting = 1, visible = 0, type = 5, value = 0.037809622 // input[8]: defaulting = 1, visible = 0, type = 5, value = 1896.2094 // input[9]: defaulting = 1, visible = 0, type = 1, value = 20 // input[12]: defaulting = 0, visible = 0, type = 16777221, value = { 0.037809622 1896.2094 } // input[17]: defaulting = 0, visible = 0, type = 5, value = 0.037809622 // input[18]: defaulting = 0, visible = 0, type = 5, value = 1896.2094 // window: position = (0.1088,0.0511), size = 0.8838x0.5656 // main_Colormap_1_out_1[cache: 2], main_Colormap_1_out_2[cache: 2] = Colormap( main_Colormap_1_in_1, main_Colormap_1_in_2, main_Colormap_1_in_3, main_Colormap_1_in_4, main_Colormap_1_in_5, main_RubberSheet_1_out_1, main_Colormap_1_in_7, main_Colormap_1_in_8, main_Colormap_1_in_9, main_Colormap_1_in_10, main_Colormap_1_in_11, main_Colormap_1_in_12, main_Colormap_1_in_13, main_Colormap_1_in_14, main_Colormap_1_in_15, main_Colormap_1_in_16, main_Colormap_1_in_17, main_Colormap_1_in_18, main_Colormap_1_in_19 ) [instance: 1, cache: 1]; // // node Color[3]: x = 142, y = 190, inputs = 5, label = Color // main_Color_3_out_1 = Color( main_RubberSheet_1_out_1, main_Colormap_1_out_1, main_Color_3_in_3, main_Color_3_in_4, main_Color_3_in_5 ) [instance: 3, cache: 1]; // // node Shade[1]: x = 320, y = 256, inputs = 8, label = Shade // input[2]: defaulting = 0, visible = 1, type = 3, value = 0 // main_Shade_1_out_1 = Shade( main_Color_3_out_1, main_Shade_1_in_2, main_Shade_1_in_3, main_Shade_1_in_4, main_Shade_1_in_5, main_Shade_1_in_6, main_Shade_1_in_7, main_Shade_1_in_8 ) [instance: 1, cache: 1]; // // node AutoCamera[1]: x = 356, y = 371, inputs = 9, label = AutoCamera // input[3]: defaulting = 0, visible = 0, type = 5, value = 1.0 // input[4]: defaulting = 0, visible = 0, type = 1, value = 200 // input[5]: defaulting = 0, visible = 0, type = 5, value = 3.8 // main_AutoCamera_1_out_1 = AutoCamera( main_Shade_1_out_1, main_AutoCamera_1_in_2, main_AutoCamera_1_in_3, main_AutoCamera_1_in_4, main_AutoCamera_1_in_5, main_AutoCamera_1_in_6, main_AutoCamera_1_in_7, main_AutoCamera_1_in_8, main_AutoCamera_1_in_9 ) [instance: 1, cache: 1]; // // node Render[1]: x = 217, y = 445, inputs = 3, label = Render // main_Render_1_out_1 = Render( main_Shade_1_out_1, main_AutoCamera_1_out_1, main_Render_1_in_3 ) [instance: 1, cache: 1]; // // node Display[1]: x = 373, y = 500, inputs = 8, label = Display // depth: value = 24 // window: position = (0.0063,0.0000), size = 0.1338x0.9156 // main_Display_1_out_1[cache: 2] = Display( main_Render_1_out_1, main_Display_1_in_2, main_Display_1_in_3, main_Display_1_in_4, main_Display_1_in_5, main_Display_1_in_6, main_Display_1_in_7, main_Display_1_in_8 ) [instance: 1, cache: 1]; // network: end of macro body } main_Import_1_in_1 = "plot2d.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_RubberSheet_1_in_2 = NULL; main_RubberSheet_1_in_3 = NULL; main_RubberSheet_1_in_4 = NULL; main_RubberSheet_1_out_1 = NULL; main_Colormap_1_in_1 = { [0.091397849 0.0] [0.18010753 0.16589862] }; main_Colormap_1_in_2 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_1_in_3 = { [0.0 0.0] [0.077956989 1.0] }; main_Colormap_1_in_4 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_1_in_5 = "Colormap_1"; main_Colormap_1_in_7 = NULL; main_Colormap_1_in_8 = NULL; main_Colormap_1_in_9 = NULL; main_Colormap_1_in_10 = NULL; main_Colormap_1_in_11 = NULL; main_Colormap_1_in_12 = { 0.037809622 1896.2094 }; main_Colormap_1_in_13 = NULL; main_Colormap_1_in_14 = NULL; main_Colormap_1_in_15 = NULL; main_Colormap_1_in_16 = NULL; main_Colormap_1_in_17 = 0.037809622; main_Colormap_1_in_18 = 1896.2094; main_Colormap_1_in_19 = NULL; main_Colormap_1_out_1 = NULL; main_Color_3_in_3 = NULL; main_Color_3_in_4 = NULL; main_Color_3_in_5 = NULL; main_Color_3_out_1 = NULL; main_Shade_1_in_2 = 0; main_Shade_1_in_3 = NULL; main_Shade_1_in_4 = NULL; main_Shade_1_in_5 = NULL; main_Shade_1_in_6 = NULL; main_Shade_1_in_7 = NULL; main_Shade_1_in_8 = NULL; main_Shade_1_out_1 = NULL; main_AutoCamera_1_in_2 = NULL; main_AutoCamera_1_in_3 = 1.0; main_AutoCamera_1_in_4 = 200; main_AutoCamera_1_in_5 = 3.8; main_AutoCamera_1_in_6 = NULL; main_AutoCamera_1_in_7 = NULL; main_AutoCamera_1_in_8 = NULL; main_AutoCamera_1_in_9 = NULL; main_AutoCamera_1_out_1 = NULL; main_Render_1_in_3 = NULL; main_Render_1_out_1 = NULL; main_Display_1_in_2 = NULL; main_Display_1_in_3 = "X24,,"; main_Display_1_in_4 = NULL; main_Display_1_in_5 = NULL; main_Display_1_in_6 = NULL; main_Display_1_in_7 = NULL; main_Display_1_in_8 = NULL; Executive("product version 4 4 4"); $sync main(); elk-10.4.9/examples/GW/PaxHeaders/LiF0000644000000000000000000000013214762655566014214 xustar0030 mtime=1741380470.130017148 30 atime=1741380470.126017127 30 ctime=1741380470.130017148 elk-10.4.9/examples/GW/LiF/0000755002504400250440000000000014762655566017013 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/GW/LiF/PaxHeaders/GWTSF.OUT0000644000000000000000000000013214762655566015554 xustar0030 mtime=1741380470.128017138 30 atime=1741380470.128017138 30 ctime=1741380470.128017138 elk-10.4.9/examples/GW/LiF/GWTSF.OUT0000644002504400250440000007164014762655566020306 0ustar00dewhurstdewhurst00000000000000 -1.500000000 0.5528130017 -1.496250000 0.5629068583 -1.492500000 0.5743046153 -1.488750000 0.5872121711 -1.485000000 0.6025203093 -1.481250000 0.6202390797 -1.477500000 0.6406089594 -1.473750000 0.6638205844 -1.470000000 0.6907842600 -1.466250000 0.7221698346 -1.462500000 0.7589682164 -1.458750000 0.8025071931 -1.455000000 0.8547279176 -1.451250000 0.9179290642 -1.447500000 0.9948761076 -1.443750000 1.090959933 -1.440000000 1.211894329 -1.436250000 1.365435676 -1.432500000 1.560825688 -1.428750000 1.811627971 -1.425000000 2.168556547 -1.421250000 2.723988577 -1.417500000 3.179285586 -1.413750000 2.663828119 -1.410000000 2.018627093 -1.406250000 1.651712100 -1.402500000 1.447765510 -1.398750000 1.331640285 -1.395000000 1.271307863 -1.391250000 1.252582519 -1.387500000 1.267353088 -1.383750000 1.305108753 -1.380000000 1.347443238 -1.376250000 1.378650878 -1.372500000 1.406070416 -1.368750000 1.450272555 -1.365000000 1.516490461 -1.361250000 1.587601992 -1.357500000 1.650431087 -1.353750000 1.718572748 -1.350000000 1.809154001 -1.346250000 1.925512763 -1.342500000 2.061661428 -1.338750000 2.205917840 -1.335000000 2.334748870 -1.331250000 2.409748700 -1.327500000 2.398322961 -1.323750000 2.304667714 -1.320000000 2.167987516 -1.316250000 2.030243477 -1.312500000 1.915949398 -1.308750000 1.830794235 -1.305000000 1.767259384 -1.301250000 1.714847429 -1.297500000 1.676527482 -1.293750000 1.659606545 -1.290000000 1.546036720 -1.286250000 1.464129070 -1.282500000 1.409783721 -1.278750000 1.370805216 -1.275000000 1.343511479 -1.271250000 1.326136873 -1.267500000 1.317593759 -1.263750000 1.317103241 -1.260000000 1.324136450 -1.256250000 1.338310966 -1.252500000 1.357820851 -1.248750000 1.383772995 -1.245000000 1.405854657 -1.241250000 1.435102144 -1.237500000 1.465766684 -1.233750000 1.492461127 -1.230000000 1.514152382 -1.226250000 1.537835256 -1.222500000 1.556478018 -1.218750000 1.577733707 -1.215000000 1.603104980 -1.211250000 1.632880252 -1.207500000 1.667345303 -1.203750000 1.708605749 -1.200000000 1.759447228 -1.196250000 1.821897425 -1.192500000 1.900905191 -1.188750000 2.008365165 -1.185000000 2.159004074 -1.181250000 2.372001447 -1.177500000 2.646337458 -1.173750000 3.018660898 -1.170000000 3.515114441 -1.166250000 4.094949216 -1.162500000 4.525794883 -1.158750000 4.748524172 -1.155000000 4.757398705 -1.151250000 4.672220058 -1.147500000 4.632351943 -1.143750000 4.725479793 -1.140000000 4.976077795 -1.136250000 5.375975984 -1.132500000 5.887399304 -1.128750000 6.470648561 -1.125000000 7.145434124 -1.121250000 7.755381398 -1.117500000 8.379445535 -1.113750000 8.921280299 -1.110000000 10.37723303 -1.106250000 10.59854611 -1.102500000 10.55748474 -1.098750000 10.03138985 -1.095000000 9.259114979 -1.091250000 8.550173958 -1.087500000 7.985040098 -1.083750000 7.572357747 -1.080000000 7.739644496 -1.076250000 6.289208933 -1.072500000 5.502659369 -1.068750000 5.102940164 -1.065000000 4.850837684 -1.061250000 4.681314729 -1.057500000 4.581670750 -1.053750000 4.465178185 -1.050000000 4.064377411 -1.046250000 4.731322831 -1.042500000 4.283625337 -1.038750000 4.483219018 -1.035000000 4.293217090 -1.031250000 4.600515160 -1.027500000 4.793603616 -1.023750000 4.675147821 -1.020000000 4.333763697 -1.016250000 5.134049551 -1.012500000 5.522088791 -1.008750000 5.620357519 -1.005000000 5.547780073 -1.001250000 6.003104541 -0.9975000000 6.686038858 -0.9937500000 4.967845343 -0.9900000000 4.790888826 -0.9862500000 4.847715624 -0.9825000000 5.057637877 -0.9787500000 5.497484814 -0.9750000000 6.246416693 -0.9712500000 7.136125536 -0.9675000000 7.454769274 -0.9637500000 6.688715136 -0.9600000000 5.919248308 -0.9562500000 5.605604888 -0.9525000000 5.719558550 -0.9487500000 6.131150535 -0.9450000000 6.707958494 -0.9412500000 7.115758913 -0.9375000000 7.369312670 -0.9337500000 6.952241742 -0.9300000000 6.162014665 -0.9262500000 5.229536325 -0.9225000000 4.385710053 -0.9187500000 3.695824286 -0.9150000000 3.137149826 -0.9112500000 2.660482080 -0.9075000000 2.246507027 -0.9037500000 1.905410541 -0.9000000000 1.639123710 -0.8962500000 1.434993910 -0.8925000000 1.277878685 -0.8887500000 1.155660957 -0.8850000000 1.056952829 -0.8812500000 0.9677109889 -0.8775000000 0.8825509082 -0.8737500000 0.8122647052 -0.8700000000 0.7558954923 -0.8662500000 0.7106889416 -0.8625000000 0.6730133966 -0.8587500000 0.6426506918 -0.8550000000 0.6211453747 -0.8512500000 0.6283313442 -0.8475000000 0.6265858074 -0.8437500000 0.5601265112 -0.8400000000 0.5389270823 -0.8362500000 0.5251565027 -0.8325000000 0.5143585662 -0.8287500000 0.5055628124 -0.8250000000 0.4949251612 -0.8212500000 0.4830493304 -0.8175000000 0.4695026528 -0.8137500000 0.4543943894 -0.8100000000 0.4388385657 -0.8062500000 0.4234198443 -0.8025000000 0.4074658785 -0.7987500000 0.3903876205 -0.7950000000 0.3751471870 -0.7912500000 0.3624020496 -0.7875000000 0.3522167412 -0.7837500000 0.3444266305 -0.7800000000 0.3384267435 -0.7762500000 0.3343423164 -0.7725000000 0.3308802583 -0.7687500000 0.3287843148 -0.7650000000 0.3283838445 -0.7612500000 0.3294858245 -0.7575000000 0.3320301831 -0.7537500000 0.3372537208 -0.7500000000 0.3440373695 -0.7462500000 0.3504721551 -0.7425000000 0.3603621365 -0.7387500000 0.3730091812 -0.7350000000 0.3886526668 -0.7312500000 0.4377666024 -0.7275000000 0.4502846066 -0.7237500000 0.4769559386 -0.7200000000 0.4972666145 -0.7162500000 0.4888794273 -0.7125000000 0.4660908607 -0.7087500000 0.4465141572 -0.7050000000 0.4382568251 -0.7012500000 0.4539410471 -0.6975000000 0.4420568594 -0.6937500000 0.4566543935 -0.6900000000 0.4803065003 -0.6862500000 0.5244431469 -0.6825000000 0.6167675841 -0.6787500000 0.9901712338 -0.6750000000 1.130181859 -0.6712500000 1.163793294 -0.6675000000 1.947147785 -0.6637500000 2.103813425 -0.6600000000 3.399922082 -0.6562500000 2.921403913 -0.6525000000 2.687599851 -0.6487500000 1.462684932 -0.6450000000 1.073531930 -0.6412500000 0.9561557605 -0.6375000000 0.9220841430 -0.6337500000 0.9261547789 -0.6300000000 0.9661677458 -0.6262500000 0.9690988503 -0.6225000000 0.9988826337 -0.6187500000 1.118629547 -0.6150000000 1.053181542 -0.6112500000 0.7989587334 -0.6075000000 0.6505211769 -0.6037500000 0.5707854708 -0.6000000000 0.5047565536 -0.5962500000 0.4349457280 -0.5925000000 0.3674948135 -0.5887500000 0.2974756952 -0.5850000000 0.2522889044 -0.5812500000 0.2185944947 -0.5775000000 0.1923108550 -0.5737500000 0.1714110960 -0.5700000000 0.1550406902 -0.5662500000 0.1422040863 -0.5625000000 0.1321862687 -0.5587500000 0.1244041375 -0.5550000000 0.1191870522 -0.5512500000 0.1154256789 -0.5475000000 0.1130838975 -0.5437500000 0.1118146704 -0.5400000000 0.1120635469 -0.5362500000 0.1132630117 -0.5325000000 0.1148191689 -0.5287500000 0.1167173260 -0.5250000000 0.1189780638 -0.5212500000 0.1215357139 -0.5175000000 0.1245013496 -0.5137500000 0.1277745473 -0.5100000000 0.1313623056 -0.5062500000 0.1352748632 -0.5025000000 0.1395240962 -0.4987500000 0.1441349329 -0.4950000000 0.1491012296 -0.4912500000 0.1544600565 -0.4875000000 0.1602426249 -0.4837500000 0.1664725322 -0.4800000000 0.1731735667 -0.4762500000 0.1802525315 -0.4725000000 0.1877957481 -0.4687500000 0.1966513319 -0.4650000000 0.2058484459 -0.4612500000 0.2157805620 -0.4575000000 0.2265598902 -0.4537500000 0.2382924093 -0.4500000000 0.2510982521 -0.4462500000 0.2651180513 -0.4425000000 0.2805180844 -0.4387500000 0.2974962924 -0.4350000000 0.3162902322 -0.4312500000 0.3371873571 -0.4275000000 0.3605388823 -0.4237500000 0.3867791211 -0.4200000000 0.4164483152 -0.4162500000 0.4502318564 -0.4125000000 0.4890290393 -0.4087500000 0.5340137792 -0.4050000000 0.5867739657 -0.4012500000 0.6495231776 -0.3975000000 0.7254562710 -0.3937500000 0.8194050903 -0.3900000000 0.9391267330 -0.3862500000 1.098102206 -0.3825000000 1.322413567 -0.3787500000 1.670739337 -0.3750000000 2.303961814 -0.3712500000 3.785760737 -0.3675000000 7.571990193 -0.3637500000 7.197322032 -0.3600000000 5.510621718 -0.3562500000 6.802948231 -0.3525000000 11.90276799 -0.3487500000 19.96729581 -0.3450000000 30.85624825 -0.3412500000 55.33257313 -0.3375000000 30.53517147 -0.3337500000 20.17783499 -0.3300000000 27.91871761 -0.3262500000 35.22417896 -0.3225000000 35.40943675 -0.3187500000 26.75792416 -0.3150000000 14.40926998 -0.3112500000 11.73307208 -0.3075000000 14.07522909 -0.3037500000 24.31159925 -0.3000000000 53.39249156 -0.2962500000 52.86423846 -0.2925000000 39.53784299 -0.2887500000 61.14050988 -0.2850000000 51.13283761 -0.2812500000 34.53369611 -0.2775000000 27.78200342 -0.2737500000 34.50036352 -0.2700000000 45.70187866 -0.2662500000 64.53504379 -0.2625000000 47.95840495 -0.2587500000 44.39736938 -0.2550000000 42.52493629 -0.2512500000 49.25985516 -0.2475000000 42.39936334 -0.2437500000 43.21944896 -0.2400000000 34.20733716 -0.2362500000 18.72228525 -0.2325000000 9.912346102 -0.2287500000 5.985820001 -0.2250000000 4.152274307 -0.2212500000 3.125299911 -0.2175000000 2.475976022 -0.2137500000 2.031485610 -0.2100000000 1.709923129 -0.2062500000 1.467683335 -0.2025000000 1.279274429 -0.1987500000 1.129049732 -0.1950000000 1.006841396 -0.1912500000 0.9057588441 -0.1875000000 0.8209744067 -0.1837500000 0.7490136338 -0.1800000000 0.6872974956 -0.1762500000 0.6338897411 -0.1725000000 0.5873050797 -0.1687500000 0.5463860303 -0.1650000000 0.5102179708 -0.1612500000 0.4780691938 -0.1575000000 0.4493478008 -0.1537500000 0.4235701784 -0.1500000000 0.4003375920 -0.1462500000 0.3793185648 -0.1425000000 0.3602354463 -0.1387500000 0.3428540560 -0.1350000000 0.3269756133 -0.1312500000 0.3124303883 -0.1275000000 0.2990726620 -0.1237500000 0.2867766936 -0.1200000000 0.2754334675 -0.1162500000 0.2649480512 -0.1125000000 0.2552374333 -0.1087500000 0.2462287457 -0.1050000000 0.2378577915 -0.1012500000 0.2300678194 -0.9750000000E-01 0.2228084980 -0.9375000000E-01 0.2160350558 -0.9000000000E-01 0.2097075540 -0.8625000000E-01 0.2037902689 -0.8250000000E-01 0.1982511663 -0.7875000000E-01 0.1930614514 -0.7500000000E-01 0.1881951826 -0.7125000000E-01 0.1836289396 -0.6750000000E-01 0.1793415357 -0.6375000000E-01 0.1753137690 -0.6000000000E-01 0.1715282044 -0.5625000000E-01 0.1679689860 -0.5250000000E-01 0.1646216722 -0.4875000000E-01 0.1614730920 -0.4500000000E-01 0.1585112154 -0.4125000000E-01 0.1557250412 -0.3750000000E-01 0.1531044955 -0.3375000000E-01 0.1506403607 -0.3000000000E-01 0.1483242001 -0.2625000000E-01 0.1461482362 -0.2250000000E-01 0.1441053374 -0.1875000000E-01 0.1421889677 -0.1500000000E-01 0.1403931070 -0.1125000000E-01 0.1387122613 -0.7500000000E-02 0.1371412265 -0.3750000000E-02 0.1356755651 -0.5551115123E-16 0.1343109699 0.3750000000E-02 0.1330434299 0.7500000000E-02 0.1318694182 0.1125000000E-01 0.1307856800 0.1500000000E-01 0.1297892495 0.1875000000E-01 0.1288774250 0.2250000000E-01 0.1280477947 0.2625000000E-01 0.1272981281 0.3000000000E-01 0.1266265244 0.3375000000E-01 0.1260312491 0.3750000000E-01 0.1255108135 0.4125000000E-01 0.1250638034 0.4500000000E-01 0.1246890558 0.4875000000E-01 0.1243858286 0.5250000000E-01 0.1241534033 0.5625000000E-01 0.1239912565 0.6000000000E-01 0.1238990910 0.6375000000E-01 0.1238768109 0.6750000000E-01 0.1239244439 0.7125000000E-01 0.1240422359 0.7500000000E-01 0.1242306756 0.7875000000E-01 0.1244904649 0.8250000000E-01 0.1248225200 0.8625000000E-01 0.1252279857 0.9000000000E-01 0.1257082475 0.9375000000E-01 0.1262649428 0.9750000000E-01 0.1268999789 0.1012500000 0.1276156008 0.1050000000 0.1284145345 0.1087500000 0.1292998610 0.1125000000 0.1302747864 0.1162500000 0.1313429445 0.1200000000 0.1325085520 0.1237500000 0.1337764005 0.1275000000 0.1351518872 0.1312500000 0.1366410903 0.1350000000 0.1382508693 0.1387500000 0.1399889807 0.1425000000 0.1418642083 0.1462500000 0.1438865276 0.1500000000 0.1460673098 0.1537500000 0.1484195723 0.1575000000 0.1509582845 0.1612500000 0.1537007516 0.1650000000 0.1566671032 0.1687500000 0.1598809202 0.1725000000 0.1633700486 0.1762500000 0.1671676729 0.1800000000 0.1713137533 0.1837500000 0.1758569857 0.1875000000 0.1808575290 0.1912500000 0.1863908838 0.1950000000 0.1925535422 0.1987500000 0.1994714483 0.2025000000 0.2073130687 0.2062500000 0.2163102980 0.2100000000 0.2267940059 0.2137500000 0.2392554391 0.2175000000 0.2544523539 0.2212500000 0.2736335449 0.2250000000 0.2989977408 0.2287500000 0.3347598356 0.2325000000 0.3899169985 0.2362500000 0.4864980679 0.2400000000 0.6884524738 0.2437500000 1.210242444 0.2475000000 2.314551590 0.2512500000 1.791568879 0.2550000000 0.9782566697 0.2587500000 0.7107620389 0.2625000000 0.6350485815 0.2662500000 0.6361007555 0.2700000000 0.6828346943 0.2737500000 0.7714868862 0.2775000000 0.9139615441 0.2812500000 1.141692304 0.2850000000 1.526389205 0.2887500000 2.245800082 0.2925000000 3.814886627 0.2962500000 7.962759169 0.3000000000 16.96544455 0.3037500000 13.23707583 0.3075000000 8.001310721 0.3112500000 9.534204602 0.3150000000 9.012500796 0.3187500000 4.520650113 0.3225000000 2.737049709 0.3262500000 2.114133739 0.3300000000 1.967739273 0.3337500000 2.154639962 0.3375000000 2.810216341 0.3412500000 4.600261642 0.3450000000 9.706198558 0.3487500000 13.41696112 0.3525000000 7.128770070 0.3562500000 4.754588176 0.3600000000 4.924131938 0.3637500000 7.424365892 0.3675000000 15.54897650 0.3712500000 26.55535697 0.3750000000 14.30661636 0.3787500000 7.048365383 0.3825000000 4.756943169 0.3862500000 4.231573379 0.3900000000 4.736883862 0.3937500000 6.543753149 0.3975000000 11.30856887 0.4012500000 25.08689298 0.4050000000 50.46342473 0.4087500000 30.44927781 0.4125000000 12.88166404 0.4162500000 6.712173150 0.4200000000 4.178037056 0.4237500000 2.940814003 0.4275000000 2.261108746 0.4312500000 1.859103741 0.4350000000 1.612542229 0.4387500000 1.462258772 0.4425000000 1.377835016 0.4462500000 1.343591036 0.4500000000 1.352660594 0.4537500000 1.404580963 0.4575000000 1.505207607 0.4612500000 1.668824276 0.4650000000 1.923971485 0.4687500000 2.327726717 0.4725000000 3.003104872 0.4762500000 4.251009422 0.4800000000 6.949330410 0.4837500000 14.15370316 0.4875000000 31.08191564 0.4912500000 24.65398136 0.4950000000 12.53524859 0.4987500000 9.800844054 0.5025000000 11.71087919 0.5062500000 19.86010838 0.5100000000 43.31003896 0.5137500000 69.82960048 0.5175000000 51.65871179 0.5212500000 22.22212460 0.5250000000 11.15956270 0.5287500000 6.847554505 0.5325000000 4.861584121 0.5362500000 3.873292489 0.5400000000 3.437279948 0.5437500000 3.458644703 0.5475000000 4.194698313 0.5512500000 6.854315420 0.5550000000 10.99210280 0.5587500000 7.117636432 0.5625000000 5.863242740 0.5662500000 8.007360155 0.5700000000 13.85421176 0.5737500000 17.95870109 0.5775000000 13.86538472 0.5812500000 9.993741819 0.5850000000 13.70348069 0.5887500000 20.33821484 0.5925000000 12.06305168 0.5962500000 8.825127246 0.6000000000 11.29127165 0.6037500000 17.02461317 0.6075000000 12.01673111 0.6112500000 9.776958672 0.6150000000 12.30038523 0.6187500000 22.18557995 0.6225000000 50.42673941 0.6262500000 47.41768668 0.6300000000 31.67247178 0.6337500000 27.18127239 0.6375000000 17.72238924 0.6412500000 18.48230567 0.6450000000 27.41665621 0.6487500000 30.56697900 0.6525000000 53.11759973 0.6562500000 64.75929799 0.6600000000 71.83233203 0.6637500000 63.65952491 0.6675000000 27.46815461 0.6712500000 14.90662140 0.6750000000 10.78927294 0.6787500000 10.37200628 0.6825000000 14.07684321 0.6862500000 24.61318193 0.6900000000 32.26406784 0.6937500000 53.40249356 0.6975000000 43.73814521 0.7012500000 18.87390602 0.7050000000 9.138300067 0.7087500000 5.452081048 0.7125000000 3.771023364 0.7162500000 2.874322506 0.7200000000 2.354535820 0.7237500000 2.255310051 0.7275000000 2.243433365 0.7312500000 2.271189255 0.7350000000 2.290064549 0.7387500000 2.233891533 0.7425000000 2.077789679 0.7462500000 1.901098514 0.7500000000 1.789545119 0.7537500000 1.806626246 0.7575000000 1.842939037 0.7612500000 1.739095860 0.7650000000 1.879640991 0.7687500000 2.292405520 0.7725000000 1.906237844 0.7762500000 2.745048618 0.7800000000 3.038398166 0.7837500000 3.664198123 0.7875000000 3.875621795 0.7912500000 4.638881967 0.7950000000 4.882005031 0.7987500000 5.262937301 0.8025000000 6.305410262 0.8062500000 8.419356373 0.8100000000 12.26683702 0.8137500000 19.00881468 0.8175000000 27.39662117 0.8212500000 31.88280276 0.8250000000 20.44515904 0.8287500000 13.59189505 0.8325000000 10.68629536 0.8362500000 10.40807941 0.8400000000 6.553067945 0.8437500000 5.751377841 0.8475000000 4.810048141 0.8512500000 4.118231993 0.8550000000 3.857658521 0.8587500000 4.081513039 0.8625000000 4.276696407 0.8662500000 3.809548616 0.8700000000 3.629866164 0.8737500000 3.608799389 0.8775000000 3.711128285 0.8812500000 3.869270945 0.8850000000 4.106281781 0.8887500000 4.421606659 0.8925000000 4.754352857 0.8962500000 5.036921650 0.9000000000 5.152146235 0.9037500000 5.194903606 0.9075000000 5.305123441 0.9112500000 5.615854981 0.9150000000 6.226942585 0.9187500000 7.308653853 0.9225000000 8.737278074 0.9262500000 9.812085181 0.9300000000 9.545349028 0.9337500000 8.276056633 0.9375000000 7.010211207 0.9412500000 6.220386609 0.9450000000 6.003455215 0.9487500000 6.263679712 0.9525000000 7.194259461 0.9562500000 9.795604267 0.9600000000 19.03302277 0.9637500000 23.34215421 0.9675000000 13.07907709 0.9712500000 10.94921150 0.9750000000 10.57127764 0.9787500000 10.63971844 0.9825000000 10.90860886 0.9862500000 11.29835296 0.9900000000 12.02371078 0.9937500000 12.22276789 0.9975000000 12.35358567 1.001250000 13.97886470 1.005000000 19.24798165 1.008750000 32.39011301 1.012500000 32.74138145 1.016250000 20.82631121 1.020000000 15.58053191 1.023750000 13.06222656 1.027500000 11.48757161 1.031250000 11.78517634 1.035000000 10.95217952 1.038750000 9.882514791 1.042500000 9.127757733 1.046250000 6.933112740 1.050000000 5.527090285 1.053750000 4.847498937 1.057500000 5.311508749 1.061250000 22.48687431 1.065000000 5.569419572 1.068750000 3.916617428 1.072500000 3.512864022 1.076250000 3.364208415 1.080000000 3.340172304 1.083750000 3.130559823 1.087500000 3.447256476 1.091250000 3.698872892 1.095000000 3.715653607 1.098750000 3.764590010 1.102500000 4.051622384 1.106250000 4.842563504 1.110000000 6.777822042 1.113750000 7.516320103 1.117500000 5.821611523 1.121250000 5.099193242 1.125000000 4.848377028 1.128750000 4.926803066 1.132500000 5.274942647 1.136250000 9.284679264 1.140000000 6.721315907 1.143750000 8.217461736 1.147500000 10.66717525 1.151250000 14.53688199 1.155000000 20.85738707 1.158750000 28.81355411 1.162500000 54.78187525 1.166250000 22.21788555 1.170000000 22.04064562 1.173750000 23.96520583 1.177500000 24.54632300 1.181250000 24.95366287 1.185000000 22.14899785 1.188750000 17.80695241 1.192500000 14.51306317 1.196250000 12.79880682 1.200000000 14.50268825 1.203750000 11.56363111 1.207500000 10.83234768 1.211250000 10.04195381 1.215000000 9.664432838 1.218750000 9.598569097 1.222500000 10.75024197 1.226250000 10.22206048 1.230000000 10.73098934 1.233750000 12.62998204 1.237500000 14.31248298 1.241250000 12.42188875 1.245000000 13.27070724 1.248750000 15.60432581 1.252500000 19.29219519 1.256250000 21.33434747 1.260000000 20.31144508 1.263750000 21.77252886 1.267500000 30.64335018 1.271250000 18.75615440 1.275000000 14.34478768 1.278750000 13.14576184 1.282500000 12.58415188 1.286250000 12.55300119 1.290000000 12.23134108 1.293750000 11.99073721 1.297500000 17.04410090 1.301250000 15.84189102 1.305000000 15.58845175 1.308750000 22.31241122 1.312500000 12.87892055 1.316250000 12.96446418 1.320000000 14.65175561 1.323750000 12.81612060 1.327500000 10.94368195 1.331250000 10.42408088 1.335000000 10.86805649 1.338750000 14.55331444 1.342500000 14.51845048 1.346250000 12.37233494 1.350000000 10.76392443 1.353750000 10.60512983 1.357500000 10.49244115 1.361250000 10.65937465 1.365000000 11.47618438 1.368750000 13.91159970 1.372500000 23.49600679 1.376250000 53.90844790 1.380000000 30.97743913 1.383750000 27.10429603 1.387500000 108.2092826 1.391250000 45.11467633 1.395000000 31.79154899 1.398750000 21.60825194 1.402500000 19.58116864 1.406250000 18.58500845 1.410000000 18.08188794 1.413750000 18.06941464 1.417500000 18.37119754 1.421250000 18.33128954 1.425000000 19.13780368 1.428750000 17.17668556 1.432500000 16.50156257 1.436250000 16.30889149 1.440000000 16.64190498 1.443750000 17.78042328 1.447500000 16.46109959 1.451250000 15.92117604 1.455000000 16.46100244 1.458750000 23.24269242 1.462500000 15.54047394 1.466250000 19.35330430 1.470000000 17.80801470 1.473750000 18.27217208 1.477500000 19.76827039 1.481250000 22.05783832 1.485000000 23.45346394 1.488750000 23.66391111 1.492500000 22.59668775 1.496250000 22.65387103 elk-10.4.9/examples/GW/LiF/PaxHeaders/elk.in0000644000000000000000000000013214762655566015374 xustar0030 mtime=1741380470.131017154 30 atime=1741380470.130017148 30 ctime=1741380470.131017154 elk-10.4.9/examples/GW/LiF/elk.in0000644002504400250440000000132114762655566020113 0ustar00dewhurstdewhurst00000000000000 ! GW band gap calculation of LiF. Plot the total spectral function GWTSF.OUT to ! find the indirect gap. tasks 0 600 610 ! G-vector cut-off of local contribution to RPA gmaxrf 3.0 ! temperature of system (determines the Matsubara frequency spacing) tempk 1500.0 nempty 8 wplot 800 100 0 : nwplot, ngrkf, nswplot -1.5 1.5 : wplot avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 4 4 4 elk-10.4.9/examples/PaxHeaders/RDMFT0000644000000000000000000000013214762655566014101 xustar0030 mtime=1741380470.133017164 30 atime=1741380470.132017159 30 ctime=1741380470.133017164 elk-10.4.9/examples/RDMFT/0000755002504400250440000000000014762655566016700 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/RDMFT/PaxHeaders/NiO0000644000000000000000000000013014762655566014564 xustar0029 mtime=1741380470.13601718 30 atime=1741380470.133017164 29 ctime=1741380470.13601718 elk-10.4.9/examples/RDMFT/NiO/0000755002504400250440000000000014762655566017365 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/RDMFT/NiO/PaxHeaders/TDOS.OUT0000644000000000000000000000013214762655566016005 xustar0030 mtime=1741380470.134017169 30 atime=1741380470.134017169 30 ctime=1741380470.134017169 elk-10.4.9/examples/RDMFT/NiO/TDOS.OUT0000644002504400250440000004411214762655566020531 0ustar00dewhurstdewhurst00000000000000 -0.6000000000 0.000000000 -0.5976000000 0.000000000 -0.5952000000 0.000000000 -0.5928000000 0.000000000 -0.5904000000 0.000000000 -0.5880000000 0.000000000 -0.5856000000 0.000000000 -0.5832000000 0.000000000 -0.5808000000 0.000000000 -0.5784000000 0.000000000 -0.5760000000 0.000000000 -0.5736000000 0.000000000 -0.5712000000 0.000000000 -0.5688000000 0.000000000 -0.5664000000 0.000000000 -0.5640000000 0.000000000 -0.5616000000 0.000000000 -0.5592000000 0.000000000 -0.5568000000 0.000000000 -0.5544000000 0.000000000 -0.5520000000 0.000000000 -0.5496000000 0.000000000 -0.5472000000 0.000000000 -0.5448000000 0.000000000 -0.5424000000 0.000000000 -0.5400000000 0.000000000 -0.5376000000 0.000000000 -0.5352000000 0.000000000 -0.5328000000 0.000000000 -0.5304000000 0.000000000 -0.5280000000 0.000000000 -0.5256000000 0.000000000 -0.5232000000 0.000000000 -0.5208000000 0.000000000 -0.5184000000 0.000000000 -0.5160000000 0.000000000 -0.5136000000 0.000000000 -0.5112000000 0.000000000 -0.5088000000 0.000000000 -0.5064000000 0.000000000 -0.5040000000 0.000000000 -0.5016000000 0.000000000 -0.4992000000 0.000000000 -0.4968000000 0.000000000 -0.4944000000 0.000000000 -0.4920000000 0.000000000 -0.4896000000 0.000000000 -0.4872000000 0.000000000 -0.4848000000 0.000000000 -0.4824000000 0.000000000 -0.4800000000 0.000000000 -0.4776000000 0.000000000 -0.4752000000 0.000000000 -0.4728000000 0.000000000 -0.4704000000 0.000000000 -0.4680000000 0.000000000 -0.4656000000 0.000000000 -0.4632000000 0.000000000 -0.4608000000 0.000000000 -0.4584000000 0.000000000 -0.4560000000 0.000000000 -0.4536000000 0.000000000 -0.4512000000 0.000000000 -0.4488000000 0.000000000 -0.4464000000 0.000000000 -0.4440000000 0.000000000 -0.4416000000 0.000000000 -0.4392000000 0.000000000 -0.4368000000 0.000000000 -0.4344000000 0.000000000 -0.4320000000 0.000000000 -0.4296000000 0.000000000 -0.4272000000 0.000000000 -0.4248000000 0.000000000 -0.4224000000 0.000000000 -0.4200000000 0.000000000 -0.4176000000 0.000000000 -0.4152000000 0.000000000 -0.4128000000 0.000000000 -0.4104000000 0.000000000 -0.4080000000 0.000000000 -0.4056000000 0.000000000 -0.4032000000 0.000000000 -0.4008000000 0.000000000 -0.3984000000 0.000000000 -0.3960000000 0.000000000 -0.3936000000 0.000000000 -0.3912000000 0.000000000 -0.3888000000 0.000000000 -0.3864000000 0.000000000 -0.3840000000 0.000000000 -0.3816000000 0.000000000 -0.3792000000 0.000000000 -0.3768000000 0.000000000 -0.3744000000 0.000000000 -0.3720000000 0.000000000 -0.3696000000 0.000000000 -0.3672000000 0.000000000 -0.3648000000 0.000000000 -0.3624000000 0.000000000 -0.3600000000 0.000000000 -0.3576000000 0.000000000 -0.3552000000 0.000000000 -0.3528000000 0.000000000 -0.3504000000 0.000000000 -0.3480000000 0.000000000 -0.3456000000 0.000000000 -0.3432000000 0.000000000 -0.3408000000 0.000000000 -0.3384000000 0.000000000 -0.3360000000 0.000000000 -0.3336000000 0.000000000 -0.3312000000 0.000000000 -0.3288000000 0.000000000 -0.3264000000 0.000000000 -0.3240000000 0.000000000 -0.3216000000 0.000000000 -0.3192000000 0.000000000 -0.3168000000 0.000000000 -0.3144000000 0.000000000 -0.3120000000 0.000000000 -0.3096000000 0.000000000 -0.3072000000 0.5000000000E-02 -0.3048000000 0.3000000000E-01 -0.3024000000 0.9250000000E-01 -0.3000000000 0.2283333333 -0.2976000000 0.4933333333 -0.2952000000 1.117500000 -0.2928000000 2.766666667 -0.2904000000 4.701666667 -0.2880000000 7.144166667 -0.2856000000 10.30000000 -0.2832000000 13.95333333 -0.2808000000 17.38833333 -0.2784000000 21.02750000 -0.2760000000 25.13833333 -0.2736000000 30.23166667 -0.2712000000 36.84500000 -0.2688000000 44.63916667 -0.2664000000 55.30333333 -0.2640000000 64.51750000 -0.2616000000 63.58416667 -0.2592000000 62.81083333 -0.2568000000 59.07416667 -0.2544000000 60.90333333 -0.2520000000 49.95250000 -0.2496000000 30.64166667 -0.2472000000 16.46666667 -0.2448000000 12.35666667 -0.2424000000 10.50833333 -0.2400000000 9.368333333 -0.2376000000 8.535833333 -0.2352000000 7.745000000 -0.2328000000 7.157500000 -0.2304000000 6.755000000 -0.2280000000 6.605833333 -0.2256000000 6.664166667 -0.2232000000 6.903333333 -0.2208000000 7.150000000 -0.2184000000 7.500833333 -0.2160000000 8.049166667 -0.2136000000 8.775000000 -0.2112000000 9.829166667 -0.2088000000 11.62750000 -0.2064000000 14.42166667 -0.2040000000 18.79083333 -0.2016000000 28.45083333 -0.1992000000 39.21583333 -0.1968000000 43.05166667 -0.1944000000 48.15583333 -0.1920000000 50.43666667 -0.1896000000 50.36833333 -0.1872000000 47.97750000 -0.1848000000 46.61500000 -0.1824000000 46.09750000 -0.1800000000 42.42833333 -0.1776000000 38.73583333 -0.1752000000 38.59000000 -0.1728000000 46.66500000 -0.1704000000 70.25000000 -0.1680000000 113.7491667 -0.1656000000 143.1591667 -0.1632000000 137.0108333 -0.1608000000 110.3133333 -0.1584000000 89.18750000 -0.1560000000 73.68750000 -0.1536000000 61.62750000 -0.1512000000 51.12083333 -0.1488000000 42.87166667 -0.1464000000 35.61333333 -0.1440000000 27.83750000 -0.1416000000 22.23000000 -0.1392000000 18.26583333 -0.1368000000 15.33083333 -0.1344000000 13.24333333 -0.1320000000 11.39833333 -0.1296000000 10.01083333 -0.1272000000 8.640000000 -0.1248000000 7.035000000 -0.1224000000 5.234166667 -0.1200000000 4.196666667 -0.1176000000 3.587500000 -0.1152000000 3.172500000 -0.1128000000 2.641666667 -0.1104000000 1.547500000 -0.1080000000 0.9366666667 -0.1056000000 0.5733333333 -0.1032000000 0.3300000000 -0.1008000000 0.1841666667 -0.9840000000E-01 0.9000000000E-01 -0.9600000000E-01 0.8750000000E-01 -0.9360000000E-01 0.1241666667 -0.9120000000E-01 0.2441666667 -0.8880000000E-01 0.4075000000 -0.8640000000E-01 0.6375000000 -0.8400000000E-01 0.9583333333 -0.8160000000E-01 1.426666667 -0.7920000000E-01 2.545833333 -0.7680000000E-01 8.681666667 -0.7440000000E-01 16.60916667 -0.7200000000E-01 25.36166667 -0.6960000000E-01 38.49333333 -0.6720000000E-01 46.55583333 -0.6480000000E-01 46.96916667 -0.6240000000E-01 48.48500000 -0.6000000000E-01 50.50750000 -0.5760000000E-01 53.47750000 -0.5520000000E-01 59.41000000 -0.5280000000E-01 69.00083333 -0.5040000000E-01 74.81583333 -0.4800000000E-01 75.96000000 -0.4560000000E-01 61.30083333 -0.4320000000E-01 49.10750000 -0.4080000000E-01 36.69500000 -0.3840000000E-01 26.27916667 -0.3600000000E-01 18.62500000 -0.3360000000E-01 26.51333333 -0.3120000000E-01 51.33083333 -0.2880000000E-01 84.43583333 -0.2640000000E-01 130.9466667 -0.2400000000E-01 166.8525000 -0.2160000000E-01 162.2741667 -0.1920000000E-01 126.8108333 -0.1680000000E-01 109.1391667 -0.1440000000E-01 133.9591667 -0.1200000000E-01 148.8750000 -0.9600000000E-02 162.2250000 -0.7200000000E-02 120.1783333 -0.4800000000E-02 52.86083333 -0.2400000000E-02 24.80500000 0.000000000 18.98416667 0.2400000000E-02 16.21416667 0.4800000000E-02 14.11916667 0.7200000000E-02 12.29333333 0.9600000000E-02 10.97250000 0.1200000000E-01 9.826666667 0.1440000000E-01 8.863333333 0.1680000000E-01 7.803333333 0.1920000000E-01 7.035833333 0.2160000000E-01 6.377500000 0.2400000000E-01 5.737500000 0.2640000000E-01 5.217500000 0.2880000000E-01 4.827500000 0.3120000000E-01 4.567500000 0.3360000000E-01 4.225000000 0.3600000000E-01 3.974166667 0.3840000000E-01 3.765000000 0.4080000000E-01 3.490833333 0.4320000000E-01 3.353333333 0.4560000000E-01 3.245833333 0.4800000000E-01 2.984166667 0.5040000000E-01 2.853333333 0.5280000000E-01 2.719166667 0.5520000000E-01 2.573333333 0.5760000000E-01 2.452500000 0.6000000000E-01 2.347500000 0.6240000000E-01 2.251666667 0.6480000000E-01 2.046666667 0.6720000000E-01 2.026666667 0.6960000000E-01 1.899166667 0.7200000000E-01 1.780000000 0.7440000000E-01 1.825000000 0.7680000000E-01 1.665000000 0.7920000000E-01 1.655000000 0.8160000000E-01 1.626666667 0.8400000000E-01 1.630833333 0.8640000000E-01 1.645000000 0.8880000000E-01 1.642500000 0.9120000000E-01 1.710000000 0.9360000000E-01 1.698333333 0.9600000000E-01 1.778333333 0.9840000000E-01 1.815833333 0.1008000000 1.867500000 0.1032000000 2.005833333 0.1056000000 2.066666667 0.1080000000 2.250000000 0.1104000000 2.281666667 0.1128000000 2.470000000 0.1152000000 2.684166667 0.1176000000 2.829166667 0.1200000000 3.201666667 0.1224000000 3.572500000 0.1248000000 4.046666667 0.1272000000 4.617500000 0.1296000000 5.293333333 0.1320000000 6.230833333 0.1344000000 7.167500000 0.1368000000 8.099166667 0.1392000000 9.271666667 0.1416000000 10.45583333 0.1440000000 11.88666667 0.1464000000 13.62083333 0.1488000000 15.69833333 0.1512000000 18.12916667 0.1536000000 20.17250000 0.1560000000 21.28166667 0.1584000000 20.88750000 0.1608000000 21.06500000 0.1632000000 21.71583333 0.1656000000 22.15833333 0.1680000000 23.17250000 0.1704000000 24.49166667 0.1728000000 25.87166667 0.1752000000 27.76416667 0.1776000000 27.84750000 0.1800000000 28.56750000 0.1824000000 29.92000000 0.1848000000 29.90166667 0.1872000000 29.06833333 0.1896000000 28.52500000 0.1920000000 28.03000000 0.1944000000 26.81916667 0.1968000000 26.46583333 0.1992000000 26.02333333 0.2016000000 25.66583333 0.2040000000 25.35333333 0.2064000000 24.06583333 0.2088000000 22.77750000 0.2112000000 22.38666667 0.2136000000 21.71833333 0.2160000000 20.79833333 0.2184000000 20.47916667 0.2208000000 21.32500000 0.2232000000 25.78416667 0.2256000000 29.91500000 0.2280000000 32.03916667 0.2304000000 32.59833333 0.2328000000 35.02500000 0.2352000000 37.57500000 0.2376000000 41.52083333 0.2400000000 47.47083333 0.2424000000 54.15916667 0.2448000000 58.76916667 0.2472000000 54.77333333 0.2496000000 50.47416667 0.2520000000 46.33500000 0.2544000000 40.97000000 0.2568000000 36.45583333 0.2592000000 34.82916667 0.2616000000 33.63833333 0.2640000000 30.99750000 0.2664000000 26.14083333 0.2688000000 24.17833333 0.2712000000 20.91083333 0.2736000000 4.166666667 0.2760000000 0.3941666667 0.2784000000 0.2000000000E-01 0.2808000000 0.000000000 0.2832000000 0.000000000 0.2856000000 0.000000000 0.2880000000 0.000000000 0.2904000000 0.000000000 0.2928000000 0.000000000 0.2952000000 0.000000000 0.2976000000 0.000000000 0.3000000000 0.000000000 0.3024000000 0.000000000 0.3048000000 0.000000000 0.3072000000 0.000000000 0.3096000000 0.000000000 0.3120000000 0.000000000 0.3144000000 0.000000000 0.3168000000 0.000000000 0.3192000000 0.000000000 0.3216000000 0.000000000 0.3240000000 0.000000000 0.3264000000 0.000000000 0.3288000000 0.000000000 0.3312000000 0.000000000 0.3336000000 0.000000000 0.3360000000 0.000000000 0.3384000000 0.000000000 0.3408000000 0.000000000 0.3432000000 0.000000000 0.3456000000 0.000000000 0.3480000000 0.000000000 0.3504000000 0.1666666667E-02 0.3528000000 0.3333333333E-02 0.3552000000 0.1000000000E-01 0.3576000000 0.1750000000E-01 0.3600000000 0.4000000000E-01 0.3624000000 0.5083333333E-01 0.3648000000 0.8833333333E-01 0.3672000000 0.1325000000 0.3696000000 0.1975000000 0.3720000000 0.2658333333 0.3744000000 0.3725000000 0.3768000000 0.5266666667 0.3792000000 0.7341666667 0.3816000000 1.002500000 0.3840000000 1.197500000 0.3864000000 1.330833333 0.3888000000 1.442500000 0.3912000000 1.556666667 0.3936000000 1.656666667 0.3960000000 1.745833333 0.3984000000 1.846666667 0.4008000000 1.980000000 0.4032000000 2.038333333 0.4056000000 2.154166667 0.4080000000 2.285833333 0.4104000000 2.280000000 0.4128000000 2.505000000 0.4152000000 2.525000000 0.4176000000 2.727500000 0.4200000000 2.743333333 0.4224000000 2.944166667 0.4248000000 3.066666667 0.4272000000 3.070833333 0.4296000000 3.365833333 0.4320000000 3.349166667 0.4344000000 3.649166667 0.4368000000 3.679166667 0.4392000000 3.880000000 0.4416000000 4.067500000 0.4440000000 4.232500000 0.4464000000 4.469166667 0.4488000000 4.579166667 0.4512000000 4.845833333 0.4536000000 5.067500000 0.4560000000 5.258333333 0.4584000000 5.612500000 0.4608000000 5.894166667 0.4632000000 6.262500000 0.4656000000 6.585000000 0.4680000000 7.224166667 0.4704000000 7.792500000 0.4728000000 8.760833333 0.4752000000 9.805000000 0.4776000000 11.11083333 0.4800000000 12.32250000 0.4824000000 13.92666667 0.4848000000 14.54166667 0.4872000000 15.01250000 0.4896000000 15.34416667 0.4920000000 15.54000000 0.4944000000 15.74250000 0.4968000000 15.73250000 0.4992000000 15.54333333 0.5016000000 15.60583333 0.5040000000 15.61750000 0.5064000000 15.71166667 0.5088000000 16.04250000 0.5112000000 16.30000000 0.5136000000 16.60750000 0.5160000000 16.77500000 0.5184000000 17.21166667 0.5208000000 17.42083333 0.5232000000 17.94083333 0.5256000000 18.24583333 0.5280000000 19.04500000 0.5304000000 19.45000000 0.5328000000 20.21833333 0.5352000000 21.29416667 0.5376000000 22.06500000 0.5400000000 22.17333333 0.5424000000 23.15583333 0.5448000000 23.98750000 0.5472000000 22.43500000 0.5496000000 18.89666667 0.5520000000 16.63333333 0.5544000000 15.11333333 0.5568000000 13.59583333 0.5592000000 12.42333333 0.5616000000 11.14750000 0.5640000000 10.05500000 0.5664000000 8.917500000 0.5688000000 7.934166667 0.5712000000 6.838333333 0.5736000000 5.934166667 0.5760000000 5.045000000 0.5784000000 4.368333333 0.5808000000 3.731666667 0.5832000000 3.260833333 0.5856000000 2.792500000 0.5880000000 2.370000000 0.5904000000 1.945833333 0.5928000000 1.700000000 0.5952000000 1.330833333 0.5976000000 1.141666667 elk-10.4.9/examples/RDMFT/NiO/PaxHeaders/elk.in0000644000000000000000000000013114762655566015745 xustar0030 mtime=1741380470.137017185 29 atime=1741380470.13601718 30 ctime=1741380470.137017185 elk-10.4.9/examples/RDMFT/NiO/elk.in0000644002504400250440000000150314762655566020467 0ustar00dewhurstdewhurst00000000000000 ! Reduced density matrix functional theory (RDMFT) example for NiO. tasks 0 300 10 swidth 0.001 dosocc .false. dos 500 100 0 -0.6 0.6 ! maximum number of RDMFT self-consistent loops rdmmaxscl 2 ! maximum number of iterations per self-consistent loop for determining the ! natural orbitals via steepest-descent maxitc 10 ! maximum number of iterations per self-consistent loop for determining the ! occupation numbers via steepest-descent maxitn 100 ! RDMFT exchange-correlation functional, in this case the 'power functional' rdmxctype 2 ! coefficient of the power functional rdmalpha 0.65 nempty 10 ngridk 4 4 4 vkloff 0.25 0.5 0.625 avec 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 scale 3.9468 sppath '../../../species/' atoms 2 'Ni.in' 1 0.0 0.0 0.0 'O.in' 1 0.5 0.5 0.5 elk-10.4.9/examples/PaxHeaders/XMCD0000644000000000000000000000013114762655566013757 xustar0030 mtime=1741380470.139017196 29 atime=1741380470.13801719 30 ctime=1741380470.139017196 elk-10.4.9/examples/XMCD/0000755002504400250440000000000014762655566016557 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/XMCD/PaxHeaders/Fe0000644000000000000000000000013214762655566014312 xustar0030 mtime=1741380470.142017211 30 atime=1741380470.139017196 30 ctime=1741380470.142017211 elk-10.4.9/examples/XMCD/Fe/0000755002504400250440000000000014762655566017111 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/XMCD/Fe/PaxHeaders/Fe_lo.in0000644000000000000000000000013214762655566015743 xustar0030 mtime=1741380470.141017206 30 atime=1741380470.140017201 30 ctime=1741380470.141017206 elk-10.4.9/examples/XMCD/Fe/Fe_lo.in0000644002504400250440000000366014762655566020472 0ustar00dewhurstdewhurst00000000000000 'Fe_lo' : spsymb 'iron' : spname -26.0000 : spzn 101799.2074 : spmass 0.392232E-06 2.0000 35.6837 500 : sprmin, rmt, sprmax, nrmt 10 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 T 2 1 1 2.00000 F 2 1 2 4.00000 F 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 2.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -26.0000 0 T 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -3.6844 0 T 1 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -2.4317 0 T 2 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -0.5316 0 T elk-10.4.9/examples/XMCD/Fe/PaxHeaders/elk.in0000644000000000000000000000013214762655566015472 xustar0030 mtime=1741380470.143017216 30 atime=1741380470.142017211 30 ctime=1741380470.143017216 elk-10.4.9/examples/XMCD/Fe/elk.in0000644002504400250440000000252014762655566020213 0ustar00dewhurstdewhurst00000000000000 ! Soft x-ray absorption spectroscopy example for bcc Fe, including XAS, XMCD, ! and XMLD. Species file Fe_lo.in has an additional local orbital at the 2p ! energy. Spin-orbit coupling has to be included for 2p 1/2 - 2p 3/2 splitting. ! XAS, XMCD, and XMLD are computed via first order optical response. Fe is ! cubic, hence the following relations hold for B || z: ! ! XAS = 1/3 * Im[ 2*eps_xx + eps_zz ] = 1/3 * Tr(Im[eps]) ! XMCD = Im[ sigma_xy ] = -2*Re[ eps_xy ] ! XMLD = Im[ eps_xx - eps_zz ] ! ! Similarly, the real parts of the epsilon and sigma tensor are related to the ! Faraday effect. A much larger number of k-points is necessary for a well ! converged spectrum. ! Example by Markus Meinert. tasks 0 120 121 wplot 400 200 0 25.0 26.5 ! compute the xx, xy, and zz components optcomp 1 1 1 2 3 3 spinpol .true. spinorb .true. ! use GGA xctype 20 ngridk 8 8 8 bfieldc 0.0 0.0 0.01 ! large number of empty states necessary for "continuum" absorption nempty 20 ! a Lorentzian broadening is applied to the spectrum swidth 0.01 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 atoms 1 : nspecies 'Fe_lo.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/examples/PaxHeaders/libxc0000644000000000000000000000013214762655566014326 xustar0030 mtime=1741380470.145017227 30 atime=1741380470.144017222 30 ctime=1741380470.145017227 elk-10.4.9/examples/libxc/0000755002504400250440000000000014762655566017125 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/libxc/PaxHeaders/Al0000644000000000000000000000013214762655566014662 xustar0030 mtime=1741380470.146017232 30 atime=1741380470.145017227 30 ctime=1741380470.146017232 elk-10.4.9/examples/libxc/Al/0000755002504400250440000000000014762655566017461 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/libxc/Al/PaxHeaders/elk.in0000644000000000000000000000013214762655566016042 xustar0030 mtime=1741380470.146017232 30 atime=1741380470.146017232 30 ctime=1741380470.146017232 elk-10.4.9/examples/libxc/Al/elk.in0000644002504400250440000000144214762655566020565 0ustar00dewhurstdewhurst00000000000000 ! Test of the Libxc library. Follow the instructions in the Elk manual for the ! installation of libxc. tasks 0 ! Libxc is selected with xctype(1)=100. The remaining two numbers are the ! exchange and correlation functionals, respectively - in this case Slater ! exchange and Perdew-Wang correlation. Refer to the file 'elk/src/libxcf03.f90' ! for the complete list of functionals and associated numbers. xctype 100 1 13 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.8267 ! this is the relative path to the species files sppath '../../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/PaxHeaders/miscellaneous0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.158017295 30 atime=1741380470.148017243 30 ctime=1741380470.158017295 elk-10.4.9/examples/miscellaneous/0000755002504400250440000000000014762655566020667 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/miscellaneous/PaxHeaders/GaAs-effective-mass0000644000000000000000000000013214762655566021602 xustar0030 mtime=1741380470.150017253 30 atime=1741380470.149017248 30 ctime=1741380470.150017253 elk-10.4.9/examples/miscellaneous/GaAs-effective-mass/0000755002504400250440000000000014762655566024401 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/miscellaneous/GaAs-effective-mass/PaxHeaders/elk.in0000644000000000000000000000013214762655566022762 xustar0030 mtime=1741380470.150017253 30 atime=1741380470.150017253 30 ctime=1741380470.150017253 elk-10.4.9/examples/miscellaneous/GaAs-effective-mass/elk.in0000644002504400250440000000120514762655566025502 0ustar00dewhurstdewhurst00000000000000 ! Effective mass tensors of GaAs using the Perdew-Burke-Ernzerhof GGA functional. ! Try recalculating the tensors with spin-orbit coupling switched on. tasks 0 25 ! k-point at which the effective mass is to be calculated for all states vklem 0.5 0.0 0.0 xctype 20 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 ngridk 4 4 4 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/miscellaneous/PaxHeaders/Al-STM0000644000000000000000000000013214762655566017065 xustar0030 mtime=1741380470.156017284 30 atime=1741380470.152017263 30 ctime=1741380470.156017284 elk-10.4.9/examples/miscellaneous/Al-STM/0000755002504400250440000000000014762655566021664 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/miscellaneous/Al-STM/PaxHeaders/elk.in0000644000000000000000000000013214762655566020245 xustar0030 mtime=1741380470.153017269 30 atime=1741380470.153017269 30 ctime=1741380470.153017269 elk-10.4.9/examples/miscellaneous/Al-STM/elk.in0000644002504400250440000000142014762655566022764 0ustar00dewhurstdewhurst00000000000000 ! STM image of the surface of aluminium with an embedded oygen atom. Try using ! OpenDX to plot the image. tasks 0 162 ! the z-coordinate of the plotting plane is the 'height' of the STM tip plot2d 0.0 0.0 0.25 2.0 0.0 0.25 0.0 2.0 0.25 200 200 ! use small cut-off just for testing rgkmax 6.0 avec 15.0 0.0 0.0 0.0 15.0 0.0 0.0 0.0 7.5 sppath '../../../species/' atoms 2 : nspecies 'Al.in' : spfname 7 : natoms; atposl below 0.0 0.0 0.0 0.0 0.5 0.0 0.50 0.0 0.0 0.25 0.25 0.0 0.25 0.75 0.0 0.75 0.25 0.0 0.75 0.75 0.0 'O.in' 1 0.5 0.5 0.0 ngridk 1 1 1 vkloff 0.25 0.625 0.0 elk-10.4.9/examples/miscellaneous/Al-STM/PaxHeaders/stm2d.general0000644000000000000000000000013214762655566021532 xustar0030 mtime=1741380470.155017279 30 atime=1741380470.155017279 30 ctime=1741380470.155017279 elk-10.4.9/examples/miscellaneous/Al-STM/stm2d.general0000644002504400250440000000027314762655566024256 0ustar00dewhurstdewhurst00000000000000file = ./STM2D.OUT grid = 200 x 200 format = ascii interleaving = field majority = column header = lines 1 field = locations, field0 structure = 2-vector, scalar type = float, float end elk-10.4.9/examples/miscellaneous/Al-STM/PaxHeaders/stm2d.net0000644000000000000000000000012714762655566020707 xustar0029 mtime=1741380470.15701729 29 atime=1741380470.15701729 29 ctime=1741380470.15701729 elk-10.4.9/examples/miscellaneous/Al-STM/stm2d.net0000644002504400250440000001263514762655566023434 0ustar00dewhurstdewhurst00000000000000// // time: Sun Oct 15 18:48:57 2006 // // version: 3.2.0 (format), 4.3.2 (DX) // // // MODULE main // workspace: width = 392, height = 525 // layout: snap = 0, width = 50, height = 50, align = NN // macro main( ) -> ( ) { // // node Import[1]: x = 40, y = 40, inputs = 6, label = Import // input[1]: defaulting = 0, visible = 1, type = 32, value = "stm2d.general" // main_Import_1_out_1 = Import( main_Import_1_in_1, main_Import_1_in_2, main_Import_1_in_3, main_Import_1_in_4, main_Import_1_in_5, main_Import_1_in_6 ) [instance: 1, cache: 1]; // // node Colormap[1]: x = 245, y = 132, inputs = 19, label = Colormap // input[1]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.0] [1.0 0.0] } // input[2]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.0] [1.0 0.0] } // input[3]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 0.0] [1.0 1.0] } // input[4]: defaulting = 0, visible = 0, type = 16777224, value = { [0.0 1.0] [1.0 1.0] } // input[5]: defaulting = 0, visible = 0, type = 32, value = "Colormap_1" // input[7]: defaulting = 1, visible = 0, type = 5, value = 0.0043241107 // input[8]: defaulting = 1, visible = 0, type = 5, value = 0.045520809 // input[9]: defaulting = 1, visible = 0, type = 1, value = 20 // input[12]: defaulting = 0, visible = 0, type = 16777221, value = { 0.0043241107 0.045520809 } // input[17]: defaulting = 0, visible = 0, type = 5, value = 0.0043241107 // input[18]: defaulting = 0, visible = 0, type = 5, value = 0.045520809 // window: position = (0.0000,0.0000), size = 0.6348x0.5859 // main_Colormap_1_out_1[cache: 2], main_Colormap_1_out_2[cache: 2] = Colormap( main_Colormap_1_in_1, main_Colormap_1_in_2, main_Colormap_1_in_3, main_Colormap_1_in_4, main_Colormap_1_in_5, main_Import_1_out_1, main_Colormap_1_in_7, main_Colormap_1_in_8, main_Colormap_1_in_9, main_Colormap_1_in_10, main_Colormap_1_in_11, main_Colormap_1_in_12, main_Colormap_1_in_13, main_Colormap_1_in_14, main_Colormap_1_in_15, main_Colormap_1_in_16, main_Colormap_1_in_17, main_Colormap_1_in_18, main_Colormap_1_in_19 ) [instance: 1, cache: 1]; // // node Color[1]: x = 81, y = 206, inputs = 5, label = Color // main_Color_1_out_1 = Color( main_Import_1_out_1, main_Colormap_1_out_1, main_Color_1_in_3, main_Color_1_in_4, main_Color_1_in_5 ) [instance: 1, cache: 1]; // // node AutoCamera[1]: x = 300, y = 292, inputs = 9, label = AutoCamera // input[3]: defaulting = 0, visible = 0, type = 5, value = 35.0 // input[4]: defaulting = 0, visible = 0, type = 1, value = 512 // input[5]: defaulting = 0, visible = 0, type = 5, value = 1.0 // input[9]: defaulting = 0, visible = 0, type = 32, value = "white" // main_AutoCamera_1_out_1 = AutoCamera( main_Color_1_out_1, main_AutoCamera_1_in_2, main_AutoCamera_1_in_3, main_AutoCamera_1_in_4, main_AutoCamera_1_in_5, main_AutoCamera_1_in_6, main_AutoCamera_1_in_7, main_AutoCamera_1_in_8, main_AutoCamera_1_in_9 ) [instance: 1, cache: 1]; // // node Render[1]: x = 174, y = 347, inputs = 3, label = Render // main_Render_1_out_1 = Render( main_Color_1_out_1, main_AutoCamera_1_out_1, main_Render_1_in_3 ) [instance: 1, cache: 1]; // // node Display[1]: x = 142, y = 463, inputs = 8, label = Display // depth: value = 24 // window: position = (0.0000,0.0000), size = 0.5137x0.7214 // main_Display_1_out_1[cache: 2] = Display( main_Render_1_out_1, main_Display_1_in_2, main_Display_1_in_3, main_Display_1_in_4, main_Display_1_in_5, main_Display_1_in_6, main_Display_1_in_7, main_Display_1_in_8 ) [instance: 1, cache: 1]; // network: end of macro body } main_Import_1_in_1 = "stm2d.general"; main_Import_1_in_2 = NULL; main_Import_1_in_3 = NULL; main_Import_1_in_4 = NULL; main_Import_1_in_5 = NULL; main_Import_1_in_6 = NULL; main_Import_1_out_1 = NULL; main_Colormap_1_in_1 = { [0.0 0.0] [1.0 0.0] }; main_Colormap_1_in_2 = { [0.0 0.0] [1.0 0.0] }; main_Colormap_1_in_3 = { [0.0 0.0] [1.0 1.0] }; main_Colormap_1_in_4 = { [0.0 1.0] [1.0 1.0] }; main_Colormap_1_in_5 = "Colormap_1"; main_Colormap_1_in_7 = NULL; main_Colormap_1_in_8 = NULL; main_Colormap_1_in_9 = NULL; main_Colormap_1_in_10 = NULL; main_Colormap_1_in_11 = NULL; main_Colormap_1_in_12 = { 0.0043241107 0.045520809 }; main_Colormap_1_in_13 = NULL; main_Colormap_1_in_14 = NULL; main_Colormap_1_in_15 = NULL; main_Colormap_1_in_16 = NULL; main_Colormap_1_in_17 = 0.0043241107; main_Colormap_1_in_18 = 0.045520809; main_Colormap_1_in_19 = NULL; main_Colormap_1_out_1 = NULL; main_Color_1_in_3 = NULL; main_Color_1_in_4 = NULL; main_Color_1_in_5 = NULL; main_Color_1_out_1 = NULL; main_AutoCamera_1_in_2 = NULL; main_AutoCamera_1_in_3 = 35.0; main_AutoCamera_1_in_4 = 512; main_AutoCamera_1_in_5 = 1.0; main_AutoCamera_1_in_6 = NULL; main_AutoCamera_1_in_7 = NULL; main_AutoCamera_1_in_8 = NULL; main_AutoCamera_1_in_9 = "white"; main_AutoCamera_1_out_1 = NULL; main_Render_1_in_3 = NULL; main_Render_1_out_1 = NULL; main_Display_1_in_2 = NULL; main_Display_1_in_3 = "X24,,"; main_Display_1_in_4 = NULL; main_Display_1_in_5 = NULL; main_Display_1_in_6 = NULL; main_Display_1_in_7 = NULL; main_Display_1_in_8 = NULL; Executive("product version 4 3 2"); $sync main(); elk-10.4.9/examples/miscellaneous/PaxHeaders/Al-exp[iq.r]0000644000000000000000000000012614762655566020303 xustar0028 mtime=1741380470.1590173 30 atime=1741380470.158017295 28 ctime=1741380470.1590173 elk-10.4.9/examples/miscellaneous/Al-exp[iq.r]/0000755002504400250440000000000014762655566023077 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/miscellaneous/Al-exp[iq.r]/PaxHeaders/elk.in0000644000000000000000000000012414762655566021461 xustar0028 mtime=1741380470.1590173 28 atime=1741380470.1590173 28 ctime=1741380470.1590173 elk-10.4.9/examples/miscellaneous/Al-exp[iq.r]/elk.in0000644002504400250440000000136614762655566024210 0ustar00dewhurstdewhurst00000000000000 ! Computes < i,k+q | exp(iq.r) | j,k > matrix elements. The q-vector is ! stored in vecql and the outputted k-points are selected with kstlist. ! Note that q should be chosen commensurate with the k-point grid. tasks 0 130 ! write out useful variables to VARIABLES.OUT wrtvars .true. ! high-quality calculation highq .true. ! q-vector vecql 0.0 0.0 0.125 ! list of k-points kstlist 1 2 3 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.8267 ! this is the relative path to the species files sppath '../../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 ngridk 8 8 8 elk-10.4.9/examples/PaxHeaders/structural-optimisation0000644000000000000000000000013214762655566020152 xustar0030 mtime=1741380470.170017358 30 atime=1741380470.161017311 30 ctime=1741380470.170017358 elk-10.4.9/examples/structural-optimisation/0000755002504400250440000000000014762655566022751 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/structural-optimisation/PaxHeaders/Si-atom-opt0000644000000000000000000000013214762655566022263 xustar0030 mtime=1741380470.163017321 30 atime=1741380470.162017316 30 ctime=1741380470.163017321 elk-10.4.9/examples/structural-optimisation/Si-atom-opt/0000755002504400250440000000000014762655566025062 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/structural-optimisation/Si-atom-opt/PaxHeaders/elk.in0000644000000000000000000000013214762655566023443 xustar0030 mtime=1741380470.164017326 30 atime=1741380470.164017326 30 ctime=1741380470.164017326 elk-10.4.9/examples/structural-optimisation/Si-atom-opt/elk.in0000644002504400250440000000107714762655566026172 0ustar00dewhurstdewhurst00000000000000 ! Silicon geometry optimisation example. The equilibrium atomic positions are ! found using tasks=2. Updated positions are written to GEOMETRY_OPT.OUT for ! each optimisation step. tasks 2 ! use Broyden mixing of the potential mixtype 3 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.27 0.27 0.27 ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-10.4.9/examples/structural-optimisation/PaxHeaders/BaTiO3-lattice-opt0000644000000000000000000000013214762655566023416 xustar0030 mtime=1741380470.166017337 30 atime=1741380470.165017331 30 ctime=1741380470.166017337 elk-10.4.9/examples/structural-optimisation/BaTiO3-lattice-opt/0000755002504400250440000000000014762655566026215 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/structural-optimisation/BaTiO3-lattice-opt/PaxHeaders/elk.in0000644000000000000000000000013214762655566024576 xustar0030 mtime=1741380470.167017342 30 atime=1741380470.166017337 30 ctime=1741380470.167017342 elk-10.4.9/examples/structural-optimisation/BaTiO3-lattice-opt/elk.in0000644002504400250440000000136614762655566027326 0ustar00dewhurstdewhurst00000000000000 ! Example taken from the Elk forum demonstrating the lattice optimisation of ! BaTiO3 using the PBEsol functional. With thanks to David Tompsett. ! See: http://sourceforge.net/p/elk/discussion/897820/thread/db2127bd/#24b6 tasks 2 latvopt 1 epspot 1.e-7 epsstress 1.e-3 mixtype 3 xctype 22 isgkmax -2 lmaxapw 8 rgkmax 8.0 gmaxvr 18.0 ngridk 10 10 10 avec 7.576 0.0 0.0 0.0 7.576 0.0 0.0 0.0 7.576 sppath '../../../species/' atoms 3 : nspecies 'Ba.in' : spfname 1 : natoms; atpos below 0.0 0.0 0.0 'Ti.in' 1 0.5 0.5 0.5 'O.in' 3 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 elk-10.4.9/examples/structural-optimisation/PaxHeaders/Ge-lattice-opt0000644000000000000000000000013214762655566022730 xustar0030 mtime=1741380470.168017347 30 atime=1741380470.167017342 30 ctime=1741380470.168017347 elk-10.4.9/examples/structural-optimisation/Ge-lattice-opt/0000755002504400250440000000000014762655566025527 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/structural-optimisation/Ge-lattice-opt/PaxHeaders/elk.in0000644000000000000000000000013214762655566024110 xustar0030 mtime=1741380470.169017352 30 atime=1741380470.169017352 30 ctime=1741380470.169017352 elk-10.4.9/examples/structural-optimisation/Ge-lattice-opt/elk.in0000644002504400250440000000273214762655566026636 0ustar00dewhurstdewhurst00000000000000 ! Unit cell optimisation for Ge with the PBE functional. This is performed with ! geometric optimisation in which the lattice vectors are changed. ! Setting 'latvopt' to 1 performs full unconstrained optimisation of the lattice ! vectors. Setting it to 2 results in an iso-volumetric optimisation. In both ! cases, the atomic positions are also optimised. To constrain the atomic ! positions, set the nuclear mass to be a negative number in the species file. ! As the calculation progresses, you can plot the files TOTENERGY_OPT.OUT and ! STRESSMAX.OUT to see the change in the total energy and stress tensor. The ! modulus of the maximum force on the atoms is written to FORCEMAX.OUT. ! The updated unit cell geometry is written to GEOMETRY_OPT.OUT. The last entry ! in this file contains the final lattice parameters and atomic positions. tasks 2 ! unconstrained optimisation of the lattice vectors latvopt 1 ! no atomic position optimisation atpopt 0 mixtype 3 ! switch on high-quality parameters for accurate stress tensors highq .true. ! switch off automatic determination of the k-point grid autokpt .false. ngridk 4 4 4 ! PBE exchange-correlation functional xctype 20 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 5.3451 sppath '../../../species/' atoms 1 : nspecies 'Ge.in' : spfname 2 : natoms; atposl below 0.0 0.0 0.0 0.25 0.25 0.25 elk-10.4.9/examples/structural-optimisation/PaxHeaders/MgB2-lattice-opt0000644000000000000000000000013214762655566023124 xustar0030 mtime=1741380470.171017363 30 atime=1741380470.170017358 30 ctime=1741380470.171017363 elk-10.4.9/examples/structural-optimisation/MgB2-lattice-opt/0000755002504400250440000000000014762655566025723 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/examples/structural-optimisation/MgB2-lattice-opt/PaxHeaders/elk.in0000644000000000000000000000013214762655566024304 xustar0030 mtime=1741380470.172017368 30 atime=1741380470.171017363 30 ctime=1741380470.172017368 elk-10.4.9/examples/structural-optimisation/MgB2-lattice-opt/elk.in0000644002504400250440000000336214762655566027032 0ustar00dewhurstdewhurst00000000000000 ! Automatic determination of the c/a ratio of MgB2. This is performed with ! geometric optimisation which involves changing of the lattice vectors whilst ! maintaining the unit cell volume. ! Setting 'latvopt' to 1 performs full unconstrained optimisation of the lattice ! vectors. Setting it to 2 results in an optimisation over all strain tensors ! except isotropic scaling. In both cases, the atomic positions are also ! optimised. To constrain the atomic positions, set 'atpopt' to 0 or change the ! nuclear mass to be a negative number in a particular species file. In the case ! of MgB2, the atomic positions remain fixed because of symmetry. ! As the calculation progresses, you can plot the files TOTENERGY_OPT.OUT and ! STRESSMAX.OUT to see the change in the total energy and stress tensor. The ! modulus of the maximum force on the atoms is written to FORCEMAX.OUT. ! The updated unit cell geometry is written to GEOMETRY_OPT.OUT. The last entry ! in this file contains the final lattice parameters and atomic positions. tasks 2 ! lattice vector optimisation while maintaining the unit cell volume latvopt 2 ! no atomic position optimisation atpopt 0 ! high-quality calculation for precise total energies highq .true. ! speed the calculation up with Broyden mixing mixtype 3 avec 5.8316944 0.0 0.0 -2.9158472 5.050395498 0.0 0.0 0.0 6.659394380 ! decrease the unit cell volume to increase the pressure scale 0.9 sppath '../../../species/' atoms 2 : nspecies 'Mg.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'B.in' 2 0.33333333 0.66666667 0.5 0.66666667 0.33333333 0.5 elk-10.4.9/PaxHeaders/tests0000644000000000000000000000013214762655566012551 xustar0030 mtime=1741380470.846020892 30 atime=1741380470.185017436 30 ctime=1741380470.846020892 elk-10.4.9/tests/0000755002504400250440000000000014762655566015350 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/PaxHeaders/test0000644000000000000000000000013214762655566013530 xustar0030 mtime=1741380470.187017446 30 atime=1741380470.187017446 30 ctime=1741380470.187017446 elk-10.4.9/tests/test0000755002504400250440000000064414762655566016261 0ustar00dewhurstdewhurst00000000000000#! /bin/sh # Test suite script for the Elk Code for i in test_* do cd $i echo echo "Running test in directory $i..." \rm -f *.OUT gmon.out fort.* OMP_NUM_THREADS=8 OMP_STACKSIZE=20M ../../src/elk > test.log NERROR=`grep -c Error test.log` if test $NERROR -gt 0 then echo " Failed! See test.log and output files" else echo " Passed" \rm -f *.OUT test.log fort.* gmon.out fi cd .. done elk-10.4.9/tests/PaxHeaders/test_0310000644000000000000000000000013014762655566014111 xustar0029 mtime=1741380470.20501754 30 atime=1741380470.188017452 29 ctime=1741380470.20501754 elk-10.4.9/tests/test_031/0000755002504400250440000000000014762655566016712 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_031/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.190017462 30 atime=1741380470.190017462 30 ctime=1741380470.190017462 elk-10.4.9/tests/test_031/TEST_705.OUT_0000644002504400250440000000010114762655566020604 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 8 elk-10.4.9/tests/test_031/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.192017473 30 atime=1741380470.191017467 30 ctime=1741380470.192017473 elk-10.4.9/tests/test_031/TEST_900.OUT_0000644002504400250440000000007014762655566020606 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3383 elk-10.4.9/tests/test_031/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.193017478 30 atime=1741380470.193017478 30 ctime=1741380470.193017478 elk-10.4.9/tests/test_031/TEST_910.OUT_0000644002504400250440000000160414762655566020613 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 27 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.271443785498 5 0.271443785498 6 -0.271443785498 7 0.542887570996 8 0.542887570996 9 -0.542887570996 10 0.542887570996 11 0.219392771266E-16 12 -0.219392771266E-16 13 0.814331356494 14 0.271443785498 15 -0.271443785498 16 1.08577514199 17 0.438785542532E-16 18 -0.438785542532E-16 19 -0.219392771266E-16 20 0.542887570996 21 0.219392771266E-16 22 0.271443785498 23 0.814331356494 24 -0.271443785498 25 0.542887570996 26 0.542887570996 27 -0.335718741046E-16 elk-10.4.9/tests/test_031/PaxHeaders/elk.in0000644000000000000000000000013214762655566015273 xustar0030 mtime=1741380470.195017488 30 atime=1741380470.195017488 30 ctime=1741380470.195017488 elk-10.4.9/tests/test_031/elk.in0000644002504400250440000000115714762655566020021 0ustar00dewhurstdewhurst00000000000000 tasks 0 478 500 test .true. epspot 1.e-8 nxlo 1 swidth 0.01 deltaph 0.02 rgkmax 7.0 gmaxvr 12.0 lmaxi 2 lmaxo 7 lmaxapw 8 lorbcnd .false. nxoapwlo 1 nempty 8 ngridk 3 3 3 wplot 200 100 0 0.0 4.0 tstime 50.0 dtimes 0.5 avec 3.85788 3.85788 0.0 3.85788 0.0 3.85788 0.0 3.85788 3.85788 sppath '../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'H.in' 1 0.5 0.5 0.5 elk-10.4.9/tests/test_031/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.197017499 30 atime=1741380470.196017494 30 ctime=1741380470.197017499 elk-10.4.9/tests/test_031/TEST_500.OUT_0000644002504400250440000000013514762655566020604 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.491824272854E-02 elk-10.4.9/tests/test_031/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.198017504 30 atime=1741380470.198017504 30 ctime=1741380470.198017504 elk-10.4.9/tests/test_031/TEST_510.OUT_0000644002504400250440000000014514762655566020606 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.209925858338 elk-10.4.9/tests/test_031/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.200017514 30 atime=1741380470.200017514 30 ctime=1741380470.200017514 elk-10.4.9/tests/test_031/TEST_400.OUT_0000644002504400250440000000014114762655566020600 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 4.00200364157 elk-10.4.9/tests/test_031/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016056 xustar0030 mtime=1741380470.202017525 30 atime=1741380470.202017525 30 ctime=1741380470.202017525 elk-10.4.9/tests/test_031/TEST_000.OUT_0000644002504400250440000000012614762655566020577 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -7.87264580092 elk-10.4.9/tests/test_031/PaxHeaders/TEST_460.OUT_0000644000000000000000000000013114762655566016067 xustar0030 mtime=1741380470.204017535 29 atime=1741380470.20301753 30 ctime=1741380470.204017535 elk-10.4.9/tests/test_031/TEST_460.OUT_0000644002504400250440000000024714762655566020615 0ustar00dewhurstdewhurst00000000000000'total current of last time step' 2 3 0.500000000000E-03 1 0.144234585205E-01 2 0.173472347598E-17 3 -0.173472347598E-17 elk-10.4.9/tests/test_031/PaxHeaders/TEST_478.OUT_0000644000000000000000000000012714762655566016105 xustar0029 mtime=1741380470.20501754 29 atime=1741380470.20501754 29 ctime=1741380470.20501754 elk-10.4.9/tests/test_031/TEST_478.OUT_0000644002504400250440000002466214762655566020635 0ustar00dewhurstdewhurst00000000000000'dynamical Born effective charge' 3 200 0.100000000000E-01 1 1.31978213696 0.00000000000 2 1.26166505230 0.100621561097 3 1.14573382800 0.101076678251 4 1.08808302780 0.331963443137E-02 5 1.14338040467 -0.890510323179E-01 6 1.24467381982 -0.761505147698E-01 7 1.26590498046 0.301443957036E-01 8 1.15148441837 0.104944017963 9 0.987490773405 0.255746009274E-01 10 0.938306965399 -0.201214834408 11 1.09832755230 -0.423673484561 12 1.39368389918 -0.466097609236 13 1.63066822642 -0.283503688058 14 1.65611095527 -0.903740988907E-02 15 1.48944046876 0.155042806542 16 1.30581223486 0.110678416337 17 1.28102807189 -0.525132157396E-01 18 1.43483978701 -0.140727064641 19 1.61409602962 -0.339813656238E-01 20 1.63338007097 0.201169076908 21 1.44808983102 0.368066966376 22 1.20276185812 0.317840230738 23 1.10730212185 0.896231686072E-01 24 1.24879881429 -0.115543060342 25 1.50738930976 -0.108427991377 26 1.65486312715 0.119066192067 27 1.55278561355 0.380272565820 28 1.27693341326 0.451390864412 29 1.05754793899 0.264964805645 30 1.08543979967 -0.286619136495E-01 31 1.35063309688 -0.185082683352 32 1.65082078925 -0.677138286835E-01 33 1.75895541579 0.244253481034 34 1.60407067051 0.528942829486 35 1.31413789264 0.605937118411 36 1.09454152814 0.471149579085 37 1.05682092676 0.274181894928 38 1.14612374240 0.172216067144 39 1.21865384504 0.197756883762 40 1.18537776967 0.253352583907 41 1.08726322521 0.224088136805 42 1.04061014006 0.936398186539E-01 43 1.11475139972 -0.443403856740E-01 44 1.26277991376 -0.828150435534E-01 45 1.36882651283 -0.740088097333E-02 46 1.36153754990 0.909005090400E-01 47 1.28191710057 0.105850370731 48 1.24076783708 0.193702414387E-01 49 1.30878710799 -0.823301967546E-01 50 1.44680587353 -0.945997307880E-01 51 1.54379049792 0.196071520770E-02 52 1.52547104304 0.121003761710 53 1.42790430716 0.153455509045 54 1.36385055924 0.738788048266E-01 55 1.41342193092 -0.334267422297E-01 56 1.54456667622 -0.554902871512E-01 57 1.64177341054 0.380024263416E-01 58 1.61781039628 0.161096025823 59 1.50205020418 0.190838057730 60 1.41871495939 0.861862605544E-01 61 1.47220633787 -0.670809577154E-01 62 1.64655338076 -0.131164847943 63 1.81540112999 -0.430737029324E-01 64 1.85589917146 0.125455952355 65 1.76100227809 0.232712383727 66 1.64456789196 0.196921182687 67 1.63406789093 0.694347256873E-01 68 1.75234010043 -0.176487766223E-01 69 1.90058917260 0.210945387932E-01 70 1.95803781819 0.144501251376 71 1.90097129594 0.229397690613 72 1.82442535162 0.195655947886 73 1.84441844366 0.878412924496E-01 74 1.97732536582 0.303934809784E-01 75 2.11897094136 0.982927199052E-01 76 2.14964692751 0.233049301275 77 2.06327154979 0.294531701000 78 1.98676388319 0.204781953113 79 2.05879784135 0.403595092913E-01 80 2.28135102784 -0.306468264608E-01 81 2.49918742401 0.805375191429E-01 82 2.54809853088 0.272041636311 83 2.44115335624 0.329049706807 84 2.40109660285 0.143138997012 85 2.67322273685 -0.129397963597 86 3.26583925611 -0.147185880153 87 3.86509117445 0.328797387174 88 4.04273769596 1.18050940146 89 3.61190708342 1.96019645462 90 2.82245730035 2.21966240350 91 2.19421350803 1.88064325483 92 2.09731792226 1.31319373675 93 2.43707855524 1.01977216241 94 2.74534358817 1.17778006409 95 2.63580498260 1.45595209034 96 2.23222431909 1.31457543236 97 2.14990184771 0.570531178560 98 2.96970260827 -0.276040240724 99 4.61141116179 -0.315260023045 100 6.17688699381 1.03199050351 101 6.50470650739 3.38888022979 102 5.08462437871 5.49160855134 103 2.60986714532 6.02050615933 104 0.645505612641 4.62329200178 105 0.555665638217 2.32448591923 106 2.45166033839 0.919573537803 107 4.98229423378 1.72162658519 108 6.19540455924 4.56463204208 109 4.88971846902 7.82696850891 110 1.47882204379 9.49860432856 111 -2.27039360897 8.53515763469 112 -4.43339370306 5.52502204451 113 -4.18354614239 2.21200534426 114 -2.21682599090 0.264450542724 115 -0.101923436631 0.210168485676 116 0.891805999521 1.27613293057 117 0.600312775800 2.15399023706 118 -0.132781908788 2.03293892116 119 -0.272736583555 1.11284102298 120 0.569785132554 0.285699599226 121 1.91325374332 0.335598301974 122 2.88063054328 1.32937055462 123 2.91784738514 2.63911121582 124 2.17019941828 3.49349562109 125 1.27529431421 3.55928123127 126 0.819218807552 3.10097959209 127 0.929888074564 2.66357562815 128 1.29992581359 2.60825283761 129 1.54101732031 2.89548182834 130 1.51812021359 3.24386546185 131 1.38555153898 3.45970802203 132 1.34353500806 3.61754376264 133 1.37585243108 3.94430368145 134 1.21876392989 4.53864038382 135 0.586520061923 5.19355307178 136 -0.546679357801 5.48557295169 137 -1.84656283285 5.06207971373 138 -2.78106956203 3.90429310009 139 -2.92408745215 2.37866523214 140 -2.19576099313 1.05569846109 141 -0.905414928504 0.424156607144 142 0.400518066928 0.661830013536 143 1.19103371919 1.55954460030 144 1.19361377049 2.61427194817 145 0.537384975766 3.25744292727 146 -0.276355432457 3.14693605220 147 -0.611333110656 2.39858191728 148 -0.771258909040E-01 1.59954195694 149 1.14564049432 1.51202894673 150 2.28985451724 2.56748268528 151 2.41250606075 4.46000513775 152 1.04734305155 6.18143802464 153 -1.33860184936 6.59311056970 154 -3.48684448950 5.22342233915 155 -4.10833618153 2.72383468399 156 -2.79572398619 0.567015864060 157 -0.412624780842 0.927556022057E-01 158 1.41295971472 1.53704619384 159 1.41656792380 3.78306777379 160 -0.345446659436 5.10285596612 161 -2.45515262964 4.42033167242 162 -3.11902510805 2.17984082938 163 -1.51279615512 0.131010118703 164 1.50352681450 0.117194585614 165 3.87180665994 2.71289993562 166 3.72187667017 6.70806390969 167 0.679774522954 9.84252189792 168 -3.83995283429 10.2850817967 169 -7.56058712604 7.81138440844 170 -8.81297037587 3.86841108663 171 -7.51054315344 0.534737641952 172 -4.99829253002 -0.833472717556 173 -2.98522154839 -0.317135155934 174 -2.39767008105 0.904989083428 175 -2.95553422558 1.57158836617 176 -3.65694674871 1.21629001744 177 -3.67475842389 0.305162954564 178 -2.93968773937 -0.336015640535 179 -2.03149276120 -0.249795238918 180 -1.58575214330 0.353852806579 181 -1.76527211809 0.885365147780 182 -2.20600269075 0.920455196462 183 -2.40217250956 0.518552730541 184 -2.14366606370 0.909925276964E-01 185 -1.63510974791 0.873018356722E-03 186 -1.24852425881 0.273259715271 187 -1.17962220538 0.644081169788 188 -1.32151714398 0.850165405729 189 -1.43397990558 0.864010162689 190 -1.40958035624 0.865155901835 191 -1.37081109184 1.00720528232 192 -1.51622134466 1.22790436788 193 -1.88096131871 1.29300787209 194 -2.25540160234 1.03054597255 195 -2.34986386185 0.526644760662 196 -2.05683032250 0.883830474696E-01 197 -1.56617849983 -0.359507324741E-02 198 -1.22053829815 0.266484152055 199 -1.23356739675 0.634785761265 200 -1.51819157194 0.782183011563 elk-10.4.9/tests/PaxHeaders/test_0330000644000000000000000000000013214762655566014115 xustar0030 mtime=1741380470.222017629 30 atime=1741380470.207017551 30 ctime=1741380470.222017629 elk-10.4.9/tests/test_033/0000755002504400250440000000000014762655566016714 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_033/PaxHeaders/elk.in0000644000000000000000000000013214762655566015275 xustar0030 mtime=1741380470.208017556 30 atime=1741380470.208017556 30 ctime=1741380470.208017556 elk-10.4.9/tests/test_033/elk.in0000644002504400250440000000165514762655566020026 0ustar00dewhurstdewhurst00000000000000 ! Test of the piezoelectric tensor of hexagonal boron nitride. tasks 0 380 500 test .true. ngridk 4 4 4 avec 2.371605000 4.107740355 0.000000000 4.743210000 0.000000000 0.000000000 0.000000000 0.000000000 12.64227000 sppath '../../species/' atoms 2 : nspecies 'B.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.25000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.75000000 0.00000000 0.00000000 0.00000000 'N.in' : spfname 2 : natoms; atposl, bfcmt below 0.66666667 0.66666667 0.75000000 0.00000000 0.00000000 0.00000000 0.33333333 0.33333333 0.25000000 0.00000000 0.00000000 0.00000000 elk-10.4.9/tests/test_033/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.210017567 30 atime=1741380470.210017567 30 ctime=1741380470.210017567 elk-10.4.9/tests/test_033/TEST_705.OUT_0000644002504400250440000000010114762655566020606 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-10.4.9/tests/test_033/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.212017577 30 atime=1741380470.212017577 30 ctime=1741380470.212017577 elk-10.4.9/tests/test_033/TEST_900.OUT_0000644002504400250440000000007014762655566020610 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7159 elk-10.4.9/tests/test_033/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.214017588 30 atime=1741380470.213017582 30 ctime=1741380470.214017588 elk-10.4.9/tests/test_033/TEST_910.OUT_0000644002504400250440000000652314762655566020622 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 108 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.00000000000 5 0.382147504865 6 0.00000000000 7 0.00000000000 8 0.764295009731 9 0.00000000000 10 0.330949447167 11 0.573221257298 12 0.00000000000 13 0.00000000000 14 0.00000000000 15 0.310681460208E-01 16 0.00000000000 17 0.382147504865 18 0.310681460208E-01 19 0.00000000000 20 0.764295009731 21 0.310681460208E-01 22 0.330949447167 23 0.573221257298 24 0.310681460208E-01 25 0.00000000000 26 0.00000000000 27 0.621362920417E-01 28 0.00000000000 29 0.382147504865 30 0.621362920417E-01 31 0.00000000000 32 0.764295009731 33 0.621362920417E-01 34 0.330949447167 35 0.573221257298 36 0.621362920417E-01 37 0.00000000000 38 0.00000000000 39 0.932044380625E-01 40 0.00000000000 41 0.382147504865 42 0.932044380625E-01 43 0.00000000000 44 0.764295009731 45 0.932044380625E-01 46 0.330949447167 47 0.573221257298 48 0.932044380625E-01 49 0.00000000000 50 0.00000000000 51 0.124272584083 52 0.00000000000 53 0.382147504865 54 0.124272584083 55 0.00000000000 56 0.764295009731 57 0.124272584083 58 0.330949447167 59 0.573221257298 60 0.124272584083 61 0.00000000000 62 0.00000000000 63 0.155340730104 64 0.00000000000 65 0.382147504865 66 0.155340730104 67 0.00000000000 68 0.764295009731 69 0.155340730104 70 0.330949447167 71 0.573221257298 72 0.155340730104 73 0.00000000000 74 0.00000000000 75 0.186408876125 76 0.00000000000 77 0.382147504865 78 0.186408876125 79 0.00000000000 80 0.764295009731 81 0.186408876125 82 0.330949447167 83 0.573221257298 84 0.186408876125 85 0.00000000000 86 0.00000000000 87 0.217477022146 88 0.00000000000 89 0.382147504865 90 0.217477022146 91 0.00000000000 92 0.764295009731 93 0.217477022146 94 0.330949447167 95 0.573221257298 96 0.217477022146 97 0.00000000000 98 0.00000000000 99 0.248545168167 100 0.00000000000 101 0.382147504865 102 0.248545168167 103 0.00000000000 104 0.764295009731 105 0.248545168167 106 0.330949447167 107 0.573221257298 108 0.248545168167 elk-10.4.9/tests/test_033/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.215017593 30 atime=1741380470.215017593 30 ctime=1741380470.215017593 elk-10.4.9/tests/test_033/TEST_500.OUT_0000644002504400250440000000013514762655566020606 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.100000246516E-06 elk-10.4.9/tests/test_033/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.217017603 30 atime=1741380470.217017603 30 ctime=1741380470.217017603 elk-10.4.9/tests/test_033/TEST_510.OUT_0000644002504400250440000000014514762655566020610 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.166157054774 elk-10.4.9/tests/test_033/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.219017614 30 atime=1741380470.218017609 30 ctime=1741380470.219017614 elk-10.4.9/tests/test_033/TEST_400.OUT_0000644002504400250440000000014114762655566020602 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 23.9897070322 elk-10.4.9/tests/test_033/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016060 xustar0030 mtime=1741380470.220017619 30 atime=1741380470.220017619 30 ctime=1741380470.220017619 elk-10.4.9/tests/test_033/TEST_000.OUT_0000644002504400250440000000012614762655566020601 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -158.224926668 elk-10.4.9/tests/test_033/PaxHeaders/TEST_380.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.222017629 30 atime=1741380470.222017629 30 ctime=1741380470.222017629 elk-10.4.9/tests/test_033/TEST_380.OUT_0000644002504400250440000000037114762655566020616 0ustar00dewhurstdewhurst00000000000000'Piezoelectric tensor' 2 6 0.500000000000E-04 1 0.575281407079E-04 2 -0.270756464108E-06 3 -0.479712460756E-09 4 0.116951016576E-03 5 -0.414406230432E-06 6 -0.129853424807E-07 elk-10.4.9/tests/PaxHeaders/test.sh0000644000000000000000000000012714762655566014145 xustar0029 mtime=1741380470.22401764 29 atime=1741380470.22401764 29 ctime=1741380470.22401764 elk-10.4.9/tests/test.sh0000755002504400250440000000064514762655566016673 0ustar00dewhurstdewhurst00000000000000#! /bin/sh # Test suite script for the Elk Code for i in test_* do cd $i echo echo "Running test in directory $i..." \rm -f *.OUT gmon.out fort.* OMP_NUM_THREADS=8 OMP_STACKSIZE=128M ../../src/elk > test.log NERROR=`grep -c Error test.log` if test $NERROR -gt 0 then echo " Failed! See test.log and output files" else echo " Passed" \rm -f *.OUT test.log fort.* gmon.out fi cd .. done elk-10.4.9/tests/PaxHeaders/test-mpi.sh0000644000000000000000000000012714762655566014730 xustar0029 mtime=1741380470.22601765 29 atime=1741380470.22601765 29 ctime=1741380470.22601765 elk-10.4.9/tests/test-mpi.sh0000755002504400250440000000066114762655566017454 0ustar00dewhurstdewhurst00000000000000#! /bin/sh # Test suite script for the Elk Code for i in test_* do cd $i echo echo "Running test in directory $i..." \rm -f *.OUT gmon.out fort.* OMP_NUM_THREADS=2 OMP_STACKSIZE=128M mpirun -n 4 ../../src/elk > test.log NERROR=`grep -c Error test.log` if test $NERROR -gt 0 then echo " Failed! See test.log and output files" else echo " Passed" \rm -f *.OUT test.log fort.* gmon.out fi cd .. done elk-10.4.9/tests/PaxHeaders/test_0040000644000000000000000000000013214762655566014113 xustar0030 mtime=1741380470.248017765 30 atime=1741380470.227017655 30 ctime=1741380470.248017765 elk-10.4.9/tests/test_004/0000755002504400250440000000000014762655566016712 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_004/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.229017666 30 atime=1741380470.228017661 30 ctime=1741380470.229017666 elk-10.4.9/tests/test_004/TEST_500.OUT_0000644002504400250440000000013514762655566020604 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.200004127584E-07 elk-10.4.9/tests/test_004/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.230017671 30 atime=1741380470.230017671 30 ctime=1741380470.230017671 elk-10.4.9/tests/test_004/TEST_510.OUT_0000644002504400250440000000014514762655566020606 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.324578525664 elk-10.4.9/tests/test_004/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.232017682 30 atime=1741380470.232017682 30 ctime=1741380470.232017682 elk-10.4.9/tests/test_004/TEST_705.OUT_0000644002504400250440000000010114762655566020604 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests/test_004/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.234017692 30 atime=1741380470.234017692 30 ctime=1741380470.234017692 elk-10.4.9/tests/test_004/TEST_900.OUT_0000644002504400250440000000007014762655566020606 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3215 elk-10.4.9/tests/test_004/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.236017703 30 atime=1741380470.236017703 30 ctime=1741380470.236017703 elk-10.4.9/tests/test_004/TEST_910.OUT_0000644002504400250440000000144714762655566020620 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.206465308646 5 0.206465308646 6 -0.206465308646 7 0.412930617293 8 0.412930617293 9 -0.412930617293 10 0.412930617293 11 0.00000000000 12 0.00000000000 13 0.619395925939 14 0.206465308646 15 -0.206465308646 16 0.825861234586 17 0.412930617293 18 -0.412930617293 19 0.825861234586 20 0.00000000000 21 0.00000000000 22 0.825861234586 23 0.412930617293 24 0.00000000000 elk-10.4.9/tests/test_004/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.238017713 30 atime=1741380470.237017708 30 ctime=1741380470.238017713 elk-10.4.9/tests/test_004/TEST_400.OUT_0000644002504400250440000000014114762655566020600 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 12.0280724994 elk-10.4.9/tests/test_004/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016056 xustar0030 mtime=1741380470.240017724 30 atime=1741380470.239017718 30 ctime=1741380470.240017724 elk-10.4.9/tests/test_004/TEST_000.OUT_0000644002504400250440000000012614762655566020577 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -106.907483122 elk-10.4.9/tests/test_004/PaxHeaders/TEST_121.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.242017734 30 atime=1741380470.241017729 30 ctime=1741380470.242017734 elk-10.4.9/tests/test_004/TEST_121.OUT_0000644002504400250440000012273714762655566020620 0ustar00dewhurstdewhurst00000000000000'optical conductivity' 3 800 0.100000000000E-01 1 0.325403612400E-03 0.00000000000 2 0.325409120510E-03 -0.122017240655E-03 3 0.325425647036E-03 -0.244038613904E-03 4 0.325453195964E-03 -0.366068250626E-03 5 0.325491771571E-03 -0.488110282478E-03 6 0.325541379274E-03 -0.610168843362E-03 7 0.325602026087E-03 -0.732248069856E-03 8 0.325673720698E-03 -0.854352101642E-03 9 0.325756473457E-03 -0.976485082029E-03 10 0.325850296350E-03 -0.109865115852E-02 11 0.325955202974E-03 -0.122085448342E-02 12 0.326071208497E-03 -0.134309921446E-02 13 0.326198329739E-03 -0.146538951550E-02 14 0.326336585280E-03 -0.158772955701E-02 15 0.326485995341E-03 -0.171012351661E-02 16 0.326646581736E-03 -0.183257557977E-02 17 0.326818367915E-03 -0.195508994042E-02 18 0.327001378990E-03 -0.207767080163E-02 19 0.327195641709E-03 -0.220032237614E-02 20 0.327401184465E-03 -0.232304888714E-02 21 0.327618037423E-03 -0.244585456883E-02 22 0.327846232536E-03 -0.256874366700E-02 23 0.328085803446E-03 -0.269172043957E-02 24 0.328336785487E-03 -0.281478915734E-02 25 0.328599215651E-03 -0.293795410456E-02 26 0.328873132411E-03 -0.306121957973E-02 27 0.329158575923E-03 -0.318458989668E-02 28 0.329455588724E-03 -0.330806938492E-02 29 0.329764215343E-03 -0.343166238965E-02 30 0.330084501839E-03 -0.355537327274E-02 31 0.330416495965E-03 -0.367920641366E-02 32 0.330760247281E-03 -0.380316621015E-02 33 0.331115807072E-03 -0.392725707882E-02 34 0.331483228323E-03 -0.405148345621E-02 35 0.331862566242E-03 -0.417584979949E-02 36 0.332253878315E-03 -0.430036058662E-02 37 0.332657223797E-03 -0.442502031706E-02 38 0.333072663745E-03 -0.454983351280E-02 39 0.333500261176E-03 -0.467480471917E-02 40 0.333940081123E-03 -0.479993850552E-02 41 0.334392190669E-03 -0.492523946597E-02 42 0.334856658961E-03 -0.505071222018E-02 43 0.335333557239E-03 -0.517636141408E-02 44 0.335822958856E-03 -0.530219172073E-02 45 0.336324939312E-03 -0.542820784104E-02 46 0.336839576274E-03 -0.555441450463E-02 47 0.337366949613E-03 -0.568081647062E-02 48 0.337907141430E-03 -0.580741852849E-02 49 0.338460236091E-03 -0.593422549888E-02 50 0.339026320257E-03 -0.606124223447E-02 51 0.339605482920E-03 -0.618847362087E-02 52 0.340197815434E-03 -0.631592457743E-02 53 0.340803411560E-03 -0.644360005822E-02 54 0.341422367493E-03 -0.657150505285E-02 55 0.342054781905E-03 -0.669964458745E-02 56 0.342700755988E-03 -0.682802372561E-02 57 0.343360393488E-03 -0.695664756926E-02 58 0.344033800751E-03 -0.708552125973E-02 59 0.344721086768E-03 -0.721464997866E-02 60 0.345422363214E-03 -0.734403894902E-02 61 0.346137744502E-03 -0.747369343613E-02 62 0.346867347822E-03 -0.760361874872E-02 63 0.347611293195E-03 -0.773382023990E-02 64 0.348369703525E-03 -0.786430330834E-02 65 0.349142704644E-03 -0.799507339924E-02 66 0.349930425372E-03 -0.812613600555E-02 67 0.350732997569E-03 -0.825749666901E-02 68 0.351550556192E-03 -0.838916098135E-02 69 0.352383239355E-03 -0.852113458545E-02 70 0.353231188386E-03 -0.865342317652E-02 71 0.354094547891E-03 -0.878603250333E-02 72 0.354973465819E-03 -0.891896836943E-02 73 0.355868093522E-03 -0.905223663446E-02 74 0.356778585832E-03 -0.918584321538E-02 75 0.357705101121E-03 -0.931979408781E-02 76 0.358647801379E-03 -0.945409528739E-02 77 0.359606852285E-03 -0.958875291111E-02 78 0.360582423286E-03 -0.972377311873E-02 79 0.361574687670E-03 -0.985916213421E-02 80 0.362583822654E-03 -0.999492624714E-02 81 0.363610009459E-03 -0.101310718143E-01 82 0.364653433403E-03 -0.102676052609E-01 83 0.365714283986E-03 -0.104045330827E-01 84 0.366792754979E-03 -0.105418618469E-01 85 0.367889044522E-03 -0.106795981944E-01 86 0.369003355218E-03 -0.108177488408E-01 87 0.370135894233E-03 -0.109563205788E-01 88 0.371286873396E-03 -0.110953202793E-01 89 0.372456509312E-03 -0.112347548935E-01 90 0.373645023461E-03 -0.113746314548E-01 91 0.374852642318E-03 -0.115149570802E-01 92 0.376079597468E-03 -0.116557389727E-01 93 0.377326125719E-03 -0.117969844230E-01 94 0.378592469234E-03 -0.119387008113E-01 95 0.379878875652E-03 -0.120808956098E-01 96 0.381185598221E-03 -0.122235763843E-01 97 0.382512895932E-03 -0.123667507965E-01 98 0.383861033660E-03 -0.125104266063E-01 99 0.385230282307E-03 -0.126546116739E-01 100 0.386620918951E-03 -0.127993139621E-01 101 0.388033226997E-03 -0.129445415386E-01 102 0.389467496338E-03 -0.130903025786E-01 103 0.390924023515E-03 -0.132366053669E-01 104 0.392403111889E-03 -0.133834583006E-01 105 0.393905071812E-03 -0.135308698920E-01 106 0.395430220810E-03 -0.136788487708E-01 107 0.396978883762E-03 -0.138274036868E-01 108 0.398551393101E-03 -0.139765435131E-01 109 0.400148089004E-03 -0.141262772487E-01 110 0.401769319601E-03 -0.142766140213E-01 111 0.403415441184E-03 -0.144275630908E-01 112 0.405086818428E-03 -0.145791338517E-01 113 0.406783824615E-03 -0.147313358368E-01 114 0.408506841870E-03 -0.148841787206E-01 115 0.410256261399E-03 -0.150376723219E-01 116 0.412032483742E-03 -0.151918266080E-01 117 0.413835919033E-03 -0.153466516979E-01 118 0.415666987262E-03 -0.155021578660E-01 119 0.417526118556E-03 -0.156583555460E-01 120 0.419413753468E-03 -0.158152553341E-01 121 0.421330343267E-03 -0.159728679941E-01 122 0.423276350251E-03 -0.161312044602E-01 123 0.425252248062E-03 -0.162902758422E-01 124 0.427258522018E-03 -0.164500934293E-01 125 0.429295669453E-03 -0.166106686944E-01 126 0.431364200070E-03 -0.167720132993E-01 127 0.433464636312E-03 -0.169341390985E-01 128 0.435597513737E-03 -0.170970581450E-01 129 0.437763381416E-03 -0.172607826944E-01 130 0.439962802341E-03 -0.174253252107E-01 131 0.442196353849E-03 -0.175906983712E-01 132 0.444464628061E-03 -0.177569150720E-01 133 0.446768232344E-03 -0.179239884338E-01 134 0.449107789777E-03 -0.180919318075E-01 135 0.451483939653E-03 -0.182607587803E-01 136 0.453897337982E-03 -0.184304831817E-01 137 0.456348658026E-03 -0.186011190899E-01 138 0.458838590854E-03 -0.187726808386E-01 139 0.461367845909E-03 -0.189451830233E-01 140 0.463937151610E-03 -0.191186405087E-01 141 0.466547255971E-03 -0.192930684357E-01 142 0.469198927244E-03 -0.194684822289E-01 143 0.471892954591E-03 -0.196448976044E-01 144 0.474630148784E-03 -0.198223305774E-01 145 0.477411342931E-03 -0.200007974709E-01 146 0.480237393230E-03 -0.201803149236E-01 147 0.483109179761E-03 -0.203608998994E-01 148 0.486027607308E-03 -0.205425696957E-01 149 0.488993606210E-03 -0.207253419536E-01 150 0.492008133255E-03 -0.209092346669E-01 151 0.495072172613E-03 -0.210942661925E-01 152 0.498186736801E-03 -0.212804552608E-01 153 0.501352867700E-03 -0.214678209865E-01 154 0.504571637605E-03 -0.216563828796E-01 155 0.507844150335E-03 -0.218461608572E-01 156 0.511171542378E-03 -0.220371752553E-01 157 0.514554984097E-03 -0.222294468413E-01 158 0.517995680986E-03 -0.224229968270E-01 159 0.521494874982E-03 -0.226178468817E-01 160 0.525053845844E-03 -0.228140191463E-01 161 0.528673912583E-03 -0.230115362476E-01 162 0.532356434971E-03 -0.232104213132E-01 163 0.536102815110E-03 -0.234106979873E-01 164 0.539914499086E-03 -0.236123904463E-01 165 0.543792978692E-03 -0.238155234160E-01 166 0.547739793234E-03 -0.240201221886E-01 167 0.551756531434E-03 -0.242262126414E-01 168 0.555844833417E-03 -0.244338212549E-01 169 0.560006392792E-03 -0.246429751328E-01 170 0.564242958852E-03 -0.248537020223E-01 171 0.568556338865E-03 -0.250660303354E-01 172 0.572948400493E-03 -0.252799891706E-01 173 0.577421074333E-03 -0.254956083363E-01 174 0.581976356580E-03 -0.257129183748E-01 175 0.586616311839E-03 -0.259319505870E-01 176 0.591343076077E-03 -0.261527370586E-01 177 0.596158859734E-03 -0.263753106873E-01 178 0.601065950993E-03 -0.265997052113E-01 179 0.606066719240E-03 -0.268259552387E-01 180 0.611163618692E-03 -0.270540962788E-01 181 0.616359192246E-03 -0.272841647740E-01 182 0.621656075519E-03 -0.275161981339E-01 183 0.627057001130E-03 -0.277502347706E-01 184 0.632564803218E-03 -0.279863141357E-01 185 0.638182422214E-03 -0.282244767591E-01 186 0.643912909890E-03 -0.284647642893E-01 187 0.649759434710E-03 -0.287072195360E-01 188 0.655725287477E-03 -0.289518865148E-01 189 0.661813887336E-03 -0.291988104937E-01 190 0.668028788122E-03 -0.294480380420E-01 191 0.674373685100E-03 -0.296996170818E-01 192 0.680852422120E-03 -0.299535969423E-01 193 0.687468999207E-03 -0.302100284157E-01 194 0.694227580638E-03 -0.304689638178E-01 195 0.701132503526E-03 -0.307304570499E-01 196 0.708188286953E-03 -0.309945636653E-01 197 0.715399641695E-03 -0.312613409388E-01 198 0.722771480597E-03 -0.315308479395E-01 199 0.730308929622E-03 -0.318031456083E-01 200 0.738017339650E-03 -0.320782968393E-01 201 0.745902299087E-03 -0.323563665658E-01 202 0.753969647331E-03 -0.326374218507E-01 203 0.762225489190E-03 -0.329215319831E-01 204 0.770676210310E-03 -0.332087685789E-01 205 0.779328493715E-03 -0.334992056889E-01 206 0.788189337549E-03 -0.337929199119E-01 207 0.797266074116E-03 -0.340899905156E-01 208 0.806566390347E-03 -0.343904995642E-01 209 0.816098349812E-03 -0.346945320541E-01 210 0.825870416423E-03 -0.350021760579E-01 211 0.835891479974E-03 -0.353135228774E-01 212 0.846170883708E-03 -0.356286672067E-01 213 0.856718454082E-03 -0.359477073059E-01 214 0.867544532954E-03 -0.362707451854E-01 215 0.878660012432E-03 -0.365978868038E-01 216 0.890076372641E-03 -0.369292422779E-01 217 0.901805722703E-03 -0.372649261082E-01 218 0.913860845271E-03 -0.376050574195E-01 219 0.926255244970E-03 -0.379497602188E-01 220 0.939003201181E-03 -0.382991636716E-01 221 0.952119825616E-03 -0.386534023988E-01 222 0.965621125226E-03 -0.390126167952E-01 223 0.979524071028E-03 -0.393769533723E-01 224 0.993846673531E-03 -0.397465651278E-01 225 0.100860806553E-02 -0.401216119434E-01 226 0.102382859310E-02 -0.405022610149E-01 227 0.103952991588E-02 -0.408886873169E-01 228 0.105573511764E-02 -0.412810741056E-01 229 0.107246882853E-02 -0.416796134650E-01 230 0.108975736048E-02 -0.420845068986E-01 231 0.110762885740E-02 -0.424959659738E-01 232 0.112611346230E-02 -0.429142130236E-01 233 0.114524350343E-02 -0.433394819124E-01 234 0.116505370221E-02 -0.437720188725E-01 235 0.118558140609E-02 -0.442120834209E-01 236 0.120686684979E-02 -0.446599493646E-01 237 0.122895344929E-02 -0.451159059054E-01 238 0.125188813350E-02 -0.455802588583E-01 239 0.127572171944E-02 -0.460533319948E-01 240 0.130050933795E-02 -0.465354685304E-01 241 0.132631091815E-02 -0.470270327742E-01 242 0.135319174048E-02 -0.475284119624E-01 243 0.138122307021E-02 -0.480400183028E-01 244 0.141048288561E-02 -0.485622912597E-01 245 0.144105671791E-02 -0.490957001150E-01 246 0.147303862404E-02 -0.496407468476E-01 247 0.150653231755E-02 -0.501979693810E-01 248 0.154165248899E-02 -0.507679452573E-01 249 0.157852635439E-02 -0.513512958096E-01 250 0.161729547954E-02 -0.519486909156E-01 251 0.165811793983E-02 -0.525608544357E-01 252 0.170117089047E-02 -0.531885704586E-01 253 0.174665364172E-02 -0.538326905039E-01 254 0.179479135947E-02 -0.544941418668E-01 255 0.184583954515E-02 -0.551739373301E-01 256 0.190008949397E-02 -0.558731865238E-01 257 0.195787498999E-02 -0.565931092816E-01 258 0.201958057734E-02 -0.573350514295E-01 259 0.208565185636E-02 -0.581005035595E-01 260 0.215660840410E-02 -0.588911234862E-01 261 0.223306012758E-02 -0.597087632825E-01 262 0.231572815175E-02 -0.605555020434E-01 263 0.240547176097E-02 -0.614336858738E-01 264 0.250332351233E-02 -0.623459770487E-01 265 0.261053551344E-02 -0.632954149135E-01 266 0.272864115012E-02 -0.642854919230E-01 267 0.285953849128E-02 -0.653202493488E-01 268 0.300560456222E-02 -0.664043987279E-01 269 0.316985428402E-02 -0.675434772090E-01 270 0.335616516998E-02 -0.687440477582E-01 271 0.356960065603E-02 -0.700139588582E-01 272 0.381688440454E-02 -0.713626828822E-01 273 0.410711081217E-02 -0.728017572545E-01 274 0.445283391056E-02 -0.743453557746E-01 275 0.487177801476E-02 -0.760110127590E-01 276 0.538959777676E-02 -0.778204917526E-01 277 0.604445904613E-02 -0.798006823894E-01 278 0.689486427237E-02 -0.819840791920E-01 279 0.803338509979E-02 -0.844074285894E-01 280 0.961121403356E-02 -0.871042962543E-01 281 0.118817617544E-01 -0.900789231084E-01 282 0.152715629337E-01 -0.932241170032E-01 283 0.204516219854E-01 -0.960801889234E-01 284 0.281529963062E-01 -0.972312168061E-01 285 0.376768731570E-01 -0.935736527136E-01 286 0.436252846127E-01 -0.828649716678E-01 287 0.400015332975E-01 -0.711647616626E-01 288 0.310955470490E-01 -0.662376065950E-01 289 0.233407474400E-01 -0.670967109837E-01 290 0.181967997323E-01 -0.703729617013E-01 291 0.150457837193E-01 -0.743308710646E-01 292 0.131770014869E-01 -0.783824522407E-01 293 0.121265831485E-01 -0.823881463090E-01 294 0.116245073901E-01 -0.863570902241E-01 295 0.115192768559E-01 -0.903435108566E-01 296 0.117301138596E-01 -0.944140571868E-01 297 0.122208766749E-01 -0.986392566579E-01 298 0.129870914843E-01 -0.103093204147 299 0.140509861208E-01 -0.107856235148 300 0.154622285436E-01 -0.113018940770 301 0.173040210118E-01 -0.118687087802 302 0.197059106932E-01 -0.124987281870 303 0.228668550328E-01 -0.132072829141 304 0.270956665937E-01 -0.140127682438 305 0.328824922384E-01 -0.149361620230 306 0.410267953579E-01 -0.159975899543 307 0.528654097939E-01 -0.172037503573 308 0.706501693297E-01 -0.185078953101 309 0.979738215690E-01 -0.196910631077 310 0.139083586762 -0.200555991995 311 0.191900765451 -0.179865854880 312 0.229954758961 -0.119948662302 313 0.216908988812 -0.487411338038E-01 314 0.170719027573 -0.128152449718E-01 315 0.129693431389 -0.112542836065E-01 316 0.105268541781 -0.249481565600E-01 317 0.959094399257E-01 -0.428805784500E-01 318 0.998334965685E-01 -0.597900142702E-01 319 0.116989754922 -0.700531304286E-01 320 0.144265065920 -0.629927238760E-01 321 0.163307970664 -0.291090778041E-01 322 0.149916770902 0.131461755048E-01 323 0.115390329148 0.335498380736E-01 324 0.839593596978E-01 0.327738893509E-01 325 0.622508945680E-01 0.230929167097E-01 326 0.482164284398E-01 0.112959799834E-01 327 0.391445189045E-01 -0.261686718606E-03 328 0.332134091875E-01 -0.110000974428E-01 329 0.293422523954E-01 -0.209235441187E-01 330 0.269097087423E-01 -0.302040204944E-01 331 0.255715818837E-01 -0.390476656825E-01 332 0.251636423425E-01 -0.476553425585E-01 333 0.256594250942E-01 -0.562095125522E-01 334 0.271640030204E-01 -0.648552712943E-01 335 0.299203734563E-01 -0.736427498002E-01 336 0.342427710427E-01 -0.824097748819E-01 337 0.402397503340E-01 -0.908222327660E-01 338 0.479936165622E-01 -0.989792893734E-01 339 0.589119294050E-01 -0.106674712701 340 0.742115944590E-01 -0.110649597582 341 0.894906644817E-01 -0.106201416798 342 0.955313599176E-01 -0.976481198808E-01 343 0.951214120565E-01 -0.974636373854E-01 344 0.100649155984 -0.106965856360 345 0.119690267941 -0.118603645961 346 0.155517225361 -0.120968858938 347 0.201876688261 -0.955634885778E-01 348 0.226756228779 -0.322436998264E-01 349 0.200549074198 0.327387607379E-01 350 0.149913862219 0.608188631015E-01 351 0.107302739596 0.601165393863E-01 352 0.788033673137E-01 0.482395160174E-01 353 0.607936505909E-01 0.338097967988E-01 354 0.495591453408E-01 0.196983718944E-01 355 0.427809334238E-01 0.660562341921E-02 356 0.392381089607E-01 -0.540503060920E-02 357 0.384361659993E-01 -0.162519114349E-01 358 0.402001410369E-01 -0.253299861757E-01 359 0.435817992725E-01 -0.311966772929E-01 360 0.452875725616E-01 -0.334566000901E-01 361 0.429752900351E-01 -0.360834054949E-01 362 0.395932717090E-01 -0.424572394686E-01 363 0.381003514722E-01 -0.517316608070E-01 364 0.392148042198E-01 -0.625000564014E-01 365 0.430859364345E-01 -0.741119234170E-01 366 0.500401355040E-01 -0.861859767992E-01 367 0.604605018298E-01 -0.983795299332E-01 368 0.752530427986E-01 -0.110862446313 369 0.974868645734E-01 -0.123019233908 370 0.131249856371 -0.130271163792 371 0.178366251928 -0.121923822738 372 0.227763572687 -0.795047031632E-01 373 0.240854238219 -0.308277126178E-02 374 0.201272225762 0.587596210625E-01 375 0.147820040594 0.788240009975E-01 376 0.107373526335 0.733965560208E-01 377 0.818950717795E-01 0.591297272511E-01 378 0.672816078589E-01 0.431536223217E-01 379 0.604145803085E-01 0.278595234498E-01 380 0.598328089331E-01 0.142748654877E-01 381 0.652779238216E-01 0.370891231562E-02 382 0.767167169672E-01 -0.477562989918E-03 383 0.895243488595E-01 0.787787043884E-02 384 0.903082943744E-01 0.275420757256E-01 385 0.749485750964E-01 0.420629745249E-01 386 0.562817107055E-01 0.438046852646E-01 387 0.421165869145E-01 0.383153007464E-01 388 0.326528875963E-01 0.306577076452E-01 389 0.263987703666E-01 0.229030548283E-01 390 0.221665961286E-01 0.156597796765E-01 391 0.192179948941E-01 0.902290256471E-02 392 0.171132063396E-01 0.293275803390E-02 393 0.155880016242E-01 -0.270574457540E-02 394 0.144804316246E-01 -0.798659396495E-02 395 0.136899574046E-01 -0.129935845825E-01 396 0.131549276796E-01 -0.178000269838E-01 397 0.128404158785E-01 -0.224710365199E-01 398 0.127323292325E-01 -0.270663496748E-01 399 0.128360008138E-01 -0.316429645101E-01 400 0.131790381859E-01 -0.362571296415E-01 401 0.138196950320E-01 -0.409646101630E-01 402 0.148639942817E-01 -0.458159959898E-01 403 0.164973089124E-01 -0.508372924743E-01 404 0.190352681249E-01 -0.559669302898E-01 405 0.229677659380E-01 -0.608706743348E-01 406 0.287805344486E-01 -0.644937725997E-01 407 0.357570772106E-01 -0.646419370371E-01 408 0.398516263415E-01 -0.602714035413E-01 409 0.376617821988E-01 -0.562618730062E-01 410 0.329639677792E-01 -0.573452015610E-01 411 0.299979141417E-01 -0.623583122412E-01 412 0.298342537666E-01 -0.690477080922E-01 413 0.326197053970E-01 -0.760459739016E-01 414 0.386679974276E-01 -0.819400250012E-01 415 0.476146550073E-01 -0.840209844226E-01 416 0.552766078644E-01 -0.793096140117E-01 417 0.546816858371E-01 -0.716500820378E-01 418 0.476533986392E-01 -0.698913582457E-01 419 0.413243339736E-01 -0.750026736148E-01 420 0.383384170437E-01 -0.837166503622E-01 421 0.386290041531E-01 -0.940906385602E-01 422 0.420122867080E-01 -0.105511102276 423 0.489155269747E-01 -0.117836805078 424 0.606320868177E-01 -0.130760327270 425 0.795800708442E-01 -0.142874346474 426 0.108942109300 -0.149503941025 427 0.148233443607 -0.139202032248 428 0.179908192647 -0.990168106354E-01 429 0.174165416480 -0.453662840677E-01 430 0.138970983999 -0.159512378477E-01 431 0.104692903700 -0.143588992179E-01 432 0.819906893949E-01 -0.259904663884E-01 433 0.694354278590E-01 -0.419227757915E-01 434 0.643529840690E-01 -0.589453349613E-01 435 0.653949222963E-01 -0.761243717496E-01 436 0.726588458261E-01 -0.928801885074E-01 437 0.873460035599E-01 -0.107533076105 438 0.110030614942 -0.115610690264 439 0.135891209448 -0.111267561495 440 0.156422041649 -0.962795311257E-01 441 0.170994915085 -0.744793011905E-01 442 0.173646874721 -0.446943237395E-01 443 0.157310304491 -0.198160792766E-01 444 0.133426322806 -0.134163536168E-01 445 0.117840894361 -0.222084622376E-01 446 0.116557467591 -0.347801447450E-01 447 0.127590701199 -0.395741160600E-01 448 0.139086840224 -0.278964701863E-01 449 0.134441680004 -0.860210639314E-02 450 0.118792888056 -0.818361957979E-04 451 0.106603633303 -0.383243799096E-03 452 0.970343571075E-01 -0.336643161136E-03 453 0.842173210429E-01 -0.222480328923E-02 454 0.717046287323E-01 -0.109395776018E-01 455 0.642167856634E-01 -0.243920611900E-01 456 0.626659364619E-01 -0.393193559956E-01 457 0.669744545714E-01 -0.534825878953E-01 458 0.767405141338E-01 -0.642259703419E-01 459 0.891124511713E-01 -0.688148500102E-01 460 0.100383972544 -0.687952555283E-01 461 0.112578819294 -0.651810455250E-01 462 0.122784851186 -0.517460345531E-01 463 0.118612278670 -0.328212446194E-01 464 0.101834034561 -0.240146286438E-01 465 0.853164472288E-01 -0.286007745649E-01 466 0.759248748276E-01 -0.404859792294E-01 467 0.744889321614E-01 -0.534727355857E-01 468 0.788898583715E-01 -0.624462488843E-01 469 0.827261765398E-01 -0.645341793872E-01 470 0.792872001660E-01 -0.655691984431E-01 471 0.724043854529E-01 -0.736269999605E-01 472 0.687090241876E-01 -0.881924415874E-01 473 0.703139677743E-01 -0.106191404402 474 0.777668988479E-01 -0.125973112936 475 0.923450930421E-01 -0.146409806936 476 0.116493609942 -0.164914580219 477 0.151840029384 -0.174504220070 478 0.190694156004 -0.164056900892 479 0.211462541678 -0.137280958727 480 0.212901831563 -0.121919193576 481 0.222360929575 -0.123638967569 482 0.251918615302 -0.119196035977 483 0.283629128246 -0.877522243637E-01 484 0.290609624919 -0.397263057815E-01 485 0.272111342114 0.158637869169E-02 486 0.238010652625 0.238320425496E-01 487 0.205051410150 0.209100989675E-01 488 0.189785526306 0.319151795068E-02 489 0.194306648637 -0.114056625431E-01 490 0.206293516648 -0.100764313671E-01 491 0.208860420605 0.252541100910E-02 492 0.199539487130 0.124944681659E-01 493 0.185712565637 0.106631445677E-01 494 0.181226085885 -0.234930845371E-02 495 0.192688220536 -0.119929901265E-01 496 0.207982016065 -0.369264044394E-02 497 0.205898609458 0.134929672232E-01 498 0.193044999438 0.160138406298E-01 499 0.191239358146 0.701695931305E-02 500 0.202817574767 0.625827032503E-02 501 0.208597992845 0.226498718703E-01 502 0.193508275960 0.383681312488E-01 503 0.169536397567 0.344705341018E-01 504 0.154554956160 0.127533930986E-01 505 0.155853315204 -0.169666791413E-01 506 0.175778401146 -0.465343782891E-01 507 0.216220894035 -0.656479564822E-01 508 0.270840951162 -0.567737107778E-01 509 0.310414252369 -0.114912538866E-01 510 0.312931799659 0.399191952128E-01 511 0.298917750821 0.750457230605E-01 512 0.278528734076 0.101344189038 513 0.251806579108 0.114856977604 514 0.227295567029 0.116094179600 515 0.205773490473 0.106736509097 516 0.194706868501 0.846189335509E-01 517 0.203359671044 0.579921104379E-01 518 0.232923387187 0.399133698795E-01 519 0.277685015949 0.428730399301E-01 520 0.322637650454 0.790640706508E-01 521 0.337892433126 0.141790694740 522 0.319003641713 0.197582016387 523 0.285326665171 0.235735496077 524 0.247576806293 0.256395199939 525 0.215471743174 0.266523451527 526 0.185125982220 0.275491936986 527 0.149689274239 0.278616436830 528 0.115721785002 0.269254131649 529 0.906518370731E-01 0.252054653940 530 0.746164074583E-01 0.233083759674 531 0.656398319991E-01 0.215265099305 532 0.622934414823E-01 0.200184650718 533 0.630604914363E-01 0.189854508184 534 0.641139083946E-01 0.185771035437 535 0.614522471779E-01 0.184892384069 536 0.562484067901E-01 0.183667484054 537 0.494478656592E-01 0.182041608964 538 0.410374108364E-01 0.178578052044 539 0.331856701739E-01 0.172486846197 540 0.272433152914E-01 0.165162348786 541 0.230087049584E-01 0.157816058776 542 0.199499918184E-01 0.150914620983 543 0.176641598802E-01 0.144554935837 544 0.158959495625E-01 0.138709188472 545 0.144872265810E-01 0.133317950978 546 0.133378560507E-01 0.128320226651 547 0.123822504300E-01 0.123661768897 548 0.115759279744E-01 0.119296390754 549 0.108877386462E-01 0.115185204479 550 0.102952491575E-01 0.111295410431 551 0.978191801054E-02 0.107599137117 552 0.933531279984E-02 0.104072459839 553 0.894595329204E-02 0.100694604384 554 0.860654217870E-02 0.974473080497E-01 555 0.831144366084E-02 0.943143050051E-01 556 0.805632566009E-02 0.912809065636E-01 557 0.783791392076E-02 0.883336521326E-01 558 0.765382585948E-02 0.854600113896E-01 559 0.750246432737E-02 0.826481218856E-01 560 0.738295962282E-02 0.798865488347E-01 561 0.729515399031E-02 0.771640553746E-01 562 0.723962766298E-02 0.744693721959E-01 563 0.721777014742E-02 0.717909551486E-01 564 0.723190574394E-02 0.691167182303E-01 565 0.728548923849E-02 0.664337270952E-01 566 0.738339771460E-02 0.637278347277E-01 567 0.753235978359E-02 0.609832359484E-01 568 0.774158806939E-02 0.581819108090E-01 569 0.802372130346E-02 0.553029189820E-01 570 0.839625124605E-02 0.523214996526E-01 571 0.888372993203E-02 0.492079300556E-01 572 0.952126856947E-02 0.459261180698E-01 573 0.103602366822E-01 0.424319996319E-01 574 0.114778169122E-01 0.386721198033E-01 575 0.129934882212E-01 0.345836970541E-01 576 0.150981422948E-01 0.301001760063E-01 577 0.181058761921E-01 0.251742696283E-01 578 0.225421126522E-01 0.198541668647E-01 579 0.292612934437E-01 0.145152482153E-01 580 0.394109468084E-01 0.104907244389E-01 581 0.532655105952E-01 0.112266678502E-01 582 0.661002732057E-01 0.212990443685E-01 583 0.680295855109E-01 0.369055197395E-01 584 0.601380848446E-01 0.453259437278E-01 585 0.533000741357E-01 0.440813805273E-01 586 0.528969785832E-01 0.387496798649E-01 587 0.596577019471E-01 0.350534909195E-01 588 0.709040159747E-01 0.392871133292E-01 589 0.766724859490E-01 0.544037385391E-01 590 0.684230827537E-01 0.696189268787E-01 591 0.540650272700E-01 0.740176577218E-01 592 0.428118777828E-01 0.700828756901E-01 593 0.364293701717E-01 0.627568144845E-01 594 0.341631403557E-01 0.543926862839E-01 595 0.355245057550E-01 0.458086224474E-01 596 0.408514105740E-01 0.375298931912E-01 597 0.513358426665E-01 0.308689525258E-01 598 0.681998410764E-01 0.296333336381E-01 599 0.882813022871E-01 0.414118931046E-01 600 0.971229163837E-01 0.689948600091E-01 601 0.840725771261E-01 0.951636376947E-01 602 0.622558806791E-01 0.105282878344 603 0.444430136614E-01 0.104054570324 604 0.324807334832E-01 0.986963148087E-01 605 0.247141402908E-01 0.925613771494E-01 606 0.195796235384E-01 0.867448005207E-01 607 0.160778500884E-01 0.815028627798E-01 608 0.136148976284E-01 0.768257815249E-01 609 0.118373372850E-01 0.726331457244E-01 610 0.105302234772E-01 0.688360558809E-01 611 0.955971001604E-02 0.653546563005E-01 612 0.884120630151E-02 0.621211384434E-01 613 0.832165569017E-02 0.590783186010E-01 614 0.796984929612E-02 0.561771541024E-01 615 0.777172905831E-02 0.533742989928E-01 616 0.772941775264E-02 0.506301358633E-01 617 0.786399912984E-02 0.479078161928E-01 618 0.822338077911E-02 0.451748010072E-01 619 0.889816386052E-02 0.424114351572E-01 620 0.100490649401E-01 0.396400930077E-01 621 0.119385161021E-01 0.370130111270E-01 622 0.148811286223E-01 0.350405059510E-01 623 0.187283081309E-01 0.349241160209E-01 624 0.215073126897E-01 0.378047662286E-01 625 0.204348659195E-01 0.416310203939E-01 626 0.167787291861E-01 0.428560726753E-01 627 0.134143009096E-01 0.414956513085E-01 628 0.111738856231E-01 0.389820938693E-01 629 0.984809426728E-02 0.361167418441E-01 630 0.914199096196E-02 0.331740215770E-01 631 0.886830916546E-02 0.302147425914E-01 632 0.893696112463E-02 0.272301389051E-01 633 0.932998399510E-02 0.241999575691E-01 634 0.100863006271E-01 0.211333890496E-01 635 0.112638030608E-01 0.181330634007E-01 636 0.127672360190E-01 0.154404573141E-01 637 0.140898601884E-01 0.130962389288E-01 638 0.149171930361E-01 0.103611328895E-01 639 0.158943441798E-01 0.659838001616E-02 640 0.177199566612E-01 0.189760517135E-02 641 0.208110417257E-01 -0.356055882236E-02 642 0.256884610021E-01 -0.969178902146E-02 643 0.332809664468E-01 -0.162828017570E-01 644 0.451540051142E-01 -0.224498166559E-01 645 0.633356942526E-01 -0.253185174389E-01 646 0.876722613026E-01 -0.178346863721E-01 647 0.107571434291 0.824587174765E-02 648 0.104313287842 0.433176017795E-01 649 0.821582122410E-01 0.637610457061E-01 650 0.601023080345E-01 0.668459326495E-01 651 0.450329609110E-01 0.616958556659E-01 652 0.360585698070E-01 0.540250820851E-01 653 0.313873718570E-01 0.459381528098E-01 654 0.299739699154E-01 0.380722591981E-01 655 0.315712186947E-01 0.307653038325E-01 656 0.365267078775E-01 0.248461186304E-01 657 0.449435167396E-01 0.226070439778E-01 658 0.537639191259E-01 0.275923278030E-01 659 0.554687607442E-01 0.382357088892E-01 660 0.492020106451E-01 0.453640108537E-01 661 0.422874442635E-01 0.465370211973E-01 662 0.371134993457E-01 0.456903323921E-01 663 0.320264488523E-01 0.437618244452E-01 664 0.274833586599E-01 0.396449328128E-01 665 0.247286901881E-01 0.338766473834E-01 666 0.239592536688E-01 0.273583862815E-01 667 0.250970577795E-01 0.204797712763E-01 668 0.283521706358E-01 0.133902062850E-01 669 0.344023197764E-01 0.643129928206E-02 670 0.443597029123E-01 0.840353519517E-03 671 0.587010259207E-01 -0.163107519654E-04 672 0.731698184094E-01 0.881443989758E-02 673 0.775114482651E-01 0.245640914787E-01 674 0.717588205918E-01 0.341195617756E-01 675 0.677371952696E-01 0.345862976570E-01 676 0.713399059013E-01 0.339095476102E-01 677 0.790555775722E-01 0.409330657517E-01 678 0.794567958050E-01 0.563399023575E-01 679 0.686870399617E-01 0.678641922836E-01 680 0.564297229260E-01 0.701175186858E-01 681 0.478164773082E-01 0.677952346921E-01 682 0.425660764030E-01 0.638476467252E-01 683 0.409759929519E-01 0.598962138577E-01 684 0.421796103600E-01 0.590162776781E-01 685 0.415953945354E-01 0.625623804392E-01 686 0.358854881266E-01 0.658060415951E-01 687 0.285235446774E-01 0.647695331116E-01 688 0.228358213044E-01 0.607903316005E-01 689 0.191932249191E-01 0.557986272353E-01 690 0.170840746516E-01 0.506333173475E-01 691 0.160827433305E-01 0.455081633848E-01 692 0.159761102826E-01 0.404054080861E-01 693 0.167334288133E-01 0.352344045590E-01 694 0.184984219956E-01 0.298962603185E-01 695 0.216327478384E-01 0.243463574276E-01 696 0.268143147579E-01 0.187446971033E-01 697 0.351186982799E-01 0.138785121919E-01 698 0.475722039371E-01 0.121452222856E-01 699 0.624784051714E-01 0.182563132769E-01 700 0.716337336704E-01 0.339841411202E-01 701 0.694632929619E-01 0.504040423933E-01 702 0.619819258394E-01 0.610445188313E-01 703 0.532107398907E-01 0.679085785408E-01 704 0.428416919962E-01 0.712074789058E-01 705 0.330747137669E-01 0.698235662544E-01 706 0.261623265423E-01 0.655463200179E-01 707 0.221386185780E-01 0.603888311471E-01 708 0.204329792243E-01 0.553183936722E-01 709 0.207208995129E-01 0.508408553591E-01 710 0.229164149811E-01 0.476859443476E-01 711 0.262970242293E-01 0.472884141785E-01 712 0.281039480299E-01 0.502688770167E-01 713 0.261356366790E-01 0.537706141280E-01 714 0.219530901640E-01 0.549800397781E-01 715 0.178177860644E-01 0.536892316245E-01 716 0.149090358808E-01 0.509437247757E-01 717 0.132907711301E-01 0.477526069360E-01 718 0.126256903603E-01 0.445472115630E-01 719 0.127573256483E-01 0.413308644589E-01 720 0.138933997526E-01 0.381305917467E-01 721 0.164284999875E-01 0.353025343205E-01 722 0.207234685158E-01 0.338448145320E-01 723 0.260655554934E-01 0.357655605101E-01 724 0.287408967087E-01 0.420644365011E-01 725 0.255389177699E-01 0.484030715808E-01 726 0.197001171147E-01 0.504995207181E-01 727 0.148767071668E-01 0.493966922428E-01 728 0.117254041784E-01 0.470941088841E-01 729 0.986123192134E-02 0.445742591471E-01 730 0.891315795636E-02 0.422306214861E-01 731 0.861398428265E-02 0.403325258986E-01 732 0.853015965858E-02 0.391394778862E-01 733 0.799373676833E-02 0.384301564444E-01 734 0.696754315136E-02 0.374663366872E-01 735 0.598304459789E-02 0.360648318145E-01 736 0.526160199763E-02 0.344727615640E-01 737 0.476842425244E-02 0.328609066264E-01 738 0.443184588592E-02 0.312878384119E-01 739 0.420003127462E-02 0.297634093566E-01 740 0.404084772962E-02 0.282816165695E-01 741 0.393483545123E-02 0.268323576683E-01 742 0.387014764232E-02 0.254051137482E-01 743 0.383958985715E-02 0.239899031303E-01 744 0.383896427202E-02 0.225773500949E-01 745 0.386615968299E-02 0.211584796906E-01 746 0.392067595535E-02 0.197244338300E-01 747 0.400342319668E-02 0.182661626029E-01 748 0.411672304354E-02 0.167740954489E-01 749 0.426449459883E-02 0.152377784888E-01 750 0.445265218611E-02 0.136454564248E-01 751 0.468979244091E-02 0.119835739793E-01 752 0.498832227090E-02 0.102361742808E-01 753 0.536630475625E-02 0.838419050774E-02 754 0.585052813022E-02 0.640469447961E-02 755 0.648173139633E-02 0.427037301263E-02 756 0.732373098966E-02 0.195011285824E-02 757 0.847966881270E-02 -0.586635605890E-03 758 0.101208223518E-01 -0.335375074030E-02 759 0.125338055126E-01 -0.629704952225E-02 760 0.161710772539E-01 -0.914215487971E-02 761 0.215487234556E-01 -0.110082154056E-01 762 0.283296593419E-01 -0.990428662472E-02 763 0.331749924156E-01 -0.421968656883E-02 764 0.320469367485E-01 0.240096942166E-02 765 0.274097279912E-01 0.483904416442E-02 766 0.233491914018E-01 0.342561758506E-02 767 0.210951921687E-01 0.362829002770E-04 768 0.206958041693E-01 -0.404152012565E-02 769 0.217121503922E-01 -0.799415017836E-02 770 0.234735503808E-01 -0.115577402852E-01 771 0.253541743286E-01 -0.151946762688E-01 772 0.277694562282E-01 -0.200078801859E-01 773 0.322933015343E-01 -0.261824091893E-01 774 0.404824268365E-01 -0.327562744505E-01 775 0.538494138184E-01 -0.376045510123E-01 776 0.727345937816E-01 -0.361126580832E-01 777 0.916724893222E-01 -0.222257499005E-01 778 0.987416711186E-01 0.157725048247E-02 779 0.911490342186E-01 0.216743194812E-01 780 0.791241481047E-01 0.310155796082E-01 781 0.703199481554E-01 0.348917922808E-01 782 0.620608383837E-01 0.383946610777E-01 783 0.520276092385E-01 0.384905719184E-01 784 0.439743150523E-01 0.335943892422E-01 785 0.403557771117E-01 0.262282932727E-01 786 0.414462387390E-01 0.188898947795E-01 787 0.469315146275E-01 0.139660626306E-01 788 0.549571549051E-01 0.143890533994E-01 789 0.606959516699E-01 0.215319113695E-01 790 0.586963776255E-01 0.313907112449E-01 791 0.500944238214E-01 0.362730352695E-01 792 0.413838441006E-01 0.341410797074E-01 793 0.361485213048E-01 0.278823041235E-01 794 0.348234623246E-01 0.200019483384E-01 795 0.373441155044E-01 0.116971053573E-01 796 0.442856963307E-01 0.391234859653E-02 797 0.568445446967E-01 -0.123091710086E-02 798 0.749344265063E-01 0.130124287643E-02 799 0.917046018607E-01 0.176006344331E-01 800 0.945201065905E-01 0.435425248751E-01 elk-10.4.9/tests/test_004/PaxHeaders/elk.in0000644000000000000000000000013214762655566015273 xustar0030 mtime=1741380470.244017744 30 atime=1741380470.244017744 30 ctime=1741380470.244017744 elk-10.4.9/tests/test_004/elk.in0000644002504400250440000000134214762655566020015 0ustar00dewhurstdewhurst00000000000000 tasks 0 120 121 180 185 186 187 500 test .true. mixtype 3 nxoapwlo 1 scissor 0.21 lmaxo 5 nvbse 3 ncbse 3 gmaxrf 2.0 swidth 0.005 nempty 8 wplot 800 100 0 0.0 1.5 avec 3.80402 3.80402 0.00000 3.80402 0.00000 3.80402 0.00000 3.80402 3.80402 sppath '../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms 0.0000 0.0000 0.0000 0.0 0.0 0.0 : atposl, bfcmt 'F.in' : spfname 1 : natoms 0.5000 0.5000 0.5000 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 elk-10.4.9/tests/test_004/PaxHeaders/TEST_700.OUT_0000644000000000000000000000013014762655566016063 xustar0029 mtime=1741380470.24701776 30 atime=1741380470.246017755 29 ctime=1741380470.24701776 elk-10.4.9/tests/test_004/TEST_700.OUT_0000644002504400250440000000051714762655566020612 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 8 0.100000000000E-07 1 867.855963688 2 112.499817004 3 25.5315015099 4 79.0562837272 5 27.5430274822 6 39.9023686609 7 18.7274424851 8 14.7204937058 elk-10.4.9/tests/test_004/PaxHeaders/TEST_187.OUT_0000644000000000000000000000013214762655566016076 xustar0030 mtime=1741380470.249017771 30 atime=1741380470.248017765 30 ctime=1741380470.249017771 elk-10.4.9/tests/test_004/TEST_187.OUT_0000644002504400250440000012274314762655566020631 0ustar00dewhurstdewhurst00000000000000'BSE optical conductivity' 3 800 0.100000000000E-02 1 0.302583476207E-03 0.00000000000 2 -0.128015127094E-06 0.00000000000 3 -0.149840861700E-05 0.00000000000 4 -0.128022522143E-06 0.00000000000 5 0.303150702612E-03 0.00000000000 6 -0.130212555291E-05 0.00000000000 7 -0.149839996887E-05 0.00000000000 8 -0.130211756077E-05 0.00000000000 9 0.301054147754E-03 0.00000000000 10 0.302594904362E-03 -0.113449912028E-03 11 -0.128116243356E-06 0.478379682582E-07 12 -0.149855535665E-05 0.561661254819E-06 13 -0.128122599407E-06 0.478435138102E-07 14 0.303162131474E-03 -0.113662620765E-03 15 -0.130226168283E-05 0.488072598505E-06 16 -0.149854792373E-05 0.561654769457E-06 17 -0.130225481345E-05 0.488066605312E-06 18 0.301065537763E-03 -0.112876476913E-03 19 0.302629192192E-03 -0.226908389613E-03 20 -0.128419646645E-06 0.957512933628E-07 21 -0.149899564117E-05 0.112343291225E-05 22 -0.128422885379E-06 0.957623861906E-07 23 0.303196421422E-03 -0.227333807624E-03 24 -0.130267013425E-05 0.976247614298E-06 25 -0.149899185421E-05 0.112341993980E-05 26 -0.130266663351E-05 0.976235625788E-06 27 0.301099711146E-03 -0.225761490786E-03 28 0.302686349786E-03 -0.340384000827E-03 29 -0.128925500519E-06 0.143815372835E-06 30 -0.149972966733E-05 0.168542542410E-05 31 -0.128923542650E-06 0.143832016386E-06 32 0.303253582533E-03 -0.341022129186E-03 33 -0.130335109212E-05 0.146462751095E-05 34 -0.149973195804E-05 0.168540596110E-05 35 -0.130335320709E-05 0.146460952288E-05 36 0.301156677970E-03 -0.338663581089E-03 37 0.302766393973E-03 -0.453885318785E-03 38 -0.129634077739E-06 0.192105685578E-06 39 -0.150075776326E-05 0.224774934064E-05 40 -0.129624842366E-06 0.192127885028E-06 41 0.303333631611E-03 -0.454736159091E-03 42 -0.130430486488E-05 0.195331484466E-05 43 -0.150076856497E-05 0.224772338192E-05 44 -0.130431484464E-05 0.195329085065E-05 45 0.301236455025E-03 -0.451591292322E-03 46 0.302869348325E-03 -0.567420924162E-03 47 -0.130545760523E-06 0.240697832666E-06 48 -0.150208038874E-05 0.281051535994E-05 49 -0.130527164484E-06 0.240725594920E-06 50 0.303436592199E-03 -0.568484478535E-03 51 -0.130553188471E-05 0.244241231064E-05 52 -0.150210213706E-05 0.281048289858E-05 53 -0.130555198113E-05 0.244238230218E-05 54 0.301339065828E-03 -0.564553176529E-03 55 0.302995243179E-03 -0.680999407726E-03 56 -0.131661040887E-06 0.289667578238E-06 57 -0.150369813559E-05 0.337383437730E-05 58 -0.131630998110E-06 0.289700911936E-06 59 0.303562494594E-03 -0.682275678789E-03 60 -0.130703270792E-05 0.293202278965E-05 61 -0.150373326903E-05 0.337379540464E-05 62 -0.130706517644E-05 0.293198675611E-05 63 0.301464540646E-03 -0.677557795821E-03 64 0.303144115653E-03 -0.794629372868E-03 65 -0.132980521100E-06 0.339090890541E-06 66 -0.150561172818E-05 0.393781753490E-05 67 -0.132936941951E-06 0.339129806064E-06 68 0.303711375867E-03 -0.796118363735E-03 69 -0.130880801542E-05 0.342224939470E-05 70 -0.150566268881E-05 0.393777204055E-05 71 -0.130885511586E-05 0.342220732328E-05 72 0.301612916511E-03 -0.790613724909E-03 73 0.303316009676E-03 -0.908319438156E-03 74 -0.134504914231E-06 0.389043983167E-06 75 -0.150782202403E-05 0.450257627163E-05 76 -0.134445704865E-06 0.389088492644E-06 77 0.303883279885E-03 -0.910021152407E-03 78 -0.131085861329E-05 0.391319551791E-05 79 -0.150789125816E-05 0.450252424346E-05 80 -0.131092261067E-05 0.391314739367E-05 81 0.301784237249E-03 -0.903729553636E-03 82 0.303510976011E-03 -0.102207823988E-02 83 -0.136235044803E-06 0.439603356500E-06 84 -0.151033001458E-05 0.506822237319E-05 85 -0.136158106504E-06 0.439653473815E-06 86 0.304078257349E-03 -0.102399268154E-02 87 -0.131318543350E-05 0.440496487764E-05 88 -0.151041997337E-05 0.506816379731E-05 89 -0.131326859884E-05 0.440491068349E-05 90 0.301978553509E-03 -0.101691388953E-02 91 0.303729072297E-03 -0.113591443462E-02 92 -0.138171849548E-06 0.490845839444E-06 93 -0.151313682602E-05 0.563486802248E-05 94 -0.138075078071E-06 0.490901580246E-06 95 0.304296365820E-03 -0.113804160813E-02 96 -0.131578953469E-05 0.489766156592E-05 97 -0.151324996618E-05 0.563480288323E-05 98 -0.131589414582E-05 0.489760128258E-05 99 0.302195922795E-03 -0.113017536037E-02 100 0.303970363084E-03 -0.124983670182E-02 101 -0.140316378265E-06 0.542848631431E-06 102 -0.151624372025E-05 0.620262585031E-05 103 -0.140197663176E-06 0.542910013145E-06 104 0.304537669762E-03 -0.125217661203E-02 105 -0.131867210312E-05 0.539139009615E-05 106 -0.151638250469E-05 0.620255413028E-05 107 -0.131880044548E-05 0.539132370216E-05 108 0.302436409506E-03 -0.124352261675E-02 109 0.304234919875E-03 -0.136385374642E-02 110 -0.142669794787E-06 0.595689344786E-06 111 -0.151965209600E-05 0.677160898654E-05 112 -0.142527018791E-06 0.595756386625E-06 113 0.304802240586E-03 -0.136640639851E-02 114 -0.132183445365E-05 0.588625545121E-05 115 -0.151981899446E-05 0.677153066653E-05 116 -0.132198882115E-05 0.588618292291E-05 117 0.302700084983E-03 -0.135696433467E-02 118 0.304522821180E-03 -0.147797430141E-02 119 -0.145233378048E-06 0.649446047466E-06 120 -0.152336349002E-05 0.734193111160E-05 121 -0.145064416323E-06 0.649518770442E-06 122 0.305090156696E-03 -0.148073970088E-02 123 -0.132527803094E-05 0.638236313194E-05 124 -0.152356097977E-05 0.734184617064E-05 125 -0.132546072674E-05 0.638228444347E-05 126 0.302987027553E-03 -0.147050921815E-02 127 0.304834152566E-03 -0.159220713050E-02 128 -0.148008523267E-06 0.704197306213E-06 129 -0.152737957837E-05 0.791370650852E-05 130 -0.147811242783E-06 0.704275733153E-06 131 0.305401503548E-03 -0.159518528315E-02 132 -0.132900441064E-05 0.687981920613E-05 133 -0.152761014489E-05 0.791361492384E-05 134 -0.132921774802E-05 0.687973432937E-05 135 0.303297322587E-03 -0.158416600184E-02 136 0.305169006717E-03 -0.170656103078E-02 137 -0.150996743235E-06 0.760022230176E-06 138 -0.153170217797E-05 0.848705011550E-05 139 -0.150769002074E-06 0.760106385738E-06 140 0.305736373699E-03 -0.170975194262E-02 141 -0.133301530082E-05 0.737873035788E-05 142 -0.153196831559E-05 0.848695186250E-05 143 -0.133326160400E-05 0.737863926248E-05 144 0.303631062552E-03 -0.169794345369E-02 145 0.305527483496E-03 -0.182104483537E-02 146 -0.154199669716E-06 0.817000515030E-06 147 -0.153633324806E-05 0.906207757896E-05 148 -0.153939316384E-06 0.817090425716E-06 149 0.306094866883E-03 -0.182444851259E-02 150 -0.133731254342E-05 0.787920393767E-05 151 -0.153663746067E-05 0.906197263122E-05 152 -0.133759414841E-05 0.787910659100E-05 153 0.303988347084E-03 -0.181185037762E-02 154 0.305909690015E-03 -0.193566741613E-02 155 -0.157619054964E-06 0.875212487634E-06 156 -0.154127489201E-05 0.963890530728E-05 157 -0.157323927694E-06 0.875308181813E-06 158 0.306477090067E-03 -0.193928386508E-02 159 -0.134189811591E-05 0.838134801286E-05 160 -0.154161969373E-05 0.963879363658E-05 161 -0.134221737135E-05 0.838124438001E-05 162 0.304369283047E-03 -0.192589561617E-02 163 0.306315740711E-03 -0.205043768639E-02 164 -0.161256773353E-06 0.934739151290E-06 165 -0.154652935910E-05 0.102176505252E-04 166 -0.160924699407E-06 0.934840659214E-06 167 0.306883157534E-03 -0.205426691349E-02 168 -0.134677413296E-05 0.888527141888E-05 169 -0.154691727498E-05 0.102175321015E-04 170 -0.134713340103E-05 0.888516146261E-05 171 0.304773984614E-03 -0.204008805329E-02 172 0.306745757419E-03 -0.216536460371E-02 173 -0.165114823128E-06 0.995662231617E-06 174 -0.155209904650E-05 0.107984313290E-04 175 -0.164743618085E-06 0.995769585442E-06 176 0.307313190957E-03 -0.216940661539E-02 177 -0.135194284837E-05 0.939108381110E-05 178 -0.155253261321E-05 0.107983061202E-04 179 -0.135234450559E-05 0.939096749185E-05 180 0.305202573339E-03 -0.215443661703E-02 181 0.307199869463E-03 -0.228045717267E-02 182 -0.169195328278E-06 0.105806422311E-05 183 -0.155798650139E-05 0.113813667421E-04 184 -0.168782795319E-06 0.105817745692E-05 185 0.307767319485E-03 -0.228471197532E-02 186 -0.135740665703E-05 0.989889571743E-05 187 -0.155846826792E-05 0.113812347144E-04 188 -0.135785309520E-05 0.989877299325E-05 189 0.305655178250E-03 -0.226895028235E-02 190 0.307678213744E-03 -0.239572444767E-02 191 -0.173500540531E-06 0.112202843640E-05 192 -0.156419442321E-05 0.119665767721E-04 193 -0.173044469710E-06 0.112214758623E-05 194 0.308245679832E-03 -0.240019204756E-02 195 -0.136316809702E-05 0.104088185916E-04 196 -0.156472695159E-05 0.119664378898E-04 197 -0.136366172409E-05 0.104086894182E-04 198 0.306131935932E-03 -0.238363807393E-02 199 0.308180934833E-03 -0.251117553580E-02 200 -0.178032841474E-06 0.118763904633E-05 201 -0.157072566603E-05 0.125541824680E-04 202 -0.177531008989E-06 0.118776415019E-05 203 0.308748416376E-03 -0.251585593903E-02 204 -0.136922985193E-05 0.109209648675E-04 205 -0.157131153203E-05 0.125540366933E-04 206 -0.136977309288E-05 0.109208291980E-04 207 0.306632990623E-03 -0.249850906902E-02 208 0.308708185074E-03 -0.262681959971E-02 209 -0.182794744814E-06 0.125498114080E-05 210 -0.157758324109E-05 0.131443059787E-04 211 -0.182244912256E-06 0.125511223869E-05 212 0.309275681252E-03 -0.263171281213E-02 213 -0.137559475320E-05 0.114354480139E-04 214 -0.157822503496E-05 0.131441532722E-04 215 -0.137619005099E-05 0.114353057993E-04 216 0.307158494320E-03 -0.261357240030E-02 217 0.309260124696E-03 -0.274266586059E-02 218 -0.187788898756E-06 0.132414077047E-05 219 -0.158477031950E-05 0.137370706129E-04 220 -0.187188812361E-06 0.132427790444E-05 221 0.309827634468E-03 -0.274777188768E-02 222 -0.138226578266E-05 0.119523825909E-04 223 -0.158547064670E-05 0.137369109328E-04 224 -0.138291559914E-05 0.119522337793E-04 225 0.307708606879E-03 -0.272883725884E-02 226 0.309836921915E-03 -0.285872360107E-02 227 -0.193018088536E-06 0.139520499944E-05 228 -0.159229023506E-05 0.143326008989E-04 229 -0.192365478415E-06 0.139534821358E-05 230 0.310404444012E-03 -0.286404244793E-02 231 -0.138924607526E-05 0.124718843064E-04 232 -0.159305171698E-05 0.143324342017E-04 233 -0.138995289210E-05 0.124717288436E-04 234 0.308283496135E-03 -0.284431289703E-02 235 0.310438753066E-03 -0.297500216830E-02 236 -0.198485239083E-06 0.146826195682E-05 237 -0.160014648728E-05 0.149310226464E-04 238 -0.197777818449E-06 0.146841129733E-05 239 0.311006285974E-03 -0.298053383948E-02 240 -0.139653892185E-05 0.129940700742E-04 241 -0.160097176200E-05 0.149308488866E-04 242 -0.139730524150E-05 0.129939079036E-04 243 0.308883338017E-03 -0.296000863161E-02 244 0.311065802718E-03 -0.309151097696E-02 245 -0.204193417831E-06 0.154340088939E-05 246 -0.160834274452E-05 0.155324630097E-04 247 -0.203428882209E-06 0.154355640457E-05 248 0.311633344669E-03 -0.309725547643E-02 249 -0.140414777221E-05 0.135190580734E-04 250 -0.160923446758E-05 0.155322821397E-04 251 -0.140497611886E-05 0.135188891355E-04 252 0.309508316671E-03 -0.307593384673E-02 253 0.311718263814E-03 -0.320825951239E-02 254 -0.210145837682E-06 0.162071221529E-05 255 -0.161688284732E-05 0.161370505509E-04 256 -0.209321864110E-06 0.162087395560E-05 257 0.312285812769E-03 -0.321421684342E-02 258 -0.141207623815E-05 0.140469678082E-04 259 -0.161784369246E-05 0.161368625209E-04 260 -0.141296915870E-05 0.140467920410E-04 261 0.310158624598E-03 -0.319209799700E-02 262 0.312396337804E-03 -0.332525733378E-02 263 -0.216345860124E-06 0.170028757886E-05 264 -0.162577081190E-05 0.167449153055E-04 265 -0.215460106336E-06 0.170045559697E-05 266 0.312963891444E-03 -0.333142749881E-02 267 -0.142032809685E-05 0.145779201696E-04 268 -0.162680347187E-05 0.167447200638E-04 269 -0.142128816194E-05 0.145777375084E-04 270 0.310834462787E-03 -0.330851061073E-02 271 0.313100234794E-03 -0.344251407730E-02 272 -0.222796998503E-06 0.178221990668E-05 273 -0.163501083387E-05 0.173561888489E-04 274 -0.221847102106E-06 0.178239425746E-05 275 0.313667790505E-03 -0.344889707789E-02 276 -0.142890729433E-05 0.151120374977E-04 277 -0.163611802117E-05 0.173559863417E-04 278 -0.142993709931E-05 0.151118478751E-04 279 0.311536040865E-03 -0.342518129303E-02 280 0.313830173694E-03 -0.356003945945E-02 281 -0.229502921464E-06 0.186660346482E-05 282 -0.164460729204E-05 0.179710043643E-04 283 -0.228486499094E-06 0.186678420544E-05 284 0.314397728553E-03 -0.356663529612E-02 285 -0.143781794909E-05 0.156494436463E-04 286 -0.164579173976E-05 0.179707945357E-04 287 -0.143892011508E-05 0.156492469921E-04 288 0.312263577242E-03 -0.354211972917E-02 289 0.314586382385E-03 -0.367784328035E-02 290 -0.236467456567E-06 0.195353391747E-05 291 -0.165456475249E-05 0.185894967125E-04 292 -0.235382103032E-06 0.195372110739E-05 293 0.315153933145E-03 -0.368465195247E-02 294 -0.144706435597E-05 0.161902640479E-04 295 -0.165582921509E-05 0.185892795041E-04 296 -0.144824153088E-05 0.161900602892E-04 297 0.313017299279E-03 -0.365933568782E-02 298 0.315369097879E-03 -0.379593542712E-02 299 -0.243694594068E-06 0.204310838692E-05 300 -0.166488797283E-05 0.192118025021E-04 301 -0.242537881475E-06 0.204330208796E-05 302 0.315936640954E-03 -0.380295693280E-02 303 -0.145665099011E-05 0.167346257808E-04 304 -0.166623522700E-05 0.192115778536E-04 305 -0.145790584971E-05 0.167344148416E-04 306 0.313797443446E-03 -0.377683902447E-02 307 0.316178566495E-03 -0.391432587735E-02 308 -0.251188490888E-06 0.213542551493E-05 309 -0.167558190665E-05 0.198380601630E-04 310 -0.249957967756E-06 0.213562579130E-05 311 0.316746097949E-03 -0.392156021329E-02 312 -0.146658251119E-05 0.172826576374E-04 313 -0.167701475208E-05 0.198378280118E-04 314 -0.146791776023E-05 0.172824394389E-04 315 0.314604255503E-03 -0.389463968488E-02 316 0.317015044046E-03 -0.403302470259E-02 317 -0.258953474775E-06 0.223058552571E-05 318 -0.168665170816E-05 0.204684100201E-04 319 -0.257646665126E-06 0.223079244409E-05 320 0.317582559571E-03 -0.404047186399E-02 321 -0.147686376785E-05 0.178344901943E-04 322 -0.168817296843E-05 0.204681703013E-04 323 -0.147828214111E-05 0.178342646547E-04 324 0.315437990680E-03 -0.401274770855E-02 325 0.317878796023E-03 -0.415204207198E-02 326 -0.266994048651E-06 0.232869029043E-05 327 -0.169810273708E-05 0.211029943698E-04 328 -0.265608451090E-06 0.232890391996E-05 329 0.318446290928E-03 -0.415970205234E-02 330 -0.148749980228E-05 0.183902558840E-04 331 -0.169971526051E-05 0.211027470161E-04 332 -0.148900406572E-05 0.183900229187E-04 333 0.316298913865E-03 -0.413117323233E-02 334 0.318770097799E-03 -0.427138825587E-02 335 -0.275314895172E-06 0.242984339338E-05 336 -0.170994056372E-05 0.217419575577E-04 337 -0.273847981938E-06 0.243006380577E-05 338 0.319337566991E-03 -0.427926104688E-02 339 -0.149849585500E-05 0.189500890687E-04 340 -0.171164722426E-05 0.217417024996E-04 341 -0.150008880693E-05 0.189498485896E-04 342 0.317187299806E-03 -0.424992649409E-02 343 0.319689234835E-03 -0.439107362957E-02 344 -0.283920881490E-06 0.253415019992E-05 345 -0.172217097437E-05 0.223854460587E-04 346 -0.282370097497E-06 0.253437746947E-05 347 0.320256672802E-03 -0.439915922095E-02 348 -0.150985737001E-05 0.195141261150E-04 349 -0.172397467243E-05 0.223851832242E-04 350 -0.151154184221E-05 0.195138780311E-04 351 0.318103433315E-03 -0.436901783639E-02 352 0.320636502897E-03 -0.451110867717E-02 353 -0.292817064236E-06 0.264171792618E-05 354 -0.173479997679E-05 0.230336085588E-04 355 -0.291179826091E-06 0.264195212984E-05 356 0.321203903688E-03 -0.451940705651E-02 357 -0.152158999994E-05 0.200825054720E-04 358 -0.173670364020E-05 0.230333378736E-04 359 -0.152336885890E-05 0.200822496890E-04 360 0.319047609488E-03 -0.448845771033E-02 361 0.321612208278E-03 -0.463150399545E-02 362 -0.302008694732E-06 0.275265571070E-05 363 -0.174783380611E-05 0.236865960395E-04 364 -0.300282389729E-06 0.275289692814E-05 365 0.322179565492E-03 -0.464001514803E-02 366 -0.153369961164E-05 0.206553677498E-04 367 -0.174984039103E-05 0.236863174267E-04 368 -0.153557575976E-05 0.206551041701E-04 369 0.320020133926E-03 -0.460825667943E-02 370 0.322616668041E-03 -0.475227029782E-02 371 -0.311501224435E-06 0.286707468807E-05 372 -0.176127893090E-05 0.243445618637E-04 373 -0.309683209529E-06 0.286732300174E-05 374 0.323183974799E-03 -0.476099420645E-02 375 -0.154619229191E-05 0.212328558013E-04 376 -0.176339142270E-05 0.243442752439E-04 377 -0.154816866874E-05 0.212325843241E-04 378 0.321021322972E-03 -0.472842542360E-02 379 0.323650210258E-03 -0.487341841843E-02 380 -0.321300310625E-06 0.298508806460E-05 381 -0.177514205949E-05 0.250076618647E-04 382 -0.319387911383E-06 0.298534355977E-05 383 0.324217459188E-03 -0.488235506328E-02 384 -0.155907435352E-05 0.218151148061E-04 385 -0.177736347376E-05 0.250073671561E-04 386 -0.156115393703E-05 0.218148353268E-04 387 0.322051503958E-03 -0.484897474323E-02 388 0.324713174266E-03 -0.499495931635E-02 389 -0.331411822350E-06 0.310681119618E-05 390 -0.178943014665E-05 0.256760544371E-04 391 -0.329402331877E-06 0.310707396103E-05 392 0.325280357484E-03 -0.500410867473E-02 393 -0.157235234146E-05 0.224022923557E-04 394 -0.179176353016E-05 0.256757515551E-04 395 -0.157453814935E-05 0.224020047666E-04 396 0.323111015456E-03 -0.496991556330E-02 397 0.325805910937E-03 -0.511690407978E-02 398 -0.341841846634E-06 0.323236166841E-05 399 -0.180415040052E-05 0.263499006306E-04 400 -0.339732524475E-06 0.323263179410E-05 401 0.326373020022E-03 -0.512626612598E-02 402 -0.158603303953E-05 0.229945385424E-04 403 -0.180659883216E-05 0.263495894880E-04 404 -0.158832813055E-05 0.229942427320E-04 405 0.324200207545E-03 -0.509125893767E-02 406 0.326928782951E-03 -0.523926393048E-02 407 -0.352596694964E-06 0.336185937910E-05 408 -0.181931028983E-05 0.270293642459E-04 409 -0.350384765978E-06 0.336213695982E-05 410 0.327495808927E-03 -0.524883863554E-02 411 -0.160012347715E-05 0.235920060498E-04 412 -0.182187688166E-05 0.270290447529E-04 413 -0.160253095247E-05 0.235917019029E-04 414 0.325319442090E-03 -0.521301605343E-02 415 0.328082165088E-03 -0.536205022819E-02 416 -0.363682910056E-06 0.349542662320E-05 417 -0.183491755144E-05 0.277146119342E-04 418 -0.361365563266E-06 0.349571175625E-05 419 0.328649098399E-03 -0.537183755970E-02 420 -0.161463093655E-05 0.241948502463E-04 421 -0.183760544969E-05 0.277142839981E-04 422 -0.161715394113E-05 0.241945376440E-04 423 0.326469093025E-03 -0.533519823538E-02 424 0.329266444523E-03 -0.548527447527E-02 425 -0.375107272927E-06 0.363318818036E-05 426 -0.185098019826E-05 0.284058132989E-04 427 -0.372681660339E-06 0.363348096625E-05 428 0.329833275011E-03 -0.549527439712E-02 429 -0.162956296017E-05 0.248032292814E-04 430 -0.185379258437E-05 0.284054768242E-04 431 -0.163220468421E-05 0.248029081010E-04 432 0.327649546657E-03 -0.545781695056E-02 433 0.330482021147E-03 -0.560894832131E-02 434 -0.386876810280E-06 0.377527140516E-05 435 -0.186750652745E-05 0.291031410003E-04 436 -0.384340045674E-06 0.377557194765E-05 437 0.331048738025E-03 -0.561916079353E-02 438 -0.164492735847E-05 0.254173041844E-04 439 -0.187044661916E-05 0.291027958887E-04 440 -0.164769103883E-05 0.254169742993E-04 441 0.328861201979E-03 -0.558088381296E-02 442 0.331729307885E-03 -0.573308356804E-02 443 -0.398998802206E-06 0.392180632012E-05 444 -0.188450512901E-05 0.298067708640E-04 445 -0.396347959897E-06 0.392211472635E-05 446 0.332295899716E-03 -0.574350854648E-02 447 -0.166073221805E-05 0.260372389670E-04 448 -0.188757618142E-05 0.298064170143E-04 449 -0.166362113978E-05 0.260369002464E-04 450 0.330104470988E-03 -0.570441058835E-02 451 0.333008731036E-03 -0.585769217420E-02 452 -0.411480790236E-06 0.407292571171E-05 453 -0.190198489476E-05 0.305168819923E-04 454 -0.408712903798E-06 0.407324209225E-05 455 0.333575185705E-03 -0.586832961035E-02 456 -0.167698591012E-05 0.266632007274E-04 457 -0.190519020142E-05 0.305165193002E-04 458 -0.168000340796E-05 0.266628530364E-04 459 0.331379779031E-03 -0.582840919916E-02 460 0.334320730631E-03 -0.598278626066E-02 461 -0.424330585733E-06 0.422876522937E-05 462 -0.191995502763E-05 0.312336568786E-04 463 -0.421442646702E-06 0.422908969834E-05 464 0.334887035317E-03 -0.599363610133E-02 465 -0.169369709933E-05 0.272953597596E-04 466 -0.192329792173E-05 0.312332852368E-04 467 -0.169684655929E-05 0.272950029593E-04 468 0.332687565152E-03 -0.595289172958E-02 469 0.335665760791E-03 -0.610837811558E-02 470 -0.437556278672E-06 0.438946348776E-05 471 -0.193842505150E-05 0.319572815260E-04 472 -0.434545235198E-06 0.438979616288E-05 473 0.336231901940E-03 -0.611944030267E-02 474 -0.171087475301E-05 0.279338896647E-04 475 -0.194190890694E-05 0.319569008242E-04 476 -0.171415961397E-05 0.279335236115E-04 477 0.334028282458E-03 -0.607787043071E-02 478 0.337044290117E-03 -0.623448019977E-02 479 -0.451166246789E-06 0.455516217232E-05 480 -0.195740482129E-05 0.326879455694E-04 481 -0.448029002266E-06 0.455550317505E-05 482 0.337610253412E-03 -0.624575466999E-02 483 -0.172852815081E-05 0.285789674660E-04 484 -0.196103305394E-05 0.326875556940E-04 485 -0.173195190617E-05 0.285785920120E-04 486 0.335402398503E-03 -0.620335772595E-02 487 0.338456802081E-03 -0.636110515219E-02 488 -0.465169165141E-06 0.472600614831E-05 489 -0.197690453366E-05 0.334258424013E-04 490 -0.461902576795E-06 0.472635560395E-05 491 0.339022572412E-03 -0.637259183676E-02 492 -0.174666689473E-05 0.292307737281E-04 493 -0.198068060249E-05 0.334254432354E-04 494 -0.175023309408E-05 0.292303887209E-04 495 0.336810395681E-03 -0.632936621642E-02 496 0.339903795442E-03 -0.648826579559E-02 497 -0.479574016091E-06 0.490214357359E-05 498 -0.199693473802E-05 0.341711693019E-04 499 -0.476174893525E-06 0.490250161134E-05 500 0.340469356877E-03 -0.649996461993E-02 501 -0.176530091961E-05 0.298894926797E-04 502 -0.200086214641E-05 0.341707607255E-04 503 -0.176901317048E-05 0.298890979622E-04 504 0.338252771641E-03 -0.645590868661E-02 505 0.341385784677E-03 -0.661597514228E-02 506 -0.494390099728E-06 0.508372601501E-05 507 -0.201750634819E-05 0.349241275734E-04 508 -0.490855203435E-06 0.508409276814E-05 509 0.341951120425E-03 -0.662788602570E-02 510 -0.178444050407E-05 0.305553123403E-04 511 -0.202158864509E-05 0.349237094629E-04 512 -0.178830247372E-05 0.305549077505E-04 513 0.339730039715E-03 -0.658299811018E-02 514 0.342903300426E-03 -0.674424640011E-02 515 -0.509627044752E-06 0.527090856896E-05 516 -0.203863065438E-05 0.356849226786E-04 517 -0.505953084577E-06 0.527128417491E-05 518 0.343468392805E-03 -0.675636925551E-02 519 -0.180409628196E-05 0.312284246511E-04 520 -0.204287143567E-05 0.356844949069E-04 521 -0.180811169919E-05 0.312280100221E-04 522 0.341242729362E-03 -0.671064765588E-02 523 0.344456889961E-03 -0.687309297860E-02 524 -0.525294819839E-06 0.546384998598E-05 525 -0.206031933586E-05 0.364537643840E-04 526 -0.521478453406E-06 0.546423458643E-05 527 0.345021720361E-03 -0.688542771211E-02 528 -0.182427925427E-05 0.319090256104E-04 529 -0.206472224565E-05 0.364533268207E-04 530 -0.182845191128E-05 0.319086007702E-04 531 0.342791386640E-03 -0.683887069369E-02 532 0.346047117667E-03 -0.700252849528E-02 533 -0.541403745515E-06 0.566271279964E-05 534 -0.208258447411E-05 0.372308669082E-04 535 -0.537441576601E-06 0.566310654069E-05 536 0.346611666517E-03 -0.701507500587E-02 537 -0.184500080157E-05 0.325973154134E-04 538 -0.208715320604E-05 0.372304194190E-04 539 -0.184933455593E-05 0.325968801848E-04 540 0.344376574683E-03 -0.696768080112E-02 541 0.347674565549E-03 -0.713256678211E-02 542 -0.557964506556E-06 0.586766346005E-05 543 -0.210543856653E-05 0.380164490748E-04 544 -0.553853083425E-06 0.586806649233E-05 545 0.348238812275E-03 -0.714532496129E-02 546 -0.186627269704E-05 0.332934985969E-04 547 -0.211017686520E-05 0.380159915218E-04 548 -0.187077147361E-05 0.332930527973E-04 549 0.345998874206E-03 -0.709709176965E-02 550 0.349339833757E-03 -0.726322189223E-02 551 -0.574988164946E-06 0.607887247204E-05 552 -0.212889454081E-05 0.388107344708E-04 553 -0.570723978626E-06 0.607928495084E-05 554 0.349903756745E-03 -0.727619162364E-02 555 -0.188810712001E-05 0.339977841889E-04 556 -0.213380620314E-05 0.388102667124E-04 557 -0.189277491304E-05 0.339973276303E-04 558 0.347658884031E-03 -0.722711761145E-02 559 0.351043541134E-03 -0.739450810684E-02 560 -0.592486173412E-06 0.629651453823E-05 561 -0.215296576991E-05 0.396139516105E-04 562 -0.588065655927E-06 0.629693662366E-05 563 0.351607117684E-03 -0.740768926582E-02 564 -0.191051667017E-05 0.347103858635E-04 565 -0.215805464661E-05 0.396134735012E-04 566 -0.191535754533E-05 0.347099183520E-04 567 0.349357221634E-03 -0.735777256623E-02 568 0.352786325782E-03 -0.752643994227E-02 569 -0.610470389571E-06 0.652076870736E-05 570 -0.217766608767E-05 0.404263341051E-04 571 -0.605889912117E-06 0.652120056446E-05 572 0.353349532069E-03 -0.753983239550E-02 573 -0.193351438235E-05 0.354315221007E-04 574 -0.218293608472E-05 0.404258454951E-04 575 -0.193853247893E-05 0.354310434368E-04 576 0.351094523707E-03 -0.748907110833E-02 577 0.354568845658E-03 -0.765903215729E-02 578 -0.628953090718E-06 0.675181852790E-05 579 -0.220300980522E-05 0.412481208378E-04 580 -0.624208961784E-06 0.675226032682E-05 581 0.355131656685E-03 -0.767263576235E-02 582 -0.195711374202E-05 0.361614163527E-04 583 -0.220846488534E-05 0.412476215737E-04 584 -0.196231327511E-05 0.361609263309E-04 585 0.352871446757E-03 -0.762102795400E-02 586 0.356391779191E-03 -0.779229976069E-02 587 -0.647946989273E-06 0.698985220736E-05 588 -0.222901172801E-05 0.420795561463E-04 589 -0.643035452706E-06 0.699030412350E-05 590 0.356954168742E-03 -0.780611436558E-02 591 -0.198132870141E-05 0.369002972157E-04 592 -0.223465591223E-05 0.420790460701E-04 593 -0.198671396420E-05 0.368997956241E-04 594 0.354688667717E-03 -0.775365806893E-02 595 0.358255825922E-03 -0.792625801901E-02 596 -0.667465248949E-06 0.723506277741E-05 597 -0.225568717364E-05 0.429208900105E-04 598 -0.662382481954E-06 0.723552499161E-05 599 0.358817766514E-03 -0.794028346171E-02 600 -0.200617369645E-05 0.376483986074E-04 601 -0.226152454290E-05 0.429203689601E-04 602 -0.201174906255E-05 0.376478852279E-04 603 0.356546884590E-03 -0.788697667601E-02 604 0.360161707180E-03 -0.806092246457E-02 605 -0.687521501643E-06 0.748764826528E-05 606 -0.228305199057E-05 0.437723782477E-04 607 -0.682263612725E-06 0.748812096396E-05 608 0.360723170011E-03 -0.807515857255E-02 609 -0.203166366437E-05 0.384059599520E-04 610 -0.228908668730E-05 0.437718460566E-04 611 -0.203743359026E-05 0.384054345599E-04 612 0.358446817117E-03 -0.802099926332E-02 613 0.362110166773E-03 -0.819630890375E-02 614 -0.708129865105E-06 0.774781187146E-05 615 -0.231112257755E-05 0.446342827151E-04 616 -0.702692891946E-06 0.774829524682E-05 617 0.362671121669E-03 -0.821075549350E-02 618 -0.205781406220E-05 0.391732263708E-04 619 -0.231735880738E-05 0.446337392123E-04 620 -0.206378308968E-05 0.391726887347E-04 621 0.360389207475E-03 -0.815574159242E-02 622 0.364101971721E-03 -0.833243342554E-02 623 -0.729304961431E-06 0.801576215420E-05 624 -0.233991590403E-05 0.455068715191E-04 625 -0.723684868694E-06 0.801625640439E-05 626 0.364662387079E-03 -0.834709030199E-02 627 -0.208464088604E-05 0.399504488809E-04 628 -0.234635793745E-05 0.455063165291E-04 629 -0.209081364481E-05 0.399498987625E-04 630 0.362374820998E-03 -0.829121970682E-02 631 0.366137913009E-03 -0.846931241033E-02 632 -0.751061936395E-06 0.829171322103E-05 633 -0.236944953146E-05 0.463904192332E-04 634 -0.745254613465E-06 0.829221855037E-05 635 0.366697755742E-03 -0.848417936634E-02 636 -0.211216069125E-05 0.407378846006E-04 637 -0.237610170563E-05 0.463898525755E-04 638 -0.211854190151E-05 0.407373217544E-04 639 0.364404446939E-03 -0.842744994082E-02 640 0.368218806381E-03 -0.860696253902E-02 641 -0.773416479695E-06 0.857588492766E-05 642 -0.239974163562E-05 0.472852071230E-04 643 -0.767417738338E-06 0.857640154681E-05 644 0.368778041855E-03 -0.862203935482E-02 645 -0.214039061352E-05 0.415357969626E-04 646 -0.240660835608E-05 0.472846286126E-04 647 -0.214698508876E-05 0.415352211355E-04 648 0.366478899255E-03 -0.856444892857E-02 649 0.370345493163E-03 -0.874540080245E-02 650 -0.796384846137E-06 0.886850308461E-05 651 -0.243081102989E-05 0.481915233810E-04 652 -0.790190418089E-06 0.886903121079E-05 653 0.370904085135E-03 -0.876068724504E-02 654 -0.216934839100E-05 0.423444559354E-04 655 -0.243789677245E-05 0.481909328276E-04 656 -0.217616104074E-05 0.423438668671E-04 657 0.368599017432E-03 -0.870223361347E-02 658 0.372518841120E-03 -0.888464451111E-02 659 -0.819983877815E-06 0.916979967181E-05 660 -0.246267718965E-05 0.491096633690E-04 661 -0.813589412285E-06 0.917033952903E-05 662 0.373076751671E-03 -0.890014033363E-02 663 -0.219905238738E-05 0.431641382533E-04 664 -0.246998650230E-05 0.491090605773E-04 665 -0.220608822007E-05 0.431635356754E-04 666 0.370765667337E-03 -0.884082125787E-02 667 0.374739745353E-03 -0.902471130518E-02 668 -0.844231027334E-06 0.948001306179E-05 669 -0.249536027788E-05 0.500399298707E-04 670 -0.837632088430E-06 0.948056488108E-05 671 0.375296934820E-03 -0.904041624630E-02 672 -0.222952161608E-05 0.439951276550E-04 673 -0.250289778266E-05 0.500393146402E-04 674 -0.223678574209E-05 0.439945112910E-04 675 0.372979742116E-03 -0.898022945310E-02 676 0.377009129234E-03 -0.916561916491E-02 677 -0.869144382143E-06 0.979938825162E-05 678 -0.252888117183E-05 0.509826333538E-04 679 -0.862336446203E-06 0.979995227124E-05 680 0.377565556139E-03 -0.918153294817E-02 681 -0.226077576553E-05 0.448377151312E-04 682 -0.253665156687E-05 0.509820054787E-04 683 -0.226827340024E-05 0.448370846963E-04 684 0.375242163127E-03 -0.912047612982E-02 685 0.379327945382E-03 -0.930738642141E-02 686 -0.894742690016E-06 0.101281771041E-04 687 -0.256326149104E-05 0.519380922424E-04 688 -0.887721142857E-06 0.101287535699E-04 689 0.379883566352E-03 -0.932350875448E-02 690 -0.229283522575E-05 0.456921991825E-04 691 -0.257126955258E-05 0.519374515112E-04 692 -0.230057169268E-05 0.456915543834E-04 693 0.377553880910E-03 -0.926157956876E-02 694 0.381697176677E-03 -0.945003176772E-02 695 -0.921045385767E-06 0.104666385989E-04 696 -0.259852362667E-05 0.529066331996E-04 697 -0.913805519831E-06 0.104672277642E-04 698 0.382251946371E-03 -0.946636234172E-02 699 -0.232572111608E-05 0.465588860871E-04 700 -0.260677421115E-05 0.529059793953E-04 701 -0.233370185018E-05 0.465582266215E-04 702 0.379915876205E-03 -0.940355841181E-02 703 0.384117837325E-03 -0.959357427032E-02 704 -0.948072619240E-06 0.108150390933E-04 705 -0.263469077219E-05 0.538885914222E-04 706 -0.940609630647E-06 0.108156412199E-04 707 0.384671708349E-03 -0.961011275908E-02 708 -0.235945531424E-05 0.474380901789E-04 709 -0.264318881842E-05 0.538879243217E-04 710 -0.236768586530E-05 0.474374157352E-04 711 0.382329161010E-03 -0.954643167351E-02 712 0.386590973969E-03 -0.973803338109E-02 713 -0.975845284662E-06 0.111736525945E-04 714 -0.267178695560E-05 0.548843109462E-04 715 -0.968154270158E-06 0.111742679521E-04 716 0.387143896789E-03 -0.975477944032E-02 717 -0.239406048689E-05 0.483301341372E-04 718 -0.268053748695E-05 0.548836303207E-04 719 -0.240254652298E-05 0.483294443944E-04 720 0.384794779689E-03 -0.969021875292E-02 721 0.389117666841E-03 -0.988342894959E-02 722 -0.100438505143E-05 0.115427610420E-04 723 -0.270983707313E-05 0.558941449652E-04 724 -0.996461005222E-06 0.115433899091E-04 725 0.389669589695E-03 -0.990038221611E-02 726 -0.242956012152E-05 0.492353492874E-04 727 -0.271884519981E-05 0.558934505797E-04 728 -0.243830743264E-05 0.492346439149E-04 729 0.387313810127E-03 -0.983493944592E-02 730 0.391699030981E-03 -0.100297812358E-01 731 -0.103371439639E-05 0.119226546029E-04 732 -0.274886692464E-05 0.569184561617E-04 733 -0.102555220688E-05 0.119232972669E-04 734 0.392249899783E-03 -0.100469413267E-01 735 -0.246597856000E-05 0.501540759150E-04 736 -0.275813784603E-05 0.569177477748E-04 737 -0.247499306175E-05 0.501533545718E-04 738 0.389887364939E-03 -0.998061395799E-02 739 0.394336217490E-03 -0.101771109236E-01 740 -0.106385663773E-05 0.123136319785E-04 741 -0.278890325069E-05 0.579576170513E-04 742 -0.105545108413E-05 0.123142887360E-04 743 0.394885975732E-03 -0.101944774352E-01 744 -0.250334103369E-05 0.510866635911E-04 745 -0.279844225775E-05 0.579568944151E-04 746 -0.251262877117E-05 0.510859259258E-04 747 0.392516592730E-03 -0.101272629174E-01 748 0.397030414863E-03 -0.103254391341E-01 749 -0.109483597055E-05 0.127160007244E-04 750 -0.282997377150E-05 0.590120103419E-04 751 -0.108618171933E-05 0.127166718816E-04 752 0.397579003512E-03 -0.103430116413E-01 753 -0.254167370031E-05 0.520334715123E-04 754 -0.283978624919E-05 0.590112732018E-04 755 -0.255124085207E-05 0.520327171628E-04 756 0.395202679410E-03 -0.102749073889E-01 757 0.399782850359E-03 -0.104747874400E-01 758 -0.112667750416E-05 0.131300775838E-04 759 -0.287210722771E-05 0.600820293071E-04 760 -0.111776910548E-05 0.131307634569E-04 761 0.400330207748E-03 -0.104925654952E-01 762 -0.258100368265E-05 0.529948688543E-04 763 -0.288219865758E-05 0.600812774018E-04 764 -0.259085656480E-05 0.529940974473E-04 765 0.397946849581E-03 -0.104235688879E-01 766 0.402594791456E-03 -0.106251778807E-01 767 -0.115940730134E-05 0.135561888356E-04 768 -0.291533342329E-05 0.611680781757E-04 769 -0.115023918520E-05 0.135568897510E-04 770 0.403140853170E-03 -0.106431610126E-01 771 -0.262135910914E-05 0.539712351405E-04 772 -0.292570938606E-05 0.611673112367E-04 773 -0.263150417961E-05 0.539704462909E-04 774 0.400750367968E-03 -0.105732693952E-01 775 0.405467547351E-03 -0.107766329771E-01 776 -0.119305241949E-05 0.139946706567E-04 777 -0.295968327052E-05 0.622705725371E-04 778 -0.118361889186E-05 0.139953869514E-04 779 0.406012246110E-03 -0.107948206899E-01 780 -0.266276915652E-05 0.549629606258E-04 781 -0.297034944875E-05 0.622697902886E-04 782 -0.267321301946E-05 0.549621539368E-04 783 0.403614540932E-03 -0.107240313723E-01 784 0.408402470549E-03 -0.109291757477E-01 785 -0.122764095396E-05 0.144458695005E-04 786 -0.300518883726E-05 0.633899397643E-04 787 -0.121793619270E-05 0.144466015227E-04 788 0.408945736081E-03 -0.109475675199E-01 789 -0.270526409459E-05 0.559704466969E-04 790 -0.301615101810E-05 0.633891419232E-04 791 -0.271601350490E-05 0.559696217593E-04 792 0.406540718047E-03 -0.108758777771E-01 793 0.411400958513E-03 -0.110828297251E-01 794 -0.126320208349E-05 0.149101424917E-04 795 -0.305188339659E-05 0.645266194550E-04 796 -0.125322013413E-05 0.149108906010E-04 797 0.411942717425E-03 -0.111014250084E-01 798 -0.274887533326E-05 0.569941062902E-04 799 -0.306314747464E-05 0.645258057304E-04 800 -0.275993720133E-05 0.569932626818E-04 elk-10.4.9/tests/PaxHeaders/test_0080000644000000000000000000000013214762655566014117 xustar0030 mtime=1741380470.266017859 30 atime=1741380470.250017776 30 ctime=1741380470.266017859 elk-10.4.9/tests/test_008/0000755002504400250440000000000014762655566016716 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_008/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016076 xustar0030 mtime=1741380470.252017786 30 atime=1741380470.252017786 30 ctime=1741380470.252017786 elk-10.4.9/tests/test_008/TEST_705.OUT_0000644002504400250440000000010114762655566020610 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 96 elk-10.4.9/tests/test_008/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.254017797 30 atime=1741380470.254017797 30 ctime=1741380470.254017797 elk-10.4.9/tests/test_008/TEST_900.OUT_0000644002504400250440000000007014762655566020612 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 8385 elk-10.4.9/tests/test_008/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.256017807 30 atime=1741380470.256017807 30 ctime=1741380470.256017807 elk-10.4.9/tests/test_008/TEST_910.OUT_0000644002504400250440000000174114762655566020621 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 30 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.237999443454 5 0.00000000000 6 0.00000000000 7 0.475998886908 8 0.00000000000 9 0.00000000000 10 0.237999443454 11 0.237999443454 12 0.00000000000 13 0.475998886908 14 0.237999443454 15 0.00000000000 16 0.475998886908 17 0.475998886908 18 0.00000000000 19 0.237999443454 20 0.237999443454 21 0.237999443454 22 0.475998886908 23 0.237999443454 24 0.237999443454 25 0.475998886908 26 0.475998886908 27 0.237999443454 28 0.475998886908 29 0.475998886908 30 0.475998886908 elk-10.4.9/tests/test_008/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.258017818 30 atime=1741380470.257017812 30 ctime=1741380470.258017818 elk-10.4.9/tests/test_008/TEST_500.OUT_0000644002504400250440000000013514762655566020610 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 238.639961788 elk-10.4.9/tests/test_008/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.259017823 30 atime=1741380470.259017823 30 ctime=1741380470.259017823 elk-10.4.9/tests/test_008/TEST_510.OUT_0000644002504400250440000000014514762655566020612 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.141901361310E-02 elk-10.4.9/tests/test_008/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.261017833 30 atime=1741380470.261017833 30 ctime=1741380470.261017833 elk-10.4.9/tests/test_008/TEST_450.OUT_0000644002504400250440000000014014762655566020610 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.706561445737E-17 elk-10.4.9/tests/test_008/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.263017844 30 atime=1741380470.263017844 30 ctime=1741380470.263017844 elk-10.4.9/tests/test_008/TEST_400.OUT_0000644002504400250440000000014114762655566020604 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 51.9943490079 elk-10.4.9/tests/test_008/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.265017854 30 atime=1741380470.264017849 30 ctime=1741380470.265017854 elk-10.4.9/tests/test_008/TEST_000.OUT_0000644002504400250440000000012614762655566020603 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -2540.92551659 elk-10.4.9/tests/test_008/PaxHeaders/elk.in0000644000000000000000000000013214762655566015277 xustar0030 mtime=1741380470.267017865 30 atime=1741380470.266017859 30 ctime=1741380470.267017865 elk-10.4.9/tests/test_008/elk.in0000644002504400250440000000114314762655566020020 0ustar00dewhurstdewhurst00000000000000 ! Antiferromagnetic bcc iron example with fixed spin moment in muffin-tin. tasks 0 500 test .true. mixtype 1 fsmtype 2 mommtfix 1 1 0.0 0.0 1.0 : is, ia, mommtfix 1 2 0.0 0.0 -1.0 : is, ia, mommtfix swidth 0.01 rgkmax 6.0 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale 6.6 sppath '../../species/' atoms 1 : nspecies 'Fe.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.001 : atposl, bfcmt 0.5 0.5 0.5 0.0 0.0 -0.001 ngridk 4 4 4 elk-10.4.9/tests/PaxHeaders/test_0120000644000000000000000000000013114762655566014111 xustar0030 mtime=1741380470.285017959 29 atime=1741380470.26801787 30 ctime=1741380470.285017959 elk-10.4.9/tests/test_012/0000755002504400250440000000000014762655566016711 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_012/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.269017875 30 atime=1741380470.269017875 30 ctime=1741380470.269017875 elk-10.4.9/tests/test_012/TEST_500.OUT_0000644002504400250440000000013514762655566020603 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 126.871476344 elk-10.4.9/tests/test_012/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.271017886 30 atime=1741380470.271017886 30 ctime=1741380470.271017886 elk-10.4.9/tests/test_012/TEST_510.OUT_0000644002504400250440000000014514762655566020605 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.361959504352E-01 elk-10.4.9/tests/test_012/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.273017896 30 atime=1741380470.273017896 30 ctime=1741380470.273017896 elk-10.4.9/tests/test_012/TEST_705.OUT_0000644002504400250440000000010114762655566020603 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests/test_012/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.275017906 30 atime=1741380470.275017906 30 ctime=1741380470.275017906 elk-10.4.9/tests/test_012/TEST_900.OUT_0000644002504400250440000000007014762655566020605 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3287 elk-10.4.9/tests/test_012/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.277017917 30 atime=1741380470.276017912 30 ctime=1741380470.277017917 elk-10.4.9/tests/test_012/TEST_910.OUT_0000644002504400250440000000144714762655566020617 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.205241634672 5 0.205241634672 6 -0.205241634672 7 0.410483269343 8 0.410483269343 9 -0.410483269343 10 0.410483269343 11 0.00000000000 12 0.00000000000 13 0.615724904015 14 0.205241634672 15 -0.205241634672 16 0.820966538686 17 0.410483269343 18 -0.410483269343 19 0.820966538686 20 0.00000000000 21 0.00000000000 22 0.820966538686 23 0.410483269343 24 0.00000000000 elk-10.4.9/tests/test_012/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016061 xustar0030 mtime=1741380470.278017922 30 atime=1741380470.278017922 30 ctime=1741380470.278017922 elk-10.4.9/tests/test_012/TEST_400.OUT_0000644002504400250440000000014114762655566020577 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 25.9808139623 elk-10.4.9/tests/test_012/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016055 xustar0030 mtime=1741380470.280017933 30 atime=1741380470.280017933 30 ctime=1741380470.280017933 elk-10.4.9/tests/test_012/TEST_000.OUT_0000644002504400250440000000012614762655566020576 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -483.830347500 elk-10.4.9/tests/test_012/PaxHeaders/elk.in0000644000000000000000000000013214762655566015272 xustar0030 mtime=1741380470.282017943 30 atime=1741380470.281017938 30 ctime=1741380470.282017943 elk-10.4.9/tests/test_012/elk.in0000644002504400250440000000126014762655566020013 0ustar00dewhurstdewhurst00000000000000 ! Phonon and electron-phonon coupling test for Nb. tasks 0 200 220 240 245 250 500 test .true. mixtype 3 wplot 50 100 2 0.0 1.0 ngridq 2 2 2 radkpt 20.0 ngridk 4 4 4 rgkmax 6.0 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.8267 sppath '../../species/' atoms 1 : nspecies 'Al.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt plot1d 9 400 0.5 0.5 0.5 0.25 0.25 0.25 0.0 0.0 0.0 -0.5 0.5 0.5 -0.5 0.5 0.0 -0.75 0.25 0.25 -0.5 0.5 0.0 0.0 0.0 0.0 0.5 0.5 0.0 elk-10.4.9/tests/test_012/PaxHeaders/TEST_750.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.284017953 30 atime=1741380470.283017948 30 ctime=1741380470.284017953 elk-10.4.9/tests/test_012/TEST_750.OUT_0000644002504400250440000000036114762655566020613 0ustar00dewhurstdewhurst00000000000000'total forces' 2 6 0.100000000000E-02 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.00000000000 5 0.00000000000 6 0.00000000000 elk-10.4.9/tests/test_012/PaxHeaders/TEST_251.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.285017959 30 atime=1741380470.285017959 30 ctime=1741380470.285017959 elk-10.4.9/tests/test_012/TEST_251.OUT_0000644002504400250440000000016314762655566020607 0ustar00dewhurstdewhurst00000000000000'electron-phonon coupling constant, lambda' 2 1 0.500000000000E-01 1 8.59630816551 elk-10.4.9/tests/PaxHeaders/test_0160000644000000000000000000000013214762655566014116 xustar0030 mtime=1741380470.307018074 30 atime=1741380470.286017964 30 ctime=1741380470.307018074 elk-10.4.9/tests/test_016/0000755002504400250440000000000014762655566016715 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_016/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.288017974 30 atime=1741380470.288017974 30 ctime=1741380470.288017974 elk-10.4.9/tests/test_016/TEST_500.OUT_0000644002504400250440000000013514762655566020607 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 33.3315450333 elk-10.4.9/tests/test_016/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013114762655566016074 xustar0030 mtime=1741380470.290017985 29 atime=1741380470.28901798 30 ctime=1741380470.290017985 elk-10.4.9/tests/test_016/TEST_705.OUT_0000644002504400250440000000010114762655566020607 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 6 elk-10.4.9/tests/test_016/PaxHeaders/TEST_900.OUT_0000644000000000000000000000012714762655566016076 xustar0029 mtime=1741380470.29101799 29 atime=1741380470.29101799 29 ctime=1741380470.29101799 elk-10.4.9/tests/test_016/TEST_900.OUT_0000644002504400250440000000007014762655566020611 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7991 elk-10.4.9/tests/test_016/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.293018001 30 atime=1741380470.293018001 30 ctime=1741380470.293018001 elk-10.4.9/tests/test_016/TEST_910.OUT_0000644002504400250440000000144714762655566020623 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.265292393961 2 0.113696740269 3 0.378989134229E-01 4 -0.378989134229E-01 5 0.416888047652 6 0.341090220806 7 0.568483701344 8 -0.189494567115 9 0.341090220806 10 0.265292393961 11 0.113696740269 12 0.644281528190 13 0.568483701344 14 0.416888047652 15 -0.265292393961 16 0.265292393961 17 0.720079355036 18 0.378989134229E-01 19 0.871675008728 20 0.113696740269 21 0.378989134229E-01 22 0.568483701344 23 0.416888047652 24 0.341090220806 elk-10.4.9/tests/test_016/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.295018011 30 atime=1741380470.294018006 30 ctime=1741380470.295018011 elk-10.4.9/tests/test_016/TEST_510.OUT_0000644002504400250440000000014514762655566020611 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.395945171992E-02 elk-10.4.9/tests/test_016/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.297018022 30 atime=1741380470.296018016 30 ctime=1741380470.297018022 elk-10.4.9/tests/test_016/TEST_400.OUT_0000644002504400250440000000014114762655566020603 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 107.996846282 elk-10.4.9/tests/test_016/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.298018027 30 atime=1741380470.298018027 30 ctime=1741380470.298018027 elk-10.4.9/tests/test_016/TEST_450.OUT_0000644002504400250440000000014014762655566020607 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 2.34982807694 elk-10.4.9/tests/test_016/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.300018037 30 atime=1741380470.300018037 30 ctime=1741380470.300018037 elk-10.4.9/tests/test_016/TEST_800.OUT_0000644002504400250440000000014414762655566020612 0ustar00dewhurstdewhurst00000000000000'DFT+U energy for each atom' 2 1 0.100000000000E-03 1 0.160574972472 elk-10.4.9/tests/test_016/PaxHeaders/TEST_810.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.302018048 30 atime=1741380470.302018048 30 ctime=1741380470.302018048 elk-10.4.9/tests/test_016/TEST_810.OUT_0000644002504400250440000000017314762655566020615 0ustar00dewhurstdewhurst00000000000000'U and J parameters' 2 2 0.100000000000E-03 1 0.146997200004 2 0.226184138612E-01 elk-10.4.9/tests/test_016/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016061 xustar0030 mtime=1741380470.304018058 30 atime=1741380470.303018053 30 ctime=1741380470.304018058 elk-10.4.9/tests/test_016/TEST_000.OUT_0000644002504400250440000000012614762655566020602 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -28467.3225982 elk-10.4.9/tests/test_016/PaxHeaders/TEST_820.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.305018063 30 atime=1741380470.305018063 30 ctime=1741380470.305018063 elk-10.4.9/tests/test_016/TEST_820.OUT_0000644002504400250440000000210014762655566020606 0ustar00dewhurstdewhurst00000000000000'Coupled tensor moments' 2 33 0.500000000000E-03 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.00000000000 5 0.00000000000 6 0.00000000000 7 0.00000000000 8 0.00000000000 9 0.00000000000 10 0.442218952700E-02 11 -0.732824144097E-02 12 -0.189807256078E-03 13 0.936288510969E-02 14 0.858124505280E-02 15 -0.769452091945E-02 16 -0.207352727886E-03 17 -0.109294856922E-01 18 -0.369506643500E-02 19 0.771640152187E-02 20 0.390089214875E-03 21 0.936288510969E-02 22 0.219707701647E-01 23 0.684774538860E-02 24 0.127942530000E-04 25 0.00000000000 26 0.00000000000 27 0.00000000000 28 0.00000000000 29 0.00000000000 30 0.00000000000 31 0.00000000000 32 0.00000000000 33 0.00000000000 elk-10.4.9/tests/test_016/PaxHeaders/elk.in0000644000000000000000000000013214762655566015276 xustar0030 mtime=1741380470.307018074 30 atime=1741380470.307018074 30 ctime=1741380470.307018074 elk-10.4.9/tests/test_016/elk.in0000644002504400250440000000134214762655566020020 0ustar00dewhurstdewhurst00000000000000 ! DFT+U test tasks 0 400 500 test .true. maxscl 10 mixtype 1 swidth 0.01 dft+u 1 5 : dftu,inpdftu 1 3 0.1469972 : is, l, U fixed spinpol .true. spinorb .true. scale 10.36175041 avec 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 atoms 2 : nspecies 'U.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 'S.in' : spfname 1 : natoms 0.5 0.5 0.5 0.0 0.0 0.0 : atposl, bfcmt bfieldc -2.0 -2.0 -2.0 reducebf 0.5 sppath '../../species/' ngridk 2 2 2 vkloff 0.25 0.5 0.625 elk-10.4.9/tests/PaxHeaders/test_0200000644000000000000000000000013214762655566014111 xustar0030 mtime=1741380470.325018168 30 atime=1741380470.309018084 30 ctime=1741380470.325018168 elk-10.4.9/tests/test_020/0000755002504400250440000000000014762655566016710 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_020/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016061 xustar0030 mtime=1741380470.310018089 30 atime=1741380470.310018089 30 ctime=1741380470.310018089 elk-10.4.9/tests/test_020/TEST_500.OUT_0000644002504400250440000000013514762655566020602 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.941507641711E-03 elk-10.4.9/tests/test_020/PaxHeaders/TEST_510.OUT_0000644000000000000000000000012414762655566016063 xustar0028 mtime=1741380470.3120181 28 atime=1741380470.3120181 28 ctime=1741380470.3120181 elk-10.4.9/tests/test_020/TEST_510.OUT_0000644002504400250440000000014514762655566020604 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.329783733606 elk-10.4.9/tests/test_020/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013014762655566016066 xustar0029 mtime=1741380470.31401811 30 atime=1741380470.313018105 29 ctime=1741380470.31401811 elk-10.4.9/tests/test_020/TEST_705.OUT_0000644002504400250440000000010114762655566020602 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests/test_020/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.315018116 30 atime=1741380470.315018116 30 ctime=1741380470.315018116 elk-10.4.9/tests/test_020/TEST_900.OUT_0000644002504400250440000000007014762655566020604 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3215 elk-10.4.9/tests/test_020/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.317018126 30 atime=1741380470.317018126 30 ctime=1741380470.317018126 elk-10.4.9/tests/test_020/TEST_910.OUT_0000644002504400250440000000144714762655566020616 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.206465308646 5 0.206465308646 6 -0.206465308646 7 0.412930617293 8 0.412930617293 9 -0.412930617293 10 0.412930617293 11 0.00000000000 12 0.00000000000 13 0.619395925939 14 0.206465308646 15 -0.206465308646 16 0.825861234586 17 0.412930617293 18 -0.412930617293 19 0.825861234586 20 0.00000000000 21 0.00000000000 22 0.825861234586 23 0.412930617293 24 0.00000000000 elk-10.4.9/tests/test_020/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016060 xustar0030 mtime=1741380470.319018137 30 atime=1741380470.319018137 30 ctime=1741380470.319018137 elk-10.4.9/tests/test_020/TEST_400.OUT_0000644002504400250440000000014114762655566020576 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 12.0272611634 elk-10.4.9/tests/test_020/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016054 xustar0030 mtime=1741380470.321018147 30 atime=1741380470.320018142 30 ctime=1741380470.321018147 elk-10.4.9/tests/test_020/TEST_000.OUT_0000644002504400250440000000012614762655566020575 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -106.987146352 elk-10.4.9/tests/test_020/PaxHeaders/elk.in0000644000000000000000000000013214762655566015271 xustar0030 mtime=1741380470.322018152 30 atime=1741380470.322018152 30 ctime=1741380470.322018152 elk-10.4.9/tests/test_020/elk.in0000644002504400250440000000054414762655566020016 0ustar00dewhurstdewhurst00000000000000 tasks 0 600 610 500 test .true. xctype 30 gmaxrf 3.0 tempk 5000.0 nempty 6 wplot 200 100 0 -0.1 0.3 avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../species/' atoms 2 'Li.in' 1 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 ngridk 4 4 4 ngridq 2 2 2 elk-10.4.9/tests/test_020/PaxHeaders/TEST_700.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.324018163 30 atime=1741380470.324018163 30 ctime=1741380470.324018163 elk-10.4.9/tests/test_020/TEST_700.OUT_0000644002504400250440000000026414762655566020607 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 3 0.100000000000E-07 1 216.963990922 2 28.1249542511 3 19.7640709318 elk-10.4.9/tests/test_020/PaxHeaders/TEST_610.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.326018173 30 atime=1741380470.325018168 30 ctime=1741380470.326018173 elk-10.4.9/tests/test_020/TEST_610.OUT_0000644002504400250440000001417514762655566020615 0ustar00dewhurstdewhurst00000000000000'total GW spectral function' 2 200 0.500000000000E-01 1 0.582909682290 2 0.575934830850 3 0.569183643190 4 0.562648241073 5 0.556321094336 6 0.550194879645 7 0.544262527213 8 0.538525985289 9 0.532952747456 10 0.527565375891 11 0.522347608707 12 0.517294098286 13 0.512400215777 14 0.507661301852 15 0.503072770638 16 0.498630199810 17 0.494329285729 18 0.490165818860 19 0.486135953955 20 0.482235960935 21 0.478462009416 22 0.474810856703 23 0.471279894739 24 0.467865646778 25 0.464565075262 26 0.461375561051 27 0.458294371104 28 0.455318880625 29 0.452446585326 30 0.449674915858 31 0.447000847116 32 0.444423534782 33 0.441939162354 34 0.439547291402 35 0.437246051243 36 0.435032073034 37 0.432904817959 38 0.430863773858 39 0.428919306439 40 0.427025703816 41 0.425230214344 42 0.423517592156 43 0.421884362851 44 0.420327299113 45 0.418845524313 46 0.417437841015 47 0.416103236441 48 0.414840860416 49 0.413649998887 50 0.412529753923 51 0.411477541257 52 0.410493647315 53 0.409572708946 54 0.408736466211 55 0.407970728627 56 0.407274053087 57 0.406618600745 58 0.406041598613 59 0.405530044220 60 0.405081673473 61 0.404700060080 62 0.404395085221 63 0.404117698396 64 0.403940915458 65 0.403824693916 66 0.403765158721 67 0.403769878597 68 0.403841888325 69 0.403981018694 70 0.404180422077 71 0.404445603953 72 0.404779184859 73 0.405172811159 74 0.405632680150 75 0.406159609584 76 0.406751786352 77 0.407414530825 78 0.408147569792 79 0.408946897705 80 0.409815574961 81 0.410754394784 82 0.411764048815 83 0.412846179752 84 0.414001156975 85 0.415230280632 86 0.416534784766 87 0.417915855795 88 0.419374702474 89 0.420912679432 90 0.422532009366 91 0.424233928461 92 0.426021310304 93 0.427893277177 94 0.429854237836 95 0.431905120649 96 0.434050352251 97 0.436287274037 98 0.438623097966 99 0.441059185881 100 0.443598230257 101 0.446243239842 102 0.448997377870 103 0.451863853228 104 0.454845019541 105 0.457938836979 106 0.461176571590 107 0.464535228554 108 0.468025520006 109 0.471653366549 110 0.475423048630 111 0.479337653409 112 0.483410515673 113 0.487661994633 114 0.492078580836 115 0.496670066142 116 0.501446001746 117 0.506415923650 118 0.511589675169 119 0.516977669132 120 0.522591121560 121 0.528442226631 122 0.534544030089 123 0.540910755145 124 0.547557877535 125 0.554502270225 126 0.561762481459 127 0.569359251164 128 0.577316394669 129 0.585661688599 130 0.594426441814 131 0.603643454864 132 0.613346429582 133 0.623572330269 134 0.634363884139 135 0.645770716338 136 0.657849993116 137 0.670667351896 138 0.684298276542 139 0.698829856399 140 0.714362930092 141 0.731014845112 142 0.748923282045 143 0.768251037904 144 0.789191506268 145 0.811975617154 146 0.836880547434 147 0.864240338648 148 0.894464896966 149 0.928036766077 150 0.965542741895 151 1.00768182565 152 1.05526871355 153 1.10921443133 154 1.17045799543 155 1.23980450425 156 1.31760402201 157 1.40320377783 158 1.49418586195 159 1.58562224211 160 1.67002555175 161 1.73896157857 162 1.78634920883 163 1.81170764543 164 1.82070604166 165 1.82252330945 166 1.82630969912 167 1.83903632241 168 1.86515995289 169 1.90732071297 170 1.96720068910 171 2.04622254383 172 2.14602309029 173 2.26876197599 174 2.41733597008 175 2.59554492317 176 2.80822636364 177 3.06131919226 178 3.36180267305 179 3.71736247693 180 4.13523760839 181 4.62025942751 182 5.17099200395 183 5.77395649011 184 6.39709293935 185 6.98677714084 186 7.47565073060 187 7.80512583190 188 7.95249892020 189 7.94069874740 190 7.81985026818 191 7.63597216196 192 7.41145334829 193 7.14786946514 194 6.84390692576 195 6.51116671668 196 6.17618390044 197 5.87081530864 198 5.62195855356 199 5.44737256190 200 5.35666163775 elk-10.4.9/tests/PaxHeaders/test_0350000644000000000000000000000013214762655566014117 xustar0030 mtime=1741380470.342018257 30 atime=1741380470.327018178 30 ctime=1741380470.342018257 elk-10.4.9/tests/test_035/0000755002504400250440000000000014762655566016716 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_035/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016076 xustar0030 mtime=1741380470.329018189 30 atime=1741380470.328018184 30 ctime=1741380470.329018189 elk-10.4.9/tests/test_035/TEST_705.OUT_0000644002504400250440000000010114762655566020610 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 6 elk-10.4.9/tests/test_035/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.330018194 30 atime=1741380470.330018194 30 ctime=1741380470.330018194 elk-10.4.9/tests/test_035/TEST_900.OUT_0000644002504400250440000000007014762655566020612 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 330827 elk-10.4.9/tests/test_035/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.332018204 30 atime=1741380470.332018204 30 ctime=1741380470.332018204 elk-10.4.9/tests/test_035/TEST_910.OUT_0000644002504400250440000000037114762655566020617 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 6 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.506538463806 5 -0.292450118433 6 0.00000000000 elk-10.4.9/tests/test_035/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013114762655566016066 xustar0030 mtime=1741380470.334018215 29 atime=1741380470.33301821 30 ctime=1741380470.334018215 elk-10.4.9/tests/test_035/TEST_500.OUT_0000644002504400250440000000013514762655566020610 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 125.246550484 elk-10.4.9/tests/test_035/PaxHeaders/TEST_510.OUT_0000644000000000000000000000012714762655566016074 xustar0029 mtime=1741380470.33501822 29 atime=1741380470.33501822 29 ctime=1741380470.33501822 elk-10.4.9/tests/test_035/TEST_510.OUT_0000644002504400250440000000014514762655566020612 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.765132214825E-02 elk-10.4.9/tests/test_035/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.337018231 30 atime=1741380470.337018231 30 ctime=1741380470.337018231 elk-10.4.9/tests/test_035/TEST_400.OUT_0000644002504400250440000000014114762655566020604 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 283.954062028 elk-10.4.9/tests/test_035/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.339018241 30 atime=1741380470.339018241 30 ctime=1741380470.339018241 elk-10.4.9/tests/test_035/TEST_450.OUT_0000644002504400250440000000014014762655566020610 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.198856466556E-21 elk-10.4.9/tests/test_035/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.341018252 30 atime=1741380470.341018252 30 ctime=1741380470.341018252 elk-10.4.9/tests/test_035/TEST_000.OUT_0000644002504400250440000000012614762655566020603 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -41880.6041899 elk-10.4.9/tests/test_035/PaxHeaders/elk.in0000644000000000000000000000013214762655566015277 xustar0030 mtime=1741380470.343018262 30 atime=1741380470.343018262 30 ctime=1741380470.343018262 elk-10.4.9/tests/test_035/elk.in0000644002504400250440000000121614762655566020021 0ustar00dewhurstdewhurst00000000000000 ! Electric field applied to WeS2 bilayers. tasks 0 500 test .true. maxscl 4 efieldc 0.0 0.0 0.04 dmaxefc 15.0 gmaxvr 20.0 spinorb .true. nempty 4 xctype 21 ngridk 2 2 1 swidth 0.01 avec 0.5 -0.866025403784 0.0 0.5 0.866025403784 0.0 0.0 0.0 3.0 scale 6.20208114106 scale3 3.94881170018 sppath '../../species/' atoms 2 'W.in' 2 -0.333333333333 0.333333333333 0.417 0.333333333333 -0.333333333333 0.583 'Se.in' 4 0.333333333333 -0.333333333333 0.3740 0.333333333333 -0.333333333333 0.4600 -0.333333333333 0.333333333333 0.5400 -0.333333333333 0.333333333333 0.6260 elk-10.4.9/tests/PaxHeaders/test_0240000644000000000000000000000013014762655566014113 xustar0029 mtime=1741380470.35801834 30 atime=1741380470.344018267 29 ctime=1741380470.35801834 elk-10.4.9/tests/test_024/0000755002504400250440000000000014762655566016714 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_024/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.346018278 30 atime=1741380470.345018272 30 ctime=1741380470.346018278 elk-10.4.9/tests/test_024/TEST_705.OUT_0000644002504400250440000000010114762655566020606 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 2 elk-10.4.9/tests/test_024/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.347018283 30 atime=1741380470.347018283 30 ctime=1741380470.347018283 elk-10.4.9/tests/test_024/TEST_900.OUT_0000644002504400250440000000007014762655566020610 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 22257 elk-10.4.9/tests/test_024/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.349018293 30 atime=1741380470.349018293 30 ctime=1741380470.349018293 elk-10.4.9/tests/test_024/TEST_910.OUT_0000644002504400250440000000052614762655566020617 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 9 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.338173181022 5 -0.195244417682 6 0.00000000000 7 0.676346362044 8 0.00000000000 9 0.00000000000 elk-10.4.9/tests/test_024/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.351018304 30 atime=1741380470.350018299 30 ctime=1741380470.351018304 elk-10.4.9/tests/test_024/TEST_500.OUT_0000644002504400250440000000013514762655566020606 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.999995317730E-07 elk-10.4.9/tests/test_024/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.353018314 30 atime=1741380470.352018309 30 ctime=1741380470.353018314 elk-10.4.9/tests/test_024/TEST_510.OUT_0000644002504400250440000000014514762655566020610 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.211710284491 elk-10.4.9/tests/test_024/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.354018319 30 atime=1741380470.354018319 30 ctime=1741380470.354018319 elk-10.4.9/tests/test_024/TEST_400.OUT_0000644002504400250440000000014114762655566020602 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 89.9177345808 elk-10.4.9/tests/test_024/PaxHeaders/TEST_000.OUT_0000644000000000000000000000012714762655566016064 xustar0029 mtime=1741380470.35601833 29 atime=1741380470.35601833 29 ctime=1741380470.35601833 elk-10.4.9/tests/test_024/TEST_000.OUT_0000644002504400250440000000012614762655566020601 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1316.38414694 elk-10.4.9/tests/test_024/PaxHeaders/elk.in0000644000000000000000000000013114762655566015274 xustar0030 mtime=1741380470.359018346 29 atime=1741380470.35801834 30 ctime=1741380470.359018346 elk-10.4.9/tests/test_024/elk.in0000644002504400250440000000077114762655566020024 0ustar00dewhurstdewhurst00000000000000 tasks 0 500 test .true. rgkmax 6.0 lmaxi 3 ngridk 2 2 1 avec 4.644946479927 -8.045281629256 0.0 4.644946479927 8.045281629256 0.0 0.0 0.0 10.21472485866 sppath '../../species/' atoms 2 'Si.in' 3 0.4650 0.0000 0.0000 0.0000 0.4650 0.666666667 0.5350 0.5350 0.333333333 'O.in' 6 0.415 0.272 0.1200 0.728 0.143 0.786666667 0.857 0.585 0.453333333 0.272 0.415 0.546666667 0.143 0.728 0.8800 0.585 0.857 0.213333333 elk-10.4.9/tests/PaxHeaders/test_0260000644000000000000000000000013014762655566014115 xustar0029 mtime=1741380470.37901845 30 atime=1741380470.360018351 29 ctime=1741380470.37901845 elk-10.4.9/tests/test_026/0000755002504400250440000000000014762655566016716 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_026/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016076 xustar0030 mtime=1741380470.362018361 30 atime=1741380470.362018361 30 ctime=1741380470.362018361 elk-10.4.9/tests/test_026/TEST_705.OUT_0000644002504400250440000000010114762655566020610 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests/test_026/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.364018372 30 atime=1741380470.363018367 30 ctime=1741380470.364018372 elk-10.4.9/tests/test_026/TEST_910.OUT_0000644002504400250440000000531014762655566020615 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 87 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.118211644100 5 0.118211644100 6 -0.118211644100 7 0.236423288199 8 0.236423288199 9 -0.236423288199 10 0.354634932299 11 0.354634932299 12 -0.354634932299 13 0.472846576398 14 0.472846576398 15 -0.472846576398 16 0.236423288199 17 0.00000000000 18 0.00000000000 19 0.354634932299 20 0.118211644100 21 -0.118211644100 22 0.472846576398 23 0.236423288199 24 -0.236423288199 25 0.591058220498 26 0.354634932299 27 -0.354634932299 28 0.709269864597 29 0.472846576398 30 -0.472846576398 31 0.827481508697 32 0.591058220498 33 -0.591058220498 34 0.945693152796 35 0.709269864597 36 -0.709269864597 37 0.472846576398 38 0.00000000000 39 0.00000000000 40 0.591058220498 41 0.118211644100 42 -0.118211644100 43 0.709269864597 44 0.236423288199 45 -0.236423288199 46 0.827481508697 47 0.354634932299 48 -0.354634932299 49 0.945693152796 50 0.472846576398 51 -0.472846576398 52 0.709269864597 53 0.138777878078E-16 54 -0.138777878078E-16 55 0.827481508697 56 0.118211644100 57 -0.118211644100 58 0.945693152796 59 0.236423288199 60 -0.236423288199 61 0.945693152796 62 0.00000000000 63 0.00000000000 64 0.472846576398 65 0.236423288199 66 0.00000000000 67 0.591058220498 68 0.354634932299 69 -0.118211644100 70 0.709269864597 71 0.472846576398 72 -0.236423288199 73 0.709269864597 74 0.236423288199 75 -0.138777878078E-16 76 0.827481508697 77 0.354634932299 78 -0.118211644100 79 0.945693152796 80 0.472846576398 81 -0.236423288199 82 0.945693152796 83 0.236423288199 84 0.00000000000 85 0.945693152796 86 0.472846576398 87 0.00000000000 elk-10.4.9/tests/test_026/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.366018382 30 atime=1741380470.365018377 30 ctime=1741380470.366018382 elk-10.4.9/tests/test_026/TEST_900.OUT_0000644002504400250440000000007014762655566020612 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2109 elk-10.4.9/tests/test_026/PaxHeaders/elk.in0000644000000000000000000000013214762655566015277 xustar0030 mtime=1741380470.367018387 30 atime=1741380470.367018387 30 ctime=1741380470.367018387 elk-10.4.9/tests/test_026/elk.in0000644002504400250440000000104414762655566020020 0ustar00dewhurstdewhurst00000000000000 ! Twice-integrated electron momentum density (EMD) plot for ferromagnetic Ni. tasks 0 170 171 500 test .true. plot1d 2 10 0.0 0.0 0.0 1.0 1.0 0.0 hkmax 4.d0 ngridk 8 8 8 spinpol .true. bfieldc 0.0 0.0 -0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.322 sppath '../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/tests/test_026/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.369018398 30 atime=1741380470.369018398 30 ctime=1741380470.369018398 elk-10.4.9/tests/test_026/TEST_500.OUT_0000644002504400250440000000013514762655566020610 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 50.8033632728 elk-10.4.9/tests/test_026/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.371018408 30 atime=1741380470.371018408 30 ctime=1741380470.371018408 elk-10.4.9/tests/test_026/TEST_510.OUT_0000644002504400250440000000014514762655566020612 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.137839249992E-02 elk-10.4.9/tests/test_026/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.373018419 30 atime=1741380470.372018414 30 ctime=1741380470.373018419 elk-10.4.9/tests/test_026/TEST_400.OUT_0000644002504400250440000000014114762655566020604 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9938370153 elk-10.4.9/tests/test_026/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.374018424 30 atime=1741380470.374018424 30 ctime=1741380470.374018424 elk-10.4.9/tests/test_026/TEST_450.OUT_0000644002504400250440000000014014762655566020610 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.698965619499 elk-10.4.9/tests/test_026/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.376018435 30 atime=1741380470.376018435 30 ctime=1741380470.376018435 elk-10.4.9/tests/test_026/TEST_000.OUT_0000644002504400250440000000012614762655566020603 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1518.39245095 elk-10.4.9/tests/test_026/PaxHeaders/TEST_170.OUT_0000644000000000000000000000013114762655566016071 xustar0030 mtime=1741380470.378018445 29 atime=1741380470.37701844 30 ctime=1741380470.378018445 elk-10.4.9/tests/test_026/TEST_170.OUT_0000644002504400250440000000516014762655566020616 0ustar00dewhurstdewhurst00000000000000'electron momentum density' 2 84 0.100000000000E-03 1 0.628155170671 2 0.152156351464 3 0.628155021851 4 0.398370959525 5 0.152153829910 6 0.398370971532 7 0.228536924300 8 0.628154952782 9 0.228536045552 10 0.228538259757 11 0.113953026581 12 0.228534907398 13 0.628154966217 14 0.398370973146 15 0.182033960394 16 0.597159137212E-01 17 0.182033951302 18 0.426971989280E-01 19 0.228534671222 20 0.946583282280E-01 21 0.228538194588 22 0.597162888335E-01 23 0.956073886349E-01 24 0.152155583392 25 0.398370966643 26 0.946598631075E-01 27 0.152154411820 28 0.597167268250E-01 29 0.152153885456 30 0.392638083965E-01 31 0.496020904169E-01 32 0.113953028758 33 0.781273860438E-01 34 0.946580621175E-01 35 0.496018552070E-01 36 0.388402125260E-01 37 0.388410107780E-01 38 0.113953037023 39 0.228536948132 40 0.152156158564 41 0.956073897551E-01 42 0.956073870362E-01 43 0.182033952548 44 0.392637319573E-01 45 0.182033968610 46 0.946600424804E-01 47 0.228536108439 48 0.597154369373E-01 49 0.781273874355E-01 50 0.152154510267 51 0.496021393310E-01 52 0.496017234577E-01 53 0.152155746474 54 0.946582973646E-01 55 0.946597812104E-01 56 0.392641175952E-01 57 0.781273842938E-01 58 0.113953037410 59 0.392634352915E-01 60 0.946580651393E-01 61 0.426972087394E-01 62 0.388409887954E-01 63 0.496017637544E-01 64 0.496020689407E-01 65 0.426972046295E-01 66 0.388402169765E-01 67 0.597154431408E-01 68 0.946600827706E-01 69 0.597167532137E-01 70 0.392641085724E-01 71 0.388409800773E-01 72 0.426972064101E-01 73 0.388402220464E-01 74 0.392634186009E-01 75 0.781273846383E-01 76 0.597158392373E-01 77 0.597163176808E-01 78 0.956073808833E-01 79 0.388402307728E-01 80 0.496021727375E-01 81 0.496017408126E-01 82 0.388410024728E-01 83 0.392638011511E-01 84 0.392637391406E-01 elk-10.4.9/tests/test_026/PaxHeaders/TEST_171.OUT_0000644000000000000000000000013114762655566016072 xustar0030 mtime=1741380470.380018455 29 atime=1741380470.37901845 30 ctime=1741380470.380018455 elk-10.4.9/tests/test_026/TEST_171.OUT_0000644002504400250440000000573114762655566020623 0ustar00dewhurstdewhurst00000000000000'integrated EMD' 2 96 0.100000000000E-03 1 0.220450269116E-01 2 0.632823047433E-01 3 0.101418152398 4 0.134024696810 5 0.165793447182 6 0.196798836483 7 0.228647564411 8 0.259312844632 9 0.286260464751 10 0.310402733824 11 0.336895555688 12 0.366555414859 13 0.399440493043 14 0.433417283410 15 0.470218051925 16 0.516556764073 17 0.571068974808 18 0.631663876765 19 0.698729922263 20 0.775592159099 21 0.859946602105 22 0.946926873306 23 1.03539613714 24 1.11971048839 25 1.20491953316 26 1.29394283330 27 1.38907939193 28 1.48575780583 29 1.57748276467 30 1.64724966190 31 1.71426866860 32 1.78646053604 33 1.87576614529 34 1.97764219580 35 2.07410466001 36 2.16699910175 37 2.28049751950 38 2.47844718766 39 2.74661606370 40 3.05487252871 41 3.32859154284 42 3.58952271542 43 3.82725387094 44 3.97780899922 45 4.09759776056 46 4.18996596139 47 4.27143882572 48 4.35529135657 49 4.35529135510 50 4.27143874371 51 4.18996533530 52 4.09759635261 53 3.97780763016 54 3.82725353469 55 3.58952277911 56 3.32859170431 57 3.05487287301 58 2.74661621339 59 2.47844727112 60 2.28049752029 61 2.16699914612 62 2.07410462223 63 1.97764223999 64 1.87576624847 65 1.78646061639 66 1.71426832482 67 1.64724946661 68 1.57748273203 69 1.48575834992 70 1.38908218456 71 1.29394830609 72 1.20492232539 73 1.11971132907 74 1.03539668156 75 0.946927728867 76 0.859947211441 77 0.775592148309 78 0.698729847373 79 0.631663764299 80 0.571068906676 81 0.516556725778 82 0.470218049446 83 0.433417289027 84 0.399440502493 85 0.366555434554 86 0.336895575218 87 0.310402764064 88 0.286260366117 89 0.259312532262 90 0.228647253789 91 0.196798700559 92 0.165793300254 93 0.134024375431 94 0.101417833504 95 0.632821641983E-01 96 0.220449994093E-01 elk-10.4.9/tests/PaxHeaders/test_0300000644000000000000000000000013014762655566014110 xustar0029 mtime=1741380470.40001856 30 atime=1741380470.381018461 29 ctime=1741380470.40001856 elk-10.4.9/tests/test_030/0000755002504400250440000000000014762655566016711 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_030/PaxHeaders/elk.in0000644000000000000000000000013214762655566015272 xustar0030 mtime=1741380470.383018471 30 atime=1741380470.382018466 30 ctime=1741380470.383018471 elk-10.4.9/tests/test_030/elk.in0000644002504400250440000000120614762655566020013 0ustar00dewhurstdewhurst00000000000000 ! Spin-unpolarised TDDFT+U time evolution test tasks 0 450 460 500 test .true. dft+u 1 1 1 2 0.183 0.034911967 tshift .false. rgkmax 8.0 gmaxvr 14.0 epspot 1.e-7 epsengy 1.e-6 ngridk 4 4 4 nempty 8 tstime 40.0 dtimes 0.2 pulse 1 0.0 0.0 250.0 0.03 0.0 0.0 20.0 10.0 ntswrite 0 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 8.1787 sppath '../../species/' atoms 2 : nspecies 'Ti.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'C.in' 1 0.5 0.5 0.5 elk-10.4.9/tests/test_030/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.384018477 30 atime=1741380470.384018477 30 ctime=1741380470.384018477 elk-10.4.9/tests/test_030/TEST_705.OUT_0000644002504400250440000000010114762655566020603 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 8 elk-10.4.9/tests/test_030/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.386018487 30 atime=1741380470.386018487 30 ctime=1741380470.386018487 elk-10.4.9/tests/test_030/TEST_900.OUT_0000644002504400250440000000007014762655566020605 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 6375 elk-10.4.9/tests/test_030/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.388018497 30 atime=1741380470.388018497 30 ctime=1741380470.388018497 elk-10.4.9/tests/test_030/TEST_910.OUT_0000644002504400250440000000331114762655566020607 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 54 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.192059413696 5 0.192059413696 6 -0.192059413696 7 0.384118827392 8 0.384118827392 9 -0.384118827392 10 0.576178241088 11 0.576178241088 12 -0.576178241088 13 0.384118827392 14 0.00000000000 15 0.00000000000 16 0.576178241088 17 0.192059413696 18 -0.192059413696 19 0.768237654784 20 0.384118827392 21 -0.384118827392 22 0.576178241088 23 -0.192059413696 24 0.192059413696 25 0.768237654784 26 0.00000000000 27 0.00000000000 28 0.768237654784 29 -0.384118827392 30 0.384118827392 31 0.00000000000 32 0.00000000000 33 0.384118827392 34 0.384118827392 35 0.384118827392 36 0.00000000000 37 0.576178241088 38 0.576178241088 39 -0.192059413696 40 0.768237654784 41 0.384118827392 42 0.00000000000 43 0.768237654784 44 -0.277555756156E-16 45 0.384118827392 46 0.00000000000 47 0.00000000000 48 0.768237654784 49 0.576178241088 50 0.576178241088 51 0.192059413696 52 0.277555756156E-16 53 -0.277555756156E-16 54 1.15235648218 elk-10.4.9/tests/test_030/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.390018508 30 atime=1741380470.389018502 30 ctime=1741380470.390018508 elk-10.4.9/tests/test_030/TEST_500.OUT_0000644002504400250440000000013514762655566020603 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 76.4634790714 elk-10.4.9/tests/test_030/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.391018513 30 atime=1741380470.391018513 30 ctime=1741380470.391018513 elk-10.4.9/tests/test_030/TEST_510.OUT_0000644002504400250440000000014514762655566020605 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.197229682365E-02 elk-10.4.9/tests/test_030/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016061 xustar0030 mtime=1741380470.393018523 30 atime=1741380470.393018523 30 ctime=1741380470.393018523 elk-10.4.9/tests/test_030/TEST_400.OUT_0000644002504400250440000000014114762655566020577 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 28.0028595737 elk-10.4.9/tests/test_030/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.395018534 30 atime=1741380470.394018529 30 ctime=1741380470.395018534 elk-10.4.9/tests/test_030/TEST_800.OUT_0000644002504400250440000000014414762655566020606 0ustar00dewhurstdewhurst00000000000000'DFT+U energy for each atom' 2 1 0.100000000000E-03 1 0.160999134471E-01 elk-10.4.9/tests/test_030/PaxHeaders/TEST_810.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.397018544 30 atime=1741380470.396018539 30 ctime=1741380470.397018544 elk-10.4.9/tests/test_030/TEST_810.OUT_0000644002504400250440000000017314762655566020611 0ustar00dewhurstdewhurst00000000000000'U and J parameters' 2 2 0.100000000000E-03 1 0.183000000000 2 0.349119670000E-01 elk-10.4.9/tests/test_030/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016055 xustar0030 mtime=1741380470.399018555 30 atime=1741380470.399018555 30 ctime=1741380470.399018555 elk-10.4.9/tests/test_030/TEST_000.OUT_0000644002504400250440000000012614762655566020576 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -885.858321873 elk-10.4.9/tests/test_030/PaxHeaders/TEST_460.OUT_0000644000000000000000000000013114762655566016066 xustar0030 mtime=1741380470.401018565 29 atime=1741380470.40001856 30 ctime=1741380470.401018565 elk-10.4.9/tests/test_030/TEST_460.OUT_0000644002504400250440000000024714762655566020614 0ustar00dewhurstdewhurst00000000000000'total current of last time step' 2 3 0.500000000000E-03 1 0.00000000000 2 0.346944695195E-17 3 -0.723109079575E-01 elk-10.4.9/tests/PaxHeaders/test_0320000644000000000000000000000012714762655566014120 xustar0029 mtime=1741380470.42101867 29 atime=1741380470.40201857 29 ctime=1741380470.42101867 elk-10.4.9/tests/test_032/0000755002504400250440000000000014762655566016713 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_032/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.404018581 30 atime=1741380470.403018576 30 ctime=1741380470.404018581 elk-10.4.9/tests/test_032/TEST_910.OUT_0000644002504400250440000000544514762655566020623 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 90 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.461998919646 5 0.00000000000 6 0.00000000000 7 0.923997839291 8 0.00000000000 9 0.00000000000 10 -0.230999459823 11 0.230999459823 12 0.00000000000 13 0.230999459823 14 0.230999459823 15 0.00000000000 16 0.692998379468 17 0.230999459823 18 0.00000000000 19 1.15499729911 20 0.230999459823 21 0.00000000000 22 -0.461998919646 23 0.461998919646 24 0.00000000000 25 0.00000000000 26 0.461998919646 27 0.00000000000 28 0.461998919646 29 0.461998919646 30 0.00000000000 31 0.00000000000 32 0.00000000000 33 0.224399475256 34 0.461998919646 35 0.00000000000 36 0.224399475256 37 0.923997839291 38 0.00000000000 39 0.224399475256 40 -0.230999459823 41 0.230999459823 42 0.224399475256 43 0.230999459823 44 0.230999459823 45 0.224399475256 46 0.692998379468 47 0.230999459823 48 0.224399475256 49 1.15499729911 50 0.230999459823 51 0.224399475256 52 -0.461998919646 53 0.461998919646 54 0.224399475256 55 0.00000000000 56 0.461998919646 57 0.224399475256 58 0.461998919646 59 0.461998919646 60 0.224399475256 61 0.00000000000 62 0.00000000000 63 0.448798950513 64 0.461998919646 65 0.00000000000 66 0.448798950513 67 0.923997839291 68 0.00000000000 69 0.448798950513 70 -0.230999459823 71 0.230999459823 72 0.448798950513 73 0.230999459823 74 0.230999459823 75 0.448798950513 76 0.692998379468 77 0.230999459823 78 0.448798950513 79 1.15499729911 80 0.230999459823 81 0.448798950513 82 -0.461998919646 83 0.461998919646 84 0.448798950513 85 0.00000000000 86 0.461998919646 87 0.448798950513 88 0.461998919646 89 0.461998919646 90 0.448798950513 elk-10.4.9/tests/test_032/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.406018591 30 atime=1741380470.406018591 30 ctime=1741380470.406018591 elk-10.4.9/tests/test_032/TEST_705.OUT_0000644002504400250440000000010114762655566020605 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 4 elk-10.4.9/tests/test_032/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.408018602 30 atime=1741380470.408018602 30 ctime=1741380470.408018602 elk-10.4.9/tests/test_032/TEST_900.OUT_0000644002504400250440000000007014762655566020607 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 4735 elk-10.4.9/tests/test_032/PaxHeaders/elk.in0000644000000000000000000000013214762655566015274 xustar0030 mtime=1741380470.410018612 30 atime=1741380470.410018612 30 ctime=1741380470.410018612 elk-10.4.9/tests/test_032/elk.in0000644002504400250440000000122614762655566020017 0ustar00dewhurstdewhurst00000000000000 ! Test of the magnetic anisotropy energy (MAE) for Fe_(1-x)Co_x where x = 1/2 ! and the unit cell is tetragonal of L1_0 type. tasks 28 500 test .true. npmae 3 ! very tight convergence required epspot 1.e-8 epsengy 1.e-6 rgkmax 8.0 ngridk 4 4 4 swidth 0.01 mixtype 3 ! artificial strained lattice avec 0.5 0.5 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale1 6.8 scale2 6.8 scale3 7.0 sppath '../../species/' atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'Co.in' 1 0.0 0.5 0.5 elk-10.4.9/tests/test_032/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.412018623 30 atime=1741380470.412018623 30 ctime=1741380470.412018623 elk-10.4.9/tests/test_032/TEST_500.OUT_0000644002504400250440000000013514762655566020605 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 94.7398990826 elk-10.4.9/tests/test_032/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.414018633 30 atime=1741380470.414018633 30 ctime=1741380470.414018633 elk-10.4.9/tests/test_032/TEST_510.OUT_0000644002504400250440000000014514762655566020607 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.355300949165E-03 elk-10.4.9/tests/test_032/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.416018644 30 atime=1741380470.415018638 30 ctime=1741380470.416018644 elk-10.4.9/tests/test_032/TEST_400.OUT_0000644002504400250440000000014114762655566020601 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 52.9928739545 elk-10.4.9/tests/test_032/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.418018654 30 atime=1741380470.417018649 30 ctime=1741380470.418018654 elk-10.4.9/tests/test_032/TEST_450.OUT_0000644002504400250440000000014014762655566020605 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 3.19534904622 elk-10.4.9/tests/test_032/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016057 xustar0030 mtime=1741380470.420018665 30 atime=1741380470.419018659 30 ctime=1741380470.420018665 elk-10.4.9/tests/test_032/TEST_000.OUT_0000644002504400250440000000012614762655566020600 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -2661.73430088 elk-10.4.9/tests/test_032/PaxHeaders/TEST_028.OUT_0000644000000000000000000000012714762655566016075 xustar0029 mtime=1741380470.42101867 29 atime=1741380470.42101867 29 ctime=1741380470.42101867 elk-10.4.9/tests/test_032/TEST_028.OUT_0000644002504400250440000000014414762655566020612 0ustar00dewhurstdewhurst00000000000000'magnetic anisotropy energy' 2 1 0.100000000000E-04 1 0.155955176524E-04 elk-10.4.9/tests/PaxHeaders/test_0220000644000000000000000000000013214762655566014113 xustar0030 mtime=1741380470.440018769 30 atime=1741380470.422018675 30 ctime=1741380470.440018769 elk-10.4.9/tests/test_022/0000755002504400250440000000000014762655566016712 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_022/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.424018686 30 atime=1741380470.424018686 30 ctime=1741380470.424018686 elk-10.4.9/tests/test_022/TEST_910.OUT_0000644002504400250440000001052214762655566020612 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 141 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.943421217294E-01 5 0.943421217294E-01 6 -0.943421217294E-01 7 0.188684243459 8 0.188684243459 9 -0.188684243459 10 0.283026365188 11 0.283026365188 12 -0.283026365188 13 0.377368486918 14 0.377368486918 15 -0.377368486918 16 0.471710608647 17 0.471710608647 18 -0.471710608647 19 0.188684243459 20 -0.308963289789E-17 21 0.308963289789E-17 22 0.283026365188 23 0.943421217294E-01 24 -0.943421217294E-01 25 0.377368486918 26 0.188684243459 27 -0.188684243459 28 0.471710608647 29 0.283026365188 30 -0.283026365188 31 0.566052730377 32 0.377368486918 33 -0.377368486918 34 0.660394852106 35 0.471710608647 36 -0.471710608647 37 0.754736973835 38 0.566052730377 39 -0.566052730377 40 0.849079095565 41 0.660394852106 42 -0.660394852106 43 0.943421217294 44 0.754736973835 45 -0.754736973835 46 0.377368486918 47 -0.617926579578E-17 48 0.617926579578E-17 49 0.471710608647 50 0.943421217294E-01 51 -0.943421217294E-01 52 0.566052730377 53 0.188684243459 54 -0.188684243459 55 0.660394852106 56 0.283026365188 57 -0.283026365188 58 0.754736973835 59 0.377368486918 60 -0.377368486918 61 0.849079095565 62 0.471710608647 63 -0.471710608647 64 0.943421217294 65 0.566052730377 66 -0.566052730377 67 0.566052730377 68 -0.215763098199E-16 69 0.215763098199E-16 70 0.660394852106 71 0.943421217294E-01 72 -0.943421217294E-01 73 0.754736973835 74 0.188684243459 75 -0.188684243459 76 0.849079095565 77 0.283026365188 78 -0.283026365188 79 0.943421217294 80 0.377368486918 81 -0.377368486918 82 0.754736973835 83 -0.123585315916E-16 84 0.123585315916E-16 85 0.849079095565 86 0.943421217294E-01 87 -0.943421217294E-01 88 0.943421217294 89 0.188684243459 90 -0.188684243459 91 0.943421217294 92 0.00000000000 93 0.00000000000 94 0.377368486918 95 0.188684243459 96 0.385437305256E-16 97 0.471710608647 98 0.283026365188 99 -0.943421217294E-01 100 0.566052730377 101 0.377368486918 102 -0.188684243459 103 0.660394852106 104 0.471710608647 105 -0.283026365188 106 0.566052730377 107 0.188684243459 108 -0.308963289789E-17 109 0.660394852106 110 0.283026365188 111 -0.943421217294E-01 112 0.754736973835 113 0.377368486918 114 -0.188684243459 115 0.849079095565 116 0.471710608647 117 -0.283026365188 118 0.943421217294 119 0.566052730377 120 -0.377368486918 121 0.754736973835 122 0.188684243459 123 0.385437305256E-16 124 0.849079095565 125 0.283026365188 126 -0.943421217294E-01 127 0.943421217294 128 0.377368486918 129 -0.188684243459 130 0.943421217294 131 0.188684243459 132 0.246659427177E-16 133 0.754736973835 134 0.377368486918 135 0.770874610511E-16 136 0.849079095565 137 0.471710608647 138 -0.943421217294E-01 139 0.943421217294 140 0.377368486918 141 0.493318854355E-16 elk-10.4.9/tests/test_022/PaxHeaders/elk.in0000644000000000000000000000013214762655566015273 xustar0030 mtime=1741380470.426018696 30 atime=1741380470.426018696 30 ctime=1741380470.426018696 elk-10.4.9/tests/test_022/elk.in0000644002504400250440000000110514762655566020012 0ustar00dewhurstdewhurst00000000000000 ! Magnetic response of fcc nickel. tasks 0 330 500 test .true. nempty 10 lorbcnd .true. emaxrf 1.5 gmaxrf 2.0 wplot 60 100 1 0 0.020 ! q-vector of response function vecql 0.1 0.3 0.0 ngridk 10 10 10 spinpol .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/tests/test_022/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.428018706 30 atime=1741380470.427018701 30 ctime=1741380470.428018706 elk-10.4.9/tests/test_022/TEST_900.OUT_0000644002504400250440000000007014762655566020606 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2109 elk-10.4.9/tests/test_022/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.429018712 30 atime=1741380470.429018712 30 ctime=1741380470.429018712 elk-10.4.9/tests/test_022/TEST_705.OUT_0000644002504400250440000000010114762655566020604 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests/test_022/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.431018722 30 atime=1741380470.431018722 30 ctime=1741380470.431018722 elk-10.4.9/tests/test_022/TEST_500.OUT_0000644002504400250440000000013514762655566020604 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 52.6836013959 elk-10.4.9/tests/test_022/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.432018727 30 atime=1741380470.432018727 30 ctime=1741380470.432018727 elk-10.4.9/tests/test_022/TEST_510.OUT_0000644002504400250440000000014514762655566020606 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.728570714356E-03 elk-10.4.9/tests/test_022/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.434018738 30 atime=1741380470.434018738 30 ctime=1741380470.434018738 elk-10.4.9/tests/test_022/TEST_450.OUT_0000644002504400250440000000014014762655566020604 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.721296730178 elk-10.4.9/tests/test_022/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.436018748 30 atime=1741380470.436018748 30 ctime=1741380470.436018748 elk-10.4.9/tests/test_022/TEST_400.OUT_0000644002504400250440000000014114762655566020600 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9937749054 elk-10.4.9/tests/test_022/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016056 xustar0030 mtime=1741380470.437018753 30 atime=1741380470.437018753 30 ctime=1741380470.437018753 elk-10.4.9/tests/test_022/TEST_000.OUT_0000644002504400250440000000012614762655566020577 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1518.39247900 elk-10.4.9/tests/test_022/PaxHeaders/TEST_700.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.439018764 30 atime=1741380470.439018764 30 ctime=1741380470.439018764 elk-10.4.9/tests/test_022/TEST_700.OUT_0000644002504400250440000000301014762655566020601 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 47 0.100000000000E-07 1 4156.52649632 2 538.808845910 3 122.281077681 4 53.2067305730 5 29.7036699563 6 18.9436528129 7 378.633726982 8 131.915119909 9 59.6996144004 10 33.1294509551 11 20.8866383293 12 24.1480573225 13 39.8247961001 14 76.6221168207 15 191.109192697 16 89.6935829837 17 52.8305196423 18 32.3142045935 19 21.1792161666 20 18.7172333061 21 28.0029635091 22 44.9516730037 23 39.4977235641 24 27.8283415094 25 19.6878350783 26 14.3061427077 27 19.7706217330 28 22.1479831303 29 17.0639418646 30 13.1063464662 31 14.1544228910 32 70.5026233452 33 40.4627055245 34 25.3002738051 35 17.0626173734 36 35.3392864088 37 23.9798340158 38 16.8448151671 39 18.9724996792 40 27.4485942715 41 20.7913378523 42 15.5388968693 43 14.2001311974 44 13.5917268552 45 17.6443345168 46 13.2018441244 47 12.1733944017 elk-10.4.9/tests/test_022/PaxHeaders/TEST_330.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.441018774 30 atime=1741380470.440018769 30 ctime=1741380470.441018774 elk-10.4.9/tests/test_022/TEST_330.OUT_0000644002504400250440000000626314762655566020615 0ustar00dewhurstdewhurst00000000000000'transverse response function' 3 60 0.100000000000E-01 1 0.996546582729 -0.469388694572E-01 2 0.983360886684 -0.497213355301E-01 3 0.971145689018 -0.523130685144E-01 4 0.959223811526 -0.539769907133E-01 5 0.946472779146 -0.552483285985E-01 6 0.932968235610 -0.573207422963E-01 7 0.919440500734 -0.606717907483E-01 8 0.906415604440 -0.655730738181E-01 9 0.895141244431 -0.724924268045E-01 10 0.887940620711 -0.801858427513E-01 11 0.884864249647 -0.846967072698E-01 12 0.881810652586 -0.844472125450E-01 13 0.876982688786 -0.820205192277E-01 14 0.871194489868 -0.777077410002E-01 15 0.862736302716 -0.711698550615E-01 16 0.850467392585 -0.647966772048E-01 17 0.835671867992 -0.604340362460E-01 18 0.819716080986 -0.583219116117E-01 19 0.803266364951 -0.582728979075E-01 20 0.786643921942 -0.602678712270E-01 21 0.770206226906 -0.645610055969E-01 22 0.754731920821 -0.715777790212E-01 23 0.741858447196 -0.813857999151E-01 24 0.733774817432 -0.922264366470E-01 25 0.730222875799 -0.100056457663 26 0.727209738637 -0.103095360546 27 0.721975498127 -0.103019450362 28 0.712960498343 -0.101691124552 29 0.699606928687 -0.102593325697 30 0.684502284175 -0.108768170997 31 0.671119288863 -0.120750431159 32 0.662658015587 -0.137863029463 33 0.662689088431 -0.157635935837 34 0.673277619861 -0.175162283233 35 0.694337826878 -0.183273818086 36 0.717424656914 -0.173003383457 37 0.726959474163 -0.148573385443 38 0.720107959579 -0.124499281404 39 0.704004265803 -0.108188529024 40 0.684869946964 -0.100278273020 41 0.666514152351 -0.995629815852E-01 42 0.651912860249 -0.104182575495 43 0.643027800842 -0.110579645932 44 0.638459346090 -0.114548950791 45 0.634289281782 -0.115223246058 46 0.629011799653 -0.114929320432 47 0.623540831710 -0.114396546693 48 0.617570874917 -0.113388944275 49 0.611228138157 -0.112809544799 50 0.605599343400 -0.111892010646 51 0.599058513388 -0.109459319999 52 0.590229254695 -0.107554270806 53 0.580693699714 -0.107782272857 54 0.571978695219 -0.109487301833 55 0.563943883014 -0.111732525523 56 0.556457387275 -0.115137993034 57 0.551429070043 -0.119342656856 58 0.548595229537 -0.121121941254 59 0.544138096803 -0.120212085890 60 0.537106917367 -0.120057110256 elk-10.4.9/tests/PaxHeaders/test_0340000644000000000000000000000013114762655566014115 xustar0030 mtime=1741380470.458018863 29 atime=1741380470.44201878 30 ctime=1741380470.458018863 elk-10.4.9/tests/test_034/0000755002504400250440000000000014762655566016715 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_034/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013014762655566016071 xustar0029 mtime=1741380470.44401879 30 atime=1741380470.443018785 29 ctime=1741380470.44401879 elk-10.4.9/tests/test_034/TEST_910.OUT_0000644002504400250440000000144714762655566020623 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.207338480306 2 0.207338480306 3 0.103669240153 4 0.622015440917 5 0.207338480306 6 0.103669240153 7 0.207338480306 8 0.622015440917 9 0.103669240153 10 0.622015440917 11 0.622015440917 12 0.103669240153 13 0.207338480306 14 0.207338480306 15 0.311007720458 16 0.622015440917 17 0.207338480306 18 0.311007720458 19 0.207338480306 20 0.622015440917 21 0.311007720458 22 0.622015440917 23 0.622015440917 24 0.311007720458 elk-10.4.9/tests/test_034/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.445018795 30 atime=1741380470.445018795 30 ctime=1741380470.445018795 elk-10.4.9/tests/test_034/TEST_400.OUT_0000644002504400250440000000014114762655566020603 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 102.042622835 elk-10.4.9/tests/test_034/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.447018806 30 atime=1741380470.447018806 30 ctime=1741380470.447018806 elk-10.4.9/tests/test_034/TEST_510.OUT_0000644002504400250440000000014514762655566020611 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.125643767900 elk-10.4.9/tests/test_034/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.449018816 30 atime=1741380470.448018811 30 ctime=1741380470.449018816 elk-10.4.9/tests/test_034/TEST_500.OUT_0000644002504400250440000000013514762655566020607 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.100017339673E-06 elk-10.4.9/tests/test_034/PaxHeaders/elk.in0000644000000000000000000000013214762655566015276 xustar0030 mtime=1741380470.450018821 30 atime=1741380470.450018821 30 ctime=1741380470.450018821 elk-10.4.9/tests/test_034/elk.in0000644002504400250440000000103014762655566020012 0ustar00dewhurstdewhurst00000000000000 ! Test of the magnetoelectric tensor for BaTiO3. tasks 0 390 500 test .true. spinorb .true. lowq .true. nkspolar 2 stable .true. ngridk 2 2 2 avec 7.576 0.0 0.0 0.0 7.576 0.0 0.0 0.0 7.576 sppath '../../species/' atoms 3 : nspecies 'Ba.in' : spfname 1 : natoms; atpos below 0.0 0.0 0.0 'Ti.in' 1 0.5 0.5 0.5 'O.in' 3 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 elk-10.4.9/tests/test_034/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016075 xustar0030 mtime=1741380470.452018832 30 atime=1741380470.452018832 30 ctime=1741380470.452018832 elk-10.4.9/tests/test_034/TEST_705.OUT_0000644002504400250440000000010114762655566020607 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 6 elk-10.4.9/tests/test_034/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.454018842 30 atime=1741380470.453018837 30 ctime=1741380470.454018842 elk-10.4.9/tests/test_034/TEST_900.OUT_0000644002504400250440000000007014762655566020611 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 101505 elk-10.4.9/tests/test_034/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.455018848 30 atime=1741380470.455018848 30 ctime=1741380470.455018848 elk-10.4.9/tests/test_034/TEST_450.OUT_0000644002504400250440000000014014762655566020607 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.295327099338E-04 elk-10.4.9/tests/test_034/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016061 xustar0030 mtime=1741380470.457018858 30 atime=1741380470.457018858 30 ctime=1741380470.457018858 elk-10.4.9/tests/test_034/TEST_000.OUT_0000644002504400250440000000012614762655566020602 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -9209.85126082 elk-10.4.9/tests/test_034/PaxHeaders/TEST_390.OUT_0000644000000000000000000000013214762655566016075 xustar0030 mtime=1741380470.459018868 30 atime=1741380470.459018868 30 ctime=1741380470.459018868 elk-10.4.9/tests/test_034/TEST_390.OUT_0000644002504400250440000000053014762655566020615 0ustar00dewhurstdewhurst00000000000000'Magnetoelectric tensor' 2 9 0.100000000000E-04 1 -0.221653792248E-09 2 0.514687165265E-09 3 -0.125943109524E-09 4 0.440606588424E-06 5 0.105737197875E-06 6 -0.137001484255E-05 7 -0.174813610976E-05 8 0.135076348127E-05 9 -0.887779973779E-06 elk-10.4.9/tests/PaxHeaders/test_0010000644000000000000000000000013214762655566014110 xustar0030 mtime=1741380470.475018952 30 atime=1741380470.460018874 30 ctime=1741380470.475018952 elk-10.4.9/tests/test_001/0000755002504400250440000000000014762655566016707 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_001/PaxHeaders/elk.in0000644000000000000000000000013214762655566015270 xustar0030 mtime=1741380470.462018884 30 atime=1741380470.462018884 30 ctime=1741380470.462018884 elk-10.4.9/tests/test_001/elk.in0000644002504400250440000000220714762655566020013 0ustar00dewhurstdewhurst00000000000000 tasks 0 1 115 500 test .true. lmaxi 2 stype 1 swidth 0.01 mixtype 3 ! small cut-off for testing purposes rgkmax 6.0 avec 7.2246 0.0 0.0 0.0 7.3442 0.0 0.0 0.0 22.0733 sppath '../../species/' atoms 4 : nspecies 'Y.in' : spfname 1 : natoms 0.5 0.5 0.5 0.0 0.0 0.0 : atposl, bfcmt 'Ba.in' 2 : natoms 0.5 0.5 0.1843 0.0 0.0 0.0 : atposl, bfcmt 0.5 0.5 0.8157 0.0 0.0 0.0 'Cu.in' 3 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 0.0 0.0 0.3556 0.0 0.0 0.0 0.0 0.0 0.6444 0.0 0.0 0.0 'O.in' 7 : natoms 0.0 0.5 0.0 0.0 0.0 0.0 : atposl, bfcmt 0.5 0.0 0.3773 0.0 0.0 0.0 0.5 0.0 0.6227 0.0 0.0 0.0 0.0 0.5 0.3789 0.0 0.0 0.0 0.0 0.5 0.6211 0.0 0.0 0.0 0.0 0.0 0.1584 0.0 0.0 0.0 0.0 0.0 0.8416 0.0 0.0 0.0 ngridk 2 2 1 vkloff 0.25 0.5 0.5 elk-10.4.9/tests/test_001/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016060 xustar0030 mtime=1741380470.464018895 30 atime=1741380470.463018889 30 ctime=1741380470.464018895 elk-10.4.9/tests/test_001/TEST_500.OUT_0000644002504400250440000000013514762655566020601 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 52.3601989274 elk-10.4.9/tests/test_001/PaxHeaders/TEST_510.OUT_0000644000000000000000000000012414762655566016062 xustar0028 mtime=1741380470.4650189 28 atime=1741380470.4650189 28 ctime=1741380470.4650189 elk-10.4.9/tests/test_001/TEST_510.OUT_0000644002504400250440000000014514762655566020603 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.166129827104E-01 elk-10.4.9/tests/test_001/PaxHeaders/TEST_400.OUT_0000644000000000000000000000012714762655566016063 xustar0029 mtime=1741380470.46701891 29 atime=1741380470.46701891 29 ctime=1741380470.46701891 elk-10.4.9/tests/test_001/TEST_400.OUT_0000644002504400250440000000014114762655566020575 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 294.002057290 elk-10.4.9/tests/test_001/PaxHeaders/TEST_115.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.469018921 30 atime=1741380470.469018921 30 ctime=1741380470.469018921 elk-10.4.9/tests/test_001/TEST_115.OUT_0000644002504400250440000000053114762655566020603 0ustar00dewhurstdewhurst00000000000000'electric field gradient' 2 9 0.100000000000E-02 1 0.621406342540 2 -0.305017278721E-16 3 0.214754716136E-15 4 -0.305017278721E-16 5 0.829792943404 6 -0.527453117460E-17 7 0.214754716136E-15 8 -0.527453117460E-17 9 -1.45119928594 elk-10.4.9/tests/test_001/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.471018931 30 atime=1741380470.470018926 30 ctime=1741380470.471018931 elk-10.4.9/tests/test_001/TEST_910.OUT_0000644002504400250440000000037114762655566020610 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 6 0.100000000000E-07 1 0.108711646790 2 0.213882564036 3 0.142325463505 4 0.543558233949 5 0.213882564036 6 0.142325463505 elk-10.4.9/tests/test_001/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.472018936 30 atime=1741380470.472018936 30 ctime=1741380470.472018936 elk-10.4.9/tests/test_001/TEST_705.OUT_0000644002504400250440000000010114762655566020601 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 8 elk-10.4.9/tests/test_001/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.474018947 30 atime=1741380470.474018947 30 ctime=1741380470.474018947 elk-10.4.9/tests/test_001/TEST_900.OUT_0000644002504400250440000000007014762655566020603 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 34171 elk-10.4.9/tests/test_001/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016053 xustar0030 mtime=1741380470.476018957 30 atime=1741380470.475018952 30 ctime=1741380470.476018957 elk-10.4.9/tests/test_001/TEST_000.OUT_0000644002504400250440000000012614762655566020574 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -25129.2531293 elk-10.4.9/tests/PaxHeaders/test_0050000644000000000000000000000013214762655566014114 xustar0030 mtime=1741380470.491019036 30 atime=1741380470.477018963 30 ctime=1741380470.491019036 elk-10.4.9/tests/test_005/0000755002504400250440000000000014762655566016713 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_005/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.479018973 30 atime=1741380470.478018968 30 ctime=1741380470.479018973 elk-10.4.9/tests/test_005/TEST_500.OUT_0000644002504400250440000000013514762655566020605 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 33.7741953661 elk-10.4.9/tests/test_005/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.480018978 30 atime=1741380470.480018978 30 ctime=1741380470.480018978 elk-10.4.9/tests/test_005/TEST_510.OUT_0000644002504400250440000000014514762655566020607 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.374628641092E-02 elk-10.4.9/tests/test_005/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.482018989 30 atime=1741380470.482018989 30 ctime=1741380470.482018989 elk-10.4.9/tests/test_005/TEST_450.OUT_0000644002504400250440000000014014762655566020605 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 2.46739673163 elk-10.4.9/tests/test_005/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016057 xustar0030 mtime=1741380470.484018999 30 atime=1741380470.483018994 30 ctime=1741380470.484018999 elk-10.4.9/tests/test_005/TEST_000.OUT_0000644002504400250440000000012614762655566020600 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1270.45909789 elk-10.4.9/tests/test_005/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.485019005 30 atime=1741380470.485019005 30 ctime=1741380470.485019005 elk-10.4.9/tests/test_005/TEST_900.OUT_0000644002504400250440000000007014762655566020607 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2229 elk-10.4.9/tests/test_005/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.487019015 30 atime=1741380470.487019015 30 ctime=1741380470.487019015 elk-10.4.9/tests/test_005/TEST_910.OUT_0000644002504400250440000000144714762655566020621 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.581776417331E-01 2 0.174532925199 3 0.407243492132 4 0.523598775598 5 0.639954059065 6 -0.581776417331E-01 7 0.523598775598 8 -0.290888208666 9 0.872664625997 10 0.989019909463 11 0.174532925199 12 0.407243492132 13 -0.407243492132 14 0.639954059065 15 0.872664625997 16 0.581776417331E-01 17 1.10537519293 18 0.407243492132 19 0.581776417331E-01 20 0.174532925199 21 1.33808575986 22 0.523598775598 23 0.639954059065 24 0.872664625997 elk-10.4.9/tests/test_005/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013114762655566016072 xustar0030 mtime=1741380470.489019025 29 atime=1741380470.48801902 30 ctime=1741380470.489019025 elk-10.4.9/tests/test_005/TEST_705.OUT_0000644002504400250440000000010114762655566020605 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 8 elk-10.4.9/tests/test_005/PaxHeaders/elk.in0000644000000000000000000000012714762655566015300 xustar0029 mtime=1741380470.49001903 29 atime=1741380470.49001903 29 ctime=1741380470.49001903 elk-10.4.9/tests/test_005/elk.in0000644002504400250440000000076514762655566020026 0ustar00dewhurstdewhurst00000000000000 ! Spin-spiral state for Gamma-Fe. tasks 0 500 test .true. maxscl 5 spinsprl .true. vqlss 0.1 0.1 0.0 rgkmax 6.5 bfieldc 0.05 0.0 0.0 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.375 sppath '../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 2 2 2 vkloff 0.25 0.5 0.625 elk-10.4.9/tests/test_005/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.492019041 30 atime=1741380470.492019041 30 ctime=1741380470.492019041 elk-10.4.9/tests/test_005/TEST_400.OUT_0000644002504400250440000000014114762655566020601 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 25.9973375637 elk-10.4.9/tests/PaxHeaders/test_0090000644000000000000000000000013214762655566014120 xustar0030 mtime=1741380470.513019151 30 atime=1741380470.493019046 30 ctime=1741380470.513019151 elk-10.4.9/tests/test_009/0000755002504400250440000000000014762655566016717 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_009/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.495019057 30 atime=1741380470.494019051 30 ctime=1741380470.495019057 elk-10.4.9/tests/test_009/TEST_500.OUT_0000644002504400250440000000013514762655566020611 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 166.666666711 elk-10.4.9/tests/test_009/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.496019062 30 atime=1741380470.496019062 30 ctime=1741380470.496019062 elk-10.4.9/tests/test_009/TEST_510.OUT_0000644002504400250440000000014514762655566020613 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.498291826050E-01 elk-10.4.9/tests/test_009/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.498019072 30 atime=1741380470.498019072 30 ctime=1741380470.498019072 elk-10.4.9/tests/test_009/TEST_400.OUT_0000644002504400250440000000014114762655566020605 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 12.5000282803 elk-10.4.9/tests/test_009/PaxHeaders/TEST_140.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.500019083 30 atime=1741380470.499019078 30 ctime=1741380470.500019083 elk-10.4.9/tests/test_009/TEST_140.OUT_0000644002504400250440000000311414762655566020611 0ustar00dewhurstdewhurst00000000000000'ELNES cross-section' 2 50 0.100000000000E-01 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.00000000000 5 0.00000000000 6 0.00000000000 7 0.00000000000 8 0.00000000000 9 0.00000000000 10 0.120289528230E-10 11 0.296678873827E-09 12 0.312310120618E-08 13 0.157528904291E-07 14 0.578462728750E-07 15 0.172516227785E-06 16 0.465409218327E-06 17 0.133178424925E-05 18 0.356302197444E-05 19 0.753696705771E-05 20 0.121406563624E-04 21 0.147954889546E-04 22 0.136902723154E-04 23 0.959995769906E-05 24 0.504763917046E-05 25 0.203418514710E-05 26 0.659554811099E-06 27 0.217918163021E-06 28 0.578511844554E-07 29 0.201185000169E-07 30 0.288347753262E-06 31 0.226048969549E-05 32 0.134350959857E-04 33 0.854959754671E-04 34 0.221336429109E-03 35 0.403201190278E-03 36 0.481566817964E-03 37 0.449003792312E-03 38 0.326969165316E-03 39 0.269013439633E-03 40 0.288821752802E-03 41 0.383842348062E-03 42 0.514181241119E-03 43 0.681445199687E-03 44 0.871272284250E-03 45 0.104265859253E-02 46 0.116975800382E-02 47 0.123478831614E-02 48 0.121466105038E-02 49 0.106502867120E-02 50 0.809368848070E-03 elk-10.4.9/tests/test_009/PaxHeaders/elk.in0000644000000000000000000000013214762655566015300 xustar0030 mtime=1741380470.501019088 30 atime=1741380470.501019088 30 ctime=1741380470.501019088 elk-10.4.9/tests/test_009/elk.in0000644002504400250440000000064614762655566020030 0ustar00dewhurstdewhurst00000000000000 ! Electron loss near-edge spectroscopy (ELNES) for boron nitride. tasks 0 140 500 test .true. xctype 5 maxscl 6 rgkmax 6.0 lradstp 2 spinorb .true. vecql 0.0 0.0 0.5 wplot 50 100 3 18.5 19.0 emaxelnes -10.0 ngridk 2 2 2 avec 3.4204 3.4204 0.0000 3.4204 0.0000 3.4204 0.0000 3.4204 3.4204 atoms 2 'B.in' 1 0.00 0.00 0.00 0.0 0.0 0.0 'N+.in' 1 0.25 0.25 0.25 0.0 0.0 0.0 elk-10.4.9/tests/test_009/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016077 xustar0030 mtime=1741380470.503019098 30 atime=1741380470.503019098 30 ctime=1741380470.503019098 elk-10.4.9/tests/test_009/TEST_705.OUT_0000644002504400250440000000010114762655566020611 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-10.4.9/tests/test_009/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.505019109 30 atime=1741380470.505019109 30 ctime=1741380470.505019109 elk-10.4.9/tests/test_009/TEST_900.OUT_0000644002504400250440000000007014762655566020613 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2277 elk-10.4.9/tests/test_009/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016075 xustar0030 mtime=1741380470.506019114 30 atime=1741380470.506019114 30 ctime=1741380470.506019114 elk-10.4.9/tests/test_009/TEST_910.OUT_0000644002504400250440000000052614762655566020622 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 9 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.459243458892 5 0.459243458892 6 -0.459243458892 7 0.918486917784 8 0.00000000000 9 0.00000000000 elk-10.4.9/tests/test_009/PaxHeaders/B.in0000644000000000000000000000013214762655566014706 xustar0030 mtime=1741380470.508019125 30 atime=1741380470.508019125 30 ctime=1741380470.508019125 elk-10.4.9/tests/test_009/B.in0000644002504400250440000000172214762655566017432 0ustar00dewhurstdewhurst00000000000000 'B' : spsymb 'boron' : spname -5.00000 : spzn 19707.24740 : spmass 0.894427E-06 1.8000 43.3288 300 : sprmin, rmt, sprmax, nrmt 3 : spnst 1 0 1 2.00000 T : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 2 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F elk-10.4.9/tests/test_009/PaxHeaders/N+.in0000644000000000000000000000013214762655566014775 xustar0030 mtime=1741380470.510019135 30 atime=1741380470.510019135 30 ctime=1741380470.510019135 elk-10.4.9/tests/test_009/N+.in0000644002504400250440000000253414762655566017523 0ustar00dewhurstdewhurst00000000000000 'N+' : spsymb 'nitrogen with pseudo core-hole' : spname -8.00000 : spzn 25532.72506 : spmass 0.755929E-06 1.4500 26.9237 300 : sprmin, rmt, sprmax, nrmt 4 : spnst 1 0 1 2.00000 F : spn, spl, spk, spocc, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 2 1 2 2.50000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 3 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F -0.6020 0 T 0 3 0.1500 0 F 0.1500 1 F -20.0000 0 T elk-10.4.9/tests/test_009/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013114762655566016073 xustar0030 mtime=1741380470.512019145 29 atime=1741380470.51101914 30 ctime=1741380470.512019145 elk-10.4.9/tests/test_009/TEST_450.OUT_0000644002504400250440000000014014762655566020611 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.633514019660E-26 elk-10.4.9/tests/test_009/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.513019151 30 atime=1741380470.513019151 30 ctime=1741380470.513019151 elk-10.4.9/tests/test_009/TEST_000.OUT_0000644002504400250440000000012614762655566020604 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -99.8934310927 elk-10.4.9/tests/PaxHeaders/test_0130000644000000000000000000000013214762655566014113 xustar0030 mtime=1741380470.531019245 30 atime=1741380470.514019156 30 ctime=1741380470.531019245 elk-10.4.9/tests/test_013/0000755002504400250440000000000014762655566016712 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_013/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.516019166 30 atime=1741380470.516019166 30 ctime=1741380470.516019166 elk-10.4.9/tests/test_013/TEST_500.OUT_0000644002504400250440000000013514762655566020604 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 118.113569977 elk-10.4.9/tests/test_013/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.518019177 30 atime=1741380470.517019172 30 ctime=1741380470.518019177 elk-10.4.9/tests/test_013/TEST_510.OUT_0000644002504400250440000000014514762655566020606 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.289339626228E-03 elk-10.4.9/tests/test_013/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016056 xustar0030 mtime=1741380470.519019182 30 atime=1741380470.519019182 30 ctime=1741380470.519019182 elk-10.4.9/tests/test_013/TEST_000.OUT_0000644002504400250440000000012614762655566020577 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1515.99704046 elk-10.4.9/tests/test_013/PaxHeaders/TEST_750.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.521019193 30 atime=1741380470.521019193 30 ctime=1741380470.521019193 elk-10.4.9/tests/test_013/TEST_750.OUT_0000644002504400250440000000036114762655566020614 0ustar00dewhurstdewhurst00000000000000'total forces' 2 6 0.100000000000E-02 1 -0.172266237082E-01 2 -0.392224330095E-01 3 0.301463431074E-01 4 0.172266237082E-01 5 0.392224330095E-01 6 -0.301463431074E-01 elk-10.4.9/tests/test_013/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.523019203 30 atime=1741380470.523019203 30 ctime=1741380470.523019203 elk-10.4.9/tests/test_013/TEST_900.OUT_0000644002504400250440000000007014762655566020606 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 4945 elk-10.4.9/tests/test_013/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.525019214 30 atime=1741380470.524019208 30 ctime=1741380470.525019214 elk-10.4.9/tests/test_013/TEST_910.OUT_0000644002504400250440000001357714762655566020627 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 192 0.100000000000E-07 1 0.714517979801E-01 2 0.142903595960 3 0.178629494950 4 0.357258989901 5 0.142903595960 6 0.178629494950 7 0.643066181821 8 0.142903595960 9 0.178629494950 10 0.928873373742 11 0.142903595960 12 0.178629494950 13 0.714517979801E-01 14 0.428710787881 15 0.178629494950 16 0.357258989901 17 0.428710787881 18 0.178629494950 19 0.643066181821 20 0.428710787881 21 0.178629494950 22 0.928873373742 23 0.428710787881 24 0.178629494950 25 0.714517979801E-01 26 0.714517979801 27 0.178629494950 28 0.357258989901 29 0.714517979801 30 0.178629494950 31 0.643066181821 32 0.714517979801 33 0.178629494950 34 0.928873373742 35 0.714517979801 36 0.178629494950 37 0.714517979801E-01 38 1.00032517172 39 0.178629494950 40 0.357258989901 41 1.00032517172 42 0.178629494950 43 0.643066181821 44 1.00032517172 45 0.178629494950 46 0.928873373742 47 1.00032517172 48 0.178629494950 49 0.714517979801E-01 50 0.142903595960 51 0.464436686871 52 0.357258989901 53 0.142903595960 54 0.464436686871 55 0.643066181821 56 0.142903595960 57 0.464436686871 58 0.928873373742 59 0.142903595960 60 0.464436686871 61 0.714517979801E-01 62 0.428710787881 63 0.464436686871 64 0.357258989901 65 0.428710787881 66 0.464436686871 67 0.643066181821 68 0.428710787881 69 0.464436686871 70 0.928873373742 71 0.428710787881 72 0.464436686871 73 0.714517979801E-01 74 0.714517979801 75 0.464436686871 76 0.357258989901 77 0.714517979801 78 0.464436686871 79 0.643066181821 80 0.714517979801 81 0.464436686871 82 0.928873373742 83 0.714517979801 84 0.464436686871 85 0.714517979801E-01 86 1.00032517172 87 0.464436686871 88 0.357258989901 89 1.00032517172 90 0.464436686871 91 0.643066181821 92 1.00032517172 93 0.464436686871 94 0.928873373742 95 1.00032517172 96 0.464436686871 97 0.714517979801E-01 98 0.142903595960 99 0.750243878791 100 0.357258989901 101 0.142903595960 102 0.750243878791 103 0.643066181821 104 0.142903595960 105 0.750243878791 106 0.928873373742 107 0.142903595960 108 0.750243878791 109 0.714517979801E-01 110 0.428710787881 111 0.750243878791 112 0.357258989901 113 0.428710787881 114 0.750243878791 115 0.643066181821 116 0.428710787881 117 0.750243878791 118 0.928873373742 119 0.428710787881 120 0.750243878791 121 0.714517979801E-01 122 0.714517979801 123 0.750243878791 124 0.357258989901 125 0.714517979801 126 0.750243878791 127 0.643066181821 128 0.714517979801 129 0.750243878791 130 0.928873373742 131 0.714517979801 132 0.750243878791 133 0.714517979801E-01 134 1.00032517172 135 0.750243878791 136 0.357258989901 137 1.00032517172 138 0.750243878791 139 0.643066181821 140 1.00032517172 141 0.750243878791 142 0.928873373742 143 1.00032517172 144 0.750243878791 145 0.714517979801E-01 146 0.142903595960 147 1.03605107071 148 0.357258989901 149 0.142903595960 150 1.03605107071 151 0.643066181821 152 0.142903595960 153 1.03605107071 154 0.928873373742 155 0.142903595960 156 1.03605107071 157 0.714517979801E-01 158 0.428710787881 159 1.03605107071 160 0.357258989901 161 0.428710787881 162 1.03605107071 163 0.643066181821 164 0.428710787881 165 1.03605107071 166 0.928873373742 167 0.428710787881 168 1.03605107071 169 0.714517979801E-01 170 0.714517979801 171 1.03605107071 172 0.357258989901 173 0.714517979801 174 1.03605107071 175 0.643066181821 176 0.714517979801 177 1.03605107071 178 0.928873373742 179 0.714517979801 180 1.03605107071 181 0.714517979801E-01 182 1.00032517172 183 1.03605107071 184 0.357258989901 185 1.00032517172 186 1.03605107071 187 0.643066181821 188 1.00032517172 189 1.03605107071 190 0.928873373742 191 1.00032517172 192 1.03605107071 elk-10.4.9/tests/test_013/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.526019219 30 atime=1741380470.526019219 30 ctime=1741380470.526019219 elk-10.4.9/tests/test_013/TEST_705.OUT_0000644002504400250440000000010114762655566020604 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 1 elk-10.4.9/tests/test_013/PaxHeaders/elk.in0000644000000000000000000000013214762655566015273 xustar0030 mtime=1741380470.528019229 30 atime=1741380470.528019229 30 ctime=1741380470.528019229 elk-10.4.9/tests/test_013/elk.in0000644002504400250440000000125014762655566020013 0ustar00dewhurstdewhurst00000000000000 ! Force test with spin-orbit coupling, removal of the source term from B_xc and ! application of a constanst A-field tasks 0 500 test .true. spinorb .true. nosource .true. tforce .true. bfieldc 0.0 0.0 0.1 afieldc 0.0 0.5 0.0 rgkmax 6.0 maxscl 4 scale 5.496 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.1 0.2 0.3 : atposl, bfcmt 'Al.in' 1 0.51 0.52 0.485 0.4 0.4 -0.4 : atposl, bfcmt sppath '../../species/' ngridk 4 4 4 vkloff 0.25 0.5 0.625 elk-10.4.9/tests/test_013/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.529019234 30 atime=1741380470.529019234 30 ctime=1741380470.529019234 elk-10.4.9/tests/test_013/TEST_400.OUT_0000644002504400250440000000014114762655566020600 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 38.9880893684 elk-10.4.9/tests/test_013/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.531019245 30 atime=1741380470.531019245 30 ctime=1741380470.531019245 elk-10.4.9/tests/test_013/TEST_450.OUT_0000644002504400250440000000014014762655566020604 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 1.39977894328 elk-10.4.9/tests/PaxHeaders/test_0170000644000000000000000000000013114762655566014116 xustar0030 mtime=1741380470.549019339 29 atime=1741380470.53201925 30 ctime=1741380470.549019339 elk-10.4.9/tests/test_017/0000755002504400250440000000000014762655566016716 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_017/PaxHeaders/TEST_510.OUT_0000644000000000000000000000012714762655566016074 xustar0029 mtime=1741380470.53401926 29 atime=1741380470.53401926 29 ctime=1741380470.53401926 elk-10.4.9/tests/test_017/TEST_510.OUT_0000644002504400250440000000014514762655566020612 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.117164643003 elk-10.4.9/tests/test_017/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.536019271 30 atime=1741380470.535019266 30 ctime=1741380470.536019271 elk-10.4.9/tests/test_017/TEST_400.OUT_0000644002504400250440000000014114762655566020604 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 63.9848896140 elk-10.4.9/tests/test_017/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.537019276 30 atime=1741380470.537019276 30 ctime=1741380470.537019276 elk-10.4.9/tests/test_017/TEST_000.OUT_0000644002504400250440000000012614762655566020603 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -4199.45149218 elk-10.4.9/tests/test_017/PaxHeaders/TEST_700.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.539019287 30 atime=1741380470.539019287 30 ctime=1741380470.539019287 elk-10.4.9/tests/test_017/TEST_700.OUT_0000644002504400250440000000022514762655566020612 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 2 0.100000000000E-07 1 159.645293857 2 40.1466806379 elk-10.4.9/tests/test_017/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.541019297 30 atime=1741380470.540019292 30 ctime=1741380470.541019297 elk-10.4.9/tests/test_017/TEST_500.OUT_0000644002504400250440000000013514762655566020610 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.999998971547E-07 elk-10.4.9/tests/test_017/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016076 xustar0030 mtime=1741380470.542019302 30 atime=1741380470.542019302 30 ctime=1741380470.542019302 elk-10.4.9/tests/test_017/TEST_705.OUT_0000644002504400250440000000010114762655566020610 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-10.4.9/tests/test_017/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.544019313 30 atime=1741380470.544019313 30 ctime=1741380470.544019313 elk-10.4.9/tests/test_017/TEST_900.OUT_0000644002504400250440000000007014762655566020612 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 725 elk-10.4.9/tests/test_017/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.546019323 30 atime=1741380470.545019318 30 ctime=1741380470.546019323 elk-10.4.9/tests/test_017/TEST_910.OUT_0000644002504400250440000000037114762655566020617 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 6 0.100000000000E-07 1 -0.138777878078E-16 2 0.146981971254 3 0.587927885017 4 0.293963942509 5 0.440945913763 6 0.293963942509 elk-10.4.9/tests/test_017/PaxHeaders/elk.in0000644000000000000000000000013214762655566015277 xustar0030 mtime=1741380470.547019328 30 atime=1741380470.547019328 30 ctime=1741380470.547019328 elk-10.4.9/tests/test_017/elk.in0000644002504400250440000000120314762655566020015 0ustar00dewhurstdewhurst00000000000000 ! RDMFT test tasks 0 300 500 test .true. rdmmaxscl 1 maxitn 2 maxitc 2 mixtype 3 rgkmax 6.0 lmaxo 5 gmaxvr 0.0 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms 0.00 0.00 0.00 0.0 0.0 0.0 : atposl, bfcmt 'As.in' : spfname 1 : natoms 0.25 0.25 0.25 0.0 0.0 0.0 : atposl, bfcmt ngridk 2 1 1 vkloff 0.25 0.5 0.625 elk-10.4.9/tests/test_017/PaxHeaders/TEST_300.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.549019339 30 atime=1741380470.549019339 30 ctime=1741380470.549019339 elk-10.4.9/tests/test_017/TEST_300.OUT_0000644002504400250440000000013414762655566020605 0ustar00dewhurstdewhurst00000000000000'RDMFT total energy' 2 1 0.100000000000E-05 1 -4060.82279826 elk-10.4.9/tests/PaxHeaders/test_0210000644000000000000000000000013214762655566014112 xustar0030 mtime=1741380470.571019454 30 atime=1741380470.550019344 30 ctime=1741380470.571019454 elk-10.4.9/tests/test_021/0000755002504400250440000000000014762655566016711 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_021/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.552019355 30 atime=1741380470.552019355 30 ctime=1741380470.552019355 elk-10.4.9/tests/test_021/TEST_500.OUT_0000644002504400250440000000013514762655566020603 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.365793651076E-04 elk-10.4.9/tests/test_021/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013114762655566016065 xustar0030 mtime=1741380470.554019365 29 atime=1741380470.55301936 30 ctime=1741380470.554019365 elk-10.4.9/tests/test_021/TEST_450.OUT_0000644002504400250440000000014014762655566020603 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.693198081977E-16 elk-10.4.9/tests/test_021/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013114762655566016060 xustar0030 mtime=1741380470.556019376 29 atime=1741380470.55501937 30 ctime=1741380470.556019376 elk-10.4.9/tests/test_021/TEST_400.OUT_0000644002504400250440000000014114762655566020577 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 66.0189750533 elk-10.4.9/tests/test_021/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016055 xustar0030 mtime=1741380470.557019381 30 atime=1741380470.557019381 30 ctime=1741380470.557019381 elk-10.4.9/tests/test_021/TEST_000.OUT_0000644002504400250440000000012614762655566020576 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -2462.70026985 elk-10.4.9/tests/test_021/PaxHeaders/TEST_195.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.559019391 30 atime=1741380470.559019391 30 ctime=1741380470.559019391 elk-10.4.9/tests/test_021/TEST_195.OUT_0000644002504400250440000000477714762655566020635 0ustar00dewhurstdewhurst00000000000000'density structure factors' 3 47 0.100000000000E-04 1 0.222781435226 -0.288303848015E-18 2 0.275947231403E-16 0.102348685083E-15 3 -0.506932163264E-17 0.208166817117E-16 4 0.897769032078E-01 0.179761282930E-15 5 0.897007564361E-01 0.148884615673E-16 6 0.159095649605 -0.189412159156E-15 7 -0.217555148603E-16 -0.693889390391E-16 8 -0.803571194502E-16 0.324393290008E-15 9 0.402728212860E-16 -0.147451495458E-15 10 0.129015052827 -0.131732028480E-15 11 0.128978021158 0.363481123266E-16 12 0.190592701754E-16 -0.711236625150E-16 13 0.923165871091E-17 0.693889390391E-16 14 0.709477838588E-01 -0.132433091800E-15 15 0.709436682284E-01 0.311862496922E-16 16 0.709341194781E-01 0.272267135348E-15 17 0.110367568138 0.576170151187E-16 18 0.110427112569 0.252030486131E-15 19 0.943224724296E-16 0.407660016855E-15 20 -0.125505925391E-16 0.520417042793E-16 21 -0.565330168915E-16 -0.249800180541E-15 22 0.258921408092E-16 -0.111022302463E-15 23 0.980833921479E-01 0.102734580623E-15 24 -0.807625121423E-16 0.355618312575E-15 25 -0.103278844883E-16 -0.451028103754E-16 26 0.150945699839E-16 0.624500451352E-16 27 0.582951561791E-01 0.465504255394E-15 28 0.583608600456E-01 -0.232816091661E-16 29 0.583174116078E-01 0.219818227508E-15 30 0.886390759947E-01 -0.205550181629E-15 31 0.886603902903E-01 -0.464633383033E-16 32 0.170513153040E-16 0.780625564190E-16 33 -0.367537051981E-16 0.168268177170E-15 34 0.464966642391E-16 -0.215105711021E-15 35 0.816397392796E-01 -0.867322029777E-16 36 0.816176091826E-01 0.172838833810E-15 37 0.816032005399E-01 0.237036623691E-16 38 0.101649118793E-16 0.468375338514E-16 39 -0.127235447801E-16 -0.650521303491E-16 40 -0.328036396782E-17 0.121430643318E-16 41 0.598728883313E-16 0.282759926584E-15 42 -0.582743244212E-16 0.274953670942E-15 43 0.502377047143E-01 -0.383348682868E-15 44 0.505039332526E-01 0.301604483136E-15 45 0.505015238094E-01 -0.896360812226E-16 46 0.504649590427E-01 -0.171868265855E-15 47 0.502809215401E-01 -0.895666004056E-16 elk-10.4.9/tests/test_021/PaxHeaders/TEST_196.OUT_0000644000000000000000000000013214762655566016075 xustar0030 mtime=1741380470.561019402 30 atime=1741380470.561019402 30 ctime=1741380470.561019402 elk-10.4.9/tests/test_021/TEST_196.OUT_0000644002504400250440000000500014762655566020612 0ustar00dewhurstdewhurst00000000000000'magnetic structure factors' 3 47 0.100000000000E-03 1 0.135904426328E-18 -0.202494071489E-20 2 0.268159964927E-01 -0.172068404356E-16 3 0.204349345403E-01 -0.302652923664E-17 4 0.350792368951E-17 -0.270711729942E-16 5 0.336549781728E-17 -0.219042720160E-17 6 0.164455761410E-17 0.259530895039E-16 7 0.158944920583E-01 0.920826585740E-17 8 0.125662730505E-01 -0.383681025898E-16 9 0.123650479793E-01 0.167215653446E-16 10 0.682169896539E-18 0.137287100091E-16 11 0.187713671917E-17 -0.403874123213E-17 12 0.101549503643E-01 0.709920455157E-17 13 0.837999099794E-02 -0.622128615149E-17 14 0.898753946780E-19 0.114044516018E-16 15 0.723109180755E-18 -0.244792521756E-17 16 0.227728015438E-18 -0.239269866940E-16 17 0.345161020088E-18 -0.464512868274E-17 18 0.101727615462E-17 -0.208641155568E-16 19 0.692621733376E-02 -0.320218641740E-16 20 0.648561561908E-02 -0.356052643719E-17 21 0.542642827954E-02 0.168583252278E-16 22 0.583535764106E-02 0.726594729332E-17 23 0.294293056676E-18 -0.603765084803E-17 24 0.450096351715E-02 -0.207454206439E-16 25 0.391282037037E-02 0.214329068495E-17 26 0.406517488830E-02 -0.301083268109E-17 27 0.578742343604E-18 -0.238795528490E-16 28 0.381950246485E-19 0.119431645563E-17 29 0.279318215393E-18 -0.111334010587E-16 30 0.705417268560E-19 0.958841296292E-17 31 0.463830821465E-18 0.222939071717E-17 32 0.328095439904E-02 -0.307658086308E-17 33 0.329522359794E-02 -0.780837557873E-17 34 0.277976811521E-02 0.824896249156E-17 35 -0.311839220145E-18 0.308319992801E-17 36 -0.262730777207E-18 -0.622738622821E-17 37 0.147151314082E-19 -0.775882179685E-18 38 0.234877499049E-02 -0.167570599454E-17 39 0.221389888562E-02 0.203353787075E-17 40 0.239281394554E-02 -0.505647809693E-18 41 0.198786317440E-02 -0.807072836359E-17 42 0.179403081393E-02 -0.810423170004E-17 43 0.774667133588E-18 0.112621500667E-16 44 0.149125215939E-18 -0.860246661231E-17 45 0.150913074071E-18 0.266984784975E-17 46 0.826607613844E-18 0.464174055095E-17 47 0.359263470565E-18 0.278673839647E-17 elk-10.4.9/tests/test_021/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.563019412 30 atime=1741380470.563019412 30 ctime=1741380470.563019412 elk-10.4.9/tests/test_021/TEST_705.OUT_0000644002504400250440000000010114762655566020603 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-10.4.9/tests/test_021/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.565019423 30 atime=1741380470.565019423 30 ctime=1741380470.565019423 elk-10.4.9/tests/test_021/TEST_900.OUT_0000644002504400250440000000007014762655566020605 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 8623 elk-10.4.9/tests/test_021/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.567019433 30 atime=1741380470.567019433 30 ctime=1741380470.567019433 elk-10.4.9/tests/test_021/TEST_910.OUT_0000644002504400250440000000237014762655566020613 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 39 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.280567949614 5 -0.935226498715E-01 6 -0.935226498715E-01 7 0.561135899229 8 -0.187045299743 9 -0.187045299743 10 0.187045299743 11 0.187045299743 12 -0.187045299743 13 0.467613249357 14 0.935226498715E-01 15 -0.280567949614 16 0.748181198972 17 0.416333634234E-16 18 -0.374090599486 19 0.374090599486 20 0.374090599486 21 -0.374090599486 22 0.935226498715E-01 23 0.935226498715E-01 24 0.935226498715E-01 25 0.374090599486 26 0.416333634234E-16 27 0.555111512313E-16 28 0.654658549100 29 -0.935226498715E-01 30 -0.935226498715E-01 31 0.280567949614 32 0.280567949614 33 -0.935226498715E-01 34 0.561135899229 35 0.187045299743 36 -0.187045299743 37 0.187045299743 38 0.187045299743 39 0.187045299743 elk-10.4.9/tests/test_021/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.569019443 30 atime=1741380470.569019443 30 ctime=1741380470.569019443 elk-10.4.9/tests/test_021/TEST_510.OUT_0000644002504400250440000000014514762655566020605 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.296223402034E-01 elk-10.4.9/tests/test_021/PaxHeaders/elk.in0000644000000000000000000000013214762655566015272 xustar0030 mtime=1741380470.571019454 30 atime=1741380470.571019454 30 ctime=1741380470.571019454 elk-10.4.9/tests/test_021/elk.in0000644002504400250440000000060314762655566020013 0ustar00dewhurstdewhurst00000000000000 tasks 0 195 196 500 test .true. spinpol .true. scale 8.397946 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 'Mn.in' 2 0.0 0.0 0.0 0.0 0.0 -0.01 0.5 0.5 0.5 0.0 0.0 0.01 'O.in' 2 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 sppath '../../species/' ngridk 4 4 4 hmaxvr 4.0 reduceh .true. elk-10.4.9/tests/PaxHeaders/test_0230000644000000000000000000000013214762655566014114 xustar0030 mtime=1741380470.595019579 30 atime=1741380470.572019459 30 ctime=1741380470.595019579 elk-10.4.9/tests/test_023/0000755002504400250440000000000014762655566016713 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_023/PaxHeaders/elk.in0000644000000000000000000000012714762655566015300 xustar0029 mtime=1741380470.57401947 29 atime=1741380470.57401947 29 ctime=1741380470.57401947 elk-10.4.9/tests/test_023/elk.in0000644002504400250440000000123714762655566020021 0ustar00dewhurstdewhurst00000000000000 ! Time-dependent density functional theory (TDDFT) optical spectrum of lithium ! fluoride. tasks 0 120 121 125 320 500 test .true. spinorb .true. scissor 0.192 xctype 3 ! bootstrap kernel fxctype 210 lmaxi 2 swidth 0.01 gmaxrf 1.0 nempty 10 ngridk 8 8 8 wplot 50 100 0 0.0 1.5 avec 3.80402 3.80402 0.0 3.80402 0.0 3.80402 0.0 3.80402 3.80402 sppath '../../species/' atoms 2 : nspecies 'Li.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'F.in' 1 0.5 0.5 0.5 elk-10.4.9/tests/test_023/PaxHeaders/TEST_910.OUT_0000644000000000000000000000012714762655566016075 xustar0029 mtime=1741380470.57601948 29 atime=1741380470.57601948 29 ctime=1741380470.57601948 elk-10.4.9/tests/test_023/TEST_910.OUT_0000644002504400250440000000531014762655566020612 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 87 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.103232654323 5 0.103232654323 6 -0.103232654323 7 0.206465308646 8 0.206465308646 9 -0.206465308646 10 0.309697962970 11 0.309697962970 12 -0.309697962970 13 0.412930617293 14 0.412930617293 15 -0.412930617293 16 0.206465308646 17 0.00000000000 18 0.00000000000 19 0.309697962970 20 0.103232654323 21 -0.103232654323 22 0.412930617293 23 0.206465308646 24 -0.206465308646 25 0.516163271616 26 0.309697962970 27 -0.309697962970 28 0.619395925939 29 0.412930617293 30 -0.412930617293 31 0.722628580263 32 0.516163271616 33 -0.516163271616 34 0.825861234586 35 0.619395925939 36 -0.619395925939 37 0.412930617293 38 0.00000000000 39 0.00000000000 40 0.516163271616 41 0.103232654323 42 -0.103232654323 43 0.619395925939 44 0.206465308646 45 -0.206465308646 46 0.722628580263 47 0.309697962970 48 -0.309697962970 49 0.825861234586 50 0.412930617293 51 -0.412930617293 52 0.619395925939 53 -0.277555756156E-16 54 0.277555756156E-16 55 0.722628580263 56 0.103232654323 57 -0.103232654323 58 0.825861234586 59 0.206465308646 60 -0.206465308646 61 0.825861234586 62 0.00000000000 63 0.00000000000 64 0.412930617293 65 0.206465308646 66 0.00000000000 67 0.516163271616 68 0.309697962970 69 -0.103232654323 70 0.619395925939 71 0.412930617293 72 -0.206465308646 73 0.619395925939 74 0.206465308646 75 0.277555756156E-16 76 0.722628580263 77 0.309697962970 78 -0.103232654323 79 0.825861234586 80 0.412930617293 81 -0.206465308646 82 0.825861234586 83 0.206465308646 84 0.00000000000 85 0.825861234586 86 0.412930617293 87 0.00000000000 elk-10.4.9/tests/test_023/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.578019491 30 atime=1741380470.577019485 30 ctime=1741380470.578019491 elk-10.4.9/tests/test_023/TEST_705.OUT_0000644002504400250440000000010114762655566020605 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests/test_023/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.580019501 30 atime=1741380470.579019496 30 ctime=1741380470.580019501 elk-10.4.9/tests/test_023/TEST_900.OUT_0000644002504400250440000000007014762655566020607 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3215 elk-10.4.9/tests/test_023/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.581019506 30 atime=1741380470.581019506 30 ctime=1741380470.581019506 elk-10.4.9/tests/test_023/TEST_500.OUT_0000644002504400250440000000013514762655566020605 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.192547358147E-05 elk-10.4.9/tests/test_023/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.583019517 30 atime=1741380470.583019517 30 ctime=1741380470.583019517 elk-10.4.9/tests/test_023/TEST_510.OUT_0000644002504400250440000000014514762655566020607 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.323125842965 elk-10.4.9/tests/test_023/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.585019527 30 atime=1741380470.584019522 30 ctime=1741380470.585019527 elk-10.4.9/tests/test_023/TEST_400.OUT_0000644002504400250440000000014114762655566020601 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 12.0281690285 elk-10.4.9/tests/test_023/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.587019538 30 atime=1741380470.586019533 30 ctime=1741380470.587019538 elk-10.4.9/tests/test_023/TEST_450.OUT_0000644002504400250440000000014014762655566020605 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.105661621157E-23 elk-10.4.9/tests/test_023/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016057 xustar0030 mtime=1741380470.588019543 30 atime=1741380470.588019543 30 ctime=1741380470.588019543 elk-10.4.9/tests/test_023/TEST_000.OUT_0000644002504400250440000000012614762655566020600 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -106.905943105 elk-10.4.9/tests/test_023/PaxHeaders/TEST_121.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.590019553 30 atime=1741380470.590019553 30 ctime=1741380470.590019553 elk-10.4.9/tests/test_023/TEST_121.OUT_0000644002504400250440000000523114762655566020606 0ustar00dewhurstdewhurst00000000000000'optical conductivity' 3 50 0.100000000000E-01 1 0.580708258088E-03 0.00000000000 2 0.583466790450E-03 -0.174426277511E-02 3 0.591853301795E-03 -0.350516348220E-02 4 0.606209666392E-03 -0.530001060877E-02 5 0.627143450888E-03 -0.714751964864E-02 6 0.655591124277E-03 -0.906869251428E-02 7 0.692924755559E-03 -0.110879457443E-01 8 0.741124893563E-03 -0.132346460473E-01 9 0.803064431967E-03 -0.155453097641E-01 10 0.882988059449E-03 -0.180669054679E-01 11 0.987357116210E-03 -0.208620563254E-01 12 0.112642680367E-02 -0.240176839885E-01 13 0.131741656285E-02 -0.276603019346E-01 14 0.159154280454E-02 -0.319853030834E-01 15 0.201190922392E-02 -0.373192834216E-01 16 0.272956029786E-02 -0.442743308267E-01 17 0.423908367064E-02 -0.542336240192E-01 18 0.102354993391E-01 -0.709546194892E-01 19 0.322662836124E-01 -0.853898881280E-01 20 0.651222672207E-01 -0.953106597039E-01 21 0.982071033444E-01 -0.784205665858E-01 22 0.770015522437E-01 -0.630888112718E-02 23 0.785012579412E-01 -0.116305613560E-01 24 0.493438480131E-01 -0.616013217573E-02 25 0.453404077845E-01 -0.214190773820E-01 26 0.363571809338E-01 -0.353036039581E-01 27 0.609984912667E-01 -0.644227693678E-01 28 0.124524105594 -0.230176047043E-01 29 0.754556677721E-01 -0.149240701468E-01 30 0.104821681139 -0.741007173796E-01 31 0.193531536154 -0.138575209120E-01 32 0.145572876501 0.408442832279E-01 33 0.164633096618 0.985348899238E-01 34 0.675909929940E-01 0.133549003621 35 0.286494070455E-01 0.101796645836 36 0.286499148169E-01 0.698117556610E-01 37 0.202373062563E-01 0.589047994673E-01 38 0.184751154838E-01 0.455422814873E-01 39 0.333947290154E-01 0.381607111488E-01 40 0.232627702603E-01 0.505174555957E-01 41 0.144303865707E-01 0.361304926782E-01 42 0.299252913112E-01 0.360965866297E-01 43 0.166616018994E-01 0.346576764627E-01 44 0.245114355077E-01 0.298335279770E-01 45 0.206267263099E-01 0.331504794848E-01 46 0.232798126784E-01 0.330164345079E-01 47 0.174543761629E-01 0.299039989181E-01 48 0.160179343380E-01 0.269773573162E-01 49 0.178223242470E-01 0.234702108129E-01 50 0.170738691362E-01 0.231180466967E-01 elk-10.4.9/tests/test_023/PaxHeaders/TEST_125.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.592019564 30 atime=1741380470.592019564 30 ctime=1741380470.592019564 elk-10.4.9/tests/test_023/TEST_125.OUT_0000644002504400250440000000523614762655566020617 0ustar00dewhurstdewhurst00000000000000'non-linear susceptibility' 3 50 0.100000000000E-01 1 -0.193609224206E-06 -0.710670902590E-18 2 -0.199774572158E-06 -0.585649355118E-06 3 -0.219561713686E-06 -0.120911883872E-05 4 -0.257857303819E-06 -0.191710469002E-05 5 -0.325769239716E-06 -0.277860805914E-05 6 -0.448591769812E-06 -0.391260746638E-05 7 -0.690922235704E-06 -0.555720623424E-05 8 -0.125618026869E-05 -0.828309820545E-05 9 -0.307396859281E-05 -0.138716128330E-04 10 -0.156278240944E-04 -0.303559757208E-04 11 -0.420771851545E-04 0.410542810349E-04 12 -0.709859234133E-05 0.217409557234E-04 13 -0.126098305986E-05 0.151804214265E-04 14 0.313487877450E-05 0.145798898164E-04 15 0.361995760268E-05 0.378447214667E-05 16 0.734427603559E-05 -0.175399980414E-05 17 0.273435143475E-06 -0.222945152923E-05 18 -0.626594824960E-06 -0.329972724885E-05 19 -0.251529794056E-05 -0.721537755373E-05 20 -0.207077926311E-04 -0.189395571915E-04 21 -0.955880378986E-05 0.214375668047E-04 22 -0.294034075484E-05 0.129913700429E-04 23 0.149197478955E-06 0.662939298583E-05 24 -0.655724720836E-06 0.755748052055E-05 25 0.387074033753E-07 0.727847726190E-05 26 0.235731923140E-05 0.724912862590E-05 27 0.129899226263E-05 0.648836366892E-05 28 0.685759961890E-05 0.195678717501E-05 29 0.880554683704E-06 0.233445182146E-05 30 0.174010539414E-05 0.446300812363E-05 31 0.392262209094E-05 -0.821357097797E-07 32 0.442094311128E-06 0.671465888793E-06 33 -0.107570880898E-06 0.157494081534E-05 34 0.597293698080E-06 0.238886892363E-05 35 0.444755054672E-05 -0.396642011727E-06 36 0.131759596623E-06 -0.137926323780E-06 37 -0.790013352535E-07 0.231294056762E-06 38 -0.764240636213E-06 0.113031434232E-07 39 -0.143921983215E-05 0.227635355988E-05 40 -0.480405564693E-06 0.153072336749E-05 41 -0.144839049770E-06 0.154786219315E-05 42 -0.204618226578E-06 0.119524286955E-05 43 -0.219234565246E-05 0.233027600615E-05 44 0.226963961370E-05 0.466538548205E-05 45 0.130119901769E-05 -0.438343878745E-05 46 -0.292858616437E-05 -0.166978886029E-05 47 -0.197839872539E-05 0.145782604220E-05 48 -0.188100358699E-05 0.194306196716E-05 49 -0.741737571962E-06 0.305123172036E-05 50 0.556457444810E-06 0.215333841972E-05 elk-10.4.9/tests/test_023/PaxHeaders/TEST_700.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.594019574 30 atime=1741380470.593019569 30 ctime=1741380470.594019574 elk-10.4.9/tests/test_023/TEST_700.OUT_0000644002504400250440000000173214762655566020613 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 29 0.100000000000E-07 1 3471.42385475 2 449.999268017 3 102.126006040 4 44.4368907338 5 24.8077399615 6 316.225134909 7 110.172109929 8 49.8595800454 9 27.6688640011 10 33.2606437898 11 63.9928181320 12 159.609474644 13 74.9097699406 14 44.1226890559 15 26.9879912411 16 23.3873537479 17 37.5424793079 18 32.9874812327 19 23.2415139523 20 16.4427726861 21 18.4974249639 22 58.8819748233 23 33.7934093072 24 21.1301369304 25 29.5144616450 26 20.0273396337 27 22.9243588415 28 17.3643897759 29 14.7360936588 elk-10.4.9/tests/test_023/PaxHeaders/TEST_320.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.595019579 30 atime=1741380470.595019579 30 ctime=1741380470.595019579 elk-10.4.9/tests/test_023/TEST_320.OUT_0000644002504400250440000005653714762655566020626 0ustar00dewhurstdewhurst00000000000000'inverse ϵ' 3 450 0.100000000000E-01 1 0.435962281512 -0.637663699659E-15 2 -0.236415849511E-05 -0.678651556630E-16 3 0.580059918694E-06 -0.133893241099E-15 4 -0.236411551933E-05 0.135297190629E-16 5 0.435962662575 0.124542324868E-14 6 0.178524610097E-06 0.140612701008E-15 7 0.579936935338E-06 -0.653026290797E-16 8 0.178647168420E-06 0.180241064879E-15 9 0.435961689368 0.311810820764E-15 10 0.435273366611 -0.460354233567E-03 11 -0.235931600469E-05 0.320949335113E-08 12 0.578805170098E-06 -0.759072422354E-09 13 -0.235932863030E-05 0.322803018895E-08 14 0.435273746898 -0.460354752325E-03 15 0.178247121566E-06 -0.264976453073E-09 16 0.578841319881E-06 -0.812193563392E-09 17 0.178211096021E-06 -0.212038806473E-09 18 0.435272775669 -0.460353429857E-03 19 0.433193149436 -0.929753661934E-03 20 -0.234475746039E-05 0.650784118846E-08 21 0.575245738481E-06 -0.157511825797E-08 22 -0.234477472915E-05 0.651788776095E-08 23 0.433193527377 -0.929754711563E-03 24 0.177175230602E-06 -0.496898390722E-09 25 0.575295179002E-06 -0.160401026276E-08 26 0.177125959963E-06 -0.468106047162E-09 27 0.433192562128 -0.929752035738E-03 28 0.429680415256 -0.141778301547E-02 29 -0.232011548844E-05 0.995909727964E-08 30 0.569230244338E-06 -0.242138681702E-08 31 -0.232013390821E-05 0.996592657767E-08 32 0.429680789225 -0.141778462098E-02 33 0.175351606707E-06 -0.747663778188E-09 34 0.569282982429E-06 -0.244114690918E-08 35 0.175299051416E-06 -0.727972470912E-09 36 0.429679834101 -0.141778052803E-02 37 0.424663714325 -0.193517509669E-02 38 -0.228479096070E-05 0.136556980991E-07 39 0.560609280576E-06 -0.332515882819E-08 40 -0.228481004673E-05 0.136608775272E-07 41 0.424664082602 -0.193517729764E-02 42 0.172737061987E-06 -0.101856438235E-08 43 0.560663928798E-06 -0.334028242895E-08 44 0.172682603740E-06 -0.100349549824E-08 45 0.424663141990 -0.193517168667E-02 46 0.418036848545 -0.249457305837E-02 47 -0.223789115509E-05 0.177060437196E-07 48 0.549165611857E-06 -0.431390919371E-08 49 -0.223791084616E-05 0.177102266739E-07 50 0.418037209265 -0.249457591167E-02 51 0.169267351684E-06 -0.131610747883E-08 52 0.549221997047E-06 -0.432628032742E-08 53 0.169211164191E-06 -0.130378540415E-08 54 0.418036287919 -0.249456863757E-02 55 0.409651712011 -0.311156839361E-02 56 -0.217816334602E-05 0.222452160583E-07 57 0.534595170793E-06 -0.542076928218E-08 58 -0.217818369952E-05 0.222487333738E-07 59 0.409652063108 -0.311157197786E-02 60 0.164851798420E-06 -0.164955411762E-08 61 0.534653461570E-06 -0.543135518588E-08 62 0.164793711133E-06 -0.163901789962E-08 63 0.409651166295 -0.311156284027E-02 64 0.399307401260 -0.380620997984E-02 65 -0.210389462696E-05 0.274493457058E-07 66 0.516482606969E-06 -0.668851514858E-08 67 -0.210391575829E-05 0.274523856880E-07 68 0.399307740392 -0.380621440190E-02 69 0.159366567527E-06 -0.203131720614E-08 70 0.516543133000E-06 -0.669788432880E-08 71 0.159306255306E-06 -0.202200481012E-08 72 0.399306874082 -0.380620312840E-02 73 0.386733746318 -0.460532138038E-02 74 -0.201275913655E-05 0.335576968521E-07 75 0.494264475130E-06 -0.817500006868E-08 76 -0.201278120005E-05 0.335603739841E-07 77 0.386734070770 -0.460532678551E-02 78 0.152644041203E-06 -0.247831617955E-08 79 0.494327688001E-06 -0.818352382686E-08 80 0.152581054214E-06 -0.246986454956E-08 81 0.386733241884 -0.460531300587E-02 82 0.371566050437 -0.554624617599E-02 83 -0.190158116414E-05 0.409087664359E-07 84 0.467172362282E-06 -0.996181632652E-08 85 -0.190160435959E-05 0.409111511765E-07 86 0.371566356984 -0.554625276379E-02 87 0.144456400507E-06 -0.301436047202E-08 88 0.467238842747E-06 -0.996976238519E-08 89 0.144390162381E-06 -0.300651386721E-08 90 0.371565573744 -0.554623596946E-02 91 0.353305241516 -0.668323481197E-02 92 -0.176595676705E-05 0.500026743960E-07 93 0.434142338168E-06 -0.121691294979E-07 94 -0.176598135028E-05 0.500048056993E-07 95 0.353305526226 -0.668324286222E-02 96 0.134489737467E-06 -0.367425296813E-08 97 0.434212831942E-06 -0.121767135800E-07 98 0.134419507569E-06 -0.366681445863E-08 99 0.353304798655 -0.668322234058E-02 100 0.331252398085 -0.809902675205E-02 101 -0.159962326652E-05 0.616159711212E-07 102 0.393664718485E-06 -0.149827679814E-07 103 -0.159964956586E-05 0.616178580259E-07 104 0.331252656021 -0.809903666894E-02 105 0.122301726829E-06 -0.451114476677E-08 106 0.393740201543E-06 -0.149901899865E-07 107 0.122226538227E-06 -0.450394561073E-08 108 0.331251996700 -0.809901139099E-02 109 0.304395111858 -0.992750146908E-02 110 -0.139334757115E-05 0.770297919506E-07 111 0.343520810650E-06 -0.187075128881E-07 112 -0.139337602426E-05 0.770314019757E-07 113 0.304395336601 -0.992751386182E-02 114 0.107249071433E-06 -0.561051088402E-08 115 0.343602602817E-06 -0.187149932654E-07 116 0.107167619930E-06 -0.560338561652E-08 117 0.304394761882 -0.992748227776E-02 118 0.271195239162 -0.124025633169E-01 119 -0.113281253273E-05 0.985311986638E-07 120 0.280287234362E-06 -0.238823086412E-07 121 -0.113284373441E-05 0.985324153125E-07 122 0.271195422000 -0.124025791600E-01 123 0.883555399012E-07 -0.711863985351E-08 124 0.280377204630E-06 -0.238901430122E-07 125 0.882659868056E-07 -0.711139612379E-08 126 0.271194954066 -0.124025387935E-01 127 0.229150137951 -0.159792201762E-01 128 -0.794156906459E-06 0.130681364219E-06 129 0.198307445887E-06 -0.315631589067E-07 130 -0.794191666392E-06 0.130681838338E-06 131 0.229150266358 -0.159792411702E-01 132 0.640542038499E-07 -0.930514567238E-08 133 0.198408422644E-06 -0.315718279593E-07 134 0.639537854532E-07 -0.929751310319E-08 135 0.229149937080 -0.159791877077E-01 136 0.173739039125 -0.217045763229E-01 137 -0.332997210577E-06 0.184307531208E-06 138 0.872433193448E-07 -0.441570629596E-07 139 -0.333036389250E-06 0.184306018928E-06 140 0.173739093497 -0.217046058808E-01 141 0.316455134776E-07 -0.127011558624E-07 142 0.873600155950E-07 -0.441674884062E-07 143 0.315296652639E-07 -0.126926828922E-07 144 0.173738952667 -0.217045306952E-01 145 0.951932156103E-01 -0.328991986032E-01 146 0.350314519913E-06 0.295405637144E-06 147 -0.751076980110E-07 -0.686339490585E-07 148 0.350275081369E-06 0.295395718312E-06 149 0.951931605779E-01 -0.328992457163E-01 150 -0.138324400213E-07 -0.180623503691E-07 151 -0.749666884442E-07 -0.686479907729E-07 152 -0.139722341277E-07 -0.180523117712E-07 153 0.951932977348E-01 -0.328991262463E-01 154 -0.314182855197E-01 -0.746888083726E-01 155 0.149700592279E-05 0.759092100519E-06 156 -0.372319570477E-06 -0.137348807728E-06 157 0.149702227502E-05 0.759370384364E-06 158 -0.314185274619E-01 -0.746889251923E-01 159 -0.108394886960E-06 -0.946223076995E-08 160 -0.372120350626E-06 -0.137478449182E-06 161 -0.108588146411E-06 -0.939355082060E-08 162 -0.314179178929E-01 -0.746886327533E-01 163 -0.142043453925 -0.213615143004 164 0.240770276375E-05 0.213789398843E-05 165 -0.585836589773E-06 -0.545760942661E-06 166 0.240762534638E-05 0.213814806713E-05 167 -0.142043847973 -0.213615463199 168 -0.209285201906E-06 -0.143430359531E-06 169 -0.585539092292E-06 -0.546093245894E-06 170 -0.209443280286E-06 -0.143411820335E-06 171 -0.142042841557 -0.213614612930 172 -0.258280428841 -0.371828837831 173 0.332797643544E-05 0.385758174886E-05 174 -0.810198919745E-06 -0.943163171853E-06 175 0.332782732973E-05 0.385773302377E-05 176 -0.258280959293 -0.371829461245 177 -0.281645752766E-06 -0.308300725643E-06 178 -0.809784262148E-06 -0.943690491590E-06 179 -0.282234094975E-06 -0.308301931665E-06 180 -0.258279567750 -0.371827857210 181 -0.285826693618 -0.584332636256 182 0.322054263352E-05 0.615240770701E-05 183 -0.772735261420E-06 -0.146430594856E-05 184 0.322039688659E-05 0.615239465060E-05 185 -0.285827213084 -0.584333627966 186 -0.236647645878E-06 -0.467602981455E-06 187 -0.771929923920E-06 -0.146414072229E-05 188 -0.237450317011E-06 -0.467745877907E-06 189 -0.285825888866 -0.584331091979 190 0.265454443369 -1.01847479335 191 -0.351695996279E-05 0.819085824424E-05 192 0.833826568545E-06 -0.205470923546E-05 193 -0.351696093116E-05 0.819085904941E-05 194 0.265455009362 -1.01847611281 195 0.249292207522E-06 -0.627440729291E-06 196 0.833779389610E-06 -0.205529027670E-05 197 0.249430776073E-06 -0.626878298399E-06 198 0.265453561939 -1.01847274094 199 0.257584491723 -0.951832691332 200 -0.316093291169E-05 0.771234807241E-05 201 0.777173553783E-06 -0.189286338552E-05 202 -0.316090598564E-05 0.771221817851E-05 203 0.257584998984 -0.951833933657 204 0.244806417127E-06 -0.560671796205E-06 205 0.777349130725E-06 -0.189228356326E-05 206 0.244599948887E-06 -0.561362608858E-06 207 0.257583700128 -0.951830762291 208 0.630945031796 -0.726958615803 209 -0.500161347977E-05 0.464052756490E-05 210 0.121117873522E-05 -0.112642532983E-05 211 -0.500159738773E-05 0.464050944243E-05 212 0.630945837280 -0.726959363810 213 0.370701462010E-06 -0.363780117910E-06 214 0.121111627388E-05 -0.112630492009E-05 215 0.370783098548E-06 -0.363786481359E-06 216 0.630943780073 -0.726957454276 217 0.516665668098 -0.548152527246 218 -0.372829376184E-05 0.379086588938E-05 219 0.911822028069E-06 -0.928131061177E-06 220 -0.372829160077E-05 0.379085083176E-05 221 0.516666267682 -0.548153138043 222 0.278276428688E-06 -0.293609922719E-06 223 0.911858409155E-06 -0.928100260598E-06 224 0.278289369268E-06 -0.293705850465E-06 225 0.516664735843 -0.548151578051 226 0.443758948595 -0.375842166056 227 -0.284290697102E-05 0.273911364003E-05 228 0.688588368102E-06 -0.664265908253E-06 229 -0.284294539148E-05 0.273912799871E-05 230 0.443759406851 -0.375842605453 231 0.214573217015E-06 -0.216939186916E-06 232 0.688692621129E-06 -0.664247439060E-06 233 0.214535745674E-06 -0.217059249464E-06 234 0.443758235299 -0.375841483131 235 0.139693026599 -0.445285655767 236 -0.571742270500E-06 0.385608118738E-05 237 0.135430009155E-06 -0.953409264024E-06 238 -0.571756910682E-06 0.385602132420E-05 239 0.139693116038 -0.445286277113 240 0.591415763183E-07 -0.280784926599E-06 241 0.135503722370E-06 -0.953274806131E-06 242 0.593263773191E-07 -0.280933850575E-06 243 0.139692885310 -0.445284690108 244 -0.121715747270E-02 -0.997444203352 245 -0.113796138796E-05 0.930362508396E-05 246 0.271519202271E-06 -0.226317031772E-05 247 -0.113794484905E-05 0.930350546569E-05 248 -0.121697290785E-02 -0.997445704276 249 0.750017160837E-07 -0.694516620821E-06 250 0.271563317179E-06 -0.226248893969E-05 251 0.736101703611E-07 -0.694807501999E-06 252 -0.121743925129E-02 -0.997441876693 253 0.452263087029 -0.801355743907 254 -0.411171324053E-05 0.585722498923E-05 255 0.100830667887E-05 -0.145019595292E-05 256 -0.411185095478E-05 0.585743049995E-05 257 0.452263742041 -0.801356686002 258 0.293913570348E-06 -0.397386293252E-06 259 0.100835049085E-05 -0.145051190908E-05 260 0.294012558304E-06 -0.397670667059E-06 261 0.452262066410 -0.801354289637 262 -0.158894915527E-01 -0.617217595729 263 0.390567240898E-06 0.578812038681E-05 264 -0.117489001631E-06 -0.141103989139E-05 265 0.390270674949E-06 0.578822804446E-05 266 -0.158895590771E-01 -0.617218530049 267 -0.301384005945E-07 -0.434797248446E-06 268 -0.117272522201E-06 -0.141118847152E-05 269 -0.306021993555E-07 -0.434458864152E-06 270 -0.158893828494E-01 -0.617216138549 271 -0.341248438584 -1.13947263330 272 0.159610510220E-05 0.123874308882E-04 273 -0.419659573822E-06 -0.307213285419E-05 274 0.159685844953E-05 0.123864839786E-04 275 -0.341248687205 -1.13947464810 276 -0.146357170550E-06 -0.937582586687E-06 277 -0.420720340249E-06 -0.306948367365E-05 278 -0.145674406882E-06 -0.941088448180E-06 279 -0.341248039640 -1.13946952905 280 0.798169903415E-01 -1.57935103794 281 -0.532225097522E-05 0.141804310677E-04 282 0.131366347894E-05 -0.351605628027E-05 283 -0.532239534572E-05 0.141807780563E-04 284 0.798178281737E-01 -1.57935331723 285 0.374894624449E-06 -0.105378513975E-05 286 0.131387395896E-05 -0.351673225102E-05 287 0.375095569915E-06 -0.105429508781E-05 288 0.798156632890E-01 -1.57934748866 289 -0.269508688528 -2.16418700298 290 -0.680742911805E-05 0.228295212598E-04 291 0.167094751864E-05 -0.562744565245E-05 292 -0.680701553609E-05 0.228292348459E-04 293 -0.269507570585 -2.16419068810 294 0.538267944292E-06 -0.174787398754E-05 295 0.167036491516E-05 -0.562558150232E-05 296 0.540174255334E-06 -0.174884488927E-05 297 -0.269510402385 -2.16418127352 298 2.02685681661 -3.85123545308 299 -0.422607460649E-04 0.998305334252E-06 300 0.104755143241E-04 -0.207780051927E-06 301 -0.422607818154E-04 0.999447184562E-06 302 2.02686361989 -3.85123555013 303 0.310239184624E-05 0.205872420140E-06 304 0.104736631369E-04 -0.211264822131E-06 305 0.310399794634E-05 0.209366195131E-06 306 2.02684623962 -3.85123529908 307 3.11521705645 -1.36181968731 308 -0.103329420566E-04 -0.642304846536E-05 309 0.251520939826E-05 0.165752727214E-05 310 -0.103336408280E-04 -0.642195548601E-05 311 3.11521871286 -1.36181864213 312 0.774485969512E-06 0.481945379156E-06 313 0.251716841532E-05 0.165532256448E-05 314 0.772876275849E-06 0.482044608097E-06 315 3.11521447235 -1.36182131267 316 2.09018835067 -0.759066153865 317 -0.995740754669E-05 -0.599539587258E-07 318 0.244019823010E-05 0.249008732446E-07 319 -0.995751107341E-05 -0.598157091073E-07 320 2.09018995164 -0.759066141318 321 0.723979291456E-06 0.288770433748E-07 322 0.244066741427E-05 0.246552818843E-07 323 0.723040763112E-06 0.296313996065E-07 324 2.09018586082 -0.759066172514 325 1.88162654883 -0.451898064033 326 -0.904647147479E-05 0.404071284303E-06 327 0.222136642380E-05 -0.739790902167E-07 328 -0.904748987112E-05 0.404323425764E-06 329 1.88162800739 -0.451898126039 330 0.681207066422E-06 -0.124178979745E-07 331 0.222177319393E-05 -0.741431392101E-07 332 0.681513746039E-06 -0.123848398439E-07 333 1.88162428128 -0.451897966884 334 1.61113268266 -0.335827968383 335 -0.846051943051E-05 0.695366788613E-06 336 0.207025904363E-05 -0.190408831018E-06 337 -0.846149047457E-05 0.696019344633E-06 338 1.61113405019 -0.335828081086 339 0.630948432104E-06 -0.698061778311E-07 340 0.207083653162E-05 -0.190812347532E-06 341 0.630701547406E-06 -0.698846266302E-07 342 1.61113056014 -0.335827791972 343 1.40809258388 -0.520277636282 344 -0.832858837486E-05 0.176888316688E-05 345 0.204508183471E-05 -0.416203605617E-06 346 -0.832903970884E-05 0.176857872427E-05 347 1.40809392278 -0.520277847816 348 0.625131738002E-06 -0.868665680633E-07 349 0.204460734007E-05 -0.417593849473E-06 350 0.624918776767E-06 -0.864159787673E-07 351 1.40809049599 -0.520277238753 352 1.63716111827 -0.408650651094 353 -0.872289934502E-05 0.764206989967E-06 354 0.213203694160E-05 -0.193317247580E-06 355 -0.872312000193E-05 0.764358237249E-06 356 1.63716252677 -0.408650789335 357 0.645258271698E-06 -0.738802187979E-07 358 0.213178523301E-05 -0.193243461622E-06 359 0.645463230090E-06 -0.739403249409E-07 360 1.63715893339 -0.408650443159 361 1.42894182837 -0.213268775254 362 -0.794462121848E-05 0.635028749251E-06 363 0.195355352921E-05 -0.150176990512E-06 364 -0.794471531646E-05 0.635081738052E-06 365 1.42894311265 -0.213268874453 366 0.591028686729E-06 -0.460629667623E-07 367 0.195361079707E-05 -0.150295948395E-06 368 0.591031099935E-06 -0.460348515880E-07 369 1.42893983581 -0.213268616732 370 1.36899510532 -0.415895470383 371 -0.812388423323E-05 0.138693080491E-05 372 0.194224224013E-05 -0.323468878290E-06 373 -0.812392841910E-05 0.138689150384E-05 374 1.36899639447 -0.415895701820 375 0.601071217068E-06 -0.108389015551E-06 376 0.194266587185E-05 -0.322865911769E-06 377 0.601042098870E-06 -0.108536259540E-06 378 1.36899307988 -0.415895127960 379 1.38185871711 -0.226226977984 380 -0.789536271874E-05 0.727334352124E-06 381 0.193532130467E-05 -0.182594286073E-06 382 -0.789544232817E-05 0.727308204287E-06 383 1.38185998296 -0.226227095995 384 0.582641386727E-06 -0.514508694528E-07 385 0.193553276231E-05 -0.182516046804E-06 386 0.582661207110E-06 -0.514444057640E-07 387 1.38185674115 -0.226226795103 388 1.29325616450 -0.304911444937 389 -0.771201255457E-05 0.112060529309E-05 390 0.188736315313E-05 -0.275082192955E-06 391 -0.771213440020E-05 0.112067105715E-05 392 1.29325740340 -0.304911624454 393 0.564797735143E-06 -0.823131671490E-07 394 0.188748394408E-05 -0.275306866048E-06 395 0.564794520976E-06 -0.822123548473E-07 396 1.29325423379 -0.304911165171 397 1.33589290318 -0.258278123420 398 -0.786190512959E-05 0.905539904198E-06 399 0.190978573099E-05 -0.211151630302E-06 400 -0.786197713315E-05 0.905550607298E-06 401 1.33589416214 -0.258278268537 402 0.576662403112E-06 -0.655238566133E-07 403 0.190976287273E-05 -0.211078129467E-06 404 0.576699552481E-06 -0.654414701325E-07 405 1.33589093977 -0.258277897732 406 1.32027782957 -0.281887572199 407 -0.786570272426E-05 0.100995058364E-05 408 0.192547900367E-05 -0.257042384854E-06 409 -0.786565868858E-05 0.100996281822E-05 410 1.32027909318 -0.281887734331 411 0.569614440026E-06 -0.710228036882E-07 412 0.192563334088E-05 -0.257235707667E-06 413 0.569578029742E-06 -0.710197646160E-07 414 1.32027586387 -0.281887318925 415 1.28969948948 -0.201686582273 416 -0.769240486020E-05 0.751852653453E-06 417 0.187889500229E-05 -0.179618454718E-06 418 -0.769240122435E-05 0.751857760838E-06 419 1.28970072109 -0.201686702219 420 0.564484830153E-06 -0.582486576372E-07 421 0.187877392243E-05 -0.179633411382E-06 422 0.564430770467E-06 -0.582311224520E-07 423 1.28969756462 -0.201686393745 424 1.25360263650 -0.176183460935 425 -0.757208770546E-05 0.677115222055E-06 426 0.185154575587E-05 -0.177249575223E-06 427 -0.757204652693E-05 0.677385581749E-06 428 1.25360384944 -0.176183571609 429 0.559801666013E-06 -0.568142595118E-07 430 0.185131292533E-05 -0.178135589087E-06 431 0.559827210246E-06 -0.568955545946E-07 432 1.25360074278 -0.176183288402 433 1.20916997711 -0.185362308414 434 -0.742956625155E-05 0.746317997041E-06 435 0.180484313095E-05 -0.168186599673E-06 436 -0.742933394611E-05 0.746428867231E-06 437 1.20917116716 -0.185362434617 438 0.548558808053E-06 -0.733094945528E-07 439 0.180446185724E-05 -0.168312538909E-06 440 0.548478963330E-06 -0.732251630523E-07 441 1.20916811765 -0.185362116134 442 1.20238618235 -0.172988561454 443 -0.743748662658E-05 0.739195765756E-06 444 0.181598408715E-05 -0.185316442215E-06 445 -0.743737832585E-05 0.739012973864E-06 446 1.20238736822 -0.172988678566 447 0.540132978126E-06 -0.422807116946E-07 448 0.181571622539E-05 -0.184935858789E-06 449 0.540158257501E-06 -0.423590171158E-07 450 1.20238432286 -0.172988379935 elk-10.4.9/tests/PaxHeaders/test_0290000644000000000000000000000013114762655566014121 xustar0030 mtime=1741380470.615019684 29 atime=1741380470.59701959 30 ctime=1741380470.615019684 elk-10.4.9/tests/test_029/0000755002504400250440000000000014762655566016721 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_029/PaxHeaders/TEST_910.OUT_0000644000000000000000000000012614762655566016102 xustar0028 mtime=1741380470.5990196 30 atime=1741380470.598019595 28 ctime=1741380470.5990196 elk-10.4.9/tests/test_029/TEST_910.OUT_0000644002504400250440000002727714762655566020640 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 384 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.545019400590E-01 5 0.00000000000 6 0.00000000000 7 0.00000000000 8 0.143067592655 9 0.00000000000 10 0.545019400590E-01 11 0.143067592655 12 0.00000000000 13 0.00000000000 14 0.286135185310 15 0.00000000000 16 0.545019400590E-01 17 0.286135185310 18 0.00000000000 19 0.00000000000 20 0.429202777965 21 0.00000000000 22 0.545019400590E-01 23 0.429202777965 24 0.00000000000 25 0.00000000000 26 0.572270370619 27 0.00000000000 28 0.545019400590E-01 29 0.572270370619 30 0.00000000000 31 0.00000000000 32 0.715337963274 33 0.00000000000 34 0.545019400590E-01 35 0.715337963274 36 0.00000000000 37 0.00000000000 38 0.858405555929 39 0.00000000000 40 0.545019400590E-01 41 0.858405555929 42 0.00000000000 43 0.00000000000 44 1.00147314858 45 0.00000000000 46 0.545019400590E-01 47 1.00147314858 48 0.00000000000 49 0.00000000000 50 0.00000000000 51 0.143067592655 52 0.545019400590E-01 53 0.00000000000 54 0.143067592655 55 0.00000000000 56 0.143067592655 57 0.143067592655 58 0.545019400590E-01 59 0.143067592655 60 0.143067592655 61 0.00000000000 62 0.286135185310 63 0.143067592655 64 0.545019400590E-01 65 0.286135185310 66 0.143067592655 67 0.00000000000 68 0.429202777965 69 0.143067592655 70 0.545019400590E-01 71 0.429202777965 72 0.143067592655 73 0.00000000000 74 0.572270370619 75 0.143067592655 76 0.545019400590E-01 77 0.572270370619 78 0.143067592655 79 0.00000000000 80 0.715337963274 81 0.143067592655 82 0.545019400590E-01 83 0.715337963274 84 0.143067592655 85 0.00000000000 86 0.858405555929 87 0.143067592655 88 0.545019400590E-01 89 0.858405555929 90 0.143067592655 91 0.00000000000 92 1.00147314858 93 0.143067592655 94 0.545019400590E-01 95 1.00147314858 96 0.143067592655 97 0.00000000000 98 0.00000000000 99 0.286135185310 100 0.545019400590E-01 101 0.00000000000 102 0.286135185310 103 0.00000000000 104 0.143067592655 105 0.286135185310 106 0.545019400590E-01 107 0.143067592655 108 0.286135185310 109 0.00000000000 110 0.286135185310 111 0.286135185310 112 0.545019400590E-01 113 0.286135185310 114 0.286135185310 115 0.00000000000 116 0.429202777965 117 0.286135185310 118 0.545019400590E-01 119 0.429202777965 120 0.286135185310 121 0.00000000000 122 0.572270370619 123 0.286135185310 124 0.545019400590E-01 125 0.572270370619 126 0.286135185310 127 0.00000000000 128 0.715337963274 129 0.286135185310 130 0.545019400590E-01 131 0.715337963274 132 0.286135185310 133 0.00000000000 134 0.858405555929 135 0.286135185310 136 0.545019400590E-01 137 0.858405555929 138 0.286135185310 139 0.00000000000 140 1.00147314858 141 0.286135185310 142 0.545019400590E-01 143 1.00147314858 144 0.286135185310 145 0.00000000000 146 0.00000000000 147 0.429202777965 148 0.545019400590E-01 149 0.00000000000 150 0.429202777965 151 0.00000000000 152 0.143067592655 153 0.429202777965 154 0.545019400590E-01 155 0.143067592655 156 0.429202777965 157 0.00000000000 158 0.286135185310 159 0.429202777965 160 0.545019400590E-01 161 0.286135185310 162 0.429202777965 163 0.00000000000 164 0.429202777965 165 0.429202777965 166 0.545019400590E-01 167 0.429202777965 168 0.429202777965 169 0.00000000000 170 0.572270370619 171 0.429202777965 172 0.545019400590E-01 173 0.572270370619 174 0.429202777965 175 0.00000000000 176 0.715337963274 177 0.429202777965 178 0.545019400590E-01 179 0.715337963274 180 0.429202777965 181 0.00000000000 182 0.858405555929 183 0.429202777965 184 0.545019400590E-01 185 0.858405555929 186 0.429202777965 187 0.00000000000 188 1.00147314858 189 0.429202777965 190 0.545019400590E-01 191 1.00147314858 192 0.429202777965 193 0.00000000000 194 0.00000000000 195 0.572270370619 196 0.545019400590E-01 197 0.00000000000 198 0.572270370619 199 0.00000000000 200 0.143067592655 201 0.572270370619 202 0.545019400590E-01 203 0.143067592655 204 0.572270370619 205 0.00000000000 206 0.286135185310 207 0.572270370619 208 0.545019400590E-01 209 0.286135185310 210 0.572270370619 211 0.00000000000 212 0.429202777965 213 0.572270370619 214 0.545019400590E-01 215 0.429202777965 216 0.572270370619 217 0.00000000000 218 0.572270370619 219 0.572270370619 220 0.545019400590E-01 221 0.572270370619 222 0.572270370619 223 0.00000000000 224 0.715337963274 225 0.572270370619 226 0.545019400590E-01 227 0.715337963274 228 0.572270370619 229 0.00000000000 230 0.858405555929 231 0.572270370619 232 0.545019400590E-01 233 0.858405555929 234 0.572270370619 235 0.00000000000 236 1.00147314858 237 0.572270370619 238 0.545019400590E-01 239 1.00147314858 240 0.572270370619 241 0.00000000000 242 0.00000000000 243 0.715337963274 244 0.545019400590E-01 245 0.00000000000 246 0.715337963274 247 0.00000000000 248 0.143067592655 249 0.715337963274 250 0.545019400590E-01 251 0.143067592655 252 0.715337963274 253 0.00000000000 254 0.286135185310 255 0.715337963274 256 0.545019400590E-01 257 0.286135185310 258 0.715337963274 259 0.00000000000 260 0.429202777965 261 0.715337963274 262 0.545019400590E-01 263 0.429202777965 264 0.715337963274 265 0.00000000000 266 0.572270370619 267 0.715337963274 268 0.545019400590E-01 269 0.572270370619 270 0.715337963274 271 0.00000000000 272 0.715337963274 273 0.715337963274 274 0.545019400590E-01 275 0.715337963274 276 0.715337963274 277 0.00000000000 278 0.858405555929 279 0.715337963274 280 0.545019400590E-01 281 0.858405555929 282 0.715337963274 283 0.00000000000 284 1.00147314858 285 0.715337963274 286 0.545019400590E-01 287 1.00147314858 288 0.715337963274 289 0.00000000000 290 0.00000000000 291 0.858405555929 292 0.545019400590E-01 293 0.00000000000 294 0.858405555929 295 0.00000000000 296 0.143067592655 297 0.858405555929 298 0.545019400590E-01 299 0.143067592655 300 0.858405555929 301 0.00000000000 302 0.286135185310 303 0.858405555929 304 0.545019400590E-01 305 0.286135185310 306 0.858405555929 307 0.00000000000 308 0.429202777965 309 0.858405555929 310 0.545019400590E-01 311 0.429202777965 312 0.858405555929 313 0.00000000000 314 0.572270370619 315 0.858405555929 316 0.545019400590E-01 317 0.572270370619 318 0.858405555929 319 0.00000000000 320 0.715337963274 321 0.858405555929 322 0.545019400590E-01 323 0.715337963274 324 0.858405555929 325 0.00000000000 326 0.858405555929 327 0.858405555929 328 0.545019400590E-01 329 0.858405555929 330 0.858405555929 331 0.00000000000 332 1.00147314858 333 0.858405555929 334 0.545019400590E-01 335 1.00147314858 336 0.858405555929 337 0.00000000000 338 0.00000000000 339 1.00147314858 340 0.545019400590E-01 341 0.00000000000 342 1.00147314858 343 0.00000000000 344 0.143067592655 345 1.00147314858 346 0.545019400590E-01 347 0.143067592655 348 1.00147314858 349 0.00000000000 350 0.286135185310 351 1.00147314858 352 0.545019400590E-01 353 0.286135185310 354 1.00147314858 355 0.00000000000 356 0.429202777965 357 1.00147314858 358 0.545019400590E-01 359 0.429202777965 360 1.00147314858 361 0.00000000000 362 0.572270370619 363 1.00147314858 364 0.545019400590E-01 365 0.572270370619 366 1.00147314858 367 0.00000000000 368 0.715337963274 369 1.00147314858 370 0.545019400590E-01 371 0.715337963274 372 1.00147314858 373 0.00000000000 374 0.858405555929 375 1.00147314858 376 0.545019400590E-01 377 0.858405555929 378 1.00147314858 379 0.00000000000 380 1.00147314858 381 1.00147314858 382 0.545019400590E-01 383 1.00147314858 384 1.00147314858 elk-10.4.9/tests/test_029/PaxHeaders/elk.in0000644000000000000000000000013214762655566015302 xustar0030 mtime=1741380470.601019611 30 atime=1741380470.600019606 30 ctime=1741380470.601019611 elk-10.4.9/tests/test_029/elk.in0000644002504400250440000000073414762655566020030 0ustar00dewhurstdewhurst00000000000000 ! Ultra long-range non-collinear calculation of bcc-Cr. tasks 0 700 500 test .true. maxscl 3 mixtype 1 ngridk 1 8 8 nempty 8 rndbfcu 1.0 spinorb .true. cmagz .true. avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale 5.4897 avecu 21.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scaleu 5.4897 ngridq 3 1 1 sppath '../../species/' atoms 1 'Cr.in' 2 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.0 0.0 0.0 elk-10.4.9/tests/test_029/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.602019616 30 atime=1741380470.602019616 30 ctime=1741380470.602019616 elk-10.4.9/tests/test_029/TEST_510.OUT_0000644002504400250440000000014514762655566020615 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.469512532223E-03 elk-10.4.9/tests/test_029/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.604019627 30 atime=1741380470.604019627 30 ctime=1741380470.604019627 elk-10.4.9/tests/test_029/TEST_500.OUT_0000644002504400250440000000013514762655566020613 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 207.657510095 elk-10.4.9/tests/test_029/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016101 xustar0030 mtime=1741380470.606019637 30 atime=1741380470.606019637 30 ctime=1741380470.606019637 elk-10.4.9/tests/test_029/TEST_705.OUT_0000644002504400250440000000010114762655566020613 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 96 elk-10.4.9/tests/test_029/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016076 xustar0030 mtime=1741380470.608019647 30 atime=1741380470.607019642 30 ctime=1741380470.608019647 elk-10.4.9/tests/test_029/TEST_900.OUT_0000644002504400250440000000007014762655566020615 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 4801 elk-10.4.9/tests/test_029/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016076 xustar0030 mtime=1741380470.609019653 30 atime=1741380470.609019653 30 ctime=1741380470.609019653 elk-10.4.9/tests/test_029/TEST_450.OUT_0000644002504400250440000000014014762655566020613 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.481670586269E-25 elk-10.4.9/tests/test_029/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.611019663 30 atime=1741380470.611019663 30 ctime=1741380470.611019663 elk-10.4.9/tests/test_029/TEST_400.OUT_0000644002504400250440000000014114762655566020607 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 48.0028171261 elk-10.4.9/tests/test_029/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.613019673 30 atime=1741380470.612019668 30 ctime=1741380470.613019673 elk-10.4.9/tests/test_029/TEST_000.OUT_0000644002504400250440000000012614762655566020606 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -2094.94454058 elk-10.4.9/tests/test_029/PaxHeaders/TEST_730.OUT_0000644000000000000000000000013214762655566016077 xustar0030 mtime=1741380470.614019679 30 atime=1741380470.614019679 30 ctime=1741380470.614019679 elk-10.4.9/tests/test_029/TEST_730.OUT_0000644002504400250440000000037314762655566020624 0ustar00dewhurstdewhurst00000000000000'ULR muffin-tin charges' 2 6 0.500000000000E-04 1 22.8978038747 2 22.8975955518 3 22.8967338497 4 22.8969174215 5 22.8978283313 6 22.8984112622 elk-10.4.9/tests/test_029/PaxHeaders/TEST_770.OUT_0000644000000000000000000000013214762655566016103 xustar0030 mtime=1741380470.616019689 30 atime=1741380470.616019689 30 ctime=1741380470.616019689 elk-10.4.9/tests/test_029/TEST_770.OUT_0000644002504400250440000000037314762655566020630 0ustar00dewhurstdewhurst00000000000000'ULR muffin-tin moments' 2 6 0.200000000000E-01 1 0.499341367672E-02 2 0.742431247504E-02 3 0.433991302415E-01 4 -0.949206731877E-02 5 -0.947469416849E-02 6 0.210023834576E-01 elk-10.4.9/tests/PaxHeaders/test_0250000644000000000000000000000013214762655566014116 xustar0030 mtime=1741380470.633019778 30 atime=1741380470.617019694 30 ctime=1741380470.633019778 elk-10.4.9/tests/test_025/0000755002504400250440000000000014762655566016715 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_025/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013014762655566016071 xustar0030 mtime=1741380470.619019705 28 atime=1741380470.6180197 30 ctime=1741380470.619019705 elk-10.4.9/tests/test_025/TEST_910.OUT_0000644002504400250440000001622514762655566020623 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 234 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.117405848391 5 0.117405848391 6 -0.117405848391 7 0.234811696782 8 0.234811696782 9 -0.234811696782 10 0.352217545173 11 0.352217545173 12 -0.352217545173 13 0.469623393565 14 0.469623393565 15 -0.469623393565 16 0.234811696782 17 0.00000000000 18 0.00000000000 19 0.352217545173 20 0.117405848391 21 -0.117405848391 22 0.469623393565 23 0.234811696782 24 -0.234811696782 25 0.587029241956 26 0.352217545173 27 -0.352217545173 28 0.704435090347 29 0.469623393565 30 -0.469623393565 31 0.821840938738 32 0.587029241956 33 -0.587029241956 34 0.939246787129 35 0.704435090347 36 -0.704435090347 37 0.352217545173 38 -0.117405848391 39 0.117405848391 40 0.469623393565 41 0.00000000000 42 0.00000000000 43 0.587029241956 44 0.117405848391 45 -0.117405848391 46 0.704435090347 47 0.234811696782 48 -0.234811696782 49 0.821840938738 50 0.352217545173 51 -0.352217545173 52 0.939246787129 53 0.469623393565 54 -0.469623393565 55 1.05665263552 56 0.587029241956 57 -0.587029241956 58 0.469623393565 59 -0.234811696782 60 0.234811696782 61 0.587029241956 62 -0.117405848391 63 0.117405848391 64 0.704435090347 65 -0.277555756156E-16 66 0.277555756156E-16 67 0.821840938738 68 0.117405848391 69 -0.117405848391 70 0.939246787129 71 0.234811696782 72 -0.234811696782 73 1.05665263552 74 0.352217545173 75 -0.352217545173 76 1.17405848391 77 0.469623393565 78 -0.469623393565 79 0.587029241956 80 -0.352217545173 81 0.352217545173 82 0.704435090347 83 -0.234811696782 84 0.234811696782 85 0.821840938738 86 -0.117405848391 87 0.117405848391 88 0.939246787129 89 0.00000000000 90 0.00000000000 91 0.00000000000 92 0.00000000000 93 0.234811696782 94 0.234811696782 95 0.234811696782 96 0.00000000000 97 0.352217545173 98 0.352217545173 99 -0.117405848391 100 0.469623393565 101 0.469623393565 102 -0.234811696782 103 0.587029241956 104 0.587029241956 105 -0.352217545173 106 0.704435090347 107 0.704435090347 108 -0.469623393565 109 0.821840938738 110 0.821840938738 111 -0.587029241956 112 0.469623393565 113 0.234811696782 114 0.00000000000 115 0.587029241956 116 0.352217545173 117 -0.117405848391 118 0.704435090347 119 0.469623393565 120 -0.234811696782 121 0.821840938738 122 0.587029241956 123 -0.352217545173 124 0.939246787129 125 0.704435090347 126 -0.469623393565 127 0.469623393565 128 -0.277555756156E-16 129 0.234811696782 130 0.704435090347 131 0.234811696782 132 0.277555756156E-16 133 0.821840938738 134 0.352217545173 135 -0.117405848391 136 0.939246787129 137 0.469623393565 138 -0.234811696782 139 1.05665263552 140 0.587029241956 141 -0.352217545173 142 0.587029241956 143 -0.117405848391 144 0.352217545173 145 0.704435090347 146 0.00000000000 147 0.234811696782 148 0.939246787129 149 0.234811696782 150 0.00000000000 151 1.05665263552 152 0.352217545173 153 -0.117405848391 154 1.17405848391 155 0.469623393565 156 -0.234811696782 157 0.704435090347 158 -0.234811696782 159 0.469623393565 160 0.821840938738 161 -0.117405848391 162 0.352217545173 163 0.939246787129 164 0.277555756156E-16 165 0.234811696782 166 1.17405848391 167 0.234811696782 168 -0.277555756156E-16 169 1.29146433230 170 0.352217545173 171 -0.117405848391 172 0.821840938738 173 -0.352217545173 174 0.587029241956 175 0.939246787129 176 -0.234811696782 177 0.469623393565 178 1.05665263552 179 -0.117405848391 180 0.352217545173 181 1.40887018069 182 0.234811696782 183 0.555111512313E-16 184 0.00000000000 185 0.00000000000 186 0.469623393565 187 0.469623393565 188 0.469623393565 189 0.00000000000 190 0.587029241956 191 0.587029241956 192 -0.117405848391 193 0.704435090347 194 0.704435090347 195 -0.234811696782 196 0.821840938738 197 0.821840938738 198 -0.352217545173 199 0.704435090347 200 0.469623393565 201 0.277555756156E-16 202 0.821840938738 203 0.587029241956 204 -0.117405848391 205 0.939246787129 206 0.704435090347 207 -0.234811696782 208 0.939246787129 209 0.469623393565 210 0.00000000000 211 1.05665263552 212 0.587029241956 213 -0.117405848391 214 1.17405848391 215 0.469623393565 216 -0.277555756156E-16 217 0.939246787129 218 -0.555111512313E-16 219 0.469623393565 220 0.277555756156E-16 221 -0.277555756156E-16 222 0.704435090347 223 0.704435090347 224 0.704435090347 225 0.277555756156E-16 226 0.821840938738 227 0.821840938738 228 -0.117405848391 229 0.939246787129 230 0.704435090347 231 -0.277555756156E-16 232 0.00000000000 233 0.00000000000 234 0.939246787129 elk-10.4.9/tests/test_025/PaxHeaders/TEST_705.OUT_0000644000000000000000000000012714762655566016101 xustar0029 mtime=1741380470.62001971 29 atime=1741380470.62001971 29 ctime=1741380470.62001971 elk-10.4.9/tests/test_025/TEST_705.OUT_0000644002504400250440000000010114762655566020607 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 8 elk-10.4.9/tests/test_025/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.622019721 30 atime=1741380470.622019721 30 ctime=1741380470.622019721 elk-10.4.9/tests/test_025/TEST_900.OUT_0000644002504400250440000000007014762655566020611 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2133 elk-10.4.9/tests/test_025/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.624019731 30 atime=1741380470.623019726 30 ctime=1741380470.624019731 elk-10.4.9/tests/test_025/TEST_500.OUT_0000644002504400250440000000013514762655566020607 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 54.5619544198 elk-10.4.9/tests/test_025/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.625019736 30 atime=1741380470.625019736 30 ctime=1741380470.625019736 elk-10.4.9/tests/test_025/TEST_510.OUT_0000644002504400250440000000014514762655566020611 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.762033126646E-03 elk-10.4.9/tests/test_025/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.627019747 30 atime=1741380470.627019747 30 ctime=1741380470.627019747 elk-10.4.9/tests/test_025/TEST_400.OUT_0000644002504400250440000000014114762655566020603 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 26.9957183181 elk-10.4.9/tests/test_025/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.629019757 30 atime=1741380470.628019752 30 ctime=1741380470.629019757 elk-10.4.9/tests/test_025/TEST_450.OUT_0000644002504400250440000000014014762655566020607 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 1.69601886368 elk-10.4.9/tests/test_025/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016061 xustar0030 mtime=1741380470.630019762 30 atime=1741380470.630019762 30 ctime=1741380470.630019762 elk-10.4.9/tests/test_025/TEST_000.OUT_0000644002504400250440000000012614762655566020602 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1391.14530870 elk-10.4.9/tests/test_025/PaxHeaders/TEST_110.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.632019773 30 atime=1741380470.632019773 30 ctime=1741380470.632019773 elk-10.4.9/tests/test_025/TEST_110.OUT_0000644002504400250440000000022714762655566020606 0ustar00dewhurstdewhurst00000000000000'hyperfine field' 2 3 0.100000000000E-03 1 -0.382019699518E-20 2 0.313898214383E-20 3 0.103262732605E-03 elk-10.4.9/tests/test_025/PaxHeaders/elk.in0000644000000000000000000000013214762655566015276 xustar0030 mtime=1741380470.634019783 30 atime=1741380470.634019783 30 ctime=1741380470.634019783 elk-10.4.9/tests/test_025/elk.in0000644002504400250440000000111014762655566020011 0ustar00dewhurstdewhurst00000000000000 ! Mossbauer hyperfine field for fcc Co including spin and orbital dipole terms. tasks 0 110 500 test .true. tbdip .true. tjr .true. spinorb .true. spincore .true. lorbcnd .true. bfieldc 0.0 0.0 0.01 nempty 10 ! large number of k-points required ngridk 8 8 8 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.3448 sppath '../../species/' atoms 1 : nspecies 'Co.in' : spfname 1 : natoms; atposl, bfcmt below 0.0 0.0 0.0 elk-10.4.9/tests/PaxHeaders/test_0020000644000000000000000000000013214762655566014111 xustar0030 mtime=1741380470.650019867 30 atime=1741380470.635019789 30 ctime=1741380470.650019867 elk-10.4.9/tests/test_002/0000755002504400250440000000000014762655566016710 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_002/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016060 xustar0030 mtime=1741380470.637019799 30 atime=1741380470.637019799 30 ctime=1741380470.637019799 elk-10.4.9/tests/test_002/TEST_400.OUT_0000644002504400250440000000014114762655566020576 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 25.9972160121 elk-10.4.9/tests/test_002/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.638019804 30 atime=1741380470.638019804 30 ctime=1741380470.638019804 elk-10.4.9/tests/test_002/TEST_450.OUT_0000644002504400250440000000014014762655566020602 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 2.73307850655 elk-10.4.9/tests/test_002/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.640019815 30 atime=1741380470.640019815 30 ctime=1741380470.640019815 elk-10.4.9/tests/test_002/TEST_900.OUT_0000644002504400250440000000007014762655566020604 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2315 elk-10.4.9/tests/test_002/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.642019825 30 atime=1741380470.642019825 30 ctime=1741380470.642019825 elk-10.4.9/tests/test_002/TEST_705.OUT_0000644002504400250440000000010114762655566020602 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests/test_002/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013114762655566016065 xustar0030 mtime=1741380470.644019836 29 atime=1741380470.64301983 30 ctime=1741380470.644019836 elk-10.4.9/tests/test_002/TEST_910.OUT_0000644002504400250440000000144714762655566020616 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.290028863884 5 0.290028863884 6 -0.652074116947E-17 7 0.580057727768 8 0.580057727768 9 -0.130414823389E-16 10 0.580057727768 11 0.290028863884 12 0.290028863884 13 0.580057727768 14 0.580057727768 15 0.580057727768 16 1.16011545554 17 1.16011545554 18 0.580057727768 19 1.16011545554 20 0.870086591652 21 0.870086591652 22 1.16011545554 23 1.16011545554 24 1.16011545554 elk-10.4.9/tests/test_002/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016061 xustar0030 mtime=1741380470.645019841 30 atime=1741380470.645019841 30 ctime=1741380470.645019841 elk-10.4.9/tests/test_002/TEST_500.OUT_0000644002504400250440000000013514762655566020602 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 26.7580916812 elk-10.4.9/tests/test_002/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.647019851 30 atime=1741380470.647019851 30 ctime=1741380470.647019851 elk-10.4.9/tests/test_002/TEST_510.OUT_0000644002504400250440000000014514762655566020604 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.435372735325E-02 elk-10.4.9/tests/test_002/PaxHeaders/elk.in0000644000000000000000000000013214762655566015271 xustar0030 mtime=1741380470.649019862 30 atime=1741380470.648019856 30 ctime=1741380470.649019862 elk-10.4.9/tests/test_002/elk.in0000644002504400250440000000064214762655566020015 0ustar00dewhurstdewhurst00000000000000 tasks 0 500 test .true. maxscl 5 rgkmax 6.5 spinpol .true. bfieldc 0.0 0.0 0.5 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 2.708 sppath '../../species/' atoms 1 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 elk-10.4.9/tests/test_002/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016054 xustar0030 mtime=1741380470.650019867 30 atime=1741380470.650019867 30 ctime=1741380470.650019867 elk-10.4.9/tests/test_002/TEST_000.OUT_0000644002504400250440000000012614762655566020575 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1270.54587554 elk-10.4.9/tests/PaxHeaders/test_0060000644000000000000000000000013214762655566014115 xustar0030 mtime=1741380470.679020019 30 atime=1741380470.651019872 30 ctime=1741380470.679020019 elk-10.4.9/tests/test_006/0000755002504400250440000000000014762655566016714 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_006/PaxHeaders/elk.in0000644000000000000000000000013214762655566015275 xustar0030 mtime=1741380470.653019883 30 atime=1741380470.653019883 30 ctime=1741380470.653019883 elk-10.4.9/tests/test_006/elk.in0000644002504400250440000000143414762655566020021 0ustar00dewhurstdewhurst00000000000000 ! GaAs using the Perdew-Burke-Ernzerhof GGA functional and spin-orbit coupling. tasks 0 10 25 120 121 125 180 185 186 187 500 test .true. bsefull .true. swidth 0.01 optcomp 1 2 2 wplot 50 100 4 0.0 0.5 rgkmax 6.0 xctype 20 mixtype 1 epspot 1.e-6 spinorb .true. avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms 0.00 0.00 0.00 0.0 0.0 0.0 : atposl, bfcmt 'As.in' : spfname 1 : natoms 0.25 0.25 0.25 0.0 0.0 0.0 : atposl, bfcmt ngridk 4 4 4 vkloff 0.25 0.5 0.625 elk-10.4.9/tests/test_006/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.656019898 30 atime=1741380470.655019893 30 ctime=1741380470.656019898 elk-10.4.9/tests/test_006/TEST_705.OUT_0000644002504400250440000000010114762655566020606 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-10.4.9/tests/test_006/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.658019909 30 atime=1741380470.658019909 30 ctime=1741380470.658019909 elk-10.4.9/tests/test_006/TEST_900.OUT_0000644002504400250440000000007014762655566020610 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 8873 elk-10.4.9/tests/test_006/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.660019919 30 atime=1741380470.659019914 30 ctime=1741380470.660019919 elk-10.4.9/tests/test_006/TEST_910.OUT_0000644002504400250440000001357714762655566020631 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 192 0.100000000000E-07 1 0.183727464068E-01 2 0.551182392204E-01 3 0.128609224848 4 0.165354717661 5 0.202100210475 6 -0.183727464068E-01 7 0.312336688915 8 0.349082181729 9 -0.165354717661 10 0.459318660170 11 0.496064152983 12 -0.312336688915 13 0.165354717661 14 -0.918637320339E-01 15 0.275591196102 16 0.312336688915 17 0.551182392204E-01 18 0.128609224848 19 0.459318660170 20 0.202100210475 21 -0.183727464068E-01 22 0.606300631424 23 0.349082181729 24 -0.165354717661 25 0.312336688915 26 -0.238845703288 27 0.422573167356 28 0.459318660170 29 -0.918637320339E-01 30 0.275591196102 31 0.606300631424 32 0.551182392204E-01 33 0.128609224848 34 0.753282602678 35 0.202100210475 36 -0.183727464068E-01 37 0.459318660170 38 -0.385827674543 39 0.569555138610 40 0.606300631424 41 -0.238845703288 42 0.422573167356 43 0.753282602678 44 -0.918637320339E-01 45 0.275591196102 46 0.900264573933 47 0.551182392204E-01 48 0.128609224848 49 -0.128609224848 50 0.202100210475 51 0.275591196102 52 0.183727464068E-01 53 0.349082181729 54 0.128609224848 55 0.165354717661 56 0.496064152983 57 -0.183727464068E-01 58 0.312336688915 59 0.643046124238 60 -0.165354717661 61 0.183727464068E-01 62 0.551182392204E-01 63 0.422573167356 64 0.165354717661 65 0.202100210475 66 0.275591196102 67 0.312336688915 68 0.349082181729 69 0.128609224848 70 0.459318660170 71 0.496064152983 72 -0.183727464068E-01 73 0.165354717661 74 -0.918637320339E-01 75 0.569555138610 76 0.312336688915 77 0.551182392204E-01 78 0.422573167356 79 0.459318660170 80 0.202100210475 81 0.275591196102 82 0.606300631424 83 0.349082181729 84 0.128609224848 85 0.312336688915 86 -0.238845703288 87 0.716537109865 88 0.459318660170 89 -0.918637320339E-01 90 0.569555138610 91 0.606300631424 92 0.551182392204E-01 93 0.422573167356 94 0.753282602678 95 0.202100210475 96 0.275591196102 97 -0.275591196102 98 0.349082181729 99 0.422573167356 100 -0.128609224848 101 0.496064152983 102 0.275591196102 103 0.183727464068E-01 104 0.643046124238 105 0.128609224848 106 0.165354717661 107 0.790028095492 108 -0.183727464068E-01 109 -0.128609224848 110 0.202100210475 111 0.569555138610 112 0.183727464068E-01 113 0.349082181729 114 0.422573167356 115 0.165354717661 116 0.496064152983 117 0.275591196102 118 0.312336688915 119 0.643046124238 120 0.128609224848 121 0.183727464068E-01 122 0.551182392204E-01 123 0.716537109865 124 0.165354717661 125 0.202100210475 126 0.569555138610 127 0.312336688915 128 0.349082181729 129 0.422573167356 130 0.459318660170 131 0.496064152983 132 0.275591196102 133 0.165354717661 134 -0.918637320339E-01 135 0.863519081119 136 0.312336688915 137 0.551182392204E-01 138 0.716537109865 139 0.459318660170 140 0.202100210475 141 0.569555138610 142 0.606300631424 143 0.349082181729 144 0.422573167356 145 -0.422573167356 146 0.496064152983 147 0.569555138610 148 -0.275591196102 149 0.643046124238 150 0.422573167356 151 -0.128609224848 152 0.790028095492 153 0.275591196102 154 0.183727464068E-01 155 0.937010066746 156 0.128609224848 157 -0.275591196102 158 0.349082181729 159 0.716537109865 160 -0.128609224848 161 0.496064152983 162 0.569555138610 163 0.183727464068E-01 164 0.643046124238 165 0.422573167356 166 0.165354717661 167 0.790028095492 168 0.275591196102 169 -0.128609224848 170 0.202100210475 171 0.863519081119 172 0.183727464068E-01 173 0.349082181729 174 0.716537109865 175 0.165354717661 176 0.496064152983 177 0.569555138610 178 0.312336688915 179 0.643046124238 180 0.422573167356 181 0.183727464068E-01 182 0.551182392204E-01 183 1.01050105237 184 0.165354717661 185 0.202100210475 186 0.863519081119 187 0.312336688915 188 0.349082181729 189 0.716537109865 190 0.459318660170 191 0.496064152983 192 0.569555138610 elk-10.4.9/tests/test_006/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013014762655566016063 xustar0029 mtime=1741380470.66201993 30 atime=1741380470.661019924 29 ctime=1741380470.66201993 elk-10.4.9/tests/test_006/TEST_500.OUT_0000644002504400250440000000013514762655566020606 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 1.09529457376 elk-10.4.9/tests/test_006/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.663019935 30 atime=1741380470.663019935 30 ctime=1741380470.663019935 elk-10.4.9/tests/test_006/TEST_510.OUT_0000644002504400250440000000014514762655566020610 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.687763727531E-01 elk-10.4.9/tests/test_006/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.665019945 30 atime=1741380470.665019945 30 ctime=1741380470.665019945 elk-10.4.9/tests/test_006/TEST_400.OUT_0000644002504400250440000000014114762655566020602 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 63.9851369308 elk-10.4.9/tests/test_006/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.667019956 30 atime=1741380470.667019956 30 ctime=1741380470.667019956 elk-10.4.9/tests/test_006/TEST_450.OUT_0000644002504400250440000000014014762655566020606 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.330214627253E-20 elk-10.4.9/tests/test_006/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016060 xustar0030 mtime=1741380470.669019966 30 atime=1741380470.669019966 30 ctime=1741380470.669019966 elk-10.4.9/tests/test_006/TEST_000.OUT_0000644002504400250440000000012614762655566020601 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -4205.21477462 elk-10.4.9/tests/test_006/PaxHeaders/TEST_010.OUT_0000644000000000000000000000013214762655566016061 xustar0030 mtime=1741380470.671019977 30 atime=1741380470.670019971 30 ctime=1741380470.671019977 elk-10.4.9/tests/test_006/TEST_010.OUT_0000644002504400250440000000612014762655566020602 0ustar00dewhurstdewhurst00000000000000'total DOS' 2 100 0.200000000000E-01 1 0.00000000000 2 0.295450017741E-01 3 0.226565342020 4 0.966057045519 5 2.67827304408 6 5.38261363468 7 8.20551681564 8 9.91935270836 9 9.98088686809 10 9.27037294248 11 9.10009487661 12 9.88024098379 13 10.6190159886 14 10.2367203216 15 8.73583098452 16 7.27874571168 17 6.88916939805 18 7.59996908015 19 8.59699534459 20 9.10137265331 21 8.94692646928 22 8.42941881791 23 7.95513980072 24 7.71215073001 25 7.69127272757 26 7.71598517895 27 7.67288214950 28 7.65959584391 29 8.05092625379 30 9.09218501765 31 10.5238016061 32 11.5267509294 33 11.4396312991 34 10.4106020484 35 9.39858373119 36 9.31321885797 37 10.2486281936 38 11.5005708409 39 12.2475114195 40 12.1687446809 41 11.5044894574 42 10.7310009881 43 10.2616600366 44 10.3013037188 45 10.8489029295 46 11.6665685927 47 12.4178420577 48 12.8223230106 49 12.8337296956 50 12.5972792787 51 0.00000000000 52 0.296015844673E-01 53 0.228008213666 54 0.971834296652 55 2.68956253605 56 5.39523198195 57 8.20866378992 58 9.90798876345 59 9.95934205638 60 9.25351595140 61 9.09495715227 62 9.88563260890 63 10.6256157742 64 10.2398057118 65 8.73460015302 66 7.27665250221 67 6.89098774432 68 7.61069407594 69 8.61753582948 70 9.12590621721 71 8.96463654235 72 8.42965947027 73 7.93460943286 74 7.67486466005 75 7.65291544284 76 7.68971621680 77 7.66756065338 78 7.66751754948 79 8.06532509880 80 9.10751987262 81 10.5410296279 82 11.5426718357 83 11.4502354291 84 10.4155268614 85 9.40173601915 86 9.31806078466 87 10.2537046524 88 11.5023051746 89 12.2441876259 90 12.1614111975 91 11.4965739958 92 10.7249885514 93 10.2591039334 94 10.3011184219 95 10.8499984253 96 11.6685346936 97 12.4217800407 98 12.8287331954 99 12.8416475330 100 12.6052806957 elk-10.4.9/tests/test_006/PaxHeaders/TEST_025.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.672019982 30 atime=1741380470.672019982 30 ctime=1741380470.672019982 elk-10.4.9/tests/test_006/TEST_025.OUT_0000644002504400250440000000022614762655566020611 0ustar00dewhurstdewhurst00000000000000'effective mass' 2 3 0.100000000000E-04 1 0.710001224651 2 0.710004874811 3 0.710011062323 elk-10.4.9/tests/test_006/PaxHeaders/TEST_121.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.674019992 30 atime=1741380470.674019992 30 ctime=1741380470.674019992 elk-10.4.9/tests/test_006/TEST_121.OUT_0000644002504400250440000000523114762655566020607 0ustar00dewhurstdewhurst00000000000000'optical conductivity' 3 50 0.100000000000E-01 1 -0.902233464096E-03 0.00000000000 2 -0.967975814310E-03 0.106030305155E-02 3 -0.100688233121E-02 0.213867244592E-02 4 -0.113835812756E-02 0.353100069812E-02 5 -0.159698941863E-02 0.517723713186E-02 6 -0.240448889987E-02 0.722347246158E-02 7 -0.409799883931E-02 0.100623323766E-01 8 -0.849781238603E-02 0.137884546668E-01 9 -0.194191887553E-01 0.126940511828E-01 10 -0.187646961990E-01 0.253473297736E-02 11 -0.216463454632E-01 0.422742789101E-02 12 -0.268973228046E-01 -0.654854652543E-02 13 -0.126300873916E-01 -0.137650642178E-01 14 -0.480027161179E-02 -0.384643525778E-02 15 -0.250995606543E-01 0.805141338623E-02 16 -0.378720139292E-01 -0.155240023772E-01 17 -0.251932507872E-01 -0.418800881125E-01 18 0.117378434592E-01 -0.397752536307E-01 19 0.150595342317E-01 -0.152983882154E-01 20 0.689142840368E-02 -0.586875924376E-02 21 -0.620322584203E-05 -0.637835406073E-02 22 0.313300662268E-04 -0.129342544729E-01 23 0.434876676339E-02 -0.129744034935E-01 24 0.850414719645E-02 -0.106198678033E-01 25 0.101196991237E-01 -0.557412171432E-02 26 0.890910272790E-02 -0.103307721709E-02 27 0.498790657721E-02 0.875186011437E-03 28 0.279969530581E-02 -0.572202126908E-03 29 0.536308462676E-02 0.106213786420E-02 30 0.990072122524E-03 0.379837617320E-02 31 -0.214491610357E-03 0.214438560939E-02 32 -0.192234271361E-02 0.460572340056E-02 33 -0.703228106635E-02 0.120111132819E-02 34 -0.670171698126E-02 -0.243901755652E-02 35 -0.544355436693E-02 -0.488148728820E-02 36 -0.332429839549E-02 -0.721564600673E-02 37 0.222925301620E-04 -0.607873277911E-02 38 0.128956621343E-03 -0.449563536898E-02 39 0.795656403259E-03 -0.449043322221E-02 40 0.116790876857E-02 -0.277046526191E-02 41 -0.292580934590E-03 -0.210018957202E-02 42 -0.694013807110E-03 -0.352539726608E-02 43 0.358510565665E-03 -0.351854648613E-02 44 0.755497903379E-03 -0.294286998739E-02 45 0.701142306312E-03 -0.274810578841E-02 46 0.878315844255E-03 -0.192340134262E-02 47 0.275125061451E-03 -0.171407536594E-02 48 -0.108961530403E-03 -0.205715559042E-02 49 0.421599670480E-03 -0.204825525089E-02 50 0.301004760123E-04 -0.159646097990E-02 elk-10.4.9/tests/test_006/PaxHeaders/TEST_125.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.676020003 30 atime=1741380470.675019998 30 ctime=1741380470.676020003 elk-10.4.9/tests/test_006/TEST_125.OUT_0000644002504400250440000000523614762655566020620 0ustar00dewhurstdewhurst00000000000000'non-linear susceptibility' 3 50 0.100000000000E-01 1 105.346243166 -0.104310396997E-13 2 63.9071681621 -58.5961484035 3 23.2248267219 -48.3041932585 4 13.8309363780 -36.7644333706 5 11.0842332497 -36.9847130905 6 -8.20816026428 -36.3119731412 7 -14.2335267951 -17.9061650007 8 -6.85355923426 -5.22601703335 9 5.64995683064 -9.43454215719 10 -5.33739535122 -17.4629715957 11 -8.76344198323 -6.67390110138 12 -6.35751577212 0.218915321680 13 3.55087891056 0.192372799810 14 3.76401287392 -3.87369628100 15 2.48031930493 -6.87478506513 16 0.430650894765 -4.26807219899 17 2.75611095875 -4.23133332637 18 2.76889076831 -6.73368429175 19 -0.324906347461 -7.02223413195 20 -0.767531639903 -4.40773733536 21 0.288990861291E-01 -3.99907528094 22 0.344997811605 -3.91901784079 23 0.391908524830 -3.81374218115 24 0.560571587585 -3.80749220643 25 0.402866324838 -4.03924210526 26 -0.172232700393E-01 -3.69512481890 27 0.437900636967E-01 -3.31556764871 28 0.233253830486 -3.22802658257 29 0.194936559947 -3.22325541952 30 0.129691934324 -3.11778415420 31 0.864122094663E-01 -2.98772657434 32 0.817713694152E-01 -2.84893658904 33 0.112730905141 -2.75077743191 34 0.142522400477 -2.68823995529 35 0.102968678619 -2.63740282161 36 0.922267657281E-01 -2.54259935058 37 0.107784692355 -2.46293671830 38 0.113136438636 -2.42729589832 39 0.848103605859E-01 -2.36296496920 40 0.878334618739E-01 -2.30019000434 41 0.735289015209E-01 -2.24940332069 42 0.677420119620E-01 -2.18533609755 43 0.704445313169E-01 -2.13160390698 44 0.703249213887E-01 -2.08444794505 45 0.656113289463E-01 -2.04375705512 46 0.578886629925E-01 -1.99596602943 47 0.572499825878E-01 -1.95050017441 48 0.543077739645E-01 -1.90932350554 49 0.531770475354E-01 -1.86786267623 50 0.547169477260E-01 -1.83069148535 elk-10.4.9/tests/test_006/PaxHeaders/TEST_700.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.678020013 30 atime=1741380470.677020008 30 ctime=1741380470.678020013 elk-10.4.9/tests/test_006/TEST_700.OUT_0000644002504400250440000000061514762655566020613 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 10 0.100000000000E-07 1 1712.43342568 2 221.982051261 3 50.3781715177 4 221.982051260 5 155.992040644 6 54.3472682978 7 78.7344360286 8 36.9525587541 9 54.3472682979 10 29.0461395875 elk-10.4.9/tests/test_006/PaxHeaders/TEST_187.OUT_0000644000000000000000000000013214762655566016100 xustar0030 mtime=1741380470.679020019 30 atime=1741380470.679020019 30 ctime=1741380470.679020019 elk-10.4.9/tests/test_006/TEST_187.OUT_0000644002504400250440000000523514762655566020627 0ustar00dewhurstdewhurst00000000000000'BSE optical conductivity' 3 50 0.100000000000E-02 1 0.603848512722E-02 0.00000000000 2 -0.259515021526E-02 0.00000000000 3 -0.433053992647E-02 0.00000000000 4 -0.543964989481E-03 0.00000000000 5 0.815709154535E-02 0.00000000000 6 -0.231358165742E-02 0.00000000000 7 0.396806677433E-02 0.00000000000 8 0.219545501575E-03 0.00000000000 9 0.400605451052E-02 0.00000000000 10 0.619764032564E-02 -0.598139541861E-02 11 -0.267897916085E-02 0.152560534144E-02 12 -0.439565010103E-02 0.445133801148E-04 13 -0.611589490796E-03 0.155733049403E-02 14 0.840990745434E-02 -0.806556858318E-02 15 -0.236206145329E-02 0.101655438375E-02 16 0.403043943163E-02 0.317236153432E-03 17 0.187287476159E-03 0.104801929155E-02 18 0.407858085796E-02 -0.398059278600E-02 19 0.671179639187E-02 -0.122663847054E-01 20 -0.295628021733E-02 0.319277422571E-02 21 -0.459935038826E-02 0.699057483476E-04 22 -0.840485328970E-03 0.325420056077E-02 23 0.923427695638E-02 -0.166099771105E-01 24 -0.251885283003E-02 0.211049708081E-02 25 0.422765686415E-02 0.659911273976E-03 26 0.786751300944E-04 0.217064985492E-02 27 0.430782755236E-02 -0.810175382817E-02 28 0.771367968697E-02 -0.192210692145E-01 29 -0.352465178901E-02 0.518670221048E-02 30 -0.496873812168E-02 0.460046987153E-04 31 -0.132979884635E-02 0.526935146385E-02 32 0.108718748255E-01 -0.262225887081E-01 33 -0.282547288081E-02 0.338104811526E-02 34 0.459443305071E-02 0.106237567069E-02 35 -0.150265121124E-03 0.345935721666E-02 36 0.473421975161E-02 -0.125249384884E-01 37 0.952990058320E-02 -0.273632051720E-01 38 -0.464543362793E-02 0.780390411380E-02 39 -0.555496418886E-02 -0.902248863255E-04 40 -0.234714135438E-02 0.787661061353E-02 41 0.139319853161E-01 -0.377638459968E-01 42 -0.338655602594E-02 0.498466982527E-02 43 0.520725714303E-02 0.158585407944E-02 44 -0.611992585285E-03 0.504433569166E-02 45 0.544901019844E-02 -0.174608868917E-01 46 0.130160738173E-01 -0.374967388341E-01 47 -0.708772743001E-02 0.115579362020E-01 48 -0.643140521434E-02 -0.494882418833E-03 49 -0.467741906525E-02 0.115060522192E-01 50 0.200594128691E-01 -0.526083707860E-01 elk-10.4.9/tests/PaxHeaders/test_0100000644000000000000000000000013214762655566014110 xustar0030 mtime=1741380470.694020097 30 atime=1741380470.680020024 30 ctime=1741380470.694020097 elk-10.4.9/tests/test_010/0000755002504400250440000000000014762655566016707 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_010/PaxHeaders/elk.in0000644000000000000000000000013214762655566015270 xustar0030 mtime=1741380470.682020034 30 atime=1741380470.682020034 30 ctime=1741380470.682020034 elk-10.4.9/tests/test_010/elk.in0000644002504400250440000000103614762655566020012 0ustar00dewhurstdewhurst00000000000000 ! Water molecule in a box. tasks 0 500 test .true. xctype 2 tefvit .true. maxscl 2 molecule .true. avec 5.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 5.0 rgkmax 7.0 gmaxvr 14.0 sppath '../../species/' atoms 2 : nspecies 'O.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atpos, bfcmt 'H.in' 2 1.811 0.0 0.0 0.0 0.0 0.0 -0.451907959 1.753710409 0.0 0.0 0.0 0.0 elk-10.4.9/tests/test_010/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.684020045 30 atime=1741380470.684020045 30 ctime=1741380470.684020045 elk-10.4.9/tests/test_010/TEST_705.OUT_0000644002504400250440000000010114762655566020601 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 2 elk-10.4.9/tests/test_010/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013114762655566016063 xustar0030 mtime=1741380470.686020055 29 atime=1741380470.68502005 30 ctime=1741380470.686020055 elk-10.4.9/tests/test_010/TEST_900.OUT_0000644002504400250440000000007014762655566020603 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 9771 elk-10.4.9/tests/test_010/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.687020061 30 atime=1741380470.687020061 30 ctime=1741380470.687020061 elk-10.4.9/tests/test_010/TEST_910.OUT_0000644002504400250440000000023414762655566020606 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 3 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 elk-10.4.9/tests/test_010/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016060 xustar0030 mtime=1741380470.689020071 30 atime=1741380470.689020071 30 ctime=1741380470.689020071 elk-10.4.9/tests/test_010/TEST_500.OUT_0000644002504400250440000000013514762655566020601 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.100000674429E-06 elk-10.4.9/tests/test_010/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016061 xustar0030 mtime=1741380470.691020081 30 atime=1741380470.691020081 30 ctime=1741380470.691020081 elk-10.4.9/tests/test_010/TEST_510.OUT_0000644002504400250440000000014514762655566020603 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.184259173376 elk-10.4.9/tests/test_010/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016057 xustar0030 mtime=1741380470.693020092 30 atime=1741380470.692020086 30 ctime=1741380470.693020092 elk-10.4.9/tests/test_010/TEST_400.OUT_0000644002504400250440000000014114762655566020575 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 9.99660565435 elk-10.4.9/tests/test_010/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016053 xustar0030 mtime=1741380470.694020097 30 atime=1741380470.694020097 30 ctime=1741380470.694020097 elk-10.4.9/tests/test_010/TEST_000.OUT_0000644002504400250440000000012614762655566020574 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -79.0782174416 elk-10.4.9/tests/PaxHeaders/test_0140000644000000000000000000000013214762655566014114 xustar0030 mtime=1741380470.711020186 30 atime=1741380470.696020107 30 ctime=1741380470.711020186 elk-10.4.9/tests/test_014/0000755002504400250440000000000014762655566016713 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_014/PaxHeaders/elk.in0000644000000000000000000000013214762655566015274 xustar0030 mtime=1741380470.697020113 30 atime=1741380470.697020113 30 ctime=1741380470.697020113 elk-10.4.9/tests/test_014/elk.in0000644002504400250440000000072614762655566020023 0ustar00dewhurstdewhurst00000000000000 ! Optimised effective potential (OEP) test tasks 0 500 test .true. xctype -1 maxscl 2 maxitoep 20 nempty 8 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 0.25 0.25 0.25 0.0 0.0 0.0 ngridk 4 4 4 ngridq 2 2 2 elk-10.4.9/tests/test_014/PaxHeaders/TEST_700.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.699020123 30 atime=1741380470.699020123 30 ctime=1741380470.699020123 elk-10.4.9/tests/test_014/TEST_700.OUT_0000644002504400250440000000026414762655566020612 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 3 0.100000000000E-07 1 394.581580334 2 51.1494504119 3 35.9439292598 elk-10.4.9/tests/test_014/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.701020134 30 atime=1741380470.701020134 30 ctime=1741380470.701020134 elk-10.4.9/tests/test_014/TEST_705.OUT_0000644002504400250440000000010114762655566020605 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests/test_014/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.703020144 30 atime=1741380470.703020144 30 ctime=1741380470.703020144 elk-10.4.9/tests/test_014/TEST_900.OUT_0000644002504400250440000000007014762655566020607 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7799 elk-10.4.9/tests/test_014/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.704020149 30 atime=1741380470.704020149 30 ctime=1741380470.704020149 elk-10.4.9/tests/test_014/TEST_910.OUT_0000644002504400250440000000144714762655566020621 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.153099057192 5 0.153099057192 6 -0.153099057192 7 0.306198114385 8 0.306198114385 9 -0.306198114385 10 0.306198114385 11 0.00000000000 12 0.00000000000 13 0.459297171577 14 0.153099057192 15 -0.153099057192 16 0.612396228770 17 0.306198114385 18 -0.306198114385 19 0.612396228770 20 0.00000000000 21 0.00000000000 22 0.612396228770 23 0.306198114385 24 0.00000000000 elk-10.4.9/tests/test_014/PaxHeaders/TEST_500.OUT_0000644000000000000000000000012714762655566016070 xustar0029 mtime=1741380470.70602016 29 atime=1741380470.70602016 29 ctime=1741380470.70602016 elk-10.4.9/tests/test_014/TEST_500.OUT_0000644002504400250440000000013514762655566020605 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 134.107458599 elk-10.4.9/tests/test_014/PaxHeaders/TEST_510.OUT_0000644000000000000000000000012714762655566016071 xustar0029 mtime=1741380470.70802017 29 atime=1741380470.70802017 29 ctime=1741380470.70802017 elk-10.4.9/tests/test_014/TEST_510.OUT_0000644002504400250440000000014514762655566020607 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.403529072531E-02 elk-10.4.9/tests/test_014/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.710020181 30 atime=1741380470.709020175 30 ctime=1741380470.710020181 elk-10.4.9/tests/test_014/TEST_400.OUT_0000644002504400250440000000014114762655566020601 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9762758551 elk-10.4.9/tests/test_014/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016057 xustar0030 mtime=1741380470.711020186 30 atime=1741380470.711020186 30 ctime=1741380470.711020186 elk-10.4.9/tests/test_014/TEST_000.OUT_0000644002504400250440000000012614762655566020600 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -515.458939424 elk-10.4.9/tests/PaxHeaders/test_0180000644000000000000000000000013214762655566014120 xustar0030 mtime=1741380470.728020275 30 atime=1741380470.713020196 30 ctime=1741380470.728020275 elk-10.4.9/tests/test_018/0000755002504400250440000000000014762655566016717 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_018/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016075 xustar0030 mtime=1741380470.714020201 30 atime=1741380470.714020201 30 ctime=1741380470.714020201 elk-10.4.9/tests/test_018/TEST_910.OUT_0000644002504400250440000000144714762655566020625 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.251891649582 5 0.251891649582 6 0.384969705319E-17 7 0.503783299164 8 0.503783299164 9 0.769939410638E-17 10 0.503783299164 11 0.251891649582 12 0.251891649582 13 0.503783299164 14 0.503783299164 15 0.503783299164 16 1.00756659833 17 1.00756659833 18 0.503783299164 19 1.00756659833 20 0.755674948747 21 0.755674948747 22 1.00756659833 23 1.00756659833 24 1.00756659833 elk-10.4.9/tests/test_018/PaxHeaders/elk.in0000644000000000000000000000013214762655566015300 xustar0030 mtime=1741380470.716020212 30 atime=1741380470.716020212 30 ctime=1741380470.716020212 elk-10.4.9/tests/test_018/elk.in0000644002504400250440000000066014762655566020024 0ustar00dewhurstdewhurst00000000000000 tasks 0 205 210 500 test .true. wplot 200 100 10 0.0 1.0 swidth 0.01 lmaxi 2 ngridq 2 2 2 ngridk 4 4 4 avec 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 scale 3.118 sppath '../../species/' atoms 1 : nspecies 'Nb.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/tests/test_018/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016077 xustar0030 mtime=1741380470.718020222 30 atime=1741380470.718020222 30 ctime=1741380470.718020222 elk-10.4.9/tests/test_018/TEST_705.OUT_0000644002504400250440000000010114762655566020611 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests/test_018/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.720020233 30 atime=1741380470.719020228 30 ctime=1741380470.720020233 elk-10.4.9/tests/test_018/TEST_900.OUT_0000644002504400250440000000007014762655566020613 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 3511 elk-10.4.9/tests/test_018/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.721020238 30 atime=1741380470.721020238 30 ctime=1741380470.721020238 elk-10.4.9/tests/test_018/TEST_500.OUT_0000644002504400250440000000013514762655566020611 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 25.2414955693 elk-10.4.9/tests/test_018/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.723020249 30 atime=1741380470.723020249 30 ctime=1741380470.723020249 elk-10.4.9/tests/test_018/TEST_510.OUT_0000644002504400250440000000014514762655566020613 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.161913019736E-01 elk-10.4.9/tests/test_018/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.725020259 30 atime=1741380470.724020254 30 ctime=1741380470.725020259 elk-10.4.9/tests/test_018/TEST_400.OUT_0000644002504400250440000000014114762655566020605 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 41.0025065110 elk-10.4.9/tests/test_018/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013014762655566016061 xustar0029 mtime=1741380470.72702027 30 atime=1741380470.726020264 29 ctime=1741380470.72702027 elk-10.4.9/tests/test_018/TEST_000.OUT_0000644002504400250440000000012614762655566020604 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -3816.44806608 elk-10.4.9/tests/test_018/PaxHeaders/TEST_210.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.728020275 30 atime=1741380470.728020275 30 ctime=1741380470.728020275 elk-10.4.9/tests/test_018/TEST_210.OUT_0000644002504400250440000001415514762655566020616 0ustar00dewhurstdewhurst00000000000000'phonon DOS' 2 200 0.100000000000E-01 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.00000000000 5 0.00000000000 6 0.00000000000 7 0.00000000000 8 0.769306121269E-05 9 0.769306121269E-04 10 0.453890611549E-03 11 0.195403754802E-02 12 0.673142856110E-02 13 0.195403754802E-01 14 0.494817697200E-01 15 0.112359723365 16 0.233440813792 17 0.450469763663 18 0.814595172628 19 1.38842830154 20 2.23928856473 21 3.43312601160 22 5.02850791718 23 7.07432368547 24 9.60021468133 25 12.6055987964 26 16.0479282736 27 19.8525291320 28 23.9403679894 29 28.2700254042 30 32.8666961520 31 37.8260690924 32 43.2879322764 33 49.3845653272 34 56.1880727432 35 63.6735290060 36 71.7335338524 37 80.2313456837 38 89.0778378214 39 98.2726409986 40 107.890839493 41 118.018175035 42 128.687661116 43 139.872577170 44 151.537735134 45 163.710337673 46 176.486004410 47 189.972694635 48 204.212002168 49 219.169390292 50 234.782852934 51 251.019874088 52 267.881910307 53 285.380183203 54 303.536141031 55 322.408004878 56 342.100308060 57 362.715665755 58 384.298625918 59 406.824745128 60 430.251680777 61 454.571811604 62 479.829029089 63 506.105351522 64 533.502788894 65 562.119350805 66 592.004888291 67 623.138465970 68 655.473807512 69 689.065646486 70 724.152113906 71 761.100671407 72 800.194639047 73 841.460398896 74 884.669743988 75 929.572978070 76 976.136267059 77 1024.63907422 78 1075.54420900 79 1129.32058398 80 1186.32249029 81 1246.83270945 82 1311.18768469 83 1379.93005377 84 1453.83710308 85 1533.79444757 86 1620.55921780 87 1714.64527950 88 1816.48987037 89 1926.92085610 90 2047.72422701 91 2182.00411793 92 2333.91503321 93 2507.35185177 94 2703.64760164 95 2919.24391375 96 3145.04624603 97 3368.63489995 98 3578.68612534 99 3769.16465414 100 3940.82594495 101 4099.53021280 102 4253.06624110 103 4408.81019848 104 4573.08200141 105 4751.20114527 106 4946.35961451 107 5156.42518489 108 5369.74791534 109 5563.01662512 110 5704.43007629 111 5763.12090699 112 5721.49001394 113 5583.94075665 114 5376.50205894 115 5137.11429343 116 4902.15507963 117 4696.53608837 118 4531.32001860 119 4407.44036175 120 4321.08878583 121 4267.24399902 122 4240.79400829 123 4236.78727738 124 4251.24252401 125 4282.54202563 126 4332.47890147 127 4406.19768618 128 4511.06065474 129 4654.72410066 130 4842.42883469 131 5073.34582692 132 5336.84308212 133 5610.93120031 134 5865.43562339 135 6070.10870919 136 6204.38437661 137 6263.36074041 138 6256.39392726 139 6199.17230456 140 6104.43486624 141 5977.05989780 142 5816.13696905 143 5621.67222673 144 5400.73677884 145 5168.51047119 146 4943.71051657 147 4741.67465319 148 4569.68560207 149 4426.79919124 150 4307.22591773 151 4204.32861607 152 4113.00425820 153 4029.97822596 154 3953.04645731 155 3880.41804350 156 3810.77411945 157 3743.85675477 158 3681.12242545 159 3625.96854631 160 3583.44547356 161 3559.58804447 162 3560.68107973 163 3592.60529383 164 3660.31928013 165 3767.44929638 166 3916.01178112 167 4106.26879078 168 4336.29750114 169 4600.35520610 170 4885.04569098 171 5164.18825296 172 5396.05970278 173 5528.35346070 174 5512.65683094 175 5323.38247137 176 4970.11133068 177 4494.74626191 178 3953.92109939 179 3397.37071457 180 2854.68774444 181 2336.48719284 182 1845.63995120 183 1389.00839939 184 981.604377008 185 641.880368369 186 382.764337176 187 205.069193821 188 97.1136043963 189 39.8707975748 190 13.8395555575 191 3.91915310419 192 0.855853059911 193 0.129766556536 194 0.105394938614E-01 195 0.00000000000 196 0.00000000000 197 0.00000000000 198 0.00000000000 199 0.00000000000 200 0.00000000000 elk-10.4.9/tests/PaxHeaders/test_0280000644000000000000000000000013214762655566014121 xustar0030 mtime=1741380470.746020369 30 atime=1741380470.730020285 30 ctime=1741380470.746020369 elk-10.4.9/tests/test_028/0000755002504400250440000000000014762655566016720 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_028/PaxHeaders/elk.in0000644000000000000000000000012714762655566015305 xustar0029 mtime=1741380470.73102029 29 atime=1741380470.73102029 29 ctime=1741380470.73102029 elk-10.4.9/tests/test_028/elk.in0000644002504400250440000000111514762655566020021 0ustar00dewhurstdewhurst00000000000000 ! Stress tensor of hexagonal tellurium. tasks 0 440 500 test .true. tforce .true. deltast 0.01 epsengy 1.e-7 rgkmax 8.0 ngridk 8 8 8 avec 4.2636082 -7.3847860 0.0000000 4.2636082 7.3847860 0.0000000 0.0000000 0.0000000 11.2457997 sppath '../../species/' atoms 1 : nspecies 'Te.in' : spfname 3 : natoms; atposl below -0.268334780 -0.268334780 0.000000000 0.268334780 0.000000000 0.333333333 0.000000000 0.268334780 0.666666666 elk-10.4.9/tests/test_028/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016100 xustar0030 mtime=1741380470.733020301 30 atime=1741380470.733020301 30 ctime=1741380470.733020301 elk-10.4.9/tests/test_028/TEST_705.OUT_0000644002504400250440000000010114762655566020612 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 6 elk-10.4.9/tests/test_028/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016075 xustar0030 mtime=1741380470.735020311 30 atime=1741380470.735020311 30 ctime=1741380470.735020311 elk-10.4.9/tests/test_028/TEST_900.OUT_0000644002504400250440000000007014762655566020614 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 20599 elk-10.4.9/tests/test_028/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016076 xustar0030 mtime=1741380470.737020322 30 atime=1741380470.736020317 30 ctime=1741380470.737020322 elk-10.4.9/tests/test_028/TEST_910.OUT_0000644002504400250440000002143714762655566020627 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 288 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.920528105801E-01 5 -0.531467151545E-01 6 0.00000000000 7 0.184105621160 8 -0.106293430309 9 0.00000000000 10 0.276158431740 11 -0.159440145463 12 0.00000000000 13 0.368211242320 14 -0.212586860618 15 0.00000000000 16 0.184105621160 17 0.00000000000 18 0.00000000000 19 0.276158431740 20 -0.531467151545E-01 21 0.00000000000 22 0.368211242320 23 -0.106293430309 24 0.00000000000 25 0.368211242320 26 0.00000000000 27 0.00000000000 28 0.460264052900 29 -0.531467151545E-01 30 0.00000000000 31 0.828475295221 32 -0.265733575772 33 0.00000000000 34 0.828475295221 35 -0.159440145463 36 0.00000000000 37 0.828475295221 38 -0.531467151545E-01 39 0.00000000000 40 0.920528105801 41 -0.106293430309 42 0.00000000000 43 0.920528105801 44 0.138777878078E-16 45 0.00000000000 46 0.00000000000 47 0.00000000000 48 0.698846931278E-01 49 0.920528105801E-01 50 -0.531467151545E-01 51 0.698846931278E-01 52 0.184105621160 53 -0.106293430309 54 0.698846931278E-01 55 0.276158431740 56 -0.159440145463 57 0.698846931278E-01 58 0.368211242320 59 -0.212586860618 60 0.698846931278E-01 61 0.460264052900 62 -0.265733575772 63 0.698846931278E-01 64 0.552316863480 65 -0.318880290927 66 0.698846931278E-01 67 0.644369674061 68 -0.372027006081 69 0.698846931278E-01 70 0.184105621160 71 0.00000000000 72 0.698846931278E-01 73 0.276158431740 74 -0.531467151545E-01 75 0.698846931278E-01 76 0.368211242320 77 -0.106293430309 78 0.698846931278E-01 79 0.460264052900 80 -0.159440145463 81 0.698846931278E-01 82 0.552316863480 83 -0.212586860618 84 0.698846931278E-01 85 0.368211242320 86 0.00000000000 87 0.698846931278E-01 88 0.460264052900 89 -0.531467151545E-01 90 0.698846931278E-01 91 0.828475295221 92 -0.265733575772 93 0.698846931278E-01 94 0.828475295221 95 -0.159440145463 96 0.698846931278E-01 97 0.920528105801 98 -0.212586860618 99 0.698846931278E-01 100 0.828475295221 101 -0.531467151545E-01 102 0.698846931278E-01 103 0.920528105801 104 -0.106293430309 105 0.698846931278E-01 106 1.01258091638 107 -0.159440145463 108 0.698846931278E-01 109 0.920528105801 110 0.138777878078E-16 111 0.698846931278E-01 112 0.00000000000 113 0.00000000000 114 0.139769386256 115 0.920528105801E-01 116 -0.531467151545E-01 117 0.139769386256 118 0.184105621160 119 -0.106293430309 120 0.139769386256 121 0.276158431740 122 -0.159440145463 123 0.139769386256 124 0.368211242320 125 -0.212586860618 126 0.139769386256 127 0.460264052900 128 -0.265733575772 129 0.139769386256 130 0.552316863480 131 -0.318880290927 132 0.139769386256 133 0.644369674061 134 -0.372027006081 135 0.139769386256 136 0.184105621160 137 0.00000000000 138 0.139769386256 139 0.276158431740 140 -0.531467151545E-01 141 0.139769386256 142 0.368211242320 143 -0.106293430309 144 0.139769386256 145 0.460264052900 146 -0.159440145463 147 0.139769386256 148 0.552316863480 149 -0.212586860618 150 0.139769386256 151 0.368211242320 152 0.00000000000 153 0.139769386256 154 0.460264052900 155 -0.531467151545E-01 156 0.139769386256 157 0.828475295221 158 -0.265733575772 159 0.139769386256 160 0.828475295221 161 -0.159440145463 162 0.139769386256 163 0.920528105801 164 -0.212586860618 165 0.139769386256 166 0.828475295221 167 -0.531467151545E-01 168 0.139769386256 169 0.920528105801 170 -0.106293430309 171 0.139769386256 172 1.01258091638 173 -0.159440145463 174 0.139769386256 175 0.920528105801 176 0.138777878078E-16 177 0.139769386256 178 0.00000000000 179 0.00000000000 180 0.209654079383 181 0.920528105801E-01 182 -0.531467151545E-01 183 0.209654079383 184 0.184105621160 185 -0.106293430309 186 0.209654079383 187 0.276158431740 188 -0.159440145463 189 0.209654079383 190 0.368211242320 191 -0.212586860618 192 0.209654079383 193 0.460264052900 194 -0.265733575772 195 0.209654079383 196 0.552316863480 197 -0.318880290927 198 0.209654079383 199 0.644369674061 200 -0.372027006081 201 0.209654079383 202 0.184105621160 203 0.00000000000 204 0.209654079383 205 0.276158431740 206 -0.531467151545E-01 207 0.209654079383 208 0.368211242320 209 -0.106293430309 210 0.209654079383 211 0.460264052900 212 -0.159440145463 213 0.209654079383 214 0.552316863480 215 -0.212586860618 216 0.209654079383 217 0.368211242320 218 0.00000000000 219 0.209654079383 220 0.460264052900 221 -0.531467151545E-01 222 0.209654079383 223 0.828475295221 224 -0.265733575772 225 0.209654079383 226 0.828475295221 227 -0.159440145463 228 0.209654079383 229 0.920528105801 230 -0.212586860618 231 0.209654079383 232 0.828475295221 233 -0.531467151545E-01 234 0.209654079383 235 0.920528105801 236 -0.106293430309 237 0.209654079383 238 1.01258091638 239 -0.159440145463 240 0.209654079383 241 0.920528105801 242 0.138777878078E-16 243 0.209654079383 244 0.00000000000 245 0.00000000000 246 0.279538772511 247 0.920528105801E-01 248 -0.531467151545E-01 249 0.279538772511 250 0.184105621160 251 -0.106293430309 252 0.279538772511 253 0.276158431740 254 -0.159440145463 255 0.279538772511 256 0.368211242320 257 -0.212586860618 258 0.279538772511 259 0.184105621160 260 0.00000000000 261 0.279538772511 262 0.276158431740 263 -0.531467151545E-01 264 0.279538772511 265 0.368211242320 266 -0.106293430309 267 0.279538772511 268 0.368211242320 269 0.00000000000 270 0.279538772511 271 0.460264052900 272 -0.531467151545E-01 273 0.279538772511 274 0.828475295221 275 -0.265733575772 276 0.279538772511 277 0.828475295221 278 -0.159440145463 279 0.279538772511 280 0.828475295221 281 -0.531467151545E-01 282 0.279538772511 283 0.920528105801 284 -0.106293430309 285 0.279538772511 286 0.920528105801 287 0.138777878078E-16 288 0.279538772511 elk-10.4.9/tests/test_028/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.738020327 30 atime=1741380470.738020327 30 ctime=1741380470.738020327 elk-10.4.9/tests/test_028/TEST_500.OUT_0000644002504400250440000000013514762655566020612 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.142429028272E-01 elk-10.4.9/tests/test_028/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.740020337 30 atime=1741380470.740020337 30 ctime=1741380470.740020337 elk-10.4.9/tests/test_028/TEST_510.OUT_0000644002504400250440000000014514762655566020614 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.155915703430E-01 elk-10.4.9/tests/test_028/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.742020348 30 atime=1741380470.742020348 30 ctime=1741380470.742020348 elk-10.4.9/tests/test_028/TEST_400.OUT_0000644002504400250440000000014114762655566020606 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 155.990399510 elk-10.4.9/tests/test_028/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.744020358 30 atime=1741380470.743020353 30 ctime=1741380470.744020358 elk-10.4.9/tests/test_028/TEST_000.OUT_0000644002504400250440000000012614762655566020605 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -20373.8887735 elk-10.4.9/tests/test_028/PaxHeaders/TEST_750.OUT_0000644000000000000000000000013214762655566016100 xustar0030 mtime=1741380470.745020364 30 atime=1741380470.745020364 30 ctime=1741380470.745020364 elk-10.4.9/tests/test_028/TEST_750.OUT_0000644002504400250440000000051614762655566020624 0ustar00dewhurstdewhurst00000000000000'total forces' 2 9 0.100000000000E-02 1 0.713235244899E-03 2 -0.925166309783E-20 3 0.00000000000 4 -0.356617622449E-03 5 0.617679838785E-03 6 0.00000000000 7 -0.356617622449E-03 8 -0.617679838785E-03 9 0.00000000000 elk-10.4.9/tests/test_028/PaxHeaders/TEST_440.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.747020374 30 atime=1741380470.747020374 30 ctime=1741380470.747020374 elk-10.4.9/tests/test_028/TEST_440.OUT_0000644002504400250440000000020114762655566020607 0ustar00dewhurstdewhurst00000000000000'Stress tensor components' 2 2 0.300000000000E-01 1 0.132637720526E-01 2 0.429231076851E-02 elk-10.4.9/tests/PaxHeaders/test_0270000644000000000000000000000013214762655566014120 xustar0030 mtime=1741380470.763020458 30 atime=1741380470.748020379 30 ctime=1741380470.763020458 elk-10.4.9/tests/test_027/0000755002504400250440000000000014762655566016717 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_027/PaxHeaders/TEST_705.OUT_0000644000000000000000000000012714762655566016103 xustar0029 mtime=1741380470.75002039 29 atime=1741380470.75002039 29 ctime=1741380470.75002039 elk-10.4.9/tests/test_027/TEST_705.OUT_0000644002504400250440000000010114762655566020611 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 4 elk-10.4.9/tests/test_027/PaxHeaders/TEST_900.OUT_0000644000000000000000000000012614762655566016077 xustar0028 mtime=1741380470.7520204 30 atime=1741380470.751020395 28 ctime=1741380470.7520204 elk-10.4.9/tests/test_027/TEST_900.OUT_0000644002504400250440000000007014762655566020613 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 8873 elk-10.4.9/tests/test_027/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016075 xustar0030 mtime=1741380470.753020405 30 atime=1741380470.753020405 30 ctime=1741380470.753020405 elk-10.4.9/tests/test_027/TEST_910.OUT_0000644002504400250440000001052214762655566020617 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 141 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.294085021773 5 0.294085021773 6 -0.294085021773 7 0.588170043546 8 0.00000000000 9 0.00000000000 10 -0.367606277216E-01 11 0.367606277216E-01 12 0.367606277216E-01 13 0.257324394051 14 0.330845649494 15 -0.257324394051 16 0.551409415824 17 0.367606277216E-01 18 0.367606277216E-01 19 -0.735212554432E-01 20 0.735212554432E-01 21 0.735212554432E-01 22 0.220563766330 23 0.367606277216 24 -0.220563766330 25 0.514648788102 26 0.735212554432E-01 27 0.735212554432E-01 28 -0.110281883165 29 0.110281883165 30 0.110281883165 31 0.183803138608 32 0.404366904938 33 -0.183803138608 34 0.477888160381 35 0.110281883165 36 0.110281883165 37 -0.147042510886 38 0.147042510886 39 0.147042510886 40 0.147042510886 41 0.441127532659 42 -0.147042510886 43 0.441127532659 44 0.147042510886 45 0.147042510886 46 -0.183803138608 47 0.183803138608 48 0.183803138608 49 0.110281883165 50 0.477888160381 51 -0.110281883165 52 0.404366904938 53 0.183803138608 54 0.183803138608 55 -0.220563766330 56 0.220563766330 57 0.220563766330 58 0.735212554432E-01 59 0.514648788102 60 -0.735212554432E-01 61 0.367606277216 62 0.220563766330 63 0.220563766330 64 -0.257324394051 65 0.257324394051 66 0.257324394051 67 0.367606277216E-01 68 0.551409415824 69 -0.367606277216E-01 70 0.330845649494 71 0.257324394051 72 0.257324394051 73 -0.294085021773 74 0.294085021773 75 0.294085021773 76 0.00000000000 77 0.588170043546 78 0.00000000000 79 -0.330845649494 80 0.330845649494 81 0.330845649494 82 -0.367606277216E-01 83 0.624930671267 84 0.367606277216E-01 85 0.257324394051 86 0.330845649494 87 0.330845649494 88 -0.367606277216 89 0.367606277216 90 0.367606277216 91 -0.735212554432E-01 92 0.661691298989 93 0.735212554432E-01 94 0.220563766330 95 0.367606277216 96 0.367606277216 97 -0.404366904938 98 0.404366904938 99 0.404366904938 100 -0.110281883165 101 0.698451926710 102 0.110281883165 103 0.183803138608 104 0.404366904938 105 0.404366904938 106 -0.441127532659 107 0.441127532659 108 0.441127532659 109 -0.147042510886 110 0.735212554432 111 0.147042510886 112 0.147042510886 113 0.441127532659 114 0.441127532659 115 -0.477888160381 116 0.477888160381 117 0.477888160381 118 -0.183803138608 119 0.771973182154 120 0.183803138608 121 0.110281883165 122 0.477888160381 123 0.477888160381 124 -0.514648788102 125 0.514648788102 126 0.514648788102 127 -0.220563766330 128 0.808733809875 129 0.220563766330 130 0.735212554432E-01 131 0.514648788102 132 0.514648788102 133 -0.551409415824 134 0.551409415824 135 0.551409415824 136 -0.257324394051 137 0.845494437597 138 0.257324394051 139 0.367606277216E-01 140 0.551409415824 141 0.551409415824 elk-10.4.9/tests/test_027/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.755020416 30 atime=1741380470.755020416 30 ctime=1741380470.755020416 elk-10.4.9/tests/test_027/TEST_500.OUT_0000644002504400250440000000013514762655566020611 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 5.16878244312 elk-10.4.9/tests/test_027/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.757020426 30 atime=1741380470.757020426 30 ctime=1741380470.757020426 elk-10.4.9/tests/test_027/TEST_510.OUT_0000644002504400250440000000014514762655566020613 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.569866314842E-02 elk-10.4.9/tests/test_027/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.759020437 30 atime=1741380470.759020437 30 ctime=1741380470.759020437 elk-10.4.9/tests/test_027/TEST_400.OUT_0000644002504400250440000000014114762655566020605 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 63.9976531884 elk-10.4.9/tests/test_027/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.761020447 30 atime=1741380470.760020442 30 ctime=1741380470.761020447 elk-10.4.9/tests/test_027/TEST_000.OUT_0000644002504400250440000000012614762655566020604 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -4198.64850219 elk-10.4.9/tests/test_027/PaxHeaders/TEST_208.OUT_0000644000000000000000000000013214762655566016075 xustar0030 mtime=1741380470.762020452 30 atime=1741380470.762020452 30 ctime=1741380470.762020452 elk-10.4.9/tests/test_027/TEST_208.OUT_0000644002504400250440000000023514762655566020617 0ustar00dewhurstdewhurst00000000000000'Born effective charge' 2 3 0.100000000000E-02 1 -2.18848655775 2 -0.408143074759E-03 3 -0.920383309004E-03 elk-10.4.9/tests/test_027/PaxHeaders/elk.in0000644000000000000000000000013214762655566015300 xustar0030 mtime=1741380470.764020463 30 atime=1741380470.764020463 30 ctime=1741380470.764020463 elk-10.4.9/tests/test_027/elk.in0000644002504400250440000000052114762655566020020 0ustar00dewhurstdewhurst00000000000000 ! Calculation of the Born effective charges for GaAs. tasks 208 500 test .true. deltaph 0.01 mixtype 1 ngridk 2 2 2 lradstp 2 nkspolar 8 avec 0.5 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5 scale 10.6826 sppath '../../species/' atoms 2 'Ga.in' 1 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-10.4.9/tests/PaxHeaders/test_0030000644000000000000000000000013214762655566014112 xustar0030 mtime=1741380470.781020552 30 atime=1741380470.766020473 30 ctime=1741380470.781020552 elk-10.4.9/tests/test_003/0000755002504400250440000000000014762655566016711 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_003/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.767020479 30 atime=1741380470.767020479 30 ctime=1741380470.767020479 elk-10.4.9/tests/test_003/TEST_705.OUT_0000644002504400250440000000010114762655566020603 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 12 elk-10.4.9/tests/test_003/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.769020489 30 atime=1741380470.769020489 30 ctime=1741380470.769020489 elk-10.4.9/tests/test_003/TEST_900.OUT_0000644002504400250440000000007014762655566020605 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7799 elk-10.4.9/tests/test_003/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.771020499 30 atime=1741380470.770020494 30 ctime=1741380470.771020499 elk-10.4.9/tests/test_003/TEST_500.OUT_0000644002504400250440000000013514762655566020603 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.100000775728E-06 elk-10.4.9/tests/test_003/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013014762655566016057 xustar0029 mtime=1741380470.77302051 30 atime=1741380470.772020505 29 ctime=1741380470.77302051 elk-10.4.9/tests/test_003/TEST_400.OUT_0000644002504400250440000000014114762655566020577 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9921532995 elk-10.4.9/tests/test_003/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016055 xustar0030 mtime=1741380470.774020515 30 atime=1741380470.774020515 30 ctime=1741380470.774020515 elk-10.4.9/tests/test_003/TEST_000.OUT_0000644002504400250440000000012614762655566020576 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -580.223528036 elk-10.4.9/tests/test_003/PaxHeaders/TEST_750.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.776020526 30 atime=1741380470.776020526 30 ctime=1741380470.776020526 elk-10.4.9/tests/test_003/TEST_750.OUT_0000644002504400250440000000036114762655566020613 0ustar00dewhurstdewhurst00000000000000'total forces' 2 6 0.100000000000E-02 1 0.177874684651E-01 2 0.177874684651E-01 3 0.177874684651E-01 4 -0.177874684651E-01 5 -0.177874684651E-01 6 -0.177874684651E-01 elk-10.4.9/tests/test_003/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016063 xustar0030 mtime=1741380470.778020536 30 atime=1741380470.777020531 30 ctime=1741380470.778020536 elk-10.4.9/tests/test_003/TEST_510.OUT_0000644002504400250440000000014514762655566020605 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.846563916720E-01 elk-10.4.9/tests/test_003/PaxHeaders/elk.in0000644000000000000000000000013214762655566015272 xustar0030 mtime=1741380470.779020541 30 atime=1741380470.779020541 30 ctime=1741380470.779020541 elk-10.4.9/tests/test_003/elk.in0000644002504400250440000000067314762655566020022 0ustar00dewhurstdewhurst00000000000000 tasks 0 500 test .true. xctype 21 maxscl 10 tforce .true. mixtype 3 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 0.27 0.27 0.27 0.0 0.0 0.0 ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-10.4.9/tests/test_003/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.781020552 30 atime=1741380470.781020552 30 ctime=1741380470.781020552 elk-10.4.9/tests/test_003/TEST_910.OUT_0000644002504400250440000000037114762655566020612 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 6 0.100000000000E-07 1 0.153099057192 2 0.153099057192 3 0.153099057192 4 0.459297171577 5 0.459297171577 6 -0.153099057192 elk-10.4.9/tests/PaxHeaders/test_0070000644000000000000000000000013214762655566014116 xustar0030 mtime=1741380470.805020677 30 atime=1741380470.782020557 30 ctime=1741380470.805020677 elk-10.4.9/tests/test_007/0000755002504400250440000000000014762655566016715 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_007/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016075 xustar0030 mtime=1741380470.784020568 30 atime=1741380470.784020568 30 ctime=1741380470.784020568 elk-10.4.9/tests/test_007/TEST_705.OUT_0000644002504400250440000000010114762655566020607 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests/test_007/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.786020578 30 atime=1741380470.786020578 30 ctime=1741380470.786020578 elk-10.4.9/tests/test_007/TEST_900.OUT_0000644002504400250440000000007014762655566020611 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2801 elk-10.4.9/tests/test_007/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016073 xustar0030 mtime=1741380470.788020589 30 atime=1741380470.787020583 30 ctime=1741380470.788020589 elk-10.4.9/tests/test_007/TEST_910.OUT_0000644002504400250440000000174114762655566020620 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 30 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.285807191920 5 0.00000000000 6 0.00000000000 7 0.571614383841 8 0.00000000000 9 0.00000000000 10 0.285807191920 11 0.285807191920 12 0.00000000000 13 0.571614383841 14 0.285807191920 15 0.00000000000 16 0.571614383841 17 0.571614383841 18 0.00000000000 19 0.285807191920 20 0.285807191920 21 0.285807191920 22 0.571614383841 23 0.285807191920 24 0.285807191920 25 0.571614383841 26 0.571614383841 27 0.285807191920 28 0.571614383841 29 0.571614383841 30 0.571614383841 elk-10.4.9/tests/test_007/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.790020599 30 atime=1741380470.789020594 30 ctime=1741380470.790020599 elk-10.4.9/tests/test_007/TEST_450.OUT_0000644002504400250440000000014014762655566020607 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.530743259710 elk-10.4.9/tests/test_007/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.791020604 30 atime=1741380470.791020604 30 ctime=1741380470.791020604 elk-10.4.9/tests/test_007/TEST_800.OUT_0000644002504400250440000000014414762655566020612 0ustar00dewhurstdewhurst00000000000000'DFT+U energy for each atom' 2 1 0.100000000000E-03 1 0.123510881298E-01 elk-10.4.9/tests/test_007/PaxHeaders/TEST_810.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.793020614 30 atime=1741380470.793020614 30 ctime=1741380470.793020614 elk-10.4.9/tests/test_007/TEST_810.OUT_0000644002504400250440000000017314762655566020615 0ustar00dewhurstdewhurst00000000000000'U and J parameters' 2 2 0.100000000000E-03 1 0.183000000000 2 0.349119670000E-01 elk-10.4.9/tests/test_007/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013114762655566016060 xustar0030 mtime=1741380470.795020625 29 atime=1741380470.79402062 30 ctime=1741380470.795020625 elk-10.4.9/tests/test_007/TEST_000.OUT_0000644002504400250440000000012614762655566020602 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1515.65697813 elk-10.4.9/tests/test_007/PaxHeaders/TEST_015.OUT_0000644000000000000000000000013114762655566016066 xustar0030 mtime=1741380470.797020635 29 atime=1741380470.79602063 30 ctime=1741380470.797020635 elk-10.4.9/tests/test_007/TEST_015.OUT_0000644002504400250440000000040614762655566020611 0ustar00dewhurstdewhurst00000000000000'total muffin-tin angular momentum' 2 6 0.100000000000E-02 1 -0.464127546445E-17 2 0.309518270139E-17 3 0.257408525414 4 -0.274789687768E-17 5 -0.165522613103E-18 6 -0.475771566893E-02 elk-10.4.9/tests/test_007/PaxHeaders/TEST_016.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.798020641 30 atime=1741380470.798020641 30 ctime=1741380470.798020641 elk-10.4.9/tests/test_007/TEST_016.OUT_0000644002504400250440000000041614762655566020613 0ustar00dewhurstdewhurst00000000000000'muffin-tin angular momentum for one state' 2 6 0.100000000000E-02 1 0.286410234346E-06 2 0.170488076633E-06 3 0.132898316622 4 -0.924609807778E-06 5 0.903802227759E-06 6 0.156126488063 elk-10.4.9/tests/test_007/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.800020651 30 atime=1741380470.800020651 30 ctime=1741380470.800020651 elk-10.4.9/tests/test_007/TEST_400.OUT_0000644002504400250440000000014114762655566020603 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 38.9884427652 elk-10.4.9/tests/test_007/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016067 xustar0030 mtime=1741380470.802020662 30 atime=1741380470.802020662 30 ctime=1741380470.802020662 elk-10.4.9/tests/test_007/TEST_510.OUT_0000644002504400250440000000014514762655566020611 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.109995541356E-02 elk-10.4.9/tests/test_007/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.804020672 30 atime=1741380470.803020667 30 ctime=1741380470.804020672 elk-10.4.9/tests/test_007/TEST_500.OUT_0000644002504400250440000000013514762655566020607 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 85.2872123153 elk-10.4.9/tests/test_007/PaxHeaders/elk.in0000644000000000000000000000013214762655566015276 xustar0030 mtime=1741380470.806020683 30 atime=1741380470.805020677 30 ctime=1741380470.806020683 elk-10.4.9/tests/test_007/elk.in0000644002504400250440000000135414762655566020023 0ustar00dewhurstdewhurst00000000000000 ! FeAl in CsCl (B2) structure using GGA+U and interpolation between AMF and ! FLL double counting. tasks 0 15 16 500 test .true. kstlist 4 8 mixtype 1 wplot 50 100 2 0.0 0.25 gmaxvr 10.0 xctype 20 dft+u 2 1 : dftu, inpdftu 1 2 0.183 0.034911967 : is, l, U, J spinpol .true. bfieldc 0.0 0.0 -0.01 scale 5.496 avec 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 'Al.in' 1 0.5 0.5 0.5 0.0 0.0 0.0 : atposl, bfcmt sppath '../../species/' ngridk 4 4 4 elk-10.4.9/tests/PaxHeaders/test_0110000644000000000000000000000013214762655566014111 xustar0030 mtime=1741380470.822020766 30 atime=1741380470.807020688 30 ctime=1741380470.822020766 elk-10.4.9/tests/test_011/0000755002504400250440000000000014762655566016710 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_011/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016066 xustar0030 mtime=1741380470.808020693 30 atime=1741380470.808020693 30 ctime=1741380470.808020693 elk-10.4.9/tests/test_011/TEST_910.OUT_0000644002504400250440000000037114762655566020611 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 6 0.100000000000E-07 1 0.153099057192 2 0.153099057192 3 0.153099057192 4 0.459297171577 5 0.459297171577 6 -0.153099057192 elk-10.4.9/tests/test_011/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016061 xustar0030 mtime=1741380470.810020703 30 atime=1741380470.810020703 30 ctime=1741380470.810020703 elk-10.4.9/tests/test_011/TEST_500.OUT_0000644002504400250440000000013514762655566020602 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.100000459444E-06 elk-10.4.9/tests/test_011/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016062 xustar0030 mtime=1741380470.812020714 30 atime=1741380470.812020714 30 ctime=1741380470.812020714 elk-10.4.9/tests/test_011/TEST_510.OUT_0000644002504400250440000000014514762655566020604 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.345676377889 elk-10.4.9/tests/test_011/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016054 xustar0030 mtime=1741380470.814020724 30 atime=1741380470.814020724 30 ctime=1741380470.814020724 elk-10.4.9/tests/test_011/TEST_000.OUT_0000644002504400250440000000012614762655566020575 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -579.568990448 elk-10.4.9/tests/test_011/PaxHeaders/TEST_700.OUT_0000644000000000000000000000013114762655566016062 xustar0030 mtime=1741380470.816020735 29 atime=1741380470.81502073 30 ctime=1741380470.816020735 elk-10.4.9/tests/test_011/TEST_700.OUT_0000644002504400250440000000026414762655566020607 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 3 0.100000000000E-07 1 394.581580334 2 51.1494504119 3 35.9439292598 elk-10.4.9/tests/test_011/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013114762655566016057 xustar0030 mtime=1741380470.818020745 29 atime=1741380470.81702074 30 ctime=1741380470.818020745 elk-10.4.9/tests/test_011/TEST_400.OUT_0000644002504400250440000000014114762655566020576 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9919999535 elk-10.4.9/tests/test_011/PaxHeaders/TEST_705.OUT_0000644000000000000000000000012714762655566016074 xustar0029 mtime=1741380470.81902075 29 atime=1741380470.81902075 29 ctime=1741380470.81902075 elk-10.4.9/tests/test_011/TEST_705.OUT_0000644002504400250440000000010114762655566020602 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests/test_011/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016065 xustar0030 mtime=1741380470.821020761 30 atime=1741380470.821020761 30 ctime=1741380470.821020761 elk-10.4.9/tests/test_011/TEST_900.OUT_0000644002504400250440000000007014762655566020604 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7799 elk-10.4.9/tests/test_011/PaxHeaders/elk.in0000644000000000000000000000013214762655566015271 xustar0030 mtime=1741380470.823020771 30 atime=1741380470.822020766 30 ctime=1741380470.823020771 elk-10.4.9/tests/test_011/elk.in0000644002504400250440000000066714762655566020024 0ustar00dewhurstdewhurst00000000000000 ! Hartree-Fock calculation of silicon. tasks 0 5 500 test .true. maxscl 2 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../species/' atoms 1 : nspecies 'Si.in' : spfname 2 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt 0.25 0.25 0.25 0.0 0.0 0.0 ngridk 2 2 2 vkloff 0.5 0.5 0.5 elk-10.4.9/tests/PaxHeaders/test_0150000644000000000000000000000013214762655566014115 xustar0030 mtime=1741380470.844020881 30 atime=1741380470.824020777 30 ctime=1741380470.844020881 elk-10.4.9/tests/test_015/0000755002504400250440000000000014762655566016714 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_015/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.825020782 30 atime=1741380470.825020782 30 ctime=1741380470.825020782 elk-10.4.9/tests/test_015/TEST_705.OUT_0000644002504400250440000000010114762655566020606 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 4 elk-10.4.9/tests/test_015/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.827020792 30 atime=1741380470.827020792 30 ctime=1741380470.827020792 elk-10.4.9/tests/test_015/TEST_900.OUT_0000644002504400250440000000007014762655566020610 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7247 elk-10.4.9/tests/test_015/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.829020803 30 atime=1741380470.829020803 30 ctime=1741380470.829020803 elk-10.4.9/tests/test_015/TEST_910.OUT_0000644002504400250440000000436714762655566020626 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 72 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.298502264388 5 -0.995007547959E-01 6 -0.995007547959E-01 7 0.597004528775 8 -0.199001509592 9 -0.199001509592 10 0.199001509592 11 0.199001509592 12 -0.199001509592 13 0.497503773979 14 0.995007547959E-01 15 -0.298502264388 16 0.796006038367 17 -0.555111512313E-16 18 -0.398003019183 19 0.398003019183 20 0.398003019183 21 -0.398003019183 22 -0.995007547959E-01 23 -0.995007547959E-01 24 0.298502264388 25 0.199001509592 26 -0.199001509592 27 0.199001509592 28 0.497503773979 29 -0.298502264388 30 0.995007547959E-01 31 0.796006038367 32 -0.398003019183 33 -0.555111512313E-16 34 0.995007547959E-01 35 0.995007547959E-01 36 0.995007547959E-01 37 0.398003019183 38 -0.555111512313E-16 39 -0.416333634234E-16 40 0.696505283571 41 -0.995007547959E-01 42 -0.995007547959E-01 43 0.298502264388 44 0.298502264388 45 -0.995007547959E-01 46 0.597004528775 47 0.199001509592 48 -0.199001509592 49 0.497503773979 50 0.497503773979 51 -0.298502264388 52 -0.199001509592 53 -0.199001509592 54 0.597004528775 55 0.995007547959E-01 56 -0.298502264388 57 0.497503773979 58 0.398003019183 59 -0.398003019183 60 0.398003019183 61 -0.416333634234E-16 62 -0.555111512313E-16 63 0.398003019183 64 0.298502264388 65 -0.995007547959E-01 66 0.298502264388 67 0.597004528775 68 -0.199001509592 69 0.199001509592 70 0.199001509592 71 0.199001509592 72 0.199001509592 elk-10.4.9/tests/test_015/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.831020813 30 atime=1741380470.831020813 30 ctime=1741380470.831020813 elk-10.4.9/tests/test_015/TEST_400.OUT_0000644002504400250440000000014114762655566020602 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 72.0060893163 elk-10.4.9/tests/test_015/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.833020824 30 atime=1741380470.832020818 30 ctime=1741380470.833020824 elk-10.4.9/tests/test_015/TEST_450.OUT_0000644002504400250440000000014014762655566020606 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.146532413177E-05 elk-10.4.9/tests/test_015/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.834020829 30 atime=1741380470.834020829 30 ctime=1741380470.834020829 elk-10.4.9/tests/test_015/TEST_800.OUT_0000644002504400250440000000020314762655566020605 0ustar00dewhurstdewhurst00000000000000'DFT+U energy for each atom' 2 2 0.100000000000E-03 1 0.950420941398 2 0.950420941398 elk-10.4.9/tests/test_015/PaxHeaders/TEST_810.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.836020839 30 atime=1741380470.836020839 30 ctime=1741380470.836020839 elk-10.4.9/tests/test_015/TEST_810.OUT_0000644002504400250440000000017314762655566020614 0ustar00dewhurstdewhurst00000000000000'U and J parameters' 2 2 0.100000000000E-03 1 0.293989999979 2 0.459877755875E-01 elk-10.4.9/tests/test_015/PaxHeaders/TEST_500.OUT_0000644000000000000000000000012714762655566016071 xustar0029 mtime=1741380470.83802085 29 atime=1741380470.83802085 29 ctime=1741380470.83802085 elk-10.4.9/tests/test_015/TEST_500.OUT_0000644002504400250440000000013514762655566020606 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.100009606999E-06 elk-10.4.9/tests/test_015/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013014762655566016064 xustar0029 mtime=1741380470.84002086 30 atime=1741380470.839020855 29 ctime=1741380470.84002086 elk-10.4.9/tests/test_015/TEST_510.OUT_0000644002504400250440000000014514762655566020610 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.128049252779 elk-10.4.9/tests/test_015/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016060 xustar0030 mtime=1741380470.841020865 30 atime=1741380470.841020865 30 ctime=1741380470.841020865 elk-10.4.9/tests/test_015/TEST_000.OUT_0000644002504400250440000000012614762655566020601 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -3193.52795883 elk-10.4.9/tests/test_015/PaxHeaders/elk.in0000644000000000000000000000013214762655566015275 xustar0030 mtime=1741380470.843020876 30 atime=1741380470.843020876 30 ctime=1741380470.843020876 elk-10.4.9/tests/test_015/elk.in0000644002504400250440000000135514762655566020023 0ustar00dewhurstdewhurst00000000000000 ! DFT+U test tasks 0 400 500 test .true. mixtype 1 maxthd 1 maxscl 4 dft+u 1 5 : dftu, inpdftu 1 2 0.29399 : is, l, U fixed spinpol .true. spinorb .true. scale 7.893389 avec 1.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 atoms 2 : nspecies 'Ni.in' : spfname 2 : natoms; atpos, bfcmt below 0.0 0.0 0.0 0.0 0.0 -2.0 0.5 0.5 0.5 0.0 0.0 2.0 'O.in' : spfname 2 : natoms; atpos, bfcmt below 0.25 0.25 0.25 0.0 0.0 0.0 0.75 0.75 0.75 0.0 0.0 0.0 reducebf 0.5 sppath '../../species/' ngridk 4 4 4 elk-10.4.9/tests/test_015/PaxHeaders/TEST_820.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.845020886 30 atime=1741380470.845020886 30 ctime=1741380470.845020886 elk-10.4.9/tests/test_015/TEST_820.OUT_0000644002504400250440000000210014762655566020605 0ustar00dewhurstdewhurst00000000000000'Coupled tensor moments' 2 33 0.100000000000E-01 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.00000000000 5 0.00000000000 6 0.00000000000 7 0.00000000000 8 0.00000000000 9 0.00000000000 10 0.00000000000 11 0.00000000000 12 0.188234400000E-06 13 0.142652933634 14 -0.352961444971E-02 15 0.206655104436E-02 16 -0.691384672494E-05 17 0.404750322163 18 0.147485272390E-02 19 -0.207891889407E-02 20 -0.383336929489E-05 21 0.142643155102 22 -0.157898886180E-03 23 0.00000000000 24 0.00000000000 25 0.00000000000 26 0.00000000000 27 0.00000000000 28 0.00000000000 29 0.00000000000 30 0.00000000000 31 0.00000000000 32 0.00000000000 33 0.00000000000 elk-10.4.9/tests/PaxHeaders/test_0190000644000000000000000000000013214762655566014121 xustar0030 mtime=1741380470.869021012 30 atime=1741380470.846020892 30 ctime=1741380470.869021012 elk-10.4.9/tests/test_019/0000755002504400250440000000000014762655566016720 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests/test_019/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566016100 xustar0030 mtime=1741380470.848020902 30 atime=1741380470.848020902 30 ctime=1741380470.848020902 elk-10.4.9/tests/test_019/TEST_705.OUT_0000644002504400250440000000010114762655566020612 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 4 elk-10.4.9/tests/test_019/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566016075 xustar0030 mtime=1741380470.850020912 30 atime=1741380470.850020912 30 ctime=1741380470.850020912 elk-10.4.9/tests/test_019/TEST_900.OUT_0000644002504400250440000000007014762655566020614 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2109 elk-10.4.9/tests/test_019/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566016076 xustar0030 mtime=1741380470.852020923 30 atime=1741380470.851020918 30 ctime=1741380470.852020923 elk-10.4.9/tests/test_019/TEST_910.OUT_0000644002504400250440000000360314762655566020622 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 60 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.235855304324 5 0.235855304324 6 -0.235855304324 7 0.471710608647 8 0.471710608647 9 -0.471710608647 10 0.707565912971 11 0.707565912971 12 -0.707565912971 13 0.471710608647 14 0.00000000000 15 0.00000000000 16 0.707565912971 17 0.235855304324 18 -0.235855304324 19 0.943421217294 20 0.471710608647 21 -0.471710608647 22 0.707565912971 23 -0.235855304324 24 0.235855304324 25 0.943421217294 26 0.00000000000 27 0.00000000000 28 1.17927652162 29 0.235855304324 30 -0.235855304324 31 0.943421217294 32 -0.471710608647 33 0.471710608647 34 1.17927652162 35 -0.235855304324 36 0.235855304324 37 0.00000000000 38 0.00000000000 39 0.471710608647 40 0.471710608647 41 0.471710608647 42 0.00000000000 43 0.707565912971 44 0.707565912971 45 -0.235855304324 46 0.943421217294 47 0.471710608647 48 0.00000000000 49 0.943421217294 50 0.00000000000 51 0.471710608647 52 0.00000000000 53 0.00000000000 54 0.943421217294 55 0.707565912971 56 0.707565912971 57 0.235855304324 58 0.00000000000 59 0.00000000000 60 1.41513182594 elk-10.4.9/tests/test_019/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566016064 xustar0030 mtime=1741380470.854020933 30 atime=1741380470.853020928 30 ctime=1741380470.854020933 elk-10.4.9/tests/test_019/TEST_000.OUT_0000644002504400250440000000012614762655566020605 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1495.06402697 elk-10.4.9/tests/test_019/PaxHeaders/TEST_460.OUT_0000644000000000000000000000013214762655566016076 xustar0030 mtime=1741380470.855020939 30 atime=1741380470.855020939 30 ctime=1741380470.855020939 elk-10.4.9/tests/test_019/TEST_460.OUT_0000644002504400250440000000024714762655566020623 0ustar00dewhurstdewhurst00000000000000'total current of last time step' 2 3 0.500000000000E-03 1 0.00000000000 2 0.173472347598E-17 3 0.118399845633 elk-10.4.9/tests/test_019/PaxHeaders/elk.in0000644000000000000000000000013214762655566015301 xustar0030 mtime=1741380470.857020949 30 atime=1741380470.857020949 30 ctime=1741380470.857020949 elk-10.4.9/tests/test_019/elk.in0000644002504400250440000000101214762655566020015 0ustar00dewhurstdewhurst00000000000000 ! TDDFT+U time evolution test tasks 0 450 460 500 test .true. dft+u 1 5 1 2 0.2 ramdisk .true. tshift .false. tforce .true. ntsforce 10 lradstp 5 rgkmax 6.0 ngridk 4 4 4 nempty 6 tstime 50.0 dtimes 1.0 pulse 1 0.0 0.0 250.0 0.03 0.0 0.0 30.0 10.0 ntswrite 0 spinpol .true. spinorb .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../species/' atoms 1 'Ni.in' 1 0.0 0.0 0.0 elk-10.4.9/tests/test_019/PaxHeaders/TEST_750.OUT_0000644000000000000000000000012714762655566016104 xustar0029 mtime=1741380470.85902096 29 atime=1741380470.85902096 29 ctime=1741380470.85902096 elk-10.4.9/tests/test_019/TEST_750.OUT_0000644002504400250440000000022414762655566020620 0ustar00dewhurstdewhurst00000000000000'total forces' 2 3 0.100000000000E-02 1 0.541941670021E-18 2 -0.541941670021E-18 3 -0.303010235792E-01 elk-10.4.9/tests/test_019/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013014762655566016073 xustar0029 mtime=1741380470.86102097 30 atime=1741380470.860020965 29 ctime=1741380470.86102097 elk-10.4.9/tests/test_019/TEST_450.OUT_0000644002504400250440000000014014762655566020612 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.582810990253 elk-10.4.9/tests/test_019/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566016070 xustar0030 mtime=1741380470.862020975 30 atime=1741380470.862020975 30 ctime=1741380470.862020975 elk-10.4.9/tests/test_019/TEST_400.OUT_0000644002504400250440000000014114762655566020606 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9995619641 elk-10.4.9/tests/test_019/PaxHeaders/TEST_800.OUT_0000644000000000000000000000013214762655566016074 xustar0030 mtime=1741380470.864020986 30 atime=1741380470.864020986 30 ctime=1741380470.864020986 elk-10.4.9/tests/test_019/TEST_800.OUT_0000644002504400250440000000014414762655566020615 0ustar00dewhurstdewhurst00000000000000'DFT+U energy for each atom' 2 1 0.100000000000E-03 1 0.553025894990 elk-10.4.9/tests/test_019/PaxHeaders/TEST_810.OUT_0000644000000000000000000000013214762655566016075 xustar0030 mtime=1741380470.866020996 30 atime=1741380470.866020996 30 ctime=1741380470.866020996 elk-10.4.9/tests/test_019/TEST_810.OUT_0000644002504400250440000000017314762655566020620 0ustar00dewhurstdewhurst00000000000000'U and J parameters' 2 2 0.100000000000E-03 1 0.199999996878 2 0.403518796591E-01 elk-10.4.9/tests/test_019/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566016071 xustar0030 mtime=1741380470.868021007 30 atime=1741380470.867021001 30 ctime=1741380470.868021007 elk-10.4.9/tests/test_019/TEST_500.OUT_0000644002504400250440000000013514762655566020612 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 33.6580823637 elk-10.4.9/tests/test_019/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566016072 xustar0030 mtime=1741380470.869021012 30 atime=1741380470.869021012 30 ctime=1741380470.869021012 elk-10.4.9/tests/test_019/TEST_510.OUT_0000644002504400250440000000014514762655566020614 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.328053948004E-02 elk-10.4.9/PaxHeaders/tests-libxc0000644000000000000000000000013014762655566013646 xustar0029 mtime=1741380470.97002154 30 atime=1741380470.883021085 29 ctime=1741380470.97002154 elk-10.4.9/tests-libxc/0000755002504400250440000000000014762655566016447 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests-libxc/PaxHeaders/test_0040000644000000000000000000000013114762655566015211 xustar0030 mtime=1741380470.900021174 29 atime=1741380470.88402109 30 ctime=1741380470.900021174 elk-10.4.9/tests-libxc/test_004/0000755002504400250440000000000014762655566020011 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests-libxc/test_004/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566017166 xustar0030 mtime=1741380470.887021106 30 atime=1741380470.886021101 30 ctime=1741380470.887021106 elk-10.4.9/tests-libxc/test_004/TEST_900.OUT_0000644002504400250440000000007014762655566021705 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 34171 elk-10.4.9/tests-libxc/test_004/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566017162 xustar0030 mtime=1741380470.889021117 30 atime=1741380470.888021111 30 ctime=1741380470.889021117 elk-10.4.9/tests-libxc/test_004/TEST_500.OUT_0000644002504400250440000000013514762655566021703 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 124.994126657 elk-10.4.9/tests-libxc/test_004/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566017163 xustar0030 mtime=1741380470.890021122 30 atime=1741380470.890021122 30 ctime=1741380470.890021122 elk-10.4.9/tests-libxc/test_004/TEST_510.OUT_0000644002504400250440000000014514762655566021705 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.209969727342E-02 elk-10.4.9/tests-libxc/test_004/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566017161 xustar0030 mtime=1741380470.892021132 30 atime=1741380470.892021132 30 ctime=1741380470.892021132 elk-10.4.9/tests-libxc/test_004/TEST_400.OUT_0000644002504400250440000000014114762655566021677 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 294.004250467 elk-10.4.9/tests-libxc/test_004/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566017155 xustar0030 mtime=1741380470.894021143 30 atime=1741380470.894021143 30 ctime=1741380470.894021143 elk-10.4.9/tests-libxc/test_004/TEST_000.OUT_0000644002504400250440000000012614762655566021676 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -25087.3181372 elk-10.4.9/tests-libxc/test_004/PaxHeaders/TEST_750.OUT_0000644000000000000000000000013214762655566017171 xustar0030 mtime=1741380470.895021148 30 atime=1741380470.895021148 30 ctime=1741380470.895021148 elk-10.4.9/tests-libxc/test_004/TEST_750.OUT_0000644002504400250440000000236014762655566021714 0ustar00dewhurstdewhurst00000000000000'total forces' 2 39 0.100000000000E-02 1 0.00000000000 2 -0.169542454449E-39 3 0.854017711250E-17 4 0.00000000000 5 -0.169542454449E-39 6 2.40992256654 7 0.00000000000 8 0.565141514815E-39 9 -2.40992256654 10 0.00000000000 11 -0.169542454449E-39 12 0.854017711250E-17 13 0.00000000000 14 -0.169542454449E-39 15 0.531211581694 16 0.00000000000 17 -0.169542454449E-39 18 -0.531211581694 19 0.00000000000 20 -0.169542454449E-39 21 0.854017711250E-17 22 0.00000000000 23 -0.169542454449E-39 24 0.161620126245 25 0.00000000000 26 -0.169542454449E-39 27 -0.161620126245 28 0.00000000000 29 -0.169542454406E-39 30 0.167718832116 31 0.00000000000 32 -0.169542454449E-39 33 -0.167718832116 34 0.00000000000 35 0.129982548408E-38 36 0.881619160915 37 0.00000000000 38 -0.169542454449E-39 39 -0.881619160915 elk-10.4.9/tests-libxc/test_004/PaxHeaders/elk.in0000644000000000000000000000013214762655566016372 xustar0030 mtime=1741380470.897021158 30 atime=1741380470.897021158 30 ctime=1741380470.897021158 elk-10.4.9/tests-libxc/test_004/elk.in0000644002504400250440000000155314762655566021120 0ustar00dewhurstdewhurst00000000000000 ! Test of the finite temperature exchange-correlation functional KSDT. ! See Karasiev, et al., Phys. Rev. Lett. 112, 076403 (2014) tasks 0 500 test .true. maxthd 1 maxscl 4 xctype 100 259 0 ! temperature in Kelvin tempk 500.0 rgkmax 6.0 tforce .true. avec 7.2246 0.0 0.0 0.0 7.3442 0.0 0.0 0.0 22.0733 sppath '../../species/' atoms 4 : nspecies 'Y.in' : spfname 1 : natoms; atposl below 0.5 0.5 0.5 'Ba.in' 2 0.5 0.5 0.1843 0.5 0.5 0.8157 'Cu.in' 3 0.0 0.0 0.0 0.0 0.0 0.3556 0.0 0.0 0.6444 'O.in' 7 0.0 0.5 0.0 0.5 0.0 0.3773 0.5 0.0 0.6227 0.0 0.5 0.3789 0.0 0.5 0.6211 0.0 0.0 0.1584 0.0 0.0 0.8416 ngridk 4 4 2 vkloff 0.25 0.5 0.5 elk-10.4.9/tests-libxc/test_004/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566017171 xustar0030 mtime=1741380470.899021169 30 atime=1741380470.899021169 30 ctime=1741380470.899021169 elk-10.4.9/tests-libxc/test_004/TEST_705.OUT_0000644002504400250440000000010114762655566021703 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 8 elk-10.4.9/tests-libxc/test_004/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566017167 xustar0030 mtime=1741380470.901021179 30 atime=1741380470.900021174 30 ctime=1741380470.901021179 elk-10.4.9/tests-libxc/test_004/TEST_910.OUT_0000644002504400250440000000144714762655566021717 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 24 0.100000000000E-07 1 0.543558233949E-01 2 0.106941282018 3 0.711627317526E-01 4 0.271779116974 5 0.106941282018 6 0.711627317526E-01 7 0.489202410554 8 0.106941282018 9 0.711627317526E-01 10 0.706625704134 11 0.106941282018 12 0.711627317526E-01 13 0.543558233949E-01 14 0.320823846054 15 0.711627317526E-01 16 0.271779116974 17 0.320823846054 18 0.711627317526E-01 19 0.489202410554 20 0.320823846054 21 0.711627317526E-01 22 0.706625704134 23 0.320823846054 24 0.711627317526E-01 elk-10.4.9/tests-libxc/PaxHeaders/test_0050000644000000000000000000000013214762655566015213 xustar0030 mtime=1741380470.917021263 30 atime=1741380470.901021179 30 ctime=1741380470.917021263 elk-10.4.9/tests-libxc/test_005/0000755002504400250440000000000014762655566020012 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests-libxc/test_005/PaxHeaders/TEST_910.OUT_0000644000000000000000000000012714762655566017174 xustar0029 mtime=1741380470.90302119 29 atime=1741380470.90302119 29 ctime=1741380470.90302119 elk-10.4.9/tests-libxc/test_005/TEST_910.OUT_0000644002504400250440000000301714762655566021713 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 48 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.102066038128 5 0.102066038128 6 -0.102066038128 7 0.204132076257 8 0.204132076257 9 -0.204132076257 10 0.306198114385 11 0.306198114385 12 -0.306198114385 13 0.204132076257 14 0.358605526043E-17 15 -0.358605526043E-17 16 0.306198114385 17 0.102066038128 18 -0.102066038128 19 0.408264152513 20 0.204132076257 21 -0.204132076257 22 0.510330190642 23 0.306198114385 24 -0.306198114385 25 0.612396228770 26 0.408264152513 27 -0.408264152513 28 0.408264152513 29 0.717211052085E-17 30 -0.717211052085E-17 31 0.510330190642 32 0.102066038128 33 -0.102066038128 34 0.612396228770 35 0.204132076257 36 -0.204132076257 37 0.612396228770 38 0.00000000000 39 0.00000000000 40 0.408264152513 41 0.204132076257 42 -0.241695203552E-16 43 0.510330190642 44 0.306198114385 45 -0.102066038128 46 0.612396228770 47 0.204132076257 48 0.174638430682E-16 elk-10.4.9/tests-libxc/test_005/PaxHeaders/elk.in0000644000000000000000000000012614762655566016376 xustar0028 mtime=1741380470.9050212 30 atime=1741380470.904021195 28 ctime=1741380470.9050212 elk-10.4.9/tests-libxc/test_005/elk.in0000644002504400250440000000043314762655566021115 0ustar00dewhurstdewhurst00000000000000 ! Hybrid functional test. tasks 0 5 500 test .true. xctype 100 0 406 ngridk 6 6 6 ngridq 3 3 3 nempty 8 avec 5.13 5.13 0.00 5.13 0.00 5.13 0.00 5.13 5.13 sppath '../../species/' atoms 1 'Si.in' 2 0.00 0.00 0.00 0.25 0.25 0.25 elk-10.4.9/tests-libxc/test_005/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566017172 xustar0030 mtime=1741380470.906021205 30 atime=1741380470.906021205 30 ctime=1741380470.906021205 elk-10.4.9/tests-libxc/test_005/TEST_705.OUT_0000644002504400250440000000010114762655566021704 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests-libxc/test_005/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566017167 xustar0030 mtime=1741380470.908021216 30 atime=1741380470.908021216 30 ctime=1741380470.908021216 elk-10.4.9/tests-libxc/test_005/TEST_900.OUT_0000644002504400250440000000007014762655566021706 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 7799 elk-10.4.9/tests-libxc/test_005/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566017163 xustar0030 mtime=1741380470.910021226 30 atime=1741380470.910021226 30 ctime=1741380470.910021226 elk-10.4.9/tests-libxc/test_005/TEST_500.OUT_0000644002504400250440000000013514762655566021704 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.999974019965E-07 elk-10.4.9/tests-libxc/test_005/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566017164 xustar0030 mtime=1741380470.911021231 30 atime=1741380470.911021231 30 ctime=1741380470.911021231 elk-10.4.9/tests-libxc/test_005/TEST_510.OUT_0000644002504400250440000000014514762655566021706 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.827209413439E-01 elk-10.4.9/tests-libxc/test_005/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566017162 xustar0030 mtime=1741380470.913021242 30 atime=1741380470.913021242 30 ctime=1741380470.913021242 elk-10.4.9/tests-libxc/test_005/TEST_400.OUT_0000644002504400250440000000014114762655566021700 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9912511342 elk-10.4.9/tests-libxc/test_005/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566017156 xustar0030 mtime=1741380470.915021252 30 atime=1741380470.915021252 30 ctime=1741380470.915021252 elk-10.4.9/tests-libxc/test_005/TEST_000.OUT_0000644002504400250440000000012614762655566021677 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -580.163930688 elk-10.4.9/tests-libxc/test_005/PaxHeaders/TEST_700.OUT_0000644000000000000000000000013214762655566017165 xustar0030 mtime=1741380470.917021263 30 atime=1741380470.917021263 30 ctime=1741380470.917021263 elk-10.4.9/tests-libxc/test_005/TEST_700.OUT_0000644002504400250440000000032314762655566021705 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 4 0.100000000000E-07 1 887.808555744 2 115.086263427 3 80.8738408354 4 40.8197509399 elk-10.4.9/tests-libxc/PaxHeaders/test_0060000644000000000000000000000013214762655566015214 xustar0030 mtime=1741380470.932021341 30 atime=1741380470.918021268 30 ctime=1741380470.932021341 elk-10.4.9/tests-libxc/test_006/0000755002504400250440000000000014762655566020013 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests-libxc/test_006/PaxHeaders/elk.in0000644000000000000000000000013214762655566016374 xustar0030 mtime=1741380470.920021278 30 atime=1741380470.920021278 30 ctime=1741380470.920021278 elk-10.4.9/tests-libxc/test_006/elk.in0000644002504400250440000000074114762655566021120 0ustar00dewhurstdewhurst00000000000000 ! meta-GGA test using the deorbitalised SCAN functional tasks 0 500 test .true. ! deorbitalised SCAN xctype 100 700 702 msmgmt 2 ngridk 4 4 4 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-10.4.9/tests-libxc/test_006/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566017164 xustar0030 mtime=1741380470.922021289 30 atime=1741380470.922021289 30 ctime=1741380470.922021289 elk-10.4.9/tests-libxc/test_006/TEST_500.OUT_0000644002504400250440000000013514762655566021705 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 23.0893317752 elk-10.4.9/tests-libxc/test_006/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566017165 xustar0030 mtime=1741380470.924021299 30 atime=1741380470.924021299 30 ctime=1741380470.924021299 elk-10.4.9/tests-libxc/test_006/TEST_510.OUT_0000644002504400250440000000014514762655566021707 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.280194018379E-01 elk-10.4.9/tests-libxc/test_006/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013014762655566017166 xustar0029 mtime=1741380470.92602131 30 atime=1741380470.925021305 29 ctime=1741380470.92602131 elk-10.4.9/tests-libxc/test_006/TEST_900.OUT_0000644002504400250440000000007014762655566021707 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 8873 elk-10.4.9/tests-libxc/test_006/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566017171 xustar0030 mtime=1741380470.927021315 30 atime=1741380470.927021315 30 ctime=1741380470.927021315 elk-10.4.9/tests-libxc/test_006/TEST_910.OUT_0000644002504400250440000000174114762655566021716 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 30 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.146981971254 5 0.146981971254 6 -0.146981971254 7 0.293963942509 8 0.293963942509 9 -0.293963942509 10 0.440945913763 11 0.440945913763 12 -0.440945913763 13 0.293963942509 14 0.00000000000 15 0.00000000000 16 0.440945913763 17 0.146981971254 18 -0.146981971254 19 0.587927885017 20 0.293963942509 21 -0.293963942509 22 0.587927885017 23 0.00000000000 24 0.00000000000 25 0.734909856272 26 0.146981971254 27 -0.146981971254 28 0.587927885017 29 0.293963942509 30 0.00000000000 elk-10.4.9/tests-libxc/test_006/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566017173 xustar0030 mtime=1741380470.929021326 30 atime=1741380470.929021326 30 ctime=1741380470.929021326 elk-10.4.9/tests-libxc/test_006/TEST_705.OUT_0000644002504400250440000000010114762655566021705 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-10.4.9/tests-libxc/test_006/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566017163 xustar0030 mtime=1741380470.931021336 30 atime=1741380470.930021331 30 ctime=1741380470.931021336 elk-10.4.9/tests-libxc/test_006/TEST_400.OUT_0000644002504400250440000000014114762655566021701 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 63.9841091732 elk-10.4.9/tests-libxc/test_006/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566017157 xustar0030 mtime=1741380470.932021341 30 atime=1741380470.932021341 30 ctime=1741380470.932021341 elk-10.4.9/tests-libxc/test_006/TEST_000.OUT_0000644002504400250440000000012614762655566021700 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -4207.87180483 elk-10.4.9/tests-libxc/PaxHeaders/test_0010000644000000000000000000000013214762655566015207 xustar0030 mtime=1741380470.948021425 30 atime=1741380470.934021352 30 ctime=1741380470.948021425 elk-10.4.9/tests-libxc/test_001/0000755002504400250440000000000014762655566020006 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests-libxc/test_001/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566017156 xustar0030 mtime=1741380470.936021362 30 atime=1741380470.935021357 30 ctime=1741380470.936021362 elk-10.4.9/tests-libxc/test_001/TEST_400.OUT_0000644002504400250440000000014114762655566021674 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 63.9847201933 elk-10.4.9/tests-libxc/test_001/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566017152 xustar0030 mtime=1741380470.938021373 30 atime=1741380470.937021367 30 ctime=1741380470.938021373 elk-10.4.9/tests-libxc/test_001/TEST_000.OUT_0000644002504400250440000000012614762655566021673 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -4226.69914381 elk-10.4.9/tests-libxc/test_001/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566017166 xustar0030 mtime=1741380470.940021383 30 atime=1741380470.940021383 30 ctime=1741380470.940021383 elk-10.4.9/tests-libxc/test_001/TEST_705.OUT_0000644002504400250440000000010114762655566021700 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 24 elk-10.4.9/tests-libxc/test_001/PaxHeaders/elk.in0000644000000000000000000000013214762655566016367 xustar0030 mtime=1741380470.942021393 30 atime=1741380470.942021393 30 ctime=1741380470.942021393 elk-10.4.9/tests-libxc/test_001/elk.in0000644002504400250440000000070514762655566021113 0ustar00dewhurstdewhurst00000000000000 ! meta-GGA test using the SCAN functional tasks 0 500 test .true. maxscl 2 ! SCAN xctype 100 263 267 ngridk 4 4 4 avec 5.3435 5.3435 0.0000 5.3435 0.0000 5.3435 0.0000 5.3435 5.3435 sppath '../../species/' atoms 2 : nspecies 'Ga.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'As.in' 1 0.25 0.25 0.25 elk-10.4.9/tests-libxc/test_001/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566017163 xustar0030 mtime=1741380470.944021404 30 atime=1741380470.943021399 30 ctime=1741380470.944021404 elk-10.4.9/tests-libxc/test_001/TEST_900.OUT_0000644002504400250440000000007014762655566021702 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 8873 elk-10.4.9/tests-libxc/test_001/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566017164 xustar0030 mtime=1741380470.945021409 30 atime=1741380470.945021409 30 ctime=1741380470.945021409 elk-10.4.9/tests-libxc/test_001/TEST_910.OUT_0000644002504400250440000000174114762655566021711 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 30 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.146981971254 5 0.146981971254 6 -0.146981971254 7 0.293963942509 8 0.293963942509 9 -0.293963942509 10 0.440945913763 11 0.440945913763 12 -0.440945913763 13 0.293963942509 14 0.00000000000 15 0.00000000000 16 0.440945913763 17 0.146981971254 18 -0.146981971254 19 0.587927885017 20 0.293963942509 21 -0.293963942509 22 0.587927885017 23 0.00000000000 24 0.00000000000 25 0.734909856272 26 0.146981971254 27 -0.146981971254 28 0.587927885017 29 0.293963942509 30 0.00000000000 elk-10.4.9/tests-libxc/test_001/PaxHeaders/TEST_500.OUT_0000644000000000000000000000012714762655566017163 xustar0029 mtime=1741380470.94702142 29 atime=1741380470.94702142 29 ctime=1741380470.94702142 elk-10.4.9/tests-libxc/test_001/TEST_500.OUT_0000644002504400250440000000013514762655566021700 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 0.738998992132E-04 elk-10.4.9/tests-libxc/test_001/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013014762655566017156 xustar0029 mtime=1741380470.94902143 30 atime=1741380470.948021425 29 ctime=1741380470.94902143 elk-10.4.9/tests-libxc/test_001/TEST_510.OUT_0000644002504400250440000000014514762655566021702 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.283945417886E-01 elk-10.4.9/tests-libxc/PaxHeaders/test_0020000644000000000000000000000013214762655566015210 xustar0030 mtime=1741380470.969021535 30 atime=1741380470.950021435 30 ctime=1741380470.969021535 elk-10.4.9/tests-libxc/test_002/0000755002504400250440000000000014762655566020007 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests-libxc/test_002/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013114762655566017164 xustar0030 mtime=1741380470.952021446 29 atime=1741380470.95102144 30 ctime=1741380470.952021446 elk-10.4.9/tests-libxc/test_002/TEST_910.OUT_0000644002504400250440000001052214762655566021707 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 141 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.943421217294E-01 5 0.943421217294E-01 6 -0.943421217294E-01 7 0.188684243459 8 0.188684243459 9 -0.188684243459 10 0.283026365188 11 0.283026365188 12 -0.283026365188 13 0.377368486918 14 0.377368486918 15 -0.377368486918 16 0.471710608647 17 0.471710608647 18 -0.471710608647 19 0.188684243459 20 -0.308963289789E-17 21 0.308963289789E-17 22 0.283026365188 23 0.943421217294E-01 24 -0.943421217294E-01 25 0.377368486918 26 0.188684243459 27 -0.188684243459 28 0.471710608647 29 0.283026365188 30 -0.283026365188 31 0.566052730377 32 0.377368486918 33 -0.377368486918 34 0.660394852106 35 0.471710608647 36 -0.471710608647 37 0.754736973835 38 0.566052730377 39 -0.566052730377 40 0.849079095565 41 0.660394852106 42 -0.660394852106 43 0.943421217294 44 0.754736973835 45 -0.754736973835 46 0.377368486918 47 -0.617926579578E-17 48 0.617926579578E-17 49 0.471710608647 50 0.943421217294E-01 51 -0.943421217294E-01 52 0.566052730377 53 0.188684243459 54 -0.188684243459 55 0.660394852106 56 0.283026365188 57 -0.283026365188 58 0.754736973835 59 0.377368486918 60 -0.377368486918 61 0.849079095565 62 0.471710608647 63 -0.471710608647 64 0.943421217294 65 0.566052730377 66 -0.566052730377 67 0.566052730377 68 -0.215763098199E-16 69 0.215763098199E-16 70 0.660394852106 71 0.943421217294E-01 72 -0.943421217294E-01 73 0.754736973835 74 0.188684243459 75 -0.188684243459 76 0.849079095565 77 0.283026365188 78 -0.283026365188 79 0.943421217294 80 0.377368486918 81 -0.377368486918 82 0.754736973835 83 -0.123585315916E-16 84 0.123585315916E-16 85 0.849079095565 86 0.943421217294E-01 87 -0.943421217294E-01 88 0.943421217294 89 0.188684243459 90 -0.188684243459 91 0.943421217294 92 0.00000000000 93 0.00000000000 94 0.377368486918 95 0.188684243459 96 0.385437305256E-16 97 0.471710608647 98 0.283026365188 99 -0.943421217294E-01 100 0.566052730377 101 0.377368486918 102 -0.188684243459 103 0.660394852106 104 0.471710608647 105 -0.283026365188 106 0.566052730377 107 0.188684243459 108 -0.308963289789E-17 109 0.660394852106 110 0.283026365188 111 -0.943421217294E-01 112 0.754736973835 113 0.377368486918 114 -0.188684243459 115 0.849079095565 116 0.471710608647 117 -0.283026365188 118 0.943421217294 119 0.566052730377 120 -0.377368486918 121 0.754736973835 122 0.188684243459 123 0.385437305256E-16 124 0.849079095565 125 0.283026365188 126 -0.943421217294E-01 127 0.943421217294 128 0.377368486918 129 -0.188684243459 130 0.943421217294 131 0.188684243459 132 0.246659427177E-16 133 0.754736973835 134 0.377368486918 135 0.770874610511E-16 136 0.849079095565 137 0.471710608647 138 -0.943421217294E-01 139 0.943421217294 140 0.377368486918 141 0.493318854355E-16 elk-10.4.9/tests-libxc/test_002/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566017167 xustar0030 mtime=1741380470.953021451 30 atime=1741380470.953021451 30 ctime=1741380470.953021451 elk-10.4.9/tests-libxc/test_002/TEST_705.OUT_0000644002504400250440000000010114762655566021701 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 48 elk-10.4.9/tests-libxc/test_002/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566017164 xustar0030 mtime=1741380470.955021461 30 atime=1741380470.955021461 30 ctime=1741380470.955021461 elk-10.4.9/tests-libxc/test_002/TEST_900.OUT_0000644002504400250440000000007014762655566021703 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 2109 elk-10.4.9/tests-libxc/test_002/PaxHeaders/elk.in0000644000000000000000000000013214762655566016370 xustar0030 mtime=1741380470.957021472 30 atime=1741380470.957021472 30 ctime=1741380470.957021472 elk-10.4.9/tests-libxc/test_002/elk.in0000644002504400250440000000116414762655566021114 0ustar00dewhurstdewhurst00000000000000 ! Magnetic response of fcc nickel. tasks 0 330 500 test .true. xctype 100 532 12 fxctype 100 532 12 nempty 10 lorbcnd .true. emaxrf 1.5 gmaxrf 2.0 wplot 60 100 1 0 0.020 ! q-vector of response function vecql 0.1 0.3 0.0 ngridk 10 10 10 spinpol .true. bfieldc 0.0 0.0 0.01 avec 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 scale 3.33 sppath '../../species/' atoms 1 : nspecies 'Ni.in' : spfname 1 : natoms 0.0 0.0 0.0 0.0 0.0 0.0 : atposl, bfcmt elk-10.4.9/tests-libxc/test_002/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566017160 xustar0030 mtime=1741380470.959021482 30 atime=1741380470.958021477 30 ctime=1741380470.959021482 elk-10.4.9/tests-libxc/test_002/TEST_500.OUT_0000644002504400250440000000013514762655566021701 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 53.6684825720 elk-10.4.9/tests-libxc/test_002/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566017161 xustar0030 mtime=1741380470.960021488 30 atime=1741380470.960021488 30 ctime=1741380470.960021488 elk-10.4.9/tests-libxc/test_002/TEST_510.OUT_0000644002504400250440000000014514762655566021703 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.735335341146E-03 elk-10.4.9/tests-libxc/test_002/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566017164 xustar0030 mtime=1741380470.962021498 30 atime=1741380470.962021498 30 ctime=1741380470.962021498 elk-10.4.9/tests-libxc/test_002/TEST_450.OUT_0000644002504400250440000000014014762655566021701 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 0.717126159005 elk-10.4.9/tests-libxc/test_002/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566017157 xustar0030 mtime=1741380470.964021509 30 atime=1741380470.964021509 30 ctime=1741380470.964021509 elk-10.4.9/tests-libxc/test_002/TEST_400.OUT_0000644002504400250440000000014114762655566021675 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 27.9937807060 elk-10.4.9/tests-libxc/test_002/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566017153 xustar0030 mtime=1741380470.966021519 30 atime=1741380470.965021514 30 ctime=1741380470.966021519 elk-10.4.9/tests-libxc/test_002/TEST_000.OUT_0000644002504400250440000000012614762655566021674 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -1517.12685219 elk-10.4.9/tests-libxc/test_002/PaxHeaders/TEST_700.OUT_0000644000000000000000000000013214762655566017162 xustar0030 mtime=1741380470.967021524 30 atime=1741380470.967021524 30 ctime=1741380470.967021524 elk-10.4.9/tests-libxc/test_002/TEST_700.OUT_0000644002504400250440000000301014762655566021676 0ustar00dewhurstdewhurst00000000000000'regularised Coulomb Green''s function (gclq)' 2 47 0.100000000000E-07 1 4156.52649632 2 538.808845910 3 122.281077681 4 53.2067305730 5 29.7036699563 6 18.9436528129 7 378.633726982 8 131.915119909 9 59.6996144004 10 33.1294509551 11 20.8866383293 12 24.1480573225 13 39.8247961001 14 76.6221168207 15 191.109192697 16 89.6935829837 17 52.8305196423 18 32.3142045935 19 21.1792161666 20 18.7172333061 21 28.0029635091 22 44.9516730037 23 39.4977235641 24 27.8283415094 25 19.6878350783 26 14.3061427077 27 19.7706217330 28 22.1479831303 29 17.0639418646 30 13.1063464662 31 14.1544228910 32 70.5026233452 33 40.4627055245 34 25.3002738051 35 17.0626173734 36 35.3392864088 37 23.9798340158 38 16.8448151671 39 18.9724996792 40 27.4485942715 41 20.7913378523 42 15.5388968693 43 14.2001311974 44 13.5917268552 45 17.6443345168 46 13.2018441244 47 12.1733944017 elk-10.4.9/tests-libxc/test_002/PaxHeaders/TEST_330.OUT_0000644000000000000000000000013214762655566017161 xustar0030 mtime=1741380470.969021535 30 atime=1741380470.969021535 30 ctime=1741380470.969021535 elk-10.4.9/tests-libxc/test_002/TEST_330.OUT_0000644002504400250440000000626314762655566021712 0ustar00dewhurstdewhurst00000000000000'transverse response function' 3 60 0.100000000000E-01 1 0.998379638103 -0.467081899810E-01 2 0.985180756592 -0.486121435801E-01 3 0.971843506256 -0.502917778030E-01 4 0.958042403744 -0.523396056059E-01 5 0.944143572025 -0.553584479821E-01 6 0.930670493023 -0.595166952371E-01 7 0.918109323018 -0.650682764058E-01 8 0.907886463992 -0.721448280335E-01 9 0.901807371088 -0.786866727966E-01 10 0.898321627708 -0.811720586567E-01 11 0.893653751550 -0.800135706156E-01 12 0.887661738837 -0.774263496615E-01 13 0.880575235727 -0.727973495539E-01 14 0.870428225992 -0.666569161928E-01 15 0.857024212378 -0.614103809668E-01 16 0.841779320658 -0.581913924777E-01 17 0.825724164568 -0.569665487790E-01 18 0.809287164177 -0.575761611653E-01 19 0.792689788614 -0.600986536437E-01 20 0.776277392537 -0.648833702002E-01 21 0.760892970120 -0.724267876591E-01 22 0.748315044258 -0.827661218680E-01 23 0.740787922788 -0.939009378496E-01 24 0.737730787871 -0.101618421255 25 0.734987112383 -0.104442894480 26 0.729936573781 -0.104015925655 27 0.720738376709 -0.102271639992 28 0.706959427144 -0.103097801593 29 0.691546871924 -0.109593992025 30 0.678318531128 -0.122162137966 31 0.670794555759 -0.139606665058 32 0.672164114764 -0.158449281420 33 0.682683625802 -0.173686235367 34 0.701546994495 -0.180556688928 35 0.722811655078 -0.171293132119 36 0.732187238460 -0.148097550179 37 0.725693102859 -0.124451756994 38 0.709791702646 -0.108097121624 39 0.690604342232 -0.999753164244E-01 40 0.671921664605 -0.990603049559E-01 41 0.656763381386 -0.103741301802 42 0.647470937691 -0.110643738071 43 0.643027771345 -0.115142063741 44 0.639136852599 -0.115900670834 45 0.633879262542 -0.115559819824 46 0.628469157657 -0.115070889442 47 0.622566054556 -0.113842613484 48 0.615817399714 -0.113032202407 49 0.609707137776 -0.112516449773 50 0.603363729293 -0.110638904146 51 0.594924436229 -0.108743367307 52 0.585474102507 -0.108819206058 53 0.576794555657 -0.110489163776 54 0.568855589839 -0.112590854912 55 0.561194573791 -0.115755787931 56 0.555816813981 -0.120142589093 57 0.553175271354 -0.122382534835 58 0.549293446713 -0.121383505828 59 0.542439312257 -0.120686568576 60 0.534966647236 -0.122643563142 elk-10.4.9/tests-libxc/PaxHeaders/test_0030000644000000000000000000000013114762655566015210 xustar0030 mtime=1741380470.988021634 29 atime=1741380470.97002154 30 ctime=1741380470.988021634 elk-10.4.9/tests-libxc/test_003/0000755002504400250440000000000014762655566020010 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/tests-libxc/test_003/PaxHeaders/elk.in0000644000000000000000000000012714762655566016375 xustar0029 mtime=1741380470.97202155 29 atime=1741380470.97202155 29 ctime=1741380470.97202155 elk-10.4.9/tests-libxc/test_003/elk.in0000644002504400250440000000111314762655566021107 0ustar00dewhurstdewhurst00000000000000 ! Test of Libxc GGA, spin-polarised and with forces. tasks 0 500 test .true. mixtype 1 xctype 100 101 130 tforce .true. ngridk 4 4 4 autoswidth .true. autolinengy .true. spinorb .true. cmagz .true. bfieldc 0.0 0.0 0.1 avec 0.5 0.5 0.0 0.0 1.0 0.0 0.0 0.0 1.0 scale1 6.8 scale2 6.8 scale3 7.0 sppath '../../species/' atoms 2 : nspecies 'Fe.in' : spfname 1 : natoms; atposl below 0.0 0.0 0.0 'Co.in' 1 0.1 0.51 0.48 elk-10.4.9/tests-libxc/test_003/PaxHeaders/TEST_510.OUT_0000644000000000000000000000013214762655566017162 xustar0030 mtime=1741380470.975021566 30 atime=1741380470.974021561 30 ctime=1741380470.975021566 elk-10.4.9/tests-libxc/test_003/TEST_510.OUT_0000644002504400250440000000014514762655566021704 0ustar00dewhurstdewhurst00000000000000'estimated indirect band gap' 2 1 0.200000000000E-01 1 0.259513297254E-03 elk-10.4.9/tests-libxc/test_003/PaxHeaders/TEST_500.OUT_0000644000000000000000000000013214762655566017161 xustar0030 mtime=1741380470.977021576 30 atime=1741380470.976021571 30 ctime=1741380470.977021576 elk-10.4.9/tests-libxc/test_003/TEST_500.OUT_0000644002504400250440000000013514762655566021702 0ustar00dewhurstdewhurst00000000000000'DOS at Fermi energy' 2 1 0.500000000000E-02 1 89.6047974015 elk-10.4.9/tests-libxc/test_003/PaxHeaders/TEST_910.OUT_0000644000000000000000000000013214762655566017166 xustar0030 mtime=1741380470.978021582 30 atime=1741380470.978021582 30 ctime=1741380470.978021582 elk-10.4.9/tests-libxc/test_003/TEST_910.OUT_0000644002504400250440000001357714762655566021725 0ustar00dewhurstdewhurst00000000000000'k-points (Cartesian)' 2 192 0.100000000000E-07 1 0.00000000000 2 0.00000000000 3 0.00000000000 4 0.461998919646 5 0.00000000000 6 0.00000000000 7 0.923997839291 8 0.00000000000 9 0.00000000000 10 1.38599675894 11 0.00000000000 12 0.00000000000 13 -0.230999459823 14 0.230999459823 15 0.00000000000 16 0.230999459823 17 0.230999459823 18 0.00000000000 19 0.692998379468 20 0.230999459823 21 0.00000000000 22 1.15499729911 23 0.230999459823 24 0.00000000000 25 -0.461998919646 26 0.461998919646 27 0.00000000000 28 0.00000000000 29 0.461998919646 30 0.00000000000 31 0.461998919646 32 0.461998919646 33 0.00000000000 34 0.923997839291 35 0.461998919646 36 0.00000000000 37 -0.692998379468 38 0.692998379468 39 0.00000000000 40 -0.230999459823 41 0.692998379468 42 0.00000000000 43 0.230999459823 44 0.692998379468 45 0.00000000000 46 0.692998379468 47 0.692998379468 48 0.00000000000 49 0.00000000000 50 0.00000000000 51 0.224399475256 52 0.461998919646 53 0.00000000000 54 0.224399475256 55 0.923997839291 56 0.00000000000 57 0.224399475256 58 1.38599675894 59 0.00000000000 60 0.224399475256 61 -0.230999459823 62 0.230999459823 63 0.224399475256 64 0.230999459823 65 0.230999459823 66 0.224399475256 67 0.692998379468 68 0.230999459823 69 0.224399475256 70 1.15499729911 71 0.230999459823 72 0.224399475256 73 -0.461998919646 74 0.461998919646 75 0.224399475256 76 0.00000000000 77 0.461998919646 78 0.224399475256 79 0.461998919646 80 0.461998919646 81 0.224399475256 82 0.923997839291 83 0.461998919646 84 0.224399475256 85 -0.692998379468 86 0.692998379468 87 0.224399475256 88 -0.230999459823 89 0.692998379468 90 0.224399475256 91 0.230999459823 92 0.692998379468 93 0.224399475256 94 0.692998379468 95 0.692998379468 96 0.224399475256 97 0.00000000000 98 0.00000000000 99 0.448798950513 100 0.461998919646 101 0.00000000000 102 0.448798950513 103 0.923997839291 104 0.00000000000 105 0.448798950513 106 1.38599675894 107 0.00000000000 108 0.448798950513 109 -0.230999459823 110 0.230999459823 111 0.448798950513 112 0.230999459823 113 0.230999459823 114 0.448798950513 115 0.692998379468 116 0.230999459823 117 0.448798950513 118 1.15499729911 119 0.230999459823 120 0.448798950513 121 -0.461998919646 122 0.461998919646 123 0.448798950513 124 0.00000000000 125 0.461998919646 126 0.448798950513 127 0.461998919646 128 0.461998919646 129 0.448798950513 130 0.923997839291 131 0.461998919646 132 0.448798950513 133 -0.692998379468 134 0.692998379468 135 0.448798950513 136 -0.230999459823 137 0.692998379468 138 0.448798950513 139 0.230999459823 140 0.692998379468 141 0.448798950513 142 0.692998379468 143 0.692998379468 144 0.448798950513 145 0.00000000000 146 0.00000000000 147 0.673198425769 148 0.461998919646 149 0.00000000000 150 0.673198425769 151 0.923997839291 152 0.00000000000 153 0.673198425769 154 1.38599675894 155 0.00000000000 156 0.673198425769 157 -0.230999459823 158 0.230999459823 159 0.673198425769 160 0.230999459823 161 0.230999459823 162 0.673198425769 163 0.692998379468 164 0.230999459823 165 0.673198425769 166 1.15499729911 167 0.230999459823 168 0.673198425769 169 -0.461998919646 170 0.461998919646 171 0.673198425769 172 0.00000000000 173 0.461998919646 174 0.673198425769 175 0.461998919646 176 0.461998919646 177 0.673198425769 178 0.923997839291 179 0.461998919646 180 0.673198425769 181 -0.692998379468 182 0.692998379468 183 0.673198425769 184 -0.230999459823 185 0.692998379468 186 0.673198425769 187 0.230999459823 188 0.692998379468 189 0.673198425769 190 0.692998379468 191 0.692998379468 192 0.673198425769 elk-10.4.9/tests-libxc/test_003/PaxHeaders/TEST_900.OUT_0000644000000000000000000000013214762655566017165 xustar0030 mtime=1741380470.980021592 30 atime=1741380470.980021592 30 ctime=1741380470.980021592 elk-10.4.9/tests-libxc/test_003/TEST_900.OUT_0000644002504400250440000000007014762655566021704 0ustar00dewhurstdewhurst00000000000000'number of G-vectors' 1 1 1 4735 elk-10.4.9/tests-libxc/test_003/PaxHeaders/TEST_705.OUT_0000644000000000000000000000013214762655566017170 xustar0030 mtime=1741380470.982021603 30 atime=1741380470.982021603 30 ctime=1741380470.982021603 elk-10.4.9/tests-libxc/test_003/TEST_705.OUT_0000644002504400250440000000010114762655566021702 0ustar00dewhurstdewhurst00000000000000'number of crystal symmetries' 1 1 1 1 elk-10.4.9/tests-libxc/test_003/PaxHeaders/TEST_450.OUT_0000644000000000000000000000013214762655566017165 xustar0030 mtime=1741380470.984021613 30 atime=1741380470.983021608 30 ctime=1741380470.984021613 elk-10.4.9/tests-libxc/test_003/TEST_450.OUT_0000644002504400250440000000014014762655566021702 0ustar00dewhurstdewhurst00000000000000'total moment magnitude' 2 1 0.100000000000E-02 1 2.91185321144 elk-10.4.9/tests-libxc/test_003/PaxHeaders/TEST_400.OUT_0000644000000000000000000000013214762655566017160 xustar0030 mtime=1741380470.985021618 30 atime=1741380470.985021618 30 ctime=1741380470.985021618 elk-10.4.9/tests-libxc/test_003/TEST_400.OUT_0000644002504400250440000000014114762655566021676 0ustar00dewhurstdewhurst00000000000000'calculated total charge' 2 1 0.100000000000E-05 1 52.9968688054 elk-10.4.9/tests-libxc/test_003/PaxHeaders/TEST_000.OUT_0000644000000000000000000000013214762655566017154 xustar0030 mtime=1741380470.987021629 30 atime=1741380470.987021629 30 ctime=1741380470.987021629 elk-10.4.9/tests-libxc/test_003/TEST_000.OUT_0000644002504400250440000000012614762655566021675 0ustar00dewhurstdewhurst00000000000000'total energy' 2 1 0.100000000000E-04 1 -2666.28748518 elk-10.4.9/tests-libxc/test_003/PaxHeaders/TEST_750.OUT_0000644000000000000000000000013214762655566017170 xustar0030 mtime=1741380470.989021639 30 atime=1741380470.989021639 30 ctime=1741380470.989021639 elk-10.4.9/tests-libxc/test_003/TEST_750.OUT_0000644002504400250440000000036114762655566021712 0ustar00dewhurstdewhurst00000000000000'total forces' 2 6 0.100000000000E-02 1 0.111310726684E-01 2 0.134717088689E-01 3 -0.113876480480E-01 4 -0.111310726684E-01 5 -0.134717088689E-01 6 0.113876480480E-01 elk-10.4.9/PaxHeaders/species0000644000000000000000000000013214762655567013043 xustar0030 mtime=1741380471.233022915 30 atime=1741380471.001021702 30 ctime=1741380471.233022915 elk-10.4.9/species/0000755002504400250440000000000014762655567015642 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/species/PaxHeaders/Ac.in0000644000000000000000000000013014762655567013771 xustar0029 mtime=1741380471.01602178 30 atime=1741380471.015021775 29 ctime=1741380471.01602178 elk-10.4.9/species/Ac.in0000644002504400250440000000425214762655567016520 0ustar00dewhurstdewhurst00000000000000 'Ac' : spsymb 'actinium' : spname -89.0000 : spzn 413795.6860 : spmass 0.212000E-06 3.0000 58.5155 800 : rminsp, rmt, rmaxsp, nrmt 26 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 1.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.8323 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4862 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6749 0 T elk-10.4.9/species/PaxHeaders/Ag.in0000644000000000000000000000013214762655567013777 xustar0030 mtime=1741380471.019021796 30 atime=1741380471.018021791 30 ctime=1741380471.019021796 elk-10.4.9/species/Ag.in0000644002504400250440000000356614762655567016533 0ustar00dewhurstdewhurst00000000000000 'Ag' : spsymb 'silver' : spname -47.0000 : spzn 196631.6997 : spmass 0.291730E-06 2.6000 49.0510 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.4920 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0961 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2735 0 T elk-10.4.9/species/PaxHeaders/Al.in0000644000000000000000000000013214762655567014004 xustar0030 mtime=1741380471.021021806 30 atime=1741380471.020021801 30 ctime=1741380471.021021806 elk-10.4.9/species/Al.in0000644002504400250440000000227614762655567016535 0ustar00dewhurstdewhurst00000000000000 'Al' : spsymb 'aluminium' : spname -13.0000 : spzn 49184.33492 : spmass 0.554700E-06 2.2000 57.4918 400 : rminsp, rmt, rmaxsp, nrmt 6 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 F 2 1 2 4.00000 F 3 0 1 2.00000 F 3 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5562 0 T elk-10.4.9/species/PaxHeaders/Am.in0000644000000000000000000000013214762655567014005 xustar0030 mtime=1741380471.023021817 30 atime=1741380471.022021812 30 ctime=1741380471.023021817 elk-10.4.9/species/Am.in0000644002504400250440000000453214762655567016533 0ustar00dewhurstdewhurst00000000000000 'Am' : spsymb 'americium' : spname -95.0000 : spzn 442961.9018 : spmass 0.205196E-06 3.0000 51.9446 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 3.00000 F 5 3 4 4.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0774 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8674 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7549 0 T elk-10.4.9/species/PaxHeaders/Ar.in0000644000000000000000000000013214762655567014012 xustar0030 mtime=1741380471.025021827 30 atime=1741380471.024021822 30 ctime=1741380471.025021827 elk-10.4.9/species/Ar.in0000644002504400250440000000233214762655567016534 0ustar00dewhurstdewhurst00000000000000 'Ar' : spsymb 'argon' : spname -18.0000 : spzn 72820.74919 : spmass 0.471405E-06 2.0000 28.6848 400 : rminsp, rmt, rmaxsp, nrmt 7 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8916 0 T elk-10.4.9/species/PaxHeaders/As.in0000644000000000000000000000013214762655567014013 xustar0030 mtime=1741380471.027021838 30 atime=1741380471.026021833 30 ctime=1741380471.027021838 elk-10.4.9/species/As.in0000644002504400250440000000321614762655567016537 0ustar00dewhurstdewhurst00000000000000 'As' : spsymb 'arsenic' : spname -33.0000 : spzn 136573.7219 : spmass 0.348155E-06 2.4000 42.0399 500 : rminsp, rmt, rmaxsp, nrmt 12 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 4 1 1 1.00000 F 4 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4917 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5401 0 T elk-10.4.9/species/PaxHeaders/At.in0000644000000000000000000000013214762655567014014 xustar0030 mtime=1741380471.029021848 30 atime=1741380471.028021843 30 ctime=1741380471.029021848 elk-10.4.9/species/At.in0000644002504400250440000000373614762655567016547 0ustar00dewhurstdewhurst00000000000000 'At' : spsymb 'astatine' : spname -85.0000 : spzn 382806.5818 : spmass 0.216930E-06 2.8000 39.4078 700 : rminsp, rmt, rmaxsp, nrmt 24 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 3.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.3831 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7106 0 T elk-10.4.9/species/PaxHeaders/Au.in0000644000000000000000000000013214762655567014015 xustar0030 mtime=1741380471.031021859 30 atime=1741380471.030021854 30 ctime=1741380471.031021859 elk-10.4.9/species/Au.in0000644002504400250440000000431614762655567016543 0ustar00dewhurstdewhurst00000000000000 'Au' : spsymb 'gold' : spname -79.0000 : spzn 359048.0559 : spmass 0.225018E-06 2.8000 39.2245 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 T 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.9275 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0422 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2406 0 T elk-10.4.9/species/PaxHeaders/Ba.in0000644000000000000000000000013214762655567013772 xustar0030 mtime=1741380471.033021869 30 atime=1741380471.032021864 30 ctime=1741380471.033021869 elk-10.4.9/species/Ba.in0000644002504400250440000000371214762655567016517 0ustar00dewhurstdewhurst00000000000000 'Ba' : spsymb 'barium' : spname -56.0000 : spzn 250331.8069 : spmass 0.267261E-06 2.8000 55.5566 700 : rminsp, rmt, rmaxsp, nrmt 18 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.2515 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2408 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6670 0 T elk-10.4.9/species/PaxHeaders/Be.in0000644000000000000000000000013014762655567013774 xustar0029 mtime=1741380471.03502188 30 atime=1741380471.034021874 29 ctime=1741380471.03502188 elk-10.4.9/species/Be.in0000644002504400250440000000167214762655567016526 0ustar00dewhurstdewhurst00000000000000 'Be' : spsymb 'beryllium' : spname -4.00000 : spzn 16428.20279 : spmass 0.100000E-05 1.8000 44.5601 300 : rminsp, rmt, rmaxsp, nrmt 2 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 2 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F elk-10.4.9/species/PaxHeaders/Bi.in0000644000000000000000000000013014762655567014000 xustar0029 mtime=1741380471.03702189 30 atime=1741380471.036021885 29 ctime=1741380471.03702189 elk-10.4.9/species/Bi.in0000644002504400250440000000373614762655567016535 0ustar00dewhurstdewhurst00000000000000 'Bi' : spsymb 'bismuth' : spname -83.0000 : spzn 380947.9282 : spmass 0.219529E-06 2.8000 45.2810 700 : rminsp, rmt, rmaxsp, nrmt 24 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 1.00000 F 6 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9498 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5393 0 T elk-10.4.9/species/PaxHeaders/B.in0000644000000000000000000000013214762655567013631 xustar0030 mtime=1741380471.039021901 30 atime=1741380471.038021895 30 ctime=1741380471.039021901 elk-10.4.9/species/B.in0000644002504400250440000000172614762655567016361 0ustar00dewhurstdewhurst00000000000000 'B' : spsymb 'boron' : spname -5.00000 : spzn 19707.24741 : spmass 0.894427E-06 1.8000 50.1216 300 : rminsp, rmt, rmaxsp, nrmt 3 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 2 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F elk-10.4.9/species/PaxHeaders/Bk.in0000644000000000000000000000013214762655567014004 xustar0030 mtime=1741380471.041021911 30 atime=1741380471.040021906 30 ctime=1741380471.041021911 elk-10.4.9/species/Bk.in0000644002504400250440000000453214762655567016532 0ustar00dewhurstdewhurst00000000000000 'Bk' : spsymb 'berkelium' : spname -97.0000 : spzn 450253.4557 : spmass 0.203069E-06 3.0000 52.0199 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 5.00000 F 5 3 4 4.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1057 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.9965 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7758 0 T elk-10.4.9/species/PaxHeaders/Br.in0000644000000000000000000000013214762655567014013 xustar0030 mtime=1741380471.043021922 30 atime=1741380471.042021916 30 ctime=1741380471.043021922 elk-10.4.9/species/Br.in0000644002504400250440000000321614762655567016537 0ustar00dewhurstdewhurst00000000000000 'Br' : spsymb 'bromine' : spname -35.0000 : spzn 145656.0815 : spmass 0.338062E-06 2.4000 34.9262 500 : rminsp, rmt, rmaxsp, nrmt 12 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 3.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.4430 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7453 0 T elk-10.4.9/species/PaxHeaders/Ca.in0000644000000000000000000000013214762655567013773 xustar0030 mtime=1741380471.045021932 30 atime=1741380471.044021927 30 ctime=1741380471.045021932 elk-10.4.9/species/Ca.in0000644002504400250440000000261214762655567016516 0ustar00dewhurstdewhurst00000000000000 'Ca' : spsymb 'calcium' : spname -20.0000 : spzn 73057.72469 : spmass 0.447214E-06 2.4000 50.3684 500 : rminsp, rmt, rmaxsp, nrmt 8 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7208 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0235 0 T elk-10.4.9/species/PaxHeaders/Cd.in0000644000000000000000000000013214762655567013776 xustar0030 mtime=1741380471.047021942 30 atime=1741380471.046021937 30 ctime=1741380471.047021942 elk-10.4.9/species/Cd.in0000644002504400250440000000334214762655567016522 0ustar00dewhurstdewhurst00000000000000 'Cd' : spsymb 'cadmium' : spname -48.0000 : spzn 204912.7175 : spmass 0.288675E-06 2.6000 41.8471 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.3934 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4270 0 T elk-10.4.9/species/PaxHeaders/Ce.in0000644000000000000000000000013214762655567013777 xustar0030 mtime=1741380471.049021953 30 atime=1741380471.048021948 30 ctime=1741380471.049021953 elk-10.4.9/species/Ce.in0000644002504400250440000000374614762655567016533 0ustar00dewhurstdewhurst00000000000000 'Ce' : spsymb 'cerium' : spname -58.0000 : spzn 255415.8429 : spmass 0.262613E-06 2.8000 75.2635 700 : rminsp, rmt, rmaxsp, nrmt 19 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 2.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.3797 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7361 0 T elk-10.4.9/species/PaxHeaders/Cf.in0000644000000000000000000000013214762655567014000 xustar0030 mtime=1741380471.051021963 30 atime=1741380471.050021958 30 ctime=1741380471.051021963 elk-10.4.9/species/Cf.in0000644002504400250440000000453214762655567016526 0ustar00dewhurstdewhurst00000000000000 'Cf' : spsymb 'californium' : spname -98.0000 : spzn 457545.0097 : spmass 0.202031E-06 3.0000 52.0569 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 4.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1183 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0620 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7850 0 T elk-10.4.9/species/PaxHeaders/C.in0000644000000000000000000000013214762655567013632 xustar0030 mtime=1741380471.053021974 30 atime=1741380471.052021968 30 ctime=1741380471.053021974 elk-10.4.9/species/C.in0000644002504400250440000000220614762655567016354 0ustar00dewhurstdewhurst00000000000000 'C' : spsymb 'carbon' : spname -6.00000 : spzn 21894.16672 : spmass 0.816497E-06 1.8000 39.9481 300 : rminsp, rmt, rmaxsp, nrmt 4 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 2 1 2 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5012 0 T elk-10.4.9/species/PaxHeaders/Cl.in0000644000000000000000000000013214762655567014006 xustar0030 mtime=1741380471.055021984 30 atime=1741380471.054021979 30 ctime=1741380471.055021984 elk-10.4.9/species/Cl.in0000644002504400250440000000233214762655567016530 0ustar00dewhurstdewhurst00000000000000 'Cl' : spsymb 'chlorine' : spname -17.0000 : spzn 64626.86545 : spmass 0.485071E-06 2.2000 33.0920 400 : rminsp, rmt, rmaxsp, nrmt 7 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 3.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7601 0 T elk-10.4.9/species/PaxHeaders/Cm.in0000644000000000000000000000013214762655567014007 xustar0030 mtime=1741380471.057021995 30 atime=1741380471.056021989 30 ctime=1741380471.057021995 elk-10.4.9/species/Cm.in0000644002504400250440000000456614762655567016544 0ustar00dewhurstdewhurst00000000000000 'Cm' : spsymb 'curium' : spname -96.0000 : spzn 450253.4557 : spmass 0.204124E-06 3.0000 55.3054 800 : rminsp, rmt, rmaxsp, nrmt 28 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 3.00000 F 5 3 4 4.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 1.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2184 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0481 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8489 0 T elk-10.4.9/species/PaxHeaders/Co.in0000644000000000000000000000013214762655567014011 xustar0030 mtime=1741380471.059022005 30 atime=1741380471.059022005 30 ctime=1741380471.059022005 elk-10.4.9/species/Co.in0000644002504400250440000000312614762655567016535 0ustar00dewhurstdewhurst00000000000000 'Co' : spsymb 'cobalt' : spname -27.0000 : spzn 107428.6517 : spmass 0.384900E-06 2.4000 40.1486 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 3.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.3834 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3072 0 T elk-10.4.9/species/PaxHeaders/Cr.in0000644000000000000000000000013214762655567014014 xustar0030 mtime=1741380471.062022021 30 atime=1741380471.061022016 30 ctime=1741380471.062022021 elk-10.4.9/species/Cr.in0000644002504400250440000000335214762655567016541 0ustar00dewhurstdewhurst00000000000000 'Cr' : spsymb 'chromium' : spname -24.0000 : spzn 94783.09194 : spmass 0.408248E-06 2.4000 51.1100 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 3.00000 F 3 2 3 2.00000 F 4 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.7020 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6530 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1134 0 T elk-10.4.9/species/PaxHeaders/Cs.in0000644000000000000000000000013214762655567014015 xustar0030 mtime=1741380471.064022031 30 atime=1741380471.064022031 30 ctime=1741380471.064022031 elk-10.4.9/species/Cs.in0000644002504400250440000000371214762655567016542 0ustar00dewhurstdewhurst00000000000000 'Cs' : spsymb 'caesium' : spname -55.0000 : spzn 242271.8144 : spmass 0.269680E-06 2.8000 68.3104 700 : rminsp, rmt, rmaxsp, nrmt 18 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.6912 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9872 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4810 0 T elk-10.4.9/species/PaxHeaders/Cu.in0000644000000000000000000000013214762655567014017 xustar0030 mtime=1741380471.066022042 30 atime=1741380471.066022042 30 ctime=1741380471.066022042 elk-10.4.9/species/Cu.in0000644002504400250440000000312614762655567016543 0ustar00dewhurstdewhurst00000000000000 'Cu' : spsymb 'copper' : spname -29.0000 : spzn 115837.2717 : spmass 0.371391E-06 2.4000 42.9740 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.6152 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1918 0 T elk-10.4.9/species/PaxHeaders/Dy.in0000644000000000000000000000013214762655567014024 xustar0030 mtime=1741380471.068022052 30 atime=1741380471.068022052 30 ctime=1741380471.068022052 elk-10.4.9/species/Dy.in0000644002504400250440000000422614762655567016552 0ustar00dewhurstdewhurst00000000000000 'Dy' : spsymb 'dysprosium' : spname -66.0000 : spzn 296219.3788 : spmass 0.246183E-06 2.8000 48.9249 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 4.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1037 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7987 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8849 0 T elk-10.4.9/species/PaxHeaders/elk.in0000644000000000000000000000013214762655567014223 xustar0030 mtime=1741380471.071022068 30 atime=1741380471.070022063 30 ctime=1741380471.071022068 elk-10.4.9/species/elk.in0000644002504400250440000006662314762655567016762 0ustar00dewhurstdewhurst00000000000000 ! This is a special input file for Elk which generates the default species ! files. No task is required: the code generates the file as soon as it ! encounters a 'species' block. Note the masses are the 'standard atomic weight' ! and are in relative atomic mass units (i.e. multiples of 1/12 times the mass ! of carbon-12); taken from J. S. Coursey, D. J. Schwab, and R. A. Dragoset ! (2005), Atomic Weights and Isotopic Compositions (version 2.4.1). species 1 : atomic number 'H' 'hydrogen' : symbol, name 1.00794 : standard atomic weight (units of 1/12 carbon-12) 1.4 : muffin-tin radius 1 : number of occupied states 1 0 1 1 : n, l, k, occupancy for each state species 2 'He' 'helium' 4.002602 1.4 1 1 0 1 2 species 3 'Li' 'lithium' 6.941 1.8 2 1 0 1 2 2 0 1 1 species 4 'Be' 'beryllium' 9.012182 1.8 2 1 0 1 2 2 0 1 2 species 5 'B' 'boron' 10.811 1.8 3 1 0 1 2 2 0 1 2 2 1 1 1 species 6 'C' 'carbon' 12.0107 1.8 4 1 0 1 2 2 0 1 2 2 1 1 1 2 1 2 1 species 7 'N' 'nitrogen' 14.0067 1.8 4 1 0 1 2 2 0 1 2 2 1 1 1 2 1 2 2 species 8 'O' 'oxygen' 15.9994 1.8 4 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 2 species 9 'F' 'fluorine' 18.9984032 2.0 4 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 3 species 10 'Ne' 'neon' 20.1797 1.6 4 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 species 11 'Na' 'sodium' 22.989770 2.2 5 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 1 species 12 'Mg' 'magnesium' 24.3050 2.2 5 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 species 13 'Al' 'aluminium' 26.981538 2.2 6 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 1 species 14 'Si' 'silicon' 28.0855 2.2 7 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 1 3 1 2 1 species 15 'P' 'phosphorus' 30.973761 2.2 7 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 1 3 1 2 2 species 16 'S' 'sulphur' 32.065 2.2 7 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 2 species 17 'Cl' 'chlorine' 35.453 2.2 7 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 3 species 18 'Ar' 'argon' 39.948 2.0 7 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 species 19 'K' 'potassium' 39.0983 2.4 8 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 4 0 1 1 species 20 'Ca' 'calcium' 40.078 2.4 8 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 4 0 1 2 species 21 'Sc' 'scandium' 44.955910 2.4 9 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 1 4 0 1 2 species 22 'Ti' 'titanium' 47.867 2.4 9 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 2 4 0 1 2 species 23 'V' 'vanadium' 50.9415 2.4 9 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 3 4 0 1 2 species 24 'Cr' 'chromium' 51.9961 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 3 3 2 3 2 4 0 1 1 species 25 'Mn' 'manganese' 54.938049 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 3 3 2 3 2 4 0 1 2 species 26 'Fe' 'iron' 55.845 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 2 4 0 1 2 species 27 'Co' 'cobalt' 58.933200 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 3 4 0 1 2 species 28 'Ni' 'nickel' 58.6934 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 4 4 0 1 2 species 29 'Cu' 'copper' 63.546 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 1 species 30 'Zn' 'zinc' 65.409 2.4 10 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 species 31 'Ga' 'gallium' 69.723 2.4 11 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 1 species 32 'Ge' 'germanium' 72.64 2.4 12 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 1 4 1 2 1 species 33 'As' 'arsenic' 74.92160 2.4 12 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 1 4 1 2 2 species 34 'Se' 'selenium' 78.96 2.4 12 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 2 species 35 'Br' 'bromine' 79.904 2.4 12 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 3 species 36 'Kr' 'krypton' 83.798 2.2 12 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 species 37 'Rb' 'rubidium' 85.4678 2.6 13 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 5 0 1 1 species 38 'Sr' 'strontium' 87.62 2.6 13 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 5 0 1 2 species 39 'Y' 'yttrium' 88.90585 2.6 14 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 1 5 0 1 2 species 40 'Zr' 'zirconium' 91.224 2.6 14 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 2 5 0 1 2 species 41 'Nb' 'niobium' 92.90638 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 3 4 2 3 1 5 0 1 1 species 42 'Mo' 'molybdenum' 95.94 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 3 4 2 3 2 5 0 1 1 species 43 'Tc' 'technetium' 98.0 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 2 5 0 1 1 species 44 'Ru' 'ruthenium' 101.07 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 3 5 0 1 1 species 45 'Rh' 'rhodium' 102.90550 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 4 5 0 1 1 species 46 'Pd' 'palladium' 106.42 2.6 14 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 species 47 'Ag' 'silver' 107.8682 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 1 species 48 'Cd' 'cadmium' 112.411 2.6 15 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 species 49 'In' 'indium' 114.818 2.6 16 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 1 species 50 'Sn' 'tin' 118.710 2.6 17 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 1 5 1 2 1 species 51 'Sb' 'antimony' 121.760 2.6 17 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 1 5 1 2 2 species 52 'Te' 'tellurium' 127.60 2.6 17 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 2 5 1 2 2 species 53 'I' 'iodine' 126.90447 2.6 17 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 2 5 1 2 3 species 54 'Xe' 'xenon' 131.293 2.4 17 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 2 5 1 2 4 species 55 'Cs' 'caesium' 132.90545 2.8 18 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 1 species 56 'Ba' 'barium' 137.327 2.8 18 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 57 'La' 'lanthanum' 138.9055 2.8 19 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 1 6 0 1 2 species 58 'Ce' 'cerium' 140.116 2.8 19 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 2 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 59 'Pr' 'praseodymium' 140.90765 2.8 19 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 3 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 60 'Nd' 'neodymium' 144.24 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 3 4 3 4 1 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 61 'Pm' 'promethium' 145.0 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 3 4 3 4 2 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 62 'Sm' 'samarium' 150.36 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 3 4 3 4 3 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 63 'Eu' 'europium' 151.964 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 3 4 3 4 4 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 64 'Gd' 'gadolinium' 157.25 2.8 21 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 3 4 3 4 4 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 1 6 0 1 2 species 65 'Tb' 'terbium' 158.92534 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 5 4 3 4 4 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 66 'Dy' 'dysprosium' 162.500 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 4 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 67 'Ho' 'holmium' 164.93032 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 5 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 68 'Er' 'erbium' 167.259 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 6 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 69 'Tm' 'thulium' 168.93421 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 7 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 70 'Yb' 'ytterbium' 173.04 2.8 20 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 6 0 1 2 species 71 'Lu' 'lutetium' 174.967 2.8 21 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 1 6 0 1 2 species 72 'Hf' 'hafnium' 178.49 2.8 21 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 2 6 0 1 2 species 73 'Ta' 'tantalum' 180.9479 2.8 21 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 3 6 0 1 2 species 74 'W' 'tungsten' 183.84 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 3 5 2 3 1 6 0 1 2 species 75 'Re' 'rhenium' 186.207 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 3 5 2 3 2 6 0 1 2 species 76 'Os' 'osmium' 190.23 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 2 6 0 1 2 species 77 'Ir' 'iridium' 192.217 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 3 6 0 1 2 species 78 'Pt' 'platinum' 195.078 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 5 6 0 1 1 species 79 'Au' 'gold' 196.96655 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 1 species 80 'Hg' 'mercury' 200.59 2.8 22 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 species 81 'Tl' 'thallium' 204.3833 2.8 23 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 1 species 82 'Pb' 'lead' 207.2 2.8 24 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 1 6 1 2 1 species 83 'Bi' 'bismuth' 208.98038 2.8 24 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 1 6 1 2 2 species 84 'Po' 'polonium' 209.0 2.8 24 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 2 species 85 'At' 'astatine' 210.0 2.8 24 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 3 species 86 'Rn' 'radon' 222.0 2.6 24 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 4 species 87 'Fr' 'francium' 223.0 3.0 25 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 1 species 88 'Ra' 'radium' 226.0 3.0 25 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 89 'Ac' 'actinium' 227.0 3.0 26 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 1 7 0 1 2 species 90 'Th' 'thorium' 232.0381 3.0 26 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 2 7 0 1 2 species 91 'Pa' 'protactinium' 231.03588 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 2 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 1 7 0 1 2 species 92 'U' 'uranium' 238.02891 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 3 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 1 7 0 1 2 species 93 'Np' 'neptunium' 237.0 3.0 28 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 3 5 3 4 1 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 1 7 0 1 2 species 94 'Pu' 'plutonium' 244.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 3 5 3 4 3 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 95 'Am' 'americium' 243.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 3 5 3 4 4 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 96 'Cm' 'curium' 247.0 3.0 28 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 3 5 3 4 4 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 1 7 0 1 2 species 97 'Bk' 'berkelium' 247.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 5 5 3 4 4 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 98 'Cf' 'californium' 251.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 4 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 99 'Es' 'einsteinium' 252.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 5 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 100 'Fm' 'fermium' 257.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 6 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 101 'Md' 'mendelevium' 258.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 7 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 102 'No' 'nobelium' 259.0 3.0 27 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 8 6 0 1 2 6 1 1 2 6 1 2 4 7 0 1 2 species 103 'Lr' 'lawrencium' 262.0 3.0 28 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 8 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 1 7 0 1 2 species 104 'Rf' 'rutherfordium' 261.0 3.0 28 1 0 1 2 2 0 1 2 2 1 1 2 2 1 2 4 3 0 1 2 3 1 1 2 3 1 2 4 3 2 2 4 3 2 3 6 4 0 1 2 4 1 1 2 4 1 2 4 4 2 2 4 4 2 3 6 4 3 3 6 4 3 4 8 5 0 1 2 5 1 1 2 5 1 2 4 5 2 2 4 5 2 3 6 5 3 3 6 5 3 4 8 6 0 1 2 6 1 1 2 6 1 2 4 6 2 2 2 7 0 1 2 elk-10.4.9/species/PaxHeaders/Er.in0000644000000000000000000000013214762655567014016 xustar0030 mtime=1741380471.073022078 30 atime=1741380471.073022078 30 ctime=1741380471.073022078 elk-10.4.9/species/Er.in0000644002504400250440000000422614762655567016544 0ustar00dewhurstdewhurst00000000000000 'Er' : spsymb 'erbium' : spname -68.0000 : spzn 304894.5051 : spmass 0.242536E-06 2.8000 49.0284 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 6.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1037 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.9077 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9177 0 T elk-10.4.9/species/PaxHeaders/Es.in0000644000000000000000000000013214762655567014017 xustar0030 mtime=1741380471.075022089 30 atime=1741380471.075022089 30 ctime=1741380471.075022089 elk-10.4.9/species/Es.in0000644002504400250440000000453214762655567016545 0ustar00dewhurstdewhurst00000000000000 'Es' : spsymb 'einsteinium' : spname -99.0000 : spzn 459367.8982 : spmass 0.201008E-06 3.0000 51.0277 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 5.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1339 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.1315 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7952 0 T elk-10.4.9/species/PaxHeaders/Eu.in0000644000000000000000000000013214762655567014021 xustar0030 mtime=1741380471.078022104 30 atime=1741380471.077022099 30 ctime=1741380471.078022104 elk-10.4.9/species/Eu.in0000644002504400250440000000422614762655567016547 0ustar00dewhurstdewhurst00000000000000 'Eu' : spsymb 'europium' : spname -63.0000 : spzn 277013.4257 : spmass 0.251976E-06 2.8000 52.2803 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 3.00000 F 4 3 4 4.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0972 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6436 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8355 0 T elk-10.4.9/species/PaxHeaders/Fe.in0000644000000000000000000000012714762655567014006 xustar0029 mtime=1741380471.07902211 29 atime=1741380471.07902211 29 ctime=1741380471.07902211 elk-10.4.9/species/Fe.in0000644002504400250440000000335214762655567016527 0ustar00dewhurstdewhurst00000000000000 'Fe' : spsymb 'iron' : spname -26.0000 : spzn 101799.2074 : spmass 0.392232E-06 2.4000 42.6274 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 2.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.4344 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.1817 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2816 0 T elk-10.4.9/species/PaxHeaders/F.in0000644000000000000000000000013114762655567013634 xustar0030 mtime=1741380471.082022125 29 atime=1741380471.08102212 30 ctime=1741380471.082022125 elk-10.4.9/species/F.in0000644002504400250440000000243214762655567016360 0ustar00dewhurstdewhurst00000000000000 'F' : spsymb 'fluorine' : spname -9.00000 : spzn 34631.97042 : spmass 0.666667E-06 2.0000 27.0542 300 : rminsp, rmt, rmaxsp, nrmt 4 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 3.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0894 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4142 0 T elk-10.4.9/species/PaxHeaders/Fm.in0000644000000000000000000000013214762655567014012 xustar0030 mtime=1741380471.084022136 30 atime=1741380471.084022136 30 ctime=1741380471.084022136 elk-10.4.9/species/Fm.in0000644002504400250440000000453214762655567016540 0ustar00dewhurstdewhurst00000000000000 'Fm' : spsymb 'fermium' : spname -100.000 : spzn 468482.3406 : spmass 0.200000E-06 3.0000 55.4667 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1486 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.2021 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8046 0 T elk-10.4.9/species/PaxHeaders/Fr.in0000644000000000000000000000013214762655567014017 xustar0030 mtime=1741380471.086022146 30 atime=1741380471.086022146 30 ctime=1741380471.086022146 elk-10.4.9/species/Fr.in0000644002504400250440000000421614762655567016544 0ustar00dewhurstdewhurst00000000000000 'Fr' : spsymb 'francium' : spname -87.0000 : spzn 406504.1321 : spmass 0.214423E-06 3.0000 70.3136 800 : rminsp, rmt, rmaxsp, nrmt 25 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0328 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0471 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4089 0 T elk-10.4.9/species/PaxHeaders/Ga.in0000644000000000000000000000013214762655567013777 xustar0030 mtime=1741380471.088022157 30 atime=1741380471.088022157 30 ctime=1741380471.088022157 elk-10.4.9/species/Ga.in0000644002504400250440000000273614762655567016531 0ustar00dewhurstdewhurst00000000000000 'Ga' : spsymb 'gallium' : spname -31.0000 : spzn 127097.2538 : spmass 0.359211E-06 2.4000 55.5610 500 : rminsp, rmt, rmaxsp, nrmt 11 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 4 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7036 0 T elk-10.4.9/species/PaxHeaders/Gd.in0000644000000000000000000000013214762655567014002 xustar0030 mtime=1741380471.090022167 30 atime=1741380471.090022167 30 ctime=1741380471.090022167 elk-10.4.9/species/Gd.in0000644002504400250440000000426214762655567016530 0ustar00dewhurstdewhurst00000000000000 'Gd' : spsymb 'gadolinium' : spname -64.0000 : spzn 286649.2142 : spmass 0.250000E-06 2.8000 51.1390 700 : rminsp, rmt, rmaxsp, nrmt 21 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 3.00000 F 4 3 4 4.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 1.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3108 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8262 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9546 0 T elk-10.4.9/species/PaxHeaders/Ge.in0000644000000000000000000000013214762655567014003 xustar0030 mtime=1741380471.092022178 30 atime=1741380471.092022178 30 ctime=1741380471.092022178 elk-10.4.9/species/Ge.in0000644002504400250440000000321614762655567016527 0ustar00dewhurstdewhurst00000000000000 'Ge' : spsymb 'germanium' : spname -32.0000 : spzn 132414.6195 : spmass 0.353553E-06 2.4000 46.1060 500 : rminsp, rmt, rmaxsp, nrmt 12 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 4 1 1 1.00000 F 4 1 2 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0759 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4380 0 T elk-10.4.9/species/PaxHeaders/He.in0000644000000000000000000000013214762655567014004 xustar0030 mtime=1741380471.094022188 30 atime=1741380471.094022188 30 ctime=1741380471.094022188 elk-10.4.9/species/He.in0000644002504400250440000000206214762655567016526 0ustar00dewhurstdewhurst00000000000000 'He' : spsymb 'helium' : spname -2.00000 : spzn 7296.297095 : spmass 0.141421E-05 1.4000 24.1776 200 : rminsp, rmt, rmaxsp, nrmt 1 : nstsp 1 0 1 2.00000 F : nsp, lsp, ksp, occsp, spcore 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5703 0 T elk-10.4.9/species/PaxHeaders/Hf.in0000644000000000000000000000013214762655567014005 xustar0030 mtime=1741380471.096022199 30 atime=1741380471.096022199 30 ctime=1741380471.096022199 elk-10.4.9/species/Hf.in0000644002504400250440000000426214762655567016533 0ustar00dewhurstdewhurst00000000000000 'Hf' : spsymb 'hafnium' : spname -72.0000 : spzn 325367.3656 : spmass 0.235702E-06 2.8000 49.2272 700 : rminsp, rmt, rmaxsp, nrmt 21 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 2.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5852 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.4529 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2221 0 T elk-10.4.9/species/PaxHeaders/Hg.in0000644000000000000000000000013214762655567014006 xustar0030 mtime=1741380471.098022209 30 atime=1741380471.098022209 30 ctime=1741380471.098022209 elk-10.4.9/species/Hg.in0000644002504400250440000000364614762655567016541 0ustar00dewhurstdewhurst00000000000000 'Hg' : spsymb 'mercury' : spname -80.0000 : spzn 365653.2012 : spmass 0.223607E-06 2.8000 37.4626 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.2710 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3442 0 T elk-10.4.9/species/PaxHeaders/H.in0000644000000000000000000000013214762655567013637 xustar0030 mtime=1741380471.100022219 30 atime=1741380471.100022219 30 ctime=1741380471.100022219 elk-10.4.9/species/H.in0000644002504400250440000000163614762655567016367 0ustar00dewhurstdewhurst00000000000000 'H' : spsymb 'hydrogen' : spname -1.00000 : spzn 1837.362219 : spmass 0.200000E-05 1.4000 36.6488 200 : rminsp, rmt, rmaxsp, nrmt 1 : nstsp 1 0 1 1.00000 F : nsp, lsp, ksp, occsp, spcore 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 2 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F elk-10.4.9/species/PaxHeaders/Ho.in0000644000000000000000000000012714762655567014022 xustar0029 mtime=1741380471.10202223 29 atime=1741380471.10202223 29 ctime=1741380471.10202223 elk-10.4.9/species/Ho.in0000644002504400250440000000422614762655567016544 0ustar00dewhurstdewhurst00000000000000 'Ho' : spsymb 'holmium' : spname -67.0000 : spzn 300649.5811 : spmass 0.244339E-06 2.8000 51.3086 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 5.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1044 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8527 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9014 0 T elk-10.4.9/species/PaxHeaders/I.in0000644000000000000000000000013114762655567013637 xustar0030 mtime=1741380471.105022246 29 atime=1741380471.10402224 30 ctime=1741380471.105022246 elk-10.4.9/species/I.in0000644002504400250440000000343214762655567016364 0ustar00dewhurstdewhurst00000000000000 'I' : spsymb 'iodine' : spname -53.0000 : spzn 231332.6970 : spmass 0.274721E-06 2.6000 41.0205 600 : rminsp, rmt, rmaxsp, nrmt 17 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 3.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8184 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6456 0 T elk-10.4.9/species/PaxHeaders/In.in0000644000000000000000000000013214762655567014016 xustar0030 mtime=1741380471.107022256 30 atime=1741380471.107022256 30 ctime=1741380471.107022256 elk-10.4.9/species/In.in0000644002504400250440000000337614762655567016551 0ustar00dewhurstdewhurst00000000000000 'In' : spsymb 'indium' : spname -49.0000 : spzn 209300.4100 : spmass 0.285714E-06 2.6000 56.2447 600 : rminsp, rmt, rmaxsp, nrmt 16 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.7840 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6687 0 T elk-10.4.9/species/PaxHeaders/Ir.in0000644000000000000000000000013214762655567014022 xustar0030 mtime=1741380471.109022267 30 atime=1741380471.109022267 30 ctime=1741380471.109022267 elk-10.4.9/species/Ir.in0000644002504400250440000000431614762655567016550 0ustar00dewhurstdewhurst00000000000000 'Ir' : spsymb 'iridium' : spname -77.0000 : spzn 350390.1559 : spmass 0.227921E-06 2.8000 41.0330 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 T 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 4.00000 F 5 2 3 3.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.2294 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8716 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2478 0 T elk-10.4.9/species/PaxHeaders/K.in0000644000000000000000000000013214762655567013642 xustar0030 mtime=1741380471.111022277 30 atime=1741380471.111022277 30 ctime=1741380471.111022277 elk-10.4.9/species/K.in0000644002504400250440000000261214762655567016365 0ustar00dewhurstdewhurst00000000000000 'K' : spsymb 'potassium' : spname -19.0000 : spzn 71271.84084 : spmass 0.458831E-06 2.4000 62.3191 500 : rminsp, rmt, rmaxsp, nrmt 8 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 4 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2928 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6889 0 T elk-10.4.9/species/PaxHeaders/Kr.in0000644000000000000000000000013214762655567014024 xustar0030 mtime=1741380471.113022287 30 atime=1741380471.113022287 30 ctime=1741380471.113022287 elk-10.4.9/species/Kr.in0000644002504400250440000000321614762655567016550 0ustar00dewhurstdewhurst00000000000000 'Kr' : spsymb 'krypton' : spname -36.0000 : spzn 152754.4092 : spmass 0.333333E-06 2.2000 31.7038 500 : rminsp, rmt, rmaxsp, nrmt 12 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.9818 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8532 0 T elk-10.4.9/species/PaxHeaders/La.in0000644000000000000000000000013214762655567014004 xustar0030 mtime=1741380471.116022303 30 atime=1741380471.115022298 30 ctime=1741380471.116022303 elk-10.4.9/species/La.in0000644002504400250440000000352214762655567016530 0ustar00dewhurstdewhurst00000000000000 'La' : spsymb 'lanthanum' : spname -57.0000 : spzn 253209.2364 : spmass 0.264906E-06 2.8000 50.7129 700 : rminsp, rmt, rmaxsp, nrmt 19 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 1.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4321 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7953 0 T elk-10.4.9/species/PaxHeaders/Li.in0000644000000000000000000000013214762655567014014 xustar0030 mtime=1741380471.118022314 30 atime=1741380471.117022308 30 ctime=1741380471.118022314 elk-10.4.9/species/Li.in0000644002504400250440000000211614762655567016536 0ustar00dewhurstdewhurst00000000000000 'Li' : spsymb 'lithium' : spname -3.00000 : spzn 12652.66897 : spmass 0.115470E-05 1.8000 57.7730 300 : rminsp, rmt, rmaxsp, nrmt 2 : nstsp 1 0 1 2.00000 F : nsp, lsp, ksp, occsp, spcore 2 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8784 0 T elk-10.4.9/species/PaxHeaders/Lr.in0000644000000000000000000000013214762655567014025 xustar0030 mtime=1741380471.120022324 30 atime=1741380471.120022324 30 ctime=1741380471.120022324 elk-10.4.9/species/Lr.in0000644002504400250440000000456614762655567016562 0ustar00dewhurstdewhurst00000000000000 'Lr' : spsymb 'lawrencium' : spname -103.000 : spzn 477596.7830 : spmass 0.197066E-06 3.0000 68.3662 800 : rminsp, rmt, rmaxsp, nrmt 28 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 8.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 1.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3668 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5853 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9447 0 T elk-10.4.9/species/PaxHeaders/Lu.in0000644000000000000000000000013214762655567014030 xustar0030 mtime=1741380471.122022335 30 atime=1741380471.122022335 30 ctime=1741380471.122022335 elk-10.4.9/species/Lu.in0000644002504400250440000000426214762655567016556 0ustar00dewhurstdewhurst00000000000000 'Lu' : spsymb 'lutetium' : spname -71.0000 : spzn 318945.3295 : spmass 0.237356E-06 2.8000 60.6496 700 : rminsp, rmt, rmaxsp, nrmt 21 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 1.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3291 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.2383 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0908 0 T elk-10.4.9/species/PaxHeaders/Md.in0000644000000000000000000000013214762655567014010 xustar0030 mtime=1741380471.124022345 30 atime=1741380471.124022345 30 ctime=1741380471.124022345 elk-10.4.9/species/Md.in0000644002504400250440000000453214762655567016536 0ustar00dewhurstdewhurst00000000000000 'Md' : spsymb 'mendelevium' : spname -101.000 : spzn 470305.2291 : spmass 0.199007E-06 3.0000 49.0271 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 7.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1623 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.2742 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8134 0 T elk-10.4.9/species/PaxHeaders/Mg.in0000644000000000000000000000013214762655567014013 xustar0030 mtime=1741380471.126022355 30 atime=1741380471.126022355 30 ctime=1741380471.126022355 elk-10.4.9/species/Mg.in0000644002504400250440000000246614762655567016545 0ustar00dewhurstdewhurst00000000000000 'Mg' : spsymb 'magnesium' : spname -12.0000 : spzn 44305.30462 : spmass 0.577350E-06 2.2000 45.4518 400 : rminsp, rmt, rmaxsp, nrmt 5 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 4.00000 F 3 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.9139 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7134 0 T elk-10.4.9/species/PaxHeaders/Mn.in0000644000000000000000000000013214762655567014022 xustar0030 mtime=1741380471.128022366 30 atime=1741380471.128022366 30 ctime=1741380471.128022366 elk-10.4.9/species/Mn.in0000644002504400250440000000335214762655567016547 0ustar00dewhurstdewhurst00000000000000 'Mn' : spsymb 'manganese' : spname -25.0000 : spzn 100145.9369 : spmass 0.400000E-06 2.4000 41.1948 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 3.00000 F 3 2 3 2.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.1372 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.9857 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2553 0 T elk-10.4.9/species/PaxHeaders/Mo.in0000644000000000000000000000013214762655567014023 xustar0030 mtime=1741380471.130022376 30 atime=1741380471.130022376 30 ctime=1741380471.130022376 elk-10.4.9/species/Mo.in0000644002504400250440000000356614762655567016557 0ustar00dewhurstdewhurst00000000000000 'Mo' : spsymb 'molybdenum' : spname -42.0000 : spzn 174887.9212 : spmass 0.308607E-06 2.6000 48.6428 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 3.00000 F 4 2 3 2.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.3643 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.3863 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1404 0 T elk-10.4.9/species/PaxHeaders/Na.in0000644000000000000000000000013214762655567014006 xustar0030 mtime=1741380471.133022392 30 atime=1741380471.132022387 30 ctime=1741380471.133022392 elk-10.4.9/species/Na.in0000644002504400250440000000246614762655567016540 0ustar00dewhurstdewhurst00000000000000 'Na' : spsymb 'sodium' : spname -11.0000 : spzn 41907.78700 : spmass 0.603023E-06 2.2000 56.6436 400 : rminsp, rmt, rmaxsp, nrmt 5 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 4.00000 F 3 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0701 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0570 0 T elk-10.4.9/species/PaxHeaders/Nb.in0000644000000000000000000000013214762655567014007 xustar0030 mtime=1741380471.135022402 30 atime=1741380471.134022397 30 ctime=1741380471.135022402 elk-10.4.9/species/Nb.in0000644002504400250440000000356614762655567016543 0ustar00dewhurstdewhurst00000000000000 'Nb' : spsymb 'niobium' : spname -41.0000 : spzn 169357.9703 : spmass 0.312348E-06 2.6000 49.8649 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 3.00000 F 4 2 3 1.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.1446 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2440 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1141 0 T elk-10.4.9/species/PaxHeaders/Nd.in0000644000000000000000000000013214762655567014011 xustar0030 mtime=1741380471.137022413 30 atime=1741380471.136022408 30 ctime=1741380471.137022413 elk-10.4.9/species/Nd.in0000644002504400250440000000422614762655567016537 0ustar00dewhurstdewhurst00000000000000 'Nd' : spsymb 'neodymium' : spname -60.0000 : spzn 262933.4350 : spmass 0.258199E-06 2.8000 57.1546 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 3.00000 F 4 3 4 1.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0620 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4878 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7795 0 T elk-10.4.9/species/PaxHeaders/Ne.in0000644000000000000000000000013214762655567014012 xustar0030 mtime=1741380471.139022423 30 atime=1741380471.138022418 30 ctime=1741380471.139022423 elk-10.4.9/species/Ne.in0000644002504400250440000000243214762655567016535 0ustar00dewhurstdewhurst00000000000000 'Ne' : spsymb 'neon' : spname -10.0000 : spzn 36785.34276 : spmass 0.632456E-06 1.6000 24.5143 300 : rminsp, rmt, rmaxsp, nrmt 4 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 4.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.3272 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4961 0 T elk-10.4.9/species/PaxHeaders/Ni.in0000644000000000000000000000013214762655567014016 xustar0030 mtime=1741380471.141022434 30 atime=1741380471.140022429 30 ctime=1741380471.141022434 elk-10.4.9/species/Ni.in0000644002504400250440000000312614762655567016542 0ustar00dewhurstdewhurst00000000000000 'Ni' : spsymb 'nickel' : spname -28.0000 : spzn 106991.5230 : spmass 0.377964E-06 2.4000 42.8623 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 4.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5905 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3317 0 T elk-10.4.9/species/PaxHeaders/N.in0000644000000000000000000000013014762655567013643 xustar0029 mtime=1741380471.14402245 30 atime=1741380471.143022444 29 ctime=1741380471.14402245 elk-10.4.9/species/N.in0000644002504400250440000000220614762655567016367 0ustar00dewhurstdewhurst00000000000000 'N' : spsymb 'nitrogen' : spname -7.00000 : spzn 25532.65214 : spmass 0.755929E-06 1.8000 34.9411 300 : rminsp, rmt, rmaxsp, nrmt 4 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 1.00000 F 2 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6770 0 T elk-10.4.9/species/PaxHeaders/No.in0000644000000000000000000000012714762655567014030 xustar0029 mtime=1741380471.14602246 29 atime=1741380471.14602246 29 ctime=1741380471.14602246 elk-10.4.9/species/No.in0000644002504400250440000000453214762655567016552 0ustar00dewhurstdewhurst00000000000000 'No' : spsymb 'nobelium' : spname -102.000 : spzn 472128.1176 : spmass 0.198030E-06 3.0000 49.0598 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 8.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1751 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.3481 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8216 0 T elk-10.4.9/species/PaxHeaders/Np.in0000644000000000000000000000012714762655567014031 xustar0029 mtime=1741380471.14802247 29 atime=1741380471.14802247 29 ctime=1741380471.14802247 elk-10.4.9/species/Np.in0000644002504400250440000000456614762655567016562 0ustar00dewhurstdewhurst00000000000000 'Np' : spsymb 'neptunium' : spname -93.0000 : spzn 432024.5709 : spmass 0.207390E-06 3.0000 54.0533 800 : rminsp, rmt, rmaxsp, nrmt 28 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 3.00000 F 5 3 4 1.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 1.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1316 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8240 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7920 0 T elk-10.4.9/species/PaxHeaders/O.in0000644000000000000000000000013214762655567013646 xustar0030 mtime=1741380471.150022481 30 atime=1741380471.150022481 30 ctime=1741380471.150022481 elk-10.4.9/species/O.in0000644002504400250440000000220614762655567016370 0ustar00dewhurstdewhurst00000000000000 'O' : spsymb 'oxygen' : spname -8.00000 : spzn 29165.12202 : spmass 0.707107E-06 1.8000 30.4661 300 : rminsp, rmt, rmaxsp, nrmt 4 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 F 2 1 1 2.00000 F 2 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8728 0 T elk-10.4.9/species/PaxHeaders/Os.in0000644000000000000000000000013214762655567014031 xustar0030 mtime=1741380471.152022491 30 atime=1741380471.152022491 30 ctime=1741380471.152022491 elk-10.4.9/species/Os.in0000644002504400250440000000454214762655567016560 0ustar00dewhurstdewhurst00000000000000 'Os' : spsymb 'osmium' : spname -76.0000 : spzn 346768.0765 : spmass 0.229416E-06 2.8000 47.1620 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 4.00000 F 5 2 3 2.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 8 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8559 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.3540 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7397 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2159 0 T elk-10.4.9/species/PaxHeaders/Pa.in0000644000000000000000000000013214762655567014010 xustar0030 mtime=1741380471.154022502 30 atime=1741380471.154022502 30 ctime=1741380471.154022502 elk-10.4.9/species/Pa.in0000644002504400250440000000430614762655567016535 0ustar00dewhurstdewhurst00000000000000 'Pa' : spsymb 'protactinium' : spname -91.0000 : spzn 421152.6452 : spmass 0.209657E-06 3.0000 62.3511 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 2.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 1.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6682 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7444 0 T elk-10.4.9/species/PaxHeaders/Pb.in0000644000000000000000000000013214762655567014011 xustar0030 mtime=1741380471.156022512 30 atime=1741380471.156022512 30 ctime=1741380471.156022512 elk-10.4.9/species/Pb.in0000644002504400250440000000373614762655567016544 0ustar00dewhurstdewhurst00000000000000 'Pb' : spsymb 'lead' : spname -82.0000 : spzn 377702.4940 : spmass 0.220863E-06 2.8000 53.2955 700 : rminsp, rmt, rmaxsp, nrmt 24 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 1.00000 F 6 1 2 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7322 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4439 0 T elk-10.4.9/species/PaxHeaders/Pd.in0000644000000000000000000000013214762655567014013 xustar0030 mtime=1741380471.158022523 30 atime=1741380471.158022523 30 ctime=1741380471.158022523 elk-10.4.9/species/Pd.in0000644002504400250440000000353214762655567016540 0ustar00dewhurstdewhurst00000000000000 'Pd' : spsymb 'palladium' : spname -46.0000 : spzn 193991.7925 : spmass 0.294884E-06 2.6000 41.5324 500 : rminsp, rmt, rmaxsp, nrmt 14 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 6.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.1380 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8352 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1522 0 T elk-10.4.9/species/PaxHeaders/P.in0000644000000000000000000000013214762655567013647 xustar0030 mtime=1741380471.160022533 30 atime=1741380471.160022533 30 ctime=1741380471.160022533 elk-10.4.9/species/P.in0000644002504400250440000000233214762655567016371 0ustar00dewhurstdewhurst00000000000000 'P' : spsymb 'phosphorus' : spname -15.0000 : spzn 56461.71226 : spmass 0.516398E-06 2.2000 39.7177 400 : rminsp, rmt, rmaxsp, nrmt 7 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 1.00000 F 3 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5151 0 T elk-10.4.9/species/PaxHeaders/Pm.in0000644000000000000000000000013214762655567014024 xustar0030 mtime=1741380471.162022544 30 atime=1741380471.162022544 30 ctime=1741380471.162022544 elk-10.4.9/species/Pm.in0000644002504400250440000000422614762655567016552 0ustar00dewhurstdewhurst00000000000000 'Pm' : spsymb 'promethium' : spname -61.0000 : spzn 264318.8303 : spmass 0.256074E-06 2.8000 52.1574 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 3.00000 F 4 3 4 2.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0768 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.5401 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7991 0 T elk-10.4.9/species/PaxHeaders/Po.in0000644000000000000000000000013214762655567014026 xustar0030 mtime=1741380471.164022554 30 atime=1741380471.164022554 30 ctime=1741380471.164022554 elk-10.4.9/species/Po.in0000644002504400250440000000373614762655567016561 0ustar00dewhurstdewhurst00000000000000 'Po' : spsymb 'polonium' : spname -84.0000 : spzn 380983.6933 : spmass 0.218218E-06 2.8000 43.2445 700 : rminsp, rmt, rmaxsp, nrmt 24 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.1481 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6144 0 T elk-10.4.9/species/PaxHeaders/Pr.in0000644000000000000000000000013214762655567014031 xustar0030 mtime=1741380471.166022565 30 atime=1741380471.166022565 30 ctime=1741380471.166022565 elk-10.4.9/species/Pr.in0000644002504400250440000000374614762655567016565 0ustar00dewhurstdewhurst00000000000000 'Pr' : spsymb 'praseodymium' : spname -59.0000 : spzn 256858.9326 : spmass 0.260378E-06 2.8000 55.7748 700 : rminsp, rmt, rmaxsp, nrmt 19 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 3.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4342 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7585 0 T elk-10.4.9/species/PaxHeaders/Pt.in0000644000000000000000000000013214762655567014033 xustar0030 mtime=1741380471.168022575 30 atime=1741380471.168022575 30 ctime=1741380471.168022575 elk-10.4.9/species/Pt.in0000644002504400250440000000431614762655567016561 0ustar00dewhurstdewhurst00000000000000 'Pt' : spsymb 'platinum' : spname -78.0000 : spzn 355605.4398 : spmass 0.226455E-06 2.8000 40.1191 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 T 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 4.00000 F 5 2 3 5.00000 F 6 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5235 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.9151 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2143 0 T elk-10.4.9/species/PaxHeaders/Pu.in0000644000000000000000000000013214762655567014034 xustar0030 mtime=1741380471.170022586 30 atime=1741380471.170022586 30 ctime=1741380471.170022586 elk-10.4.9/species/Pu.in0000644002504400250440000000453214762655567016562 0ustar00dewhurstdewhurst00000000000000 'Pu' : spsymb 'plutonium' : spname -94.0000 : spzn 444784.7903 : spmass 0.206284E-06 3.0000 57.5498 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 3.00000 F 5 3 4 3.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0579 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7999 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7412 0 T elk-10.4.9/species/PaxHeaders/Ra.in0000644000000000000000000000013214762655567014012 xustar0030 mtime=1741380471.172022596 30 atime=1741380471.172022596 30 ctime=1741380471.172022596 elk-10.4.9/species/Ra.in0000644002504400250440000000421614762655567016537 0ustar00dewhurstdewhurst00000000000000 'Ra' : spsymb 'radium' : spname -88.0000 : spzn 411972.7976 : spmass 0.213201E-06 3.0000 54.9631 800 : rminsp, rmt, rmaxsp, nrmt 25 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.4469 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2846 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5588 0 T elk-10.4.9/species/PaxHeaders/Rb.in0000644000000000000000000000013214762655567014013 xustar0030 mtime=1741380471.174022606 30 atime=1741380471.174022606 30 ctime=1741380471.174022606 elk-10.4.9/species/Rb.in0000644002504400250440000000302614762655567016536 0ustar00dewhurstdewhurst00000000000000 'Rb' : spsymb 'rubidium' : spname -37.0000 : spzn 155798.2684 : spmass 0.328798E-06 2.6000 62.8187 600 : rminsp, rmt, rmaxsp, nrmt 13 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.1744 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5784 0 T elk-10.4.9/species/PaxHeaders/Re.in0000644000000000000000000000013214762655567014016 xustar0030 mtime=1741380471.176022617 30 atime=1741380471.176022617 30 ctime=1741380471.176022617 elk-10.4.9/species/Re.in0000644002504400250440000000454214762655567016545 0ustar00dewhurstdewhurst00000000000000 'Re' : spsymb 'rhenium' : spname -75.0000 : spzn 339434.5961 : spmass 0.230940E-06 2.8000 40.0180 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 3.00000 F 5 2 3 2.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 8 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.5110 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.1270 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6149 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1881 0 T elk-10.4.9/species/PaxHeaders/Rf.in0000644000000000000000000000013214762655567014017 xustar0030 mtime=1741380471.179022632 30 atime=1741380471.178022627 30 ctime=1741380471.179022632 elk-10.4.9/species/Rf.in0000644002504400250440000000456614762655567016554 0ustar00dewhurstdewhurst00000000000000 'Rf' : spsymb 'rutherfordium' : spname -104.000 : spzn 475773.8945 : spmass 0.196116E-06 3.0000 53.3658 800 : rminsp, rmt, rmaxsp, nrmt 28 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 6.00000 F 5 3 4 8.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 2.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5604 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.8179 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0541 0 T elk-10.4.9/species/PaxHeaders/Rh.in0000644000000000000000000000013214762655567014021 xustar0030 mtime=1741380471.181022643 30 atime=1741380471.180022638 30 ctime=1741380471.181022643 elk-10.4.9/species/Rh.in0000644002504400250440000000356614762655567016555 0ustar00dewhurstdewhurst00000000000000 'Rh' : spsymb 'rhodium' : spname -45.0000 : spzn 187585.2510 : spmass 0.298142E-06 2.6000 45.1320 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 4.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.0301 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.8089 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.2190 0 T elk-10.4.9/species/PaxHeaders/Rn.in0000644000000000000000000000013214762655567014027 xustar0030 mtime=1741380471.183022653 30 atime=1741380471.182022648 30 ctime=1741380471.183022653 elk-10.4.9/species/Rn.in0000644002504400250440000000373614762655567016562 0ustar00dewhurstdewhurst00000000000000 'Rn' : spsymb 'radon' : spname -86.0000 : spzn 404681.2436 : spmass 0.215666E-06 2.6000 38.0087 700 : rminsp, rmt, rmaxsp, nrmt 24 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6273 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8085 0 T elk-10.4.9/species/PaxHeaders/Ru.in0000644000000000000000000000013214762655567014036 xustar0030 mtime=1741380471.185022664 30 atime=1741380471.184022659 30 ctime=1741380471.185022664 elk-10.4.9/species/Ru.in0000644002504400250440000000356614762655567016572 0ustar00dewhurstdewhurst00000000000000 'Ru' : spsymb 'ruthenium' : spname -44.0000 : spzn 184239.3392 : spmass 0.301511E-06 2.6000 48.8112 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 3.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.8048 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6670 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1922 0 T elk-10.4.9/species/PaxHeaders/Sb.in0000644000000000000000000000013214762655567014014 xustar0030 mtime=1741380471.187022674 30 atime=1741380471.186022669 30 ctime=1741380471.187022674 elk-10.4.9/species/Sb.in0000644002504400250440000000343214762655567016540 0ustar00dewhurstdewhurst00000000000000 'Sb' : spsymb 'antimony' : spname -51.0000 : spzn 221954.9019 : spmass 0.280056E-06 2.6000 44.3358 600 : rminsp, rmt, rmaxsp, nrmt 17 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 1.00000 F 5 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2137 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.4804 0 T elk-10.4.9/species/PaxHeaders/Sc.in0000644000000000000000000000012714762655567014021 xustar0029 mtime=1741380471.18802268 29 atime=1741380471.18802268 29 ctime=1741380471.18802268 elk-10.4.9/species/Sc.in0000644002504400250440000000307214762655567016541 0ustar00dewhurstdewhurst00000000000000 'Sc' : spsymb 'scandium' : spname -21.0000 : spzn 81949.61066 : spmass 0.436436E-06 2.4000 55.5111 500 : rminsp, rmt, rmaxsp, nrmt 9 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 1.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0100 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.2267 0 T elk-10.4.9/species/PaxHeaders/Se.in0000644000000000000000000000012714762655567014023 xustar0029 mtime=1741380471.19002269 29 atime=1741380471.19002269 29 ctime=1741380471.19002269 elk-10.4.9/species/Se.in0000644002504400250440000000321614762655567016543 0ustar00dewhurstdewhurst00000000000000 'Se' : spsymb 'selenium' : spname -34.0000 : spzn 143935.2748 : spmass 0.342997E-06 2.4000 38.3229 500 : rminsp, rmt, rmaxsp, nrmt 12 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.9444 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6402 0 T elk-10.4.9/species/PaxHeaders/Si.in0000644000000000000000000000013214762655567014023 xustar0030 mtime=1741380471.192022701 30 atime=1741380471.192022701 30 ctime=1741380471.192022701 elk-10.4.9/species/Si.in0000644002504400250440000000210614762655567016544 0ustar00dewhurstdewhurst00000000000000 'Si' : spsymb 'silicon' : spname -14.0000 : spzn 51196.73454 : spmass 0.534522E-06 2.2000 47.8169 400 : rminsp, rmt, rmaxsp, nrmt 7 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 1.00000 F 3 1 2 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 2 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F elk-10.4.9/species/PaxHeaders/S.in0000644000000000000000000000013214762655567013652 xustar0030 mtime=1741380471.194022711 30 atime=1741380471.194022711 30 ctime=1741380471.194022711 elk-10.4.9/species/S.in0000644002504400250440000000233214762655567016374 0ustar00dewhurstdewhurst00000000000000 'S' : spsymb 'sulphur' : spname -16.0000 : spzn 58450.91926 : spmass 0.500000E-06 2.2000 36.9680 400 : rminsp, rmt, rmaxsp, nrmt 7 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 3 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.6346 0 T elk-10.4.9/species/PaxHeaders/Sm.in0000644000000000000000000000013214762655567014027 xustar0030 mtime=1741380471.196022721 30 atime=1741380471.196022721 30 ctime=1741380471.196022721 elk-10.4.9/species/Sm.in0000644002504400250440000000422614762655567016555 0ustar00dewhurstdewhurst00000000000000 'Sm' : spsymb 'samarium' : spname -62.0000 : spzn 274089.5126 : spmass 0.254000E-06 2.8000 52.2193 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 3.00000 F 4 3 4 3.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0883 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.5919 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8177 0 T elk-10.4.9/species/PaxHeaders/Sn.in0000644000000000000000000000013214762655567014030 xustar0030 mtime=1741380471.198022732 30 atime=1741380471.198022732 30 ctime=1741380471.198022732 elk-10.4.9/species/Sn.in0000644002504400250440000000343214762655567016554 0ustar00dewhurstdewhurst00000000000000 'Sn' : spsymb 'tin' : spname -50.0000 : spzn 216395.0920 : spmass 0.282843E-06 2.6000 49.2770 600 : rminsp, rmt, rmaxsp, nrmt 17 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 1.00000 F 5 1 2 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.1993 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9327 0 T elk-10.4.9/species/PaxHeaders/Sr.in0000644000000000000000000000013214762655567014034 xustar0030 mtime=1741380471.200022742 30 atime=1741380471.200022742 30 ctime=1741380471.200022742 elk-10.4.9/species/Sr.in0000644002504400250440000000302614762655567016557 0ustar00dewhurstdewhurst00000000000000 'Sr' : spsymb 'strontium' : spname -38.0000 : spzn 159721.4890 : spmass 0.324443E-06 2.6000 52.2837 600 : rminsp, rmt, rmaxsp, nrmt 13 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 5 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 4 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.5031 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8259 0 T elk-10.4.9/species/PaxHeaders/Ta.in0000644000000000000000000000013214762655567014014 xustar0030 mtime=1741380471.202022753 30 atime=1741380471.202022753 30 ctime=1741380471.202022753 elk-10.4.9/species/Ta.in0000644002504400250440000000426214762655567016542 0ustar00dewhurstdewhurst00000000000000 'Ta' : spsymb 'tantalum' : spname -73.0000 : spzn 329847.8433 : spmass 0.234082E-06 2.8000 43.8533 700 : rminsp, rmt, rmaxsp, nrmt 21 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 3.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8655 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.6690 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.3498 0 T elk-10.4.9/species/PaxHeaders/Tb.in0000644000000000000000000000013214762655567014015 xustar0030 mtime=1741380471.204022763 30 atime=1741380471.204022763 30 ctime=1741380471.204022763 elk-10.4.9/species/Tb.in0000644002504400250440000000422614762655567016543 0ustar00dewhurstdewhurst00000000000000 'Tb' : spsymb 'terbium' : spname -65.0000 : spzn 289703.1722 : spmass 0.248069E-06 2.8000 52.3997 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 5.00000 F 4 3 4 4.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1036 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7464 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.8687 0 T elk-10.4.9/species/PaxHeaders/Tc.in0000644000000000000000000000013214762655567014016 xustar0030 mtime=1741380471.206022774 30 atime=1741380471.206022774 30 ctime=1741380471.206022774 elk-10.4.9/species/Tc.in0000644002504400250440000000356614762655567016552 0ustar00dewhurstdewhurst00000000000000 'Tc' : spsymb 'technetium' : spname -43.0000 : spzn 178643.0715 : spmass 0.304997E-06 2.6000 48.7280 600 : rminsp, rmt, rmaxsp, nrmt 15 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 4.00000 F 4 2 3 2.00000 F 5 0 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5825 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.5257 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1656 0 T elk-10.4.9/species/PaxHeaders/Te.in0000644000000000000000000000013214762655567014020 xustar0030 mtime=1741380471.208022784 30 atime=1741380471.208022784 30 ctime=1741380471.208022784 elk-10.4.9/species/Te.in0000644002504400250440000000343214762655567016544 0ustar00dewhurstdewhurst00000000000000 'Te' : spsymb 'tellurium' : spname -52.0000 : spzn 232600.5707 : spmass 0.277350E-06 2.6000 40.9670 600 : rminsp, rmt, rmaxsp, nrmt 17 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.5022 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5594 0 T elk-10.4.9/species/PaxHeaders/Th.in0000644000000000000000000000013214762655567014023 xustar0030 mtime=1741380471.210022795 30 atime=1741380471.210022795 30 ctime=1741380471.210022795 elk-10.4.9/species/Th.in0000644002504400250440000000425214762655567016550 0ustar00dewhurstdewhurst00000000000000 'Th' : spsymb 'thorium' : spname -90.0000 : spzn 422979.5805 : spmass 0.210819E-06 3.0000 51.7499 800 : rminsp, rmt, rmaxsp, nrmt 26 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 2.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.2122 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6772 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7795 0 T elk-10.4.9/species/PaxHeaders/Ti.in0000644000000000000000000000013214762655567014024 xustar0030 mtime=1741380471.212022805 30 atime=1741380471.212022805 30 ctime=1741380471.212022805 elk-10.4.9/species/Ti.in0000644002504400250440000000307214762655567016550 0ustar00dewhurstdewhurst00000000000000 'Ti' : spsymb 'titanium' : spname -22.0000 : spzn 87256.20310 : spmass 0.426401E-06 2.4000 46.2267 500 : rminsp, rmt, rmaxsp, nrmt 9 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 2.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.2872 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4164 0 T elk-10.4.9/species/PaxHeaders/Tl.in0000644000000000000000000000013214762655567014027 xustar0030 mtime=1741380471.214022815 30 atime=1741380471.214022815 30 ctime=1741380471.214022815 elk-10.4.9/species/Tl.in0000644002504400250440000000370214762655567016553 0ustar00dewhurstdewhurst00000000000000 'Tl' : spsymb 'thallium' : spname -81.0000 : spzn 372567.9640 : spmass 0.222222E-06 2.8000 57.1183 700 : rminsp, rmt, rmaxsp, nrmt 23 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 4.00000 F 5 2 3 6.00000 F 6 0 1 2.00000 F 6 1 1 1.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5798 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.5217 0 T elk-10.4.9/species/PaxHeaders/Tm.in0000644000000000000000000000013214762655567014030 xustar0030 mtime=1741380471.216022826 30 atime=1741380471.216022826 30 ctime=1741380471.216022826 elk-10.4.9/species/Tm.in0000644002504400250440000000422614762655567016556 0ustar00dewhurstdewhurst00000000000000 'Tm' : spsymb 'thulium' : spname -69.0000 : spzn 307948.2261 : spmass 0.240772E-06 2.8000 53.8678 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 7.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1016 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.9638 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9340 0 T elk-10.4.9/species/PaxHeaders/U.in0000644000000000000000000000013214762655567013654 xustar0030 mtime=1741380471.218022836 30 atime=1741380471.217022831 30 ctime=1741380471.218022836 elk-10.4.9/species/U.in0000644002504400250440000000430614762655567016401 0ustar00dewhurstdewhurst00000000000000 'U' : spsymb 'uranium' : spname -92.0000 : spzn 433900.1591 : spmass 0.208514E-06 3.0000 56.2869 800 : rminsp, rmt, rmaxsp, nrmt 27 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 T 4 3 4 8.00000 T 5 0 1 2.00000 T 5 1 1 2.00000 T 5 1 2 4.00000 T 5 2 2 4.00000 T 5 2 3 6.00000 T 5 3 3 3.00000 F 6 0 1 2.00000 F 6 1 1 2.00000 F 6 1 2 4.00000 F 6 2 2 1.00000 F 7 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 6 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7461 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7688 0 T elk-10.4.9/species/PaxHeaders/V.in0000644000000000000000000000013214762655567013655 xustar0030 mtime=1741380471.220022847 30 atime=1741380471.220022847 30 ctime=1741380471.220022847 elk-10.4.9/species/V.in0000644002504400250440000000307214762655567016401 0ustar00dewhurstdewhurst00000000000000 'V' : spsymb 'vanadium' : spname -23.0000 : spzn 92860.67375 : spmass 0.417029E-06 2.4000 46.3855 500 : rminsp, rmt, rmaxsp, nrmt 9 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 F 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 3.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.5646 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.6038 0 T elk-10.4.9/species/PaxHeaders/W.in0000644000000000000000000000013214762655567013656 xustar0030 mtime=1741380471.222022857 30 atime=1741380471.222022857 30 ctime=1741380471.222022857 elk-10.4.9/species/W.in0000644002504400250440000000454214762655567016405 0ustar00dewhurstdewhurst00000000000000 'W' : spsymb 'tungsten' : spname -74.0000 : spzn 335119.8190 : spmass 0.232495E-06 2.8000 47.0748 700 : rminsp, rmt, rmaxsp, nrmt 22 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 5 2 2 3.00000 F 5 2 3 1.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 8 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.1774 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.8962 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.4828 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.1560 0 T elk-10.4.9/species/PaxHeaders/Xe.in0000644000000000000000000000013214762655567014024 xustar0030 mtime=1741380471.224022868 30 atime=1741380471.224022868 30 ctime=1741380471.224022868 elk-10.4.9/species/Xe.in0000644002504400250440000000343214762655567016550 0ustar00dewhurstdewhurst00000000000000 'Xe' : spsymb 'xenon' : spname -54.0000 : spzn 239332.4978 : spmass 0.272166E-06 2.4000 34.6139 600 : rminsp, rmt, rmaxsp, nrmt 17 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 F 4 2 3 6.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.1523 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.7334 0 T elk-10.4.9/species/PaxHeaders/Yb.in0000644000000000000000000000013214762655567014022 xustar0030 mtime=1741380471.226022878 30 atime=1741380471.226022878 30 ctime=1741380471.226022878 elk-10.4.9/species/Yb.in0000644002504400250440000000422614762655567016550 0ustar00dewhurstdewhurst00000000000000 'Yb' : spsymb 'ytterbium' : spname -70.0000 : spzn 315432.6234 : spmass 0.239046E-06 2.8000 49.1291 700 : rminsp, rmt, rmaxsp, nrmt 20 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 T 4 1 1 2.00000 T 4 1 2 4.00000 T 4 2 2 4.00000 T 4 2 3 6.00000 T 4 3 3 6.00000 F 4 3 4 8.00000 F 5 0 1 2.00000 F 5 1 1 2.00000 F 5 1 2 4.00000 F 6 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 7 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 3 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.0982 0 T 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0212 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.9503 0 T elk-10.4.9/species/PaxHeaders/Y.in0000644000000000000000000000013214762655567013660 xustar0030 mtime=1741380471.228022889 30 atime=1741380471.228022889 30 ctime=1741380471.228022889 elk-10.4.9/species/Y.in0000644002504400250440000000330614762655567016404 0ustar00dewhurstdewhurst00000000000000 'Y' : spsymb 'yttrium' : spname -39.0000 : spzn 162065.4502 : spmass 0.320256E-06 2.6000 53.7982 600 : rminsp, rmt, rmaxsp, nrmt 14 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 1.00000 F 5 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.7619 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.0082 0 T elk-10.4.9/species/PaxHeaders/Zn.in0000644000000000000000000000013214762655567014037 xustar0030 mtime=1741380471.231022904 30 atime=1741380471.231022904 30 ctime=1741380471.231022904 elk-10.4.9/species/Zn.in0000644002504400250440000000312614762655567016563 0ustar00dewhurstdewhurst00000000000000 'Zn' : spsymb 'zinc' : spname -30.0000 : spzn 119233.3129 : spmass 0.365148E-06 2.4000 39.2020 500 : rminsp, rmt, rmaxsp, nrmt 10 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 F 3 1 2 4.00000 F 3 2 2 4.00000 F 3 2 3 6.00000 F 4 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -3.0221 0 T 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -0.3778 0 T elk-10.4.9/species/PaxHeaders/Zr.in0000644000000000000000000000013014762655567014041 xustar0029 mtime=1741380471.23402292 30 atime=1741380471.233022915 29 ctime=1741380471.23402292 elk-10.4.9/species/Zr.in0000644002504400250440000000330614762655567016567 0ustar00dewhurstdewhurst00000000000000 'Zr' : spsymb 'zirconium' : spname -40.0000 : spzn 166291.1791 : spmass 0.316228E-06 2.6000 48.4669 600 : rminsp, rmt, rmaxsp, nrmt 14 : nstsp 1 0 1 2.00000 T : nsp, lsp, ksp, occsp, spcore 2 0 1 2.00000 T 2 1 1 2.00000 T 2 1 2 4.00000 T 3 0 1 2.00000 T 3 1 1 2.00000 T 3 1 2 4.00000 T 3 2 2 4.00000 T 3 2 3 6.00000 T 4 0 1 2.00000 F 4 1 1 2.00000 F 4 1 2 4.00000 F 4 2 2 2.00000 F 5 0 1 2.00000 F 1 : apword 0.1500 0 F : apwe0, apwdm, apwve 0 : nlx 5 : nlorb 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 2 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve 0.1500 1 F 0 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -2.0002 0 T 1 2 : lorbl, lorbord 0.1500 0 F : lorbe0, lorbdm, lorbve -1.1708 0 T elk-10.4.9/PaxHeaders/utilities0000644000000000000000000000013214762655567013423 xustar0030 mtime=1741380471.260023056 30 atime=1741380471.246022983 30 ctime=1741380471.260023056 elk-10.4.9/utilities/0000755002504400250440000000000014762655567016222 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/utilities/PaxHeaders/elk-bands0000644000000000000000000000013214762655567015263 xustar0030 mtime=1741380471.250023004 30 atime=1741380471.248022993 30 ctime=1741380471.250023004 elk-10.4.9/utilities/elk-bands/0000755002504400250440000000000014762655567020062 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/utilities/elk-bands/PaxHeaders/elk-bands0000644000000000000000000000013214762655567017123 xustar0030 mtime=1741380471.251023009 30 atime=1741380471.250023004 30 ctime=1741380471.251023009 elk-10.4.9/utilities/elk-bands/elk-bands0000755002504400250440000001572614762655567021663 0ustar00dewhurstdewhurst00000000000000#!/bin/bash # # Copyright (C) 2010 M. G. Blaber # This file is distributed under the terms of the GNU General Public License. # See the file COPYING for license details. # # http://elk.sourceforge.net/ # # Marty's plotting program for elk band structures. # Changelog: # v0.2 - Fixed a bug regarding white space noticed by Kay Dewhurst # # Description: # -Plots the bands from elk, including labels that you have specified in your # elk.in file (see below for details) # -Notes on the necessary files and programs and Usage are given below. # -I recommend adding this script to your "path", a guide is given in the # Installation Notes below. # # A sample plot1d block is given below: # ------------- # plot1d # 3 100 : nvp1d, npp1d # 0.0 0.0 1.0 !G : vlvp1d # 0.5 0.5 1.0 !X # 0.0 0.0 0.0 !G # -------------- # #Some user defineable plot parameters (You may always change the parameters of #individual plots by editing elk-bands.gps) plot_width="15 cm" #For publication, change to 8.5 cm plot_height="10 cm" #For publication, change to 6 - 10 cm plot_font="Times, 18" #For publication, change to 12 border_linewidth="2" band_linewidth="1" #This number is scaled by border_linewidth internally by gnuplot # # # REQUIRED FILES: # elk.in BAND.OUT BANDLINES.OUT # # REQUIRED PROGRAMS: # awk gnuplot # # USAGE: # elk-bands # OR (energies in eV) # elk-bands [min_energy] [max_energy] # eg: elk-bands -5 10 # # INSTALLATION NOTES: # HOW TO ADD elk-bands TO YOUR PATH # -Make a new directory in your home folder named bin: # mkdir /home/username/bin # -Add this new directory to your path by editing your bashrc file, # /home/username/.bashrc # and add the following line: # export PATH=$PATH:/home/username/bin # To update the path variable for the terminal you are currently in, type: # source ~/.bashrc # ########### me="elk-bands" version="0.2" input_file=elk.in band_file=BAND.OUT bandlines_file=BANDLINES.OUT #Output: gps_file=$me.gps eps_file=$me.eps echo "- Welcome to $me version $version" echo "- Use ~ in front of any character in the labels list to make that letter greek!" echo "---------------------------------------------" ######### # Check Dependencies # Error Message dependencies_usage="ERROR - Programs required by $me not found. $me requires the following programs: - awk - gnuplot Your local package manager should have them, alternatively you can grab them from: http://www.gnu.org/software/gawk/ http://www.gnuplot.info/ " # awk check check=$(which awk 2>&1) if [ ! $? -eq 0 ]; then echo "Ahhhhhhhhhhhhhh - No awk found" echo "$dependencies_usage" exit 1 fi # gnuplot check check=$(which gnuplot 2>&1) if [ ! $? -eq 0 ]; then echo "Ahhhhhhhhhhhhhh - No gnuplot found" echo "$dependencies_usage" exit 1 fi echo "- Found awk and gnuplot" ######### # Check for input files # Error message inputfiles_usage="ERROR - Some file required by $me not found. $me requires the following files: $input_file $band_file $bandlines_file" # Check for f in $input_file $band_file $bandlines_file; do if [ ! -f $f ]; then echo "Ooops, can't find $f" echo "$inputfiles_usage" exit 1 fi done echo "- Found $input_file $band_file $bandlines_file" ######### # Check Parameters # Error message usage="Welcome to $me $version Usage (energies in eV): $me [min energy] [max energy] eg: elk-bands -5.5 10.0 " # Check if [ $1 ]; then if [ $2 ]; then min_energy=$1 max_energy=$2 else echo "ERROR - Please provide both energies" exit 1 fi else #no parameters provided min_energy="-15" max_energy="15" fi ######### # Get the labels and check them # Error for when someone forgets the labels in elk.in label_usage="ERROR - Labels not found. All tildes ~ convert the following letter to a greek symbol. $me requires the plot1d block in $input_file to look like: ------------------------ plot1d 7 400 : nvp1d, npp1d 0.0 0.0 1.0 ~G : vlvp1d 0.5 0.5 1.0 X 0.0 0.0 0.0 ~G 0.5 0.0 0.0 L 0.5 0.5 0.0 Merry Christmas 0.5 0.25 -0.25 W 0.5 0.0 0.0 L ------------------------- ERROR - Labels not defined correctly - scroll back up to see what went wrong " # Read the labels from elk.in and put them in a file label_names.tmp cat $input_file | awk '{ if($1=="plot1d"){go=1} if(go==2){number_of_labels=$1} if(go>number_of_labels+2){go=0} if(go>2){ for (i = 4; i <= NF; i++){printf("%s ", $i)} printf("\n") } if(go>0){go=go+1} }' | sed 's/://g' | sed 's/vlvp1d//g' | sed 's/ / /g' > label_names.tmp #Check the labels. no_label_line=$(cat label_names.tmp | awk '{if($1==""){print NR; exit}}') if [ $no_label_line ]; then echo "ERROR - No label found on line $((no_label_line+2)) of plot1d block" echo "$label_usage" exit 1 fi # Get the positions of the labels from bandlines file cat $bandlines_file | awk 'BEGIN{last=-1}{ if($1!=""){ if($1!=last){last=$1;print $1} } }' > label_positions.tmp # Match up the labels with their positions and remove the exclamation marks if they exist paste label_positions.tmp label_names.tmp | sed 's/!//' > labels.tmp rm label_names.tmp label_positions.tmp #this thing joins all the labels together into a format gnuplot can understand. labels=$(cat labels.tmp | awk '{ for (i = 2; i <= NF; i++){if (i==2){label=$i}else{label=label " " $i}} printf("%s%s%s %f, ",q,label,q,$1) label="" }' q=\" ) #Replace all instances of capital G with the gamma symbol labels=$(echo $labels | sed 's/~\(.\)/\{\/Symbol \1\}/g' ) if [[ $labels == *"{/Symbol }"* ]] then echo "WARNING -> There is a space after a \"~\" in the labels block... get rid of it."; fi echo "- Found labels" ######### # Write elk-bands.gps, the file which gnuplot uses. #this is a neat trick to spew out a file without having to use quotes. the end of the file is labeled _EOF cat > bands.tmp << _EOF set terminal postscript enhanced eps colour lw $border_linewidth dashlength 2 font "$plot_font" size $plot_width, $plot_height set style data lines set output "$eps_file" set ylabel "Energy (eV)" set grid noytics xtics #this puts vertical lines on the band structure according to xtics below set xtics( $labels ) set mytics 5 #minor y tics, the number of little tics in between labeled tics. unset key #change this to "set key top left" or something if you want the key in the plot #if you use "set key" then the title "Bands" will appear in the key plot [:][$min_energy:$max_energy] \ "BAND.OUT" using 1:((\$2)*27.21138386) title "Bands" lw $band_linewidth lt 1 lc rgb "black",\ 0.0 lt -1 notitle _EOF #this thing just removes the final comma from the end of the "set xtics ( )" line. cat bands.tmp | sed 's/, )/)/' > $gps_file rm bands.tmp rm labels.tmp echo "- Plotting file written to $gps_file" gnuplot $gps_file if [ ! $? -eq 0 ]; then echo "Unfortunately, some sort of unforseen error has occurred, try posting a message on the forum at http://sourceforge.net/projects/elk/forums/ " else echo "- Band plot is ready in $eps_file" fi echo "" exit 0 elk-10.4.9/utilities/PaxHeaders/elk-optics0000644000000000000000000000013214762655567015475 xustar0030 mtime=1741380471.253023019 30 atime=1741380471.252023014 30 ctime=1741380471.253023019 elk-10.4.9/utilities/elk-optics/0000755002504400250440000000000014762655567020274 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/utilities/elk-optics/PaxHeaders/elk-optics.py0000644000000000000000000000013214762655567020176 xustar0030 mtime=1741380471.253023019 30 atime=1741380471.253023019 30 ctime=1741380471.253023019 elk-10.4.9/utilities/elk-optics/elk-optics.py0000644002504400250440000000726514762655567022732 0ustar00dewhurstdewhurst00000000000000#!/usr/bin/python # # Copyright (C) 2015 by Markus Meinert # This file is distributed under the terms of the GNU General Public License. # See the file COPYING for license details. # # http://elk.sourceforge.net/ # # elk-optics.py v1.0 # # This script comes with no warranty. Check the results # carefully for production use. # # Description: # Reads all EPSILON_ii.OUT files in the present directory # and computes optical quantities. Diagonal components only. # # Input: EPSILON_ii.OUT # # Output: energy (eV), Re(eps), Im(eps), # refractive index Re(n), Im(n), # normal incidence reflectivity R, # absorption coefficient alpha (m^-1), # EELS -1/Im(eps) # # Output is written to optics_ii.out # import sys, os, math, cmath # check which files of type EPSILON_ii.OUT exist and # return a list of present components def get_components(): possible = ['11', '22', '33'] present = [] for p in possible: testfilename = 'EPSILON_%s.OUT' % p if os.path.isfile(testfilename): present.append(p) return present # read the EPSILON_ii.OUT file # return lists of energies and complex eps def read_epsilon(filename): handle = open(filename, 'r') content = handle.readlines() handle.close() data = [[],[]] for line in content: l = line.split() if l == []: continue data[0].append(float(l[0])) data[1].append(float(l[1])) # energies are read from first column of the first data block # real part of epsilon is read from the second column of the first data block (first half of the data) # imaginary part of epsilon is read from the second column of the second data block (second half of the data) datalength = int( len( data[0] ) / 2.) energies = data[0][0:datalength] eps_cplx = [complex(a,b) for a,b in zip(data[1][0:datalength], data[1][datalength:])] return energies, eps_cplx # compute optical properties from energies and complex epsilon def write_optical_properties(energies, eps_cplx, component): # complex refractive index N and extinction coefficient kappa # complex refractive index: N = n_r + ik N = [cmath.sqrt(x1) for x1 in eps_cplx] k = [cmath.sqrt(x1).imag for x1 in eps_cplx] # normal incidence reflectivity from complex refractive index R = [abs((1.-x1)/(1.+x1))**2 for x1 in N] # absorption coefficient in SI units from extinction coefficient and energy Ha_to_J = 27.21138602 * 1.6021766208E-19 hbar = 6.626070040E-34 / (2 * math.pi) c = 2.99792458E8 Ha_to_omegaSI = Ha_to_J / hbar alpha = [2 * (x1 * Ha_to_omegaSI) / c * x2 for x1, x2 in zip(energies, k)] # format data and write to file optics_ii.out data = zip(energies, eps_cplx, N, R, alpha) output = '%14s %14s %14s %14s %14s %14s %14s %14s\n' % ('# energy (eV)', 'Re(eps)', 'Im(eps)', 'Re(n)', 'Im(n)', 'R', 'alpha (m^-1)', 'EELS') for line in data: output += '%14.6e %14.6e %14.6e %14.6e %14.6e %14.6e %14.6e %14.6e\n' % (line[0]*27.21138602, line[1].real, line[1].imag, line[2].real, line[2].imag, line[3], line[4], -(1/line[1]).imag) outfilename = 'optics_%s.out' % component outfile = open(outfilename, 'w') outfile.write(output) outfile.close() # main loop over diagonal components of the epsilon tensor print('===================') print('| elk-optics v1.0 |') print('===================') print print('Looking for EPSILON_ii.OUT files...') components = get_components() if components == []: sys.exit('No EPSILON_ii.OUT files found. Exit.\n') else: print('Files found:') for c in components: print(' EPSILON_%s.OUT') % c print for c in components: filename = 'EPSILON_%s.OUT' % c print('Working on %s ...') % filename energies, eps_cplx = read_epsilon(filename) write_optical_properties(energies, eps_cplx, c) print('Optical properties written to optics_%s.out') % c print elk-10.4.9/utilities/PaxHeaders/wien2k-elk0000644000000000000000000000013114762655567015372 xustar0030 mtime=1741380471.256023035 29 atime=1741380471.25502303 30 ctime=1741380471.256023035 elk-10.4.9/utilities/wien2k-elk/0000755002504400250440000000000014762655567020172 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/utilities/wien2k-elk/PaxHeaders/se.pl0000644000000000000000000000013214762655567016414 xustar0030 mtime=1741380471.256023035 30 atime=1741380471.256023035 30 ctime=1741380471.256023035 elk-10.4.9/utilities/wien2k-elk/se.pl0000755002504400250440000000221614762655567021142 0ustar00dewhurstdewhurst00000000000000#!/usr/bin/perl if (@ARGV<1) { print "Script for conversion Wien2K struct files to spacegroup.in files used in exciting/elk\n"; print "The only argument is the name of the struct file, spacegroup.in is written to standard output\n"; print "Use at your own risk. \n Jerzy Goraus 2009\n"; exit; }; open(STR,$ARGV[0]) or die "can't open ",$ARGV[0]," file\n "; @STRUCT=; ($TMP,$GROUP)=split(/\_/,$STRUCT[1]); ($GROUP,$TMP)=split(/\n/,$GROUP); ($GROUP,$TMP)=split(/\ /,$GROUP); ($TMP,$LA,$LB,$LC,$AA,$AB,$AG)=split(/\s+/,$STRUCT[3]); $ATCNT=0; print " '",$GROUP,"\'\n ",$LA," ",$LB," ",$LC,"\n ",$AA," ",$AB," ",$AG,"\n 1 1 1\n .false.\n "; foreach (@STRUCT) { $BUF=$_; if (/ATOM/) { ($TMP,$X,$Y,$Z)=split(/=/,$BUF); ($X,$TMP)=split(/\ /,$X); ($Y,$TMP)=split(/\ /,$Y); $ATCNT+=1; # print "\n",$X, " ", $Y," ", $Z; $RESULT = sprintf(" %lf %lf %lf\n", $X,$Y,$Z); }; if (/NPT/) { $ATL=substr($_,0,2); $_=$ATL; s/\s//g; $ATL=$_; # print $ATL; $TAB{$ATL}=$TAB{$ATL}.$RESULT; $TABN{$ATL}+=1; }; }; $NUM=keys(TAB); print " ",$NUM ,"\n"; foreach (keys(TAB)) { print " '",$_,"' '",$_,".in'\n"; print " ",$TABN{$_},"\n"; print $TAB{$_}; } elk-10.4.9/utilities/PaxHeaders/blocks2columns0000644000000000000000000000013114762655567016362 xustar0030 mtime=1741380471.258023045 29 atime=1741380471.25702304 30 ctime=1741380471.258023045 elk-10.4.9/utilities/blocks2columns/0000755002504400250440000000000014762655567021162 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/utilities/blocks2columns/PaxHeaders/blocks2columns.py0000644000000000000000000000013214762655567021752 xustar0030 mtime=1741380471.259023051 30 atime=1741380471.259023051 30 ctime=1741380471.259023051 elk-10.4.9/utilities/blocks2columns/blocks2columns.py0000644002504400250440000000400714762655567024475 0ustar00dewhurstdewhurst00000000000000#!/usr/bin/python # elk blocks to columns by Markus Meinert # update January 2015, fixed a bug related to blank lines # Usage: blocks2columns.py PDOS_S01_A0001.OUT # blocks2columns.py TDOS.OUT # blocks2columns.py BAND.OUT import sys, os print("\n =========================\n | elk blocks to columns |\n =========================\n") # Read the file. filename = sys.argv[1] f = open(filename, 'r') data = f.readlines() f.close() # Analyze the file. # Number of lines. nlines = len(data) print(" Number of lines: %i " % nlines) # Count blank lines to determine number of datasets. ndatasets = 0 for line in data: if line.split() == []: ndatasets += 1 # If last line is not blank, add one to ndatasets and nlines. if data[-1].split() != []: ndatasets += 1 nlines += 1 print(" Number of datasets: %i " % ndatasets) # Number of lines per block is: nlinesperblock = (nlines - ndatasets)/ndatasets print(" Number of lines per block: %i " % nlinesperblock) # Collect the datasets into a list of lists with a double-loop over datasets and lines. datasets = [] for i in range(0,ndatasets): currentset = [] for j in range(i*nlinesperblock + i, (i*nlinesperblock + i) + nlinesperblock): currentset.append(data[j].split()) # Split each line by empty spaces. datasets.append(currentset) output = "" # Generate a head line output += "#%21s" % "x-axis" for i in range(1,ndatasets+1): blockname = "block_%i" % i output += "%22s" % blockname output += "\n" # Merge the datasets line-wise. for i in range(0,nlinesperblock): # x-axis as first column, read from first block line = '%22.13e' % (float(datasets[0][i][0])) # Append the block values as columns. for j in range(0, ndatasets): line += '%22.13e' % (float(datasets[j][i][1])) line += "\n" output += line filename = filename + ".columns" if os.path.exists(filename): print("\n Output file %s exists. Exit.\n" % filename) else: f = open(filename, 'w') f.write(output) f.close() print("\n Output filename: %s\n Done.\n" % filename) elk-10.4.9/utilities/PaxHeaders/xps0000644000000000000000000000013214762655567014235 xustar0030 mtime=1741380471.264023077 30 atime=1741380471.260023056 30 ctime=1741380471.264023077 elk-10.4.9/utilities/xps/0000755002504400250440000000000014762655567017034 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/utilities/xps/PaxHeaders/CROSEC0000644000000000000000000000013214762655567015213 xustar0030 mtime=1741380471.261023061 30 atime=1741380471.261023061 30 ctime=1741380471.261023061 elk-10.4.9/utilities/xps/CROSEC0000644002504400250440000000307614762655567017743 0ustar00dewhurstdewhurst00000000000000Crossection data for elements, E=1486eV ATOM=Xx 1.00E-0, 1.00E-0, 1.00E-0, 1.0 ATOM=Es 0.00E-0, 0.00E-0, 0.00E-0, 0.0 ATOM=Ag 0.29E-3, 0.77E-3, 0.21E-1, 0.0 ATOM=Al 0.78E-3, 0.59E-4, 0.53E-4, 0.0 ATOM=Bi 0.13E-2, 0.13E-2, 0.72E-3, 0.3632 ATOM=Ti 0.50E-3, 0.74E-3, 0.17E-3, 0.0 ATOM=V 0.51E-3, 0.74E-3, 0.42E-3, 0.0 ATOM=Cr 0.18E-3, 0.74E-3, 0.88E-3, 0.0 ATOM=Mn 0.58E-3, 0.74E-3, 0.14E-2, 0.0 ATOM=Fe 0.70E-3, 0.74E-3, 0.22E-2, 0.0 ATOM=Co 0.71E-3, 0.74E-3, 0.37E-2, 0.0 ATOM=Ni 0.83E-3, 0.74E-3, 0.59E-2, 0.0 ATOM=Cu 0.27E-3, 0.74E-3, 0.12E-1, 0.0 ATOM=La 0.29E-3, 0.21E-3, 0.76E-3, 0.22E-2 ATOM=Ce 0.31E-3, 0.21E-3, 0.94E-3, 0.22E-2 ATOM=Gd 0.43E-3, 0.21E-3, 0.94E-3, 0.21E-1 ATOM=Tb 0.36E-3, 0.21E-3, 0.94E-3, 0.29E-1 ATOM=Dy 0.31E-3, 0.21E-3, 0.94E-3, 0.37E-1 ATOM=Ho 0.27E-3, 0.21E-3, 0.94E-3, 0.46E-1 ATOM=Ge 0.15E-2, 0.75E-3, 0.19E-1, 0.0 ATOM=Ga 0.12E-2, 0.74E-3, 0.45E-3, 0.0 ATOM=In 0.10E-2, 0.77E-3, 0.94E-3, 0.0 ATOM=Pb 0.11E-2, 0.61E-3, 0.72E-3, 0.3330 ATOM=Pd 0.29E-3, 0.77E-3, 0.16E-1, 0.0 ATOM=Sb 0.14E-2, 0.16E-2, 0.76E-3, 0.0 ATOM=Si 0.10E-2, 0.17E-3, 0.53E-4, 0.0 ATOM=Sn 0.12E-2, 0.77E-3, 0.76E-3, 0.0 ATOM=Y 0.48E-3, 0.77E-3, 0.45E-3, 0.0 ATOM=Bi 0.13E-2, 0.14E-2, 0.43E-1, 0.3632 ATOM=Rh 0.23E-3, 0.77e-3, 0.12e-1, 0 ATOM=Ir 0.58e-3, 0.21e-3, 0.16e-1, 0 ATOM=Eu 0.35e-3, 0.11e-1, 0.94e-3, 0.17e-1 elk-10.4.9/utilities/xps/PaxHeaders/conv.c0000644000000000000000000000013214762655567015423 xustar0030 mtime=1741380471.263023072 30 atime=1741380471.263023072 30 ctime=1741380471.263023072 elk-10.4.9/utilities/xps/conv.c0000644002504400250440000000335714762655567020155 0ustar00dewhurstdewhurst00000000000000#include #include #include #include #include #define N 100000 // Convolution with Lorentz and Fermi function, // compile with: gcc conv.c -oconv -lm // modify the N above if needed. // Use at your own risk. // Jerzy Goraus (2003) typedef struct { double x,y; } pT; pT p1[N],p2[N]; double a_lor,Ef; int cmp1(pT *t1, pT *t2) { double t=t1->x-t2->x; return (int)(2*t/fabs(t)); } inline double lor(double x) { return (1/(1+x*x*a_lor)); } inline double fermi(double x) { return 1/(1+exp((x-Ef)/0.02569)); } main (int argc, char **argv) { int m=4,i1; double *tabl=malloc(1600); FILE *f; double dE=0.4,Ef=0,DE=0.2; char *buffer=malloc(256); if (!((argc==2)||(argc==4))) { printf("\nconv: convolution with Lorentz and Fermi function\n\ conv [{ FWHM Ef }]\nfilename is xy ascii data file,\ FWHM - Full Width at Half Maximum default : 0.4eV \n \ Ef - Fermi Energy default : 0 eV n\n");exit(0); } if (argc==4) { sscanf(argv[2],"%lf",&dE); sscanf(argv[3],"%lf",&Ef); if (dE>20) {printf("%i value too high\n",m);exit(1);} }; a_lor=4/(dE*dE); srand (time (NULL)); double y,sum; int i=0,k,n1=0,n2=0; f = fopen (argv[1], "r"); if (f==NULL) { printf("can't open for reading %s\n",argv[1]); exit(1);} while (!feof(f)) { fgets(buffer,255,f); sscanf(buffer,"%lf %lf",&(p1[n1].x),&(p1[n1].y)); n1++; assert(n1; close(STR); $atcnt=0; print "\nElements : "; for ($i=0; $i<$#str; $i++) { $_=$str[$i]; if (/atoms\n/) { $i++; $_=$str[$i]; s/\s//g; ($ATCNT,$TMP)=split(/:/); } if (/spinpol/) { $i++; $_=$str[$i]; if (/true/) { $SPOL=1;} } if (/in\'/) { ($ELNAME,$TMP)=split(/\./); $_=$ELNAME; s/\'//; $ELNAME=$_; #print "\n",$ELNAME; $_=$str[$i+1]; s/\s//g; ($MULT,$TMP)=split(/:/); push @atoms, $ELNAME; print $ELNAME," (",$MULT,") "; $mtab{$ELNAME}=$MULT; $idxtab{$ELNAME}=$atidx; $atidx++; #print "|",$MULT,"|"; } } if ($SPOL ) { print "\nMagnetic case\n"; } else { print "\nNon-magnetic case\n";} #print $ATCNT; open(CRS,"./CROSEC") or die "Can't open CROSEC"; # Here enter the position of CROSEC print "\nRead CROSEC"; @crs=; close(CRS); foreach ($i=1 ; $i<@crs; $i++) { $_=$crs[$i]; if (/ATOM=/) { $A=substr($_,5); $A=~s/\s//g; } else { $CR{$A}=$_; } } print "\n"; $NDOS=0; foreach (@atoms) { $ELNAME=$_; for ($i=1; $i<=$mtab{$_}; $i++) { $fname=sprintf("PDOS_S%02d_A%04d.OUT", $idxtab{$_}, $i); print "\nRead : ",$fname ; open(pdos, $fname) or die "Can't open $fname\n"; @pdos=; close(pdos); if ($NDOS==0) { foreach (@pdos) { if (/\d/) {$NDOS++}; } $NDOS/=32; $NDOS++; #- init to 0 for ($j=0; $j<$NDOS-1; $j++) { $atw_su[$j]=0; $atw_pu[$j]=0; $atw_du[$j]=0; $atw_fu[$j]=0; $atw_sd[$j]=0; $atw_pd[$j]=0; $atw_dd[$j]=0; $atw_fd[$j]=0; $att_su[$j]=0; $att_pu[$j]=0; $att_du[$j]=0; $att_fu[$j]=0; $att_sd[$j]=0; $att_pd[$j]=0; $att_dd[$j]=0; $att_fd[$j]=0; $attc_su[$j]=0; $attc_pu[$j]=0; $attc_du[$j]=0; $attc_fu[$j]=0; $attc_sd[$j]=0; $attc_pd[$j]=0; $attc_dd[$j]=0; $attc_fd[$j]=0; } } $atfout=sprintf("_%s_%04d.dat",$ELNAME,$i); open(atpart, ">".$atfout) or die "Can't open output file $atfout\n"; if ($SPOL ) { print atpart "# spin up - s,p,d,f and spin down s,p,d,f\n"; } else { print atpart "# s, p, d, f\n";} for ($q=0; $q<$#pdos; $q++) { ($TMP,$pdosx[$q],$pdosy[$q])=split(/\s+/,$pdos[$q]); $pdosx[$q]*=$FACTOR; $pdosy[$q]/=$FACTOR; } for ($j=0; $j<$NDOS-1; $j++) { $at_su[$j]=$pdosy[$j]; if ($SPOL ) {$at_sd[$j]=$pdosy[$j+16*$NDOS];} $at_pu[$j]=0; $at_pd[$j]=0; $at_du[$j]=0; $at_dd[$j]=0; $at_fu[$j]=0; $at_fd[$j]=0; for ($q=1; $q<4; $q++) { $at_pu[$j]+=$pdosy[$j+$q*$NDOS]; if ($SPOL ) {$at_pd[$j]+=$pdosy[$j+16*$NDOS+$q*$NDOS];} } for ($q=4; $q<9; $q++) { $at_du[$j]+=$pdosy[$j+$q*$NDOS]; if ($SPOL ) {$at_dd[$j]+=$pdosy[$j+16*$NDOS+$q*$NDOS];} } for ($q=9; $q<16; $q++) { $at_fu[$j]+=$pdosy[$j+$q*$NDOS]; if ($SPOL ) {$at_fd[$j]+=$pdosy[$j+16*$NDOS+$q*$NDOS];} } print atpart $pdosx[$j], " ",$at_su[$j]," ",$at_pu[$j]," ",$at_du[$j]," ",$at_fu[$j]; if ($SPOL ) { print atpart " ",$at_sd[$j]," ",$at_pd[$j]," ",$at_dd[$j]," ",$at_fd[$j],"\n";} else {print atpart "\n";} $atw_su[$j]+=$at_su[$j]; $atw_pu[$j]+=$at_pu[$j]; $atw_du[$j]+=$at_du[$j]; $atw_fu[$j]+=$at_fu[$j]; $atw_sd[$j]+=$at_sd[$j]; $atw_pd[$j]+=$at_pd[$j]; $atw_dd[$j]+=$at_dd[$j]; $atw_fd[$j]+=$at_fd[$j]; } close atpart; print "\nWritten ",$atfout; #-- $gatfout=sprintf("_g_%s_%04d",$ELNAME,$i); open(GNU,">".$gatfout.".gnu") or die "can't open $gatfout\n"; print GNU $TERM,"\n",$OPT,"\n"; print GNU "set output \"$gatfout.$SUF\"\n"; print GNU "set xlabel \"Eb [eV]\"\n"; print GNU "set ylabel \"DOS [st/eV f.u.]\"\n"; print GNU "set title \"$ELNAME - $i\"\n"; print GNU "plot \"$atfout\" using 1:2 smooth uniq t 's' "; printf GNU ", \"$atfout\" using 1:3 smooth uniq t \'p\' "; printf GNU ", \"$atfout\" using 1:4 smooth uniq t \'d\' "; printf GNU ", \"$atfout\" using 1:5 smooth uniq t \'f\' "; if ($SPOL ) { print GNU ", \"$atfout\" using 1:6 smooth uniq t \'s\' "; print GNU ", \"$atfout\" using 1:7 smooth uniq t \'p\' "; print GNU ", \"$atfout\" using 1:8 smooth uniq t \'d\' "; print GNU ", \"$atfout\" using 1:9 smooth uniq t \'f\' "; } close(GNU); print "\nWritten ",$gatfout,".gnu"; #-- } $atwfout=sprintf("_%s.dat",$ELNAME); #at - atomic DOS, atw - given specie dos, att - total dos , attc - total dos with crossection open(atwpart, ">".$atwfout) or die "Can't open output file $atwfout \n"; if ($SPOL ) { print atwpart "# spin up - s,p,d,f and spin down s,p,d,f\n"; } else { print atwpart "# s, p, d, f\n";} if ($CR{$ELNAME} ne "") { ($Ks,$Kp,$Kd,$Kf)=split(/\,/,$CR{$ELNAME}); } else {$Ks=$Kp=$Kd=$Kf=0; print "\n----------------- No $ELNAME in CROSEC, Using 0 as crossection\n";}; for ($j=0; $j<$NDOS-1; $j++) { $att_su[$j]+=$atw_su[$j]; $att_pu[$j]+=$atw_pu[$j]; $att_du[$j]+=$atw_du[$j]; $att_fu[$j]+=$atw_fu[$j]; $att_sd[$j]+=$atw_sd[$j]; $att_pd[$j]+=$atw_pd[$j]; $att_dd[$j]+=$atw_dd[$j]; $att_fd[$j]+=$atw_fd[$j]; $attc_su[$j]+=$atw_su[$j]*$Ks; $attc_pu[$j]+=$atw_pu[$j]*$Kp; $attc_du[$j]+=$atw_du[$j]*$Kd; $attc_fu[$j]+=$atw_fu[$j]*$Kf; $attc_sd[$j]+=$atw_sd[$j]*$Ks; $attc_pd[$j]+=$atw_pd[$j]*$Kp; $attc_dd[$j]+=$atw_dd[$j]*$Kd; $attc_fd[$j]+=$atw_fd[$j]*$Kf; print atwpart $pdosx[$j], " ",$atw_su[$j]," ",$atw_pu[$j]," ",$atw_du[$j]," ",$atw_fu[$j]; if ($SPOL ) { print atwpart " ",$atw_sd[$j]," ",$atw_pd[$j]," ",$atw_dd[$j]," ",$atw_fd[$j],"\n";} else {print atwpart "\n";} } close atwpart; #- $gatwfout=sprintf("_g_%s",$ELNAME); open(GNU,">".$gatwfout.".gnu") or die "can't open $gatwfout\n"; print GNU $TERM,"\n",$OPT,"\n"; print GNU "set output \"$gatwfout.$SUF\"\n"; print GNU "set xlabel \"Eb [eV]\"\n"; print GNU "set ylabel \"DOS [st/eV f.u.]\"\n"; print GNU "set title \"$ELNAME \"\n"; print GNU "plot \"$atwfout\" using 1:2 smooth uniq t 's' "; printf GNU ", \"$atwfout\" using 1:3 smooth uniq t \'p\' "; printf GNU ", \"$atwfout\" using 1:4 smooth uniq t \'d\' "; printf GNU ", \"$atwfout\" using 1:5 smooth uniq t \'f\' "; if ($SPOL ) { print GNU ", \"$atwfout\" using 1:6 smooth uniq t \'s\' "; print GNU ", \"$atwfout\" using 1:7 smooth uniq t \'p\' "; print GNU ", \"$atwfout\" using 1:8 smooth uniq t \'d\' "; print GNU ", \"$atwfout\" using 1:9 smooth uniq t \'f\' "; } close(GNU); print "\nWritten ",$gatwfout,".gnu"; #- print "\nWritten ",$atwfout; for ($j=0; $j<$NDOS-1; $j++) { $atw_su[$j]=0; $atw_pu[$j]=0; $atw_du[$j]=0; $atw_fu[$j]=0; $atw_sd[$j]=0; $atw_pd[$j]=0; $atw_dd[$j]=0; $atw_fd[$j]=0; } } open(att, ">_TDOS.dat") or die "Can't open output file TDOS.dat \n"; open(attc, ">_cTDOS.dat") or die "Can't open output file cTDOS.dat \n"; for ($j=0; $j<$NDOS-1; $j++) { $u=$att_su[$j]+$att_pu[$j]+$att_du[$j]+$att_fu[$j]; $d=$att_sd[$j]+$att_pd[$j]+$att_dd[$j]+$att_fd[$j]; $uc=$attc_su[$j]+$attc_pu[$j]+$attc_du[$j]+$attc_fu[$j]; $dc=$attc_sd[$j]+$attc_pd[$j]+$attc_dd[$j]+$attc_fd[$j]; if ($SPOL ) { print att $pdosx[$j], " ",$u-$d," ",$u," ",$d,"\n"; print attc $pdosx[$j], " ",$uc-$dc," ",$uc," ",$dc,"\n"; } else { print att $pdosx[$j], " ",$u,"\n"; print attc $pdosx[$j], " ",$u,"\n"; } } close att; print "\nWritten _TDOS.dat"; close attc; print "\nWritten _cTDOS.dat"; print "\n"; elk-10.4.9/PaxHeaders/COPYING0000644000000000000000000000013014762655567012516 xustar0029 mtime=1741380471.28002316 30 atime=1741380471.279023155 29 ctime=1741380471.28002316 elk-10.4.9/COPYING0000644002504400250440000012356414762655567015255 0ustar00dewhurstdewhurst00000000000000 GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. Copyright (C) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: Copyright (C) This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read . -------------------------------------------------------------------------------- GNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below. 0. Additional Definitions. As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU GPL" refers to version 3 of the GNU General Public License. "The Library" refers to a covered work governed by this License, other than an Application or a Combined Work as defined below. An "Application" is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library. A "Combined Work" is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the "Linked Version". The "Minimal Corresponding Source" for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version. The "Corresponding Application Code" for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work. 1. Exception to Section 3 of the GNU GPL. You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL. 2. Conveying Modified Versions. If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version: a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy. 3. Object Code Incorporating Material from Library Header Files. The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following: a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License. b) Accompany the object code with a copy of the GNU GPL and this license document. 4. Combined Works. You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following: a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License. b) Accompany the Combined Work with a copy of the GNU GPL and this license document. c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document. d) Do one of the following: 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source. 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version. e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.) 5. Combined Libraries. You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License. b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 6. Revised Versions of the GNU Lesser General Public License. The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation. If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library. elk-10.4.9/PaxHeaders/README0000644000000000000000000000013214762655567012345 xustar0030 mtime=1741380471.293023229 30 atime=1741380471.293023229 30 ctime=1741380471.293023229 elk-10.4.9/README0000644002504400250440000000366514762655567015101 0ustar00dewhurstdewhurst00000000000000 +------------------------------+ | The Elk FP-LAPW Code | +------------------------------+ This code is distributed under the terms of the GNU General Public License. See the file COPYING for license details. Elk is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Elk is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Elk. If not, see http://www.gnu.org/licenses/. Elk can be compiled by first editing the file 'make.inc' in this directory to suit your compiler and available libraries, followed by running 'make all'. This will compile the main code as well as several auxiliary programs. A test suite is available: entering 'make test' will check the output of your executable against a standard set. This may take some time to complete. If Elk was compiled with MPI then use 'make test-mpi' instead. The Libxc package can also be tested using 'make test-libxc' (or 'make test-libxc-mpi' with MPI). Auxiliary programs include 'spacegroup' for producing crystal geometries from spacegroup data, and 'eos' for fitting equations of state to energy-volume data. Elk is updated regularly with new features and bug fixes. Features not listed as 'experimental' may be used for production but, as with any code, please check the consistency of your results carefully. -------------------------------------------------------------------------------- J. K. Dewhurst, S. Sharma L. Nordstrom, F. Cricchio, O. Granas E. K. U. Gross elk-10.4.9/PaxHeaders/release_notes.txt0000644000000000000000000000013214762655567015056 xustar0030 mtime=1741380471.308023307 30 atime=1741380471.306023296 30 ctime=1741380471.308023307 elk-10.4.9/release_notes.txt0000644002504400250440000020015214762655567017600 0ustar00dewhurstdewhurst00000000000000elk-10.4.9 -fixed minor issue with reporting the number of linearisation energies not found -Eddie Harris-Lee made additions to the spin-polarised time-dependent vector potential code -Wenhan Chen sped up the code for generating the ultra long-range density and magnetisation -improved the code for saving the mixing work array elk-10.4.5 -added kinetic energy density functional ktype=51; this is the Thomas-Fermi functional derivative scaled to match the exact tau; used for partially deorbitalised meta-GGA functionals; experimental feature -Eddie Harris-Lee added an option to save the mixer work array; enabled by setting 'mixsave' to .true.; this should improve the convergence of restarted calculations -the first-variational Hamiltonian set up is now much faster -made some of the tests less fragile; test failures should not occur anymore -added a third column to the ultra long-range band structure; this is the expectation value of the reciprocal space distance from the central k-point -fixed a race condition bug in gencore -added documentation elk-10.3.12 -Pietro Bonfa added an option of having a reference set of lattice vectors (avecref), used for generating the set of G-vectors and derived quantities; this is useful for keeping the G-vector grid fixed when calculating precise energy-volume curves -made the APW-APW part of Hamiltonian numerically Hermitian; this improves stability of the code when rgkmax is large; thanks to Pietro Bonfa for all the testing -power and energy density of the time-dependent A-field is now written with task=455 -Fourier transform of the time-dependent electric field is written with task=456 -the order of the muffin-tin gradient smoothing (msmgmt) is now set to zero by default -the polynomial order for computing the gradient of the APW and local orbitals at the muffin-tin radius (npapwlo) has been separated into two variables npapw and nplorb and increased from 4 to 8 -made adjustments to the 'vhighq' and 'uhighq' settings -added a strain-stress example, see: elk/examples/strain-stress/quartz/ -'trimvg' has been removed as an input variable: it is now effectively always enabled -total muffin-tin volume and ratio of total muffin-tin to unit cell volume is now written to INFO.OUT; thanks to Markus Meinert -the first- and second-variational eigenvalue equations are now faster thanks to larger work arrays -the real first-variational Hamiltonian setup is now more memory efficient -added more documentation -task 120 (writing the momentum matrix elements) will now always write to disk irrespective of 'wrtdsk' -minor optimisations and improvements -added a batch calculation of the spin-spiral state of γ-Fe, see: elk/examples/batch-calculations/spin-spiral -the equation-of-state (EOS) code now produces additional output elk-10.2.4 -many optimisations -Wenhan Chen added the ultra long-range total density of states (DOS) with task=710 -removed a small amount (10^-10) from the valence charge in order to pin the Fermi energy to the highest occupied band; this improves stability when autolinengy=.true.; thanks to Pietro Bonfa for the careful testing -added new variable 'rmtscf' which is the scaling factor for all input muffin-tin radii elk-10.1.15 -updated Elk to work with the Libxc Fortran 2003 interface and allow use of both versions 6 and 7, following discussion on the forum -minor updates and optimisations elk-10.1.12 -new tasks for plotting the Fermi surface: task=103 writes a single smooth delta function at the Fermi energy; task=104 writes separate smooth delta functions at the Fermi energy for each eigenvalue; thanks to Wenhan Chen for adding this -added the ultra long-range spin dipole-dipole interaction; this is enabled by setting 'tbdipu' to .true.; this is an experimental feature -the spin dipole magnetic field can now be scaled with the variable 'bdipscf' (default 1); this applies to both the microscopic and ultra long-range fields -Eddie Harris-Lee found a symmetry problem with the static spin-dependent vector potential; this is now fixed -added a restart option: just create an empty file RESTART in the running directory and Elk will re-read elk.in and start again; this is useful when running on a shared computer system and you want to change an input parameter without losing your slot -added 'tpdos' flag; set this to .false. and the partial DOS will not be calculated; this can speed up TDDFT calculations when the PDOS is not required -fixed the Magneto-optical Kerr effect (MOKE) example in elk/examples/TDDFT-optics/Ni-MOKE -added code documentation -many small improvements and optimisations -fixed a problem with the time- and k-point dependent excited charge and magnetisation written when 'tdxrmk' is set to .true. elk-10.0.15 -considerable speed-up of most of the code thanks to improved use of the fast Fourier transform; real-time evolution is now over twice as fast -improved DFPT phonon calculations for heavier atoms by changing how the Hellmann-Feynman derivative is evaluated -improved symmetrisation of the phonon dispersions by enforcing time reversal symmetry -non-analytic term for the LO-TO splitting in polar semiconductors can now be included by setting 'tphnat' to .true.; this requires that the dielectric function tensor and Born effective charges are calculated first -new and updated phonon examples for hBC and GaAs in the elk/examples/phonons-superconductivity directory; thanks to Felix Kahlert for testing the GaAs example -Eddie Harris-Lee added to the spin-current code -Wenhan Chen added to the ultra long-range code -the time- and k-point dependent excited charge and magnetisation can now be written every ntswrite steps by setting tdxrmk to .true. -the calculated linear and non-linear optical components can now be specified with the number 'noptcomp' rather than having to list them individually with 'optcomp' -fixed an issue with the Wannier90 spin-polarised matrix elements written to wannier.spn; the y-component had been negated -the FFT prime factors can now be chosen with 'npfftg', 'npfftgc', 'npfftq' and 'npfftw' for the G-vector, coarse G-vector, Q-vector (for ultra long-range) and Matsubara frequency FFTs, respectively -Mössbauer hyperfine field calculations are now more accurate elk-9.6.8 -fixed an issue with Fermi surface plotting for the collinear spin-polarised case; the k-point set is not reduced for the collinear spin-polarised case; thanks to Wenhan Chen for discovering this -many simplifications and optimisations in the code -changed smallest allowed perturbation theory denominator (epsdev) from 0.005 to 0.0025 for DFPT phonon calculations -added more examples, including the DFPT phonon dispersion of NiTe2 thanks to Jerry Li and the altermagnet CrSb thanks to Wenhan Chen -added two more Wannier90 examples: graphene thanks to Jyoti Krishna and the spin Hall conductivity of Pt thanks to Markus Meinert -further optimised OpenMP parallelism -documented all the tasks in the manual elk-9.5.14 -Wannier90 UNK files are now written; thanks to Andrew Shyichuk for the suggestion -made a work-around for an Intel compiler bug which occurs when extra Wannier90 data is read from elk.in; this problem was discovered by Jerry Li -added Wannier90 copper example thanks to Jerry Li -improved the application of a constant electric field across the unit cell; the maximum distance over which it is applied can now be set with 'dmaxefc' -included an example and test case for a constant electric field across the cell; the example can be found in elk/examples/electric-field/WSe2-bilayer and demonstrates band gap closure under applied high field strengths -the average electric field in each muffin-tin is written to INFO.OUT when an electric field is applied -added a high harmonic generation (HHG) example; see elk/examples/TDDFT-time-evolution/GaAs-HHG -further improved OpenMP parallelism -minor optimisations elk-9.5.1 -fixed an issue with the scissor operator applied to TDDFT -fixed a problem with FFTW called by several threads simultaneously; thanks to Andreas Fischer for discovering this -task=485 (writeejw) has been removed; the frequency-dependent electric field (EFIELDW.OUT) and total current (JTOTW.OUT) are now written with task=480/481 -the Wannier90 initial projections file wannier.amn is now always written; however, the projections are set to random complex numbers; this appears to have improved the Wannierisation step -the number of Wannier wavefunctions (num_wann) can now be less than number of bands; if num_wann ≤ 0 then num_wann → num_bands+num_wann -updated the Wannier90 examples -fixed an issue with the time-dependent total energy -several OpenMP optimisations elk-9.4.2 -further improvements to the GW code, including changing some parts to single-precision arithmetic -fixed a problem with thread allocation discovered by Andreas Fischer and colleagues here -replaced complex-complex FFTs to real-complex where possible -task 485 now also outputs the frequency-dependent electric field as EFIELDW.OUT -minor changes and optimisations elk-9.2.12 -fixed intialisation issue with writing tensor moments via task=400 with DFT+U and inpdftu=5; thanks to Marjana Lezaic for pointing this out -added a new feature for averaging the muffin-tin radii in order to stabilise some calculations with large variation in radii; set the variable 'mrmtav' to the order of averaging of the radii; see the manual for details -made improvements to the GW code -adjusted the parameter settings used for 'stable' and 'metagga' options -added documentation to code elk-9.2.5 -further improved meta-GGA partial deorbitalisation; re-enabled the 'metagga' option; set this to .true. when running meta-GGA calculations and the code sets several input variables to improve convergence; see examples for details -setting 'trimvg' to .true. (which is the default) causes only the exchange-correlation potential to be trimmed for |G| > 2 gkmax instead of the full Kohn-Sham potential; this improves the smoothness of energy-volume curves -calculation of the BSE dielectric function (task=187) is now considerably faster and runs in parallel -added the constant term associated with a static A-field to the total energy -modified the findsymcrys routine so that all symmetries are found even when tshift=.false. elk-9.1.15 -added piezoelectric and magnetoelectric tensors as tasks 380 and 390, respectively; see the examples for details; these are currently experimental features -exchange-correlation functionals with Laplacian terms now working; this includes the deorbitalised functionals of Mejia-Rodriguez and Trickey, Phys. Rev. B 98, 115161 (2018) -improved the meta-GGA partial deorbitalisation: it now works with the complete range of kinetic energy density functionals in Libxc (see arXiv:2304.02363) -improved the interface to Libxc -removed potential-only meta-GGA functionals -time-dependent Kohn-Sham states are now orthogonlised using a singular value decomposition every 'ntsorth' time-steps in order to improve stability; the default is 1000 time-steps -new task 485 outputs the Fourier transform of the time-dependent total current J(ω) -new input variable 'jtconst0' will, when set to .true., zero the constant part of J(t) before the dielectric function is calculated with tasks 480 and 481 -changed large parts of the code to single-precision arithmetic including Hartree-Fock, RDMFT, OEP, GW and the linear-response functions; as a consequence the code is considerably faster -changed relational operator symbols such as .le., .gt., etc. to '<=', '>', etc. in line with modern Fortran style -increased maximum allowed number of files on the RAM disk to 32 -many optimisations and minor bug fixes -added more and improved existing OpenMP parallelism -Elk has been recognized with a Community Leader Award by SourceForge; thanks to all the users and contributors for making the code as useful as it is, as well as for making the forums a congenial place for everyone elk-8.8.26 -molecular dynamics now available with task=420/421; see the examples in the elk/examples/molecular-dynamics directory -simulated annealing calculations for crystal structure discovery are now possible; see the example in elk/examples/molecular-dynamics/annealing; note that this is an experimental feature -removed the 'msmooth' option -restored the 'trimvg' option and enabled it by default; this makes calculations more stable -changed the 'stable' options -structural optimisation is now more reliable -muffin-tin radii can now increase as well as decrease during structural optimisation or molecular dynamics runs -added examples of the coupled electron-phonon Bogoliubov equations; see elk/examples/Bogoliubov -added a 'step' type A-field; this corresponds to a vector potential which is switched on and off at given times -improved the iterative eigenvalue method for the first-variational step -minor optimisations and improvements elk-8.7.10 -fixed a problem with calculating the current density for spin-spirals; thanks to Zhiwei Li for finding this -minor optimisations elk-8.7.6 -fixed an issue which affects thread creation in OpenMP nested loops with libgomp; this should give a considerable increase in speed for Elk compiled with GFortran -minor optimisations and bug fixes elk-8.7.2 -fixed problem of writing TDDFT density of states with wrtdsk=.false., discovered by Eddie Harris-Lee -fixed problem of restarting from TDDFT backup files, found by Mila Adamska -removed an OpenMP regression which caused substantial slow-down of TDDFT -added more documentation -minor optimisations and bug fixes elk-8.6.7 -added dynamical Born effective charges (dynBEC); see Phys. Rev. B 106, L180303 (2022) -included a dynBEC example of hexagonal boron nitride; see the elk/examples/Born-effective-charge/hBN-dynBEC/ directory -fixed a problem with spin-unpolarised DFT+U calculations; thanks to Mike Bruckhoff for discovering this -updated to Libxc version 6 -changed to single-precision orbitals in many routines; this should reduce memory requirements and improve speed -removed the bundled BLAS/LAPACK and FFTPACK libraries -removed the 'setup' script and modified the 'make.inc' file elk-8.5.10 -improved OpenMP parallelism -added variables to VARIABLES.OUT which are written on completion of geometry optimisation, for example 'engytot (geomopt)' -adjusted several default parameters elk-8.5.2 -created an interface to the kinetic energy functionals of Libxc -further optimisation of the code -added magnetic anisotropy energy (MAE) test -fixed a problem of using wrtdsk=.false. with TDDFT -various minor bug fixes elk-8.4.30 -included the Libxc interface (libxcf90.f90) again with Elk; thanks to Michael Banck for pointing out a problem with its omission -fixed a minor problem with electron localisation function (ELF) plots -several small changes and optimisations elk-8.4.21 -fixed problem with Ehrenfest TDDFT restarts (task 463); thanks to Peter Elliott for discovering this bug -added option to avoid writing some direct access files to disk; this can be done by setting 'wrtdsk=.false.' and can speed the code up dramatically, particularly on networked filesystems; however, this can result in the code crashing for some tasks and should be used carefully! -made some small changes (particularly to the RAM disk feature) to improve portability; tested the code with Intel, GNU, PGI, NAG and NVIDIA Fortran compilers -parallelised the RPA dielectric function calculation (task 121) with MPI -many optimisations and small bug fixes -the coupled electron-phonon Bogoliubov equations method (task 270) has been published as Editors' Suggestion in Physical Review B: https://doi.org/10.1103/PhysRevB.105.174509 elk-8.4.6 -fixed problem with real-time TDDFT restarts (tasks 461 and 463); this problem occurred only very rarely for systems with particular symmetries; thanks to Antonio Sanna for finding this -added batch calculations as a new feature; with this Elk can perform multiple runs while adjusting a particular parameter -- for example producing an energy vs volume plot; see the examples in elk/examples/batch-calculations -input and output variables will be added to batch calculations upon request -Yunfan Liang and Xavier Gonze discovered a problem in the non-linear optical response formalism of our work in Phys. Rev. B 67, 165332 (2003); consequently, the non-linear optics code has been completely re-written and throughly tested; see the example in /elk/examples/non-linear-optics -the speed ultra long-range calculations has been greatly improved thanks to changes in the generation of the long-range density and magnetisation -several minor bug fixes, optimisations and improvements -Elk has been recognized with a Community Choice award by SourceForge; thanks to all the users and contributors for making the code as useful as it is, as well as for making the forums a congenial place for everyone elk-8.3.22 -fixed a bug which occured when using the OpenBLAS library with Elk's RAM disk feature; thanks to Marcin Dulak for finding this elk-8.3.20 -included missing BLAS and LAPACK files in the package; thanks to Jagdish Kumar for pointing out the omissions elk-8.3.15 -considerable speed-up and optimisations throughout the entire code; spin-polarised calculations in particular are substantially faster -greatly improved the meta-GGA calculations; these no longer require a large number of empty states for good convergence and consequently run much faster; removed the 'metagga' flag; thanks to Pietro Bonfa for the careful testing -checked and highly optimised the TDDFT+U calculations -removed the DFT+U scheme which interpolated between FLL and AFM -rearranged the order of phonon line width plots to match that of the phonon dispersion plots -further improved the electron-phonon Bogoliubov method; thanks to Chung-Yu Wang for the careful testing -rewrote much of the tensor moment code; the tensor moments are now real and exclusively of the 3-index type; the corresponding matrices Gamma_t^kpr are now Hermitian and orthonormal; see the documentation of the routines 'tm2todm' and 'tm3todm' and references therein; thanks to Leon Kerber for extensive testing -writing out the old convention of complex 3-index tensor moments can be enabled with 'tm3old=.true.' -Leon Kerber also fixed a problem with the fixed tensor moment (FTM) code -the input block 'tmomfix' has been removed; use 'tm3fix' instead -included a FTM example in elk/examples/FeGd-fixed-tensor-moment -the RAM disk is now enabled by default; if problems are encountered with this then set 'ramdisk=.false.' -included an example for calculating the dielectric function using time evolution; see elk/examples/TDDFT-time-evolution/Si-dielectric -added more LaTeX documentation to the code -many small improvements and minor bug fixes elk-7.2.42 -added new RAM disk feature which allows Elk to store direct-access files in memory and can dramatically speed up calculations; enable this by setting 'ramdisk' to .true. in elk.in -many optimisations throughout the code -fixed an issue with the scissors operator in optical response code (task=320, 330, 331) for materials which are nearly metallic; thanks to Peter Elliott for pointing this out -further improved the electron-phonon mean-field code -added variables 'scalex', 'scaley' and 'scalez' to the input file; these allow scaling of the unit cell in the Cartesian directions elk-7.1.14 -optimised the second-variational procedure by changing the muffin-tin dot products to single-precision arithmetic; this speeds up this step by at least a factor of two for large systems without losing overall precision or stability -removed 'mixpack', 'phmixpack' and 'mixpacku' routines; Kohn-Sham potentials and fields are now stored in a single array accessed by pointer arrays; this removes the need for packing before and unpacking after mixing -increased speed of direct access reads by removing unnecessary 'close' statements -added an example for the ultra long-range method; see the input file in elk/examples/ultra-long-range/Cr-SDW/ -changed the Wannier90 .win file to improve the wannierisation convergence rate -fixed several bugs in the electron-phonon mean-field method -updated BLAS and LAPACK to version 3.9.0 -minor improvements and bug fixes elk-7.0.12 -Chung-Yu Wang added electron-phonon mean-field theory; this is a new method and still highly experimental -Alyn James wrote an interface for Elk to the DMFT code TRIQS; this interface is maintained in a separate branch of the Elk code: https://github.com/AlynJ/Elk_interface-TRIQS -fixed serious problem with DFT+U for dftu=3 (interpolation of FLL and AFM); this bug was introduced some time ago; we recommend that you check any previous calculations which use dftu=3 -lots of optimisations throughout the code -further improved Ehrenfest dynamics -added the calculation of Born effective charges using Ehrenfest dynamics (task=478); this is intended as a test for the method; Born effective charges are more accurately calculated with the King-Smith and Vanderbilt method (task=208) -Pietro Bonfa found and fixed several problems with the calculation of Mössbauer hyperfine fields -PB also added a new Mössbauer example: antiferromagnetic NiF2; see the examples/Mossbauer/NiF2 directory -Ronald Cohen fixed a bug in iso-volumetric lattice optimisation -RC also discovered a problem with the Wu-Cohen '06 GGA functional which has now been fixed -RC also suggested an efficiency improvement to the non-linear optics code -added tests for non-linear optics -Antonio Sanna helped fix a bug with TD forces -Karel Carva discovered that lmaxo should be at least 7 for phonopy calculations -change the default ntswrite from 10 to 500 time steps in order to reduce I/O -confirmed compatibility with Libxc version 5.1.0 -Further improved the ultra long-range code; the method has now been published: T. Müller, S. Sharma, E. K. U. Gross, and J. K. Dewhurst, Phys. Rev. Lett. 125, 256402 (2020). elk-6.8.4 -Born effective charges using the method of R. D. King-Smith and David Vanderbilt, Phys. Rev. B 47, 1651(R) (1993) are now available; see the directory elk/examples/Born-effective-charge -added Ehrenfest dynamics to the code; see the directory elk/examples/TDDFT-time-evolution/FeCo-Ehrenfest (highly experimental) -upgraded code to be compatible with Libxc version 5; note changes to the make.inc file -the Libxc SCAN functional no longer works with Elk, the regularised version of A. P. Bartók and J. R. Yates, J. Chem. Phys. 150, 161101 (2019) works and should be used instead; see the meta-GGA examples -Aldo Romero and his group interfaced PyProcar to Elk and confirmed that it worked with non-collinear magnetism; PyProcar is a robust, open-source Python library used for pre- and post-processing of the electronic structure data from DFT calculations -implemented a great many optimisations throughout the entire code; more aggressive use of the stack instead of the heap, this may require the user to increase the stack space -added the incomplete basis set (IBS) correction to forces from time-dependent vector potential, A(t) -fixed bug related to lattice optimisation with non-symmorphic symmetries thanks to Andrew Shyichuk and Jack Whaley-Baldwin -added several new tests, including one for the stress tensor -updated physical constants to CODATA 2018 -fixed wavefunction and STM plotting thanks to Andrew Shyichuk -fixed bug in GW band structure code thanks to Antik Sihi -fixed problem with fixed tensor moment calculations -fixed problem in TDDFT real-time restart thanks to Peter Elliott -Peter Elliott and JKD also added Maxwell's equations for the macroscopic induced vector potential -updated and improved the ultra long-range code -forces are now written during a TDDFT run every 'ntsforce' time steps -matrix sizes larger than those addressable with four byte integers can now be used with BSE and MPI -Hartree-Fock information is now written to HF_INFO.OUT rather than INFO.OUT -parallelised the Brillouin zone integration (brzint) which considerably speeds up DOS calculations -modified how the potential of the optimised effective potential (OEP) iteration scheme is initialised -removed obsolete command from ProTex Perl script -added tests for Libxc and MPI; run 'make test-libxc' and 'make test-MPI' respectively, or 'make test-all' to test everything -fixed problem with hybrid functionals introduced a few versions back; also added a test for hybrids elk-6.3.2 -very large speedup of the first-variational Hamiltonian and overlap matrix setup; this is particularly apparent for large systems -made all of the numerical radial integrals much more efficient by storing the spline integration weights; this speeds up most of the code -switched radial integral infinitesimal from 1/3 d(r^3) to r^2dr; this improves numerical accuracy and returns to the convention of version 5.2.14 -added full (l,m) and spin characters for plotting the band structure with so-called 'fat bands'; these are performed with new tasks 22 and 23; thanks to Jagdish Kumar for the suggestion -Jagdish Kumar also fixed a problem with the phonon thermodynamic quantities which had an unnecessary prefactor of the number of atoms; see here -fixed a problem with occurs with constant electric fields (when efieldc is made finite) and crystals with non-symmorphic symmetries -Michael Fechner improved the fixed spin moment code by removing the requirement that unspecified muffin-tin fixed moments are checked for symmetry compliance -added 1D plotting of the magnetisation density, exchange-correlation magnetic field, electric field and m(r) x B_xc(r) with tasks 71, 81, 141 and 151, respectively -added density, potential and magnetisation plotting for ultra long-range calculations with tasks 731, 732, 733, 741, 742, 743, 771, 772 and 773 -constant electric fields can now be included in ultra long-range calculations; this can be done by setting the vector efielduc -an arbitrary external Coulomb potential can now be read in for use in the ultra long-range calculations; set trdvclr=.true. and the potential is read from the file VCLR.OUT elk-6.2.8 -Wannier90 interface added thanks to Arsenii Gerasimov, Yaroslav Kvashnin and Lars Nordström; and based on the original work of Duc Le and Jon Lafuente Bartolomé -the Wannier90 interface can be used to produce Hartree-Fock band structures (see example) and also works with non-collinear spin-polarised calculations -ultra long-range (ULR) calculations now available thanks to Tristan Müller (experimental) -self-consistent density GW calculations now available thanks to Arkardy Davydov and others; this is a new method still undergoing testing and is thus experimental -GW density matrix can now be written to file with task=640; the natural orbitals and occupation numbers are written to EVECSV.OUT and OCCSV.OUT, respectively -classical spin and orbital dipole magnetic fields can now be calculated and added to the Kohn-Sham field (set tbdip=.true. and tcden=.true.) -extensive optimisations throughout the code: every task should be noticeably faster -improved OpenMP parallelism -improved accuracy of the Mössbauer hyperfine field calculations -added spin and orbital dipole terms to the hyperfine field -updated constants and conversion factors to CODATA 2018 -added Andrew Shyichuk's improved check for requirement of the Tran-Blaha constant -variational meta-GGA functionals (like SCAN) now work with forces -added Roger Mason's fix to make FFTW thread-safe -René Wirnata has created the Elk Optics Analyzer that helps to visualize and post-process optics output data -regenerated species files with lower order local-orbitals -improved k-point convergence of the electron-phonon coupling constant for calculation of superconducting properties -upgraded to LAPACK 3.8.0 -changed default 'radkpt' from 30 to 40 -many minor improvements and bug fixes elk-5.2.14 -Youzhao Lan found a bug which prevented potential-only meta-GGA functionals (like Tran-Blaha) from being used; this has now been fixed -fixed meta-GGA atomic forces; thanks to Michael Porer for pointing out the problem -Eike Schwier discovered a conflicting MPI variable name and also reported that the code crashes when generating species files; both problems are now fixed -linear-response TDDFT off-diagonal components for q=0 now available (experimental) elk-5.2.10 -GW code is much improved and also faster; the Pade analytic continuation of the self-energy is more stable and reliable -OpenMP parallelism greatly improved; nesting is now permanently switched on and the number of threads is controlled by Elk itself; this should improve scaling on hundreds of CPU cores; please report any problems you have with parallelism on the forum -GW spectral function band-structures are now possible; this feature is still experimental -Yaroslav Kvashnin and Lars Nordström found and fixed a bug in the fixed spin moment direction code -fully variational meta-GGA (in the generalised Kohn-Sham sense) is now running in conjunction with Libxc (experimental) -variational meta-GGA works only with collinear magnetism; let us know if you have an idea on how to extend it to the non-collinear case -Elk now interfaces to Libxc version 4 -- please update your library from version 2 -gauge invariant current density plots in 2D and 3D now available (tasks 372 and 373) -the entire code is much faster, particularly advanced methods like Hartree-Fock, RDMFT, BSE and GW; this is in part due to a 'coarse' Fourier grid for the wavefunctions -the lmaxi has been changed from 3 to 1 and several optimisations based on this have been hard-coded into Elk -Broyden mixing (mixtype=3) is now the default; magnetic calculations will now converge using a small bfieldc or bfcmt thanks to an improved magnetisation initialisation scheme -real-time TDDFT calculations no longer require 'nosym=.true.' but rather 'tshift=.false.' and are much faster as a consequence -2D and 3D current density plotting now available with tasks 272 and 273, respectively -task 480 generates a linear-response dielectric function calculation from a time-evolution run -lots of optimisations everywhere in the code, including additional OpenMP directives -lots of minor improvements and bug fixes -cleaned up and improved examples -several direct access files are not closed after reading which speeds up file I/O; please report any problems with this on the forum elk-4.3.6 -GW approximation now available thanks to Arkadiy Davydov; this is a finite temperature Matsubara implementation; currently it only calculates the k-point resolved spectral function on the real axis; see the 'examples/GW' directory (experimental) -the GW approximation works with spin-orbit coupling and non-collinear magnetism; it can also be run after the optimized effective potential (OEP) method -significant optimisations for Hartree-Fock, OEP, RDMFT and BSE -fixed an minor bug in BSE -greatly improved the stability of lattice optimisation; also reduced the variable 'deltast' to 0.001 -improved the convergence of the electron-phonon coupling parameter with respect to k-points; thanks to Xianxin Wu for the careful testing -removed the variable 'epseph' which determined the sampling window for electron-phonon coupling -added new automatic test for TDDFT time-evolution -upgraded to LAPACK 3.7.0 -Elk now uses the LAPACK routine zheevd for diagonalisation which is faster than zheev -changed the variable 'rstsf' to 'ssxc' -the smearing width 'swidth' can now be set with temperature in kelvin using the variable 'tempk' elk-4.0.15 -changed muffin-tin functions to a 'packed' convention; this improves the memory efficiency and speed for the whole code; completely backward and forward compatible -Michael Fechner found a serious bug in DFT+U which has now been fixed; may affect systems with atoms to which DFT+U is applied and which have symmetric equivalents; MF added to list of contributors -fixed a problem with the laser pulse power density plot (AFPDT.OUT) thanks to Peter Elliot and Tristan Mueller -added the ability to randomize the orbitals at the start of a time-evolution run; use the variable 'rndevt0' to set the random amplitude -improved the accuracy of the Hellmann-Feynman force on the atoms; this also improves the supercell phonon calculations -added the reduced Stoner theory (RST) modification to the exchange-correlation functionals, see: L. Ortenzi, I. I. Mazin, P. Blaha, and L. Boeri, Phys. Rev. B 86, 064437 (2012); use the parameter `rstsf´ to adjust the spin scaling -removed the Pulay mixer (mixtype=2) as it was consistently inferior to Broyden -changed the variables 'lmaxinr' and 'lmaxvr' to 'lmaxi' and 'lmaxo', respectively; the old variables still work in elk.in elk-3.3.15 -lots of optimisations of both speed and memory; many tasks should be noticeably faster -added new 'robust adaptive mixer' (mixtype=4) which should be able to converge almost anything; there are no mixing parameters for this mixer; useful for materials searches when you have to be guaranteed convergence; slower to converge than the default mixing and Broyden mixing -added missing term to DFPT phonons corresponding to the first-order change in occupancies and the Fermi energy for q=0; the phonon dispersion for MgB2 is now in excellent agreement with experiment and previous calculations -the electron-phonon coupling code was greatly improved; produces very good coupling constants for Al, Nb, Pb and MgB2; all of which are in the 'examples/phonons-superconductivity' directory -new variable 'epseph' controls the Fermi surface sampling of the electron-phonon coupling matrix elements -Markus Meinert created a script for calculating optical constants from the diagonal components of the dielectric tensor; it calculates the complex refractive index, reflectivity, absorption coefficient and EELS spectrum; available in the utilities directory -real-time TDDFT now outputs a time-dependent DOS and effective temperature at each time step -setting 'uhighq=.true.' results in an ultra-high-quality calculation; when you absolutely have to have the best elk-3.1.12 -Important: fixed an inaccuracy in the scalar relativistic part of the code which has existed for around 12 years; this may slightly affect calculations of heavy elements; special thanks to Stefaan Cottenier, José A. Flores Livas and Marcin Dulak for the extensive calculations -real-time evolution now works with DFT+U (experimental) -added 'ramp' vector potential to time evolution code; this can simulate constant and constantly increasing electric fields; see manual for details; see the example Si-ramp -lots of optimisations everywhere: code should be noticeably faster -José made some changes to the 'highq' and 'vhighq' options -fixed bug with non-collinear optimised effective potential (OEP) -new task (150) writes out the Kohn-Sham-Dirac eigenvalues of the atomic species -SS added two new f_xc kernels: single iteration bootstrap (fxctype=211) and revised bootstrap (RBO) (fxctype=212), see S. Rigamonti, et al., Phys. Rev. Lett. 114, 146402; added two examples: Ne-RBO and LiF-RBO -improved the accuracy of the magnetic anisotropy energy (MAE) calculation by rotating the spherical coverings of the spherical harmonic transform; thanks to James Glasbrenner for testing -David Ernsting found and fixed a bug in the Compton interpolation routine -improved the stability of structural optimisation -removed the smoothing option from the exchange-correlation magnetic field source projection routine -the number of first-variational states for magnetic systems was twice as large as it needed to be: now fixed -improved the vim syntax highlighting generator; run 'make vim' again -organised the examples into categories -minor bug fixes and improvements -note for developers: changed some of the variable names related to atomic species (purely cosmetic) elk-3.0.18 -fixed electron-phonon coupling again; thanks to Karel Carva and Elie Moujaes for the careful testing and discussion -DFPT phonons now work with MPI -SS added the 'single-iteration bootstrap kernel' for linear optics calculations; this is selected with fxctype=211; see the example 'Ar-bootstrap-single' -SS fixed a problem with RDMFT which had appeared in recent versions -SS made minor changes to the non-linear optics code -Important: fixed problem with the option 'cmagz' for forcing spin-orbit calculations to be collinear; this may affect MAE calculations; thanks to Martin Gmitra for finding this and the careful testing -Important: fixed a problem with the magnetisation directions selected for MAE calculations -reworked the 'ncgga' option for non-collinear GGA calculations; should be much more reliable now -several important optimisations; the Hamiltonian matrix setup and density symmetrisation are now faster -magnetic anisotropy energy (MAE) calculation now outputs the direction vectors; thanks to Galya Madzharova and Yu-ichiro Matsushita for the suggestion -added option 'vhighq' for very high quality calculations;see example 'Os-Delta' -'highq' and 'vhighq' options now write out the parameters which are changed -increased default 'lmaxmat' from 6 to 7 -added new option 'nxlo'; this adds extra local-orbitals to the species in order to make the APW functions smoother; this can make calculations, particularly of excited state properties, more accurate -syntax highlighting now available for the vim editor; just run 'make vim' and highlighting will be enabled elk-3.0.4 -real-time propagation for solids now available thanks to the considerable efforts of Kevin Krieger over the past three years; see the example 'Ni-laser-pulse'; this feature is highly experimental -1D, 2D and 3D integrated electron momentum density (EMD) plots now available thanks to David Ernsting and Stephen Dugdale; these plots can be compared directly to Compton scattering profiles; see the examples 'Li-Compton' and 'Ni-Compton'; still experimental -electron-phonon coupling has now been fixed and is also available for linear-response phonons -large number of optimizations made throughout code -code is more memory efficient in many areas -Arkardy Davydov found a bug in OpenMP nested parallelism for BSE which has now been fixed -fixed bug in magnetic anisotropy energy (MAE) calculation found by José A. Flores Livas -added option for automatically converting species from APW+l.o. to LAPW; see option 'nxapwlo' in manual -greatly improved unit cell optimisation algorithm; now should be very stable; see example 'Ge-lattice-opt' -Markus Meinert updated his 'blocks2columns.py' python code which should now work correctly with EPSILON_xx.OUT files -modified the 'highq' defaults thanks to testest performed by Don Hamann described here -full charge and spin response function can be written to file using task=331 -supercell phonons calculation now work with MPI -removed use of OpenMP ATOMIC directive because of bug in ifort version 11 elk-2.3.22 -Lars Nordström, Francesco Cricchio and JKD added fixed tensor moment (FTM) calculations (experimental) -LN made changes to the mixer routine which makes restarts smoother -the Hamiltonian is now made real for systems with inversion symmetry; this was removed in the previous release because of a bug; the FV step is now up to four times faster -fixed problem with symmetry breaking of tetragonal systems during lattice optimisation pointed out by various users -further improved and stabilised lattice optimisation -fixed a long-standing bug related to electron-phonon coupling pointed out by Matthieu Verstraete and Ryotaro Arita -fixed a problem with electron-phonon coupling introduced in a previous version, discovered by user 'wuhuagumu' and Heung-Sik Kim -TDDFT reponse code for both charge and magnetism has been made faster and more memory efficient -creating a STOP file in the running directory now cleanly stops a structural optimisation run; as requested by James Mudd -problem with nested OpenMP has now been fixed -more OpenMP parallel loops have been added -extended the use of BLAS throughout the code -fixed bug which affected the running of task=120 -removed the 'frozencr' option for the moment because the core energy was incorrectly calculated; this will be restored in a later release -various optimisations and minor bug fixes elk-2.3.16 -DFT+U now works with multiple entries per atom; every mention of LDA+U has now changed to DFT+U to reflect the generality of the method, and to give it an air of respectibility; for example, the block 'lda+u' is now 'dft+u'; old input files will still work fine -greatly improved the magnetic anisotropy energy (MAE) calculations, thanks to suggestions by various users; the crystal is now rotated instead of the magnetisation direction -fractional atomic species can now be generated on the fly using the 'fspecies' block; see the example 'fractional-species'; note that the atomic mass is only an estimate in these species files; this is useful for the virtual crystal approximation (VCA) -spin-orbit coupling can now be used with strictly collinear calculations by using 'cmagz=.true.'; this will speed up the calculation considerably; use only when the system is genuinely collinear -unstable non-collinear GGA calculations can now be stabilised by setting 'ncgga=.true.' -improved the speed and stability of the lattice vector optimisation; thanks to forum discussions regarding BaTiO3 -added the lattice optimisation of BaTiO3 to the examples directory; thanks to David Tompsett -geometry optimisation should now work fine with MPI -added highly converged osmium example 'Os-convergence' thanks to a lengthy discussion on the forum started by Marcin Dulak; also increased the value of 'lmaxmat' for the 'highq' option thanks to Marcin's careful testing -Important: greatly improved the code setup and compilation thanks to suggestions by Marcin Dulak; all compiler options are now in the file 'elk/make.inc'; the Makefile in 'elk/src' no longer requires modification -new variable 'rotavec' available in elk.in; this is a rotation specified in axis-angle convention which allows the rotation of the crystal axes -thanks go to Rich Martin and collaborator Wen for useful testing and suggestions -improved the DFPT phonon calculations and added the example 'Nb-phonon-DFPT' -decreased the chance of accidentally triggering the convergence indicator in the self-consistent loop thanks to a suggestion from Markus Meinert -fixed problem with the routine 'nonlinopt', pointed out by user Sabrina and Koichi Kitahara -improved the OpenMP efficiency in parts by using '$OMP ATOMIC' instead of '$OMP CRITICAL' -changed the names of various internal subroutines; for example 'seceqnfv' is now 'eveqnfv' -thanks go to Igor Mazin, Konrad Bussmann and James Glasbrenner for some very useful improvments -fixed problem with species generation and MPI pointed out by Marcin Dulak -fixed problem with use of Fortran 'APPEND' flag thanks to user Alaska -updated the fundamental constants and conversion factors to CODATA 2008 recommended values -Important: updated code for compatibility with Libxc version 2.2.0; see the manual and note the change in compilation instructions -fixed problem with the routine 'energyfdu' which affected DFT+U calculations with 'inpdftu=4' (input of Yukawa screening length) -Important: temporarily switched of the conversion of the Hamiltonian to a real symmetric problem because of possible bug; the only effect of this is that the code is slower for systems with inversion symmetry; this will be fixed in the next release -minor bug fixes and optimisations elk-2.2.10 -fixed problem reported by Sonu Sharma and Michael Fechner with calculation of expectation values L, S and J -slightly improved the magnetic anisotropy energy (MAE) calculation -added new variable 'socscf' which scales the spin-orbit interaction term in the Hamiltonian; this allows calculation by interpolation of the MAE for cases where the MAE is small -added new variables to VARIABLES.OUT elk-2.2.9 -fixed problem with fixed spin moment (FSM) calculations pointed out by Jagdish Kumar -added new output file VARIABLES.OUT; this is for developers wanting to interface their codes to Elk; it contains most of the useful variables required for reading the Elk binary files; if you would like a variable added then just send me a mail; enabled when 'wrtvars' is set to .true. -minor cosmetic changes elk-2.2.8 -Important: fixed serious bug discovered by Jan Balluff and Markus Meinert which produced erroneous magnetic moments with GGA; this only affects version 2.2.5; sorry about that -even more substantial speed-ups for most parts of the code -fixed MPI problem with the magnetic anisotropy energy (MAE) routine reported by Konrad Bussmann and José A. Flores-Livas -minor bug fixes and improvements elk-2.2.5 -dramatic speed-up for most parts of the code thanks to some (fairly obvious) optimisations -greatly improved lattice vector optimisation -automatic determination of the magnetic anisotropy energy (MAE) with 'task=28' (experimental); see the example 'FeCo-MAE' -the variable 'nempty' is now a real number; see manual entry -magnitude of total magnetisation vector written to MOMENTM.OUT -improved the species files -made the linearisation energy search more reliable -reduced the annoying 'linearisation energy not found' warning elk-2.2.1 -added full structural optimisation; setting 'latvopt=1' performs unconstrained optimisation of the lattice vectors; 'latvopt=2' performs iso-volumetric optimisation; see the example 'MgB2-lattice-opt' -minor bug fixes and optimisations -all tests should now report 'Passed' elk-2.1.25 -fixed several problems with the previous (beta) release; thanks to Markus Meinert for the exhaustive checking -magnetic hyperfine fields are now correctly calculated thanks to MM -added missing items to the manual -added the example 'Si-phonon-DFPT' -thanks to Kari Ruotsalainen, Aleksay Golovchan and Vladimir Nazarov for pointing out bugs in 2.1.22 - now fixed -added estimation of direct gap to INFO.OUT; thanks to user Sean for the idea -this is the version that will be used for the Elk Turorial -see you in Lausanne! elk-2.1.22 (beta) -Important: this is a beta version and should not be used for production work; a production release will be made in a few weeks -Important: this version is not backwards compatible; calculations will have to be converged from scratch -density functional perturbation theory (DFPT) phonons now available; only for spin-unpolarised calculations at the moment; spin-polarisation will be added for the next release; use with task=205; still experimental and generates incorrect results for certain symmetries - we're still working on this; see the example 'Al-phonon-DFPT' -full frequency-dependent magnetic response function now available; works with non-collinear magnetism, etc.; use task=330; see example 'Ni-magnetic-response' -iterative diagonalisation greatly improved; now uses the method of P. Blaha, et al., J. Comp. Phys. 229, p453 (2010) -upgraded code to handle libxc version 2 -hybrid functionals should now work with libxc (experimental) -upgraded LAPACK to version 3.4.2 -block name dos changed to wplot; changed variable 'nwdos' to 'nwplot' -variable 'gmaxrpa' changed to 'gmaxrf'; this is the response function G-vector cut-off -BSE and TDDFT now faster, more accurate and memory efficient; thanks to M. Meinert for discussions -task 188 changed to 320 -reintroduced the variables 'lmaxinr' and 'fracinr'; this improves stability -lots of optimisations -added more MPI parallelism -various minor bug fixes -conduction state local-orbitals can now be switched on; use 'lorbcnd=.true.'; this can improve both ground-state and response function calculations; this is switched on automatically when 'highq=.true.' -most species files have been changed; mostly larger muffin-tin radii -Important: Markus Meinert suggested a change to 'nempty'; this variable now represents the number of states per atom and spin; this scales automatically as the number of atoms is increased -default 'nempty' is now 4 -M. Meinert changed the default Broyden parameters after extensive testing -LN fixed bug in XCrysDen Fermi surface plotting -LN also reduced the number of states which contribution to the Fermi surface plot to the minimum -supercell phonon calculations can now be restarted with 'task=202' -Frank Wagner discovered a bug which affects certain types of symmetries in rare instances; this has now been fixed -Important: default smearing function is now Fermi-Dirac (stype=3) -entropy contribution now added to the total energy -default smearing width reduced to 0.001 Ha, corresponding to room temperature -M. Meinert added a blocks-to-columns script; this is in the 'utilities' directory -Oscar Grånäs added to list of main authors elk-1.4.22 -Important:fixed bug in BSE calculations owing to incorrect rotation of dielectric function matrix elements; thanks to Arkardy Davydov for pointing this out -BSE is now three separate tasks: 185 writes the BSE Hamiltonian to file, 186 diagonalises the Hamiltonian and 187 produces the BSE dielectric function; thanks to Markus Meinert for suggesting this -adiabatic local density approximation (ALDA) for linear-response TDDFT now available; see example 'diamond-TDDFT-ALDA' -added Markus' suggestion that the Tran-Blaha constant can now be read in with the variable 'c_tb09' -added new variable 'highq'; set this to .true. and the most important parameters are set for a high-quality, well-converged calculation; see the settings in the file 'readinput.f90'; thanks to Igor Mazin for all the testing -removed the variables 'lmaxinr' and 'fracinr' as they were unnecessary -simplified TDDFT routines -Important: the variable 'radkpt' has been redefined and should be made larger by 2π ; (sorry about this, the original scale for this variable was correct!) -fixed problem with MPI that caused some LDA+U runs to crash; thanks to Alaska Subedi for pointing this out -added documentation -several minor bug fixes and optimisations elk-1.4.18 -Important:fixed severe bug affecting spin-unpolarised native GGA functionals, thanks to Jiji Pulikkotil for pointing out a problem with Mg3Sb2 which led to its discovery; this now makes structural optimisation truly variational for PBE -Important:fixed severe bug affecting spin-polarised 'libxc' GGA functionals -thanks to Miguel Marques and Silvana Botti for the week-long collaboration at Université Lyon where, amongst other things, we rewrote the meta-GGA interface to 'libxc' -thanks to Markus Meinert for careful testing of meta-GGA with various systems -MM also added questions and answers to the FAQ -meta-GGA now works for collinear magnetism only: it is inconsistent with non-collinearity -Henning Glawe pointed out a bug affecting the generation of the k-point set when 'autokpt=.true.' -Important: the variable 'radkpt' has been redefined and should be made smaller by a factor of 2π -SS fixed a bug in the plotting of spin-polarised Fermi surfaces -electron momentum density now available with 'task=170'; thanks to S. Dugdale and D. Ernsting for discussions -lattice vectors, atomic positions and muffin-tin magnetic fields can now be randomised by setting the random amplitudes 'rndavec', 'rndatposc' and 'rndbfcmt' to positive values; this is useful for checking stability of a calculation -the k-points corresponding to the indirect band-gap are now reported to 'INFO.OUT' -lots of optimisations and simplifications elk-1.4.5 -potential-only meta-GGA now available in conjunction with Libxc as an experimental feature; see the example 'Si-meta-GGA'; thanks to Miguel Marques for discussions -finite q-vector linear response TDDFT now available thanks to SS -Important: variable 'autormt' has been removed and automatic scaling of the muffin-tin radii is now always on; a new simpler algorithm for computing the radii was implemented; non-overlapping muffin-tins will not be rescaled; calculations may need to be reconverged -changed parameter for estimation of the nuclear radius from Z to A; thanks to Giorgio Concas for pointing this out -Kohn-Sham band gap written to 'GAP.OUT' after each iteration -3D nesting function plot now available; use 'task=105' -fixed problem with a constant in the BSE exchange term -fixed problem of TDDFT freezing with MPI -lots of optimisations and simplifications elk-1.3.31 -fixed problem with OpenMP 'reduction' clause in calculation of dielectric function -no other changes elk-1.3.30 -removed factor of 2 from the BSE exchange term, this has little effect on spectra in the optical range; spotted by Markus Meinert after careful investigation of core-state BSE spectra -M. Meinert also improved the 'CaO-BSE-core' and 'Fe-XMCD' examples -fixed problem with symmetry discovered by Alexey Baranov -calculation of the partial DOS is now parallel, thanks to suggestions from Anton Filanovich -various optimisations; including some ideas from Anton Kozhevnikov -iterative diagonalisation is now much faster -improved the adaptive mixing scheme -improved the initial stability of the self-consistent loop, thanks to discussions with Lars Nordstrom Notes for developers -inverse indices from 'idxis', 'idxia', 'idxil' and 'idxim' for species, atoms and angular momenta are now available, thanks to A. Kozhevnikov -the arguments to hmlaa, hmlalo, hmllolo, olpaa, olpalo, olplolo have changed elk-1.3.22 -fixed a problem which occurs with version 10 of the Intel compiler -simplified the 'setup' script and added OpenMP compiler options by default -no other changes elk-1.3.20 -added directionality to the TDDFT code; thanks also to Vladimir Nazarov for discussions -a pre-print is now available for the new TDDFT 'bootstrap' kernel: arXiv:1107.0199v1 [cond-mat.mtrl-sci] -added the scissor correction to the RPA inverse dielectric function in EPSINV_RPA.OUT -fixed a problem with running geometry optimisation with MPI; thanks to Arkady Davydov and Antonio Sanna for discussions -geometry optmimisation has changed: now the geometry, interatomic distances, final total energies and forces are stored for each optimisation step in GEOMETRY_OPT.OUT, IADIST_OPT.OUT, TOTENERGY_OPT.OUT and FORCES_OPT.OUT -removed geometry optmisation from the ground-state calculation and put it in a separate subroutine -reduced pseudocharge density constant (lnpsd) because the spherical bessel function order could be too large; may change total energies slightly -q-points and weights written to QPOINTS.OUT -minor changes and optimisations elk-1.3.15 -fixed serious bug introduced in the last version affecting some tasks (for example DOS plots) for crystals with non-symorphic symmetries; thanks to Vladimir Nazarov and Daniel Rohr for pointing this out -VM also fixed the graphene example, in which the atomic coordinates were (embarrassingly) incorrect; also included a high-precision DOS plot to demonstrate the Dirac-like band structure -SS, JKD, Antonio Sanna and Hardy Gross added a new TDDFT functional, called the 'bootstrap' kernel, which produces remarkably good linear optical response functions (article currently in preparation); see the example 'LiF-TDDFT' -Antonio Sanna added the Eliashberg equations for finding the superconducting gap as a function of temperature; see the example 'Al-Eliashberg' -improved the electron-phonon coupling calculation (task=240); this is faster, more accurate and now works for spin-spirals; now also parallelised with MPI -removed packed matrix format everwhere in the code, along with the variable 'tpmat'; the first-variational matrices are now stored in upper triangular format; this takes more memory, but is faster -Anton Kozhevnikov fixed a small problem with calculating the nuclear-nuclear energy -various optimisations, simplifications and minor bug fixes -this version of the code with be used in the CECAM Tutorial Notes for developers -the order of indeices for the q- and w-dependent inverse dielectric function, epsinv, have changed from (w,G,G') to (G,G',w) elk-1.3.2 -linear response time-dependent density functional theory (TDDFT) now available for calculating the q->0 dielectric response; see the example 'LiF-TDDFT' (experimental) -fixed a problem with the BSE calculation which made the response function too large -added the possibility of using arbitrary states in the BSE kernel thanks to discussions with Markus Meinert; this enables the calulation of core state BSE spectra; see the example 'CaO-BSE-core' (experimental) -MM also added an X-ray magnetic circular dichroism (XMCD) example: 'Fe-XMCD' -BSE calculations are now faster, thanks to discussions with MM -Alexey Baranov made several changes to the structure factor code, including adding an energy window, 'wsfac', for the calculations; see the example 'MnO-str-factors' -Tyrel McQueen suggested a way to speed up the Hartree-Fock calculation; this has been implemented and also considerably speeds up OEP and RDMFT -TMcQ also made some ongoing changes to the hybrid functional code -made the radial Dirac and Schrodinger integrators yet more stable; thanks to AB and Frank Wagner for discussions -fixed a problem with the ordinary RPA dielectric function; only affects calculations which have a scissor shift which made epsilon slightly too small -real symmetric diagonalisation now used for the first-variational eigenvalue problem for crystals with inversion symmetry; this can speed up the calculation by a factor of three; this is thanks to discussions with Lars Nordstrom; Important: the atomic basis may be shifted to a different position and old output files may need to be reconverged -fixed a stability problem which occurs when using GGA functionals by removing G-vector truncation of the effective potential introduced in version 1.0.16; thanks to Greg Walker for discovering this -LDA+U calculations are now faster thanks to fast evaluation of the atomic density matrix -Broyden mixing scheme now available: this seems to be both fast and stable (use 'mixtype=3') -removed Anderson mixing -improved starting guess for the density in ground-state calculations -upgraded to LAPACK 3.3.1 -various optimisations and simplifications Notes for developers -the arrays haa, halo, hlolo, oalo, ololo are now smaller and the indexing has been rearranged elk-1.2.20 -the Bethe-Salpeter equation (BSE) for linear optics now works beyond the Tamm-Dankoff approximation -RPA and BSE calculations now use full wavefunctions instead of plane waves -removed the Coulomb regulator from the calculation of RPA dielectric function, instead used the analytic results for the head and the wings of the matrix (thanks to Vladimir Nazarov for discussions) -improved the stability of radial Dirac and Schrodinger integrators (thanks to Alexei Baranov, Frank Wagner and Ondrej Certik for discussions) -added more block descriptions to the manual (thanks to various people for pointing out omissions) -various optimisations elk-1.2.15 -SS and JKD added the Bethe-Salpeter equation (BSE) for linear optics calculations. This feature works with LDA+U, magnetism and spin-orbit coupling. It is also parallelised with MPI and can be run across a cluster. See the 'LiF-BSE' and 'Si-BSE' examples. Currently an experimental feature -Alexey Baranov added density and magnetic structure factors: see the 'MnO-str-factors' example -AB also fixed a problem with output of the spacegroup code -full frequency and G vector dependent RPA inverse dielectric function now available with 'task=180'. Works with metals, insulators, magnetism and SOC, and can be calculated for arbitrary complex frequencies. Also parallelised with OpenMP and MPI. Thanks to Anton Kozhevnikov for discussions -added lots more MPI parallelism and made the code more MPI-friendly -many optimisations across the whole code -Simone Chiesa, Anton Kozhevnikov and Adolfo Eguiluz found a problem in the plotting of the partial DOS which has now been fixed -the first-variational eigenvalue matrices can now be stored and diagonalised in non-packed storage mode: use 'tpmat=.false.'. This can speed up calculations at the expense of memory -Tyrel McQueen found a bug in the 'findprim' routine, now fixed -TMcQ also suggested a change to how the code connects the points of the 'plot1d' vertices -Martin Stankovski suggested that 'ecvcut' be made into an input variable, allowing the core-valence cut-off to be adjusted -added the phonon calculation of Ni to the examples -Jerzy Goraus contributed a script for calculating VB-XPS spectra from PDOS* files; and also one for converting the Wien2K struct file to spacegroup.in -modified some species files thanks to tests done by J. Goraus -Henning Glawe suggested including the version number in the release directory -upgraded to LAPACK 3.3.0 -made tolerance for finding the linearisation energies (epsband) much smaller: this improves the overall stability of the self-consistent loop Notes for developers -arguments to 'genppts' have changed; also the non-reduced k-points are now stored in the remaining part of the reduced k-point arrays elk-1.1.4 -message passing interface (MPI) parallel runs now available; scalable to hundreds of cores across a cluster; can also be used as hybrid OpenMP+MPI parallelism for maximum efficiency; with thanks to Bhagawan Sahu for help with testing; see manual for compilation and running instructions -S. Sharma added susceptibility tensor for non-linear optical second-harmonic generation (SHG); see example 'GaAs-NLO' for details -added spin-orbit correction to momentum matrix elements; affects linear and non-linear optics -optical calculations now work in combination with spin-spirals -updated interface to version 1.0 of the ETSF exchange-correlation library, libxc; thanks to M. Marques and T. McQueen for assistance -fixed bug spotted by T. McQueen involving using multiple tasks in conjunction with 'primcell=.true.' -A. Kozhevnikov fixed bug in 'xc_pwca.f90' -A. Kozhevnikov also fixed serious bug in 'getevecfv.f90' -F. Cricchio changed the order of lattice vector angles in 'spacegroup' utility to 'bc, ac, ab' which corresponds to the convention alpha, beta, gamma -removed scissor correction from eigenvalue solver; now it is used, as before, only in optics calculations -T. McQueen suggested an improvement to the routine which generates the path in reciprocal space for bandstructure plots, 'connect.f90', which has been implemented -fixed problem with XCrysDen Fermi surface plots, spotted by FC -various optimisations and simplifications Notes for developers -arguments to 'zpotcoul' have changed in anticipation of linear-response phonons; should now be called in conjunction with 'genzvclmt' elk-1.0.17 -fixed problem with Fermi surface generation introduced in the last version -E. K. U. Gross added to list of main developers -no other changes elk-1.0.16 -fixed problem in linear optics calculations for metals - thanks to Antonio Sanna, Fabio Bernardini and Sandro Massida for pointing this out -FC and LN added option for automatic determination of APW linearisation energies (use 'autolinengy=.true.') -Marty Blaber made a script which allows for semi-automatic labeling of the vertex locations with gnuplot (found in the 'elk/utilities' directory) -FC and LN fixed problem with some compilers when writing FERMISURF.OUT -FC and LN fixed problem with writing XCrysDen Fermi surface plots -Anton Kozhevnikov found and fixed a problem with the generation of the irreducible representation file 'ELMIREP.OUT' -Torbjörn Björkman added a new routine which automatically determines the smearing width from the k-point density. See 'autoswidth' in the manual and the example 'Nb-autoswidth' for details -added a constant electric field E in the form of a saw-tooth potential: set the vector 'efieldc' (experimental) -added a constant vector potential A to the Hamiltonian to generate constant currents: set the variable 'afieldc' (experimental) -FC and LN fixed problem with a spin-polarised GGA routine -FC and LN pointed out that the energy term associated with the excess charge compensating background should be zero. This term has now been removed -code now more memory efficient thanks to smarter array allocation -the variable 'rgkmax' can now be made arbitrarily large without risk of instability -removed variable 'cfdamp' -Anton Kozhevnikov pointed out that the radial functions were being redundantly calculated for equivalent atoms -- now fixed -Anton Filanovich added several questions to the FAQ -scissors correction (given by the variable 'scissor') now applied consistently immediately after the generation of the eigenvalues -FC and LN removed the spherical harmonic transform matrices with rank lmmaxapw -added dielectric function calculation for arbitrary q-vector, see 'LiF-Yambo' example (experimental) -by setting 'gmaxvr=0', the G-vector cut-off for the potential and density is automatically determined from 'gmaxvr=2*gkmax+epslat' -various bug fixes, simplifications and optimisations elk-10.4.9/PaxHeaders/Makefile0000644000000000000000000000013014762655567013123 xustar0029 mtime=1741380471.32202338 30 atime=1741380471.321023375 29 ctime=1741380471.32202338 elk-10.4.9/Makefile0000644002504400250440000000101514762655567015644 0ustar00dewhurstdewhurst00000000000000 MAKE = make include make.inc all: cd src; $(MAKE) all cd src/eos; $(MAKE) cd src/spacegroup; $(MAKE) clean: cd src; $(MAKE) cleanall cd src/eos; $(MAKE) clean cd src/spacegroup; $(MAKE) clean rm -f *.o *.mod *~ fort.* ifc* *.gcno *.exe test: cd tests; ./test.sh test-mpi: cd tests; ./test-mpi.sh test-libxc: cd tests-libxc; ../tests/test.sh test-libxc-mpi: cd tests-libxc; ../tests/test-mpi.sh test-all: $(MAKE) test $(MAKE) test-libxc $(MAKE) test-mpi $(MAKE) test-libxc-mpi vim: cd src; ./vimelk elk-10.4.9/PaxHeaders/make.inc0000644000000000000000000000013214762655567013075 xustar0030 mtime=1741380471.334023443 30 atime=1741380471.333023438 30 ctime=1741380471.334023443 elk-10.4.9/make.inc0000644002504400250440000001256214762655567015625 0ustar00dewhurstdewhurst00000000000000 MAKE = make AR = ar # Elk requires BLAS/LAPACK and fast Fourier transform (FFT) libraries. # We recommend using optimised, mutithreaded BLAS/LAPACK libaries such as those # provided by the Intel Math Kernel Library (MKL), OpenBLAS or BLIS. # Elk can use either the Fastest Fourier Transform in the West (FFTW) or the # MKL FFT. Both single and double precision versions of the FFT are needed. #------------------------------------------------------------------------------# # Libraries # #------------------------------------------------------------------------------# #------------------------------------------------------------------------------- SRC_MKL = mkl_stub.f90 # To enable MKL multithreaded parallelism, uncomment the following line and link # with the MKL library. #SRC_MKL = #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # If your compiler does *not* support the Message Passing Interface (MPI) then # uncomment the line below. #SRC_MPI = mpi_stub.f90 #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # Elk supports two FFT libraries: # Fastest Fourier Transform in the West (FFTW) # Intel Math Kernel Library (MKL) Fast Fourier Transform # # FFTW is enabled by default with: SRC_FFT = zfftifc_fftw.f90 cfftifc_fftw.f90 # # To enable MKL FFT instead, copy mkl_dfti.f90 to the elk/src directory and # uncomment the line below. #SRC_FFT = mkl_dfti.f90 zfftifc_mkl.f90 cfftifc_mkl.f90 #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- SRC_LIBXC = libxcifc_stub.f90 # To enable Libxc first download and compile version 6.x of the library. Next # copy the files libxcf03.a and libxc.a to the elk/src directory and uncomment # the following lines. #LIB_LIBXC = libxcf03.a libxc.a #SRC_LIBXC = libxcf03.f90 libxcifc.f90 #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- SRC_W90S = w90_stub.f90 # To enable the Wannier90 library copy libwannier.a to the elk/src directory and # uncomment the following lines. #SRC_W90S = #LIB_W90 = libwannier.a #------------------------------------------------------------------------------- #------------------------------------------------------------------------------# # Compilers # #------------------------------------------------------------------------------# #------------------------------------------------------------------------------- # Intel Fortran LLVM-based compiler (ifx). #F90 = mpiifx #F90_OPTS = -O3 -xHost -ipo -qopenmp -qmkl=parallel #F90_LIB = -liomp5 -lpthread -lm -ldl #SRC_MKL = #AR = xiar #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # Intel Fortran compiler classic (ifort) version 18 and later. F90 = mpiifort F90_OPTS = -O3 -xHost -ipo -qopenmp -mkl=parallel F90_LIB = -liomp5 -lpthread -lm -ldl SRC_MKL = AR = xiar #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # GNU Fortran compiler with MKL. #F90 = mpif90 #F90_OPTS = -Ofast -march=native -mtune=native -fopenmp -ffpe-summary=none -Wno-lto-type-mismatch #F90_LIB = -lmkl_gf_lp64 -lmkl_gnu_thread -lmkl_core -lpthread #SRC_MKL = #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # GNU Fortran compiler with BLIS, libflame and FFTW. #F90 = mpif90 #F90_OPTS = -Ofast -march=native -mtune=native -fopenmp -ffpe-summary=none -Wno-lto-type-mismatch #F90_LIB = -lblis -lflame -lfftw3 -lfftw3f #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # GNU Fortran compiler with OpenBLAS, LAPACK and FFTW. #F90 = mpif90 #F90_OPTS = -Ofast -march=native -mtune=native -fopenmp -ffpe-summary=none -Wno-lto-type-mismatch #F90_LIB = -lopenblas -llapack -lfftw3 -lfftw3f #SRC_OBLAS = #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # Intel Fortran with debugging and profiling options. #F90 = mpiifort #F90_OPTS = -O3 -qopenmp -mkl=parallel -pg -xHost -init=snan,arrays -warn unused #F90_LIB = -liomp5 -lpthread -lm -ldl #SRC_MKL = #AR = ar #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # GNU Fortran debugging and profiling options. #F90 = gfortran #F90_OPTS = -O3 -Wall -Wunused -Warray-temporaries -Waliasing -Wintrinsics-std -Wtabs -Wfunction-elimination -Wrealloc-lhs-all -fopenmp -fbounds-check -pg #F90_LIB = -lmkl_gf_lp64 -lmkl_gnu_thread -lmkl_core -lpthread #SRC_MKL = #SRC_MPI = mpi_stub.f90 #------------------------------------------------------------------------------- elk-10.4.9/PaxHeaders/elk.sh0000644000000000000000000000013214762655567012574 xustar0030 mtime=1741380471.347023511 30 atime=1741380471.347023511 30 ctime=1741380471.347023511 elk-10.4.9/elk.sh0000755002504400250440000000060114762655567015316 0ustar00dewhurstdewhurst00000000000000#!/bin/bash # set the number of OpenMP threads per node equal to the number of cores # (this environment variable does not normally need to be set) #export OMP_NUM_THREADS= # no binding of threads to cores export OMP_PROC_BIND=false # increase the OpenMP stack size export OMP_STACKSIZE=512M # increase the regular stack size ulimit -Ss 524288 # Elk executable file ~/elk/src/elk elk-10.4.9/PaxHeaders/docs0000644000000000000000000000013214762655577012341 xustar0030 mtime=1741380479.318065182 30 atime=1741380479.294065057 30 ctime=1741380479.318065182 elk-10.4.9/docs/0000755002504400250440000000000014762655577015140 5ustar00dewhurstdewhurst00000000000000elk-10.4.9/docs/PaxHeaders/Brillouin_zones.pdf0000644000000000000000000000013214762655577016266 xustar0030 mtime=1741380479.299065083 30 atime=1741380479.296065067 30 ctime=1741380479.299065083 elk-10.4.9/docs/Brillouin_zones.pdf0000644002504400250440000057763414762655577021036 0ustar00dewhurstdewhurst00000000000000%PDF-1.4 % 6 0 obj << /Length 71 /Filter /FlateDecode >> stream x3T0BC]=seUeɁTA3000#5Vp Ct;N? ! endstream endobj 5 0 obj << /Type /Page /Contents 6 0 R /Resources 4 0 R /MediaBox [0 0 507.249 517.809] /Parent 7 0 R >> endobj 3 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/var/tmp/10089666731916source1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 8 0 R /BBox [0 0 507.25 517.81] /Resources << /XObject << /Im1 9 0 R >>/ProcSet [ /PDF /ImageB ] >> /Filter /FlateDecode /Length 10 0 R >> stream H*25032U0BSCs= C039K3P%+ n endstream endobj 8 0 obj << /ModDate (D:20020211151125+01'00') /CreationDate (D:20020211150909+01'00') /Creator (Acrobat 5.0 Image Conversion Plug-in for Windows) /Producer (Acrobat 5.0 Image Conversion Plug-in for Windows) >> endobj 9 0 obj << /Type /XObject /Subtype /Image /Name /Im1 /Width 4228 /Height 4316 /BitsPerComponent 1 /Decode [ 1 0] /Filter /CCITTFaxDecode /DecodeParms << /K -1 /Columns 4228 /Rows 4316 /BlackIs1 true >> /ColorSpace /DeviceGray /Length 11 0 R >> stream XR0G}5K4W QL/.܂D,D$l*r@醐A~UKE}uv8LÄת^t}._5UOIn1. nuW]m`UGi{9'/W7tȩ30q;_ v=K8  m.K]WUKaWnx_TگWL]uvPXwLX.-k__]|OzW_"ݏ__*o^u {]f+_$m F#o-.4Gk0 | f1030odcYt\\>YF̎ ܁ɅVgUF"xlyϺ,H.n4N}>Y荣/0hZ 1B!@] Ͱ`h!@h#:1-YUy0@#6DGoB\Dvn#E0R8˲>^0 kraC <J xLsR)D ._? xX(s. @9-CQovD  A{{ M>0oIo >aIl> ;ۆ{}&z]*}'}xo`ag&mJx7j0?6WHpaA0Pn"}&M tA 0m0 >aa0} q}& `aA0MȭuH7úL1 >PML60aanao ; ke~ݜL aoޓoxk <0L>z7°eoOOA-29xH0ܮx!iNqC.&@U p/ 6lS28dc$'3 sHd'J\h6 Ze~"8-ِ0F٘-Ve٠00#p[r8|#| 2a&G[#n6 ]F# `G/ i""""pH}40"1`*B:L6{)|a RR P'H2!ܛAd2aW;q6Zt Xn8I QY P6h<&@R6TidptHc9: Ae7Zh:HK2id6aLNn !&$PVd<A(m' aaI#"I[tm+ .A;t,7Ki6ү-KIwKl4 {ẮJ۠m' ?$zN Imt+ tItu^ MRvVj$[I#'[i8nǴ7Iv ҭvVVÄa^J:++l0{I+kᇯ _e47A%!ޫtn I,67IxinÄN7ivk/na]^aM۠maU^Wm-AvJ}aKt%m/mҭ7Ivݺ[`ä vo /m[ ქT-,EZV/ X0*tI0wIml ^T짥väuTvD A$إtL$t$-I]-[ +/IۥMl:J tl%aXt7I+Kn Km+oJW :UiXnv,: ?Eb .Hʵl=fFnM <7 ]\7I0t[aa!n]VpKp\47Iw m%Kۥ::]Km^/l anpKzl%]U:I턖ݺIz 0V/zuKl% : -pV{iv%[h.wnWIv[aJҬ7Iv}aKtOa]i;aImiTaҧm/aZm+^-W Tqmp;i{MnI6l:^^ޒ m ^퇪iS-I0taUN/m!]vA*K :^M~XnA;i6aKh-I}+ ={i;m`[i6tÄm"%}oKڧl:UN^鴷 :I4Im\m-OU; V ۥVn/a[Am%m't0MKlKm[xnl8*V!!-t@>ᇥr{a+ alF :Ka|7+8]I&P[eTKa[l?t7ZmtoJW- xa[KzI6 A^?VKm/ixn]T%i n i]m~]/taa >ix[vհa!i8n]¶NAX`VNWt* l?Kh-m' >a&tm+ Mv^a%l%íw[mm/a_ mҼ7I-mޗx7Zav^tmI0[i]%XaK:[꽄m/ Kp އKmUmiv޽0m tm+p%7I-֜7m/amvݾ/ a[a+xNh mqt鰗am;l$Wl$t]֛Kw_}' ]Z[~ V^AWj 5nv[zIV]Ynm ;V I]Jޗ碌l%~^4h&mK&SJ^I~[Wl%WKUn}wJ_l%umt~m~/ISޒi}w[kin}aԉ&^h*_uKմ}}ui'wU^5@˙ϯoTB)0,&@ڂr zT9r(h&ީb""Mx'S *.JJ#\ӯ, (OwDG !w,L).f uQ,He[!,ڲxjCf%`x6Ckw2:H6#mŔkO]nfG[d !YdEz# u) oe@d ܎ckWLlG* ":WzR<a%\\[Eu0<3Kx߬RQ"-OT $zR#y )No\ȐB8 ᰸rzFF3x4MuHʨQ#u{{jxfB"=]Sato[_mv%ˁE?28$uZZ=.G~+B$9&a7O[W}l Rumu{s#\OWݿ@ˁGCM_iޢ@9F; T@jAFJfiOzDn$[_7R~@nV"Q {6k#DKTo]'K-_6>ti7Jմi'O M+Ioi7M' 'VrRoI=:[n Sk}P!;ImuIIMoo! mo:t[z7\7NڒMK{VtVuK|+nҭ"Nm-, aS}л m$]:oA}%A}o[zMXNB?>m>:Z _k{adj:XL! [~}I-(wAm=h  ]u! M]յn AagxI]z M꭫i;n=Roo-{vwzZOI~mA-鄶ޝ'M+ >%t}麒jvޔ- $^ޕl0=iv b޺H%ImIl>K}{}a%I6^5BN/n{@~Xt08Kt!~}$ >t=ݥ[uPXa'uo,7 -۪MںA'n@Gm{ka.xRBޒ[}U:i'L>[t{t <6PXouA-&{zKRۦռ$t!tWnmI*ޡwo[]zK{atJ.viu%o^JwTUXo[}KaKopo| CXztj^v%oknn[Iw 4PJ҅~&ީ{v,1 _o)-;I &mzIm}}U7IK 4JvO=ޭ-ַuwKonH&۵aS%iST菆PA8ڇXNeIߡ MuI[&]_UNޓi]: ,l ^}mz[~i%}Mի^=W$TOKku _q &$^ZZU}/m&Uom_$-m&aOMv*mJ @ ^l t*%jpkzA:JVߥ 7h! =ҴE7tI zH ii½0պtnOV%a &I?eN V.[zI{i-0MwM[ W ެ ;o\26W[J$m-t%Ň[޴Xa$mzմ 7XIp%OMT}%Ma| B#@#oI&uuItf@сt%Irh(fCV0}%"]o $a$}_IGAVL?ҴDbHR7n KPl?K[A*0ޒ -l˙9V烙2m\$'"Uj0KA%*l\;%uik Kw;H*v 6A%zm/!pwҭI75J mI-}-_r03zH%ڻһէiI^P +E ooU@mKnKa$WAp~ T}+Ja[u&ݯ[~kJm[oЫoh& RKn}w[m$wK@p~K~ot-:~ۆXI7sAm#i& %a۶{m) 0gq .Imkt1[ak^۵IMxa]h*A~$ZnᥰT[NޚInJ6굷$l oK&ƨ A*x0WawJnې`s⧇kjWKo"ᾡIw{aʒҢN0۪. I'^Ka%~T ;$JH_ީ{}om٨ha/ڤÿHuoUAI. 0{OWv~_8T[{*}ݷmH=vI;z!^3L5I K`C a* {*x۠H }7{JU 0oi%m%ZoKnam]IKv~$?wm$Vވ_0[ޚA Ww@O=ݾ*i(.XNe5D1An .u w+Z!aKӽ miGmrô o҅ Ӄ &_ ݰp rS~BE0B"+hOib~~ v׵}IA0aȮݥm7IK^Eontnjڽv7$} | K dRPo_[jK;)VvmJd)m Md/ IeK5Pص{D6waT,5B# oKl$m zn~a& q_ "/[ AvD0 ǧ`{t |D0LJN31m pv Nޕ`\-[ 4<*&%;^vRp0'V[ {Ah7n!dT6"GMۤyr 6ݶ[iG %\am-g'0;Jm۶[ @aH Bu5r7IL70[ g 6&b!#rb@o ^Xc![[a! ׳Pam-mX {h-RamW muV܂[ -߆. X. Am%}D߳GdY¾cûa dMt@>MKlNv 4kAmA}@6ނmoA{ݴ i;3W ;;rBsw}^"h2z XU_ KlL0D.­_JZa4۶K ;$~^0 l ֢87M5-$½mI 7 eZ{Z} (,!FkR0۶TAaa.-gCtAjItvujAc>-&:Nwa6܁݄X@Zml%TݢIЈݰ]iB`mmi(pm=oi$a-"\ ۤIm[uڐ 'mu۷P}pa"(VIuvmDFյ_^0l%l;ء>l:7[E(5[0K "ỻiS~ۢj Y$m]ePC=M$aݶXoN"8$7V(Op`m+~MVi(C*}paK't{vwqI -բz[omM6j ڷ(oݤaK/*op[l0[D3$:]nK!l+Xaݶ[l3 WOAq'}؈e4ˢ>a/O2Vl]"!$?onJ(vtX d^G Mz Qp72d?if@a0J9KH CX m 0CW'oۥMHA֞X% Xm/m}' DwiPW 7 ~ Hj'5QevU$m$GպA &(Q$/iZl7L^ֱ4V @dV$]a8} 6l+a (DrmAr;;G:޷ D %8e>{I;@evWb$gCJ߽B6w.ջga@At퍙 A@&aߦa\'D0jA}M 0c 0!G P9[]D!\){fnH}>A.v #iAsOkA[mPiJAiþ Nvep ӻXC\-z8ې^ i5!ǐYAPrHgm&PBBhepBAAV݄" 셺!M a6<tA >!Σ gfWVuX oݶt@Rݺ*;2 CovwaT5t>AM m 7nߒhkުBQaX wI5[ m4yv!rrrd %9H0GV۰Nsu:i6; 7M{n! ЏB|A Cun@oC+mmmo l5149ۜ>#NS+ ďedMM .[tvv  ;t@t)m@6nLaj7& aAPôkm  Xy* v]vאT7xH$v#P5ǻcfŶQs-A'peC/ i6m$cSM;Z"DH$Px"nm$l^!ݱaWvA7JAq\Uo 0@6m[`@"f,Nƒ%xnci~u@$5ăQ-{ nt%aq$\T$O+~Anφ m$6)1]TP璖a& l .k"lmtCInH$<;P`'}4FH_D,"lk Aj+Kl5Aa"\a[`u<4n+x.]M adq$ nTfT!=8u54nĨD ë [gv.Dxt'܆ njxg0 Ȝ` [qxADGDua˄0BWTFW0Bf[J[Eˇv頁w]H 9HO\vm(\EC0\ -@XעRZ x)AoV+!00-J"P<!-ӆ Oٶ _cVj'CFIhRmP v ah5 ㄼ#  J@ "l ZG|A "la6J Gj̸ |ڰDBh~i.v+Dp<KVD)XvDu9yڄ\aIa5 ;n0<H莸 چT=A - lQ!3{m-9" } $M _ ha- vGctADCvL$`n+aNү'HK I 3*_mrkh m d .I_d㔹L.'A/I0h@G" k[r\uB$Y,$n `re_dFH $a"8.2 x4WI%0d#{~W x.ܧJT[ Sq] xn7%I$uF !-++nhaiR!/t!aq6U pm$YRdDص`ߪLsd;C #2= x*lAF)yP3wI -<3G5AUJÎS%RK .AI_k'VKlP-,K}IV'Aq<0^> Pݴh"lfV'ߥV ӻ$.IB Wa?$M{wIVua}%ʤ\ nNZ +i*me=qmnKtګz!ޙ{_N aCT-kmշIu8Mv nr xۦ$]_V/n${ih-%E:H7m4M]t ЂߴQ >nN$7[,$6I۶A@D.ڨI]T{^]%g;rpނzO*aIvA$.:^n fDtn{ a@V}$"=_MבMWOWi%nK-=ڨi 0wT7HP9!n޶m~ս-iǷ I .WJEu axA%oI}iZL7 {i$7oޜ.𰂠wIU=.v;0GI0a .ɖj6h$4m솉l5vp c}v4,0wIm=߻$nd2)d$$mЄtKXanW%z^k,0PImj)&A^}[TnAw}+ۦ MIn~" Mֶҵ,($l n[op GTm=$vj!VP .ޕm*mtނw}5L7a4TA!R iA6 Xa-Rl(A$tWnn *VV[+h3L: UNh285I[oI!P0H*vaI0 V۴ VIHH$JH&_oA4j@ڦ %ah[Ϊ$IPI[oA j"mJKޕ Ca%*mU &wI R}$it}njm+PZA-ޓMvUU %NiI+V6*vhFV۴҆KT:K"i&I%m+A%oto^[mBOZLjI[oۦATpa$_!mmI%* *փlJ %oH0DR[n=Sa$PJ֛Im4W}ꡆ]$YrAA^KWt 4W+AUMxa[oAu $ޓk K[J -Pm$ސo醕[{.Xa$N@KmJh$aA7 $־ %n$t -%ua.ӮVVmIu +m8Mv~m$uaoA{xaޗNiUL54Ju %V۠i%m'In~ՆVozmVZA [oP@m'pwPI[ ]7MI[Ai%o +6m+􁴒z *ߤa 4IҴނҼA-W&I[oI|0J7L0]'0;TmմI+m7^ 4wA76[%jڰ ?ᆒWoKIAP հ[4Vtt6K'H-a+0z uMlIm' %턟umJצI[oIPI[oI KKJI+m+ރh ]E-6 Xm!H6JL4K &i%;2M 0\;++Ii{{ $A $+Xh$ۥm.m$I)]"mA6A(}H TI)]"ool$[zWN $zMm xA_ᴼ6H Mm=>H-ޗAJo&WI/ҿd $'IJ nҿH6KޓӤA VI[oA?j 5醒V_mKiH+wkJdIQnn 4VxA_ja$zNA o0I]}I[o :ᴂVuA7 𕥰i%InI[}kAA{}JxJAI+ovI] @H M[ $ݥuH+h$[l$ýAv+ 4V}%mJ`үxIҰImA7H-[aWmLPmVxK 6A[' H+m* 0A- +a$M0ۄj 4WmpaVI NpKmM ܎aBv`XmMa ]h$A% %n 6Wk,h;a$ 0an Ia$ CmIA%m`A[unI[a$ [a(aJ+ 0I[mA&a$H0i M mA V&i iH7a%$I[ta[aV& $ i%m`a+l0H-0i%m WAH.i $a  +AIn° &a ރ WaH6I[ a m*m&i0 ۦZ W6$چj7h& I+mKndtt [a$l0˃b l1H+ l A[ PMKmmM`I[na&I^ 6V MKmm  [aVH0KA n %AA[mÄ7 4M wH0Jݤޕ6Jݫ 6[ti$IvAA]Mt Rِ*H7HiiKn[V m$6MW[ti%v Vi%@ޕJH+majI,=#+JP LI[a[tI+mi%m:A+0WtiaH0%o-A[$ AmVۤI+v B nni6W0i@ޕ _IH+mJ&IXv n ۤjmPVA0Jޡ6j 5 wI[TA+zL4 T% H6Am Rh(t@IwHP l0I+vA[za$ [t&H%i0Ji JmA+n =wjHo[v`A+A T'H-H+ ioi [JmH-Ai%va m Aޭ I-0%m Vi%vAnP [xAچJh& [AKaX5 [i%atimH- Vi A6VPA MiCҀ aL:JI [l AjI 6 $L5AC m RL: m6oIV 0%n6 na A+nA[ $A-Ai0attm Ti7 nanW+I7A+wICn!I m$ %X4H:I[p 4 Ҷ0JݤP۠Ia J5Jth&aH @ #~Jm[tiCz &[pA6AC -Ai60 í H0V& ݤ mMջA6& +nm(mia Ci0ұh \$A[I +h JAWI UդjK +e0Ũl`+MÑ5ĺᱫd \Dp< M:# 7 \:1[-C C n  征P]`2ChvW2AN+ˈ6 `s!L-X2@0G#vFÑGCs``6v<|JGc10Dp[ 9`> 2 `9f[¶C$f 3"9Cr0fe4ɐ ˑ@>Ν0H2YluhF@MQUچi>.BeQHUT^?BJ28##fS̉!"@|ؑ3aHk r;&  A"893JVc"0aj CA 4RdB>EC,$3!AC0@hM=i U i u4AڄN Oaa4;[MVAݪ}[tO~4z}ޖӽW׾~_{NۥiKWiXIoOmVK ѥ^Wo!) ʬ.9}dMDt]]iTpo:y 0CA5 J&_6x )QN:./i"q„2 v7> YPʅ Hs0q"es!&@рB""ErD3R 1͆WX~ " P "d0H!i$@±; Zzaa4+AhsP0M4 49;!M ^_4Pfvp;Nx_}ڮ}ڠ۴׻ =%_'Tz~}mOJzzM]]5׻uMwkޱJ{kOTo "6H5"]SZ^ {\;~! {w괷k d3C!^Wjqi& q:)?y->LQCfHCC@4CfmH1ohp U Pt~ ڮk'i}JD_KH{-{j}oL_.u^~__v_KKm.+`uMV~.]ԁqJ5_!^CCp_wwi{(/~@("#wzwWe֛ή ַy ^# \rHfJC,sDッ_ 3H.A!=i\&߮ ú;tzW{uOwK}VvW}=Pvt ~kkMkvoK[ P(` 3z}{V+ bm0]] Ko[UPf8(SOMfD]IP_²&+j=n]oO>ۇNޓ 2 9Yj  qo ࡊAD>ߤ!{. BO @MO_wӆmS]R[};?zi}=SN~߿ ¬5_aVo&nio?@ SAߥ~UӾN Ѱa4L/l= 7k0P5M{MB;7 ",}~auv i;Aa0DAE3Jo} 0fJa0PՇ"B%&qB""#SaJt! Aa `221s Ʊ(CaE ܧ>ˢ:.)xeyD:`^9 Iۈi~Dz [5`m{Am{ݻN7owu[[uڅpӺXkյUn4a8M5 UL/Xk۴``զ5ij&a4 XT @a4v C83p\AQH ˜rAwLdCk;CVƊ"BНЈDr(@}Gw(&]/KVڏS`?@}u_2^>[!j?ٺCU,HkЧ 2EN}ym-5-] 5[n.?j/h-.SKz^Z Մ(^};I\Ah[Wh:a-zPao"w!z"r)?Am܉ea /a"]ȓu-K }tnKJi! ]ikNkVzm-jh0J"R5TWQJIS I[]nAtjt"? BNυ^ ;B.D~?,i5uOoٜ|>k}޿u߯C/k.w2?_vPhܳFmp6Ii+HT@@YDn z!(疞 g.P$cR4\&x. ʂxAg1n@ D+2}!<^Y@ڐ + ., ܏hH*@1rgtex(RG"8HL@@ d3\2Vxc 2C/O"x NLs=!<T""CVfe0GFK`W"@9Hr).j#0(H!DDDDH$°Et& &9 Ar43P` ג+@q rN&9٥ DM r].9,炠bHdvG-.B""$>Gp<1DDa7cCfڕe'0Y8[ S:aBss!&R&,.APs4tlpɎ"$3\1~$FHm.Rg|#8\c*ك7:8dܡ` Q)# [ aArIX."$fa7#6Xb$9!QdppH [ x(rFB"@:# Pr6R!5  ),a :e9N$cVA] DE46h!L";#MFrˁDIYuDGDp<D5ۧMInS%(Nns <BCQI v&PA*MGex4ih& Yږ\ nGALkaC< 6+I \D867Rh&,"6ˁ᜺ ICЈ1#rj`dZimp%@<KmXmn,o.XK 0 Eᵤ"8Y\<iT6a9\` %XXIK+Gp@@Za++8 BCX% Ä'pQ])Cl n &xin[H I,Vlq < J(MX@²f![fj,$;#5]&,hRaɰ0<4\6 "o\TW K&€xi ۄM28D|"fPL8"7QxjJ $M BSGI 3h0r#m @n x4`p@lr` ܲ7EAP]Ä  P૫p`ܲM$5Ԩ&,GH-A/୤ @a@`xk $x6*&FK!X 胛K X f L8I"P X ԐnY^#]AQc&FI zaYe\ Ae&  $pAeXdp<5H(4pE Ő<B ,YRH M'x*`tB+S@<" ́TpAe<5ˑf ) lVEMYhVfh&de  *nYh)fA%P<4h+P,"8t,e & % ; CYg = %uY{t:Öo*;AYo^YzL:ZAY_Y AC3 pa%Y`}RUdT&%,°WUI@F]e0xA7X KàV+,zA X ÂE0MX@4I'ጴf*}&WeH0X [+ ^ `9+ a, IzM p oAÓuY\{PhL"MP',堯iu@K!8,HzMQ,YՇ tnux W A I Z ,C  Ϩ)H7 ^8Gt7a&A aUhnEP , A (X*4 &APXDZ J7) aH Dt$@ݕT, CA Aah,.ڤ*%7 qG8H@Av7AYh%} Óx :`A7aB@7[nATZ$AQ> %a FppE`IppA`)%S TZ&*uK-& AI<$p epA)U:z e4JMp@ XB p,A+74nYALy'$'I6 a-Ma *,@H6n,  df,4*aɰ| -mf a A:ICX%ID [Aq!ʃNS0D7K*kr;-N+- D5) h \DDD˂'L$r 9.&E Bp8nXKkDDh(c9 `Y ԃG9Fi!p@"ٌ#"IۖB$)` Pr9D|]%mCJBDFG Gpp3#fG5 %"""BeK9--R#$#q7E8lmOAn""$#v\ nCM§ *2DDzfM`(x4Elp00tC] )DDJf)/  .|5 ЇD!""CTr942t@k2 '"2 r(Pe2sC6":3DDDHe&9Uo".DD283 OXSu<6AM t$P3d0糄+YvQq Þ 9MӼ[@R [ˢ|\ = PkT,@#.2:#p3qA$-450;*ьꋌ!p3"_#ĝX]DDD8!|#AT nDIb#p#dp< U"""B# ! KNY =S݄r@,! R jH]:2T o` VLj2!5[m2pB, p`{mS" +yg m2@ޕd2RV 倵\@m׆nP V@2_ Au,a | ܳ2%n]YCϿ bG)>׼6[q!8/otѢ#L`'' o@O~b""$8炸GbmwDDHA%"z؈i!lb"C4r)H0dFGD E""A +vuK+㧷$C8A~߶9!ðA x}a HA [EBio4ie _ 9 "P_zNHfyR/ӱncx_׿鈐ʂ 0sH4 R/__L/fCd.=C_""F28.^#f{ ?"g#<$~Ј#;. G67 u""$4Pd|d"!u؈ -Џ>GDvGU5Ou""RDpv(=f!-wOzU~ֻw}u?{>_m} e}m-z/UNx{ ^Oi_z;64M'Kl7WI0 7cH/a^G׆U m}'D,wo' ?Ov8oOV`Okaw[[a?ݶ+{oM?{h4E 4OVKSNwD"~o߼: Xm[_wM[߿ëoXpuoީ _  _|GihÃK}kDY @WM."45B"a +_߿q;P/pZOiDr{{i-Ak醒ZIW_u5k[ S $CcXK$EKVWM2i¯䌊؋.]oK\bB[`h=I߾'M_-F97 ¯XoDi:YL>.ootoAv{e{HzkGEpjAnI]&UprWZA9" ^}ݯ]6L?Sl7v'6_X&cӆr&R!ȼ]$zvtP̮֕?J{~VokWWjJBR?҄0ֿmF{4(* =7V{V4.87K_/W؄_WװL_xi7 /u}5 _U+{UŦJ~0/u}u ?AWtM"AP?{k _M_]6 aX~}; ~]?i&+_l-\mc MQ}}?]]u޽{W[w[oO__o}g"6{'WK}q^ݯSM_?u} VmzlGIށ=p+~(wo-]_A[^oUuooL%oz_;_߮7~聉u[AA!'6 9 'hԃu8h$'h_5Ml` ~M#//@ki=Ճ! um55yő0ͼ/[Q dX2+Љ`hzKVވ_5L8:+oK.' ~7N(?.O? 6nCakm,}+N%u 4 zCUW8Q參wFCpiB z kz {&AOa;_vɰe v!;&A+vD2 mmeto򾁳]^3IxhUE?1mwgai:.դ^߂Oims$N ̍Gi>+ \'kJ)Hx%l zAh4wC>nu[oiC .AvmdS!+ r5i .[C>v~Tވa_zng"&C;q( _TC^I{*hJ^VM]ê @lKh2r0w % @,ȯGv^ o_ ?ې/bk0z"lտ/13$`5-]}AQo" mWiK[m/ 뒳*DY9[KD1'_{ <%r CWj!d" A^_h2 +A/  w*vpdw\[%wgxт "w@ۡa2 K@#;56{\Pk w،띗ah5`%l3a3gecBET_C+W(b>Yv ay 0>o2N{{ o?o;%X$?mWHD${HYOU\+%!8 Vwt-~Cdt"eck-&od2wXc@?Mz [ $#N"8>v{Rd\| H1'xNK P2R/]+/L$eA_!+۫~B`BӄGMBvi[nM-胫 &U%aPV( aw!9GOuZW**&ğ'l+~%A}ow[UI:+"n׿˶D]?T < mߤxahi*} P{TU.ͮ[r Z:Tl{`̊}K}K A!q}B#aVHiB {I쥈eG"?;+Zߦ`r+cQXTrkLl[&)̺o+ $\7!l@>o"@4;I=CB_kI;jWY A2 Ws0P }KOLu/ôPppִἷ0[쇚%0"}W$v#V >&]sBd<&˥> 82;Wx" -m^ 2sUoL$Sȫ 'w0p+MC@@6gzaH#GvM l쪂rʭAHLe[NA݄ ݠ&ݠdp\7oV L"fW ۄ(dpftATwPi_ ׭t';H7H e9/ ] Dxsjo giXc;A(G_֑x*#vvo$t !;VXd$Fߠ3Mcgo D3@]RYذm HC8Zz4yXm= a'x2 [W},»
O\" lU82 ay81 DMLUz[EW aPAy2pgEv0^F2 en[ [I`ʗaA84-lȬj m'<" 쓕@nfZx U ko 6< </+ UkWi 0<K&D0E td ]oIh3VL=M>dA COE֒l.&`~7W] 􁆷{MUX2 vb̰%0Kao Dt _qJ) y H.n@ 17W Z%dь03LaW[). s@Ui OB莒(B|>vZ徠&JAܳ`1RrMx RLOaL-RnsF5t & y\4W(tA\;&; } o" PM7?I;, Z帘|U nK(Ѭ\_ D1 )+;"'n}5A@C<% `,ʠ$K , WP,A@0'wL% ,"l4h;{wh5rCm8{L ieW taB-7 \&O;XSCoi~JMEnom7@-*oԛ" $t& ]֭-u&@W| d/> 8L< &€WDްa B]#olPWa}@Y~ 0 >a|4A(6t /m6+M V`;A~@sU4@܅mv !^"$@7Ll!!d%t0$"C0rDB2=zXuib >-ߐD'DMhu"""CP{ X%kPYU;T.83s(+%5D(† Ao{$D _""UtHDpK Ih  iL&_*%^Zփ"S K3M= q%UXA0% _4K__* t" +./aUvOz"]BIn-&H/Vw}/׿[0Z-JKR-(%Ke AH4SJ+;)@i+/L( AXM_o $+nW[AI/w]JzA9ܡwn: >z\|`5ZB:\&v /A@'{մ7OZuA_# z kն"#Aк,_%_o k׆a+[넛_ow߂ oZoRCMǫt+k*~? mz{-{_O| ]{wA􂾿U5-ȡW ;$Ͼ w_k [k AiKKKnzZo I{*/ xSE/__;{O ,2 +~ _~_%oH%-^^~lgot}ҺAA 4 tWZG2Dk//߂ AW_/  ._h/IPAn3]_ /A?A{^/\$w_.A{- [vV;{ߥ[O  %i/+ _%| _/%]HҫO;x@@_+~~]z^]W_/ w_ 넟_j ~/A}(KK/E eOAuKT_Mނ wI=BoKK%W[H"`^Ho_/I% Wݯ4AA/!H"Xo _۠i}>  ۴6%u mW7":/a$>ޗC| ݄[ذ@{KH/ mM ?azu*_%}[@+/%߰_i?Bw ^A-o%][4/oKA{/.Anޖִ %!$foA~%KZ$֒k ko-p\%nA_7T4%턡  -CJ"]~ ._ݠwT%z jWJ B %\a) ].Cmi,K| Pvl }/W[jW.  D6͍B`~ޗnk+\%@ˠm%Ab Zm4z%AWOx /ٰįKk/KD6͕{*׽/oA~dZ ~uKChةBK/-nޒbEOJKՇA/Pj̫Z Z?oA_APս/*| 2TKѹ Ii7]!nJ*J %vJtATs}A= d56iWX*2<T7 yi u w R[G]?MzZT/ n }U 'Z72I%~p|%ҠD6& A7 K{ W$ݥVAi+5'&| % _ 7 ^/i?U _& V+UۅZ}/ *[ۥw_ ! @^^ NK_ z^lK ޫVQ $ Oo yn 7z/ k'DEo+^ |$%+ A}oKrnA}ޖB = ZzMO`PA|mDLސZOI%| JD?L>-aUKZM+sPdނo_+/[@@] x@oKp| ].pPeA7Iz +T WWu^*&$" Mn~)4)jWA/.7p`'Aw&#A/K'7Iv/ $g+i 7}&Ip@_, 0$^X2?i>6r#itY F+J 8mNfEqaZ^,^i^4d* J:WěL i W@4& +]EAi (tGQ:Є.6%Ix بZ^)6Ti/@jM&Rn8AU&]+)Ai ~]h%d i a z M8L%bEf$Yf+w zfW(֒~v* 0e94z }(I33~v4qd_h {I| q" $OA)dA ~v %R#a< I `W,@z63>D #ajYE6F7R+fC<"Ersj'sPhN"C8uhhDV_)@Y,KYyXx3@g"@gH(ǂXB$Yʘ3(=# ͥ,yB聝AYeDŽ9 LA8D1eA[~hBJ R Dq $33Lă܃tx|Z jrd$63RQ426Q>PGÐfLD|;ppD٠LH@( G H53}- .qĂz(v] !8A,x}"F8C4ԪYaia!GPe Ip%?x9I(: 6]$M.זu<¡".<3)!!#.Vc%$ij'T7 @ 2 #4B,FGQAF|6K0  Q Dp4  `HDFeT%kBA8@GXHΕMy3 ,@<3!J]l6嘶 L -,P<+qHD1F$HYA]"%@dj`8J"I E7I HGzMYxdLф!Pd0 Tޥ6<6&}MH0 [zDԍ`!tH}ȸR:[z4KoJY`xVӅ-!фz JݤOA~Ue\[)i$)NՆMiK*>q`< B|D+xCA)eKB nRʨ$H.MJRʪ2rt6$ěVf<3-tk)iS)b&hB HFJI, d ҉\H (2`, Zk( *"0(JZf!ҖjZՄ&yh/hZxf`҉hKJZxfNd], % @h]ӨфRՀ<pN҃ x5[A@RHԀiIbvJNMB٠L("&  {3i RK rK-U<QaQ8Z0xAT ^-ii%xjvpy868ᩄXA\a*T+XE䓖(pd5 2=W-qmArטdtXb ׬2L*@ -p R r!BHd P(eNW!"# 'UAA8*<d4">GD.)( K`lC V U-@j[ A24 feuk >X-GQ@L >)LJM9t >-4jpT-}0Of B hP4a;!A 4RF8iOׂ ;M4M4ト>᪅_^iv^MJiwzګ(!P@wx nr SZMW~AU'm0oA{ЯUYzuU} )">Gz#َi~KHȼRȰ.wr>K`_mZT}GA2 !&C3c8GA&24DH1R28_aAVB0palM>Ȁ1܃iv!4AOY%?:0݄0;}zݠ8 o:_>;ROSwҾ{ߊWu޷U'vC_~v?K4ޯڿ Ý}Dto!= zo8@"xm]B"_肀x =կCyx{K8NC-GHr_mZXz] vawNk Xaw~4^.=3|zoS[ g[] ~xz}h?_9{_A>.v kz{a^umU4i nӆ *zv0T_B0&oÐj=]U8h!着 sCvjޓi"a@LuWM0#Ä7yԆ>۴B#uAth2sJWl!wwlUe_}?=k޻vp h0׺? Qpd> z:09D3G)lu _m]{z֟{tzkkD}Uj׽?vjk{]up§ Zij5  a K4b!e8&gh""BdàaiX2ЃDD|j?@}@94A  a.S0*IU; .WUu5 `pVpO yR\ = IJ0*ݭ5OzZ5J6]Y2DGoD{1m/~@r)@0BGxsJC@&A#b`flr dF>FG ~ 4FN y;aU~M4&h; '_@tUO;Oa>ݧWy*InW~[*{ֻֻj(wo[8ӽWs{]פ'W!_O^w[C8dC/pZ_@kPo'Z Oigie/)VkKOҐ!?N{ .ޗMa .֓O0:]XeǼs@"ӏ[kt!^ Wzk_{AoOt4vTVkZr?xzޟk<>NamoWֶ{ovv5߮ 5a_MӴpa0E\]þZON B#o4 hF0C r Q귧 @?}UAhaV~ӽ]m5$P8? .C`dzp @г^gvhDn. Cw)X_t""?n꿽}،ckﻧ'{nWn:d_ . ^'B(h!^ `w^mq{oZ~ݮOM[ v~VSSMokzTT4V54;Ad :aafLD0   ЭQDHR# t 4"""w> /ProcSet [ /PDF ] >> endobj 17 0 obj << /Length 73 /Filter /FlateDecode >> stream x3T0BC]=ccseblUeɁTA300FbcSk @)w4D! endstream endobj 16 0 obj << /Type /Page /Contents 17 0 R /Resources 15 0 R /MediaBox [0 0 486.019 632.508] /Parent 7 0 R >> endobj 14 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/var/tmp/10089666731916source2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 18 0 R /BBox [0 0 486.02 632.50999] /Resources << /XObject << /Im1 19 0 R >>/ProcSet [ /PDF /ImageB ] >> /Filter /FlateDecode /Length 20 0 R >> stream H*2030R0B3c#=SC039K3P%+ 2 endstream endobj 18 0 obj << /ModDate (D:20020211151431+01'00') /CreationDate (D:20020211151405+01'00') /Creator (Acrobat 5.0 Image Conversion Plug-in for Windows) /Producer (Acrobat 5.0 Image Conversion Plug-in for Windows) >> endobj 19 0 obj << /Type /XObject /Subtype /Image /Name /Im1 /Width 4051 /Height 5272 /BitsPerComponent 1 /Decode [ 1 0] /Filter /CCITTFaxDecode /DecodeParms << /K -1 /Columns 4051 /Rows 5272 /BlackIs1 true >> /ColorSpace /DeviceGray /Length 21 0 R >> stream ڒZ6D~@`"Z!&ڣ%E`-G 8H-1' ӯޯkz@TuE0]q娑AfEsU]{CTv 8 J>4EA/ wrRaq=!V8p իj [)Z?~Z c-BA4Ur>˅Έ;H ,ڑp<2бixi >JYH >Ȧ'SD  e2qb"07`.G(6DfR*< 2e* IH RĠ$ .A0} yö, Yby\2pl6Z`%-hBOZ*Sh8,% `[2p(#/ 13eS];Y YA )@%YF-YUZ^0nYD9}-a-RYoK`C@Z#pmD 2 n27;ZuD5;XlA &4vp`2 TC)4TTCCs0إDn7p҄ v 2d$aH%a,0aI6`*%a «a aa'aK aA` : aSJ' 2@>ޢl}7IÄ; $a :ypà$[Zt2 t݆ : 0,$ 0H%A$mj XK 7ZM1 Ul6z^v ! > 0H%`I/`ۤ 0t^It 2zKpKl2{YT tK`:EKvlŵHR6$d i I/d2aK :桔:Ja W0$a n aAxl0eP%m1,Ԯ[ 0li/n]L pb3/Pk`%0aK 0I8nV;YX`I&:Iav Ia4N4l%axI#*$p :$aI/l:Ixa$ I*pJ l6= ^  p$ :In;%`$$0Ka { 0n[ :Iw(vtdvJ%aKp0 2c^[n AjK :Kn na` I8I*0%t : wg 0tb C3caH&.3 /I!aA n,28.,Id+ ۰ t0 dB#; 9PtQRf >TZ; DAR .[ 90uJ6v$]àI)3`x4Ⱦ`nVDD&@Q:I'Ex7#xJtDn|y)h:H$Lrא<IKI> 0e9N@u@ mdϵ7EC9)HLp`$#3 9UHI0ˣ 9vT( ʐ"Z1tK@I tHV&)`x@`$w!Xt@}!0+ZC^$]\l $4 RH"#G:I:A!8G lAp<4\RS!d]x2$2 HHC.I.:>X LgS ٘Tp<zb x!$#D6I4e i#ˁc<[ 4G~YS#T'h#X#A,l$JG٠Adk9#@>n\5HҗA%;! א4#%<e/ߤd4@nf]8PHD5a52+, 7A:_d*a߄K A8Vit"iFA` 6L 0̕&u##P<Nڵ_]#GVJzGa@x;KҨAһKv*Z] DҨ2GSp< /4H>)qu=RzzpzGb 7KTC ooא (MR%xlAB28{CXCR&a".ߥ)pMiu'@`7,jH[҄@T6K* xiTK`\z x76~<0A{@s,N, oaw'7CR肸!WSTAr[d ~ /`oH%dw{~0XO?m-老A}T`߆ ? /Zd u $ai%$c^<0{aK=$ 7p =aU01 /itTIma.T5iI}>iL:_k4 ݊dS $tRc6Y?cDv 0g5D[a7m/a 6  =a^d5$%mm4d2|mi`=_å v_v_Aopat\pua_pW첋 l%3K7K|6kK6GMbd5Z,5].]; k/~vSX6wᇥ0%a .6GZ. vX_n뷯 aAK\m}iPtôj[K 7K`úK;DE1duDGVЇ m#֋h".`oClU׆ % 07$õ_0nV_aJݿnT J6?`ۯtoe`Nuo=w 7Im`ݤgU0v 0xJBjvMiԗU>CT}nS1I6O[_zVuK]{O/_ }/^k- & |WOguAvu[K,ի{.֗]bC +Vҵĺ)Նv (k5?_!2ݮ^M{ׇj' h/aoK Oa5iK*dkkkNO][K;M9[*)ַ_IzdӑL-Z׻K_Z_m?[Ri5KW~CuaJkUna_⿿_]}}鯻Y^_["MZO~C_ń=:k/ZbJ?Ћ oWvU___mV _]WZ~AxdB?t7TOn)uz~K{ۥW_ Z ڿ/ݫPxmmSaVW`,׈Bmt^Jַ~,U~/߾׿oZWm?_yoׯ!murﶓ{\'{K-qIʆ{F`ƾjd-c8߆̎Hз;[G" uh&vR 6428.G 7m#0 J sGUwAX" D'~tJirfrvk9~dw>CkZH#9_R_rq{WKH௯ yPsRu-b0) A^ .ikeF#d rm*ܵu#aH"?Ȓ`p­&ZYs'p .8Oyj~qaH n26 saRaRWϢdaa28diaQs%\!2@6v,AvAL`2AaÊaL@%N0>r p9 r ų [Dv""IL&3]F$b G. c 0 ff7"*~lhp[a)L4A˭9C[9RP$"W )!cAD]h"AlL0+0[ [a+/PH,[A@l~˂i;Yj?dP4#`I:ޙs#BiT1Z#+31oL2˲qr#wA""Al(_l-[PĂj9Wo 8S( HA<_jH+9RXmud2@}d2rܧ2w! #Iu?Pd';sQ2ݜs7 u@6{8F{ֿA,Lt[wN}={Z֭O-&Yom]jd_IORvrWvk_{~-w_ 鷺__w[Ӵ}}BKK?o2#֫L ( `Gדe6ii.}"UOֵ!m݅Ua~KVudo=?^1>] i{=V7{"^!D6*~Adv5LZ֭"j (p{WKPQ9Z߅Q>]oAOZ,ȸ0[#0w@J0Dvo62_ܯ,I];M4vʢ4͏@솠n:ֶ]"MA(|[;lqrح(;G,L3>6?w|e;_A w0Ġ4}&2G¶v`1z~!%V?u!Iv)}v5#H ܁uRo}xgsIn喀vA7o&+Iw^ R+M7(C j¶'AޕۿԃwH U-D?JC![Sumj⠄}[}yr!8@GH[_[l8ه JBKbWo| .Ks/O\?OqҐP0޶=}}tTcmW׷+ l"ܷZ6iᪿK*v}W3 " *k}\KrPFo n$0_u ?pԋ">GCz.&:">.7ۮO -{$Vn(SA{]C&i[K'I<{v@$`$R YpA}Hf >^J= 4A(_V&w߂oh :{ozل 0{{}Iw\ ?L?[lǭݫy5_w鿶l_}{۾[+;:k+c[ֽm' tU֗w&KyϯjLM./nAh:i/kkVAh'! _Er^ R)ջx`vʒXPN@Bט[؄5@v\5W|>!aVa}?mX';,B AG$֠ "a` <"eֿoW {RZkN $[ۦkEqmx L"+[Rӽ݄ev c T-v^ؐ¥[o {l;J M]Kح L#Dpm0H3/ۆtB":HA){]}22{ Zz^]*: #*Znp܂PDUWak\X+WT:n#tD1!" Whpöս7FE ݿn^վAZk`o V~ a}/0om?E|DpWuZHo_V- $WNd!Aiؚ A,-zuAā 믄wNS\׮oqAS nO?mEuV\+ &[akEs@U۴2G˃Ww0n wa+\;z[ Zȴi [-vY/ê#.7Xe [l6""A}h+2p7'^NX$[dpT?:l27]$`C -0W;B<ˆ@m+u ~w\"L6U}Օ]8d7p%[i]l& 2aoׄ _; GA ÔRbC 3kOh!gLD@enK넒z `Ѓ6 `9[kPUj 6. a tCVL#TV9nT- 頁i.m;G8+Hy+ڶ% ;&8 aPdޡE@Q IXD3V 76,b=mD5` $12tn x6H6C]i[B&Yd#9cr|A>C ȹoS EEtt$Ҷ zU [pm&KdsC aAW0V@sZJC;u%ޓ F %OM__Sr@ %hU5CIMp@ATsE ^T -ɺ+_ȒV!Z_%W~tPM5 w&怦TT AO u@eHޝCTreA=0+/~ t| 48?Q A{ B }Ip7 KtA/z p_[ %hn%m0d C[I%QVCaҪ&@a-~.Wpd Mv VV'Wxkt@`Lʠ(M+X~.kSm)0'@a ? rd~BAY0Y.pO!B(4¶҅Al$7uznKAI3!`<KdZQWtxA 2TͿ & ݻ\6 3&*aKZd A Wtiei  T%A0a߃K@`ӃD.WNn5SO+)n;o\" G t?I&m֗&@L!M޿PHh@>odO׭; ]E}*kd;CG:}t O : U M_렶uۥ̉AG_ᴟ}/]?Ot!t_Kr1 { * v[NA_j#m?] OOOoZ]W߯!tE"0`.B,Pm+[T a[K s?m'[ 8\ M Mԃmz| Abol /.aih?I>+ ӧ(dRk톯 [kWm&ҴU!!@kպt&?+ +[ok׭7kIH6 ~çN^k7rǯ-p݆hFA_Iwov鵤VS u&qnK$_|C#m Ao_tA]_J7 mm/364h,Ww%F w{ D2I߻[d#sACdB:n/ 4Uy H5 ۥA/}$.NA^ 08HfNjvPPl4;. o\7 l \h*ۤ"]pI !a ; 4Gcg ɰ/o'!y\=7m%E]*#b߿(x3`o;mm&ua;(B/ۭ9N _ڦAj{},;qg`hB O y I ޱ @[ 5JA.ᆂ੻bDP؄VڶۘM 7? On a6幐+kM0j [i>6ڤC3HJȫlpxqnAmP4*M+[ Al Tu}l4 D1`קpXKl.J"wO%j:a~ akp@T%j: zzvv=t@IV/Ww '`R!զnCL>vA}ت^C 1; 6IktP9mT Ċo2 Hᴛ=A Vv\"{kaPKBA5BAۑ-m& |AKaf{aӠ`g\Kݵ/ K p҂MA8,P_!@%G./mi7H4,.aA`2І;4K 5a0Ӵ,q"m`>ؠM mVG !4DpY ZۅlKņpLi{mm,Fd0(}te0<h`} 焂~MWUe H@@y'b  5 ņ+I|gё ;0A_W #M NK~]]C̅$3pj{4 [8h qNvk 0Tڱo;Koِ,T @8-zs!x4T_oP8)%xpka.{ Wga]6VLdM>DvV^P`P$S`_wM.Ҳ'L_z;D -2 GdvG@l# ۆ\0a D6LջjzvP6#KA2= 黄CKe$ 4Ta)07GUox% f ~CMk{C-HqdKr~D! o=@s mU-WU@ãN}Av( Hqexf~Wm 7&e v-eO!%9{vB^áh2r+bͻn is[Kl.C I+@@(_ZA<ʙK׾KZKY ˑ5 RO-IAsKw_d =aG;@"lIHe^/"jivׯ5aZzMa"Zi2̪D2vXARWڂwMsPhJMՂ!%zI%zh%ae![A6v( -ҰnIfPg#NK04+h$MX%m\fi+m0_a _D6~ mw0jH/Vɀ41_ 7K]XA$BV޽ډ zmBk됣 {6A ǤiXTkaނ :Cۥa" upzVOiԧ d 6p^ t [`@oHbl`wKmHi0v_}S?mjۥ 2(%s!`km&ׄAbM&S;} M ѲƻJ́KխtWPAZ_A:MҪ䡡!I6_zpD%]+Wl M2kh&҄a"84U_M] mt_n[~H5t$ڤ NDMpBqi@koI4I^R~WAtJ @6MSz j5mBt|}&-I6zTW [i$.St`@+-I]$'^NvBiki$-΂խ B6&ת [` K 7#@%3nf zQ %nj[:I= ^&J$U;~I&gzMFT R`%0@C!ɛ*oj". t$ ,vm @I`֒~'zmnWzB X/K6JpM_n-먪޶ o ^:J6mz[ O]m߮K]6k a@zOl: /k9R%n!摠wAWhn^ 9OAKO}/Kwm/]vݥ_oqu_6ޗA~/iB6KKav_-ttat/ắᶒ/7A_^n뾘z_K]imz_må ޗݥa/ ~Maz_m{o_۴nmo[k^na߮Kutu kWu ;lnC݄ Gn]0KC}_I.7ua_IOu ۥLת ]+/i^Aޯn Kz^JVzQ6tnWU tM 0޾oݥWH0߾z mVtI$z_Imu$ޕ]'ta}CmvYy/ۖhl7e e82H0͢WMfh^a n9( H6g(ˁ೭&쳃@I- f\9 2҆ .t[m@DBV첬=a唣/ fTyeHH2ﴃvYMr9$ tY"8Hd+9T=&L2@ค|aXzA, "6B2< pGۉ$ #xz da t^zMؕ U.pXmbyta T3C 2l#Hj̺9uGf2eD"6%n$d|d!arHdÙZ+2 c =\. \6W<\2CLF̒dA &̀di0ސs"tfe֓d|d?li 8 $6NAD6!GD|Ճ! qzL2 p6!9\(7! 8aLHl S`jd d2]d6EYsUA2Y;g)dK`ޓ 6~m <$ ػ} 0𕾡҆=(aH l70% =+z u+JPPdgWUAz7Շ0ޕ҆ҰCxJEaV R(aXnVxJ &K pV(oJX=vA(aPaXj(6V"-ŷ 2]i' 1tz],z]H' UKpm"=l a%-u@QTzMXxIaIAXt+JaC֡°ҨmR`)P\i=*naXv H[xI+t` +-[I I&؛z ჰ oUIpT0ֻKVôH&Drn~+^iȜex5. 74Gj7YAK8Ht7)@DmQT0yp Gj7 /W 2n#B$fa¶Ml HO G †6S0jljX2l'5M"f 6 &0YɳX]#H+[-< e)An* +9!GP x+YR(Vn-LQ "-ڹ3YXeh^0H' 0ᮿJ;eW@ Wh8l+t"&K`x 2Pb&Kx5U/+W<kaՁW< ;`xkrx,n j%Fvx5tdhmXKYb2KTDh2GBZ` :Aݦ;U*#࠮8 s/G"9P.4&]gbACnrU+} 5l5i[ېakק`: kw;]u{aam]_{m]_Jo﴿@> _O]GAXin"{_3!Uנۤ]>6+]pe+P9i2 {vAޡ;09DojCETZ WI7'5 }"[nO}7 A{>}XauDE& %f`_~޷I^ ^ݵڻAwV_Նz)4h52{׻Na{T꾿ޚ 4T]v{Mv0AAT&}L&v8 r8)e-BjC7d0a hڭꚦ!sm0Aϲ9=ai`LDL&4i&6 \@ETU,a5 2]a0&0A}0h4qaA2MpBL9Ma!Ʌ /hF2׏RکJ?,UV:+)c@F~XYQ QpəAӺ[Ȼr ^[!%#"b DZ`0OnZ@܅t^Zhyv{#00GGH;^Za`H.HH(X ^hdG !  4ȗwk-H"kE˙udpu荆hB!8䦄@DAdf (IRhUizMC&D4` i!Ӿ ޾LG/n4h;AxM;醙"H`4N[M;pT^Oރ;Ukީz {U4_ڪꛧTߤN?߾ުS?^Ҷ4iޗjj0@ (nN%n!:nAFA"42_yU 5!6M! XW C1r(A jӬ 7jwt%Hl mR|7u~߰j!j @cI=N ЧU\P@:D60U{4@=;ЎWM+w~Cc8iջuu޾{}[~xzۭr RqH7}O# _m=Æ@_P?T׾f `rĒ?o܁{U-gֽSZnOwgk!]]}_߿]U?~j߻_m'u޿W֟Z{y {@Uk~zk__?WNa*ޟp_l^P# w'TkabpaZ7=uv UC,J_[W7}/~WPt}[\'}׺+!Pv[l#\SA@~K)p{׿׾^@<Uvkn\.^8kI M[ XK.@p` D9 =jMv Xx!m_cb"~}nw{wINmziwo}:o­ Wiキt;NkiӃOtvZ۬0Mc7 Wnp0Dt2IMV}4""=zaS9Zj~ i gKߴM>M0a09n1ߠ…NSiih5R6JqQFϰPXj P`pDb6"""&4@aH\B"?a!m!G8B(rf \%5"/V (`GJ4QXQfc E;BzQ_ ZaKP8nOҮ.! fهx)o[KTV[]-PnU9Nu~u_(Z-_1׋L!^ .Gf,[SUi.?޷жZKaKZD6 ղ}8ڼ"VpBHs$"^ZBxiax"g xQ,RH "P0~"V@OC0HYC< ͗"iԴ i'BPPD3vT,LpHO2 xXDZ@7N6|F*C.Jy6%,Ph@r"[>l6Yղ xhee6 X`Td@YJDp<6K44xf`xf7TE ՁAq <29ظ G@ʂ Ҹ3@\ 2<3aFA8 CJ#]B Թ\OGQ#,,Ad\! t ̖iaH5Q_- @gSB03e6 Y]@" -WDp<!'eAC<3@~X,@i @xeRx7 'xfp[ב , ,C) L8@47`ᥖxipe [@xirJY6p<4VM b:d\G, x x5'在4l._,b<5xAeqpP]%̽dp<2x2eK X|̄k6F@x4rΜ56QjxDͪ0f9dh-+ l$O}@=qx6kK<>Z SG@\ R:ZCWLP_m#A-<`͢[K@XjG OyBnB#۠3xi(D5f !;҂ Cང(*&L ~[PD5[*8RRV_ Mki 5NZ pkK- 2nQ[!k+Ie[ dm"X@IjD5'۩eS u +H  :pr,IAקD5͋Z6W5+Jc$!t~V#AU7CXpIS e0*PP<$!W/ Ac,QnoA$ڄ64@W P]A*xv  K!B`莎 JY.b"I-͐AW " 'YdS W*Z *P$R Ă $AnSq`BTJ‡ n P*"w nTCOz  I7HITdԤ˂]sI+ (Pil%6g,UL WD)` ʘ6 a$h[D6Ҷ (P-Yn6B06‚*(Yܷ) ʄ ۃa.DL/lhAH3PAF( PF9[P:Ax  (I db B;5ٹ\NA<2VA  ;'D6*q6v6 8/A #De[;(P%BC7ZQY0xHȀeg`epW 0pA6'=.F@Rn 2G@jB|Vhgi`Av22lpD*fSZ`EV ^ [۰Av d3\ ́!"8H PXlX56d h!Ȗnd64(Pd3Y{d,H<+lȥ G0{..@\3(I2<ڄ]P2lREu^6(Yp GT@Xo ɲaY ܁  c"Bn HK@p 8[m# Ll")h/HRp!Z  !nMM"lZ{xkmOq oɼ"c#@f׉fJBR AdhО2- 5Dd"njL0at ş6̅oD܀1Ćw}ۄ2fƙ@<5[a ̌4߄B`x6۰?7 dVDpN lGMr"nTȗ# -wpPfm |0|xj Չt0{+ c æ_!l5Pa߂XfrD\ F R& `,l*GM {+28tC >k d 2vQ@h_"8Gܕ('TL7XNA幨p<˦;2 WEX3v1&mlOd,[u agt a4BnB El3yn4Å_ `n(;KIr<a[&96.,@VnvK,GS2X5 'jp u ^ ɴp<J14Ve( MyD' E#` <H$YUa`<!Q~&ŀx+ H:"8f x)IX[ ^ߠ@4i B:aA$Z MR>]ZP„AKf='MЈxw@SA !t}E4n2B;RAn6i 0|p. Avh i./r< thMR#]]H*O&x,XA}mYlH .7*Mg1%Y q _~2 pe@+( a%@ͨ xPFqP$x, F#˸{,h0%@Ix,ӇN ,A W,x38Ko,aAL/^YցS\1A/ud0D 9*? >YSGm B9TA:"*4H,g/T-j2P0  k0| J|RA$ۯyfj`aL.ʪg\lAS,dgZA@d2t `5Jxd1_B2 e& O@R/X7B@dTY`_,uA+7z[2~$BG 0 CAEd*YA@x!X7L\Ʒ {Je ->h*g(vh%圴 O+Ou@=ז@Z0Xaz[c}cUU JGaHdpjպX@6cma-;J Oܺ2^`BIOpAh&-_Iu Z~| OKl/𖂿w-'}߄w Ah&RVtP_O N~?(Ka&bh+AwGM% A?XA?ְW IM`wh/"#@&p,I~-{NOr[, ii_]I n I} IWO_Z_ ć zp߄-,$߽Ai_ A 'ziN_Qa$MM%^!-d* ?Dw+K~' 3JAR L-ߥA'ނҿINXAh' i^%A', ,%A, O-/xAh+'IZ ߄}렟m;-/ -/ [tPW Z nZ i%o],-$/ hPMp_K ~ ,$Z ". ?/胷ZAo *_ a A%A~I%/,IG z2ux@_/-$~_ץ  k& KI*^ i%u* ZA/D1 Uaު  @i._K (UKXH% a-$-AWKI, %IWMKIw UxAa$?Z H$PB -q* $- +I@Iu] h$ IvZH$4 h$_"K Ð7N_ hZ*[xI@]%]nI%1zI_2NKD K㵄$A tA.*I]^A$t*] KA% IA] U *A ] I/&$$xIH$WtP $II R_$CUD= _WZATUI}h7ڤ_ $AV}-I%􂤾UI/ u A~Kid$_% IUp} tA$/AK_VK$ ZA}A:T /.PI y.l L5I$x!tI1HA*zT *R$JvU޼ I$@I(H 4I$o %A$O a$WUzK R *M-Jp.KoH6& JA%*]m $}aI%;ׂ ڭlI]osbKu,B KmAi%I%KijA/I{-au_]| XPVI.|% Z $nz I.٘0' UW^N /}&I)%ݫJI% k A%v JA$pI%׶Ix@%]vA%I%J$V+ PI~]w-$wA%^IW߭, IkVH*^%I%?AW NJ -Iuh H$kKA^XIWK $ %I𒠒H%A'A$ U:I%l%zTA.X%UM ڦ*A$I_~A+I$! J H$I/ *^A𑖈$ H$v $I-0A%XI*K@:J +A%Jv _WKI$,$W%ۮ %,$_JI%ҤZ$AaBA/N$~KH$ $XT-KH/߂XH$z @I_~J }| I AՠI_ dpH8mIO A[K I{ ZI נK]d3bH%% I A$8pI$AnI/Aڄ"4I[] U[ w /BF@J~H%@~*A/ |_ABA{ ֒IT$'IWH%i_m/A w^I./$K$J_e]$K  $֖$[/H  KV zI .K\ $,* ~  Z_AhH$K4H*YI 4 /IP_aK]a.tI_iA%i6  kI$ Irfih KII%W_ _۰ I{P~K I%´H$[f+$(px$KhPݤH }JA$JA%Z(iK&I r}$ MAt!i$%H*A"A}A%$aI/" AA $i$C$PA $$i$J a t 8PK&_ߺB!TSO@ %AI" RH+M$ KBI$K0A$Ii /Cm 4 Ay A~{tUzo i7$$[޿HeK I/MAA$%Ko B $I%@ }uT  A T ֐I!A/I׽$I M]`H KKI xABI,[ H$"QH%^#@ AH^AmZ, /*&V _vS@6Au׮8T8AWA4o :IA%5 Iin ImPyB$Apx׫ AUpނAI_$0Atz a$i%.AewJ;X i֒ /iwU@*I- D ,S p$0Ir,g5@ \G׹4^ 6WkkPIUatI a_4 ?m=t _հ2Q| m%w0}@ ޽Fj~ H/^q]H0K2>Z,B z [ -0h+A$ݿI$[/l*oa Kkamʂ [ ^2P_N,A I/Vn1aKPa /+Tۦ64K%6M^k+A%}ai }=V5lA6[nP ҽ$ H ;a˪mRH0IzAA.-&ʘfIA]H65oըI mZl0H I.բ;׶ 8ZpUP|+ Y+ſ_lPH$($맯pJ$A}֭kdzH/u׶#a$_ﶺj1IEqF[taBA%K^׺ 2AZA#V> I%Ib) VKLo H$A/`a5:A ĂAA(l0PA ml%M4 I&֡MQl _iޕK$@$jl6 I/W; $0_aA$_`$K߻h>=C` J?M%Ik,$M*%ia AizmM0I kM)7 OZڄI%Iݠ@-$t JBZ׮C4ܱ$H i҆I+AH @(zAn4A ޗ,7CT"A$7APA%I*7@ ) A-Bzai TaA$4ªJm솱@TmCh AuA Jצ$y( E$uJ0I%ސ|2‰ /5!aAB %o 9r* e$_@A=매 $0i{ $az}A(a[ iz[ $0$nI%d3vX dI% 0iGx0e$T}ս[ Xa $N ~ J6H$WI&ᆂH$4?oP vA$B;m^`,M  ;_i $ðl IC PA a_ I$ma AU ڹ`A7I$d3 =WҷH =aAl?߫a ZMIḂP ?t $ ?`$I7$=ArA$aaUI) MPe@CռȸkI0|Ma |-oxaJo 4H nI$ko2A$ 2 4I 4^7H A.{n A$ gc+ռh*I-> ?nw d.D njʃpd%:H(L7o{ $  Ĕo۠@H0ַ0i%TorR nI j?j 0Anö$256IA amPH$A59K[i ׾$H0d6$I , 4H(H$Ki1q"%yhA Pm a[XaH$ #]#aI$ Q NH`Aa,e $ )8eٌaa 0i$A Fa+$$aHh.#dv%ID"1fI H&E#\.9PT $j}DPP1 M!`H$@kD0l!$\"H(A0}_oDB$vA\ I'SbP@ZsA[0@YICDk 5!7n@l$I29N"C4rxQ2SAү.\s"D9@ނ߷Јр AAJKZS Y#0vwH$DPMD  ( }L2$ }Nk DՑ#N$COdB'p< $0xO{wo &Mk WRT$ ?[`j [AwְdN90$@}`yRP/z_ БG,$a ?~r^wd$0_vmA<IiIA$CA~q H a}m]>0d1o |$Ar5CĜdAP JPlbT 4 =i#݃ Y 2Bm4# .L T ]1V}Y٪0b@a*aN!tAAr 9r,'d 5պ 0ߝ]v 6ճxi$@M~oƑp<$ϺWAi" i8ᄂ2 _M0^ 6B$a[l[L-n >(L3>~mAi m.·`ᥝJîdpo!8*  P\*YvnO`I&' vmj i M[ fYA$ @j-tm@ 0&87_iX8H$p~ (m 0C ſR ;hm-aPþ@iv6Hi9V îAZ 7𛤐a NIOņi7nMDu jl0mmH \Qi&0׃ Wd7qH\pnk/; Au@ ׆7]-AMx0K @ߵaI&"< &=`Kl$0G;{ Vio$ ;PnSzvA['ͨkz &;Um Ci^@NzL'oA0Zram-JN D8ql0aA wD&l:/qT zȠ0mH&)mSzl;I 7 z,]ioE?V"5{A; nA${A.{m$"aa$| ^adWxA+15M6GA$|6Ak[I*o{wa&lmo? zAIa* oyV [I_A7M`ۄoo]ҧWpotBna4հKzI_\}d3wiSH(|[&Ac2[(pId5CVvvJ,co`[ 7%OaOWtASl0l6> $]40mVI$a8pl7 &P5ޯA vG|"h'ʍoJA^ ۄ $l:{A$ >4ߥa뺠XANm4B$cAEiӦ cX0a{H- û; {H%I#@"J ޒ >W ][A>K2TH Mh%a{фKn2i$AW%\& 9*c&0aJ1\% WzXhBqݤAl&b lN"85vAt6,O287$]XenŠT%G }>Ip(6\&Dʵ3V!һL/nI;.ԪBZ}CKe JkohCIz 9沠&D` 2M}vgHBKC}nArK n#T/d|@T0- ".E[&-Mh t)\m}G -Љ86ּ%Arh .dH ]\4v $DںeC0<:\abe yA0g>[s@fA\L[j흩@Ki^v p@Mw;4I/J! 2@e%W&zmp=/wD1/. zApK] =\ { a_AD 2)!}A\$'-h.5m.\ WHM2ZZBtʖu z\Adsi}8K l oeKi>-.a'zuᆕ _Yˁt._`M+fk Ip_ z =/i=֗-.-|Ci7k àK tQK_& _An-R7~]0YQY +~YIKa.Az֐* .K nA7t mK[j}Rt IpAmA~xIH A;iu& K*zKH6$-pD2 R ۴V.^ @Pn]AޒZ'ն%  ԛV+ۤy wA &ڥV- ۪THA.! _o0mIs%DMﴃ%.ׄ{t o@6+5)$$7t kwjPB{I. *^A\#oApe*6- 2.C7 R{ wa& b]a40{.$oIp@$ Al@\& aEPPK ^ A/A/@At%Vt_I?ڠH,5^ zJ  ÷Z XAP@  m$!zI  C 6[  %IImx@tmL6$+c+ph*a eȱVj/ ?ҭoH6 H+~ H0%A  w+oA%0iA 7uKmzL7 d;m2n AAD6m% v  op nBרd2^vL 6T(#oUm/A0R/ 6%] t˒-a(A0҆/* ;Xa/o֪%, $,}a @,A6IS/H;|%D[aIRl _pmJa+`~aҬ, A*K0v…~ W,-AwIU  A.#zXL F$ [z A aID _ސZ öSeXm @~M8M00 A_jAzpmJ Є~*[ nZwj{@LwH-AtP ÇxK36P'A!^Ad6+J?@ÐeւUIz &JڮPBC=$ 'J^hr(Ωi?P5ՃDH*u鶈 ÔT_&⡚>aC3 jVL0h# :TaHA }l0Dl:T ""T4[7 ԝ-w 3XeHaTAGL4HK!*k*0dt B %ʒMW ,$dLSBkU߿ok)P_YAK[̺ A]mm&'@H8" iiAM;?d0NfaK &`G D'>H`i§ ݧ}@]Q zozU/!]~hw~+oN2Uc^ڽ_h)hW޿S^w^eT^5Ax?}M߿mw_Mο}clf 3ߐiwoغ~ov@ ЎkGӿ;~opIBڠ ޝ QDq /M !U!ҽL ɴpd }!!9ChLPS] !s'B#F|o&_m].'ޟߺU`~7Zw׿}O^ӽ.{[OɸR߯MW}?[KM:~/]RZ}vVK-a޿A{KA| .)_ _,!rQ /H[_A{ / _ | UB@\-.*{KTZ(__ }Ek@vTHo_ i^ iۄ@043h,0nĐAQ V =@P-3҉#a(č(0v3Q5A_ҖRjPd Dp,t R6 %,YAr Z m pYHAK) Pe8e( )h"9h@ݢA m(2   d LRGH<7.g,j ^0z (E]D0A C ~\%grPs}IҖq>Pa@hE@R | K:Zw {dQd ,Pĵ gCkZq ZQ kD[5% K]l -s0< Q ҆S1–°k Q8 A-BGf?hKe:*QemGYHYG`)QrE)tZ@;fX9(i-h0O RܵCDDG˲AMe8q33j+EDZi#ICH AGH0=5 ai@?j#0H0V-aOYtamFفӾ0;[#">T ޚwB 4N#m5;MnM4Wj>OUڿw jD LH}~|{^!9 xMޟLOP9I5Oһ^!kz{|I7} S_h7{~Cezw:Mv@np]S~B|X?3z25_~/hXj}'mD4>_MG^%wmzO_"Ճju]_[ݝ~u# w]ӻJӷ{nawK 1ao xUrCxCw;zpC`k0^ <`? H> ?.X30WyG: w={PX/vy ٵpڭ4'uw{ #L-}{wפ/{ ò rh==?HH/ 5U, n;xq}i;Ag ^~NOkީ @#Rzva4#u "GNTLhFVӴӴ7Uu4a4Vwh4 uQvi"%~wh0@ek }4 dviAw)((aSAK.P!PM ""04"#Y#jzu5Q`KĀ;"Q"V N B*0@12JA 2:A鬴 SM4iVY9TBAk 0u"ˠ5Xwko,0 DTU>ӽx `Azwo'kikviT}{}Uo_}[}ukT֚ be:DO  Q4 `=nd|Hi~  endstream endobj 20 0 obj 46 endobj 21 0 obj 39698 endobj 15 0 obj << /XObject << /Im6 14 0 R >> /ProcSet [ /PDF ] >> endobj 27 0 obj << /Length 71 /Filter /FlateDecode >> stream x3T0BC]=#s0efUeɁTA300 #̵Tp Ct;N> endobj 24 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/var/tmp/10089666731916source3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 28 0 R /BBox [0 0 512.77 648.10001] /Resources << /XObject << /Im1 29 0 R >>/ProcSet [ /PDF /ImageB ] >> /Filter /FlateDecode /Length 30 0 R >> stream H*25437W0B3 =C039K3P%+  endstream endobj 28 0 obj << /ModDate (D:20020211151608+01'00') /CreationDate (D:20020211151555+01'00') /Creator (Acrobat 5.0 Image Conversion Plug-in for Windows) /Producer (Acrobat 5.0 Image Conversion Plug-in for Windows) >> endobj 29 0 obj << /Type /XObject /Subtype /Image /Name /Im1 /Width 4274 /Height 5402 /BitsPerComponent 1 /Decode [ 1 0] /Filter /CCITTFaxDecode /DecodeParms << /K -1 /Columns 4274 /Rows 5402 /BlackIs1 true >> /ColorSpace /DeviceGray /Length 31 0 R >> stream TM8iG䞢S!AT<ȇ}z+c Yjș'Zfjph~Aߐ 5}ƻivipî_KZKH)KiRijSZ tipQeӧ帚ln"^7]___舯Ou_PKǪ{@{N{_쁿pf_M) 2;BuM4*OVZҽ}aUv #IRէ]4az״vUGY[Az K3g+ b"?SdtW7ZbiV;_1?׮]{\ YKU}^{!|k?BMT#A#DH.ڃ~H(jijv6b!fY|@dphpvP@Y CHqdqj" !Jf*f !DrE_ DY28fr<)$QP؈9b3#$PN\P$rr ֳ <3ch.! xfU:^28#jt]`t`0\2 9i$E XdcqA<ʰda*A"$4GGxjH]fTA"hD2͎x+ #%a"Sp?hH5 kA0<7&3 v byk_Ap 5C0PAiD YL>@(s ACPhP53 aEAD3+ |#!pZ#0ierLCAv4S|" K!ᙐ;"8,:UAu dZ+>Yt v+0d 1d2hZYKgD4"hj k@Ky#YLG&A[l>VL`AS%R. * dQ Zb;)YAC3S3 ք6 ee% \5 4GL2 ML52`e3y 2lR|G@O "lSBα4ɺ#8@Ѐ"nL`ց4 C('"ĈR!+Mw`IQ0Pp4DeAZ gy aRZ3@ adXh !A, -!XT=0>ܴ_d|Xo#jell XbM([*cA{,@y _e3%Y3%&YV- e4 cP`r3]ZE-H}- /,D -+A]hYLBP<`ڔ0pe0e eP4("57`,V C BԘ5e(2 ,GkV" C0YCd"aR_.kZd48(8ibYQ!S,9@Z`"LN ,jZei,KZ!xB ,@xᗖp`D375E$ )4@ " $QkyiF!Z mj2X-UP}WL.KArP^݄ACRY 6A, \ /|, IH VfN u /+2 gr y G]0iZVq0p7ְDW*̮md)S;Z +gJJM:ZwX" kh\]}m/% p4Zk\J%RYX4rd?eH*)qXAp_ T!xM9ge`:WS-%aN.غhfSӠ \%.pܺQ%ߕՂZZ]7 @H2UH]6$/A^%jB "Bre?cAu\ ]_W,.+A%|Z.A/" H \ [k! TX$fZ}K9%| $V4,3?X3GfMDRT@Y+a 6End4, KX@/TBA+wa4%=ٓ[ -4 Hk,PIi @3Gkp"m,ȱB4j w B 4h2C1IP3HDpts!pVj֑ r>`՝b8(Aِ)f L&XDp?L 6 ⡜ 0D3 4 r !z bc; 2堨3)|y@Vo{h:#h""mŴAaB$Gh8S0H!>y@Epz; #`gE)AYpAʂ@hL&@Z Xtd@2e;Pn0!M` m@-An,!S.A"n` d@#N'l!yi A \ Ih=03ѐ. 4*:h<,pH<L0!D2xDۉQ q l0)\5Z0A." NQGCL ptC8!7 ,” AesTG !D0p@!+9MʨAb] 2!QAr l*AAFW Y]S*4k+A,4"ň!Lq 6A` S!S:|H @AӦ7oD[K0f&&`e, M& ֈ_l, !] \vjJP$jAt@d9ށqJTA 3A0"7)HD3uA`f,0 HYeV  )  PWc7 bm"V2 %MrʜA.,,U2ͦC n(O A" 5@eM\W@f DACg- ArPDui `_AAr QC4&.YGn&m7 sa)g+ kq`L+D  zak"P5  D qPiz;4AܴׄjA]C0'L*^F%JI!4 o%`}1@G a"/)0l0s!pS8@hOm^B nJ2Hg F` 2ܘ$;@M, \ RA @8 Y_ClpU0hYKHZGP n<4q K+ @p o@5pm+ -e4`$YA&5 jL" v1 7A- @M\)yLbvVAaC/w*MA~Y@4EPHpJỈ*B@D!@d)I7 .aɈ" 2&< 20H&`*[ +4`D$IE$+"> nAP ɺX5W Ƒ q)h "n& &@*Rn ~J'݅"M 4ASv7TAaep@Udh 0Ddž/q`eu0` #q@C /%H 6WX+-P"$!@aD$Hv_+e`QZ2 pD3d&e Pj8+ kܠ<"&M"F SA0q@i\\ :m0n@BӲ{' AƫAAa|H=ZuA +`r \'Iܸi`hGpZ ZMM %+h­B&d_+7 4 +W6 Az W+] dZd\) 4E~  ioCiwaM| U)mg):.M%z 6AII"f+`K6ࢶMCQ&̊gz |?Ap_t&AD3cv+amuFV / W B.uwش 6=ڂ]fa\V!WI8\p{_MR `a"XZ  [D4J @p ív_Ut0^L ¯\" k,Ȁo#xh@,?o $'( %Sd&26 -t[ $v y6I@8( P/Dܛj`!d`,{v)M٠lI xamAPbMj/ &hcabGaql /o0M5ԃbP/HH}U0幠k^  >BlP Ao"臡s/*D6.Bh57N!Awz7Gc` h0AU_AKAv6elQXa~vD5%z})]A î .Z(pw nI󱀯MpL"/ ]On->["v6+ ״nqkY/-ăWPD4/ 'JADm*@+d m_+=oAUs["RT$ ]`6B q~[ oՐ#cWx" 琠~y] (۠XOW,@o+H gx߂!"uӯ`Mw-ڕs$ 0@@]" nl\%a.bT_ %^ V&P.()mj}0"龍 QGk+̵d ۧKad*̐%̆"8kt`*U ɰ pjHA q]k c#.:pA;]jxA)d@2% rD@v UFBSt@B6z  (] `UPj @dd0[#a]xaV651 S\X54AF`-D @"`j3Y( Uwa[`OށB u6uؐ?h-Z_0 \<"uPِH 0տ+ި1Ii4@ofADvej'AaC]qJԆbx m?Ae)[-gz1^i.U Ž9'X@70̰ --i" @A!pA'a.@- Ip@𿂣?6v--Uz_ >0 @6&qɎKtN+@wG S!׺`ANFxrkuʨ3"!gi@ PfhkYXN  @5 ~.p3 # } &D3 NNh Bh0 A( PNZ0 ̺NH2@:D6<:M'-7jvVQ} 0ELG ! !*[Ua6YzD6@P( >.A0@ p@  v(H.rRD~"$&C@ޟTC@0P. d1@`! C/z(f $Aeu0<7j +ǪJ D D$\0Bep0'NlK!.{A@w4:).0g`qp xo'  G;Zm[kO 3Dh'w@+ pDR9N"$C+BFUA@Wu@g#"etK؈:atG!|<^; EHZp}KDDDw,r_ڀg/B& ä . "N+7M W^~\e{ 0pjDX0%dD{ O@,5qGk@x̄a׺ oם ^  /2:2-Cþdu!|`(Ȕ4w""UD4.z }%4 x]*_kA6@Cotd}uTADs Ȱ4/@@xR("!q9ʃS)Ȯ(O'AH hDDDFtD!p!C!t*2bf<_L! ppD5z'DHۿ 6 E ڈ:#h9E8,z*p<3^ 46Z\ApAu0%8hlt|(0R&D"?ע! $*Fle{3A {\ iiMQXY)my]@B; eh&p[I} fP!a\ _Te/mSԈ{ZwO8!"Il ^KDs| 57lHl/!$ <a_"\TbE6 7Azv*<(#2 <4']TZ!`]Z_0P*awڴ ÷aFK} p EhGfyܩ*Xa?WW! '*Ad(omH^(j a xk> a fEX6[@l0 EP'zR\DEXDrVWa0CD P`xp;< X7at  ̨gC#7NC2<deuGbf@bL2ݠ; Cm;&p( I -BF .C`;Nm HP`bETذga@x`L?{C!   v@6Ak0b(FιR2Ch2+> F&Hr#|AhZk@!b(`X;ޱf" 솢QSA#" -*ʐ {2#LN &@d71d*A?x!ި( @7" @80! @$@LtiHn  &@ПA{7L#qكfHdΨMAn^̅NBH9^հ}>E@.P\0hw_!$C6AnW ?sHi7r+]BC< ;**K`¿O\bm(pbdf 0@| 6Ptd64; C;p2u =Bv  gaa`Md2͵0Pv&  DzD$̠9|aAﶩ~ Q_ lo`ODUJ̖C) u$<40H`zAbF CҲ _Wi2 Dߪ7l M d}H]ua?z/ P!8oAP[tlȰ[uAq@uiY$߿WwR0]FmV~D(6Ȏo}6 phrKh/GA6 $xQ';}ka_Vd& =?xke= _H_ =~CCF(fIP+W 7M } I ӻ/ $ fBA mR 7j'Xh*`A]tq:ᠿJAEz/̽V@2@~"PCms]!gRm,s#OI* AP8M=ʘKDWa%h!wi5"uh"$G25i_A)t o0_X7+|?{7,` W4{ˢȶG!+tCTNJ @lo^j7KE]&  S a{ KnzazވsAd& |5X A7ra4CNCl?çD1!&{$ Dp ּ o4#VX@!z A^FkiZ AH& B ikȒبl X u*A&dwºОNzZZ $h5a"ޡd `) 0 !wam}D,5"jeJ )-cD6b+">  + I , @2QxEp wk -". ~  !dOKm{R{JmkX$!6Z Im6.&gb`J_iԁxol~;00 ʤݘxd㙼teR +9x%h]<  IDDu(6 H]A@)ـf_La@ݴt:p%A`ށ3 +XD4lד AZiD";tZY\6= pl#nR xJN~kW{T {.θ6,.6^ T}52S6+K̄bmQ\l60ҧV^X t*U+ڰV({_h\na2@.dGf2GR,7@7PAk}" qbM&xAh-~!qD~"){ '"6/6)^Ⴞۯj 2X433U"C"*M@AS_2ZMJ 2 +HdW"_}&2L6KM2# @!Vba*ARCvL r ѢN[dplz3y }<o ^ng Fa޺@ / -p;wu胻gDoDn ӣM<pko@JW]UfBh"l sqK kX2 A AB "̌I+ Y660P^ h&4Md}00D67 D3-Ad2mo2(pDtK@~RlY6X]) t"" ֊\dՑV B |8gXR( \}-mpDtB*Z 0RX _ D62[-9Rt@=`QC_A '*w+r?+9^aaa߱ }s-ʃ0#Ґe6uq`ijI Pd A($wGV5 [ !_ h[u MY\1@ب骺V[)A닰D _H/^@ڨ3kx"" - WH[tajٓA;/ m^`m/I_j/@1 -0)2p)o4`~_aDR2F< v00l]jW3A+ H^ Z~0rVvOA; צBrÂKH@#Mf" N^ e@B/r0"V ^ B %༅, |A/@C͞eje/2N9 9U!A'@ZH a 4"Ay$[ COu_ HfETKh4dp$I[ 2N}\j@pH v&A29[^ (El4½v&Flp!G< ld1kAZ'P,6lKGe" SCȅ}&xh2;.OB&<# @A$ek$e$wxg#Ct,%\T3-H@<"AkH4R ZpGb`x) p^vHH ULIuG酠턗  xm VA'EMVG"TA . p  @@ 86^B $Aph+`2 n D @gz @8p@L.Gk@A0P2sAxL4+k0A:-$ 4| v u ;X E 8 o`{ $YNYޡ=*` V[~ l 6bO{1Ao8 6& itaf ~چظAtT' zl"[Gx[h ]^A@i4- t;V* V$2ǡ }a FQ $ ipʀQ n. "Si-h Saeaos /!u  B (K"n 58Ma[a lȘJ) ,r AذCFcr][H*x&a$"E7a@ \Ѓh6AC@"*}{ԛ5~HpUa @ !2ݤ~/Er \U9) 0@| xDoD2 "n 75Aj_@N r 2Z K*gdCFĈ=Lk.T I'ԛ J#` [ (ښKk/ 4 :D4l]8 ^BN.raD@ALA־: *ׄ &ɲku ZD\d r&Vhȴ i'^/ӆP2I p(CQ/(036CH'A|$!i5 AYek/!;H CUɱ@6| e9 ՐVd2" $*CHrv ("Z @1 $a~]Ljlْ&@Ć4-`4| TMl4^ؘk"A) /piI%40̬2x}!Y%0+OaZd<+~CEuM$AC*BP͇V\́(DlRl% tА%`0ق,0AZLc膛H~ vf]C[_ <+D !H<7s6rl 6!P XErEii @XaCLH0@kL`$ǸiZ4&!`h&`]`6@)ZL8#Pk+ ԹP!솁]T6 t + A0A_MS ^_V( B-XDZi@:n !9A96@ ;5 z(a VaYn d3HDgebՄAAA"Ө`MA4IAgklU-?Vv*@ X ENFi`{ ̉r>w`u T [(nW;xcaЉ+ %W/ٚf  ;DAX" ?Z'-`R.N=[ xA&%۬%@ā!鰐 JX@avWXu&%Ci]P@@ O8 mgdfڰ‚IU.@eiL0\,fLV Lm#MH6 *A| AZaX GjvJ5d j[ #$SA $ != hH]Cap A@.$;`ئC5p@P@eX46D6 Xڛ-ˆBA(ga "uA70@[Bm J e"km0A$AUBoDx agfAo@@AANF &UIp@eA7` Mz f D6iK [þ  gaAAmxAWZ7PMPvR кDwMI& BB Ӣ \}47oz CAI^A+JMM+ *5 P\CIrXl" @t}AY:`ܛ v 2.\߷a-1h;@웄!SoW Ӿ@CD0#:Nv D2Üp`-O28F !a2L5 X~*7zSɲ2aA 3kH[JA?a`V ]mbR;/6A ? ~h")~* Xn\6Vm T &CJV@ Ү7u aAP!oÓmݽVjւ`@+t A*`hkM ج肻U"!-&% :[ao̔.0~-e 0~t@~Uoej&*/n; RM0uT$KdU ڂP-vɨ;2K i H/ o25ᩳAivH # 5 #h"" V›&`_bA|8A7XA}pNW(L?A]30E0X Є0~-KzM+nZ."L:˂@UQN,vU:aYRA" S)X,(5E( ԣI2!- W6!a% eA+L" }h DZƁeevk)`, !`" |+o()C ȧ-τ +.&(2 Lp l s Swcz n S) \ڎT$C nDo)nAAL7 RbC l5, H69c$k@]a D Cv$7%DD=]  Ć% V-A؂OH+쐰R( A"!I ԛ`, A5e8x" I(D,aC `  2 &A5&`QPdMewA,L6(B)6,`,aP A$T kD $)9&@DDf#+I\ 0@DI26bEZ62 #hj mTC#hGG ړs=+7#f]ˣy\26!<7niL`fo.n`X B$ ?n\t&.X Ab"0d6A 8u ?̆47WiADo)d?.6;AJTA(2@X@ xnL;UR.a)d,iU,`yg`z5edS>C <\ Rx \ <Ftgd,f*Ux=5d#>m2@B xy Nex U<@l x1#D}h5u+ yC x.9[K\kcLC xhc +㖀0<@!"E7Ң|$ZԴ*FUhYa)e Pʀx%x( x>[,_)gNU P!K9<2 i``K8ZRPbb x.-A<4)gU ږudLC よaYPC!}*Y(ӆ@XaK0)r%,Ű+f$l!iYYL 42bf?Ԇvf%bH"ﵿ;jW?Vׄo_ikW}WwmWק޻ Ӱ}']jP Blw=dY.'A;D!nֹ@(FA9t2r gBb)<BBFIh' A@0fPz}{~d H AaZ^I~k֞%ߦAKTNW޶}u֒=kOk{}n>W{ҿ^ {n!ʯj㧵Em/k?_ k,u#Xp"E!uulPzꗿËC;Uk{{K[_鿺Ck}uÿx kO}_O[7qW_ uNkuUtC@5\4Vzڨ<.C. {ipBt kMJy0zZWOy&qn.wڿo~ uZ]v_ztޯ[o4}mozVWm߽ _[Y~K ^.L4ž.lw 8(af03\ f?߽09N`t5p}!#r tVJ{ȵXUA ѥ!qtmK_d4B* föko߭Ao[~^ }XNA޷'>߽56TVư ]Umjv ?kv¦߻AO[ aPkImm{M4 NiN@4 0AXkiC+avT0v0F!q$ M8aSA ,p.e`J"EaSL *HM4TL W33DtC`DD[%BLDl4LDv :d(Dds! rQ;1j)-,$O@A|̘Dq@ r@B V %""P̲# c aw!a!0. BB!00D !(9! pfD h4 [4h@EϫD(v 4 T  o: ~Ni[Ӈo v7ߦm\~>;Qk~z޾NIU֞µ_-U܃4r <+D 9C;_ @p:h]!n7 w@kO#PhC8 V@޴Iwp a?O}zV~7U^KI [K}}:Uw:}+T\4[{I Wn=l?_CD}b#%pˉd|o!C>5+:~vﺻW~UA~q;!?֓jI[U_տ.+8u+Z ouַm*D2~ J Bukr Mr ׺?_!%wy WKMUuku]_jvһOmߪuۭvk?m/ok~ZJ׿_%jv: K SK ml2 i}m oخ>@W!5)ؼo|;jzk/k krko߰|5K{]4-`nm;ߪ& - xNv_MPaS wլ4MQ4 ;M;LA&A40&i0@І(!! ζT d9c  en~+ H}DDb"""""$]DDDDDF#0G oj?`GJ)]/ t ( m.( \Hzo="` ]VƩ][Kt^y.DPU]/TKuUphWjx?\i6TU~~! MQqkzZKF4B@mHcC<f:A[kZ]p2=БvS؞#3mBAt_D,-\ D 0,#HB`&XGwH@<7Aף0g##=];E𐐟;4~e@pU 6-2->4j2JArP TB CW fiɁ"P\WT@ ä[["@8H&$[EryxJIPv`Vv6GP I4 @$0 Ô^(';Ses<BY٘PYx fDW2N!G s$K2 ,+p̖j̒^W5 \ppZ 2IXw K. k t pi'aHiۤn0tA 7 U%pàtnI8`vpÔژ.[ÚWm E'}kul8A{i8dA-'a_ tiXa^aZa.-'-[ t%u-l07Kàna_-[aOXnnZM-{0pNàV)p`7 hD{aKAäжnP,0'P6ND tul8Ip7tm' H7[H!j҇ va2 j\7 0Dmv%M=67zn[{Ao&[ 8K~kVT lH1A;l8ISm]wNä.:ÄKTI`-/UNpK V_aJ_Imzl0V% I ZnmAW-%-p/.8%$Am]/Xn oꓷIﰗl7KJx[0Ant bhJ$ !8Mv]7 6wakat&޻t]}[}!l<0鴃M^v-jh7 ӤWZB|CݍS-V0)7ZWQoMn] 7E_l>ⶕ o#]ČUz N߄CD MApoImTB_Bѷ(Bߺ6Az[&֛A87V6T~Zlu)btmXpAoOUUf rx޶Wz$SIk4Aqa:hed!ޮv(_+ 4wҴ!Mzޭ ʾ{Aڦ 5hpt$ [V[t"(ʢAa(a% <VHeT (a*!Aq X51LB5 i]'*`4 & .9M)%q%+ P"¯Y8\R f аoF!9D.IVH[=DLH\}C.Ż[t ! 2 }m )}TҷM汑YV@ީCHC*L V !3 . GOTI\E\h_߭ }zh}CGz& փv\Z Gf*[;R):}$"f84-7TťޔaHKG[z"J[1__n FAaSҧ l=GL/v6t % { AߤB:zA$o$ *a &8M '$n&6vDCߤ}ZmP{7[MjOo]R zJD/$CQվS*H% 5oI?.-O l7߯UaU.}%%k}-\ )[4~B[ תOa mFDKa/ v oKaz lt`KT% l6 6G:/WInk]&Z xa|. |K8ġ'H 5Q%j7&ү6K CU(^M^ ֛  ~i$M00aAmThb)aA-ۮL[a $[$I[]\%V 6I ] / ?6Kl?M$ t 5^ -&K0 l0]@ z7 b-WAnj[v $ m_^0ר!0]$6RAn=H.uҤ H$tJ5(%j-k O`P} ~-A,0u$_JîOa mz 0JA.^AR|%aTKK$^4 p %]{ ڰֺ }|uU~:'Zii a:TU  |L Px4mB_wt{: }dtڇ%: ?>/{^@v_}?b,A[)PV8,;ZGPYHP_ZwZ 5ڨxoItAJ}^ 3AnbF w{Iok@]٨i W$tP#}W;#GA=kNpֽ>" OV(?kzO!\U(_j7?_A7vK.i?a/2=j¿HG`r:v,Gk_Zǰ|/}_^;wkizסnzkN~_]t/Vbzm+qB;Uma8atq(炇 }}~K?-I u/aa/Cޛ@eeAm~"?:!_wJֿ_F?ۖ/#}ܵ=ǻmw;SNUoֿ߯{__̆{~_z}geoqkK__k~}. _zwY ~t!+z_. "{`7?`oAww#~{_#lE0uޟuon`~ZIx(>+Bh?W^{oM_.;q;Na?i޿Ao~u:{k-="OO2R_ 'OҿkuW%] *#Dt?iT z&D O]?44B>IaUZ$}~4^^ (6cXiҷ7VֵD~~fP?Mu\A$O=P ‹"*:5Jv D)~h`˯\TL+d! ?W "?d)i[ Bw`0Ay:oȔe? Y?:*?kkDF`ar6C`Lya-zY)A},t@iv ,Kס?L]迶ձ `˲ 9̵y3W+""?_M,g%zk@0Gq]l(#1R gdEAuװA>ikDrװZ!?ugٟ<{A" } aO#;ї25! ?$?Y ;4?A6Oo൵۝~|;'C3̀yXf{聁_:rV·(U`G#To;#:j+ۻx/":צ#@ }#٨ej,.4 aA0 h&@!}: `elGiݦ 6@ 1p‡t%`)NvDX^ $@֓R (yگAy6Dh|`C- lugABv07XU0e:1Kr?zڤ1A% \24dtk :)4cD0Bfz^T JoA55$mu<v]z GPʷo2TAp[o5T 4e0/ >%H3vʑWpd j@h]a4CMh*S3v Ҙ`7nxD. A[@4IfנAH% v;+  ' Mr1X" z Na.\D4"l ) =v4 M0hAy\ZO`뵿@4dH .;  A zS@aNS ^X2 kguX(7dp7Z;3;i%@> iȴ eGY߃Y2r:gn &U UyK2!#\N[AF>vd1 d4h?嶪 "{; +'" _-H  @UD6"R$ ]B Sk+0@" 2pdZeiP9N!>ٓ=Hu_/ /AfHu_}ANE{UkU*_/]Uz! ޕi~omҀj-_hY#}C Dc S? A6}Zv?__v}_[k}uo_(޿ߥ?wN ~_uz_[^u{_Ԧ q_u_ok_[^UU'k}_}}ƫ㿮}t_ׯ_Wu~w~IoUwk_/a?~O_`Ư_?4}_Z=}WWÿg6St䫬o +($n'Y?Zn=7O yՃl ߿f l dUr [eX+uAr쁃)uwdHH5mnJM~+?@$ : Y`kܒǮCe,?Y흚ǥ,H9݁Go[ \;8,?J; }xl`u,v a>fZ0jv& }aN AkN@&@O {L*W@تPvQ:;X+@po:1z 2hu 8dua`&~ٔZV 6bBH $L2) 0l%C.Bp0dtiAtheXJ tRDAC hC,6Al iH e6 ᴤӁvZJ T^22 @M e &6PRbaC `)0.2{,a(0mRfA @#(1' ҆C7i)H Ґ C!ҐPbAH  l`2, (d3vf6 BP02 K.7J@P[JCj a(R:m CR2 &҈d4RH6P`AH iANPk * DtGJ@UL5AH a(b҆Ґ50AKoTY1PaH + @YXmAakPepa‹QhZ6QR? |A]N OwW_ G芣c*kpD& $3" hip " e$"BTIH(#~0A".GGc=Ȅs 4j 4 ܬ¤Ud3TC-@]`!@x34B DH:D!!ƄHR4m;N A(h" HA4MD2ɴAު@id AӰ4ᬆvwa:ڄw~M4 l#?mߠxv[AKӵ/{oNWoM^oNNwj{M_ig'޾ݯ*"p9 [}W Z!>6u_RovO3 ki~W '}oo aMGpA[{W{pp`uT /x2=zMk_HH@R믿^j҃=o]]nmvۭ!{ZzZi޽kz_![_Ć / յ[k ~פAֶ~r }ra4mS꾠jr8%/ 9dW{^4kC[{K}tz{_׮zߵtmu]Z7" ~V.;w-rU]~o o%kuýJaߵk`턩]:YBo߬[(?o0wk°amqa o΁j^ְղ: C xpa}Z+`z*$![ _t]Sf#|S[oj}5#E_[w{߇pޫkxku׵_to-5 o ~èNan[[[!-[Ojݯ ou1i[LM00zھ׾}ڦ 5[ X4B;P 0 8a4 z (T Uu[ d`C .&8A&\' v``MziDNs .$&KdAʁdsq% VE":"Ӳz& gr#|QQ[ r , !G""""""$Uq噢Xߧk_NSU.7BX%3aqUjb/}Od"[O׿.w&VDs-~@R`k5bȯ-v!,"*|E;Kw^+*ܑ ]ȏaz 8UO Z_o}Z ֖iRtx~[Jүu ª~AiqI$*iu^M-.U-浥UOKo\%U Z]*]E:I2 T#_^Dpٽu#_![t{լ7 W[A,>w̕J.9njobJiۦ.ݥKM-=Z#fƊ"$r 죖9K_!<΂Jj-14DDK-.(D3\90 kЈqʲ ԈZ]h̓E קrT3)YK&9 a.Q? 4qr&Acr ҃B""""U"1dp[ ?f""vjG2|o<ՠwGb""Lppp<^w> 2̼`1H8 nk8nS釨 4yF:.Ȅ AЈ = aIH0<7 ay`+°kLIa0&l 0_m@~z  L=Xa/0h*H7`]zoH0ait 4IH0_]azچ0i*Z&CJŁ R 0&@ $Kw`PgMa{0AzATi"A 4\$C9bMAo 50rCP@L:p AtII Qn3L?V]&6 0dKia l! uMj\$keDM ] l~]]i7!]l5} Î6_ &kwoۉZ$ f3H֛ >)'Y=WACmͽ&d3A&kH6']a0,:H7['!b mlȥ `  NA"O 54). 20 2 >oi$i6d$I@gu$uC6J$4ʈ ds;$H0=̱! G HM:&2 u!U;pVI,0"ଘ0} (q>7 v !.`m481 Ca􁆶 VGD:L?; C ˰pK|I!F0V2&CH7td, 6} ؈ Vd f `0aD32Xl0A1dtm$lJWTW 4W2S ;:n (sCh¶D" ' paf(lEzA ,'X- I{LVҥu0T`e? x46!_-2H0 0}&[ &v`4tZu V7Uaam I{mށa2n06-@X6v$ {Pt"$9VTʐ]" 3` 99jp Dps.F:1MZB;im pB""""Ar$gzWL"# 'P#sc1A;B|0r[#B""AWrq&\(5f0K W/"""Awcg! i\A@0pW 4 "0 Ki)iqȃ9Vچ"QADDDHyB.ͣhE̫I0ek#DJ9VTr8!pkLh&Ƞ4Bx!/&9s9=r5@9pL0 MT9iN""""F!5|$gg DDDDDH(G8`ԓa =DM`aCd-D3[Il 0ѠLf4`ApXH6]S h!+4e2ĂG;r+PfA+r8Zx f #KC<7! Ñ\G3QryVTr09PUXY(ra9 t$2b""""""""""""""""""""""d=7-# jܴAn  ^ an-#ɸaH 5n epaw))sF9幬(s9܂9x;9iHVG/r703'6@hiDDDDNHHD|5`Ag#8d̴3`DDDDDdGeˆvpYi$ &AU&Go#:> C0pIDDDD[>ZZ a7B ea-. %c<3gnZNDH9WۄC( $&G߆b a W"Fd!4嚦&4 `ܾXYaؤyf$  h"ۄ$R V7nY J 2]f CJZL[rͨ2r 2-&@6W, ΁0!+pitih?nY@b&[pKHt1P3u D ahfiAr) "nT A4[adph1[`e H#0j0 35#i[֭f (aވe2PLeq/pD 2* k%m3@1om2iPa }>vXTWljNUVe=M/d34(ۖuPpD 2pKK]ve2k{P0t,⡔0^r64Rl[s_^ ]RxnY[H%Pm-{@*HՆGUA5ygNVOH1PrJIe[j*iW{r+uh g0'n ԓECtBfaeB n# xD3+AZC3lm^#t`oZ "m*lB!n@9Ii;ЂȤ@mKۖD QL'B{h4@f{rhnۖiN&A_pBCC@ {ӃC){rTAhBA@XXv $]pA! ]Q4 :Aa!{pD&>d 4 ҾH5H/h[a%P n"lC)Zi-۠ޖLOoTD3Mْu ,0}`[tA%/a%vDuzOifUrW Pal:XhIBk}6VvX`MAIk Ap!M? !uȒZma0ɈX :a6݉H(j73l5]0nHN F% 5lMa߾í4m=8D @ho57Q X< lH#b &B%^"o0ql. !St8OJma `Kێat~WAjW"L!pVS4B,ad X.7_olR:. ga@ 4W҂M 82Z)-شy} 4!vX r@KoACK;TD?] hݣ KH8Df ;_}2>B׷H d vZIw۫2K + ,!pd}o{6d 7 Xۨ02U KP߰D47PT !5Ngiaz~&ֻ!p O# U.W SC@":a XC[u >̌l ALs%\ BInZ > [跨5GolYr%čҮ`2CYκZuӸGEu@mzw#(|0o'ĒD5vO_|0%ok`B zA3Q5XAZ^ >Tۢ/Zh",Aa0A: N';El2P ގ7 ݴMU;(-w B )+l0t~77ӡpV# }0x04`7eh |6Mgq& WI7V j"z#! a} O)H' yeUab/jM a=UIڤ\L YG3HAI 6pIՕmva $ l(Y]+za̭t?8+2 Q]eʠZau_ " $t&A Cu 4)A$ɱ4Hlުa KOY7Q47 kiAB [``[$+MՔY W0h lӄ)6A }j{ ag+V!^i뾃+ɲ5oPit^ o|RM-lAA0|0 % ¦[u bPpD__tSLUhU/ޛQa-MZf3MVM#_>[dXEE7t\aual  -xaMmAӮi4խ@W]C ] + @aVfJXN2 w> Bh30E|a0/|0 &n0̆04zpU|k/Aꖟ 3$ m: wU0` BT!#a %[I>ٔh0 udWO@ݞ[[@d4WK 5¯K^ 3P1 o 2d G`ևKᆁ`6*&[u|0gh ߯ } jK}* +HEaz^} va%:z, QK%o 4g)A0 q0fRk a=޶2 D} TWb$ 䰩֫~;\G)9"\W9()+|לD4}Idtyѩh y GE̎!9v\ PDDDDDDDDDDDD~4B}k$?_! 'aIn_ {~h"Diujުm U턿KK UXaW 3~$r]l b_k 21_]@[EBD4-zI5uak^k/[n d- 0_@ZQi{_0!Ҡ&aO}=kC$o`ch.$_/_ӻ̊Az_0A}okگ^[iP@ %C A] !ڬvo/_^rDخv[itGJڙ3B:vb-궺 KK" UlT>~a 23#?.T0!> TNҺa֯K0[ioVI6 cTG[ҷGe m^WcfV['IX`-ƋҧK~8#-@oKҠìaV&ۤ2%oDG)/lT ȻUZSظ1kýoշa ԛߪ~*=wW{~~_0Gu"tGdp]Iޡwu ~6}]{A'WֽW-{{`$N/ m}Zlk^[a#0]*+oOrf MA'+i}&~$ҕ[v~v-vBtpAo0TXaAUdO]oO"FoA]+ᯨ0։`1υCIm}W%mtW [*۾O\8A CUu0 h6[8M~a &̖( WH a.H52o ]H1ZݴMl |7 &톓A"P2[n[aPB >xnn`ԓIm*pD6&K_l7 `ۀ$b7]mL07hI쁅'm-aS4GoA]1հ{l u ꝴ1 <ACm,7!! &^Jy](6tbiv 2Ђlw :CAPA|3/m-0R{k^EB"a[u]WxAnCmKlm:d25 Omi;edx5{`ah~~"!0L3mݶ`}.:B7BN'@h5ޡKH n@-vۮA ,uPyy). vJAAfXI=y̖`D6.Z1ʑ_{vC`lf@^$ZĜl4Z|7F^!!*!!+LÅ V  5XA a턷! ̓ 1P ZH 0DSr GvbSL,<\6$&`G^imٱ{ 5mHPߥx$pa4*[pD a*PZa2 a"X KnCJR}v W@:*`{a(AXK'bC?X2{U  xo ݂հh'a) ADݐj,Șg"eoODLZb D.5a_AﵶD!uD: [dhʰ\A'ZD ZkpaA6>$tePl`\X+,Wվ ޵z Aԛ A 3Hmz 'fGfmjL`2 Ujk PN+JڶKAQa;AD08@xmD#] {a;xoJF !k aHIA;5}gW&[D݇[Ӄ.PV;8/t :'`\4xxn<(&avLv < -ac p!mӂm^@rmAaϴpA0 7h(HnrR4CI^ N  B'!7ᆡp(0i p@¶ vg#X3t=vJvXoNpP?H6Un@3|A9[nm#Q+ @B B mFd*ᆠ  $F WH+R@Y 6A0H&~i``^"̨ SM&p 7 |8pCMW zc&n̬vv@ٳV(CP2 o;V 4wX(JIwmME&"+df;H`0z i 0DP+V 0M+&DPZ_l50I(`d 80;5z0t0DC,s2zPmg8h` a&LAha^' YA$7vAv 2:; 5 )[F; V҄ä0NaB tSh(a<6&L@Wt j\Z'8 7 B{u Td(G]̂تmI&`@J>'EI(FJW ںV_2[Ot6&۾kTW '_6 gePDW00aLD*nW@A0xD5mX`]\0 sâ  nNuz+X%n v0# dp8\&$? C r4\ q> p Wol,YKl%3L/̸d0U v<sT0D4ƈ8;lepp L L,7߶ਃi07e/E>\  +`nG`(:i ݳֈ2 l#c*{3@ tTvAb%" h#@2-Ho~,DHgG Bo]b"$|#am5}M)DD2@I]GX +iOZj@@~L'᚞vԌ +ߴHhd0ҿA>- faI_1m#jNՂ[+v^9Ab]{Tút Mtێ}ZtAjm`M $[oI6^d}E2m3w /~emWM `"]Wz;5 Rom> 5V Pf; UV)z[kQ% sЦ ِ0~o]J] 0237Nѷ^aA_)~ KfSAݱJm8l2 'n c.{[/ݽV'"P _a}0y7)OwW޴Ρci7uA>ӻ. {m,Bm&7mn6NT޶mh'\ȶA+!]INMn#۴OTwVK_i{iRW}];ޕMh.Aj[m}w^vW_v麃<O)}oZZDDCiZMmw}]ZmՆ߻a[XoI~݄Wn ?۰Ka=CIGH4aސm[a0N? ~ M =Im0=ɽcWPatm bW ߶V[0wXm waMC-6[{ y64o!M} Xa 6 nx${ z݂aA6۬0V|Xio~`ۭ7@{ nJaۅmC A6ݭ;f6@ z-CQn ۨ0f6;m anޡ-{ [Z 8 aok ެ;Mkow f`n0mWY¹V-k ?Vꡮ|2 65BGmۻ+m vݭl&o0&&o8of[ nIޕli|0 i6 vvV63AüoA7o栨aՇ& mom&Mh'~"Vnچ+߆&{D6ڄ7aݼ-Ș+6E& 7u `+ ~M MC~M/V`t&iCJJv'`7i[ɽMAf 0 o ޔ0'maHݥ =mRjn$݄m0˫p@t~&7A6Vގ;n{a&(aݠA a@I op@ ݂ ۩f- ڕҖL6ҋKT=@U^a+x {X|$ݠ JA҃X VA6(0A g ZoJĂ9l!m(bAEY6Y ұ 炇+4[D ҆""$ rȜWʞMX`aφ9PTj&|1 o àDDPFBJ (3,zPH5Px4Km҆"""Aw0Izv1j"a[b$4;Vl4G #FB A6+e2.V+v҆ vՐ&9 BAXBh++B8pD2M "Kt^#p%mDDN#((ˣlm DDp6#nD|# mDD#݄P##4 v428p3{n"jD|]DpG7nQ>a8&R0"GX$3De#@A҈hD|G -ADDD#ݥ֋6ޢ"&Qm)LdvGamҷށ[a ݭJaaJۥwA[aaWuނ +vKiCҺVRܚ|Ca(PW [J[t0l%lPf .Yd| tb'#<ˆ@)J%t\.Wl)ql!&ɹa#_#lRl f.[fhN-"^[ aF$3  l B!f0UX!p4L4izAvh48 4 kގT k&wzzޗ^`L ;AD =tv_Kէ?4_޶4v5 [Ӵ_;%XAiv;kW}T]>A4;׻M.:d4(Du{ ~{)}ui}~o]D6A" )106=;5ܡ@zD{>n= ߧUL!o52 x r 0^7*ӿWt- T/ 3lA#h1*? _׭h!Z Fѻ_kX{Az{iwH7A;௤]tC)gg᯿Z 7H/]*Ui٨6|rG(}B='{'$oX; d4O ! \fx0HA]?MnҴ ` aԂS 0L r*/OOzO~m -{}֟Xh)A"Wo CAPBP17]5~k_!~ wޒuW|`2 azZ_K @An/Vdmm) ;TCBV({ F益+}5P)|Hfh@) 0qw׭Rnzo{_^@jq4z~Z]{{]wO_|>ץ_]~ӪVy_}#`~R[oᄊ7r}{t;_~UXAf?/3 ֓/ZҧO !R|H±">5I?_Z?mazOGKӿ]o Zީ^G+^kZt cu!?k׿_[޵ A/__HlrW@տ0γ~C7_l$>D;]o^ZDOe9Z'sR8/ִA^WJnB;C.b_OuSK[T}_կNM[k_ {_{]Z>-o__ At}6봯{`Uֿ\w)Za;ޛ;_y EҿMB_߂nݷk{u0~? ܃r\-h^n}?VO ZC_jQӮJhpΒ0ON__M{{Ja o pKW;ֶokkozfp)mdfǰdn۫fx`*9.9CL4PY/Oo|+i7vW{Ov]Pdq/~^-˿~]uO&4}  B ,88@W^ݺI7 + kl*74jC7\Sm6o JC`5AB}5>ӇzkiH.Ҧ _o{Mm%ppN $@7 #6I{o}! ܠJ:5ӽnC:G870w o];TpUN~eβC.Ã#j߆N"6+t酷a0 r&FB)" .Aߦ {ﻴ^ ;ONP5._w(߇mU7ڠӆ5ib=`E߷oIE45_ ݦ!MmSZ]AnZ[DA99E 0 /w nNX0a4e0N5MWSa0M4 8w 4 4 0B$ ^.>;=o۽5Xamt˂ɕl@M8iOL^˂i3EnޝhwkDD23P d30Ad8@dng6Ɓ0@iܱɧmo} [^NAP0Ո@A Mߠ4Ac/=WNjߠh (4@@r+M4nm2 #TM q 0(VӜ*Zƶ:d *h4a4OM5P0M0"$HT""D͡5fy[Ad Ӵ A0C *Јڸj""$I dta 9D+" M@!"3'by#C|5zҾ.ըQj?,( `a5`+VAk:Y86kaH S@9 j@r06ʀ`j5 wI&U( h `GDܗ'@h5@4X).0i3* @Hj r@9uB04 @r7/EJ aVxTӾAݷuFЁa@ _P E"=MpVtF*&c7AC#s>ӂ}!z^Mo`^a' O.3r ^$x@Aﮟ__Z7}Z|]NC0t0Auo) d&Aqn9\''~vi}OW{CFr!Md!( I{@ւ@Mх^m;I:C0}tֽaZTi I_ӿo^6A6XZ!GU I=I]wSt_>(uҔ34 ^P`]vW~֩7W7=B~?иCqu.==_v__}`w>k﮿Wai+<ׯ־tWU a{X~y^[uiPDC[{ GO}_߬ ߿3 g|UkI׭]{S_[ @\}t~)>$aXr AխuST0Wu#?kiT^#Wn{}uұ_ Oϟk ZG G ֤69pq o]{t]gYտU!CG"z7_U]? Si'`g9) Z ů ߥ]}_P\!!1[~֥~_}N}|ZWN?ԆhJ뮭}_kPu~ >W 0Ezz۪_C;H0MOt[]Zn⿼"_/7 ﵽ^XnA.4^Ou}o !~I/vr %4C8?gID'_[=aᅸ}% k[^d 3N@Wa O3 z2szWwi{Un3 <0N ~a&[(B,؃_]ބ=eػ.˨g28t/ve߿brN i~[z`g\!|S ^i+Uuno $_M6izx5O!)noi~7{M%!0J OmzПozý[ﵴiS~ {q`w{kmv[WU8}`ˠVyF ]q$UU_AP%a7!C#Kn{.8* ?d2C`Y!aѵoV ~W[UNtA #}lq! ҋUO /~N߆|@/g۶ޛP}wziM?M oS  0"۷mo^siݯ߄{[A&.| {{[}mw-h-qd" EMMki ,M0d2_k{ߦvބDDDC)0@iwwa; !|/BEYz֝kmޚ۬0pXedʂ &4 C/e4A VC"VoNO@[׻N""Ng(H2cs 2r 273c@ elXdpi 'jXjDDDDDDDDD ] P~iaojj Xd1𞫧Nan4 SAdih ` a9Bզvaazj *z8V d+iAC-c[VYQch2•4h0iB&A B$*}"TfК< 2 Tii L!hDm\5$2:0Dgrّ&_<顈?Jhi_Kj(J  endstream endobj 30 0 obj 46 endobj 31 0 obj 53463 endobj 25 0 obj << /XObject << /Im9 24 0 R >> /ProcSet [ /PDF ] >> endobj 37 0 obj << /Length 74 /Filter /FlateDecode >> stream x3T0BC]=Cc ed`UeɁTA3000#54Rp Ct;Na!8 endstream endobj 36 0 obj << /Type /Page /Contents 37 0 R /Resources 35 0 R /MediaBox [0 0 474.499 716.248] /Parent 7 0 R >> endobj 34 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/var/tmp/10089666731916source4.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 38 0 R /BBox [0 0 474.5 716.25] /Resources << /XObject << /Im1 39 0 R >>/ProcSet [ /PDF /ImageB ] >> /Filter /FlateDecode /Length 40 0 R >> stream H*21735PAsC3=#S039K3P%+  endstream endobj 38 0 obj << /ModDate (D:20020211151805+01'00') /CreationDate (D:20020211151748+01'00') /Creator (Acrobat 5.0 Image Conversion Plug-in for Windows) /Producer (Acrobat 5.0 Image Conversion Plug-in for Windows) >> endobj 39 0 obj << /Type /XObject /Subtype /Image /Name /Im1 /Width 3955 /Height 5970 /BitsPerComponent 1 /Decode [ 1 0] /Filter /CCITTFaxDecode /DecodeParms << /K -1 /Columns 3955 /Rows 5970 /BlackIs1 true >> /ColorSpace /DeviceGray /Length 41 0 R >> stream RTP*i i}mESZ vfcW \~˙xi}}";M]{iK1Ml4om"CK}-:څPDfDTʕ!KAGK%B]a[fr}a"1,J?-+]ZZ; aݐN2-œW{cO+;U\Su]-_]ѥWV!փ(!wlVQ){i{v_[fkm.8aҿ *o +WJwKKE.6H]B j yN!{wXW}}|ɯjU≮2x@a}Zb{,%W-׺gZ,x']qZrSrʪK9j㏮Yǯ̊A Z }]o][J~©m'z4=o+=+~;~u{ Sv@P = !<@;E@$kCQH2pwP(w\q`aW'. ՝*!b٬ ?ImZ  $4D =: -[a$7NKp 1VaIv jT``fpACgD6$_pA%퐰oI{r>$qaAVaI%w+!WKqP`Z[l5 A/f>[U Sv":K 7 ] $p`Y {`la,DmK,)frX.[  |9[ !Q/`l``ȣ %TX sI]24 _A%[`M,B$8N*]SAHd x `h2AJ; 4`r!r  + 2N#x,FQ̹Д[M B"O_D V):B'*1#, JCBeTeАĔ.$ ɎTSáṐGDHa9NT(0LaL$"8Mm@@*e3#GbBYRB ! O.) H JL8d BL*9.Dur0P,rJ3 drD6n1,}8daJ5&5|7IWk ^ <'p@+l0hn) 8I.2 D $p p9#p_KC:pa@,4AT: U(v &UCpAk%:pAU`3+aA- vB I.aemჄ(`hkp$0 U2ÂI{a+U d K$  ^axn %VmXo$m *:M ݔTI$a4!Cp%aP;mæJrР6.06:n 8@TM= * ưՇIV <0 e$$6H0BpKaAnt+nۄ07t I+aa6@*an7Amwà&mIVC$a]l2<8 Aau(rpհomx 0%EbpaA/@pIx` aRUa Ij0i0iAl:IV0$49TaZkxe܂s"$R4 B.j!tU`\ 6dSK0{ 2 B}ᘓl8 ^6":l.ۄUPNŲ莌᠏$l0tp!3< Ua /l2hdqpܲ -=0 B %ܷhQ^Gxhۄ_mB':#n TT !B&R8)U,phji'Yb]àJ`à R#t`3ąsTC *-0D]h I( `m&bA%*Äa]]ajz^i|0E%qnzL4%KvA7ij޿+ 1ҒKoKO +W5m؄WnT^Pz Ն]۰l-=("kem/I;[kJ4 ҄_%wv2B* _aK_M;dGJ=0BM׷EKZ~0B۱]ÿnSZnvzo&2r]~!]KZ|7҄n}Z*ZU O[c~p]۰`]Ziߪ:d_ Rַ2z&MmBu/U_վ[֭*%w[0?ޚU"莍 t:DGUT/Ȩd75]kc!/W[[H6t :PzV~zpvCVSmk 'K ⶾzLGTkn5ajQ/4ᄕ[ut>0`z W kXi]~(2: 2>G29d7Wkn Au|/CKPMvC}A(i{x/CkvAx C=.uِ۝MC_2i`4rNPsQ%eK+\5)Ii}WUH+0Wgfz|WIz\>v 3*=q[;4ޒL?-K{h; _Ie=3ZI0uRn4 +Zk+` J&ƺ0A4mc+ .h6J/0s'#Z 'dP 7I Y٘` CUAbO a ҭ0}$ADgHK:ev( &a5z "z$k!]%AI"$%Ђ#t|GbARAՅik@uIy v7!y $MW2K$b1]Wo=RoU$Wo^ ! $ n%M͑ӷIՐ_u{>Z&k;% IuAZOI[Ѓu} ZU;NaGeFߥUM`>I&s պЄ=__Rh5$t7I&. ߯i~Z/w` ƃ4"ֿd{I+RKoRpk 4ں[ukMW8it'Kk~0I_H&+4V{_ - A/򴋊sUTz"C2% Ӊ/Siђe &jߤߙ` H0i P0M}&̀j;1AА]I45H+KAߙ 7lrB 7z 4dpjm.cApi70jCr̆+Ki|?m7idp# /!d(6ڐ4=7G )lFICaãPms$mᴯmn9M5~jv`*om.~`J{NgI;4kbC*ߝi#WUTH&]dun&_ Ji[ <XH HaVVG~ҠPkmH0Ԋ^MFz~_}$X5;uie-[ %N~?nMo;&ۭ&Aܧ*.oh!m|6MZ D/nH(&AfZIAYnao%ao]K a2%\Z x~IA^Uhy]`1+A$iVڻ_oo@b<]{iV Iޒ ݶw *t٢_zJ {A 몶 6.PivhޝI;I [Am@iKMT=ۯowkI7A?o$H! y[@VZO-[OނA @ˀvEsT@ݻB Aj{E2&A@p\$<7^KTN h/nAYA P AV >6dkWmoH0j"Y޿z  Sa :oW\Wt׺OwI A%LA 7 mUWThֻi8"a4z㯄J>mm %)ʂ^k^[~@"p`vݺ@:]ۤ`~] n}DŹuT,0ݵv뤂 HS_v-R ; 5m{+hҤ l^_ 2Ȕ `^Kdj@T4*lV4co2 ʨA%حl\tـ'o-yV ,0_۰#"SI {(~I,0mȸ$2,7Km@X0>d@H" i{ep>%€_܏Hg  I! `v =$*.o;$;[{ު;* ,60Z ,2?mw,=R%FVǤX2V +d ʹ~h^ 6菑g K2 :&@xouI M" ۯ@2 ܪ7I %  @86?DMai{׹|ȕh A,0߿۲`Z\U ԿnB2@2+ p-jDp>uAVX0o[! ͵ p޾h"Km#.d`K .x}$Aa'nMA<' yʍA0S>fDxߪ@YXa/҄akOaSVd K`7-% ̅>aWH HCkaK2[K^N"`x_HBJ{gbA*2`@X@عx_lBƞ̼ ]P%anH$K ?ۺm$d@K 6뮟;XGj7\MIK+ m'; AV;K_\ #[~ | fv$ MEE} D68Xa9;@ <-* ̅"pĊ9r"VrH [ŵ$DP$ }?!*%m< ZmםMHARv귅I#@TKگ""F9M. ]$^vA>rW5D59A;)7 )r.<`<2@AoB'h# xe7EU$vtH  WwAl $"uk #&GTIp<A $t` " &pow&ۡ?$}fN ߥz7꒝W kAV6-v@v2R_o| @ll aT?nxi"c~ҤA$0ocӰR m'^@zA}iӷm{GI^ji"T$Bj2*CQs[zaR_@ [9'I 'onId2c*OI,C [- ִ WUNd3Q0J6a$!C˰9r$]Pj%ZN!jE|P A%X`¬@Iu$kI?o~e9Q=}RZw띈6[HD^Ak*0o_W[tgE26R ,IuT!:AAѬd4 ͭ.Eq;M8aNC" *BiT n vjPa!y pɸ]$ B )hG Lub2"KAD]Ǥ4BC`AIP^eຐdac]Aw$I,EĈ9Tk AJD 5RH%:BAoos/I/;2  I굴-HG Ad uH$Wlõ_z\׎Q[H$Uԁ'D3߫M%U /@I$&- &8K/AqRDڽR@%^vX gH#hh Cᾖ")v"\5H&ظ4 ( vD28)7MͷUI+hlJGAx! ]gu\AU 6A =0L` ת {U ,Nt $p4(u! *U^-蔊t,!( %R<T-Y] * lB`Zpa_Ww!G%A $9FJ@tF"ZwC$-&kzAKĬFH. 20'A-Ma _4%Q!paGd}AvB#CĚP^RB,DثS!@_H%Kp@ ߂I)(o@4 ̒ґI>`W; oJ/Ew "dLD$IQ*V}V\<{{>PzTp)A9:B-Ė`a 6L `Wv9Vvar Y$ e p6b:OvR]fD @- J . *-UDL-i ` .SG0>_m$Huhy 2' ^ +$+p/8t +@؋O HRzBARHU Z AD;j%N2oz DqDpHg>Ğ  !;BA6 a=rrdh<rn$"M DQkaY-A&,DH<U!RdpQ|LM@0a nĝ#dQu3;4DJ.afAIT,FC3>a*b^e6@q @޺&TI\s$`*Dׄ 1_ Z;$8Ĉ[k!apި@757Ze` G4C ;[r#σ!eNl[<i%0mHX+`l$ b B yEUl rVC&6B"8y,ANAԇ"DJ-MᣅHx| d3Tv@|paвp( uZݰ`ߡdM 5QtH0j,2Ѵ?jK^-aTM3Pw!l2< ;5 mS@)&q/G "’ ". G2 {Gi|2,[~t\l 7"C p{  ?}ʐ@ʥh/dvN&-䕭7 ,  f2 2{׿!@J A`B2<5z ҧ }Ҿ޿Bp C [nFJA"ȫf҂ _`ޢ ,6sXJ`ʐ*H2 㕸mDwD%Oҥ~wa*l n\tmpusIlރ R m߶^vjT0uAGN ;&fIanOk/UWJ?a0nl{ ㅶ'A0v#.Ҧ' Ud5[x'If et_}PVIQd\5 09icW; .A`*X[n7"XXAiAB\+鬆cu+ul+$X@! hwݽ .5eh)d{$Lav 7^ md@7 PӴ-2 oo k ^P/ok 2_e9צ0 V0m֔-d(x#L-/vdM5c#uܺU|0  [/`: { Pakrm=s$s VKntO,ĭW|0nU^ f.g 1X FHrwڮ`5X #P8a 6TJE-˧FD1"gb 6tl Yfi"pPOa֓yذa=?) P_(t  ށoTo;(O%pd!tAAw֗gik i ! U6Hu;uin4Bށ$ހ׆w!<%;Mm5CT޸d5UVKA~Ydž+6SX"o iGx ǧYd(QX`E WA^6Y^g`VAA2G%o0XmhkjB5&b- z[pm$ߴF:~ٴ ɺjGZL K/"` vs%jAl4SmE'!tp";n Pې$҆ x^ ƛu}HL ɺkZj J}64IUpE, T/mC@b-TՂnտCZ!dCK;+D|:3$0lPL@ں_d~d5aC փH*oaC2B[U}T b: 00Th - VCh8_~djF 5Ԫ꿾d5C kRWYi-}D5BC6U6R. ^ ʀ; DpA@.dluKՈgeAHLOP%A\Iuبk2:. 4R n7ـHDA1.7h:. AitCXrC.C D$@6 Gc`\!Ҽ;5HL[XXuDX4AI aHC!l.)Ko; ށ2% I06`xs`-۠oHx}v`{$ma!$70`mTx8Rbl0tIXa!( }Ijm+أt!$öeA ?nohLzRn E ;R=j4mGfޔ0AFZ/Pᖒ6uM d:ޢl:,mBN% P!-dZ 7Rmep =+@AA-%lF`:0lX0acowD"5 i MHl$ 40m!!K @a+ V(d5J{Gp 0no] 0l i&@JkX0dk߰%N&BI@P ½ںhE iCH?!(5: ~Y4$}bi YiA aPh|2m$BO Fzi0u_ "taQ4 ʤ &aX5gPa'B Xaj)Da`s4+HH&BRI҆ Wi&loрe2$ýfI6 aA]\b2aUi%C}6U 8a`X+{6e% 2(@*aMn 0BߓaPWS kDZ}ol5 $oBYYd@ V÷ɲp'PٜAUSw be߹6Y`l5lY-A%oynd R TiR' VȜ0`mkinI@@08* wH)2@ hA4۰D 0De n*r* A7jgM5" |H72f u-Ӂ`mB{ ȴ2Ф %83 ~[KB5 E\\PL.@hH Cr˕Z BĂ.7X4T2y\P+9\UkaN \~W[)A'*KW+lAp`xa V$,Aje,! x+RL`,C$IŃ !mb L@˙!,i6̖2\s9[JxIgA1b(  L@+ldpXdXÉ (p<3%X 2$9 ڬ  DՐ d,0&0)$50AA$CGެ ")1C$;w:  B&x4AA<2A"@.A-"5R#H*B B'!G$@7f  R A@ 8 0`,lj4 E73+  13`ua[Ahey R!3El!hnhAl;0гU`" #H-C Dp a̴0 ArA `% ځW B&' D Dpx0H B,"r8d CL@Xfi fRi`Pl!!8"Tb- 5l)iFD@IQC.E  xa!@ 7X)49Ci i$#@JZI,P>e0b PÄ́v`!%,b`Aeƒgukƒ Z HP !-# h%aAP 0Ԇ P`a R j7d|\ˁŅ ׆  7YsB,|B ?QZ(,ĵ)GMdiG6Mxɶ(4)+: 4';rTn5n@}#苄WZ3 WeDpB$(#O@}<4Dhaj+׹`!IXpO+6 Mp~$ T+#bX4/޷]  @hwԀEi׾܀#"`f 5P#U =;NO4?iz [`sk~` v{|'i :zD9Vָ¼ʕz1A7Oÿz{ .9~zW]AnQwշ{]$\v{=Hq'ZwOO僚UwKwߖz=DsAKzIJ[N^z }Wĵw{_Q4Zk&GD$GDPEow{NV 0Hd Oاy +wwkL84!hS #aah8}ӕUzvuk"$d!RD(BAicU_4 wuj7 \  wA޻vmo⃇k >[z{o`v_AqҐG t[Nֻo[4K$:B?itW'[kf`_n@hwDl'k{A=+ i-j04ޛcW릯!" V:< wTL0-OoK}~ 8hOK^YA/!z}ߍ۫zbt7w/6D69S޽drkId;cO "GP}6KI$o&#چ~_wi3+mOޫDCꞘLN?ww߂oS hDo޺L'K}Oڢ z oNC@ !Wm@4(;q~xT B"_֯~4: e)~d<-?~T@ !m+kk+ᦃ`ʹn-Jv ""_v 5" ~RIX*Ug0ZxڽZN{Յ ]  F n a ~^:~] _Jԃ {O5wۯ]z{^KVC [}Ҡ0ko׵Q-mZaJ*%N܃P!~KjC4r.] P S0Cvo30QWoOvwn_uMUS[]0ݥV|-vvC= OSMdp`~Pkj!64drrJFka4vA@)1׷MiC0"O6">RB/A ܔDDDoih "!a""0PDn"b?e*Q"’L!)G*J?Z@}E) >P/)-b1w_Oת":?Oײ9"hwh?r3*K"]8]װ׷]kK[Dj*ZuTz0QUO{XqlqO~_]͊!#Մ7@AuW%\WR?ߨzjSbI}'\WJtt.:X!!(ٚTHaXBAp!l `=aj;I.Se+@* tB % 87P 0 ԰D2C9L%D,[ x,9 P2GAa vv RDOJ\3 S#ٚH rH.V2pBpLmB\2)0 CCHa2+M␚р<ΥP>@jddD]o!P ##mh7C,$0B@#\uP;@. a$xR ߃މ2HC lL@פ&`ݠd"+0t*PlXA 4AaVp+ X g=U #ADc.#AXdhƁEP2Ðaނ-AL7C3j"Pt "HrK E`2ނ-ʁ\06J$[fT7 FemM tD68 QnHkl pn6ذ4^Ep 8"E s"PV\Wa[2 o DS`,>AU" +Ä$ț˜A i  bCOHJA R*0Mna"h+>"@+0pD2P, aۄ@ *`6hm!%W& 3le+O`o D6)q7 ,d*+.  n O!!'hX"+'A7W \`pd%pHȔnנ@jV^!8xHlD " FEkFE ِ^zm幘4C-]d4 p?- ##jAK2@D5SXN2N  e> DnZ $. D[)z`[DACo!] F^ejr:q k0x 6ˠqjؑ 0S0V@ dEJP!* /C7jD4H@AT `)h 0M 2~ " +I;v v t[OwtAB鲸X4xAne AedpUH4l r2 ch p2U Gah|;BMAp f9 @ W8(c 6 ״y]P݆ J6 @m+ Ӵ\H2$vj60a 0@r@4d20Vi|fv* 5 Hi*B AWkre,H)W& E˂b@A4"ʤW&K˃Yn4 0% Sr #I+Ai0IZgKD:6[ N4=@*\!@i&ދY#D42 tA,jea np\ Յ2 V7@&や( Di I^Aa#D37F Pk0^AA@!&C9aDdpi":CJE2j&, :D߁+Xfn' \IiApU-tf6J|iD-DB e" e`' !q2TlHp\DL4l4 Tj&L !4EA68jM@ H4HAT(Z NZHh D C@f7T;@eP@[r `3.AО P5;$PK;>G" f @8z[ڀi&l"ge,]wHQHw;0Cijl2 l0 ; B h , & PCYu~I*-Gj/gc6pT,d3Wj6r 5 ,'Im̜\[pAAGHe w*xD6`mU He7Z!Qp2OnH| 2 r&Cip_%@d`KC]u5Ȫ"P4L![ب9\,_ A[gfA|" mʊ j `U",$%Ek E57 ۵p`p@p( }" 5pk-A!9 OAR5E@j"!ܙ y@E(i`5-A2T":HfR ",5AjmoXjH'oQ i'v7Ch跠j #yiI VWR }[HeykւWK@X, ŰPh X4\ ՑH,;!T!" 6T¶87LH}.K- pP0 㲹H6AtrX+@lW&H,,-X e}C\Y\, U u!R+#AepPʮfFm A!dZ[ A%i@oY(kCYIPfYXirm>s!@a awkA`HBXBX „tiH )D ȀP̸Y^R.'FFN&A;Y Es 4Px!H:^AadUlDmC]P~nL:M_o;k^ N pH ^ -~(w_@ ȫ2!BCM( Kd5X TG pHАn a KrCh D2CF H Si@ m̫Zj9FT H5 `/l6H.O2l6CD Ca%H/a," R$/A# eɿ۰DgvAa_0h4  'TMž,-ȭ"". Z';":L[A maW0Az0k9 FI 2H_`,Eb2CNRFD1" +$8d4B@s5 ,1Wؑ`BA$Ue$㔸T,"C!C Qͳ2NHAϰbd۟c VBC rD(2lWprZ B|2Cr8Rdp3kD,2AJ+ BP!J ]?Gj%L2b Tʂn x ɲ  Krp||}B#Mk7 |H,2/݉8,urn*w웕n ?[e?޵s%$fE }CYq}Ciq>? P_7zk_Pv-7onuսߺ7!}~ܓ_ԿHm.~WotZ{__?n_yo|:v-_]vJo߿_U%Ҫ ~0 {I@#;Mh!x*Lo}WzW]zv? _Io?w]__}w}k)._zk幧׿K]}WMZ?ݥZ޿/{w}O_[z?_K_޺~u}?[nvuU j_Ok__K~u_OU}z߿m|>z i]_^ ~>)o___ڿ__WK$?uiNhUV޽v[o}ҥk޿_ۯt~޽_{5Niֿ]5 'sM?\L& t__H7^vg.nq\KվG_^_K}wV믿/_o5]l->j _zh0o~kuƗuU{}]w{v__k޿_}m__oo׮o~]u__^M{_^WZ?_ޫ޽ݷ_nWTwUUu___[կ_[V_u{-޶?&]{߾T믷]W~u߭?1˅7"I?[jz}"{_nouw k_ߥ/"r!{'u@NW~ܴ1T{ AVߦp@_pD9C>[ __/ڽ/~-awoD>w{I귕փ?/ z^ _+n_~w ׿  . n|K*/&@^~֮pW9xH{wZj]~.<@B0%.x@~ߤdtCʯI d[Aq'_D<]n @u"p% ^!![ N !̘ @%̆Ud~_ A{Q-++!B̦O 4pK~$ RAz$!/iY/"9XP!Httx _.G ց de AGYPczvX 0v ڐh\(7 qv` >}~`AV2G,GAm!%\ _oX2[9| Q )("ZjddXAcߧS $G^,A Ș\$W3p @X e )`Vb!tvGXKHC#o 2I(@Ȩ3mʢ꽮, NdUPXB +T#"@ͫ7-zZ A$&n%\CQ-TY\P0k!"m9m4tWA$JEqղ-0O},&d41xI{iAE`n"ǂ ]Aa/ [q ݷJ0ߦAEQd WAmA߄bWK:Yl, !d7MEa4PMR練 7N[Tڂ]ak.z,DI 25kƂ|`⡥WVdJ 2KdP#+& 2kaWDktD(X@ aZYP' 7}KD:A'wA50k vMe9 6/ V ``[d$ n _HXZ M D@$9.'d6 y!bB'Ia ~_ nAxA`\!7-C]qN. eX>MZHՑH, l,-m~'h@lT 9ڠa^ *i0DprlB?Ƞm %&ʀVIXm \ X0} 6OUƤ,5˪Ib &f#&YOr eW@<QOMzpj Xgaxd 7S gjlN?>ɱmSYNDH-DpOCAA`T2 7߄@D;a[;. Az4 \8OAYl=7"Ȏh kiXuɠh0As0Td` MXd Ch;.ah ʁU>zGh ڵ" mg`z@+U21U;wWһ!z ÉA" OXT;2FGX2 @=pbA#-A K2 z@ 6Y@xOn 2_ Ne&`=L$h%FC@xo[6 ,T?|nA^EtOr'ԐfEQM}@A\ X7Na᷂ 2SO_3"Ö?a{A$BC ax@\8bUQp0vDp.$]Q V!DjD]`A"UGip#Ea$d Cl%y,Bh ]s $Bwge`ل Vk#A v ƲwA 0r mejL ua"dG" +KlˁZ AqrJVemK'Y &u;;$rGRb< H-#A]2 *s"wu p-' l KuҫGjCA2VTD -  U #v j} N '-R/ RoX JKXAZT 7YnB  (^` uAUO ktT%kvMe ZW8I^W-B@ˤ+'j@@_h _ԋ/J Of_WA w_6B8f zf$_MA6 >!`_ .ҿIߠ/ A $_ A֒[ԷXAB] OޠAO$ A/Ph+ a/V_u/ ),Bs`_M!MJ׾% __A| _@{L]qpO_% _o^% I {[An?_-u _  AuP֚__6uD/Z@i}F_K' O_zNo7o_?/N~UӿCoj_!7_ B[oY _[_G׾-4/7ߵT¿ot]5,~ҷ"?~}zK?_/!o[KD ?9'r('w~4H4}}n=Mo~׮oV5#~~M׿߮}|OƩ/Ok_[Kw~@[ׯ}mOw[w_]}On+/]%z};{I몾z|/.ִ}> ~ڭc{z^ ]In u%_ ] x Ac__鶂W}/ @ҷ}+ A A%/}yh@A{ Z*A Z@n^@֡ռ J?ׄ _pEmB_ ށWW޷,a^ ]T5_IJ @KB`RΔ ^>x%|TmT_Uo ^*|%+M}/,/ݬ_"A/ }-R[_Z|%zJ\37][}nKV&恙 x%oA}|_/ ^Zd_ zK^Kނ^ ʗ Fބɽ@Ӿ ӷ vM [+zW6 ݯV| _-o[P@&" )KJޓxA]۫z Қo M;W | [A[tA[_ax%[Vm z[AQ Jn[䁦ZյJA A 7l _A[u {w+}]VA-J`W @Ja)[5=> [(oڽo|[D5 !ȒnQ(nVrjpa -7^jk \b₽~+ D#W [vFm@GAX`0THd AHޯ AF7a@l̊JęЅd͂ۙ m<4pY([A-M xf m(\l ˯h^eXmmH$$@A*Pw SYJ  ´O"8 0@Tn$%`x67 !ruA 0 x6(@oN6al b;۔ 3`x*;EW)e e8v!0<6 S @x6pAC*@2Pxk@p PN@m_NC x+RJ_SZSCv x2ȗVSIۼ%)xmꂔ n lDbPbG b)TGRQ "!)<\R2Dp<,Q4S<6X JXPd ௠IDD fC,IarM28 Dhn Jl\ xPPe@(T '(R[Sap< 4A9 Q8AMESe`xD)Mp<P* ”٠dD@ j@Ea @(`29`xH@B ڐe!<2HH  <0d&R R@ahfD1DdID”܅7T^9J?CU-t(夕rEƝ}H赀Klqo ^lOh> AWxiAGȓZn*vbtj^6 ZE,fk*Z-VtYJe*,%./VLt1 .$@XAΚrc#fGB rqH9T@hXAa9M" " l}Zjr$DxF(` %e[9i- #1"@aA4¿ZYNAcNA݄wBM;\ P5iiz}zvj}S;O׻k=W(uUOM?O~!?ׯ} 1}C[y o[i8";]/Aw;CΈeD6 ?muY-k!Gn-аz@/ ^M4v&=o|6U'NW}k}zv.w߻vu~w_.9v}7>ˮS~_?1Z_ w|5گoowv'd^Uozj jicfվ=zwPo?u^i\>mvoJ_a6Sm~ #[ڶF8~}0iC! sw_43&@HgK)!jy ߾^* ]]]eAB;.o:i-{w50_ﵼ'w{[X0^4Wk -ڦ&wAa`"JM#kKiIh clikjaP4:"g8'MSMm0MDB" ÔKu%*h0  2 t@TqZ>ZBY ?!eRXS\o\%i.?`\)E-!@.;:\dtz!"!DDG0Qpr>\=?$& ܂eKH)pxuᖄ avZGA9C`r(r2,:B""#hH8F3L}gHmFȜGGͳQD""""N!`P طa! A(0DuA6[f̓ "6]C08 Ä X0d)f0c@CACFdѰH0tMM* c, d3bHYm4p!C(pp,[jY@Őn,d%ePʂ,2`? `dzX0` ܳP NkR @np,2 I X0,A0'!EqA0aBan$ %)pA`5&a( + Z`@a@ X7Xa 0D4.#2:rw!/HDyk2  A>l@ (D6H]dܰ6D6Hk U ܷ*D\kN!52 DhBKz d(hqi ,a L Im,M J!iа @(Jt nnhP]7_GX$Pqᴠ^+`oujCdhB { (A>O+MݥЂֈ(\6+ o~_B^Z@߯5޷^(& !k^W 7ov_ O@t%~mw2l }x+AOAD} d61 {>D5kP wVi.M"jk_,~<0fG{0&G@ڠ@CO(lmi6aOd5" n0j0R j*'T 4guA@4$) 1=A{./-d!A;ɰ{Pvyِ*;J͕mނ`{h/->" FR k|'Wuw 6B Cx ]a}gjO ~&C8`dok{vaǃ YD4@Ohߦ<" ѿ+ m { 6 n_*A' % 6v$&9X|)iY ܶmV""D n0"Aܡʃ̥oaaK Dr ND75wE.!(r Sœ4 a_.D !G 9Cq ilDD&d y7ߤ- f 0v»Z[ fKC) !T)^$!p\!EO{4#@4[D ;P*v~*eGD׻dfou&Cy,_}w۾קӶ[eq$b=I '{}-êo& { A[۠鿻jIݽW׻}u~vu_~m;wҧoVmov׿~%{[l5 XuokvTM~%6MA/mAMr86ԛm߸ tn0 t60z톻">M87z{~o=MKz^]oBC\m6n" vl6ߵN/m_u@lanKpYnww-ʃ\0jO"v[kـ x"(u{@k{_wzYKp_"{3]-4z鷻 mq|4KA{d&Uߕm{\4uV@j!J5 n\H4l ri4kՃS@iequ @mWFGaڪk<66AJNM%heXlDG  I ݶlU~mpa&+WdZ A'M^۳!``mHs󲸏f@a2@?m{ojpڤݷߙ 1 ɲeR#z[m̐c}CLMuZd" cS4vd|C֫ owޓtvWDMuo_^ؠj7K-eWb0oiXgbKi- mӋ~v4!O  f[~f?6{xVvv8ikۼumY Fa>Bxa="Oշ& B[}ׂ[ڷvK^Lc@vB7AvR.uZow !&m!#唳6[owF"z^ޤYVTCm֖ۢ+B kMkPmo崀omuo [)imm)JPn;k o% aoNmym VVۖoom8*6+om3 ۙ*׶Y ۏ{NaJBmջhmޓimv["oL% m}m40,@mgm awBݿpOd@66 /ovkt ݷ-CTM{ vX}I{tvime{ {}(*n7`mD6mrMۯç-T0i۽6[7wT6u{k0T^ -Sa[m _nlIa.npD6okZ\6v!m}a! mh+{uW-rWo 'E @*@-y[-u`/wm{\@2]w-}Ami9kw zꝶ-q÷_mG@Wmk8);m['$W!6y}h on+&-aPRm5սXlh;K-dz~X@)i9kTt ;RnPDimf"n8)w{NqA`NZH+6޽[VMu퇊6n{"o]]H*j#m۵N-Q$#tZo B{eP6|Zv~8"mp7ߵe .6-ۤ)ZK-BYRv\ Abն/naj"m  K ~p ݐLD='vⰈwiڰ))m|4oYjP $mJݼw ܒ6({eAZ=|P%A-&.+NշvL5B{mtڿfAnT oVnm턕'm{'W;k%vjx-?n-} movDO^t[+wB[mUw۰no^ N{m[~MFM]oMۄi[moWm֖/o^}]o ]֓k}b~@I4nmS@;$Vߣ'a6,v Z[M &ۯھ vڸa6|[#nACCl-eO[A>'_n ㏾Mcj =[m׶ok߰}?ANmmB+z&m0z A@նaMM@܄i6L$mw8 r] ݄m_Wۯߖ47mݷAZO@vۯnIoz /ooA{g`ɿ뿊 u{i{þkn}7_}{o^oT -;}-mmMݾ[{mowtWz/Vo`}i4cM_XuD4;o &݋z۷҆-m+ B}-۶fZ/[AHt߱mK{^ޝ7Ӷҫl6[{tmUW^[vm۰{z o 28nl%no[hFnvݶۯU}mpM֕fr>60ݺ̖6v5wZ)doU oKmXaa; ߶Km<:]]2n2?{ sE~h`? ߄)O8@ ýMӹ7ڴf Zṅ[0Kmw&ƀm.wa.l oowp^÷h*aa*oD60{7Do}AQ;0u{nf/ 6P}6( o [Гa0~ 6RmMAWNmk|0I6m w"{[vKmɱ(6wnnH _ ;K߅&`ڗ`PG{KaH/j6Iݾ}<>[{ b~kn{6 n o{a a~-Â!oֶdXja_ӷt&]x0}l=%AC[f<%[macl0w'6md_6"- jD lZ _],-ܷU _[ -ƒWb0ʶ-0Sn nqPl􎡧mz^hT5o-lI!/wz!! tݶj=MmA|0 9E0%[ݰaM [ an7nս4\MA}, BㆿpaX 6,nՐPȃu"46MZ[}xKo+gl>i7p{erlـû[}\T>[ 6=mᲸ6m޶0^ ,6GN[ 7Ta  n鲽A)= .`6 ?".EFc6 ;lA®ۂ AP']h$dN#;uKn鴅{~A:DQ@Pmd` qnRGKfD݇ !&AIc2  VC(v6۴a- Gݾ" 0} $ lT=E&+`ejI 2OP4 6Ol:qlI6! x* ٖum ;v@l;w;;TWv;`mV&RO@UCmfP >]ݻTnjH$ogk` =ۼ% 7̼&d%%{oZ @}*ݳdy@AETVo2%PvW  y8Apwal>e0rt NIWl5흨o `tv(\inۊv |*v2m I7 vh\ ~۽݂x2 T{4\0o!`poM@aLK .l7$Nlۇ[y 0K;ڷ{`|7lV[]-^J`A. AX<"8nEpW |2p[h^>vAf!b2: v)pd ņsReM;W֭@am" YB^v " Jio%m8 d^ 4A>;d)6XfVv a6:t@d1Y6G{aG[va* 4 &?*]@ m.w" F10 F۶%)zɢ8)dW|~d%z Q_+:A" vS60AuR-u6 `ˆUvR$S68/۱!BZy E v hv }AKT6@yn6*+ࣵaAy):x7J} K%~dGW/N0*2X@6/Z;S +\Dl=1m _u6h& /m@P(_gif ("r`2m8I[Ja$J*`@zh7K׶ޙ7r~̊@i} ~57޾Bڍ}KeX常(X&6Qh*tCFj0lO mnd(qPm`2a_}LA7+g2N a?o200^׷A>}}6df0720n" Rܸ7_ 24.n$fB`!e;°D ʒ[tNfFD ef`G oE*Xm= IRXAȰL-/ ̋>6.Xa 6%v22g 0mێ_mȀX!i^e3XMvWI{Lp = n(}+{m Ѽ(m불.i8BP;; :N &.WoYajEtdp@FW y; AE.a)V܆b@nVamP VMƕ:kW)8akup mG A{ bR; d>`$@0n* ̔8y6L>ʠ/!fI#u;m3 @؃;]Xgnf 0dKl d369XS8ڔ.-aW װA BbH)lW6zS ̕K" V %@a( >_:L 1%U{0i`׺eH z `;lm0eBHFW5 V_] p# B۴T@q1`Y̖G܌úaf;@#C:Th^21j Y 8rJa Ylۄ! a HA@؃!}7z H4H~@5l 38".d l ׵ vNH4+\Z̆ _l%a+d*9}74WKl a W!il 6AeWn 0gaq?AIv" h4q (a -̠4mELk؜`8lA@g=+aK`>@FDpD\SLp![F,x1fZ"o 2!)K Dpye,5pa-! _X0 8H4uCMzڻ Gum~z H00ϝl dW[l-H3y٠hXjXamm 2 P$ bt z2aP/b+,h4t‚ JFIo!ʽa8DojACU|0[vZ@ldE޾v៦p v@_ bfB!vA}H#6ۂv uDvl5ݔ;;4  §b᠎ uJŇtaL3J]`I0z C%d^D5U$L 0ݐٲDnc &j0o @#Q A[#!GY~ d X!9ڰWiޛ IA`Xah4ֿh\0`;@g?o1쉆 ;e; (޻;+u $dX =^h0@0DnPxA Dpa6 rPm)vv5i{u}BʰA)\(հ`ᇲ">M^6I!! 5flܓDڠl ! =Eq"v iMzvH<0D4oX2m ]4wi(j$G DyڨdSR A|2,o%;:EنK0lZְoCT!im$v.C]mjn(X?o, 0 hhn` Nv@ [ !F@ Brl6 / Ej"j7!~T_` D0k+Eô,6e8?h2 80`vm*7 _QD$G Ҹ(m? 7lk˅-) " axJA <&hI\5P\0oA-:}gDAmKmóo[ 5.p*tڨ-C@`(f\7o`2!0Ba`/ l" CF4H̃Yu`T^ qWJ k 6JAJx0|-Ճi .n$ذ{xAUHpKxA!< l;-Tp;ˊ###d5Wv0R2_zpa `.@=n#"#*K`*d6E<0f+%UlT;%^!2X@\pHG,@e?A`k e9UӰA~W4į0;- b>]rC 7WvH >W@9 [ DD̹`K10`AB e`ŎDH9r<(r %vqr$4R|ʑPKTŕ4v~WR 2  $b$r(Lr(s  ADDDHG*9pw<)Aʨ%dK""""",Xa PDRi)w \L0vU e h/#„̅$OnC @cyL\$ MV[ANV̊5U 0_ PdJ/`2 ^25 $ ^L@050 %h@!p]Uo$- ]Ū@0mdgEd[ ?̒6Awʠmw&̖CTma-5A`6 I*Y B/HiRaA@#X`s*%!Vd|h"GMBy"mAI;ܫ@@@pL3!0;גGAa&̀T 5 B as%`jH=K 0"I*BfKh*0Y;!Pv;iRJu'2CS?aPiC[UP"RYGKyڐ&emr#T%`ؚuPCoc9@4J싄k ; ߭SfDlLagk`vD,4o[LETXvZUWj̈A uŁEpX"{ l YDKAY$9ڐ* ۑ]1""kH ;-A 0ԇT/BCYuHB 5`qw Dw@ӻ RS$G*meaM["!!_,hP@jL=ޕavj t` PbT[ 9@Lu14IlZIAP2/ D"PH$v*{io-W LԾVUِL5 H}H(mJ #P(ޒAIH+`g`ڠvKԉAJw!/Gk S)_Pa< XB25~G|dV aVfeT BBRX :TA'Șr>%paA_z5 yh!xd'D(K@}j9[/L,1E). &z @- &D'V@7"J\+" ;(vdV8aTk(f\6K`P{ISڛN&  tAVp_TBa$0Wվ̎&v聣X2:7ppD" 6 cCd+` """@@FID It1&M) ݗWǥmp Dd]2 izMՇmX22VQTn@2IA ޘ6,CW:]$`200S}&@@ 9pw0„S"!p@VCft: iݴ@է[4Xw ARА2AZvRDܩ%$uA W[A72 [p@d zrcA` G !R}VV[]zz @zI&02H\-ᐻ2`+hbo e| +(^vd Am/-[DXEGA/Yo!Ы֮廂 t{꭯D }WWYP [ Vu<H.OpPS2TV7U ?*}({zƛ_r*VV FJa~ *J4W&/^؈}Td)Ղ I%E^%bzLwk %B ,,W@UMZB qGT" r$ uX 7yR#5mi'rP,^mFu/U\ @4iU7FJ@n+ANJdYj̋HPZ`-m ]t! RAGݻ#nt2t[74K}cA! ꮻt`p_2*OL] Az\^̠ ̔ڤ?tPD A.tvvf 5o4R[$-9Zk1WuO@J %MFJ`|v@K@)&"UQ0( K;߽y,)mHD$C-Fۥ`dP3w[zXf|*}j݈nވ,IH]"gv`S4i\9h~V+uK֔^ܪ`̔n~ kfׄ" L^nYi_T,ILS4I.DCx @5UIP FJaNҫ}aCI%}_]D $ i{n«%'2]$`d$CM ji$Rd JdB+y\uA-W/Z)r "ZJh [ZJ*ii7KAa J}%A@JJ0@" m;ո0)IHBM  Dzt˗(pF@BCjJkUEհKM^=Px`) _AJaג[IRi !"B m10@JRMA)J$ SPi^lCZ`̅T[I{e 4An( YFE?l SeU65#VTa2,aD6% tl YrAS$* "[[0 +i!WuaFBAB`iHT"a`" MAMR%L4֓id5FCAl T3 k i$t W -QO 6iF@a';RH  zA+J }.m-5W, P;5 A o*M@;MTDzX@0d4$ : h(@]P*D4ڵz  #!n&` ڨf(0aU[n@%2#DڠWJa- ]pA& @i5E!m,!D CnU ab kWM@ "mUW𓥰 ZTep$5Ҡa% @I Jv$ 5#MJ$ve!-`٘j* &w8@j5:+ &v8 @L PQmd ]T+$A)˃! }BL$H ^A$ $CZ (M\ M] ީaJCQL0I! J$*%@zPp DG`D46AZK! B ޒ d3ThT_a%}@ `5}PA6 `@[\ ZAh# $ 6a+ ; ?A8Atk]%A6&`ڡ5_H&VBCAl*HkANɆ* =mP@uMk i-i Z[&2:"!8B8:4G MI30b4"$ZI M$2 9:. E.h$wXkn ]e֐E2٭o wkKuߤ,l@l>AH)m>B&AQ A Gg [kmB߆ւ k5":d36aRGp H  k66A8Jpl %k@ .D5wH0p+ziڤE(5  ^ @í+AG]T$Z@b!P A@PlL5 f¦IJU6mpA$qH[$8a~BÄ"M%A#iml4H4g,XAXB " [oiaBA[҄5C Amp-d"5DP5RAo~gARHd A%PVX kɹ-`QTY)/! 2 p͠ì$#E g6XA6ЄP!!-Jva+ XiPH7 M@* #hu %,= GBl$AlA80 VA!6f ,PHM C_@\Qv ڨAk3@D5\ka$CPAI A,].-BJRAuaZ\0P U5]Xj B xmR@a\0zA]J4 :P4]KB-*.UK}@hduJ Z@ETF-.$#J\0A i~4UnavR:A,2 OT / wOAT7h45 /hwbCB9ժ!|) q̸]09+2$0瑅؉ h(̭N"CDsYRvE.'l b"$v!)Yӆ!L,0Ba j ">G28DA#;#GDp[(BOF8-x)eaè'2(Ȅ .dJ""P#2b"yDs#@eDDDN"Apm!Dr>,DJ Re(9`UG(jlZ >GS`96ZE,? -%. > IMDS$"2HiD|)Z--mPǖƔM U^ڄp#ՆrёWGMn@~DDx#Y%r2"%qX`AdXq$] =>@M.£K29 pPLXLBn6DQ0hC 0 $ 'If6 Țhh4 ;"j4M;L'! 4!@``a0Aj SN 'kk4аB *iik SAڦ q4vh=S ;0ZAt o 5Aam?5~WϘwkj,O&f'ETJC9b" .aA"_oxd#!2J|ȏAؤ4DHR a٨M 0V%}:TM{ҥr28<ˣKD @e3"!,!h04aBP_!tADrVF$8@`f kL 0M?OV'WAsڢ~75Z_cg|" a0MVMwP0iwR|RD3نpdhAp"¡  Czwq#C#r8T2@A ݦi}a>]mӾAw+HԆc ) O@ W 4APhZ!U[Ʉ5h~rD6!Banm~t 0A4մ]TCFM+A7zMׯ &j[]z}z:jn֛~w<&uWIk%oTmt ߭ZO.[t]io7\?Mn֯J->uzt_kڽ}p͏J!N_~w^R{߽ a?a,+ +.] ; gr[wwP˭﫿o[d4i+Ino:q`q Q2`7ai~1=_9A7*}{H(n"';|"03;])`HLHq?ׇ{ДAq|:@3ԻڪnA[^$Ǥez\\qktAm;{nT*Pm,]I)iwi6 Vވ7@}kzz(R;D0:4 ozBդ`7x}_{@x"{*[_]]zon]zm^xAROU{rBcޫn=w{!0r ]ﮟ]s! ֻW^M~|4EF{Z!]Mr&̧au]çJT0b]omkOqU@H]޷(V]o ]Nh \ G^5Owi !5oޟm? :! ZpwxOBio{ol ߻i_鴯 I_:/zc]_~ߵ/n!O Gwwa~ 쎿Xҧ_o}~V~t}kukmwm.;o^[na=m(un{aot_}N׭vi|3[K1 (F_B G ݈.C*wJ6X^CC肇R$k8N7PNPݴC(bcۆ+;S\ Ӆ[_ws{ir a.gr1!^TPݪ2{l#>a׻ޯxB5kj{vv_v[wkw0! a?M9䗯nۦwӶvm7Vv~ݯi]/}o_턘i ߃yCA{]mnkz|=ݥO0 :CvеXo$~;w|z{3A-²8 r|#O_];O]mn nmt-VÐn?lCa8k4 0A᫯aUn Gy zt]24& ClY 3ېh}wnk}ij! pAh0VA d2(zv_tk OOT T 4jSLudcI@\T l~l[!~׶p@nM5M4/!`Ah *'l&bh IW{~O_OON&:d 0L h&@3w)SRqwZې9=}|?*(T9NSX#{/5WMn?ij?~T[}[B.&>} m8zk{-0M4&j lwJZ'kO5ACeja jiA`J* q0"EGN@]Shki&@PqH!zM0A02B(P^i f]gV).iC@Aj kr Pa0D]h#DavحbYWWڴ dI@Tx<jjME|DpDDG5Z!(*WL .EEЃ2*>t##>`e(D!aaE0 hC k܀BHPNRq$acm`HHl@Ӳ, M4ӴaB!!Tp4 vMnN , ¦4`iAh=>> < Ӱ 4NM0aV=nT [[%y\'v_ZvH~Rtn btUA0 *J "*߻Mu>|W6B;!.1D.荊AAtD b 4` a?R^ӫN׻*Qyg##>dHȀ$Z#0""BXN0XiMj ?. rξDO,dipBCh4 ah@4Ȣ AUjuxaHl0A|)ݪ!wzP#[ 6:;FqR+ A4m4wq U viw|'e*C=gAF!*/ ?w~W2>J20#UC,0j5;r:>Hf> B!  ނ .rAa5UH;_ !*hOCb+[@4MSOOnM[O J4j! pNߴw zkvUwwAzCi?Wx^n^?UznT'n_;O^NդoOzZoM>5֛ڦn~w{j{W}Ouv{ݫ m{Zr聏Ii7zJ'. »B 㿐w!E!?{z{!\% CH&}BJ@&7g !*;N{!Ke#Xr׿}~:H*zj#:Cllċ[CM^Aq;x}7 D(C C=KAtx^h.յMPHː\zHP^߾_7NgIoVwO4ӿoI¨/Q^5ߤHwvnrkMz Iְ}GQXmw Cm~B~/}ZOi?L?_1MWZ_)wүiMޕצ_ۿG+P?KOW?$.={@8_ wC ѯU2a:k}^wJ$Z4kx߱2IߴI!iHlx6WWuO:]z߅H*EַQ$Ċ .;}e&膁YDuT{֚[0r_9cAGw* 01׿ lpVV ?_mۻ^JАi??ӯ_뾷_]~0Z^v?_mt߯ڢwz[K~vW? Տz]*uKwwJoA}/ַ_kVa|m}zc߿nk}~"[v7_xka&>gEWzio߿qv78Q h-[}oT.ڿ` -쎗p}؊b2lAWt>C`49@(pU BJvzÏ{Ȅzu D2-=maR \C %9r 8_޿!qw=ww Ѫ_kzx>߆w(s\]uO ڮC-Whɒ8カMm{_#_߾mmmAo/wi}Z_invw|kvӞIzza;kkmxzo|'m7ZkU nI>ה:_T } SOpd7m _uGS[L'zw޻ w|?w/34+ c8r *g<_TӴKn۽Aq9؏؈Q?~/mn]A`k[ $w+~N_0j!Aia0ih0 }nd6υO~C1=W{ﻆwݦ2ܭ0&0E`4 hA ,.!eN AK?kkv 4@u@L&47VF9 eA!뼆ſr{m^{|4TB &"x^Јav+y}׽Q`2cBd o 8r5'gpU S[[Xiw["eAC5b=Ar_OtoC?[uNžߵ-Nkq_}~Ӈkk^Ai6gtRvSXa4 d6V8aaIpi馚i hT  CB$PdtIM58vid gBwamm4 d A3$(rّMj aHeqeoR&d4'-@iEV:Fm%~OF@TL@ endstream endobj 40 0 obj 45 endobj 41 0 obj 57648 endobj 35 0 obj << /XObject << /Im12 34 0 R >> /ProcSet [ /PDF ] >> endobj 7 0 obj << /Type /Pages /Count 4 /Kids [5 0 R 16 0 R 26 0 R 36 0 R] >> endobj 42 0 obj << /Type /Catalog /Pages 7 0 R >> endobj 43 0 obj << /Producer (pdfTeX-1.40.3) /Creator (TeX) /CreationDate (D:20100419154306+02'00') /ModDate (D:20100419154306+02'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX using libpoppler, Version 3.141592-1.40.3-2.2 (Web2C 7.5.6) kpathsea version 3.5.6) >> endobj xref 0 44 0000000001 65535 f 0000000002 00000 f 0000000012 00000 f 0000000277 00000 n 0000040545 00000 n 0000000165 00000 n 0000000015 00000 n 0000195071 00000 n 0000000626 00000 n 0000000843 00000 n 0000040504 00000 n 0000040523 00000 n 0000000013 00000 f 0000000022 00000 f 0000040878 00000 n 0000081460 00000 n 0000040763 00000 n 0000040610 00000 n 0000041233 00000 n 0000041451 00000 n 0000081419 00000 n 0000081438 00000 n 0000000023 00000 f 0000000032 00000 f 0000081793 00000 n 0000136140 00000 n 0000081678 00000 n 0000081527 00000 n 0000082148 00000 n 0000082366 00000 n 0000136099 00000 n 0000136118 00000 n 0000000033 00000 f 0000000000 00000 f 0000136476 00000 n 0000195003 00000 n 0000136361 00000 n 0000136207 00000 n 0000136826 00000 n 0000137044 00000 n 0000194962 00000 n 0000194981 00000 n 0000195149 00000 n 0000195199 00000 n trailer << /Size 44 /Root 42 0 R /Info 43 0 R /ID [<4A3080B10C54D3BD1FA4655ABE4E7C9C> <4A3080B10C54D3BD1FA4655ABE4E7C9C>] >> startxref 195470 %%EOF elk-10.4.9/docs/PaxHeaders/elk.pdf0000644000000000000000000000013214762655577013664 xustar0030 mtime=1741380479.315065167 30 atime=1741380479.301065093 30 ctime=1741380479.315065167 elk-10.4.9/docs/elk.pdf0000644002504400250440000256461514762655577016431 0ustar00dewhurstdewhurst00000000000000%PDF-1.5 % 2 0 obj << /Type /ObjStm /N 100 /First 828 /Length 1175 /Filter /FlateDecode >> stream xڭn6E,(EQn.7cgT&}#p-dPQZyEZeQY28SD*pp&R@br>rf֪1۫p*UL)E2TPL&eli3spM,?]׵rhȥ%-9[׺:qE obt#~=K[7VW)C)(SNt"fh? }x&ԝyB-Oi²nu.ӓ}K깑cz?oF }.,D*}s)f(tS/#{IB5޽JڍRcz M~."{nqӌtuޕmR Bhss<\Ii=5y[v-2gIX3-{g!izg.84iV8qW笨]&\@,:&'plo2#򆿗ᦵDخv -Ii vX62۹za!Ih]s[0߄]:I\*]}C i-67a{!6w /l"drm'9iÔ ̲([CFe9[s?ɏL #.=ӂ&ܽb endstream endobj 203 0 obj << /Type /ObjStm /N 100 /First 870 /Length 997 /Filter /FlateDecode >> stream xڝr;~ -aCnVQ`I ו1CsZ VZtzFdXC6$!gs3.x\qQ."l(P0N{p~o>}ZIڟ2ɰY~W`e Z2ehlơMq|fr8-k ΁pz F\_UmכhpӈUrF<MϡmI1.\7Ftc&ti8<ƙ4mpSkB65NW91uB`玻^nn5+ZTUVEہmu=J> stream xڝMs68&c&Sgc.,˖lV:5&K x4#r .-T 90̉BW TQµ2@ ʔW'An= z(("':TĘVgD:jtrՋa,b+bG iQ+@5 u)+&XIHGBMɈAz-X'. C@ rmst-'$PQ@AF]pt/AAWlBAf%CAf%cqV2d(gAFXIvBAA.J='P+ ¡@nPF 7] &AwwׯpC-|nuwx"_Z}[}ε~1ռ٫l>;+YMT6W΋j4Aی%|*M^?ݒ3fI&@BvK2d1^9ng構ls{mIhF{\.Od»%9R$@;;/9?}pyr{ :e|Y68JvriuvL"* endstream endobj 605 0 obj << /Type /ObjStm /N 100 /First 892 /Length 1419 /Filter /FlateDecode >> stream xŚKw6X&rrini9Q+M_;:ДB@fw"AQ{UI9&+r*^ ۨL-)qjl(<^ygO*leLVY9!elDhfe_>ge2!`j)k5y"YOH46&PF,Y716#OY9,:,~8GHJQ9PCE'18m|`YLژ[à wl#}Iy"Hk哎xt\ `Bɂ<8l!X FND*24J24z?BIl5ylY#0r7eH$ B{2PAap#Tf0&Qb L#92**v*B`L=#T0iRY (Ȇ@ȗy"Q @T0G82*hf(!z54ڲ=yN{̓:NB"&|sdxc$=̒'uϥ:YY?]痏I81.U>ޜ9Й+7kn9@6摛gnD?T 7Kn%֊7<Ɂ͙Z-_[nnFٕ%zKCv!"x6IN(C/N.-z)=I4dĹLNYKo.uO}Uԗ%ŭ{zBNQ;&؂ Ҝ'ܝh>!}%+oh ď<cg oNI5qcot\]Ԫ!̕y%״yk̕]J[xPnt}#5l1i-zRB݊y"[p'Ckm)VrB,&sctsosbZN_\ k9KWgyNkտlZbQk9l}Vh>zn~ 8o%CFs̵Bbk9_ȐfSԺ` .xnM\LZKgy:b1s-+p$^K.K~_O:#kCXPZӵ84]8WDž5XzUu^|Lt/ZOtneĖi+c uNs[tO/ta\H n ]{w@?JuOsf-r`?ƅԺp_[Êq5~*?^IU[o%օjn9"PZ1n~)J[4={7*=vBZb[E|> stream x͙r6z v29uHXl-U6Oo kH^ɠ`qo rIgVYrQeNY*h車*5*%Y(el2`iIx[0ac畉^]R&Y {Iʚc0!xQYǞ=)sds@=l&x #r g8L s aYKZ̞Ä='SVig *$Eڨ5$'d1 D?!i  "b H(^ PP~q[<|τ &b% i Lc *jE`JPPĀ_RBĊXAq yCĥ:F,Gs",t5*H[@&q!*H, E'beHG "D/Fu3*B=hG(#f=Y̸.2քRc-AQc<_B11 XUDrb {ptTӰMQpG|.ߗ,yϞNjtGÕKta#<('<> stream x՚R[9<ԺT*, _(8$d~9s9GPEe˲I렴"MZـGR8Nx傃y,1 U1Ο%P Z9ɐs%''BYE^PF& yJkÓ]"dC{eA>0geLjJc5ECRI(+"dfN^ٔbRMrTxd C#EYa/k5xe*,2e'^Q/HT<eYrdqij{,/^ IF#|ªɏ ;萣^#(^/% )xQQȲ!:'R y`" )Wzd*5sUœc D1d*X1ypȤ)7 I͓F=HM#Sy2RjAH>SJe!!H!*5OlJN9LޕżlL^,E ޸h5uC=K/ էW AQc(: ʿL6ߖ&'^*p_2@~IBlkևU.3AytW2WΦ3;4MUCR4 j=~-rҴ":H5rώ$|Sf]fG!Wc; \ٿuM@DNtfq9TçӳKV얶e5C]mJwM^jS40z$r5h^jW\ۥVu9 jP7 w\gt{8IU;Pxqy j(^vvdDi r57$$T#ՠ~O4L>.VxP*2]ρBx3A6~ՄO6 ^h-ӓxmrW\MmAkqfJטP]"uW̓+OB5@+, endstream endobj 1208 0 obj << /Type /ObjStm /N 100 /First 1003 /Length 1327 /Filter /FlateDecode >> stream x՚r8 y KBNN\RI=v 0T, C$P}?aMQie1 "p9T9e9S,Qa+ 2&zRDJ!%@wd8H=gSdH:pIYg#]BWp֓إ9E>=RA+0!G0@d!*p9BR4;T!HN RT%9"d ( MNi9HI r-zR!;ETq}pPGND7(*8@' su:jJ*"EAO6(Bw !(%LE&#2@= gcc`4gINwPϓNbqŁz<+szN٠rŁ9K=G9¼1s.γC bȕ#f G|ɒIml5B>ҀBm&Vr4&Oam27c6&X!lo{ͤ޿W7owzsZ׻uV}p斨+jew^Lo+oqd3l5".CWeLzJY :<=_IiOmLzR/ǿb[{ B΋|^'?eb5ǩIĥtM 3˒4}ڪ=(6/OXb8y~*`i(ݵaE^bx<<{*F59u뒌]zb(3~%/Fȍca+/FSț4 iy1\*AfD*o>Ša)ʻie1hݔh4M=,3Gۥ,MzvOkoڵg5ړ> stream x՚v6~ ,;=9Y.ql)Q+Jҧ JEI: C@ e*S6d 9RUF%(*Œ *GFxI )SD3EIcc0 LxP8>+ M,FU */$eQcTF|+QsCCNL - ɡYfCdr9.h5A{0[Gm T|ЀO4ڧ ?D]9lR/AS/ȗE^J6Lj8 3- fG 1%Tt81ņǀc1 *c9ՁXi@d3U=OΕlR)D{B"tC8APAT)ā=ǦR{bC%JQ P{8쳸tJE琩Rlr%=@%!,j\b1,y fbzdѹ5svS KИ8TBI,k Q /zE?Ktis\RW7vZ^KeAj`b~?3΀Gb4|i.Yߴx mxGRb eo)Am =/[Vqyi;ȋ]75;< ATOwJTZlUGVQ1^{܄LYe-HR FPZ0̎ mx͇Ae略m)7T@QWn1Z{~]-(ܽdGȇ b;[+m=vPТdp[EߠŠ Խ8(ZbVQ1މ}5\kCAY jO}nqe֏pOExIUߟuP}<ϵerobd/Ggzmh_7}?*/F;~}T>UOKnSB6@ gGNU5s- w~GbdSdhG5m-nMjû Sc8Z_a}+ 18Ufi ֆɋkz[~cQmZ#vͭk-mCxbָgͳV?Ovxh8hB7q1>[~1M V5}^Ĕ~0i~+v?h endstream endobj 1686 0 obj << /Length 549 /Filter /FlateDecode >> stream xڝTMo@WHij{mBP^ Xؿޱw Tkyo-a9zz ܌DŽFa 8E(m362>O׃b"BhEȢ"XT,ʑEmZaRXRz0ѨVsM-xk]W \L5uYS9?yT\nc ~X6> >>>> /Length 5438 /Filter /FlateDecode >> stream xm[8rߵZ,ex <~yERӃF?̒(2/Iq\Qy1^i̳׫l%RgkIzY_:7uޯu^Y<ǫ|V^IS*:1_kVPzTt]gZ #s*3EIisjB,SsqT^LCsz֕_*JS ԫCTXx׼^ZS3KΖ<oX9Zgk'<)mι?{z$Eje{7j },Mmi1lX9,QfA#C4KosI9ize ߶KxKyR Y2w ))/9*W?̹e#KªD\3l;jz˓HZJҔ#4W}MyQGk_/$Xx Wsz2JQnEM6UqWWWG+z42ϢHP(02p+MHSkoĎ|3kr9"ٌ֬_9X"}NVɝ=M~yձ5R&|y/u`6cg &?WP(耟7ސ~M b[rj#[DԔ<l4Tܡyj?9uKh}17~!ǫ6R !_mٱIM_$uu/*xdKaao<~_Szl"$[~|nTcIM^QSr@:Vބe!vw4=>婸RܫLxD> cK]!Rf$] P@uHa=|nݱ>єY9#0$lvxC 4ȒA\N&,Rgİ\ `@ yI3ILU'1m}Nv|I+q;`H ~ 8Wd3I`p;A+7ac1^VHZ!L)ĭ 5+87ѼL<#ä IzEA%E"O硰wa(8[,Yk{}غ x43:Ү֬ܔ1c8hdRP0jx+B7z; c7,(48]v4ALCN=Gҝ%nDD2"#{tvV3"Z0w_s  Ylk?rnVHb+>O='r%z[BN+PF~}2JVOldӕZ 6Ӱ: Zwܜ_$I5/>c0:n=łH].T1;dXx @;L{D JƋ?n(+q3< b٫1vN;j4{"(Q3n(?'a3'!aϷdWGJ2~{7e :2U[-zT(xy@.p\?bRT-FZ 3U-=j2wрi ^47ܗ*kh{g6i_~)_`Q0IwhjoXeV2Dܮ])m8ptPBՄ}4hfS7F=j.P=$9(܏ ߱w 4uYn Ո}IN5ZTd䎧!xܮ]cv515f,|}4BٍNTYt^ڌ!5{]L&.E $Q?mG5nB!{oEOT6~Q洒`ޤ" 2L?|BB낫K{~SLE/VsCtwU+›ZGiҮk+,9F۶\fYl=AHA&!mmY`&lEN2_}h'0Yg's4+8!;-&5m \vVSsT>|#q}{46)NfD%ѰvNZIsN2B$EQQ &C\'oT希HZry1L^@_B^;A)$F0VSs^.P.F,/LRH%M/4@$wiOMH]TVt8.XЖZC Cu*~ ɯ@%o:ScRqN:腱ܚ= R40n&ViZm(q#=au勜>ؤ|QqYo)(ݔBHNvN x^8*;SЖ%d;IŐˉLwv!rw$#tFg2s)/0PYNDU[$S8';.tAnz L%9~t{%ĤrEN8wc>q-"H(뮾8R9C8@eyiseo3dP*Ã1G%z G22)n TkQ)Dv"E&sdKR,ɂj[AL{8ōj*+jU ^q$ZP3 .}UL&K&њ& :1`1%~fuƋF?o&r /Z.C|!ʗ?$?]o+A@t9{B4:8;1`qOhm1L@s&1nAMQ)>ǩ]`AYT}e펲3nwa/(uAh*bI:)P$Hϵ bƒs]{ zhS*"p%sRthbÇ.8nagX3tY*9p|om fO(9#=WݥOUiKn'|ܟ:\?2-wnle{1PUuBNQck24ɵf.ֻK6NeHt.fǞ)m%lIW ɩgy[Uh ڳVTxgZc5s8֭ FnmLƚj6i`W:jSIt765YhZظ[ןѴu63=>(ЁG%v"VLQD~py3l g$hkƍ>,~vexU@//,4J ֨Hi+A ;PE¿G׬-7O^74|aaTeƵɛ-"ƼbgnRt?OvM>xӰ[qزGp Ao?1+&`z8"e}qp7'˓Ywk#ngD}"e$QoyV{=~;paFʰS E9Ka{at3%Tcri(dV3oeD/tyd7FC8JCd18+;ǝE)&cM~7B5ƪO 3nW[E-oYh356V#o!2=&f~LJeo y2缻Ṝ*x =L?WS0ע I̶?3#7wXEnyL̨+=>y_^@҈:6[e r~¹88 7ZQOB04ǠQ|CMy-}njIwu0jƾ)(B?t-C0]*Q?]Hd)I6c\t=0}k#:b/Dw1׽_t)z] c>PL9Y5+M+?#iz퉜lQ%H2h,ƮK؁1Gݥ|aO>nײk<U"}/Gq>%RӧpW}As4tz˴$K kطFPBߨw* K[6q|Z}>}%Qs ;b~,h$fՕ[2aueҬt|wquQWʵ.w69Br\ }Qnp^U>qcwbyH)OH:Μ endstream endobj 1738 0 obj << /Length 1100 /Filter /FlateDecode >> stream xs6+tAv'N;Ӈ{Aƌyx7I DHɬ&6N6K 6F |Z|YxL0}` @%f:s?>2 r VcU >;bIH~Vs@@B=-]󓚁*ƇIZ.8څ3>jg\g2Nr.B'z_EP$YOG7z2ߧYZ$QESb8zԓzwqP!@FP)<݃v@Hi'nw9we*ļwP V>!W0fUsa"m}'lLIjX\+z_{aipo{ʼnUJN/5J+w{RakAz8 If vڲ})Ѹ29OFvKZ솈w6[m}#5HnE0wwe [{m{8A{1QugmYг5*z.g(o.cL]I3!v&Ye^rG]3]J]M DװaSԊć [ 3".| 94nL!"D- FhPm,)j]CXzj&}}ƪP;MFQ 3_M D6'Ȅj#nF"0J Qezl:;)077f ab,,YP iy(,T}Hk# rqT"&{]>l(8!:&~q~$өQ&Y""b~2kBi<>3CE1w,j, :xpIT"3K-xɍD.EĠ(IBdV$C6 y\y}PLgXԖ), > stream xN0}KX%viv#uf&i57l)o?e E5Á& "H2$L& L$ #Ebh]rwm6c #cʕ BR\VPǟUEgՅ1KY) ĿKTGD|v S&Yt=IS)ށt[TM#:0p!*.?n$*QH$ fe]&BQ"ɛhؑX>tZۂB@ab7 "@N*;%h+|jy%[E}0e$H$$22sDzX&Dž! K\9FbHXت4-m!ab^vvh1TjJh1E?%QAc,J0E|HI|Jxy}8B@ 4YA᱃'+vQq`Tu 0H@ &pnN rkypm@gsQDBX,9>'yIu[}U "^[LdHIm_@d ݵm` Ʀt&)HPʛ MWH͛JҿnE,uQWH8?q:I#5pdI$! #1hMW;<t^d`4ゲ)(cj3la endstream endobj 1610 0 obj << /Type /ObjStm /N 100 /First 1007 /Length 2431 /Filter /FlateDecode >> stream x[MsIW.)2' `'b7v8.p0πnynUc6xzR*RA%4.M KQT*&CVT(E6T"@1:*D RWg&L&Ҩ_-CS9#1(!u3rWcIJW ;nY -RW$ʴ4:$2x(^XX@*juJ7\lAVvDI6㢶R U\ɵ)uCedY)7"-̬9~> 7岾Z]vr +pX E9nU]Bt3 J'U'HI  }EuFHH,MFPv4T*KD]挸j#0Nڟ@`֟ \]ΙbS'זcE$n%T:4ChzR8p"!Jd:BIjwϨMCD"d$m#FE)IQ/fbisH49u7L,:qxp=uNjg 7{:'^l^ѼKnǼKJw6/3ٔr)=] Yk5};%Wfj u2}w zfk.ը0Gkv60Rytq!ݻ#l2[s/jՠd;?n>ٷ_S?ﯩ{fW/{f>?odu流z0{2?[/gwVܿ每/>'r˞_`-oh}tFLo?XWstx\8<{qjulO];>:wzx}~4.٩[-ON'?O߷G. 9+/9ŋ7>ˣ$.~4\GO+?˃kPbbN(VE 1dMH&d bB5ɐɐɐɐɐɐɐɐɐɐِِِِِِِِِِ!GC 9/ wU?feTz9كs!_k\}Q8cp/I%pJE=k+Czsųzgv)KkYYp=ؐ4+,t,0`A|V:0WvLSv0|D՞"9_) m|k k"/ vGMSo࣌&#qއo ֍Z]$,/8=T}Lk0r >pJ0!tK<#aJ'ii/s*3!7>=-d3}M;%His7O/Yk55D͡0Ri^:a2&<=}-Qİ7z3sJB7Z)Gm7S~qL $̂>CȒ`E,Pv` ҿ#T"ްx%b@J-~cjII>kPY'/ -L%!|"\O1^B{˜tEed9+3R.ӧ ?1Bqj8}f m膠ȸ4}劲Sւ8bs.l Xse(}ƥ`=^OsfJs>KMvF۵#4b-.& GۈňϺ!4"\xK5A/1\ϺZrۮFl#ijg]ݍ//ؔ7#Lu ? !ה4f?4}Υ~l؇6b)S.DU2}Υ}֯P rMk#"s{A\O,0+]KMӫKxk5Ċnww\Z|OE? ^ Xo!Yo!Yo!Yo![o![o![o![o!["r6lِ!C.\ r1bŐ!C.,,,,,,,,,,\ r5jՐ!WC\ r3Mը1A-A`] kh@*ƅQuMlR!kDg;P1\% vl뚂:'ш&ȸhN/#8}-Q'޳x)s"kD?[yBNAE^d9LcL_Lfd)c:} endstream endobj 1848 0 obj << /Length 922 /Filter /FlateDecode >> stream xO@;0o~3Mf-Jhim  RJEJh̼P3`WǞ`g=f5pXQw}>wu5 .e pĬW0b7gvx=`ZiX]5ˋzz,gE=.P\_^nnLp,[<_2ŵG SyhoJm mLm~ tehov }uX>Ϥ|;9!wehsO08o"J$^ ȢWD H _$Y*4CZe Y^Y7)hi `ea^)U(XadDU0~Ɏap$H'#QD )i' U-0UoYrj ' D&"D"A4ɉp# IsqK]} #ы8hF5`"݈6+ 4#=# bBǶdY xq?I'o['"byVAFVJ$*Nukתe;51@ChftXi㐊9L*0Hh{p) 4RrX<Ņ{ݞ#0.ˬ5] (c x\ xaV'N77rZv8;u[4S py1QEB 1㰫}Ɏ ]F9䭎&~Wsn`bա "WA9)`IcHf"rjzưȦ0SӻC64)Zh)@YʔF$;D*N tF(+B ݙ(4tMw&gRɡ$ZN$"Wwm^IXJ,Sܩٮ| endstream endobj 1898 0 obj << /Length 1252 /Filter /FlateDecode >> stream xrH~ vj9[0*mdO-J=Z88!K?(̬DVlgyąZ>ϭRXşX~+[sǁuY"-<غ^Z_mH\vyE*m^yζeRNUL%p9?$ Wl0B, `> ̨2 ٌw771cD!/s)"? .'ē:yy! K9k(O+dʂzv]QW 4$W''xrld`#K(=9'fKNU 6,x%hJ ۻ{YbVQΖ CX?JVøn9Rp8$"_ her<^8Gv]4GlNo6Fl5E`B$y^#0)Ds$Sm]7W%.<ideZT9H)197Z./w<]P4c*I/0T^36C4 "oi,^;€LoR{ ȠU#*R7^ 1EL5wԡ^ZQt(iCǥ욵x(9zC@ ZC3 R kM/u#֍?Pŷ]{,Rq 'hvE˨4jGFD35a!{k˻{4N[#OuȞ*!TJ@4{J{5=`ߪԙ;M[h)dʔ|ci AE?F~ o{ endstream endobj 1797 0 obj << /Type /ObjStm /N 100 /First 1020 /Length 2258 /Filter /FlateDecode >> stream x[]\}_ER}~$C!,3Rwz`;qq!u+DHļƥHJ&#}mp#'?#)LGw`] wװ'FV|GPiFXDtFT`Foψ>GH״(錬(ÌF⦴A#(gDψ*3bD༦歍l:ble":#*C&+&+Op=~ab|`W73Mi>}CH=08|Y]>]7F f_lno,>b{//]<۟~ߢ>׷.޿~_7[ۘZQbo<{V.ߕ_>7w>Ǿy|\{};Z_?ɅmT*H[*!,p\jui]W~.>7y K{e߳^+)-p\kuuMz\"۹!uK \t?ڒKrssAeRE] .:_u{ڢ$-p_v;ģ*B7e3]Ჿu *ﯺOtPﯺ.+\V.TWG \W]|yQ~YಿRǜyQV쯺*~̥K^n:#ﯺ!nGh\F_F+ռG[-#_v\vq..[8.zeEvu+ǞFlm<ɼ--ˮ=KP|,p_v\sL H]trZe?̇px;d >tv.hCpy]ಿmR[B_ᲿG}^ol,#_vQ!ЎtSœˤFB7_o#\o{Q(LFyϯ}O\C;]G<]:zywβ\^|\^?._;wb||w޾z/?_R,_|?uظp};Akz`\pndP=@2 ,DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD'rOyuw(z%7^\*JtPpqOPtq/ J@+m^aA~! &>e.(,aA~! <|D9QbtcuX_a 1nRY_XC *e4.xڳ IlK{ŧ[fi+7[N8%xd^J#e#syFfe#sTd|9#|n{9<#3ݠU#s`mGuYv2dѲ9ƉN-/N&vwc ^ E/gf Np3R]9i+TN0y%ӽLh|dVLhNyvؼv&4|LhC*eh't?W x p8-;'X~_N2&@?ӼݥUOO45oY55_V7o{l͐Kjy-1˶& ~ŧDcTpYu6DkFf> stream xݛs6+8OzLwgzoXl/8D6d?J_W p 8WW88~HYԙϯ>Y)d(|HCacM|uo+h~8rxLFm!(z)\Oo8_pYclʦ+/d7o?MLـ**<(uTBʾUCX2@ -28*Ґ‹\r4 Hmzz0Љ%8 ܓ*ύ)Nv@(Pv6D^)9.( C:Z;R0)vZ\!]rlT6k :*d2H!tɲqa^HgM@idg6A7Ab+.x眻@Gq/TIZ.B׸Q5/gCpTa|cO=CBقlt.iHRe |+>l]dXƬLS77Db<~ub^snZU"h Mb`S%+Ϻ$C "p J0!֠_az>8飉iLyZYG3@%6y!=i8>85t)W--&AHnCHLS|vOogA7S{N]CN^G7>XEpEjjLGy0ŭp5qtcD,?eq;@h0VVYG0wU|2,Ba%"Spy02B{֍G V8 ,x<5FNsk=nGdޭ˶T>Z-uDhq&2DFߺʚvU.nCdmRjEM`PN5U&XIDfjڪb| 266HIϹZ8e G7`!2v݆!+Keen@Xt,d(&@9A W(╴.]M u+GCf.~F-LPdVEESP87Ov2{{A:2Ъ#tyMZ(Zs0-4CZJ}>e]$7@ifCx|Ri4 /k[pӿ ""Yt-_)v endstream endobj 2003 0 obj << /Length 2006 /Filter /FlateDecode >> stream xݜKs6sC ZH+ Ӫ0fV߹}h|@ۻ•(4DQNM$cy`pĹ|~Z?m&3>x?_~h> |Ypdp8Rk/_o?$)>@Xz1-F $7-.n&4a\篴7?pkotYp\1ZpZp1)Ƣ\@DvPkY+K㧂hDKUzƯA^Q wkL"]; \o}!(@\eA@K,ו~`!E?yx$Apڕ24: ,0<$Xܘ҃cˤ=:ˤR 's>Jqpij0 N%`/AV}`6xmŒJ/s|͝;mӻ )ۣAE1K !AREMٻ:{.pI>}X|X|FZn޷-˲n,jY&UsI/ =J=st{TܳLTKzT$@ܰ]Ӡ5cTPcI+NuIT^I5={\; Y&NJS$eR@"G0K;x6 !v7K\7zS)Q3*rPlgm*O·0K zPY6+Z[i搠Z~T54uhGc䈣>?Z ㍵]g~ale1mmo|M4%o[n;clةL /rz8^oxn9C ,{g-RrvZq|Ju0 f!+:};#SHڀfΗ P^3})hR5)@Geb{|OvV}ìzR|Go cT.yTKԂ$%\4t\{~(-o/BId1C|rtf{Ъwt@PBnrH ,2_c4;RMG36\:w7Qt&p(%MDK\˓cVaĞN}F6Q>DNQ]wp,*^ ].SUF&ƣf3Q4ʖ| qt/}XW{OEYX<T~:YxK=x^0){_ݙPe5OǏ{7 f݋ZF( x5]SYrO|4ũNk4 CY~&)Mv5l=F)kd:ލ/ʘ>KEBY-*XǦy{.Dj+ۿO͉>M;4qp"ҝk(S;u8)LO=Ev2^anw.}$][0@|x^aNd/ɈΦ bo[ρ-R[W5N.GWի̂ˠ<<=:uy>7{PQdyxL:.ѥ0`bQaui/xO̝=Ngtn(&`k#N]XIwb?/ endstream endobj 1900 0 obj << /Type /ObjStm /N 100 /First 1020 /Length 2546 /Filter /FlateDecode >> stream xڵ[]\}_C* 'I!,3TQovay{Z>WRܡV,DDJčԜJFɲz i@S^G5Ap|?" 4N$10M,ήYI=U*aQK)$%#$"q5'$I4J#I(,)Yג Eԓj#:%5%#Be=A Ԋ%T:t)UqI"T GTR爚j;GXpG=oi'JVrDB'If-"M9Z8Gd9a>45p0M= )"J#Q~A GTRW:D5#2L0qkq H9d*"sW_- (B}#ĜȽGh>.au5]q5*~׻/]g.5WnE0_r3_'17o?pM_.>|w!ivV+Wc_gU} IW> ޛ2ɖ{EćwBth>FrjH3.7:w!3e}2$=|4C>粺 P#1;5̜ *s.KȀQ Ipn)7.!2g'jϺC/mK:$~'hyK5tRFOVt>뒆X-*yg]!v9D5i8t f.cKLǔ,n0[0kx&">Ooܭ.]&d^zo^= nX$*>P߿tyE! /-o>Q*x?|i?}sS I $`LҦ/}N?a8p@Gpp?G0i @L2 d4y @2di,3C6t!C> -R҅מ3H]uQ}ܲMT#]u D5 ~7q 癮3ϺC`r`!zwFQ& a.YsF>j PݮjT33txw/<^0wܰEeK!C8faށɌ.C8fOۑefPg]i!ChFN-D5*e:~ڒyc 궘b9QWCRS*M(Fe+y,6_&Qr6^wm voBhg!L,"<[r>]-}oϗ_g*3V{V{V{V{V/W/W/W/W/Wru ׁ\ru @l d6m @rm rm r} r} _>@r-m-q> stream xMF ?rRnQ怌=Bdiv{fB[oW38x pe(GD@1)IN2w̽/G?>`iq0O"*X )b|| e wm48{IW1քEF&#sՅ#4??;BFX(aq-"!"~/Hu"`4Hwv6 W{kA"D_n׋jp'RA5:I[`mXqǻ@reE\JE}Y))HU%xz *C?ە *ms2..@}G8M%^M]‡F@^ǫ\|[WY]s*NjҒ|8%IA.=qkJ 5CT16Pz" H5|şTc脁thL +!HKkxjWe=҄e 1dՐ5Qwo0?Kk#yGFRENiE +!m|U6BHXЫ7WKHaq?a ʛӇb~狥;tfSxkPBmq˕܅^Nrզښ N% 9&K㢗>ЙsO<`N3UeʸOG;<2Oٍz :j=k*M~}ZM c'B]ю41"0H] }nw˰&nSɣGJkռ&, z05#h\lXIYtl1GBv0VQE|;=h,Tb_,X vAౌJSѸ$^ ԁh0ٸolΆ';ȪpN,zGgŕ6Y:5_R _A} &kLFq>֢`FQڧ.& endstream endobj 2109 0 obj << /Length 1479 /Filter /FlateDecode >> stream xKs:| -aޏ3mg4 1ŐNnOe`M$'92F#C"P CA苹2>^(HcpJA*AY۱XɔqL'Dn2!&xmdspcsp2 ҵ7#Ƙ#0rP܂ZͫYHubr '`8=$8nS *u Mdt1WI/f);sݨݏ0(g`F 2r5T`n#0>VJ -:56>Ww h_X|`"DMNttϦ7S,rmvfv& Û{v L !E|mNSڲ$P3޶;%PnK_^F0~YG+m]*",>JtBZx NR׍zYuezqU뷨zr3$YTi3;zS}CLfwVLxčNݭ2x24™h/K#\B-4<̭>h(0i__Q(D?7b⊡% TݧA|ict`y 4mtft ƸŐQK+N6@-jڲ~=6~!?tZi3)Uz |T#o,Ut*4BH1̕ɽ/ڰ w3oaP/v 3TWMK2`Dmb&y2+]2" c^? ]~+v8(p/Yא2%(uJĘ6lݦerЕ?8981HMF&t7'oR6#u$DkVIt:<^Z9ҲD?SU" endstream endobj 2006 0 obj << /Type /ObjStm /N 100 /First 1020 /Length 2323 /Filter /FlateDecode >> stream xڽ[]\}_C% '̮?xC0Yf?`sˋɋLuOߣsR=mVK-4 i\O(EA+6#2$^f?"%8ws!+qEWz+\WXap7vxf1F-<*@S#"uGRGԊjYQ/GDdg0fj~-7(.*^"L&>ԢokVGwZiu<hs}qZ+!j5\IZ}bjŴ{XSh>7<"L9 qT} @uiBJoBY#0=}fu2aĔ10KW}t*Vf)A)qoףEf46s<{V.?_=򻏟k?>7wKcb";0 /P۩2LQ۩q.c?2 yzt^2S\Ԩ/LѬg)j&,p\$tʝXj. esυBp@mX+\t;*$; PP.m?: a Y/pٟuBpW.&<OBT/8 i4]ԣrn8ϻʡ0AtυBD e W kmd@幝0pn(xWϼC/dX"?b ti+d^w:>zh+\^uC;9FԎ!Bf%"xsr< -+2zx)41[Kd_o{R^:89+_D~^dT+d_D]*?qruˍkGӕ_!ee!Ă_WNIڟ~B O=XѩL? %bvr+Ͽ4BCfh +'ϿC ,]c]"?R %"xII?vt'Gr2KJDR)06+'S Wu4 E+?A8t.ٟgbGke Co/JďY>˛܋LJOݐWx^ryu[}wq?~>Վr=Z⾛W@{:\o?}CǏ?-[@ 8@3hXLL̉̉̉̉̉̉̉̉̉̉,,,,,,,,,,%rKvE~u?tFuoY;ZG$/d@i"EMWB~#C(jm"EP"VCMBf`=@)qـBR"Z(!ݬ_Qxyd-<2Piz+d_͜UwDϳ7X7Ii&cSM;mepz_Yv8IyI28=$癜v[3&')rڸ:.')gs&Uy>Q>'&Wh$m9ںIjYMUͲՉn<E瓼Ny!{:O:oߥX:[=z2^gӼVO:ubI^gٯdΦR^?l4Smfylwlγ:oj_ݗ endstream endobj 2155 0 obj << /Length 1561 /Filter /FlateDecode >> stream xݛ;s8{} T!x$32qP$i)2|Ȅ ɠ,"KduĢHZI@FIN>kw`"FEWid JDS"X_i>tƹPI?nI7߭t&MuiJ)-E[6ib2IJՇGJLLh8¶xiu}l?5}HbRcHk^X{$"-Uhd"k&U$鵳pضP|56as72g4Z+nIn_e-ݢIm GSh3F DLz~J3&u@u$|/B#b:c@HeH-|m#c`x sܤd3~CMq IizU>DPnn4*Ӌ/?C86F  Cqb\w]8T(8i),8 ';+kHpA778SuR ! T |2|{51aQYdA4МpeO>/~(D*<4߲R&M1U[YʠW:40LFb*(;?ci~ig%̽ߥZGR7&^nyuPw @?'fro޺ iGUz%hs`˲!>F`Vꝥ=`S"|99pˈ2YPuk}$8ʣ#,9-VQ,' K{5օ-tGQ,22N}۳t w6,%0P$lKfzYPUJiq 1tegN% A2 1`[@uy~/F?ZN`&(ףzt1ݷBS_n| ͆r7&xB`:hkD!FU{1YW _yά,9 Uر&&ZYG6dُi+m0-ܙ=÷oQecC΀+tUoz/V70擆Җ9r>BE1H,Wj(a'j6؊mcqTLQKջ|]NQUd!ohL"UbOWѓEMCaw2F `Z̎i6<nr,fL\j2bBÇ{KU;bי#5~? endstream endobj 2161 0 obj << /Length 2984 /Filter /FlateDecode >> stream xڅYM{6WxO+?շc;I&N2vh%&xv/ o"h9FGp4.,rd`]{pEty-~nJ`6Ԭ^]95{z P/)Ko . S\yF>v.MedXC6#ut=}b-nb׌ f9yb3mܮXlĭzUvg=_'.wmΐhE;^~bEڝ)1DrNWãk* 3^x:)B¶v06F+n ,.V7TS {_UTbCBIV$'jfJt/Aj!«ow7mIX+;뗕ڥInSx]i OXF0g}~ZH%;hN|!:§18VΪ0Cl^9fD)CZ0'iբONN&1.$ z;){63 wQD"fu_óz:(NtO4o '31E#J~P@O\? čE=d@2/7> stream xڕXKܶW- @ ?Le&*gʒ8sfIZf$Y0X;9SD$8J'ni@,̳H0K3.2U$I2´%u-ϊu{vvQLŴ2T 3%Q a04š d^ƍu+*aO:-[glPXu˾HY Z3p A<aLc \3mw֍""E"#&M\ :f8m^b@2b$&01̶OE_6bbZ~_ʓt劳0B4VI5/t?x?Cc+^DX"ae`]kjn̮ >EBٺynȾD`ksMڒ^[ΜGæ?'USС3`s8;3 +L@RJD c*}mBgh#Z'4PUVYnlyS,IcYb) ƶ;wnwH$^tk$P%7ouu sUT}ULl?pWB2ż]8kzDL,}*hGW@oB;sN ?at)zVrr%'-|i1dS[*zlh[57ʂHF'ff(Os4?` ( W<ڙZFp s yZoEmbpK6(Û}߉b8-byļ]2dE|5]`8QMPr7xxcpy|.]xIZ U>Uo|Ql"} <(?9.Pǁ9ԶOlp4CE%7&:v'c f*e*?NʶږJc򠟨6o>at7xENj {{*jt롚RDasTqPX"%X%V*n\5_tPqo :ׅWh`SN*n:7PIcSmIɮ>93:32U {_,^h ܸ@3Wj[Xl 1/Ua`;ضY*c}&(7QY(*} +3O{J5X egt]pLOxdE[cn#umS瀚-JkoGás>wlC͚[.ނS?ybJ{$`A*[Uh OOqN*up\-r~Az:ôJվaX'C8lGw k_87BΝ5;us5 '|Ágw%En\k@Qeg1]">#z}x endstream endobj 2111 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 2250 /Filter /FlateDecode >> stream xڽ[]}_яK߮a-6$ ,=$zM1{vοϩ)V9 Twn!;n!Ppk_1~k1a-Ie$,ݬDa3I%Қad29TÂψ1D8&:45s$Ιt2R)(U66pkثI\RZMDxv_밪YZj}ZSP׺QBMfU ZkA-ug.jXhi6%-Sij@Ġ閦!bqhhW@ F?zmf4ƴ<,bqh7^z [\4Y48 =UjcN*0 -,Z&L1A6( G ib@.MˠY: p_E4 N F4:7xLDc|628:AAPH5x٣"_F 0pKXy+j~u$F(*jjTWO\^7Oooquw/ *:}sWooܧgA<$~V1f:n2=yNtz~w;<|{Q~ # R(y҈`ș3#ig S <1}<8EcAI3"PgVĀ;E~0݈p^P!,u?D`\1 lL:K%[KLF K/఻3ƥTir34|bW0sLb`%[Ù3%lHtVL4_mc5p‘i/Z Lힵ{LsVu&09fVv& ^) J΃_O_@Î.fbDx)i_}e8aFC+Y+ݙHgCbF.4gDX,vAWԙ05/x*,F쯾Q _$m/#5&יJJq&^Fh.!0/Og۷a ఁ_;;3W/\_۸n"``l;uJxFD*`#`_4&.Mϰ1#+H8D/ g ;{D/ug9SjkKՉJg;N%Y%i%u&~p_g,Tr_"g)# \b@/ge0O'rg)SkGP~X|NwS c?jw}w^goW:={zN/n~O>|g~su>nnFw]޾SaoiF$x\AXyy噗g^yy噗gYeyYgYeyYgYeyYg]uyYg]uyY<^<ښٝM7a ˅ ۞"[ ޿w,dy85oӘ_'l7 Zռ g׉nB-avE_[w&LhE_[u&MY Pd9fn!wš%8Lvj,q\;5KrfܠfBiSk,|f2aTd5K5K=N36Ú%K=NDQ%K;LR},Yq%)5Kqf)|iš%Ja,Yq:q͒,6F\d4KAX+,Y0R|W-Y0RXQnz\dȔ-ZCUK0ZT0P-uZ6k~h8rv8e-2EJljLX|h6ۿU-E˪IeVEZ-kaͲ4Kt'5,k\8R/_5:,KZ,[9P~,YVoe4˥E& -UBKO-7 -uu=Dɜe/ZO|p7yc&*FfB*i'Fh~4|v?SW4^>cjgnv;v3zE_r AfZ//˟n> stream xڭXKs6Wȩ@!l%*?R[N+>' 93l*:hh6"D׋8H# OD``~o.^]e"qTąnHe**< nsؚqWכiBEiR0A3WW2?MH"-"o4ÛlUuD{\Nmdv3%N4npИywGsSC'݈y)97\HNݢ(f1 ~:wk' @6wJpw:<0]51~t:sOܓ t ׌6Lf&Wj-]'>WJ"C%ʾm-;O R,OUfn&%ktm^FuW2e9\6QåM`C WM%n`$MY3)w7M:xt--NWOՑSW4NB22=>q+" )AD Ȃ[r^//!tժ J9j:i] yoKR$AKrޭLEeBРn-o7 /{ vj$UȤ7FPnσ'z`q"|[I^Dݺ"f#(KȂ4j?A! k:w.w/D]aXy3VH٩v%&ħ}oG*P1fSɊ=/R}PopMZ^Fcv?ႦS<Őd듌/3[h}DWtnQm"⬩=ôT`4⁓ZVB'>e?d)š r}"THBؕ_㠂MP!x$6PQ555%pAG^1%:WNUy@H#"n7?7߭&4D>UvkHnI kF0D2=14IeQf)I_Ieh)FpR 5Uv=C( q,:|t)o%l)=+OAl C]϶m sa 3"mu896i*PKH9N}}f.I]=C<ف$q,)m+<\kx*Rzƒ ya`) gĿD--Xq? K`Sf}e_XQ"_IsPmzo5$KRKv}ד5V#)s-sWԨHn}Z^eo:y1U 2'֬i>T}poLc?*Ǹkx|:E0@6g7vZOWrɻ5zGe>OJzB |V g%YS㷃hcA#!TxMg8rh\.ׄ]g8b#l7[w̟9\l<D}ݡ/K0FEJqмQCA{۲Kt&5bdL D1 H mz>Pf \83ؠfN}1*a-/QsLbDqo;i-Q>:dwv=%,=8r*&%xb&&+;LhՌ[$w 0b^9TZmThaߑ;Չ\SF;P+-Σ V:ET1?)`pC. 0ɩTC k~4}*5ћůCQ/ WԖ`a5fٻP'DС endstream endobj 2187 0 obj << /Length 2472 /Filter /FlateDecode >> stream xڍXYsܸ~Zv$g姽{N\ 5{+׀H2 . uÙx,zVox,Օ'R[".b༄wH_]6v{,~yf,H/eP{Q.D$qnXHY\~Iť e*0N$N~է_NDm-PL(udl@Ԅ30sȔ",$!X>%00S3,ȼd{!EXt717mעމ@"$MAٖ?r"E ~v CܙmШ)rԉ&=XVn:4O৿Wk[p+sxǹxn8xϴ@ݭƫf E1$~ly+_2-j2O݅ z3T+mQ\UINBUwĨt(8fظ{ {ci{)bā볐ʢ0V9HA܃{zӔ dr[%Tb QErp*Bzdܥ!Uuo`&=̞Qھ @"E*٧A@FՇAP_/(4 ey{NQh'=12C`t̀ՁHq Mku[%O q0:&Qbb.Aߛ2ɪ90;4ޖƳW{ܷZAipͫ$lT<0엍*+8L'wj}Mϭ3qRS:܁~#s͟|3Jrp[VDbFȀÁSG]5=0E̬{ӯF!U^s@y"I!:18LRq2X 7J`SQw,hx Nk"" #>?˱"Q1Y34%4Sn1EypmN8,cy\vhU=KNACD 0w*tŃ^G3Ы]hk jfUiUiL%߼6Òjʼr1;7Mqt`33`Ax6*lo&fᙻ[Rm\GkW$ab? S*ʊ,y|B@2!li+T8Niys-F"yScxŹUDq*C1xכ7a:BY*@x bѧ"qcdwj9wJpPM637| ;\S2?B^0Bj^$9מK4vCHbfAh#U:W"^*3mGkeVtTrۊ3^'gi[k~̓w.\5HK@?hy5 Ǻ#cG4" s7]4Lj롚'l)_MC@iqsϠ!\$I{ր;UfkݖQ\U$[¬=Wwk42@܌[$켞)tGTa,DIXLU(\v|u Si,̳jH*:X;i5q]d$F.p`u׍deX#pdE)#3fy63e~NX@PBgcM Lcf>;iVxu*IYIUHzNxC 2u sWC%xR SΛZ!МO?,^$F7W3'hhzU+(;@>vw" z]գ?@5 ~p^s\P7=ʱϺzHyYu-YC=_q֚,> stream xڵWMs0Wp3F Ho3Cg큀l3"JH``4/Jo!cg`v{䐄@?Nb'NÜ⛚٪WՊb#;2) hD$u|!z>Fa=ށ]4Uevҧaq01qzi{Qo֮([/Y6زDægBP2eN >%ӑO/'V _zRm~M>D-ODtNpWӹ$<˧){e!޼(P4w)O`g{tPvJ3.tuP oҮ7m'UG`GB<ƔXV~|=Ҁ:^ js @}.iVj5 BsᐳS;e)\?ǺU@,k\M } DwܩW&4bc&JV1-%J >>+Y( J@v]27B1`lŃۏP I\Jy6.7Z1Wwǜ*COs6dkYmRn&B۰moj*.vUo$ӊȌE+琛-2T. )zL#cbzH!P/Τi+դg7"l8ZJĠIb/dYmlu30St^u{maMBaT}E?&\B:v15v 2ܬ} endstream endobj 2195 0 obj << /Length 2248 /Filter /FlateDecode >> stream xڭY[o6~ϯ[e*J.( EOXtEc"r\HZrĻE!9GZ>vq +%E*T'اno!)GU\vIPq$,uk,NO 74M}?`# ?;zG52"ݎ:T0n_5@gK:liΩOH ̻"n!ms/rsqU$֍xbP.d Ʃԕ3{E$IOQyn%?o׫Ư()<ͯW4~P>M[Q+FFj&]MLۤ頰Aw>!ȒJ5 K^lp,V{= 7tmDusFeA`VGF3L LSϘ%)Yۤxwր،_jtpD$'ye9&!9qV{ p9)+SV4eGIxL*x.η<6jأ+ E16}sY7aZn\?Ŵ _J⸁0{35u񮚯l=LgѹȴAer@svYdF۶G>vw< ي<1U̵}z1Oc/ SN&?;2{zZ ;o=2 y:qr*Fxvm#DlUIx"kh fA4NPu32uwo_Iرb^S}<+57 .鞕~>/bFor[N y2rטYS@/`R%´R<ujD,>ffp]gMR+; ~yl{ W[Цnʋ^Q`(KΈf߃(H;g:!M#$i)9I/E+[ 5OAIu&hpz+4] e+c(!+×kf) ~nhzI- Jz//a`OKY{ 8#wxCr"~=9_Wd}eg=G(cYPhI.Hmm蘌g2K $RbA +Y2?r_IlAGR8™;NJKfeW-[wͣ}oHd19{_hOCrK9>]b(:AR[9tx{ Ӊ4Oew˾)1}3 4 KKNk;d32sRpOnnu[YQpH~hΈ;56[h*i6fzQMj0J;:~cԷ"$,[ft58ƴZ$1O$0G^G!;L)lm?( .0QrA،cy豛ͫh)xdR? \XFrZOKg۴x`a س+,fXQp] mUN`R6_n\٪ذv)8p=tLŎ1\c g SN7۩G~J(wN";!rp> Sg[v^z*!_]]23`ָ(0I D0_f ǩ*)m&U(VRi dGaZ #Q;>x{_f endstream endobj 2201 0 obj << /Length 3105 /Filter /FlateDecode >> stream xڭZK6ϯQ &&ٸK*ݪMrHLL.׷_Ⱥ t7n.ۇ?(d" *2D|{{F؋FEp!uqD]"3ރq_BD]9" "{|GE#$Nh!לMlvfO|)4JvffƚDdzPr^8jOhz>F>଱}3;T$I'0jT911AН_~ Z s(RM@rߖiaeL8ɩ #94S[4̣r[`1p{ Gh8m 愓XZ {3~U}€Ҷ*+{3Н:}+@ aX= u Cy (~ !7cƭ% I8mU#?y Ƿ0##"[{z|VMfU髲9O6[[_|zJ8Gsf $:x{nk:yw.JO* QR\)I /BU+”f?mE{Ro3 R68=@UpںLs|"ݕupoM|?uOk@l000pl!]{89.tp دV:o.g F!AQ"q1 byqh|Z B'4>#&ezUnV H HTt±pr%tx` lz=mOOJsQض~pl3f7`Z-(2)e[1+ݜex tV CzMer ^gOK8N<[l2xA6۪U*[z4|A}YiSd8Y|}i+! 벭I0 $k|0إ̐g$~;L]&MGD.Wƹzㆿ`NcԈڴ XIՇ: mf[[Ոɺ~n =>amD[wwAc@eUݧ:Lh ,D2zcqIܹae= p\A:qڌYzѝ%11Lv6Unvx*:쩛9qE`ɜO4Q\O vp0 cy48в Mm :_3&\~>4{ Λjn<D}ol17sVi׳YQ'LǛȋ+!0ܹn _o!BiN0C)f h G0BO&[zhO6(''ݼ[ yXf?| BhTU UүP 0]f@ϧ9yĬjʵ^'s(Pd|#,_6Җƿ +; oTq쀀 Q4o lo쑯 FkjŒ.}&UHq~4[?iUOv fa&ȍs! =&B쩦PN,o#1g"XTه' @܇}՚.ڻD  4I1Ks #gM3>v,vwW6 =zrQ/]'D(W=Y]/n0W&34rJk@(u"sYFᐴqu 5 `GB&.ʩ0$TŜF)3it5BS }n2}!P8S0E;@5]rH0ACw&}1 MgEz邢mx% 9g7]dkj5xqmB۹8İm~>[ן~!&t/߾$:jp3wd$B}[qf$2Xi/NJh .]-סɟt-tntghwMXNφ-*!J4m R`>Mw'b' 邩{'U"`/-A?UsJX GSlV 'iT8uiLuĄ'p4rKH vݳf@4ZCT,/.MC'l<^qn PsNt=$ů$38 \饉" fl29S+f"|~ g|fh$ ò3JaђH=|(AU8PݙZ6?ɯCy9%QXr*Ua>VEm*w/TWjap wZߩ1:`rf]-7~oMFdCOh.q/ºp+>g.RK# ZW~@ M\3Bu>?R*?* $us鮍(FkBP%<GX՜@c ?GlwqOCX,}&-,rWL/SڄsfsweҾ *~(hC!UˁV 74vOq5xbYVAp4SOq]_ʹ̥u i珌.ߞ!dI^q]Oh!m>>? endstream endobj 2208 0 obj << /Length 2894 /Filter /FlateDecode >> stream xZKϯQSċS֕ݬ++CAIj>䷧p43zkSًw7v\vGq$3IXDJP_г7]g(eQ SQQ_Km(&)Yrn>D- hL86J~)If],c ?v3N gjJ(Ssa( zJC+Fe')[+<>* .C_$L H~Z&I5lGl疐DHGen Aac^ ebz0C K'E 5=џ)^mT×j)[OU%U| 7:li:].$HÆDkE{J}+K{FD^S_j!\Yzb\D!GU U6[ݧ~+Z6m]v)km /ث#!LVӏoC)"JI&%Ch2¼$'@> [G5#"pETńsD0.8BNQ(,!odurEZ gs =t?:`ɑ}=_!0E2_A%,?UEUQUz۰*0lv՞RcTy3wzQ#g,ʍ-+ltWaC`}(Rzdva' $UF0{-‡*0Pk|o;΍jfZwq;7^0~蛻N{3b8swvX-h2VTCB[hsRX>*'>#'Cs)uya(] 5sˍ;LlR]>](cJ(Qm3Ih8WC9m%|j6(رfǰDɮw-x >{oKn[dMȋq/ًݧjP,Y}ӝŀv40g{{7uaOyߵjmlm}(44@a<)f~Tu<>EI.d,@dHEtO\'7~pjV-yz342 Xr. YD," `<$ uȇ3` m&pcP v $]P ZVj, B6ޖAj@$/قۮt=8ڽm5-՛9+h(e3a 8`MHFYzG4٣Î:߸R_1)g3gm̮ Fs+'Y)YC}8* 8z j_Yr(i&`dO-z%p[iFElYjlBʳIƀ2P-k&k`% Zgs+76^[!mRt'!"3|:N`2,w+*g\(vs@Tû07xWsl򉹽E𹽀ϟ{4C"y)j 8pPVDža{f~_&=׵kbz 9l<(@wqhX I]Jy]VC80k?'c^'ogqA*0;% #`8 eP@3K%Ӏ60.5fn4T{~?OAmxHNH &8C#'gt8x6bY3rϏ0,&LDQt1tͰYe !Id6zcG|M Ma֜v-X_mS7>wnLL .4X3 Ŧ3iТ܀PP1s ҃yM&Rl l-ftn(I0l_oeG|y؎"M(KkG1$'}cS^dlPz_e?؜?4>38v5IXlXh)RɉpTT-96U)l#ͷ߿YTs$H +7yts{$m Eg)?cwp[;t}C7 +Ssf ֜a ͙w=.xlJ(29V ִL5\ގ:)5yl;G_%g#%QŘ<ꞩ1aljܺZ~EuM*u .Fm5TQS[nOXG5^NfhKaT $O饤Oh!m :A_STL\cjU/ K٤KM>1,] | K?X|ihA"e/ K(P__cCL!hͻvc\i.Xyjrb?z#n]Ҍrmݺ˛[g1E~QQ4iW endstream endobj 2212 0 obj << /Length 2588 /Filter /FlateDecode >> stream xڭZKsW07aT٪ݩ!d}-kDRCR3mA`{щ`@I37e[h|tI*WYɈͳe7gh_>$z~g%3H23#(QVfweJn凟b0DhX' ڧPq`,򫲜e?hVKUgRpx_yf"͇т(%4%9t|M3.R93K?v-5k!䪮[jz(vz+jB5w;aLVjU4ej-g|#ekF4zD&3Lrhf)_)WbNN)y6 Tdj E#Uq}s7QQA, 7z`ms"TĠ_3-Er<tpI b93jK>)I 7ɒD;ESX]3fAWt97uۺUl[ 5U(-VFO+Bs7GmmG]m] K pٙT^rg/`Z| < RaBF);U^U+GsWE;t$Ыq"[jC~5rO~n 0gq}:V+Z쯋 7P ¡S2ZسVVW"L.ڻ}Y}5ToppawEf AHn|~9E5w>r)ô@ϦF@|+|R68#qT\٫਒PO~0{1T0&CwthbH#&Gmt\h9pl{B[F)v}Pw ,?ml{(~(E 4b!aW%q}AH qdB"Ƃ3^.Z1tf*jScT4|l`!nY}quP)zc+@֤!BU/FXk K] > z5G/L| F֏ CqE~+0,;юRʯ4{wf.; #5G)Zٹj?pt.QPpA6<^NaGbR ;t OB煜й) J| L6u~Bo yB4u1̹>UᡠrKi 7˃TZl᪹X}p4+J_Z_]x$x}789KnU{{lnc\/RIP[XKncY/ݴqGS_t?[|d66Ð #l^ /(!i嘊bQ1i;Ahfʅ!Řb|ڙP88SZXN $nޟB u>fbᏅYܗ5 Qƾ z SxMkʉ&eryWӚoG%#.Ine /P,8Y ˃[_SFƛ· %5P2|kcCq`„88"~1Z/(IJ@!5g-AC;6׸nDM6]KA)<sg ߪQKZ)4,a?PO endstream endobj 2217 0 obj << /Length 2816 /Filter /FlateDecode >> stream xZ[۶~?>DX0Cx7x:$3S IB Ig],]| NpBfs IVpJQ% iͿo^/W/ݼmM^tE6} 9m~HnXӀtZ"PX$;[>g^EB#,^y8hSvzS;t;%b\<+%j$dL5B&f/0v鼏PArrJ/GXH}E*Fsz y Z"GXFz  12g3@~[[pJfem lJݻe|+ 3s5&h_wɦ &PKhLdHlʢd50b@N1_` :f<[vO!5 ˦6s/ˬznKɱ J 0y 0$aC/}euPT+;f[޸:f{3w>DĝÀFDK=آPjnVȩmxU~l2/CuYօ *hlEQrhD"qy$Y@Vy E5mK7 X&KYY涟OYl o[,U7י|p2HHdUocp%:Jۅ(CݯP_?0z<11ӪWO9J-P*A%912w!HI,=ZW.rݶ}Qwk ({;Iiw۾>byg#K&[fS:psf~.+m–aŒCu^`Q"{X,k0u0q*Dt}pR_yu:N״#U,< ˿֟Z Dٛ@~Oj@"N J`:j6-gD0ӗb̌/bj0PГ5|#8gP8 (1@WKW C,F]Q_~=$za.S#o71vy<r7ځɀ,H4wzFg4U{q/'i2iNrʎiC~1Lye_p4cUcFՖyc*ɬ5.`̓$SzpS5>}\An3T&VWE_ٱUߛB`/ߋ B4yo|պǮ)\+lfmSG2D{3MxřPn W]k%zMpi{o >r[€Yw%SeUW&Vm)"P{n+G8'/.7#^#π#ao$R щ?.fi>^YD/Jg}0 Rw'yLpc ڸE-y |,o TĤvX~]J} L^4-yp?ĆY0&:/Û>p?"dX !y`lRfQ/COTUGC AY}}qT6?z[Jy8G{"g.#9hz;$d|Z [w.G P > stream xZKQSYL*boŗxPi4Z)هw˳<$LJLuUy/x>hN&,<'҈qa$_MyInؗP0ၙn?L=v'Tk^sc~e ՔQ819}X>| b&;$xX: >~d'KAf4n]H%\RN(x jX m( D* qpP[.?]cIst c-MvAGwيۓ_W{'f{fZI8'TdBxVhVh֡`$D|-J`]Qh W #X(ȔV`Eڽ<[CYNxa/v.w>OZṱ`m=V)mPJ&9ϔ 01,&|Fכ>?ЅSiq`O^Y:-X+͹DnShK`>իr+EBj"9?N1eYvʱ+F CoWRBYWrpH\m:&&[eieW]{ \7nԩ 6ʰQfwUF 2 oed@1PQK3Iǔp8{5xb> A%=v{ֿ)l`Wùh&cλ* s5("K!e?}18|G%7_-|1 @@qkCou%%vhI)W0+ v? 0FX!'Î;) ;"ʫO6MiW6 ĶfUEKk]X# rca:u*8U=,1E ~sѕ !`:;1Y2E5<P?R|: b~ -6(@oDlR0=/W"P.ΕcG>G9D6)pv50`[7(wN0tT8BWnTRŦkwJ :ڪ0*( yL]ImSaA,9+ `aO٭{FkZZ[h1]QvЬ`m9DS)0Lf9[pQKSl3Z΍ G॥?}9{ Bȵusad$AſO؀!Z6vQ~g:6?LO lUNHnָb7nԦah _bBͣN re-hvE|造w؎LOHf琖XA)\QAFi_z=3|>]"D&? I)%?C B-ͅ5ZnYrxcs"t[aB_GD*^i!rjQUb&$Mo<sI%3AQ@~?VM^j3z-iVp@ɒ_ JJM|'f䖢: B/*NE(5Ak% RJ<^[BETp lL- j~ $-wg@ "1ZvQ%QTq,I8].(;|mGGh=F?aJM  Vm9}edi| /Ӡs|+&2Wn|'_Ro}P%2.r76P$JX@qy't8x/%oClRrTceJ#[`j+c~ɝK@ g%ΙO%KDoKҺ09%ƻ6c%効ϱܧ;yg}Jh⊹YtW, ?:hꮻEĶ0c p`Ou ʀ0Ŕ 3BI, I8`$}3BǴ#L@`dR 4uG⺞vW ݋{j.cEuGYP+uԚG R. a+a H0P@(\6U~TzƬ=SˡAmg-tKW#0lR JbYN;SFr8N*p>eC[k_x;/qƋjJ퓘Ϧ7c:Lt5$Fj"'Gmف0%\-ă[<psPgl Kz3Γ1Ꝅ1jDv}H5gh[><}DG _PK x Un֙`HJ x~" ЯP梫%8d![]LgdS}x4"(gv@mpe pB (Pzh=ivCwnc'V>HE1c.>.OK!g[y?eZzVowJe% ?F۳jLL? endstream endobj 2225 0 obj << /Length 3230 /Filter /FlateDecode >> stream x[Kϯ`rҔ-o!uI\Re;U\3õDMHjgߧ)%Vv|?40$! M{=\|{|$LY-hMҔͿnW$o#o曷R$FJK2dR*q]۟,Ycv[(6t=hI}W(5YRln~$+x]BRntd6 ~;۔(R<=IXxS4$5P;8r0X:SSCե3=2 odPA%*CFRsyR%thב~%/K,TgwaNh2dd,!vИr$ 첾)}hIx%vB?H<5ar=95QP0DQ+DS|oQ㲎\澬 lŢhl*x a^`[o廇|?Ŷ+HTyy^Or:d OU8;u^l0sbNb#3ow9.g?{R=} 8Ix0vN}9g68 .;ȊwU+S˯MR^;SM*bt^2ȗN9 ?۵M8wΎ 5k/ e<r5@Y?FW^khPT$P .r}iKF3tE`@ -\دWeSck=(?ve& |}ݔ]>vզjov{p @v㪎7X)&uXʪwE.vVtj68 vc=|;pm忰.#^CxW}m&c;+lpv$Q4eBs[cq{')[R1)',Y2/pr_he4㥔ARXhH*!6!kH/{e ;:` 5 ,2@gt~!Hh{ծ׹{XԹ@Fn2bj篟*1+ _O ʢMSϮYr%0qr~=G e?9Dk2"4Ur:4E;/#б)"&n/ASOhJ%8\q8BҰfQUr;<1pzYq8 : b*[C' Q+H+$KӲwӭT?w 6x߼sDԑC&%2x!`%/±n݆h&26uC:z~@z?ELJxgGC #+y 2brvV7wGg9GC:Qjt].8^w {3Hb-p+b x)|0!Hkh C{sq`0eD)&T_Đ7RaXOL͆]Te.d@S5gϓ *GUܻc̒L%9ZR#tzj[5`x`*cL[‡YOLxe9 ?ũi+#^c*Dc@? vh\hG#1MĪT2OtN:;Ȧ85ٗfdUɌs\+#ٌ bfB2fd_flҩ 1 D ;^25sϩ1ZY*!֫G'<$FZXc.ќŃT~*X`\w1)F \G`Ul­lrܱr&-f:`6&L[(s ^|5xbf0콂Ѯx_Vn븍k#u Lc u %u)r2Q%b!xg=snվZ^ed_b(r;Vg|UvFMXiȿI ϽCMz; :BMeOXznwMoѦBP :worwd`Ԍoe>.x$u2 X*6`MZ ?ƹSC>s(9Ăؒ``,8C5"nߴ}-ooPHb]9١HW~7T\+]> $~ ntRjH1qvURvVX<k~iBӎݬ2Mo4xmvUzUV6_U A@6ve5?F"* (ؑݝ t)V:(މ7ۍ?'46>^'W/cD@ZJɭaߦxa}YN*,g d8<1J*W_b0CGO؂Ua/Çw6}3Jޤ\{kBu endstream endobj 2231 0 obj << /Length 2777 /Filter /FlateDecode >> stream xڵZr}W OjY}`>*Sݭ EAcԂ-}\@`D ˠgh|>?-Oe&oapO3?]Ӆg" Niލ[@10L('R̥T=i1\im<WU{O;{0d@;pq \Wno=J=\# ( ?*^>C= ,UB1*A[jR#BWXc!6 !XI*s7ǔtQ9KRD)=lwNIL7DBQ {Z$mB82v~N^RʀxDa+_N)V1NXK(JΏb+=6>bԜLfP%^w?2ahU=d8㺁ȸ.Pʁp9#f˜ou;e!^ 8C?^4z2%1p[goR@wD< aum]).8pH CÝrY͓<[5MwjU_0| m7#=m4/ sUP{.Od^EΎ`j(>8ɸ Єeug!3 2JqiRzgf,LKVt~oʴ0#cTx k6Sn+64N-u[3(QCԷfZ߆wf/.a>a xC<.߿pU3;Ϊ_N"GZ?(5ta'T@  F/7M2DIO"0&ae$W/c] KE ]R1T` b+0"P}&<:;v9f J:HDY6r4{i^1d=ٺQ>Ș_ݙehq/*h=e 3(dץT@Zs!_!?&.;&((,, ֤/;ODZ۴ #-"x&Rѥ&a/k3%%a_TEP:ˎ60$m̘@7hHMү.xʲ^H,! ^PlGZ3/LL|pB%X6x`c7&r >o- M*6W3BK03YMz?5DzzGā7{7'M8Ӑ!/6'f`MEP'݀/^^lN9ٜ4KrG1+r2ҎvS(BtuJ ̛drX<6[3P8 pkU0(ፈYd,X#G΍ٰPef};ZS "x֡ToRB4CyyDFLv!nH\! aU7NW.mVz\V1)A^qjϿ7?{m4;΄ 'g02&hT Yd0h) .Jϼ]W̥C2xjy3k6l߱j[=$59`YJ8~yۯe%#w7*}ft9v{wE]]޸6i1\۝{۬0i]O{fyZ[!RTIY[B'wֶ$nVƅNqͽ~GPD@~(㧴n= kt`:G=ȾW~S[/ ߚmؘy.ͳdqI8c PjQcA(F'[*N #P<_:,,V"[qU:O@Q,DZ%*jjylhbh|UCy;um()'jچnvEz)펣ξ]7ZZ^X(ʽk,>PĦFԥģ$F'0it@uTFg: GXT=Ow~0q v'Wz]빯/Er)M<E<†al&ڏ]HZl ({I=jӜ)hɻ {MPwE"4˕ooF|f/$NvUog:]uyu}3\k옋qz4ËGD0Q>%ظ\7Ve1W6M6ӵ 7n8c_/mbP[M<9gxa TۺN;Ch; endstream endobj 2235 0 obj << /Length 2247 /Filter /FlateDecode >> stream xڵZKo8Wh+ߔ fs0 LAi[hYJR[|HmڴHYRpt1HwKQ%I,7N AuhF"*{! 1uaͨII%5)ENVg˳َ%QOpùy"ᬘKqBᖰg$!8'lb/E(x ad3%$]rQ 9p4P˔*5VUwnZEߺ~JՔҫ)X/~P:5{JR xҷMU4#Nխ )F@YuʢHlsk! ]k  P TȜעppuW׋"'Ƣ)om,9Cd[#x# #J!cp,6PUjͽ,bq{7amz:'\a>ΐGX`gJǾFPh [0vuQ/͢C Jh,bNz}}_5<kܴml#lΛ=SNn~,ڝvO+.`{O5m4- w_tډʑ!|DXkl%x2tM͢cص޵U?}6{L k.ޭP~ = ;f @_mw?(we;Puȃ[yz Rܺib>M.đEH6Yw$p),%)5M<@xy.y3^N,< \ɓ"o^9 %jgf9]fo kt:c2Q~ϏHA} =%9" )*#v:srW< A^3?Gq|.޾ 0хc^Z(fk'@q4'.f]s]@PLӮ<5vŦ}U{৲ƅׅg< {BnADSdus}@rnCq6:^p/&m@ctf:Aa=/Ql dEclB[up>?KJ"M6\eBWlm̘]Ѿ]3)PNH )'7KDV ,8~FQ=+I!~ZG9x,NZө&1wŃo;sB9s4˴>p|TEraw71nLf|k6q}h?$H2))6> stream xZIϯQ`'T\)<>p$v73tFV:Amx[&CFg8Z Lqκ2/xpFkgytQ6o_r\qI~\C-bSw?aH@#o =G&8"_B,zo_or)RŭAbZ%޹Z$5aw)b a`܊H(ZWSXR+d{TK7.i0ErE Wf0TKd3W)efFo|F#8a?ADX|PlIbc}4]We>B€dp3=F-5I fʜ,WG-f9b|釺/u|~#[N3 Biol֏mƙ>6{:T؝`Q,IbDI5TOX D$<1A+% bPaёՓ4 ED"LG?X9iǔP3]QufX!~b8H2>3|(;s4}\mbb$en΃1O#`G r`J%4*A+ce [}_vMirHcsYcr\vM#@45 zQ7v~娆vv@C60_r^-9Kj c M`3} znȮv] EW6'Su oAq֭zT3ONĽS~9QSvA h䠸φ8^>EVcIyD{~Kaߌ#7870 B$3V2o $1a9OGN՘K _bqJ, GY86|nBpgv }FM i7a6e Lc үD@iYQi"g)QMTl N|_4k3< b fcS#[# Bߖpl3:t4%.|wٷR HXN& {oޣ>bOOLc(1{*JAf_kBCl/.9q'i&\C}uxEe<^gvZ3fEmMhھj$| 7~,m&|wU~e&aGwdoW&8"blKb]5]1}9?vQ(oφr"HN@W*+&" *KWMGY$OڛmE6}ӁLcG킳[WBoOI~$E GgX+oDS<\ endstream endobj 2176 0 obj << /Type /ObjStm /N 100 /First 897 /Length 1395 /Filter /FlateDecode >> stream xڵXMo7WP~ `9P"qͺ1Jhロq88.QHrP dq` ?Q,p~iAԍjsɐv\Cɡ5"PB(,Y LلƜI"I;Xej[D'RwQAȘ$S',B5O|vP1SŰ`{D/c*oz(JwX\ٮ5_RF0.c=)q/$-aFIK$ D 4:|S "jn9?E'"%7Ý#5Rȗ 3 Ҳ`1(`aAf$p 2 !J9Z9a:TvZ7XZK@t*N5ҭ?œjMX2rUh_}h%SI;BD0yRsA;Y\1Kxq .K'y#^Gaf=M~|{,ph~DEV-Z{77aB"ܲs<~+S3zyBwuUaO~=>?֫_᭯4[]Ew'8R4EB crzƺJT^r>Kў:mϫsiQ f(ףԲf^Lbs$oA-Keel_Ár3mM*8jt.e\.TyZ f?Kcow@՘m*\ׁn/I=:uO>IO>IyQG2h'2Ny jyD"ZJRցR9-iLey3=+ Bu OU@Tt1t -X*EHfFZbWZb䒢_:^Rr$R䒷˥ ʥe6=s̀[Z$I=/+rd&j`[7#@*0c.o_-A5ȼRb z~Y=pJ:k99uuNritPI:XBfɗYkl@-eO1:'EiԌkNob[,,^d`9hej̀F% 9ktV-FUf';U/B5LVVցֈu S$^ljց3ሣxe)zق¾9?O"]M endstream endobj 2245 0 obj << /Length 2554 /Filter /FlateDecode >> stream xڵYKs6WHW< Tomm%9%"5$5mD  |rG(Yb$#&]-khxr7%')b{4YB %š&Rp'x,a&R"4&L0Ow?Qbe*цP_ F,yX&p$1C,n#qE`2t8?qoV tؔYeǝ&O]I4B$ Fa l&dr1ީS*- C7{U=b_T]9QfTDIur_T5pJ]ٗ0I|ڦW/HgiW~HAKlO^0T*$Dr}U{-9t26v]y=#YiB=L81 ,cp}߈I2/Qoߙ +/.ESqnSv~Mmۦ*1XaZo@{ Bڦĉ&sϙBB`\ 4-յ]Xlg켬u5cf*)o;m./Jae9ݶjƼ8`^ZLkv&{ Sm] ;WWx؄c358#ke1 e|ǞobUq&2yXMU52ͪc6])A !pw<{y*'XV9 n xHNŋ 1UKwB.Dl,L- >&`xrT!~ aL|3㩩}7%upwv- 6W }pR~luSpH+ e=:zD1]?z.ٖo kyo"~xy-Xߙpa&݆/ʲf1`@O?4]87a;fWi߇<0 yhm &[r9[ɐffrLi (L=H3/*aҧM uG;"}̣ ;1x1m&pR䧸^0C3ƓW(d#x3SGWw > `=ޡQ\,-RW19A6˛up`F7V~ku-E+ڢ˾L+Bx?1eg~1 |>^~3F;"!`Hվ6H\J0 v5kpOMMU.$љ>}6NRlz*@M(D![`4[֫JǗD6h C2/"& MxD|$_B aD<*,]Ϩ9)24mWMxUrRd0P<uTuEc|6a60:d |C@9' +Lߦg[N)pj$\3 <rtUv#ƀ*pUUG09{apHn!~zǿT ljRCsC?|\RQ:=tO6rF gDM!z{Cb?NeYhj Ϩ_1KN;藻~74Wd^[M:y2۪bI$e.Eڜ+?n"98H,FߌS~@ed6xPvk͑BϏ˽c"Z#PX7果KoXWnVa7_{z30foNJЛ9nL^xv '7 endstream endobj 2249 0 obj << /Length 2557 /Filter /FlateDecode >> stream xZݓ۶_GL$'SI㤍$yIcIʗ_]|P dNg:' ].m"U%ԒTE$Q[DW?o߱, щ:JYLD?|Nq-JIRٖtVv'tew$+}s}Q5oQe7,6aih?Ar+WTT>Ͽې*%B+_B11D m'sAhA9BI6˦pyr/}?z'Z/E0ioTّ*/d/w]y:߶WƵ}`0pNw tޔu]"g[t}j̫2sa Vo"`emP.>@"јZ|=؍\-%õQ DQO#w`MϷ`cT!h}Ir2u=ZU,}ܖP#%B?j]R3RQR?R~4@WJBrҩqg1h5ǺBl̫Q \8`էR X|&|& T$'`Byk&|T(HƯf@!a`@!݃A,}P8|&k.O2 &$sǜe`:<98"_;'pddhU)TRa8@_(5X@g/]YY."GG^{'fZÀC5g;Aޢ8 W o\h<`yA'qv9YLOg%9Mu/y Tş@HAuBO h,#:NtPhd.şϋGĝ1w!tvg!=8YU/;+,hca,Zaba+!ED@:ǐ1NfOF|a<|&O_'0m귻݅aM0=S8Ý($RJeRTW^0%[C?(QUQ[y Ym*6Tyɖ` 1v@K I LDkȥjs=ha{{=ړ J,o!C-/q2_\s%_HYs0Kؐ4瓆v_Φ Sꔁʄ-∏Jd-q{pJ -!{|3 w>8w3 mUY>(eTt2NJNJ'τ/:EK_:(f:޶ݰ9~[C nymMsU4V{"YJX-]o,˾s'N>OFe9҄XawUan~ ܪC-Db_5(Wc{t7-VusPoYx!Y)56{8|fz=K`d!  J8 endstream endobj 2253 0 obj << /Length 2792 /Filter /FlateDecode >> stream xڵZK6ϯ8rX'qRU{s%XbY"eg !iFO$ g$k/rG5rB d9AZ}™%˫w߽<#BLL1UG.T*c 1 8]חy$]R8˖? 0b>;]6{E(2 {\3ۛ$q{ӈHc# aR=eKH> ۃ_00`a̲:/rgzCgVFCUg,˅/ȽM ^x1+;Xw#pjoz㜂.mƹ֚r FŭPq%kDX렑zx-0\nҘ\!w[g[=ET1&e֌ ><͓(hQc9t-h(a#tA`R y=(nA>~BD^9cs6;9M}Ͼ#Ia*=$poA,A|*j/Jm[ݖ_ۭ?=֦sV@X_|:N#-+ []$t \d vX)a:9?2v z Hr,魇cހIe]` 8/iM:,HmW01L0;K-Ck 0^Bs1``M?S[ڴB@h db_OI{&.0E3K.] xkuBbcWɳ TcDZ1}IdP|MoVvp[]~EՠI lm%Y_\ΜMյ>!&lR%Acѓ-+[1c 龳'χgI}i~}xyؐaEm-4HYDi ߆}#=;2il0]}Q9vsۮIUpXTR?%WB_.nx(|VΣʚ6cu@_.Y 䛮= Fu4!GqdtX[U~[.x--WS.maVUkYmCUǭ,by| {/agZ_١|< C?xΞq-jD] 4b2ĜZƳ6`Nxr/KmBl2mj죦 E_ PHK˘kv,287ʯ\!CEE 3ѓ{%4N{8`(/!j}0[!#>iov *݄&[# t܈-Tߘlwn˼\tZ/ NQ?xm{AE3T,?XOSM=dv dzel !8f_|S끯9mjf%\hu+jkCxܙrN\rXբnG@c=s꠺TN쾭J/@+ dX?{V;_>z FӶѠc s^×s6:,Sqy(5e ؕkO0N^8TCfX@! p \kywͱ)kiV@5 4ƿUe;Jף 4>٥? wXHm } {2Y@k;(M€?wSX ?{S(y 4K$uJ3?h<.:@OZ}Uԥ,x7RuAu_]kZ%_nif@Bf'E)pS`r1']* jo>ΣI[` endstream endobj 2257 0 obj << /Length 2845 /Filter /FlateDecode >> stream xڽZY~_GMقqQIĕG$z$RKJ;i f4_D@wHeF|z3 #U2Ӝ moo|`d!"S4S #yv?~< 97C2 H M8GG5"gQ;j歷ɢ7cWDQi:Q( E!!dCQ>bS2ۦG˫y'l63g^1)U0E >'T)U5AB*N z,&E dcOn_R!Bh7O)Ri3)"q4r'«I1ڊ42 qnW]peɃ5xER6e %Xc)u8I"mX#&y7jCaf|:ISxL.*FՓ!yHXP".#DrPUdg 硢L }bc16b t,D:QAH,Ҙ| H<7 ob6 L O} $ _fvVyr` zN1R] "z"K7@}l-v3)U~1I 1Ycn}3+BM\…9T"  ce\z 6GU1oH+6XǂCT;?5] H0#^7oln*7ȗX;aA$Q5Yղ)˪ؕ3/qzsF뽮,_6P2n^V- Ҹrq|t *FfESn ht΀"ȂT3@eB (Q8.6IA>& ez`:'Pe(@(Cv3-G>2[yc*hM4ё)eVH۬,7 !3|&u5AHúva<5tߧ0fMhcUo9m~ "j |d#zPZZޯB=NabuͦrYg~*w}:1olFUu?S2):w79lv(zHenyy0j}A| Q\б1zC|GI~c5trK @Czl 6ݔ}̟g{Q'mLC4ZA=`eZy( Ic[ a|e_,Y0W,3 p6>%E*7H ՛$ʅ-˶5;G*W?&=.p/ܬtw>ŵa"dUס1a?|Y 0NtmEݿ"%a'Rj?׭'@jրύW҅l˴8zݡjب|NP>u;lƗVITp&h7)!_2(  4^P7/رǸ#Z!wH2բ eeߒ)U7o~),$&TKTam\CQZFNIQ76O]wN&CtYtqQPHv#$LDQ_3ߋ!"&> n>3h&ۇ/ w=%qbNe?:U*^S S]ٞ$PruG9nQQXQǜ]wqO&!b-m$,U,Nc$`mk &b.^5NN_UQv b@Ӷپ`x{Bڿܟ},˻ Vu!ߥ̷Of㏾_j7E֕,#ϞeL|aKIZ#J^W0HzHlܘ i8axʫ,NoId6 |qf@(ϯwK'lVRgXG6RR]#Ǫ^i{2REczPÌž:E&s`rlJn݀Is?/Gr~(VTǏɴaz LZR3/EYHN:>1q":?J}5d}Zg\OcwHUׂ}l ?4o_6x\wDwS8vb'KՕ8d"A N'<ܳ؃eI"'kk sVv20WF@rvd 5Zzdcp20]oޚʭrִ/5ɾJ{]LJoJUW"cXZ%XCqaZ_#%MXHHdCSo$_PdD"KOPSQZL>w 15'݃ endstream endobj 2261 0 obj << /Length 2818 /Filter /FlateDecode >> stream xZK۸ϯ`n/dR9kmR&T{EΈ1E$5ɯO7 A0E_w$" o`U%1S2J,o7`}QgI¢HHq'Y~\\5E^/6u>Tm.WQ8I+[,| d3> DFf>yvH4!1j/n*~EQڭY@ H?d_$Bq>W2AgrE3 y :r^ν sD,e5r= (ALWla1[X~S  [{e;,# u[Teo }I\VKcvS4Op+m[z/2&\ | CLBü/`Um|Q!!޻0#J~7Q$#D YE֙Òՠt+6\ Bz.,6 *ůbIA04;dGt4!0>2I1 p)O 0D뇹mLms.PVptC;u5[k)l J  `Xa!yLTĭsޘOA?9X&^>GxF|| }HT~4.qI0(F3(ؠ  'Bm8G]ϺGfu~01Y- 錎 `:〶Bl,c `47c:%6`l# ,js{(c!oLaTY_+F0Ego .e_a̤YQ:VͲGtҚ|K?;gfv`⌲I`CUl֠AP<"dWC̩I)Rf,MQBF mk03I]jd0Q(h?~m62fQ1&jF`z vӄ*4{a w!/$` G*>8\6I1ɽK=ǯ5sQ H h CXc pb=epg<;vڍ19$laF]VO[3+Э>9Ȑ`5<891|v$9%g9~7lO_~%J&OAaS7i?V)9S}P`3KM="ӗ.geʁQ( ]uS6:Rg͕ !z0\ mכV}GEO d.$ݽS5y$, 2v5҇(ΥH0Uq&׸?Hus{R,R~̇H_=OkRDt [{`PUiSwۥ읍0öA#*)% AZ̟V@0x7u*8»h悁PF}vӏm梿 =&_hW,nnF9f(mȑiLSR3@i:*K|A/-NFKzL/ &twœB&њǝ+醝> stream x[Kϯ-rEL'';Cl5ÄgIjOAAAā F'8!I?oHo4K"Q %M'p_R4.4 Ta|JJ|WIc*=WuG %qt$CBdGl#䣩O8[%(mɲDeL͵ }rN JpZ(Dm&<^& bZ5q8[;mNWm鳩SYBx3!ߖMxb`N51Ӱx,79xjBx<5lIIhq|Z&"0| j2,tw(H.el;M^UEU?6}[=6Vo_\ٱ-\K>75@RǍC0_/-ri` ɚfH9U6XL,Ei%q|Q)DG&=P[k!;E7t52"9?~hc"\aDCsa_ , *ܔXk9Ci r9oM `HpZBCN9}!5L3kpKf c%t?~>:>5ٜRb$:tfL3|=͵tXkC@_ï\ ͳ3ɖS))CiWYc3bؓ!Wd c8}$w5Ѓ|"2_jEI<^%{nO+hNiDaJB.O3ycsOVI8By9UؔMQUBD\(8f7a'> $h S`'uͱ@&C +wphˮ| q(TES}WyWGαBr'&l9rU?<`mR<(elb]^arhМuE!s/_TUWڋdLM'Znmu7}]˃q#P)?v>T?ۢ]S'aO];aZ!HfO%1[_և–ӽlK[o%ڸ1]>N׭rX7-tumT_uOu}|*_p5W-xnO<8c;x XMk~I6xj=u1Z^epk}`kiXe~:u8! ՜pLB_A t(T$B)l*R 8NQs=ϙ( W)B"ʔůۅW\\H 1BDZ<豸L,ŻO7e=AmHȍ<{UřIШ7qEcp{Sq9D5[& wMX6?@&p }23H"GXRnzX,N~p,+-װ8ħIͭ13x3;#]et;ˤX'4?M3 "Xhnz L⤏ph3qQ%Thb1fDۃf,w47 = Ub<΅> s^ØUXnxlOy[ʽNF,mHq: yrgtPoG =y?'}:eEʥ9&ICa=w?maLSgTwubig`G1^e3p:]!K܅O,3!VϦxnVki3guA$k`TIc A'iǗܜ}ĔtijSaMLöPn}CG1&/70zvuc9[- H+9RغL%ecV (B.)bFq9z#S);%.S䪥cH L+$JyZqbyq8YKD1N} Fj./JO!+Ҡ) ҟd ]kM(|Liz{r$ گFhxڛP=w!cdk*HӀJz!`RD( q}xO # -L$9 cPcc`(zew @.AQ[)R5H}9N> j&Q*GNrO.4FmeK4apy؜?1 tvbUBOI fB~@Xx*"+#H'ncva $C*۠1atj yj~p{MLvR<}K? Bl% ;_:~2j?َQ$p(C5$ѧgųxsf&2d<'kF8Y:|ebv===BH3erB].-UqGǪO;uMQn<펇3w8E! =&yEB艍u5Ym 3M5 N[fH &Of]mkx#lo[W[M>ulˀ-S`q"1~Cݘx\ Qς$}ipa߆TF_Rpa/=z>FZٛ9kNC]d-:Й*de/'tQ^UAkBE朷>̐Ɯ x??| x@>mf,Ied¶ߕU oRɦ,̄T>e'RZ^fWcevn-̈́0R5X{wF4t~] endstream endobj 2270 0 obj << /Length 3198 /Filter /FlateDecode >> stream x[[6~ϯУYIm-n;.b3j|JrsHBx˘(\ɡXV6~݋?^`FgV2b.ՋG_ K#R<]egFPnٯ3Erz_68a0Tw-}{ \@ 'e99F%Q"r}p6~/yf(p"a Ja 82Fa @g̘%9vLqEh.(Wf.V+g 7s6}{MڝYvڲToQmTۤw~L̘&nflWmo嶩Zx<ܯk !Ii2*u,*Hkv2%OAcRv2FK)hDۜCrP6 žmZ1zv[߅>Em1$I,䛲'7so+?Ł @@nm:'V)۰]jvjzI[KXͺq -ky5̍[쬩,Z}뭓Gm4mG5 la3AJ"SD*=l4e#696+1&B2qAAꔺ}sZZLKaxi'1C*:cjᾬ X*ůahTQ0(l]mzM\Tgi<_*.ZP}?Ţ 0|8h gl9R]8h N?7q"5a W< b(~A٤57p&eNc΂.cDsAr0ig|1sc%M@[0g?T PzE]5!vzxô]`~YmKj2,Q%r(N0p; gp|س@~Y A 1EȻ ܍;ִEz զ)Q4 MBCј9=hOW]d? ?O;84L1W]+_Þr[avٛ13n9jmT94s,BRs;ǟs22snMuWt,@9hnh"F.|o׏hOh ak^ݩ,˔Ș5|Z[IEfl_c0&IV~Zv+,/+ p`~$ އRz$Uc$*Enޢf=5g /QQKB!BG@8WDV@ E'cr9[Pc!KT Pk"E$QT&G!Qpy(\R^7xZ 6vZ$HruC#sXA#xJc6CΘoz)2gKDwRb@ᙧЊ +0q V)1`'v ~yaI1%*tY,lqZ %>r>Hdž# 4̕<;A:AczM2'xnD'.)k5zo5H_wQd>s'mpN &ќkRଢ.4tU q{_bB[(֋=\&' 4['$֘hֻjLLV 1e*֍GB:s{>XM񸝚ODN 6_P7pi{\8Η"߂@5h5 3ǻG?i]F2#/S~p?x@1Ie;>$eGn͟'u,GKHf!]).9D(=yt%ul ?i0K,B t,xX LXv0( 2U!_}m28(cBN>~g/hg°k7p1MMDa?mE4E\X|w(]e-:s;j뎿i}ux\kw:T)*5 $E]d <D P@N_6&Tm|^. Aͺ֕𲳛GSuj7GN,A#cQIyS,;Zua?/~)|4CPwyx|gY_fV"mՖMb(*puV@]U"1><98E4Mfr)/tg&ӐqI# :ޟ<=Yp8v!٩9b,)},u67Uߧ(Fl>4H_8(eHuuyAuNfL$~ӵ^ TLMka.52^1i?l±~g`rL M}8,c+BCu1|wIs1S>]\'N&mᘮO/5 sWnq?KD+]%,daO!dXO\_!Gilб~yЩKkn5O*4 ~d] endstream endobj 2274 0 obj << /Length 2194 /Filter /FlateDecode >> stream xZKsWa'SRJrȮo;[HS}8#H2<ۇ3wQBƈKgo5zvVM]QWu䶑c̪<$Y=vχC5VҾOGُqmD>|G"&.fUIuNHh-@s>[l\$%3S%*##)ֲCiH+rɧ<;hb҇x*2/eE6!0+OuOkhs Lզ+\ӤYqjebc:m*ڋ3 7p%ddNy5\ oVKHbhu1m 4_<[qR%[]MIScҔEL"Fk5BjÈPjhρ<ۧb' uu¼Wk7KA?#{2ky ,W#EWXvFA-3-FG6IJBj_ymOkA)551iff̤^LY^vun1dD%d+X,AN© tƦ U`"%nȆ Z?5q'qYviux0JVv酁6<3^$,1bs2R jRjaoA]6DXES_Nԅ-BѪ=90z0cP U0Bs $_Ɓ)*GMl.nT<]_.mZЙ \-bZ-00w% ~_#A$q$kCd据܁6rdBﵙ@۫B91"/B!D0t35Ϟ˴ qcmO%UV6eѝ2,bp2zz#o;4 ק`ڔcyuS2$bejL}ℤm7N6=m(G d12۰HE@> stream xڽZ͗6_V&&d\290`pOo)!ݶHBRJU8 'x/Hw! De(N: wGp;=o} x@:4 #x ~ "-~t&rS7I"jMbi]IqXn6³k@bbNϭ -E$ ()@b0S Q(&ѭt:K@8f."i<KXeAemU*/Lgt/x\]5\0$pyЕ@EW19tQ9A13ܽ¬! | %g̰IbĄi a.$lIQ MeflP%=LZӠŒ3<[yiU}yUy1u 5wX4?|{ED;ם+^KN8K{]uE).NAqi%lDF~!2{zc##!L}"5o=A} lIA"X|Q3ݘ`4qJÜYZ$u~]$mWa0Bŝ- f*.1Ӽi^Q0FEQ\F*Jw-rD!.TԥnuVurfa766]km]Uz]8RB-n{C<5+Out65dB,+=öZ{Q"V{v|X(znVfӋ5t"yT/ߟ7/:&0 Yf_l[{w91V2roPA(H\1$r ! HjBʟ Dh>a2YV68t 1.* å ! 1]b“cVl Y+8U{F^lRNT\XKhg`gasȧ`婭uAF-R3Q1G¥\jA4]O@WR8膕A7[nMۮl2˟҂ژ 0^y Fho}Ç_ѿ#%^I(4~ԉNɻ dA!+ m;/aVEwk󾓈nеWy݉t3IӬit{_D7 62k@OU1l_z3Y`R 4lUQ#&$\$+=88)7#f@Qu[Л*o΄RXd3H >vw;UpјOUkh7I;a wMh  Bg϶YiiTk+J K'z6D[4.Iw2-lu<NJt}G2#K "XY|$=SG{k7@]ʞ2 GMb.<̻=F rB:8Z SH48R ymդsv^`_w8j_<՝IεcVH" ]Wr"zS/FB05pc.eNƈ֏rWSvVK5{v^_fV7v <N 0yo#eoRvڀC1 wfOxٟ{"NR,P [W?!MjҮCFˢp[{#s4XgL4'6^wɍW7≮a'l.M0W=h0S"1L11<䎽ժ tݷOtҪ\-,DiUFu !R\CM$"`bfW޻_جW_ږM(0J橽#G){Qۥw8K,ۑǫ=~'j?Xߑl²yVcF׍ JlYIqRjommĆIOԎMU~?DgBRدxXrh endstream endobj 2283 0 obj << /Length 2252 /Filter /FlateDecode >> stream xYKsFWHU<Va]necb(iop(K4O{lLtuD$Q{ qˍy%LXFIVGސHd>~)"J%%6QƢD"+W2qLP+YP5ݡ;XJ:0UIhJ%" Wy`v :LMRQFd{{HD 嗰LiDI4 2"$ X?Wlsn'9q3_a4Wpʟ1Wv]?F7to}g9&]_Knc!2!)"뗺VcnU|U꾨.D%<\d bf?{ H~"DˊbJL׀9-Sqbh(^xP g\ka󁸮τ=Ě? A GIz ǫj3WҜ)kIz v 163?ޟV-ũ#}̆aP6f<R}ԴC9PM9/ϑ@Uͺ>|5P WKW^ľZ$ b`8&TaS] 5TlQ٫MCCö Mm!b1 g>.]`'H#Ѭ.:Aeq`$I;N@S"~>0ڽ]< )$߉w H?#n!@p& B)qgjj5n1LDyeNoڅM̕2Qgt6?oݓC=۴{#bD ~]]wy<)1P}y%*#VDĊ)+^qda1IR8mH-P>- ͮ@~5"B""0Oe:iC}SSYAg%8.xχ xM\ 70ȉK_-h  /l TpLDXYy/w䄛IN~Zz<[D{½xI C^TI%Fs/Ё,e ә?, U0X3aB#<57eyS_oehO{D O3vo1ѩOB˥I> stream xZKsW07b1/`׻RIjQX }_OVlR8̣͌.ޟ%d&sIXΔDFn~7xwM`nxsy3JI.%]26xB췹$߯^Tk{mvf[N!)֠(u];UӰr~^Pmzr1/vh[ߪt[Bgx%7~F 8LP 0ʔH˦>˶+w+MSondre_-R$fv{vߕœ.n&R^CDnF0?;sՓsoW@ be}y:Vyz$9(l˶*aD[3o탱 v#pH:wP6H@bc9j\7eigB&__1C,X9kgY`@;2 7Wo 3F82 "@ YH*ׇήk T,%i̧;e$7Ax'f2!<?5Z//rB|c!!̼ {r1Pv-!#\̍|HH<~#.pR [Rm ˦XZW]aY9G]8ʶ4musح5 ӯ jf>Zp"V}c||8\ƖۃZ$GY|e̽!=ml hIꇠ#0Je~Ћ#PPCmdU70ׇ$: n! H-12 '1 N ]I‚Kz.G)c3(LŒ,S۟LF1?Вܲ_f_ &a&@"ꏖqFwnB2HB9G/ʥ/Ceɡ4tCE'GȍĦj̴7|^yʅmEC$;b[lvw:˨Q&DŽ"2 =?we?P[ &&P7)@fl~6 ӈo+3Lͨ}d1(ð!p:b +@ /$K^Ҙ4%C=NN4 Mi$u7Btf]T9vr 0c*PJƤJ`0Sӄ~lHڞ7m-=&~on6Z%?l9ir?5]y3@?Pgͧ>v''t{ 8N)h{n*MWZ$m{]&NOkKT=kpፏg,|rrk'Z&\UCO^Qr I4OX\u}|~\ļ&dm"/ܓo)>?!Lm% ǠƐIFmˤ>I}扶Oq$%XmU e(F*Q*:at KWq 5hf:XO>X,ssUn}2nUSzĎ>rs}@_b>f|?C̫?et͙ǹݲr~VM.joG fBsfQ1ч]{e" FNoRtD .QO3AW=ExOۛՈďa7,}Ȏ-s 0{\iv endstream endobj 2242 0 obj << /Type /ObjStm /N 100 /First 910 /Length 1352 /Filter /FlateDecode >> stream xڵYMo7 /ЊIQCV Hsh@Ȏ+Ż9y◞(j"$OB3,Vv ͵%v‹`I+qM͒TyIP咬C{j*:֖59< %uAdZ0BR-;1 #p$iY$L4Py )q(gj Uk*/=UuOHLP%F \jk $tF.N' xiG$B$ÑH))r)1JjYZ2lN"2 9 r +0Kخ;LǢcDlX<>5${ beðp:p:7S0".rJID'Tip4LFZDLI# xDm0MZ()@K%Pw"O`rs;^cűST $I-PeLAM|~J1ytç*r?|I kBP~/e竓Kvճ`FpkBc LhľQ0%+| $빲=FA| ▍h Tcgqfe)BɊ''idBh}H a1J I\&]NVCF|b$Xcd* "soj=3^`N^|)_rC7?XnD!: endstream endobj 2293 0 obj << /Length 2590 /Filter /FlateDecode >> stream xZKsܸW0QUHAN`YcoV^ivz c>bߧY琋!nt_7LG7gB/x*b/H^+`fsoܝ]G S=!T$`4y agao~ПQD7YUs*69M6P}ԝY]MYԃcMH˺ӛܘ#ͻvx&=~>eK-$Yl/0$_%Qh4e쫦Yh#ߺ~hw!ќB̈́[^s 5[UQs(Yɼo -)НKFuFЈx^! 1ubȈ}yi%>%ك8)0jE8mqU\'DlsBO )B㡂D͇[y€ ٔW n;o̩Z{U58?wG#6,͡BA3tK30x?2#5yj5.)@=D0͖h&ʪ| M$P0LGmY~޴Ml|\7hC'_.t]//<"]B0+_K  z ip\/bȅ,Hm&d.ZylYZ?z<J$.2>
/<&uyV`~?ԵwmQ㔬owPCyҙ+w4A~8B]k4w6.TC9u ~yRJ}Ԕ2px'ըCÔ8HNq'*\aNI-} ?DSCJomgVׇУ &1Fm˻A\czmDf]pЉTx2^ q^x]r7㊿i$Q IDsB'D D>mD] Q2{'g†-OuCk 8EXB\Io]+>yuiG6UGeWLլxxy`me7usŹVQ&ylYU0٨Gw,&j`U| h :=3ncQnB%ZHIXX J9NӚ5kCMz;^BXG 8F~':WxJ0Ft-sAՏFzċ8`(>xH %S/?[0 B,MjRPw{ 4`Lk<`I',myl,WkU2eMNNO1[ʪv0tҦTӦds|hjx/U~ mM%rP 3 hXcA ,:ij9nu\!^۲p4A=+4t?-ls!Z 5k;®Vh!֍ڡ~v0N ]D)Q)`l CI8 h2lAB)ow#Zx-9W) haV &ډ`F3.Oс6vg^fnK>]xٴf-At.mM)L &hhf<c5 N՗Z cWJBS1\ǧtFZG7&%7 qp5V@j iʾGWd!`;N?&ɉ0i5 w4(Ⲓiz$?4* i62)PSe?tR!lWpTUK_PQ479$ !x0#OGdz Tu͌Twvއc%- F8mI=aϤq|EU\Aޱ_NU;tU2[4_3rUu(ŝq>%u9@Y0Gbt^sSeݱ8QɆI>`Զ`»CwՇɔzI%o#D 2{ghpqsuYUY*YW u98IX @0'SH"b %' 0urwM٪! BEMqBnNRJ4psUfݎ!&pDfTOt^m3ԅR 6İ Du1c),?$:Y*6ֈgL!8>M_ 9_jt{ҍDUi lQnj|tfW3岐At: $$!DQl\ Dh:1ڇliSb16%fHE¿&c1UeZ4I~!SXbeH*k7]4 j鸴>~c2mOŢ?VD endstream endobj 2298 0 obj << /Length 3066 /Filter /FlateDecode >> stream xZIw6Wpns&L^%k'Q'9d|!n% 7%\$] ~U n"];I$ Q)O vq7, ɓFH),R,%ȣ6=f>OU26,>Ύ7re9I$BwwI$ъɤ%zTs2&dJDSBNR>l؄J)`QSpXw JixTTXIaT|AH}YJCZJ7pTWE*c-o'l"[dl4HBl{Bww[nN,E#qyJ7nNo}_׍AұRDb9 jӕuUZb%% sr&Uο.ejeS`'q`ź蝛ڭA%j\în;\CYmvVoQHY>X\o S7+[>nv՗$fm3VwvCm|tfq"<\2hhtH^bDB*ڐ)ڦuT4žtcf6}4U{gf).mZl:cl.aJm? lL,,e (eRiwz5^$HnܿG `&FUxf-<16(J+۲aPl⪰f87H}7Z B?S̹xJ]m2qrqK7M0'"&! T<.I[hEh޷P__Dړ#⤨5<Z"&Իޢ=,̭am( T(Pn#)A_#o.S8K"6odv`̺484~ >z[g\NkR;C'SSL΃00VnF|p0XVY,{1}nb ?Nmtd6s6їRz4ޖϾ\vOM_\v h|-6L,j`}!|~m VoIJ)ӈ'$*6$~@Oѝ!݃+p]tym-S9ԯy#,r>;}'llhϨ=Hv0Z;i;p$3an"#'4'4Xha"O+!i3c郯d"Ţܚ.ĊP= qC5*/wWqt;/q^{ߗ2maWh Z [mq{yg"n#vZ]"e^X@HHȻHa g`_ U*u'x&;fc u &oA!qӸt4]0J|Zc;=t1 y!IuC|23~Yø3!ϙ,aՀ7]/"&taɦb5|ɷaO頳!M b$8SP80eeD= %Jd& O*$6]k]+7uiBI.=!pL ujA2_Lk=yт16Pûa/XOiQT4]S<@apeN}\.V/juڍ>>h`; m> dkl<ͪ)*ĜhIzԆNC%, ;//Q;w+b̹S-eXCXdcX,z{]q {,9$LG4Gl-*sm/AX}&5 #YB?/x=D_}pE-hc@K ~{AY+icp;Y|.ȅc:)|QWug/=+ %QxuEDgac$3n?UV }XҠ(WBz=~u 9eS.fŽ$17"[693c4 ~ f @;\ }vr9s|O<3= o@AӣRQOt_-DLa6W&GK>i>s zT[TH$be}#bds?Aď8%x;vBIIi:mX8T@c%)=}/q[{(l|k\/H}F@[B c1K`= endstream endobj 2302 0 obj << /Length 2459 /Filter /FlateDecode >> stream xڭZK6ϯQSk!x?!]Zfy}%JbY/Ԍ'~/J FeD 4~b^ݷ;\BiS4U1/<óGo~zGuA02ؐaV(Z(мxFu{?fV{Gz܌ohUM릚t&X|CϪ쟪 Oڮڶ~ k6ptb{.j{?~z'ˆa sfܛ1](dvV)i1AhH7L7 %Hq`wZX\=%99f#M%aHpw6cM8^^!AkL sхʲ'J$4H%>}(`.ժP;싈1 };#8P;4bj)\d&L~"WzN_ a (cXp-jT][M٦0..&]|vnKrNᕳ,s e+P,n(eWf8=\0T[`4iH&AY%4pLh[6@][߬#hŃ.4pƍHOq\<& ROF a_au fUO~W)9zDΎC~x#9^b|!㽐/k}#BH*ٴj'MԷ$(ı>H{"9!IZnCJ"J̍F_$J  kh)%";c*LC* `hsZnO SVnܓh~:64K"Jw]PؼڬB{>ɔؾfy}^l'^o!19 ^=4࠷?(a-H@2RXE` ;$Rq\m,宲}KR]e!ZHS}Ս/'{D&o>7'Rjag.xL$i}Ȭ,6-ܦb"oz/i { &1yZԾo;8 %X6pӎ1kZ;3&bl&I'*`@J}*N97DT]%}[-g _:").fl(XO=:a~eE inD(HdE (Һ ~}6gQDA gF5Às /L^ X4**뛾FX6_T48@a7Y` f%H)2%2у=Y2AnInߤ׈%@D ĘLQ Ɇpq: =5|QڦJr,YbT rfGpp0tNKz7$/ىWplrn/ #C~={b` ` מ@OfE Q E>81~X'Pq wP;;D R lֱ*>CZ[P>2UօBB&mU}8!!5_ÐZNS[ CbaHX,om[A( UEw7kxdޝ-phVuSNl-&V 5=S'B20Rw"fr@Rm>.Ew6j8PTJ/R8L\J!& K)LK3~ !h˕ij, 'O¨kvGzP˜CF~y]lv$h/7sY,'bB[66xhjͿ)wfUoλsʗ(Lwb(2% Ω]f~pb%qXwgI(|hz BG$z~4,]7yLe> stream xڭZKϯ`nJI)dqʇē+Q#f)qLR;;>DJ-/"𡟠XT? g(||TId$#&<>V>N󷧇>(1FRx4D=m_bE=tP`&ۭͷ_jS<-s"_~(^m}$o%,MVKeri<&vu %)M]!vL3Ncan܌2t}\ *rrS)ﶗ1'_8H [7g>uԼy[kW͋MQ8+V_9}}Wˍ+z\?DJ 1TF+%%SGUx[x!uִYٸЇ9v=Rx9:f)I&zS5>z.ְdXDMcÑuLRIԷ^ljI>G#bd}scS]奮^١;\7qe9qYVHRѥ׿RECIejjR_]-tgi,N4@{ p,trVPz3]6v#uSci7aj37sulhwuE[l b,&^jS$@r&nn{-^To }zSF&5RF8 ;C)0N' N'$2q#;= E86?4oW{֟+GKaդp uųpwIWDX?փ40@2ɩy~IH*DZ ^Z>,+, |07/w"L^3xga. g |Xo]1M^| HҐM*%  4Mߵ$G}cY[{hE_=m L4& L&z&%-)[tya)>RI'ӏ0u3w!ajLM4ԲZ-jVWe(3km>fD߈ⰱNZcpt5.`׀[#n!ZxFc |2haFD jsȳy .T`gMab!K|7L+EQPCSYYF'?xGn=QZ ExFbc~p~,q-Ot}xՇQtȉ͏чh_QLf* =(z8 (KϏ+)e m]OQ2$!vV) ;n1pa4Ps5)Eu5.bZgk]"TRa .)عiΙe&0@] 4-D9-Ёa &ѺhY7:z)tmƛ| lKfhO  FɘK~77;% VRb.HKNL<g>˛zXvv׮)vt7E~[SZ}!.jh*ď"$MY\ּt(=`<)fnv)>kqKfïU:彦Lx>Dp HcŸDe5P_,`^ۭ_aI#}F%2k:7k $Zi*k5 Iu/ߏf> _ITr,X@+oSJBwzgvVԡŝ #ZD9A9 VhQNJHOeNF̧}׼mp J<F ,h;lb^@ܩگsklC]f퉽6'ɋ1(ĔhM=_<7$?WE]*s' ;)Oe# F6 T&49p> ]t#S4%j#?H s{;kdvOyDa@wGy0?J[F!0fR0yh_}q5b^ Bn0 b^48in`JXgq˒{ ^}e;eg7p9`9|9`u`7nIt?DX6umwY{2Mw ꉽ_VM޴5#?ml"~Ĭ!tHp0W E"k)s ˭/Tf-"] f~g&"i"{;}ZdGxFd 5}FhqYڧ'6"m@|o !̗Xں:fI ЕKM.?(36aI1;2.<{?!aN5C]}jXH_ƽۮ.讬t܋7Ig^.| endstream endobj 2310 0 obj << /Length 3006 /Filter /FlateDecode >> stream x[Y~_'/d=ढu\rZ?@$v%P+ק1X D/$tOOz?s I͍$R47)ȝ|B ADD1*e&axw_P@fÚU=q3ӒI_q%T'Ov&:y >H&2:O< n (aAj]B!F[u)$-0C+HVd'FC $(q PJAa 1˪"{QPAC@C9b㾄9WPJ@A-f涽9:B I J)[B?ǘizܯ3K*2`(tt/,<\ ( mR(%>z4@ƒ)cQR,ÎR&6DjETDa6qH9FJJڡHS53iOKB=M}wl\Qb*y[=e`#J=Zȶ4QBٳeD ]j;@R@6ޗCq`= Ղ#8A4n\3i*iw.fD FՀscUQ)r-c=0@t.*z?7L蘄2hrm nW0)2`"2U9L#d4Dsװ.yn c 5n*Ƹ1*7=mW2pĸ5nzܸ'3!7$ t=dǟq~nm'D\oܚA '1nJ:2nvƸc nG0)i;R㞂ָ>!D<7 dêB`w4qIfMmڸ&(}4own.Lq-;ug˦b94(I`e6X#M_6jNf}֒ He'fo`0N_H՝8^o?~᧻#\胔6d^gۣ3RiTZvٶ[86Xp.[)0'%8{CzXƏ)NfKF23+Z0 vߪ{ k*G{K5j ^PYZdž5[B,-XmYy7Uq@vRzEC*`{sWro[E6^CѸ<xr^,߽hyL׃Mq zIxx|szb~}˅+hNqp/і$ۖK@DHk>PEfHɘ3 QSz*M^Sܱbʗ-ji\)xs$$o#5GO:wx|XT…DX ln#*=ҬS@w'ux)~Ԏmm*ྻ*ֺK{Pfu.f>f8qlW~2_A 2!.)]` j[Az}/CV{\ >Yv̾^(%Wc,|L1I #e^%q+yD@8XH"(u<8}Y.}?' <^g`V t#U:è?X8p6rчomSvL!6a&x]einEeeH_O@ |bw3@0<'X,Zaza.Z&suYYvUⓅo\ۼ^z ~(O N^`৹8uz8(Gk 3S bHk!~4^ePƫnXC璟)aP2b t>d3 a:MS L>T(,~LavRQS' )<1J= ܃pFX`c B,߻W̅zWlSْdg+E@:LiIbt 1zZѿ=F?7C/hzѽQ4jMNZn|FᏵ<6$M&wKcfdޜ5HbK@CpgZD^-I&tK46` ,uf'b={M߸S&T[k2:@ 0#I~c~@2} QW x6!2B"<'6<B0)p.+ @bFA0I ?EfHh9m#V3|:Ps/`Bx?̆"&ƛ}Z)2;.BV?:7+ 7(JbCDcp=nE/ƯT+|K8׮bƸ:_B[LğvnW 3P 3R͑omu5gtoghsЙ"yxr$0?;/ np^9zU65hAzũS N-] b>iY9)7dTh C 1A)918UlǣiH.u0zTlDwUtQd{l .>>QgtO-BN+8fĩȈe`{>/Uk8Xo3%Ol6`c3G^*MI]*~x  HB y -0 endstream endobj 2314 0 obj << /Length 2850 /Filter /FlateDecode >> stream xڽZKϯo7@rVJ\NU+a$f)R&4|I4Ur@_?A$l_HƻlJ&1?[8"#o|/xBʄchFBa D7߫!k39medv}uNK2$3,w`2<9m2yH% qz}fH,L'IB00pӈta>[3!eD^˘)cBst_0ӿ]xOҼ}cc~ۛjlYX70ͮ`Ti+p`Nf}wE][,CXls)1ya+-P3 ι~DɈb9H'[![+8{EN&:CLŖNW&2XE C?֏z@lOTW/|]TyA Eg٣Z[Q~A&nvdS~Q =MkDžLkhW+ i[-wW[ M:A Io= ~of 3|fSftɁp"|?*վ;0 Ezi-ף_#zBhIpպxpvՇ1;JAPdbFT.P,@,]7ʷw[ք>@cL?>iEU2u48ĿmN}^PL_?M΂L1$Oq`%}L9GiG>Hwp؅o]osa}۟N^pWwq=NLg} z}A%R 9Au|㐝ħZ>>p8b4+b/Bfl9ۛ eT[ޱ,%n$&\C&ΏBfHLJQ}ȆMtr,y~ģO'yDLL$E ܏cOHHd?GhWQQT0 <Ɨ/H $$Nc)#kb̈cJk0: cGf׍KH_'SU@Rf9f̢x-ĸ빦&,Ҽ jRцϾmƕE,h9W,#Tt*_ﺊaf!Uj[Sm$A&ZT&o|ʘjVܚn tE?룥uQ^ԴaiS[lC  =+羅F$0Q5ޡ(qdϵ@BH38Q Q5M zxjeB]SeL6l`8Γ$ I v̕~?_.}nP%}5T&Sɾlȶp E)хlе{8GjwU]t0-2M4S#.#C m7\ x %D㭃wQlhPzXֆ^7Y!['K@e5ܓB?@nN6  se"ư9 fg|YeV]lt.ŷia*yteR8N"NJij}h 3 ԏAM(~P,k˥iv \v\D򵻈hՏQ(s8gӈr"j/%/A .A|yq G˯.M0V&dvzHX_22s}= 2Gp%ȝ#]׈*m |5eoA]ݴ nmd1D"dr lv#YQP`(yb'd+w8ś;_x^6}UMa4 *;٦sXD(mc. C<U?SKepNGQK\A ks>P1ylo*{3/:cTbͿ|n1ƀ!;8]0S:v0ee=YCy6mn+)0\ɣG?qú5&?n d}.As{@c,&fUNܭU^Nc )"NF#T81rR*FHhAp/Nbb&Bk&.W~Gz?fc[*D;| ]r4vݾVۿ~E !~Vf]3e M=}PGz}/`zOX]iTeɛ~_NBݕf:|;3`1ZvJh endstream endobj 2318 0 obj << /Length 2882 /Filter /FlateDecode >> stream xڽY[~S U-$O3-;qٲq##Ϲ@^ov|VەZ=ӓplfī4RAZ{xw?y^8SY8M4Ʈ_Bq*MTo5s1$֫ PEQUv83$|U` 3t ڍ<.ڧW=Ƶ቙BEf9 ~U(KN?@+5|͢t7/0J8h j"uih7o;vF[Q@u P" PFGTk I4-W];CۇrO/D D紁̗rm^]^J/= ?+==™4 JS3$ut&̈́* |VrLp5xF;Da0(m+`(oc_[ouaIaU ⏕;LJQ*oyZ@aۂ{N58j˞ly^H{C]#ې~p +>>x@ ^n͌/r{pmQ*sC ?veB.nzt]tW]-kZ+FhfWI v`_es| s\X ݱ&Ix+o+ QoDE@Rst⑿aC⦔,񧩅 )I+wMU5^b73dg#M۷h^iĊ 21IE m%OxwQuAub-/dg9_G(%2;$ ۲Nμ'rb/A_o OB KeLj?E*<2A 7@S8 <='*h3[z9tJ ~_RL`?2<[P+bYDQ20WN !=ڤ)7$CuBPEu Qۚ8!sXd\Q%^KWn1|7_qhԁ`mCIFgr^+y)YXax41(g21>U^y u$*H>k%6@m‚9!XCI9pT֊OjwoùED3p!i7q2+EĀ8`b+9f ~׺a S|jcݱ ~:k , 3$As_ +(tg cr"x|H4DQB7s",慨D]a=D4;vdc?|F$UK }E%q%Xk$䚫*(,vG¨ G6ki(8dwC1(S1kXRBiY\Z e9gJn.[lcdY6m5-m ;] KFEmKF MJiaْ("%kKN: %z#eWtdlkϸ€YFH>{*}˖_ɦN !r!o `^ϴ}a U,>.U@x y Bx ͤ,~Xx gңbӥb@PFv{ z}z!UJyW{ڶ9r<'"lL78ٸD`PJw KڦwrDsl S4_2xpc{yM]elX`<6H۞W^,;*Yw'Hr"! qDJj5Y~lB$92V[hݾ;2 u(:ЎlCNx> stream xڵr6_Ae@ܦřNffm'T j9pV@<&jI =x»8Q^R$A^.EQѿ`.^;O'  {Ec/ ɥw[{ݪo8:g:aB0W_~ .r8w^8n@s<[,wQ>L,`+8a^ix]GzP[V<>zM &S_ Upqn&* mg3#k諲:rV=2ת:_q:svdΒoU9EQ J"  oA>w0SmaUkF "1˛O7It˚J2Mܲ}i>#`{L~Y;28qGeM7/|̗_qZ `{T)J wy2 7ȳΉDoZ*. 8kѠq=c0c>'ѻw]4l2G45Y`oS,V =?|Ş.UweQ0)"rt~Pet2+iuG=lSӵ{0, 7x<~l+4b&EoKT-ߌ) Rlj@]I1Qh,wYUauQ_5qzG7dƱA¼1}{P{){*pCcR]]C$i #d ֈ`>h˩& ucCY)jhR}NPJE䣀[h"(tZnF*5ݬ~1"SRj,@SWE;.s,єQ& z  mib9 =N} in1ʆdO:T+Kg]XZrqE))Q#mt4W-[n)%_^.G% ٨ܑ0)6+j`l:SnLUvc9c[})ˠ>e^&d5N5}e1wggx@G-gpK(MB}7^^xBf|e‘GMWnOA'oW.c%%%^mIV=Oޗs la43оs+A. ?f/CT* !JW3܁̣S _xy懬 ZI RtOm<AC,xCyA@'4qWBǂԷ1pL Xah\O5N}ГQ iA/x$ lU?b4ohi,`T/|VP/>h*][\iwR+N%^;CX8$p \,xXγw{^"eGO`Gŀ3]%T5d$.53H4=RܨF_jP>rbͻ$f7>\%qM@.ѢM6n4 OsO; V5c{ZQvPiձVm:h%"O4ۈ?E\`v-D }j_IF?l`"?D:ά)巋W3Ljƚ XiYlextj{s=w'vnv<έ (z!PYUj?8v$v lY zn][EY endstream endobj 2328 0 obj << /Length 1869 /Filter /FlateDecode >> stream xڽXK6ϯX0"Hog3u#VT&PHo7R#ht74xhWQ28H%It:] v`'߿o^HPAYGD&"/Z)e2oC7T&ʶYǮڇWm,;JR) (X3Atu_#*b}l~di]ZFтHHt8bV*Kwo#霋$`Mpj9O?(Qwsko7.ޞ=NluV6J9)PaN#RCכw?}xcDM]=<$~vFV]?_VL9CMaGdE6'<1׎Q0̇Y %a;I2_EL"xȞy3LJ@v| > >6\*];2Jb[k[8ԉk^L2d|zHrF' Ġ`.)S{ aD%_8Ɋj3QyHsj}ow'B)ON̡ 8MBBPq4%X4_~6!Ra+:pVjeg %Q)sW.ntyHAEO{}kHk44+&WؔM5ymu!}zrȤҝ?L vȜu.{Gw0JBa1xAvȺփzT&r|GWOy',Q').ЛYuA11}.0<b#D&à"fR9~m3T]Ѳ] Ι) 9^"#GGJn6W_~(Z/Ѐ|ruz#1'гPx̓_z20Ѡ%Iˎ`'WCx x^_բ_~י/HS ii,][XjhL Jtny+BGǾGD3Bk ѥ+'qte%.PN,,˚c= XdG>;9obdfB['+;~s]Bs:$e>+x((g5Tcg`߱lhM BoھnTOm]c%>oی-yR>Vf%"v䊆m] ->{;C{;&]wblECYɭA+Rl@!nYz0a l`̱$T;65ǾT98ĢPi^Zf݃2 rҔORFl v`23\5v/F&ܥpJz:Xu8`)Gɝfl,? ˚mB%3a5;8h zGu$"nCOD%rMe9UCl{j$?&u| l@pX;աYB0e05f|h7 '5ڋNө:l4<(W9wi P3!R~J8D6sN34WFDZS^Uhb-rN|I /b$ U'K cdЍ<'&c/ }~ endstream endobj 2333 0 obj << /Length 1293 /Filter /FlateDecode >> stream xڵWMs6WHMI}su2SKL'́ 0 .Pe)V2E@p݇;+;Wg_'p~ 0 ̹wN+g#c1k#I 54SN|PajXD'Kj_ 7e _\fnadę~)DF$E>&>ZAbiƊLfqڭpTIn!Eb M;kٱ0C#ĚB*;G<*bq*lyP=庐+z[qyC [ź]ݫ+*!&| ^#Yɚ!_>NzǼVˉ_ߌ_@*X5/OFB7H94SF>Vbž֧^PDW~zٕYp=k)Bߜ-N¦z@?%Ǣ:lv\.}԰(3d[D*.Z˚r*W{a>* \c-SG ݻdZ kݔkОau7y];DV5npH24>m(q<(YpǷͻs+ 3At_oq_1Yl]):z͂iJ2ڳ eBR@qOuC03nKNVwKA83 I4g'ӄn:l1(UjǠ}\~h bؠk'2.u$Tb ,[h(ro!iL/>١Lmg\}a%!QmiN9-݆J:L3όQXMN ?gۿmoK0hQjR^ҡ+Z{Tb).e{XlR=oӾ1tx?ߤ/tI( o3 endstream endobj 2337 0 obj << /Length 1529 /Filter /FlateDecode >> stream xڽXYs6~[ $@wڙ4SҙN2$H줿:![i2}"..V$F$zqp$2L# RYThr+|·ϟgWGL 'd ţ8zK{ !TylZ%L tՏ&>(dcٟ҇)Fʺ . I<mюl?shjX',(ͼOd)˜D/b?0ig& Z@+_E%w8-8;Z RyB pIr8cu Í*jC{?ӵ#b'ɔ,Lj9 mGz-d'A&#ډDB~@`1W{ѥc]|S1 J7p"?д)h KƷh:Z9ulZoJڋ#SP򼍛o;?_on~?eh ,ێk/WAfFf(7Um${U/yaK9qFLI{!9Ùtu&XtEX|",EJWbO+(NO-;1K%:iW/܉ ܘ endstream endobj 2341 0 obj << /Length 1754 /Filter /FlateDecode >> stream xXo6~_GYaitCdɕ$ݑ#l"Oǻw͢uĢgGhD#*HFM]+kX{ѹc$UGJT"*z'SƸZ;> Tyk{?/d2UuJAM-?:Ot(IipM'ԸMfI" O'g''>:lDM4`=󚶻 R`nj]WT 9Έi@ţU^~f2OkN ghSwYWUovѺMƍщ:nġ@Gzg[&RN{ԃgW2e^~`tmy5ܢmBxf[wV1q2v>*OO.g/'#7?/p̅tّG8= s3|fNѽ8R&|^&qOoP/.-yQBB6/vTsŠdժ7cԎ&crRM&S)e ۢœB M5ŝ(ܺp8xn[ˢ+?:+\2qMdm+ץ*2$5 ²N"IgHBp瀖@IsaZJȎĤ'HRm>(r(stofIzMI^xgi/۠h:lEسXSp2Tb*Zn޼  ֊n0z\Fshl뢰+ )3LHt#q" Fl9,{9߂{&`62XĤdi*s@I~5Bx#!jƓpHhpqz6 /}7zͳÊt޵sJ}{Ӿɍ%!t:X| ' NRIh{grӋ!A2=^ mTB6{ͫYt6I]xv햚îh1ru<`$P`[֝v6e:D @"&\SKTV4]DCE]=m`S NqbFfhCOY5m s)>_iB_j #mu G8B >C6?=m>:Rc4"%[Tr1}"sr*ke7[uXbݫ-gOrːwP+W:236vˮ5.w['wV-ڗ5PTW- P0= &Xݕ@͸j Ԩ H̗AaF ұzَaW AeKؖEP[j+ݨ%T1HX~]?wd&! 6p/3{|׳a41 e;ThLFP endstream endobj 2345 0 obj << /Length 2228 /Filter /FlateDecode >> stream xY[s~ׯ@ ^ۑb%c;N8HH  Hu}qs΅,LX4,$Z%&gI[&/gOe0F )yrvhhA4yrL~M511.Y&XݳK+Aqa5F-'D¦6FFdTM>tz IW&vI$QB Ģbݒ!lM q%qA4 nZAKt,+\7=-wB ~_4a`^Am"L>dNrqĽR#sy2>2cľБjFR{lZ/}@D% VƑ:8:CZ<"ѤRD#k,VF%~D趮XYhR'HJ>mi5):dEL w 0w, .+R ~>p>e`g6eijVcѾDC_Xa}o#$罎WQW9fD/123(]ZxUe@gsz ~r_&TᳰP&-rm_v99[i^L* b#/M-%Iے`ri߶|i y߮Е1'9U7ՖML.ri D|\[?gƦ(!Gr R8(D2Wa4WHrX_4Dk#/Q0͉锿TRpimo)IC[ `[)hejnN86ÊG㻠*m6A$-=1yb#I)lZOhiͪcve1L#騲moI\ Y=<%OQ+yPcJygюVwU=1'U;ڠŽvUlϣAWQگ`Gk7'Q)sE@ULƎ=- ut׿}'7ȏ~6kϹ\VY-Ò'zWF{Dx݆ C'y𦯐4>_.}ygco+{~ $Su||qjxN&[ 9wLJT?ܵ楛tLk߃6mt66F'yUi6^yPdlv?u s^p+zoF2CM@0L'H!*{1#r![3"o"駷tiGy+ewd_Rud(75rs3o8Da>\ E,EXqgCioi.mk0miDՍyyA_,Kt~|+WvqU^T+~֪EI,TLKVy1 wVJ] endstream endobj 2350 0 obj << /Length 1891 /Filter /FlateDecode >> stream xXYs~ׯ`8)T*ڵ5 塱׻+q\~b@7uˉ"}^y Ew ! i8WZ, rq'rCVljwܚ妪]{۵ˮL[Yf tU`:q~/P{ Wg*"FnCdN6&a@oY$=FuU0Ş$۶()L%1 b\CSK#wԼٵ+g8kQϣEzyMXQ!Ks}3HѸbO^>q3ַNZ+lU.lLLl^.bn@Rɽz)zi>+PToh/va m =]ȸ=>oW.?/?~85?#qdw* )CZIbwbٚwcLzFi9A$@X"E"1v(Y>#l666>4QiwokU'_R٘qY(kPt2M ]@/}z C[lV^ӿ-4r8ߛc>}նLsW7 #7#kE3%jHn՘S@YLoLŭ~D||h9ܿkϨѰ݈=ŎjPCh" P_|'(뭅CT XݮΕgL@1 c>E=C?>DbRj>ڋq ?FG ]of6TzҬ<hD<AxXdڄC{©%/ peE}*ϐOVIu8>eل1H؜Ll,($mP 7)US-Etl <7ԝ*UA+tFe@ L~E]w? g;TEŨ$úʓVIs)&`^sg(~Q0 RR8!OF= |szɄ!LT"ԅ7ͲҜ3 MoIAC._x(?y,`r!䓗 +@1aT /ESmܘ3G%XGOh#p%x\i j%`_ށucV}:M&ⶮbez O W:iZSĵv1gY6M`E.bPAJ]HMLBahf8>ɃsLt?y Ί2<{n }Ӯ6 AZ_Qن͔@7נ endstream endobj 2354 0 obj << /Length 1302 /Filter /FlateDecode >> stream xXKs6W7*aAӃȩҩJr8FdvP)q}h[>6 pvB8y7c@ s)cg=lۻg?,G'8YQ #sg9m]cOPeQWInǫu" f$DO?diB>h(EfyrucwJg󳟧|q#ɤ,f m0dufaӰ_,Ϋ6,'I^śl=џ=*A*slk\J|gUa=Ϋ7a]~?a3D,8muJ%IV(ۦ%..U]XfE(߆ޝ *%շD~!SBS-(cN.|"oz9<5]a U]jqJ.6/r]` q[j ͣ%5G"k#';s;4V̊b1ݢv-M򧞉:,X,stXb"uTYaڰC#|G@FC")l͆@- 76=⩁68`' uU@> l -@[$Ac?Rp( {KQj2] %PxxƧ _CnRBأàgcϺi{sp9ҦP|1%(P8 %ևl[0mK|D TuB4nh`{<JHWAP5=.f69}7LSŸ4*x{ {An>q_g  g2~!2=ٶLlD1OoۈKh1\a HD\g>~N 8x/Tp: 48 ZpemW ܘ5[ EQ+;HX7X@QS 8F%\I.>str>}#=*Kb8~k'$jȺ2Uvh֑9457l:&=vn{Mg@ U\JBi)51-6z⯾MVI حkTe! N?^a3%{i~臋 G}`S endstream endobj 2358 0 obj << /Length 1423 /Filter /FlateDecode >> stream xڽXMs6WHMD =CȩqZJ;$Zd".eؑL/&(,wo&#oGÞJz!'(B{ˣ?`fs= "!7[zza$Bg_!F!T#7?5j0%/Xi^smϒ>ZF PzG ^(<?&goG4O''GK9>d׋@*/H멬o tVb_?M'ӗl"1+%lҁ}#tυdzz}qv~~CýSpZS[6Kv/,DIc~k_BA9oM^+]i+]zWhm3ݾnԌwa݀ Rg ;Y?"^$R?_sIaqY%͓ҭSX3.i=Otvqź.?ڃ&Yb(H*Κ2c̿*c`͒L ˺Xs1'-k%66JV bY@! ;K !@0HVK'Oo߇ drHB]0q1##Itf?"Y&z1W*1Nq:9@igQo}RzhR3 ύ7%v+.\,w7:~ Q?[Sa 6Yn23(kb,(7jj2ߔ.ePB@ 9Ϥ#igta-n $4XŠ4VO/z!̺$`Qʗ'0_%)_$}_V _c|CmIC؅*#Hm*J Ϝ˭ ˁ#ɏ½y"ڧn,,]{/]vJo^#5ah>{CԮ3|҇["RR=CG/ '`z1  !j#8āEb?bJ!k?Gˠq)p&Z6~r ̙,WI{^mrv /R5P5P(DO&Gvx<@qCl6l:M U"fT=N\i2".sl lS]&f*م_{g"wgJ;'nN.= } 4 isO v"`y_fm^ endstream endobj 2362 0 obj << /Length 1332 /Filter /FlateDecode >> stream xڽW[S8~Wљ.Vl1BXbvf탉K*+=Н>Ysw.QA )0 g( ($ /wLR,`(^,)䅘O)^\-ΖLYTTnh Bzx% ɗY4C`I$AUSu~ϯ&',NG3f"pBS#!Rd%X&7fff1_nUZ$YiqcuHU"⹄Q ?*>8rgXw1,D kps0)Pdu ->eq A)]=6R 8g4ƛAm9N=S@9YY -hVӇzy:MZ{s_\ć71<\@:>8!E[NC1ewQ @J)v)䓺b/Ep~Vm{WqC _A5_!۪Uf]7W\=(O#jC@{-R032KKf_VWw{]cM 1۵GyWKQ'Sغt|[۞P냕k|C. /]xĆu[p3ʺ}:eX[; ArA BbNrDyB!d) hqR5\O0AJͨU38b?͢@htkpF(xkgBG.pD.1F\?ZbŞt nh(}&BH֌Yk̦<ΫI*5J4ɷjޯ_#4Xݴ zjR0@u$B6li{_Ӑv|6328B[;ˌ]A^"*ojr Z$Y^i7+o찶CϠE# X endstream endobj 2366 0 obj << /Length 1999 /Filter /FlateDecode >> stream xڵX[s6~#c!]Mⵔ}HHBËJBv_sezvw=!w."/J#K8%I\ vݫ.ԣIz $f'X@{ɿiee1Ga_[U0sľߴ*wڝmhڢmS:eTSF"ZiBm,.->d^"G]Vo{pkYwMk߫2ZNʻX  PO^PBW?x,Nd*GܣQGDkv9 hٜ IJ9oU)@ @I^7I|Wp IYwVYY7+c9> o#[Na6jijE_&/{Sr:G2UOa㔦hWu{ZiQ3! p7&&G^A"Um) ۀiG2emkaƱXY_ @;'ϴ]+Cv֭Zǥ r 8Κ٪<+SpՉS0Ýb1ZeHR1rX\txYSw< M=o˛WP%q(H q߂!}C.0M Q}_YUZ V4W^g;fh DŘ`nd^e!Θ Wp5=JD b%)Hg)+B ۦ$t;ʧd˙#jUz}⤆3O+qa&A'I獵SNB:LwU8 9s>ݝ=,}:k??kx*j,{Rb+T_~êqtK/xeF#Ό1d#wg&ɲf 0 9zAz{g'nnX`n ΀Jz endstream endobj 2290 0 obj << /Type /ObjStm /N 100 /First 940 /Length 1440 /Filter /FlateDecode >> stream xXn7 W ER`9ɢ(EQN\k<;쬍Kp('Q.8qpDE]6]jFtbFu.k8][>ͨ08IxE02 N8BL2Ypk6BeW"TDYD\,ò.b0+TCIy0B2lH 0hJ8 g x0B$4"k)`5 44bjFd5: uI&lj+)(e)ko-C -[7%IZb=~-(Ǵ%:aWzuWnۿ9|u3zxa;|Ծ_n|~i/ xeԷg16J\q\j*% \0u;14KfίaKSmm#~HzQ%UG!`'\uDed4%OHTq!>vȠxd}3sTJ>d]wd yjIw^fs$bD.:(:*Q}FꈊXQaXr^w ǪO\luf>šsdȏeibY$#~vq \wr,$2Uc }u(x{v GxRqw+_K;S؆0ͬ%ZGt %>DGtlfGGVq!IdLKxGt R)DJ=qLE1 3:)^6$ūLm5f#s1:Xf bx2ZO9[GKƾ#'36I8ri^OR3UY2WNNnU| endstream endobj 2371 0 obj << /Length 1921 /Filter /FlateDecode >> stream xYYsE~UN>L!-R@k(ȒXeWI&(EkwϯǬ*XZB9EхXWbt3\㝿jV0Ju c0ee/lO^*Ѹ W'NhT_qFpq/'3Ilx=OPw =>8:?am{!%r9,^%-ojASWuZO||I^R&a F&\%Z4$#Wp\O{ܔ2͖Yڟ d:M§3b<+>>C89DJa ,-R@BG*B$& 'JsNfaG{pGt7+!sD*Q\^xE!>DB@z]pMUxȂ]y+fօc2Fw#Q**D B@e &h AbSzs+bcGfGM(O>=#V=ILb'2ϫvXüxvC.[4,HyLh"6ɕeѢzIͅx#pcC䭜XNooÌފhc!MQc .xQȲ*U t%#Ü#b-*=sEC`{{\g;bTq_|"@e_w 04wv1@/f7P MIy9hJ<߉Љ|$ !bB.ӢwGgIKt| "E,rĬ QimD'.X>ߝ]v?m8mkaOnI|#MtD!J쪐HUhN)L&s!*mhFOTJ#Y14 l!(`̞2ӛڠ㏋z?9Tz ; H3؍3tla6Y|Sq5&<'sa(o!g6y1/$P&ʡ1L[(w2lnf ObX;fðގˆ"9ϞnqK"HLhN5 ױMp 6jci!L|3]a,N5Є`,)]&8)7rϊ49.{Uc$gҺ܈d7idܲWPz0 }dpdj#*݌io'\<6t8s}[[ƅsܢP}\>doP*DXcUG8 4@voEKb{/ cZ!rNaܽrS} C_5&Pf endstream endobj 2376 0 obj << /Length 1398 /Filter /FlateDecode >> stream xWIw6WHFVL_#vZJ7JdJű}&cn"`F,,xq4P"\GA,̂ogS&,-(Q 4g, M M-ka]Gcb[l2urmZUer֦PW&ߐXJ2gYav[:'8> |*l~ 1 J&k+-De}NˏMVGp2qR/{7(­w#WU Ov§(#0(C`)U03b|<~ m.9}2hv jh6{{VAO#c1…FuelJά/['}NŢd]4yvG;_h>,e~0+XD$qRp bXɀ1(#R.bM800mMZ`߬FfES.3mwਫ਼`Dqg|r2;* zXYES]hWOȐPKC}lL qd6Uα)b=jFGRvt0o.~-T a>"7#4/]ʬMzMݏOYGl\KrPB]4<ͮusߋec]ƖOwLLNh.̪Airfi&eJr@ޑe$]*?H>Rb68aWQ\ܣR!]FҤ[m=_!x+"r^R2 "sbu  hʙ{YCjY? }Q!c(&Lhy&r(~TgW %.y'TH԰S_@v@NJ?'E>kX8~g@ ~Yw~Po2g8ibJL!Xz0D]y{ W^w)"L3TbpyOB)`]z[AN(W JFôX=Wkү1d& 7Q!&?iJ endstream endobj 2380 0 obj << /Length 2730 /Filter /FlateDecode >> stream xڭZsܶ_QSo%84S[4M@(;zl} <ɶ^D].ijˌg?<3LdN•ٶ.o.{O}Vd%N/2+2+YNϳW>j3Sh\n\t u8GasxI}rwt)R* Ԁ]XK2?ۮOzn</:EB uu}AѤez7u;s*Y0#FD 4zpzsڬIga:0(oUIa ,vr,`Eeg8Ud]Q DL n)DsUKl|[֫O"(1%cm`~IU:q3o.H^'yY=դvPI9@OBN#*s 4-V259#g,NJ4|mk::8(μݴچϽɛJ Sh!u[o/QRʠ])QM[WMMxN7|47݋?YpqiMR/L[Fl*I G49af$痏#''=6Ipa]){#8&2E(+,JiٛST 9ВgF"!(-~ex +<]#)MYeP$ @\NNo 1bL5!dm#`foQ?W"uGI 1@8RqF@*!ӻ!' +(\N%wf(N1~)fh9B?G{DL-$Bde rj?DC8q2ܦT~J5toW7 <$.@\4߆3_uU>zR#CV,]~[A,-ocGĩ d$]< xhBm:R_@4 {ё SH?S=f+Y'عZUYqRbDgpyU8(*RpjNςx :=E~)9ƪ+Q KSRo<*fqXϙ xi9`c!IJG)GY\>?K@ Ućb&VW1Ht2]xQQrjgըY"ҋ͖R ~N~jdtBFkzN?7ՁaG 2u -:'OvN|S:v0RD9ƉWCD9%ԕfľJ*cKzsQzWľ5i޴ǯjlRf;>]uh5Zt"nlظ/7Pi}ӒI8~plȤأ=\1 MXcYDYOKڀ\/k*O1 }q^vz?(Mi[Nm6M<3:07a4q1D@ha6 Vy27ȓ6G5H^E5`/팃2?c< 0J\6K/!;Rm%}{3r"Rb &0{P-'t&-*Ahv܏#ӈje3)؍,'4RTb٣ :O΄=mVZP,6^0My|{s-txtxVץIgzGF{d#`VF3N&LcױiQ8JgXZ$nQaM>8/z~aY8}u3v{Yϯ@lX@NNvt6DZ nH\- >!GvqEym WC]eh>6¿%m,!8!a3 c՘\:ɝ]_lQc5\akri_KK.k_*y0Dx>F:y#O“g:muzn~E7a^ш XwW!$bqJ?7"jFX᫻fM.P :hRR|BAMlĎWmNCT;âzPnѿnf@&67Hjl@<3C$bԢӰF'I2&2N{vtPn?[FR˰]9y),2w7g[O"G83h r_}x?}8o"I?0d{4l.,c2y#޸* zY> stream xڽVKs8 W(MkF$E=rKuwd-e;Eᥥn8ji%DEvC14 PH TlooɊsNQZyG>J 1lˢw,{I۫\W{/~Mߟ^Lt܏MEܬ܈9g.T_zdQ8i"D7;,~pB8Hd< n.{n:&Pc;R닫:GΕ:ºhL#KЩ9W՝7l:!OΝ/f}//N%}794^lȪN΀8ݭ@P[9hUVȬ2oNޘ֨o\(n&eplRI4e\!@e΄ΛcϜ7G:Da Bz&;\_^1 PAdcy}gһLZYr;7YSgvr=K_^\Nͧ>x %E[a#/[َ7[@i$|(gz= fqj3 g Dɀl}?| J6*L|Am$Q5݃Vd4TZإV s:poLm{]ք}lmz6,MVIc'b?$#1>zӑlF̡2w '8Nzd=> stream xWYoF~ׯطރ}rٕ؎D(LMR;{Pm&U}woo$ֈ D,0 G1%Z>_=KFGgGX  9"QD3(e‘\uպ26B, BvxP, %8&1U~8e2wN\9cWoEc`æD6ۺڴYiB9Zt!߷ ^^$GW7 < d9n:'?? 1pkY <6jpƜ5.VqEif帖i\tSy]= mVF*ҶΞB>͎{_Vjn2?M^ 1#~mU;H@x;l\&LAZH4^DxB(w==-/C%!,!ĵ3"v:]K 氨Z6 @T2Ss ?9,~LG\tJUWu#s”CBs T"sTb[@A`s6W7 ھvwt\Z8,HCţӈuBzևu:f;\'r0XL`A,1&shcߧj8)LU&"-7i̴ﺁM`}SE~+__ ZkvaJJR hG#˩#fN?W r-<>Y76ETT"qXٽgˠZ#&UiiIs[l-K/R6jeJx/hEU> stream xڽV[s8~#E ;M4총 @4#qH>RDqDA"I.~%?O ΟGGgE@ IN]4_O;2aś1VX$å>Af床b~xBeq/Gg( Fn`M/瓛ϭ1ɱ> љG,DM3V\תh`шN ޯ|q %TD:6jW6iM\eҼl.\euYh JEʼLVEqեHg?b?e@.z.Mq}S"~2ۤ*e;VIOK4u:2lwRT^ 9 `;.u?GbIy'4a\-_t9 0>l&mDO 6.<}M)&#miAZ̜Xզ&bP3.!u^{9[`; Gt*US!5N],HKTn&NgPt6 W[[ФuU*z0[FkuM(,jIEs華P\#C3hT@Ťb9~U cbUipgwo `gSl@I3JEHĪK?p ceFGzgzz% endstream endobj 2396 0 obj << /Length 1444 /Filter /FlateDecode >> stream xW[w6~o]$!C؉ӓ87=''..wF,6O.3Uuu; , P"cV8Y~[; C}1u+ }ЉO ev"iw?nUg~&;HO"߶U'YuƬހ̼\e֪=~| <ʉb ` b`՗]q}[_v^mU.Una$ue2VI>r*8ipĩSȺݮw'&vB) 8V}ޘIOni}ۼ*VZp;CeӮ0|ۡGe#0{g2Ǥ.1"51`gc}I@#ypM3*{n!4Цp"R6xIH~` 9}Ӿ%wH]$ 9W,r2(r0c$xy<&m_-/._ʽ3k4h,1)=Ot c0up0')iqd X: 8zl\_8,- $PD8z$i];20gVEV!g8u|yzyM!֓/duT%b3,uejs";CA {/^.]\n/>;Wr2Dd?=[ DBʪ2qϖ̥jZO㧭Wp HS~Po4$7d A\o焇Z iFn64OWxrtT<0L|z>'AK^7g)?7߶hȈu!ï)}eQ uQɠлwK_ݫ鮇$1FŢ\|XgN\17Ҋ >Y endstream endobj 2401 0 obj << /Length 2004 /Filter /FlateDecode >> stream xڭXYw6~#uFB`}HS;u43m@KST8I\l)q2.IMH DQ%߰Oxq`$ 1XHP{&IQ#g(Q8˘lKCJjG_HebSУtgAŮw# FahjX_zaXfsXpaZzI2&C$?i{6w-g5CO_KpFc,"?$$3 Y8QJc q$}},D'E' M}47?ۋBCJ\=&4RdtrzL endstream endobj 2405 0 obj << /Length 1485 /Filter /FlateDecode >> stream xW[oF~T0 KypTSR,ZnNavR_|;9-ֈv} kXcCjChvgÛ]%(6;ȥQhIxa1k^6<{|1v_7E(bN \l汰ʰSZ)ooi&tQ' h<hQv3ֶ |4ڰfF BŞ!J 8qmf%auI\뢭".WI2_]{'ެ|wLlwWSasxĶVjbtģc ͛ ,w]yg]jNKj-Uą\G )_h1o#>"JPy(p'#F5 R$T#1`aA\{0to!kbŀ(}D8ddQJOcͅU%k>n05 2̴gNO,CCzX!ieMR$KZJry„V9$E.;0r\тܔ@YCz~YonC|2_oj NgŪ ב:P.$IPH)dB3 d(レ̂R#`_ X A Lece;/Q]y wqdvb MOȖ?8`Wk- a:)%jւR+*P]B4$YM@^O qSS 0%pX[ǰJJ_ ɀ$ Zi!JYQet\٧!R6 j .gٵZEvf˹/!T|+@5D!9{K^kiX&Aaų,iԉejKcfa#eǞ?/Y!;(''0u8"3zGavJD(~h. Hp8Nea endstream endobj 2409 0 obj << /Length 1552 /Filter /FlateDecode >> stream xWYs6~#5 C;u:[KMM@ĉH<⺿ЩNg$X~{} `ɟ'8J'(Z_d g/?}>yxɀ`MhF": ޅ/NW/Y_~~Fcy,B8nu]nKi >inQ «|IUgC "%p s8E4zfe/qND^bi[Սw;^ú.)ZI&BB^c5gQH*caICX-\@ޗ!/z)<,DaĴ Z,9zBI'W{Oktv6UҤ˭߬[8Ӳ[:8dDZ'+/ W&Ř{,^1vLu#s\gnۙv:K]TzE DIJdY/]lor[]at `J;@S"T'> }4*(0eBP, c,# 1Xb^fu^ږrVUW?`Hmb>. #HP.קgOM>?_5C]U]6ؤ>gt:]}3i 5w_Ǯ9.gX6ֵ$mdL86w\v.O\׮.S2lmkhںKۮ^PIb2݂"N6JEԢ1 6s&Jv׷nIpDۃ`mw\QL`pqTe dzNU*zmrC,M ,.*S2f9Gd v?}@=]3b3j4PY?{zׄڏfWխ0 FbǕ'+r6f+֭<%БG9K"5hy$f HFgB CXb13\_N B`$ذ8HSpqOƕe!o8F ;^ =GY@^@vCC1\5Eb_%fC '(\1* P7C!#rVu/$ endstream endobj 2413 0 obj << /Length 1815 /Filter /FlateDecode >> stream x]D~v?k3<\)mfo=בV뜝(xZJ""xyxSdl$,Iۋoag{/??[_[&b6&4Hz<#ͻ5ӹ12f<~F2%TZZu'zCe-?w/6=-K*9gpBO7{SE)y%dwvv9;նKi =[杋8h,s2ńY[dTH qTBzrK M[mu<)&aJFCAz3H(@cEDw1Kch @P3jN7B?RW /ȻJ3'O~M(He"eNaIr.`qW362닆2u t7Wކ|*.oz'}3yTid3.E)zo[V!/VbxFT_Fd"*7Qcwiݠyp*z{ڰ h<=.f@%Qrh"{r; oCp8ĶY-Ү Dz9p]7ácfq&x+Of答)F J><݇f}?nD!#?B;)ѩ62|Jl*맄C3݌<]Ȍ$̆ב"mib \̛˿7B4*``R !>**y8l-4Htz mOG4Jq yY%~fj~΀}Q`i8aPtpi L endstream endobj 2417 0 obj << /Length 1573 /Filter /FlateDecode >> stream xWKs6WHX0 f'RiZJg:IP EʌxzɁC< <:rx&!aqIALZy۳`g{?_]#р$AB֋c؋y@B)5,jSY9| 秔P$i6[}xF#]c`0{ˋwLy(8//-g׋gx=NUcDt8.1tJl}X-SmFxu&Z-8p39.¸oFnݚqH)D\z1ID0J$1n$zT1w=/aan,Peyq{pѰ5\ {4m,rPg:( Yj(h `fA] #YQs&l"e` +A@=쁲赱-:\c_SKQ6(G\"Е1AX(c+-4<{R$ \Y.p*ٔJ"\ТIb/g;_̦ endstream endobj 2421 0 obj << /Length 2546 /Filter /FlateDecode >> stream xYs_Gz/L}$n;m.<9H|ł)Anrt 2Β(t0idg6"; ,aﷷg/.x²$]dDdd´U"9.H/p`EהIM5ɘI$q[ gid<8ބP ?=,Vźp*wmHԲD鑮IeDk`mE$q uI*Ҳ7ܢkʏ`1eьKUF󙔒%WyוfK(NBv$d $Z@aʪ cN#'<כϗ7oZ/r]/9D} 4bq%*ڣ4rL)C yu}-$O`d^WzJBhS\\cr/kJ~OM[^].4BWMBNTaU`MG6|KRM ;6Uii.hL`䋲;!5櫼myOh.ܱaۮ/~=]S'a{S H.zʱVΔP9/а/Ϧh7[PrjW T@R7ŚS@(FM2pF)湋l!C:s\?(ȚEc& f F(8D1-krJ(E<:ٸ Hs̔ f7X 8NMw~ y4IR0R*84F k|= 1-D5Z0DBT. %;\t` N({8ѿ8mK/ŸܑdUd'XŊhCGڊflD!9zZg1?tc(f= w\|]:J8 q¼6[tGCgmO175Jaqɛa[0Xdߘ_f9RxP:8&| S5T{G2H2Gb'T^צ|h{x>NO/ɦc`[G#S eQ%cVFK}(Z IC5ذxS&UU!]͎(?B8yK?ᳳ;|NOwؽ)l'z^"aI]C,*;(G: 3?1\JxS)3題G3$=>>ԁVEȅl$6a$M_Q4Ӄ8V^U' k~Nʊd"{6'Et:\\P '*Mt^a޽M. ::tq݉I"W\AAHB ϐm}IBJkOv}"ˇI·k @y6|,P/Xv=vB~/DG!K z=祧( ҃yv[^%Z: -kZx>5> stream xZKs8W(UL Lj8[dbefw39P20H Eœ@ ^lj5_7ŢE/~?d&IH Ft5Ety3|ri#FIF3M.#DS"&чͧ)Ʊr4ljɫǧR'38(5_za%|LD'W!5IBD))j$2Sq bBFqOYWc8ѣGl|W+VVX=EIm> }5ݚ-Q>i'x0P(d -qu.Y[7γˁjQCt30SAY D U[,1u5k˺rw/5Vq[V.og3O6"eSi<(Ne $W+aߪHyŰoMFܬ&4y蚸0&=.jЎc6:ƋHeur 7*jL+ytYNR"Rgy 1Fb4Q@ƭ\x|k>"&V}m5y\7Ӳe޴ s1Bc{Ee?_#8:k3"6gq,T dO0DfE8x,R]= rn"$n4$$IR f"J- )n2d۽&iJIƃ BJe'r*MXr3ffߖR/zR8/ Po+!E}-6FjZ?5 B4 o:`(sNyl#]t.wl>ȗ),]06HY$q_( \,Eq8^Ֆ΀"MjڱQxz {eWP(ԐdOKG̿qW&7)[SvbY:Y4EGm,U헧|X462)2G5 mޚ2|0ecXAG!‡$g}l%_Po$3價/'U O#j&T?@v>o,pZpAhŦkW2h|qo{@ -h5rÝ;78;5vKr#9$R ٍ dWΙt4iVsxlYѾX\S اaps(&`egVM,%iԞiGr*q<ܡV΁m5AvNgfxaN"WfJ{ LQ^Ֆ3| ֌i Bxcf!1 !Do;U*]qc1XX[4N ~0)f̀mޖyYdGn`s[t*]xFd=898ɘ gmܐdʊ(Ц>mnG˺Oݕ z0|1j)Bh@( IGzt6!-V!:=j8 u)!Ǟ]Y 6JooH<^褄'MA^z!$@E_g,NA+~I"McvS"~as.g%}lh_? D߮GlIt#%9wzo@&dλ?ʼ/`K$GV!gdp.*=XjZR逄fftj`xwJ7^i H,^oIg3;j|R?6m }vp?hxO̳;RM2qn7ui}o 7,>u2v)a٦4/uo wN|p^۱smX&Y8$/ggo~Z^O޼!;?x| 'KcIϛ"7\&r*y$ {?v֑;t_6Z{sSUWj熣|{t291F 4"($`lq#.9=n"s:Ώ~<I6@C~yl~6t&w5^{ZΡ%N\ft jɻS| sn@ʤΑz붬^0ܔ&=|ܪTڲ^9#bO֗[]޾<~~ Rގ={ u_bjSkUS\g]_KTӮ">+f!:WLgIT_dvqnQ{@xr ÓvaBߛ9B26|C"q yGuQl`\1?q<(5/Zw^J̪p0FIDlt^C4{ڃY>ՕEA5hifz-v_̽qS5Ž4(V\b@33P}O!_w//7|_U gڮq`?|)gO3C#c84LׇV ] 0' endstream endobj 2430 0 obj << /Length 1088 /Filter /FlateDecode >> stream xڵW[s:~QDKRqict>.>ߟdt'!ivӷ611>a,`\wF:vְC8:3 F5<01"r9!2EeNlFoUՊ<9aT[ië[`d1'P-rn60sy'gszaG=cBqM+u{/J=_qهN'^׷w]|tkzX^|ipo=3幀,"t@mqυR5ړM,r&њjTjpVPnV<_s,O}˷Q`8gz3m˸ɪR#"zJr9+ט39ʢl5].n:Dt_/9xdR.-WBLbzjIwE }hr^٪ pQWp(kg_EF="6`C{c^ٓQtwBjVwp.IW30,ҕNs'mۨvPB5eNAZs/ynPGBzi&XeZϋTUk o_~iLb O.y<=! 8Đ:KP:n E6.F_c#eeC;pl cn@qxNlI/t)4Սۢ;peM{^#=z#wꗱnE@LiXsgZٵg;n{8?r/xٴj~+ޜ^D"*n:|şiǭSzFwN.i#ɱq[zRcy)DQͥ&[q>`^ܷۺQ-MFҳ1î&YF;5z1ۈ8(2$خ!Y>.fT&E } Ňa6 ?UIfkyza/ͧ'C9A+8 Ua\$Q endstream endobj 2434 0 obj << /Length 1594 /Filter /FlateDecode >> stream xXKs6WHNEoqi㸒O-Q2r(2.Re(\Ӌ)~>`=9z=H 9A:ě _͓!(z㙧FBso<> qP/~0?)u9I"͒ ΠY >_h"{!#V|xhTg'lJHQ#)"+L̘͡0pbR]ClA62v-UlSGPat>:BmZ/yFaH[]scx@sp6S$}2Nad&K[{yRv.VX;Yq=u<):Gn/}r3eqս8OV=-obOtIR.Ww}7 Z pqS۲֙*+Gg{ %YMj~i|d0!2Kmvol},v2on}(h{` (9S(I\f P4_=.a |kWa aƢ;+=BLegЄ:HN8*k"EHغN]k۶Ki;ܶkD jv3AhkbKQD$p_#h~xq ? O˴e> stream xWKSHWr5{$nZ`mU$!v zۣ " 8Śzo{MCv# z|oBP ukGQG1ϝ*# w٘3n[/S^ui+ĉ>{ciLnq'.Zv凃_:@(<fgd3hL}xzh6}DVRT9KDZKQ$ޠZ:8ϬdHV(%dI&)tĊ= 8]\./S{1V=9BXPI&[ZX+k>#6uVHTgUZk>Y^颴!g8FS vwLWq:wOSoOtq<],ggvUU.2p wkmd6Un%&ɴ}cH1Q37mY[F^倪AshrD94>Z ;  7 >R`AqHZ% y((x 8 "<VIهЀmXG0gCxGo>HIzѣHУoC{Ǩ_Sol7[,v fQ0*::,<R0Ё}lMC春*JZg>N[3D0%SDZBi%,;afWwtЬTQy]Y#Xvx7:+ 0.`P0HmO-9^g1+۶[m(}}F% d1#13Ǣt vVZ+bУ3q0 e+7n.V/ajKZj 1UƘu\]8& jYZvUNUry?Ru^W݅o}>)ާ9Ma-81&eS; endstream endobj 2442 0 obj << /Length 2157 /Filter /FlateDecode >> stream xڽYKs6Wpot j$29"$B>^oA ImńFwu7LM@ۋ8H2NP ?n771 F)NI\R"Ie F"2~ V]FpW绬.[~aHuI)HHa7^|L*N[U&T{1~b\/#Uu .>Zuuc[sDEV $E1e|S.E<,c4;5GӁa(e ye5mԾQgZ5/bA T`H&7ݜc? 03wK駥O .Z%a/G 톢U]]ӯ: ٥~זCu|`dBPe+{k#xn]mT20>֎=f}Ye'vi נS_^Ō'S]e ȣP`"(xSDRy)Q)KɄ@XZ= aDS;dBMّf J rLX#{G&pzgrDفXMLQB,hB+l&_0c}"4>z IHCD9$ W-p $ āۣB"eW>C?zn5~ѵ:W6rhY%m Ŝ7^r/TU3r}YFE>wW?nr;w>q:FM tPͶPq .xi@#y(sqFf8f n˰7Q5[Q_{UW#=z`ќe~ e% K!KP@viw _Oi:.!lG-@)7u;]djG?";j㎻X*e?dU5p.Y^F7~<J7ngU"ʼ+MAƵS}4E} r+xqla=L8P j+0SbO!oT/ e3i7+ez b<S 8ߠu9jn4µw/?\& |t}SR褕7:Hviw.z})KArRKzp/zuSO]cւGIpo^W6aNm@i(]eeq,+VXجR; Y=S~3ōknZGgåì́un Hu?;.\}/0"*nX7޺L~sԃ,ɸO`Wׄ>첑%M GR(j8]&c 8jx.iǟ^KMyÉU5N 5ҡg^K1 ݌8f UxD ^ HKm@+99  s*3ܧ Ge |f殛n[W5hMឦB0&E [4 `0t Yz~}(=~튲+ fmzlt{<)WLLھFM9½-<ܔh2 gb\8g2QL3! 3W m(bf`z_ e/!+",]{)WC!Z{1'U)4c/-f8A pLIg endstream endobj 2446 0 obj << /Length 1985 /Filter /FlateDecode >> stream xXKs6WHUNU3דڙlm*G-$R!8onHx*Ehthth%,<&4Q"JFler{/^\(0FrxM ODY,ɏ!.2ƸJzu׋L4}*E-_.2E0fO7/.N%9BLp"\]__,H6}u=PŅfS)n$/?MjPJM4v1]MSs~;.lkֻcf6}}~_˫wo_5ܞ@ y견˶8"TM vfvaGVhաlP|?:TMM4]nK"3$plFæ Ѐ%ڂ3AP=e@4-54X2b:`XUѶs/:Q)X5uwh{1TDjt 1e@SD(@']0h 0SCT ~8l 0+( ΗMX%\Z!h) yڝM0 ޻5.&7t\rɕ TDqI1TLyc>c [ sdR(HLO%N7Ł!@ULtV:w[11G3&j w4)eUh89r2Nf:, ^i_Fon b@F9kЁD'̵|RWMoo H7T|<0VOj&OYL$J5F`,dQ0k0oJlbt'}i nE#ؗ.%L"4IWaqɧXTtU>6!JĮ3Sb6> hѤ`O7D'"KWEz ϫ - 0bɛw).qJ/)x19ۑI\A /QlRjYe. cf-Bid:Z+ݻRCx~,@=B^ Uvt_qׅRi0w'^t 8NK_d1B4၀lbGbst_r4m65,̐ݠbք*u22L '؂ d}Dڙ ]"LH]Gx._S"ǪMth.+`Ϊki< z;e3ʽRdrKR ]<6,fdԌiھ$܁Ȍ\l_5Oppl{_}GE&U8mu`on~i]Ŭ XNil$,, endstream endobj 2451 0 obj << /Length 1381 /Filter /FlateDecode >> stream xWKs6WHM% >|sl)3]=:IrHPD$wma/Dgt2DWhG8o`4g/k0nF=6b#BL܋L OҜlV!҇ hZ{=jԨڙ|7׊͊׭oee%0b]!1+O\;L2et TxփAM:zK/ddw`B>]0(r0KhF3#(ȉcn ^ӌl)ziԲվM~۾3B5N(I\ј^Ի^sL2۸y)$|9?6MyF.Cp4SQphu}']Z]?\ַ˿K:iu{g.RzgK蘕:Qr@vX۩4r<~>hkt/V|tlT| IC@"xHO_>p8Te ci |R'f5ɓ1HUpCH].:zpR^^FBd9~n4\ݬ$s ֋<Ϝ MvxȊ-ӯRj3qYWo ɲBPڋ⺺۬Oo7k}w0ϗρտx9@E@gz\)!Tq8MOL*z9T>›-_2~}U[4 cU2y}MPx9_],֐ juiH K`2!:\9@;0 mp|oI QiS` @yX`TRtfcL;\wWn\79 s1v s_?'A5J:>KeS-U_P[@G}|յjj<C ss:|"q|h1B}TIJxަ޺"M 8r TTQ%ky.Pͣy.MAR2p]cbNE2Я endstream endobj 2455 0 obj << /Length 904 /Filter /FlateDecode >> stream xUMs6WHN, ~ؒ+w"ݙLC$d<],9r%xHQ(|D9fa"(FJrTpvu:9QcS( qBzGi;c/)gij~Lo!~J=[Fs>S=e^dowȹwй\^er}9j lf.F,Ճ1Wc~ 򬖃/jGc\ϒ>]ܽ0A, ؾFHAcgXA8*+1(ֻ3ycY=elh RR:I0T7V+㙙yac]^P ~ʥ_1=HJ_s~[$ݏ7J xlawVucLFHdRu*!c=WEwfJym'E&E!C\3S *`ʂ=hƫE`mPP`نR2(sB,^h&ݨrau#˘4P{a,_]N>Sx?~!j)vE.KKZgMqۤU{C2K=e:ҟ Ameg5H'a+zj="S?IҖܤni@N-  U2E كVzLā,\C0c;0N_>,ԜFcajk>Hs7"w Zz'l䚒LA:~s;$B؇=6SOl:epfueB~1Aʽ9Eyq#< Ɯ;yʛϧH_do0>2a1C~]\ endstream endobj 2459 0 obj << /Length 2304 /Filter /FlateDecode >> stream xڭYYwH~ϯӌ|.jQ-bt3!nLeGD- [dS8NRݺwתh pSJRiT?7>_O$"8%|I$dqDe[5d)7&+FI͛V<{Ę3JvU= JS'f~bcbv2*^LkyuEN7yƲ:*Erhɘ$J%6T1V$*>[2=2)hk(8CB;>ǔ8BdB'\ђ Q$eZ2QXB#7@ ȨpRhDarrDJ.pę^ %_1,-׀}ZoX#D*e> D:̊Sr@B&aN yk<؏pQ %L>{%1F@(Tu\?>C&}:aH~HX{Gd"JJl)s*;*h4bzNI[!(S h q9w-aĶ &"I.cNNU$f`C|fdL3`,t%* 5}u?AHlB{"  V LjHY'gJW0f,cJ bk=>ŝk==ȸۼ_=}k7[v70Ă4xÄѴ:Ua+'3WNFqX B>P 6C$j i|8"ZWySI!F$ w LGp %0=8A$crrWUD Y+P'uڗWu1!qYn;m#dVMWE֯wptE{eI`ǍnݳgjUۅX͢<W{'pkb(3ζpC4Ug4EIa)7`@6X)3pp}oMir`OUOVo;@=/ksd`ɗvtە,~SywoUV! r}RZh.{cC:`iiJIH0OR8I0`\gMB&BM_Bsl&CM",ɣpe8 =UO|$0q ƨwC C8(B3M J~Tec-ð%<A8^c8ncNACޔc~q Pࡔ+(I?Aʫ鷺A \KdP."+_/nMV: 6y.++۲ (VBX0ظ}@5XdBhDbEB^l-yȟUV94n,}d7B9%`AZZX#,P]رN0.B2V| 뺣ofE]մF 9\m_m,""0EkX',)ռ)h8ץ/zv٥o}B5.)e?CMC݀?=//v]B=FRS;^ĺD>)<FcAŌ Ds˭Äh}\ endstream endobj 2368 0 obj << /Type /ObjStm /N 100 /First 952 /Length 1491 /Filter /FlateDecode >> stream xZn6 W <E]V`C `;( ,"ۿ')"Qlg^&MQ{HɡyGQ &#).~&RbbU fKIfdzA{)H2HcLhIE3)M;5fث3-($cH^8f#~XSA:KFǩwq(`P%LB@#`X"RPq4DbBrc?&zf1`(.8 *dDp3 sEŤbA oIdL 0@&%\c YOT꣡pW$^R51M( `Ľ HFNil@[`f2ȴ=Kv9I"%Ll@dA&a:powq_> l #ZVxj alY(0pl-#-}bSKl5߽?}Ktwxe}^qzvݥ?o~U)ґ].FF@UuNo@,~zZ-yD8i[Ex@i;.ew9锋/븐F."Q=w$2EZMEM"#f@hEӀGhi*giunLDy(p5Q/I\#x{9E{guUd_:+O&綯iBGNF`=L\b ]jKhқ{H;!=,+eɧp7&"-]B8Jb[3[m='sR&؏eŽt-Lz`BC[ r nRie8QkɽRs%ZNL!Fޒ*FT&i?t (A4W\I VJ)hWļ4}i;Eϭs d9:B"5RBQ4)1$uPAui~&NJTxmYz0wKvJE[:-w5k*(\7soQR,.ky=kvV*G-Gwk9;ZTܡ*^#3\s TʀO+fn X&.=sLפ'Ϳ4\VS(% Kr$!.4s{6hܝI\vݙWbBVJ󊆶g hz.?E endstream endobj 2465 0 obj << /Length 1300 /Filter /FlateDecode >> stream xWKs6W(M# >rsQ:[KL'Ɂ!>TweIt:b-Ȃ"` h SI8 HZ0SY,X8 bNLD̃OՇ7gaOi&~3ɔs>K;e] )m$)B I$wCVpث|L&a2V+\4 es_ANcL-4]M0ٸA=Ĉ؁\$RgC xԫT9ܑONuأo.%ӱkrR"7w$G>P6pRqJbD7mn.W7j[ wX+=p~;\usYY .jLjcT}5D],|mbR(e 4AUv@Uve,EI }DH/RM8 7vW geހuJ{SN 81M>>~~񲄑$|7ݚy iq~;w`/ŷcǸx۩øK3}Ƙ"qi_1E`4"L9c$0Y]#zʱABJh`@F 3 ߹jX#Zc+l(#(ִ)t6YϮV 4-+sK&D-:r->::ڀ K޼[ف1WT1!!C=!مP?𫗢0 ZYu~U yyu%˶ ~^߉㮿:ǭ omG;\tlLg[ove/*;gU)QNrqFAmACЍ`>o\lp3 _: %ÎhJͽ+x @v;=H,\k ą#7q7+8vL_؎31S7.}I+v>^?17vf\3%v=Ks` k:mMiFpUo!3RQ۲} .Я@?ĴX+b_wY]VmJ_:3pVp1>4?Q&*팛^m;jŎڬ,X [qio)}ŗ㟲%h!>` endstream endobj 2469 0 obj << /Length 1303 /Filter /FlateDecode >> stream xWMs6W(MD tO"vth $ DUϴ9 oOZ[ĺ5XU k5 ެŋ䜹!(`ZFwpi}s&Z&ˉp6^M ?ORq:h`0&/ɹYDĖM됗7|; dzs{aSnG>1*䀎g 4x.W%wś5,Jc^='!M8ݟ]ρ#QyؔjhQnҨpf"Mwq#bgO\: 1s=oGaŻވXU}k7о Sq+j*¤K`0-|7"7MO׺|UG޾u-z䱄{ @o3mUC5u)D^<{>˻TD YP"R"P1K|.32s d6!mrm\K6A|͛q|En@6snk(j)LDo"҃xP=O!P,Bݐn;r/xIgpoa{% \9<ٵ֪lN {ۥL%޻Q55[8$e2i>c6mVUN0F_#>7)HBÆY;֏"YdI׵j*-h.ƶR1X_.&k'^.?> fgXsVVJckHW?tg4A+ApрYq6[Kx-9o}k20QT˰Bq rlS(&MDaQhj38A'TϦL^3)+/d:1rm-HVɳ^T(ckTYGe Isaa}VIUK{UI\7:1_E|iS[ұlEZ(* {?\6UO]JYѤE7e!{mҚq,Xm_H|j0Oަ~LA7FNNpiYui>Wj7@aFlNO` S%kѲK#H'./|&vN> stream xWKs6WHM%tzH]u3MRKL@S%@:t vbżǼgԣL$Q#qۜ;[ػz0~:{r)1HɽƋ JdxƏLf Ƹ̫M=[HTeՙߗ:WOg Ii/G6 )6{ez& Po!f\X]\b??x}rI"y ΈjjZ],9l0Dbxz1qbmw3ZT"SFX\Z]|ԞIxDh[+U:mU3[pNDycgi;ݦӵ目Z] -niԭR݌G';g@u`X LkgM rM3t3AdX 5gHj w)_Hq"UA~"U!J[;Z0ɺAbuŮ@ͽ]aMh vu)pHnqjcW \x^rN\W* /%I|:J̪xxsJ[< !I[a#U1DL7 HDy,,싴}9݂  -v~M,T8IܫJu۵vT­UCuA@\ mO#j`LWAIr%>?̠+g p &D HF Yh- endstream endobj 2478 0 obj << /Length 1410 /Filter /FlateDecode >> stream xXQo6~ϯ BJ%-- v[`h ˴ML&5JrE6M I>/g!ydD8zy|I~7 x˳u{E#4de%("yMf'aI%|=&]$R6Ir/F-Q2LGdmF̣ka3]Ru3oŒe3 -[ĹolA\-A8D{όk*Wz{(?1jcfrzT 0͢,#/H:ҙEUvUR a\]ԌBNYK ch+ʋiEg7IcL~}_m n\mifAM{/V ؞gn X5{hFg`Cl'3nR3"(F(+aQh12x3ywz3Bm!v{qlFRNjJ~}2Ur[ \ɴ[蛹]{׷}øfmQQGZn6۟l]*RHfAį{^n+.Va+6nz0d {JR26+Wg o\rZyiõ c\$F0AEC<1ЃVd%׬#B.sP.P;>z'҉7W/c&834n*E2NuL**v>} x _H6ˀ hL0]2Uzjӎ.[ @EASwn0 TA]A?> <9\h@Q+;{% И!Y5]umY s]s&3P%*13OS] -A% 3^![LR Z0nY7jqd]c̅q ە.Vp {S (!14J r.mEia[VR+hBnGITfJ <)-rʞN9cS~b :ږLOVC>{&\|QΩ6l5csڌV >B5:V7%[j)6:pxpJ@pVrj}}b˸lXrq쩑l}Xl.Vu"Li,"fAe X ҡѰѯ',8]%z5'NGӂSw]Bniˣ 7&wa 0N5-ʥۡo?X M!!aV"=PXGs>8'/䀈k?={ c[y76α瀈(Gi7~NL endstream endobj 2482 0 obj << /Length 2646 /Filter /FlateDecode >> stream xZYs8~4L2N&zrlT2DܑH{~vfj@e-#:tD#DUdbFLUY8,ݫgӣG/% MX4]DGZP"MMч/Ξ}xG/фkBO/z<Br7fm^dnwu6Ǒ---"Rغt@" Q#$" cOy1ֱNʱ$R~ m*~+xK6:ˋYl/9|Z5kA#[[tA\hqU"!|p CGCf1 U b%Pl;z-ʉ$JG2C1%^U2cɰ2QIḭ6MZTZ@5ϋtYauN6V`hi(V6{YǍ hw]xN8a0Fr\6tLF7Zc QBH@cEZm6!#MM.c 1="aH) quCqdAB1Q쳼1-~?h#m"Pqqn $0{my@lALj()vo"@qBڄChKP[pt{tFm(wNv A@7"Hȅs}h!? % *Hdx5n4n|kU 9ʌUv#f^" e?@m Ӱ!ԫu-PpYj0'H9ϳR6l` U0rpR8G%+9^] PP.w!:}:Mb~!ipP/! ^Mdgݕ!J/:C.#!Z 8^XZ3E *((Fgxd!\FJEJ[D,FUugUZϲp8aU06wZ٪.USR"tUе$T], ,  vb u=dl׀`g f%}j7t@቉>RŦTȪ˱jR l2q% x\>c/pѪ%żjB?o6w M]dք!nt2V»Jw4/jǣaneW S @!_%o-2~ 9jܸn#fΩb 2q'v1az'g'o8R<9=-n>uƍ 1ϫ $Y$rQǜRFlo= F-}+Ƒs58l >Qm8Xp!em>G4B{u:o؀AM+]9_4^f.=F|^L>ӈa)Vzl}waݵbUtv_A@(%oWZ,5Q`)ƀ2+z,NrWن _1Ji/Y$ r?@ɛӗcH;_$ yӔqs\īuz!L;7O}?Vѻ1@/@賯$M8!{G׻rJ+$kp 6H=f׸ezྮp(!h ]&;#!77P3?HuY䳺 vj{=IH_p}zN!#ƌ.H\C;/z·Y_w.tY[̹*.}4#(]) Dhͻ0#%Fa^p;30' ;zqX,eso#YS0ypElwUa0Dq`qܗu8ŀ:E ahDYWzU1ZdZ(ګLg Ӡaֻ~ ꇆH t6ф y+pȏ}WQe '  \A]?> ]=]g&߻6%~3 ^eTյ:#5 |u}oW$foCliL*r6:0I> stream xVn8+x!ERr˦v.6ZEۃ*ѱKr):E)p{ )z@]Ͼ"H$q$X&H+ _lvQ!BQ,$GY>y1P A5VX,DBڪ ?<uB _ !JpBjq XO&dޥJj~a)|,a2e_u7Uuê"bvx<8ӟP붬yU){ac)v {7OV˻ly{s΄aI"]j΍S0sMτfyY[č>ZlM!ipv OzQ\j U13A$#r۵S(]CG! onb g\+gXL8.9۵[ƕl5QF@m/sW.1;t<0LJ,_kjT/9PΈ La@ Ƽ4]}> stream xXKs6WH5&'ӃȎiZJg:I4EIJ NHTd2v/LEH uL'×|~]I(ű MH18R 4‘2,b;Ofr%DIY4|BI^crtiz{v#D IL%BNq7tf:i\.G\>hWĊ)2Mm% o{SU^4_b9}XltwxxF5ơu9['yFwgoOaҥލ ..~{G:4x\We{V}9MUiҘyQe̴ٗKU[!$z^&ʶyӲ4HgdnO]{ë@*K@f!/c{i8&oiެ/A@UYu!L8vƓ˻wӛo>H40Y)<6\穿젲*+7/M٬ߍ61xyHfZ"/m+ὙyC3I$ njP)PFQ w'P>d_+dLL(bfDn(1 )ȇ,pjT_&:BْX@Sl@HHLAsc#!U! xyA*>(b,*(yJjS|2R|6T.{wA^Bө߷IQ'?0B}2\F`ŵ1(]|D `kI6VhSteѻ,LgAN&1SZl|?rz5Հc{~kK{g_bfB0Р'WWB dz&+\&f]_;&ɶ4@?{^~{AxFn05>¦kii݁ ]󷛍)] թ{uoehmqwv xWx~Z>dff!z_Bh0]f;%BB$CfsC8̭e[/HY@*˚/yex2P mŌ@ՇJϹ&i&X'>@> stream xv6_ݗ'Bąه6un7usXiKLQv; @@JvH8}.<ﱐ!"'d7;;ԇF8/yrt8axB^QX=D0O_}q(C"GϏK[x6ބ9јVߋ|]pb=z|{7|qq3^͢ X6ػs^t£)bA /uͻߝћC!F߿1zODrkp`Hu=YiVY/Ug"dX%RC6w]" ${F_+C2/j:6ͦ{}w\Y?+f.?Lf'͖k@Ũ,(/bfQ,$K"]2S p52)8*1׳uiBm4_]pW^6EEmbE4Mkdua`٬EyPP;yr3M2/ήE~EG aq{WG%";YR?ʩ(Z RQ%C(5TKVH DT p,BH QȂ Kυ_r$ DOHΔր\ bR{#@)Ƈp {SxQ l{wc B7Π$ե= ,Q";uK-or|@='c!ûMvozNQUUzee̓!c!!Vc WI$8ȧA "A/2%?+:fHځgWkg쌇>px͜btI>4%ٸ'u ͕kԮ\,-T(l9ibm:-@ r_^[g+Bʽ|r2^F H4SJH>) !vsF HcO"7Kai~_.M$?c"i'ЖH䀽@R3A 78 5!7."q1 ѓ:5FC: ܪQ{#䍞#5an?u_n<SZ9 k4/zb3{qׄmEZ)˥!ڈkG(+d-^X覑VOQ5kZxӚg9^,52lݺ* 5G5[#2j ~sG0 H]NČUZ*Ҭ?*Ayiyi^.l5&Z@`{B\b=S3>"ͦc}y(Y4͗5RY> ..4XW4R3ʫ 窽|]yR1NՀ#1{,'.k`1ۉ(2fEƅH,a & SMx O P >PЮ|:U_Kj6;H LTDa- E"jK{ REaDY{™ cW&Z@ LNL{u3ҎoXHᦊuMt{5t ֚-6`ؙ}O/*q|?FvA7cT0+sOsIyGl/J̱n_WExo u=I;9ul5!|wڢ;#δŽT﨧?uߒݍ@. Ծ53+_tBXGJ1$&խgaܝ r&`HݒU wï;d<1쑢WsSީ+˞&)h_3?^Ow~rM[Tzne LAlҷ'rp~#UbS=_mcăot զl:BIU>|T)|؜>ʎ۹[ߕw4-eO {Gc:]N~+~Ǡ{^$5bY? o܂vq:ꦍ[$)d]XK`K endstream endobj 2498 0 obj << /Length 1218 /Filter /FlateDecode >> stream xXs6~3"$KӇ•ir390ʒM;tޟvp#*QtL$di7|s>i:)I8R@Sh2 'CilˆsPm xx ?blwo6Oas*PUӄ?ߝLL8 KH$r]χݫ^hDp :ݶUzi/U+j$ ܬM>[be±O?}dZTmFU^GYPd1-u?^\ V& ή~"Z{"G(REvge~LW­2Z8X.OP'MW%vWJ&CY:j몓m#2WnE['t4:_?ϻܺ|Z͟Urؿ8o;%0; 8h>Gy@JݢdF:qTڥb 9/EMwvLxT- %soPmL)aQM'ɎK@ E%(d: +7  J3/<T`Xf+l8!If5}fy) /~Ar`e۽۔ 3| Z!2,]Jx >kBjA2G3CHs !g aQgCc^Jgy G)La[>(s4 Y}Y ba r`8BhAcנ ~LB)H )*4Z*8qBM|x6b|E5I5˨"dhp ;6 1k- a6 (Sr@"Ha>2a*r Gfbhp$JyO* <Τ]#(%}wVCju/x3 o(69#0) [ 4qRzr!RW vzRN$6CiO eF8ձ婵><őZq-~S#ƣ-=u휈%R9޻;b]+ Hpͨ~}nJSPeݔj{æh-)-{گM~݈֣禺K xtE0{Q̿{ >+lϫOO3CEbQ?0 endstream endobj 2503 0 obj << /Length 1123 /Filter /FlateDecode >> stream xW]s6}#LA#3}H{6LgwYvp1ɿqptg$нDч_#sPJz;|yo^U%QvH<7o67.̗JV$nS;ˣ8?Whv$&!1lͫ|<nUq,wQXyRx^::6V렡7CpeŒ;ń 쀅pA;W 915 ďieZ6j6H[5g㐔tuwa%QUh6)TIܴ͓M؉/*sT|> stream xڵV[s6~੃[ \ Ӈ4kN7iL,@STvGN3/H9:߹|R2R'b*^?S2PHI' -֟s2Bϳ(U|[W6G7|{["SR gS=몡 \˩PHC$b4B35Spg4Qv^/F_m8ɒV yz ;Ce}ݩ?뷚nXg6e1Cw.Z~*v)70KD9bSuCHl #*?pVUʉ?dZJ8ފ mSX9 ΍eb@n9v)pE`{kK5jq_Ve3"F&&ML4]|]_y+K |l*N(VT\džPrghrڥlZv װk%j0͓F27 giʿk gZ\%V|KgoX3Bm]Zr{thoTe}{.n"X ^M}_uZֻ! @ Nd=N*)w,cvʼnxcZV'p0WA; hQ:qdRUtlf= 1ъ*B}!G΄Z{tC:NЁC#1#;q2v4#VDWc`!iDŽ =Ӥn5V1٠]\ncq~0&@YOf#r2~qQBxpv MÚX^:پ ]:t#^u ,g!#쭔q-7)cdlX6ϗ`r_jnY+PLp}[˳&I$֎qU(Mqz@CPbWW ^+~ тr68pkaq=!0pO>*9J*y}ƙՊTe4ܯc5 v IGsom95sxbn u?ҁ俀% endstream endobj 2511 0 obj << /Length 1416 /Filter /FlateDecode >> stream xWYs6~#N̛ȮZrg2I:CS .RC7n:>~{~+oaO($'H^of .Y^<G0qL#""[~ZU:+V5@PW];Ob/XҢ-/s+ڪ.+7z@#!cg#,@:+TdUiƮ>lV>ưEP7mfIn쒺=FiKjӕi 0l*gګ6-O9|T^p@ I"׋+ 4B8V,.,MҪ\yg̳~2׻qHk"S菺eZO5%e":8mFYktflu"e7#_(6`($ TPC 쬯x4 8c:I8KjiR̹4MW{XMˏfۈHXmp\1@DAct\TMҮifVf\~D 2F\Z (da/&%(̊,~\B[~\ݼ7% o=aYֶ)*V1?>)Ҹݭj~ :ɛ}+U7o_?:I?nLK OwuI'?4F@d`^Z|5<XĠTq+70#jb J8D.- Xk^1ȅTy+M#YSa-]D.Vd>Pg_Fo6 ۸ǟw\,khQZy&T~JU;&7y{^Yjګ2Ku8$lhi AF`*p4xx O%b(raK(HƢU1,O +W <,Ѿn`'|Vug,R#L=?Ŧ:K)Xc̞7 h:|i&j|s]ܸ]|w" ="8b0VY[u<]\Zm@.US(ͻu_tbW[=@CE7x> dG"PRۿz jr׹K^qg]:d]tI]'_}|lrO :6`GC\/7k3 endstream endobj 2515 0 obj << /Length 2085 /Filter /FlateDecode >> stream xڵr۶_GDDp#@'cNMj+iZ$@bHaG͜.v{_ˀ'Op("9Aqh,N~/Kvh~z"( @@2yջ_}yA><B*Nb~ Zm!(uF}ުbܪ\4㐌1fi`#fbyV,ݹz :+yY7R׹zp*ݨڍhаnx% E#Rϩ[VyZ40_LH"!6O*-6YY:+=`5A9HNzAhA@LQwq!$gLH 0ڧg cK ^{h>Pbf9yEW )6eÛ ŕp@ƌP?ȿQؓZӋ'&A M*tT^Z2+7a rA[| |hkEH9HC5.(+i7R#G/WY5DZŐ0OC&*s 4,EARDG(A`|1#FX 8@|7tF d p/Жr{.9BFz"H߫F5t-f5&@d@ MwP#7U԰̓"X(5>=w6> !T"n\L+bE4M)͌UMj]rbmgĭߨZ*!E7g+hZi,5ۭ)2:cSO9^iee45i%O7QCKY' \O~s  837v>6UFmy. e!YB%@|jnT.?7VNY^"{wZW?Oϯ/1j8{rhN.u֪rd1\/}=ɮ'%tʊ Oa7sck])T[t=6w_卵b|a݇) m#K9:>| ^H,"ur-@Enx{͊ z0t?FO9(JR&Ԡª̊-@I~~@]ڍyZ٬٬,<+kU*Ls266*t47(XޭI gOLܡt?ܥ:KM1 *1[b\KvV\ݛeNkG^<9k΁#.S7<ͤ5B3qQP{;]\Cn>,tc{ܰ6gBxնzh`HWf8]V+4_qà c]m[q5H<7Le=]>4hڷ3S i^`è 칺&@惭0Y^ݞ}A2vb~`Vezm_ZAS9y_Ug_IBnuQEvb]z֥njw~)4$u{];zJfF)fP/=S$G5N (G8.cjr(wD[@@ow.!N endstream endobj 2519 0 obj << /Length 757 /Filter /FlateDecode >> stream xVMs0+tgЇeKRhIt8q$M? Y^>=})mk >R\I»q>+!'(d( x.Qʄ3%1z<"HϽYۮ''@0u/ %XEMM<ΰ-?+s2tmV/wy 2fZlUN'p ͢,nN&YԍHͫe %p6?h,n0B:n:G]`@@LUD -o}Yjglz]X2f {T[*ͭRV6b_,*uS=/p\3/Y, Sg*g.|Ӎ:i?9nML$ 1Q҆4 k#F 8Kf,z32KMX\k0o!!*S% ġCˤpvy^񱄛*#X]}5+ m?~RWyuq 螺JJZa*(B`AtHȢy׏7b]l⏮y:Jэ)2~OawFi⒠1CaJ kP⋝:s}~g3} U/L_|;?Eo_<ՋSh̟+*5_*L/@q`E*G?YK` endstream endobj 2523 0 obj << /Length 795 /Filter /FlateDecode >> stream xMSA9B=hMRJ! JBمUD4/t<@_QB  kD:c~2govhɹp$`I_TP#QZ;M*ˡQ xy s|+'Rၐ?cA*WêVTG@c(JZ]9S*Lgio7GZH2R ͝ ɺ0nz+PBcDBCZIݬyU}S#_mdNfiv2xBYY:]&7mJOفNdH<]ʃgW AiMVfEѽFgwc$7ҁe;I}6չӋnZ芭Z JUj4LW@Egy@xyy-lKŊX8\QT5 HbQ\|6vjk{˃<V]l"`Y}F{Gt8g4#)C~~~obX;]yk}L"=wD-yfBV꿃$7wXB7$y6-t|F?2qƬF,e!ytyo+.K% ʸRps󲔢 ^>86evO 6*f1`}/ endstream endobj 2528 0 obj << /Length 1615 /Filter /FlateDecode >> stream xYmo6_!,_dfH)JeNm0]Z\Y (ЖcQKDǻg= sFsO>P:2+#~36dG/xR6b 02 (ƂigW0J0Á|Ѐ7/ݻEeDgW[% 5"y6/@.l=G{#ACP`n[,xvL/[Jwϻ_0O<˫q݋sI6by#sHߺ˻fe6΋xfDQFP'd, B-^xbv v*"@2U/uQvf{QCC:'><h+8:^Fm z۷㡳c6݆e)T㭄()X>K@Gg_w¡'c"#7H;vR5J;L nFu:ƃ=TXvYIn6Y3nqAj>TH$믾;|TI]9TbΌtqd>|0Qy8NfFJMdf]8E5@A+: v JсO-^w4‹$L=<8Te :U\DyO$O#1 lcoE$u@НgkuXeoz|EÅnIª?Z)IRs2D,؋VB^ }Ǒiqp}}Q}H'ج%` 8Uy&* Tye!N"Nb^5+i݁]&%Iݗ`+ ˬljۢнR!2FPF7ZLuܝÙg;(ψ߃@ eycUl0D[S6qcKǃ_%[Pe`2 endstream endobj 2532 0 obj << /Length 1069 /Filter /FlateDecode >> stream x՘o6Wi!yR'Km("p,Y`[%{(Q8n݋DQ:~Gpr#) F+9l27);wt$:L1Qe%Sd!砢4fEo4AuxpϽl_^F% U-ڹTr4X(U2&Q9~bJ?FE3v3KiHCc0ۉi$UR<,`:Q*8Pa<1ʏN&Q"CƸ s~9]^F'Yxt5ɐc걽ۛM-ڧuA)l׃ G[nhG3ŷq ,NpWǃxdfL 0`%3.:Gx--jyfȽOM^eV}}'/Jqϣ{͒Vi/dG*dSYMa6L,Y5"LMXU)֕$L8'{^9ЌP ~Tc>,oB*M DaIry*;B7PjQQ'T4@ntZnJaڶ|nC-u53{]"r- ږV>E85V{5p>t 'o>>/ m$&I2%˛d1F/~}ɛ}6cKqGACE$w P}m˾QKq)`N)Vypfm`evaXmF4m;PK{aY^s2Ȋj=|iu*([`C܆l5ܮO#}$;QZCgs4οϱR~cH\r6_i ,A\wT'Ʋ endstream endobj 2536 0 obj << /Length 1579 /Filter /FlateDecode >> stream xYn8}W^E)o馋6m,h#Ɋ [RuISCR-Gv}Ei8sxf8CNYz}[@T: r=+O~\n~VX1ϵiѹffu # Z0]ooЌ/YxstTXGlD>p`a)J\=g@]R̹|7^_\fkO5u\8dU@Jk@/Ak*<8ND3S\E?~><~D9Yh8iUi0I'[j8:|?zwjPwuj%G->dP%Y$;. 0a~PyyNk؎bQF-3ëm2Ӻ(C.!1*m:aCԄN"{n믇]?.Gw $5,Iy8)7U4K]3OjLZzD|S} RzKPJ)r@* "`tqr{mT#yt CyJA>QH MJaJ!M(dY+FTo#]6`UT=11 |l1JߌOn(\}OJퟆTU+Џ j4I?N0 1UC{F.Y+V5@2kS(oD3RPZĊ f.".Ac<'334Rp2dzL2e| y H%vR]-lA#'uo?*a7R!E*O` O+`WPZ+hSnVs7vJ)-L~Q{%ug̓&nq+զ#zԮqγJe-*d+}ϊ_ZPD(idn18s~BŠ7. y@ aPe# gFY@*㟄;5h8)-x?hhB2A?]N>؏ ˀfIP,0[;( @ WDJAJwÝ}zy gU*%Sfݡj g<;1/?>TX1n1M7sun1q{'y9+Wo={RysN;#(L|2 #QuBՉKԔeyƏ|RO+NAIIMf j~ ZS 8b}X6kp,n7ZCgM uGIۯʅL gوaBY\ 3nV\jvsR@9Gah7I)G2giwFET.b}הb~> stream x[mo_AB+Spל:E^&遖hY8ITIq}gDR+qh7$gggf%Y0X?'4%#1qd^K)H,%W7@sJ(xjd3lY|z}r~C&]5vN( >@%%J摀IJo5(A'~UA!D\2[]LHRz&rB"9n%}6 )4*`4fK>"E\:r`xLy)x^*Vg&,Sʫ<[-'sY!rk;Gl8oU;c;ۺƣ9hg\_~u^Գl4K&s=t~߯.޾y j}(kBqjKlZBUpyk1+U8_}L#4{:Γ$@Λ)CX% n45-Ibbi9¦n5Ds@Xl>P^Q Vc' vtew_X'gٛb9IךDwNJqJW*Fڅ4%sji8*Utun|?l6҄3RA\Gfh HDPo7Ou᷃H8L6LH"֭{z{plL݃>Zٍ#\!>/P}VD#ѤNd>Na4KiStψgK8vK;^&ņݩ]^g7'h7 6-PUĈQ.^835Q1A$M*jdˆ[}L0jdq^ hP3MFTĿP ڰF8x\7dvYSE7K>FEP =/(Eߝ~~43k@} 2 j_6)BKjjۦy$R["tEtG}L6O= ٛ N^C2t1(ݠ_oP͠Agжj}bZ  URȾ ni-+&eb"9[iQ8`J ~4G7jAc;mNJx\׺}i,I] 4L cV}擥kـ>f降iiNe,1[ eivN6M&q0y]QE[ `a:M<[ :tΎ6Ֆ aChGE3Uw@4],EUʺm͜AMay+q{wVfo'H %بenp+lsoτ!̨fyPR.yV5F5Lv0NlYYhL <4m}v2ma|r7* ٴnl)t_-KZ_04JVz+9Ep%:̾}^# 3/5?UBP6/8,sJfM}b19'=i 1624*6>c=N9J/ %!6E? b[[փ~i9}A.x'F| ~@W0Dm_|,b2Le"0@}ˈ5Ωn͈UYp"`}{]=Ƽ)"h x)˫y0exmE&K[οٵ=޳W@iZv5O4m\mWM Q4x >LlAaLL*c |*Ч2 Z}*SA&op`D؄0|&Ge'Vz{lжݏ+8sPirXRFòh6U qo:;؊(e=}lA' endstream endobj 2544 0 obj << /Length 1204 /Filter /FlateDecode >> stream xڵWn8}WQ,QumjEŢa-ɫKk'Jn@̘Qt1{DA"IA*ųE7GE[$`x(Jg|=Y^G͂LbVz}r`:+R-$N=vӌ ˭=Bm *N2U警mYكS+i?{OYcW0YNP-U>=eps4F@K"OXp$_ J`G#=!Sq[$N%ÔzƩXS,J,:<4ޠ\8!r) v9wٮ)4U;vZك/Oñg<}z `2*7*U;U#$__ E\tчGءϡ4>qv8uOJӠCK)xNn l@e[m"۩"!E I/˫h~ܙ1K&;d{Nw1p61H~|=>Ei=_gmy$"hS$ۦ=c\#}qw*3=.ܾUM@.7M i6G;Ǯa`1%-`\2XkMw-N[BpʪXFOR`JX8!> stream xXmF~M {SUJzR6IT"9`8KPY 6qIM$$3;;̛{{v"EP2F^x_eoa|v~0Qшy㙧5\{ZPB鍧N:=ŕXNqwލ_jSD1e ^z=>zNO2|KF7@"! DPq,xD,|v"qVOWvZfmoiŋdxb@ JF k]sU-~b;yoAWkXGPQI)83˼t\ow=)t~UyT]4N 8I8 ]7*cJ nv8M̝M9rޯYIG'W1-2 ZYJJpjNO0XMyFeXa9%IiI 0R0X erOl|, [x᪦(#Tt.24'B2 + &֮Eg b,mlEtHP!L-l2u_+H 2c=0zzqʛ,޼D"ϯKdIedeC^ OQRـm$ a?<v A"Uw H)OA5&(Am>H92+qȂv uzAPVR[b0–MC[V u>fxQ̅N㸎[05ŷpkGH}-P~!n&A'HWصM7#TVJxN*Z )r槨 X?]BɈH\oz(2Jƌ"*o1D^AY:~lpLI *h;Iqtq؁J%* Cq_|z1,ݧ{'KAvh\l/&()Ct4JVn+]*ZnˆX<"&uP6Bsm02q0 s*sdjoFϷGF󟞺TD!g4ELJ&""Uu^0>9uq-$ϗi !n;boψv#;x1/;:|?͞zao{M:[|׼f!Uף{pwpsԹխϘRF<5j*Mv۱HrlMVa.jtqroL+DpڄMȍd98eBfÉMtk?  endstream endobj 2554 0 obj << /Length 2115 /Filter /FlateDecode >> stream xYko_r!T~$l1M<.vǖɴ璒,9#v }{|wxͤ fHx3û<:<{yi@pDi`d`gFpy}}axy//m` Gf>Z@&\ߦ4Y1diޓ6\W˩3"‚6puM>^g˜UePPx{lYLV}-ggZIKҒ>Ƙ1D({r;*<J0r7WO(/ S2r܂+݊Њkue K w"H@93x)'$o c!/\.]{!U$#?"ߥH&q$fZ4T][[E7m{ܱrdIj7ER%f6_vQ'nrJK-JO4?:,J y2aǥl:Vmٞm02i͇"B+΄?bۛ}_-M& $0;j!a48vSذש>Kbޙ*b*V[N @$|^xuW] _z}ҮiҲX(SyNm-uj3PnXrS]!6/$/~-a puA.EVIV.D6Ǜ'۷Y-(OUzx چzƄ_@nE9w 7OӘ:zRN OW~tr4ufy ,-pVTeH 9+!=H>eȷi6.Kիye '${6mztEMe4!]I;.P=$[e99fz?sU;5b-pi2jZtݖP[]OR[vi!brn\[ [DntrZdJqۜxR]UH#nR{?7?kqQ֜i-qTrZyӪ=N[oS1é~UN+NB{8- 2` J:sJ+B%-QѢaQQ H[] Kë4%\Oo H}eQQRGޤ{ZGyUZW=y3(%xv= m7CjRӞ6~Pu*V Q^ -G(7d ƲZ&v?hE=2$c=(TDkT_ 漫XYX7Ԗ%B%^ŗ5U*Fa"R,.YH/੔aGRYtI!^C:ͨeHdWi =3 S(1uu\S xY'C8GpJDϫګIљp8 2J=H%VBRFv|1QNp Pt:ZF? 1k%~)a&I i%ҭF3./D67A˪40SdCea,Su݈Euc%L ?q %u$tTcAbYBw#:72W"r͚{ry_C]<|b=TIg/qaLs7(9OjMu>QNAk+Z'&H1Dpkw6~}!BE "Jub[=Y endstream endobj 2558 0 obj << /Length 1932 /Filter /FlateDecode >> stream xڵY[s~ׯ#5{.ypI;]43 R萀 T_o/Rf<=;{F#\(K-?ӳWW<%9Y4]D)RA̒h:~<=myO؝lRκտdp&djW?Zjݍ,z+uUs{6kz*73}C|ݴgyDUe);3Ad[UjhkJʱL0©G)0_,Ȣ)59I,J%Jx$AAĉ3&, p9Ʌ‰\bb L/&wHE'I90lc˔4K hJ O-AXL>QBSE#Tc fQsߤlt I?9 g#EDʢxDBGPzqQ͹n+}2͌$>L{'O B<3@9=[/cI9abBA * x !@84ʽK'hIQԖ@$$1i]: 2H 渶ЏݹTH!O'SM|\d`pUgW;Mkƾee͵}u_|60 3zGP© :l|0SP1" J*ю+7;o3 ƟY$UIB Y1U_jQ||l}o4c$(3Otkhݡ;0]()@JCEBtL¡$RgX<:Rƒ&pzѾl!sYBOIx43Qb(Sw>ĘB<Ŏ#s^l WI5A̓*BISI|HDm6·g^'ǧ3,\ܴ=7?on>dnn1/,cό__t=ʧ:rlܮtm}}3U9W}-g.f@+a..HoD'\j2d a'Q_|SkyjEkVkHI3!Yu,Tizy{u)^f d r}l;x^-n+guKIK %p}mX]W͜R}/ڲX饸Zcfշ_:΍lb1t!*{~v}_:ncVk' 5+5p5eSК]i1/hWFnwjcYj^j*swR.~{{{qd:TݠO\eȯz  &]y3؎"_%s*{c7fqUvg78x{U!1 -uyBvlI|ŘMKWm OїcJ]ur3 ln6eJL汫\D38j~jtm7^Ia}<̀ {S&fY?!dz'( R2^a{Ӑʉ> } z@a:q^/AoeEF3&Y&yRD A}^By7!1$0(4Sm{PK;xa 71Tl"C>!̚firV=S-xWjnZTqRz[]6b> v]uq]ؕCUZZ)(?}\p!%ۗ<8 endstream endobj 2562 0 obj << /Length 2014 /Filter /FlateDecode >> stream xYKw۶WR'#9w&v>VzvH{%RA!GJu)q0 4!ɫ?NpaJ&MRɏe ^=x~3:yz!xB2Bdt((<M_S "~\el92%߰7պE1˟ F RdۧZ&# d(I.Fҳgvs^H"*RD״X`k|1ﭝڙ]UQWL󭭊gFyws~s^/j2ϊ걈E-3YWoߍy7E@s@xOFɮ`3xUy2i]CZguĿ,\6EyڊEaחoGoAT8GF{RYKK7Voy y~!TylZr\AW^EM> LٰMSY0r?~ e$/Z1d+`9MGwҏ-:7;#*9{FBF=#Y#T7D#$%sC+/t5Na'P2:z92fp[RXPrM Vy=/|B N..lf#͆\ړ oEnZUY6@K6^ `nXö2F\oP)PrWAH~F*(R,,8;6"aӠ |jȮ^hzl6NU^9d`ED 0kw &UjV_ bW5OGXca$xdKǨ[!~R=Il~bj[ gHlRvTCtB1oU$"eYq1hG*AԛA&c쁚#jH5FRX3(4xm1v/'RFa"-RH7ⅴL'xLu.dƴ U|Ѕq[DN!j,fp#z}؎DvyقzK0@0+{ z<thP @=`Nq~rT"T衎%@I3f-~(BnrS^ JvXL1 M&dǻcjw7AYCclNwtnoM#KTK*+'#A&ԝ 홐v|W-ݦ~/+\S mcK ltTFC+ DN0;Ԉ͵\JmB2\$ra$T0 UG~xe*#oΟ^vzc&)ZjGSۆEDfcj$hq#=>, * /B"HJD?jXD!?}.mb|cMVUEiKj]}mˎ M]ՓN9+&R6 S5RcF֡A&=` mo#&V,|&nj[w{CJG\mmc9l͊w_a{yO7o<__ތ\!_Թ?wgW M هOCsiѿҹ,Ǡn٨>[y.Kyg{UOCq>|~[3zS8Կj.Olí=z^埽 rʭ >{"0genms־qky6TV"unԊrOz';sX%^=]7 у;\:tl=8 endstream endobj 2566 0 obj << /Length 1265 /Filter /FlateDecode >> stream xڵW]w6}ϯ" Dzf$l`Vd}GlXnbF3wXz[b>C{p Kk};\Y^ "'rmqjq#&\k>曆n99}\^^Rѵքr}a粬MDZ˭4FԥfF2C[rk]'i&V\U$GAd(x<\D(3{^CGXv>ž&ygPr:Vcu0<@ZBҾס<CvqInj"!@omP .h8_Eaè̲đ!O^#Hגkḯ0b\':DKu5A,@ XA388ALA۞=~C#~w/JOU!W00ڇYB ;*Y_2?X* yXC4"vc2&dP6TGSpj2pcwƣ0kUgkmNA,ߥT2Ի>b\I%Pd#cW azC@<11[5r2[,oժvWԭ7)E.?Qfg̒b옕n_ߵMv2]LK 5J \+O>| _[8SmsuDdkj|h#̅SZ&Qq,*/U$ DZx? P;ߜf7r$\bz~ qCVJDGZn**(&Sh5cN]̀_L *NWqc7/OopFߦ@ؙ y%Y ;(s mxDUK_JQѳY;yCAqR2SI)72]Ps'72(ӸY%7 ߭"m|c6yak|7wjܘ0뵂TN@jӲgO^x2s ܑ'4mcw %ꐝ{QE#5ao&6 Y}XȡLecf8_b _'3? endstream endobj 2570 0 obj << /Length 2189 /Filter /FlateDecode >> stream xZ[s۸~ Fɤ3^N;I-e;>-qV$Jҗ@J$Y7a_,^>w@SoQdz <KTE(Ի;,gϯBрAL靧QLyDF›ν_Gu:%IVJ8_q>Ҏw\FcF7?]N/o&/=[򬘧_]UeȤA=Oiq? ۚ7v^$Ue5ϊzWiҗlWhz& 2Xgeчz!o<[e]CUfe~J_?ž#/ uBHGVsm ţz9^vZY%+tVUv 8\ߖ[~ӮT+':[˻M1g]/M.q>2Z>i{!FGͫ[_T U$!ӽ\z*0r1A6]Hk?f^ٕ e7.]V;}I[] Iȶ/݆D0oGaoZ$jV~ 372~3(9bACObo0fٯ/XD |>V x+ob Fߘ.I$gةDDN;GfPvBu鹿w= Fn7 u0mOQ{0ءbI~BYp|O6aс^Hf_u& v]^5 #p@}S!s`ճKp\5+yVK!rH1_=~DP9)y2ntVp<\dBeZXRMt0^. u(l.l̴eR%3ؓ}D :U$'TNU`GYڧ\0"-fـ:I AcnƍSɛ_' UCL :[w~_e+{ɂ?n_IT4fV4Y!S "i:). D5WU󸲖LM5KUJ5qb.T74Xhmvjѹ t\m[Ol>L.'O%XjWf͏ejYG 7\ Q0xE)u0OVdmV[t}mX-nx*K?kЭWGER u1FA:Er`n F;휳]PA,**1.Po?Wngzuڭ!m G-p N+l)٘qFBc#a #\n(v2ݟ 1zpF*HuUt Q+wێ]d'^5'ݶQ$6[* *5͊0$ȾTܱ9%F*saia V>3:nAX.Ǣ -<S?=xgUhiƒ۱T„რtp,*pn ;\\뤨8+C\9nten5 uƏ@W^/uƻZ;e}A{2璝oݮjEm5 I/P^ 'xS!'8k?;Sّ`Ƞ5bW> stream xݖ]o0L$bH::vN^@H(qR}H!N9O`pVVA8$a(HC0|3zlzTjmPqN@0A䒁8b]cNإYܹEyzv4ڐ‘BZݻ֖>*Y șkuAv%u.NU7/E]kxӅCAv¾u͇i2ϢXGƋ&AuFMĨӽjׁMr\B8^㢥!Ч~̭FV',vl"jgc;Z&b&S8r)xn9mUйKDTf23FJ4 ez a2X*X;Oz\lu"-B,$;,TԺ[[fJ, I>he.ZbʞKV0P RH%TBduo|}0àD,/`PB8(^Ki.{_4dn'CS@sG^`!j Z'2s῍9UGnO$VW)($Ϳin ˜ endstream endobj 2579 0 obj << /Length 749 /Filter /FlateDecode >> stream x͖Ms0 }X[@J:@;Is0OMmߵeHȘ=W]EW_=Z`$ | fp2w6Q5MfH)B,MbtKz g05(/5duYTKZY~x)ZE3SvFefJ:͗Zq6~q<c ^/F͹Â;)Lt`. SbY3 $(ʤL=za`PCqXJ0Ms׃(lnfq=QN%UI;4lmvG?:%HLf x5? ~vbee:;m)w۞s lm]qI$4:,-cug5֒TaO?T1q@$9'_n=I^ endstream endobj 2583 0 obj << /Length 1346 /Filter /FlateDecode >> stream xXmo6_21haMTvr&:HZd+ E$ss&hz -0UŜXܠI'2ov ;g#B)9@anHm-5eXk'@d4}1|@f:F98b~X&4MG oe>2,^7Q 0(AQ4mA':\?>%"֑&V*$tb!X_gݘ']þ3gԕ B!33s bS,ef?ڨ7)\Ѹ2b uS}fx|f7Rɏ}pg8`%M'U7r.ev%yZ;IʱɊ{ivdV9C°ڛpCi4Ͽ T Hq,΍J^@>~}Cށܫ{'A^mjx~h\|TA&r膜Р1釮ARV8ud5(3n ^F0YNq . ^F5d8PCDŽjbSr/Vw \XO)l1iě6Ru J}@/2rG\օfS8:9?B٢%jm^@ֱ`xl4[M :f1OUASnre]oqdd_ߺ^xlۂB{ v v.5ki0L`&5ZV kv&8:$`Ea^[XKj[FZSb$'NJAԖm NC)N[ԹmExW [ZgmPfm8f:ofqMaDcFa2g9lA!`c kyEqq ʷ8l Wq#"R~ztO9s)z/Hߟ׿>B.+bҌ-hF/~xYfs0")Kk!ZPb)Q/$V!~ü%vу@V|Dy 0/M6;[nܲ"Hhpxa&Fvt2k]imx0b{+ƊXuxXk,ՀYaJlaNY)Dcf"P\䶎)Q#)Ul-0hIix:di Ba@ CD\/hg%($5&dUuW: endstream endobj 2587 0 obj << /Length 1808 /Filter /FlateDecode >> stream xYmo6_!_dfN1Cei&ے,v YV⨵eOQ#ɦmu/%;$#=Jz'(^{?!H A޽F"^/n}V!T[w"F<Fkbft(UfJQ$S/{7g-'Gwx&IK EADȂ}6ϒv@|gn:1[|b~=Oh{͢lFw0? "Z.B"//|s)lI`ԒYX]R:3;gdd_&$M,;I!b=CX\-൸2$i|4/0V|\&Q`=)evɗAFv?7v 6Jw-hèؓ"ush2Js( |N\u(8GjHlcD_k! pWݓ呝D$BօRNa> g1x'̟=frSKH?™๳V(߉?iH0Kqd'|gI߾i \ +j+d"9 3(I Iԃ,H1 q${ K] $`غZWa. )츜{[ vu9lr:LPm_iKlyYNU  ~\XPY$wI6KAyQB1(7Pԥ`PCi䒞ln2d7Y[tbni#ݒ]B=$X3ˌ(SYc(5uf*qjY\9s&AtHjr?O-~˟ܿ7ߍ\|u+8'Ƕޣ*alKOS%oZQ ϞFKbAӶB3t&IgwhBFLh+0='eϭ3s'l`ߞ.*d?Ajm|ňh,BvSKѓ)P9G?"xzS !uBQP3$ hkV׎@jеf9qPmykI?f[ʠXCPM'66< Za J⠈6ZB?0vIP Iwa"ꢛ8vuZ "; g x ,ڥBC9m`/s¶ů @8) ?+-bkj'FjtPtXX۟U [ωީ ٥!,7<~?OBhPmG΀=O{^%F}yq?ؒ Lך1F֕=nP Iql7&V." TgSZ?ړjq(6ʲܥkN\gD&a((OkAKr#) 0$fſYt cI;7~IZP盅 i+d<ܷ^rJ+n-Bt 3ɶb"6D_nN<_]Z)ޜw{W7p]d,gqq*a7ŴrwEho+T¦Wn0 >A{y0|峠fn.D*DB4x="e:GBaodΝ$Ѥ&J a3Z²6 ?r} endstream endobj 2591 0 obj << /Length 1457 /Filter /FlateDecode >> stream xX[WF~WQx٫vEOh)i(vړs,Nuqe;]Bv|3jw1[ԣ :dĄ^xӭ`^z4=4( iȼӂe7xWG'w{O7ܴ7XQ/hCaL`CH>7YZ$QΣEZv D_ T0HܮO~{>c~l+V2*&JYƨ%ʆeuZE*x"btDІ>`(G Zҙ¯ ʀZ4-&\Rt#IH7)C8QZ֐9wzbh4>>P'Vo D8᜻U S\o/v)vtF}+xjyXu &H.8zxx=)8<3o5Yמc$TS!#4#M ! g2c3rYʼnY~R$Ӑ6D,8Uѻ~0*8[Vks{_z'|Ѷ8ў֮` 7yoP0`ӵp=W=X!f2BW@/$A0ݝDHl!5f^Ӣ!F:%@3?sBM(סR`zSȴ!%CQ7\긴iȓS@GԧPC ck۬? -*[uoGJCJ[~Hm%}^қyoʻy7%%<2mx V;7/= <'S;yiD"[L>cSOU ;Ga\V[R?=df_lLɞ=kpE9T:q@NVqqSŗy]ݰE &b g*6޴ $Kbl3t WOjgQƹ*s\<:.@ֱvk?О{8s؎QNM endstream endobj 2595 0 obj << /Length 2552 /Filter /FlateDecode >> stream xYYsF~ׯ#Xsb ɒ#,{E:Y_[ 0#/׷{f@P],xq hEX2'A7'Žy&,ZPbLswi0$rnz4iGU5ba9:/&ϋlvTҞ5w)ro/z4ފ hj4|[EL8pd4։ V&h`,$\`Q2{:)&9j#دYKq8y"k<#e{3c׹\yq듩ᔃ8L= 1oE?u8>,"n 1"-c{Lb->RʽJӖQK#YA%DQaF?D 0U{ ݕ\a!{&弥gR6D~6v$Rcwd)"zt(ޯO>.cA%^/?<żJ1o2Т I(Xj -&C aeIhxP> 'M5ks7X%fIHGẘˬhEV@FXob19S!.#UC}"&E .5 ,li0GṢY]ɪe^E׍ =DP_n♗#m56a0&V VM"YՎL ['^D؄(!zb _ńF+vkЃpΦ1j)4{!8a," ¡jΖ>`_HŐ.&LtGK% ɜyTC^-@sM;/wYy;8#n `=]'^UU6ea!@gbN/0:%Bj>bGApE iduYYV0Ԥf#dⰸ}~ECm5» [dmsqd_vj\ [j}>+,yH=։~3Zf77,ϊn+C@]@8KKzL .4Oixt$_vSK>y{Zw{?g+W]kxgV},N^1/EGj`WOs)1M6d~{C%BE7I-t<V endstream endobj 2599 0 obj << /Length 2631 /Filter /FlateDecode >> stream xZYs8~T =5:[9<0e3%Q %mʋţh2bѻ?hD#(bHDe o.ݻ;|QЄEUdxd%*|6l˷J #Rs`c^9G$ZG$*qDS&>ڧ_3O㓍c$FLO) {yqX7H^ˎda¦3$WM=ؤbU^\'t2Є^YozQ[C@cDP3FXW: Jt׫ہv&rv5xݓXw 4K=C[PʌBREDv2])[5ŢηΤ0v>wfʪWev N'=-ʱLn-)5,?=lr;e]%hWuCAqOGcF<3cƱ1> =) 5Y7B.!vm@6^R[pbc5{D!#| IBe1y&ܭGSH2D B+8}_ܩ1x9#ޘP \oɖE&^H"X ćhܛ`$_o'`" р8︲5FRv/kt)O\"n!Zܗk$[_"pq &N4kQkY?ju=Nf8Dr ?VC=ر>@LF̠~82%8dMd$Ѿ  ˁLZ@0~((7\ @ewk_Ƞ()[gdB{LWԉ~?%D'V-pB.wU{^.cb6P% xՂIv($53 F:ѽVa5D<^;e>[JXQ AMn= lȡ;YŌf9]QO`qA}0CB@Oa"+6w'Ѐ%F졂T' t <.UN B*: *Bá ~3<>+Pưp[8) @?#v!61!m@U%;B?$D}Zo758N1mc;*7cT(cǸ9 8+m*I9Gm@n j0^+ԬfWAP8XY5fLG'.=c(]e )2Kl Mwev^a Ǜ)OdEnB78m9 G2~e/su@yj'Y\ zn+[fmQU >۝*<%/.rmg&V`ēwinz=حB}179#胬٢޶_}ϬW)˽RyvM}wr7vRbqZ!m?̋ <@dk3?`iCS-p<[comPQe=`tO7]|?\hVx%l&ˊnvq̻oܥ:Փ*P9x}~yY$ )N: M kO$0Bd&ii:k Em7y:<120Vc(D(I<&PBX Ccq4HF`g}w]ebP@%jl 7 c{ HfC\ѕ=7]޲a̵"Iy/"+\em |Z/{JDx*J$qMe/?;o:=e@曇Ae_G`)CTb9Z< nwoxQq^ڪ^gU|} ]=Fu eA`*Eg (8\؛xS,L"X`7\{< Xo^#kbꉎ_e|Sv{0{#Ndha%z˼sn>8yia$6PPq~_~fdP"}~;: Kxٶ'&G+ endstream endobj 2604 0 obj << /Length 2050 /Filter /FlateDecode >> stream xX[s۶~S5\LkNO.V;I@V"^lߟ]Hr˴36 ŷػ'cI (`$:g/KًKy̛/<=%(Q3|iť !"`~,0TH& B/v+,qEg5s ؛)ol  ꀍPzTb&tߌr_J6‘U j p寒ryS,K35 AS`,rM^M"EUqƪ]iQn; EIkaZ1jq%& B-|z߸KQ*m޿.6!tOq$UOe?! .tNJ*ګ0][bps(oe^?[0WHfUuk;w`!X2wԤp<+}5pna>Ecڮx+usZ-%`&Yݮhm%Г6]_|usA//q G:R8yO;)[\rMteRaF}*+EM Mmm^Dͫn5mσ1'94(4PC%ts2X yF޽x8nQ D$62P$a)cpz Zm&ssSuue_RJM%=dCjkAC^_\_N__YL|jX^-2m43CcfC7W`/] pӱk0;c崾X[*_zWW쾬hں(RطN.vڻvcX,LDnz7Dl>YPMpt0v51ʱWu!BG[yMa2YZjaH?iSE_O߭("3WsunS'kQLVh0? ")D"džŭHksS,vQ@RtDFKEGK=*@H@XAi]^jZaUoݸ (qvut.B9g[v"Ryh U@-+`笰>5( \{SC 娨 TTJCBXshaR m_?aG z6ˡ:jLxzbB1ccm'?GADF9/<Jq M>X$M ܡl5NC  SKTC$C[ʿDMRvI Iy7!mQm5NxE.{괚mXAjN.n5g`k]Z,ғMMS[IF}r M6֫ ->rą%L8zqʳ*+O{PK ˋ#3Vۤ '4Ow>an(:RI&e˚Wg^e,5R-5R Hx:DStz+#paY~fSؚZsec\2݇RWo/nw?C{+!DQ˒1:Ae endstream endobj 2608 0 obj << /Length 760 /Filter /FlateDecode >> stream xŘ]o0+|Hb(夵&n_bCR9xMٸlHB0h @83 @uXC싼{70V"Zel0zs@+#s/poSBS⡜sK,VPFNqی$%\"g}Yȏך.U"_lL>+^RyI(3K u==ȟ3,'6g:S8ϽP:],,%<J;yJ:l)U>P5Ik0)KKKa-ɻޛrY-SZ0'qeiqLCmK JGXppܒj`eVE=j6WUJu l[1v1 }qVbQ]*YU!}$՗ fOڥ.H9I()EPױfr:LMk5k´A:8nTV.kaȄ6l#Zuow̔Y^Zd-0nĎh)=վ|6q=B/$: pC%;$ZK9^> &ʥk(+1x]9ǂ F.l&ќ*qn¢¢SXd!?d (,яv~4{7mѨ>6ڵm#Fe#k+Vn]DmWZ}u_Pt ?wr*^.4BO?$jN endstream endobj 2612 0 obj << /Length 1589 /Filter /FlateDecode >> stream xXKs6Wp 5`<L7]8N$$$3)j{&? mi/-}pw$$8}<ሊ8A2 JLzo)w8$ %8!h[bae}x.ႇNyҽ/xvK5~l^œ+: (iX9pVe`ٶK\ og cg|=-eZ3{A:+Ku1֒K8 @pa$B?ڄ% 3p \x2.թ'QW ұ:5,aiD #0Cڤ{'#x)>ESIOkɄO}VSGuU} k+NYf<1̱Џ. ܉:/'$HS:||쩓}dyfG$5/ lVJeo躪<M^ `LC%:>Eq VfJZ͘ab'w9|chJ.KUqP[[]pV'_N-?O~7=XLkk^@nnjve# y)d. 7d^A"qte.sa#B BnK@xv!|4WcPXXYNgҴ|_(=Zt8"avM5qBmzףA_p_Ç hXckZ봺]8PU,z{~sV͒ -E\q#ww#X@}.7}!_aDfB8L1?eϭyQ*ӊvMjCs(}oy4Rғ(ÎTkO:N.UQ nGS+p* }a]]ivk̾Gا:/vdPg9~fX@ i! x/Abe3G endstream endobj 2616 0 obj << /Length 1255 /Filter /FlateDecode >> stream xVK6 Q>E)lMv;ͦә6AiZYdOjcgidrHBDHD/8LfIj,j]; 8{x?_=i$8x&.23hKmRx9dDo-ܧb&m|{7/uUޗn |4vefW/q,$'>ݭ#Sוf*ѣ͵ztK6/z%͑:iv`:\(ft6Zߺhk͒T :R9iU=fh(Z*uQ ۲4Zs [x̓'W03 @QMm'OPr%Z$\O~q>9*oƨ kKQn>(eT;8pk# xt$P0?|R y⑱"=Eb*2(Q wDxSRNѶu eh}oKGQOdoQZô> eV''א}@e4@#vy@ !2s)S)sFɱ'zCFit$ cdhƦLiA^A 1WPpeKެB GrOQGQlٙ PdB]Z/>Cb<[|YiIi/kGyzr8qjϦS_bΙ")hzX=[^^C=Q p!Czڄ> ;.z="vIڮ/.v,h*w~P !׮/;~jK&*6uզtoզDlb?W6, vE~v-%(Ux)q* CUBA)_eTN"a(hu툃kD_U8\||9|a ~wR=p4Cʿ2B3X&ajubɮ߬дis< fVW |e?O'xʵH=B CbSY. OS;\u@0>9Lt$)Lnr2S (8/bYj%Lyʙ5_7/0v8fʌiHv!!"jV endstream endobj 2620 0 obj << /Length 1182 /Filter /FlateDecode >> stream xڽWMs6WHH0o:RjwݙND22P@Ү Iؕ6rwv@QA|DP؍B _޽?)-C( I(J z!9y.!}&4;i9wаpGWs-my&xkO^ݓ9u7\u4OhRAT}eivL7ּ{ܜ/@=7m/ ˃$oj>TyX]]ݦW7u aKQ簢OS(Pc5N!W>Ζ Ԧ6?|6پk bwI T&44Qq(a=v`QapYŦPڳdzR Z|Gsl[:NlPnjw߮Va:W5vu 4q;'H,:QdGv牋_\_Jj] [ogu>.Aۑi3Wpal,%RT2#D.] u+*GXo> stream xXYs6~`JuDAS؉:q%Ǥ)MG0RXsFtvv69I?Q韞Cd>>6^@ V\i܍mM]fFa64{-ij=1 ^-EqڹK0P}xhԟG߹ ¼DW<A >!sJ"TfƏR]4v80Vp64)rh=^UmU9  VXU i'F j !)(~a,(cO`ub02'c1x+TmeJ,rF nHlQOf7inMϰ l"r)fP'8`N++/THR^}9ld!=4yS(:V {]&[휕 :kD^ς ~YЩKt_5vy1dr=ͺtWh7I0hOCC-엋)1tna(Tu:Tfr$YQ%n{z"_V) G,]-׸XC˘n1 ;>-IՋkƥ&eՖsv*s;,iY\Uġqe2BbNj!}63A?#6m3i#:8ohi7o,FU]C[鋷Wgc_O_/>++,46zuܡnn71#S?;o6Iq.'PF}pA $2yE]=toSV:+C_.جpֻq#^di㴨mc}%͹}6lbƏuR%TF#̈AC4Ͳi7)<0wgMmnZRe3ܒ  o< 8)Η ~T6BošjZ{JAu9``l_O4{{ŽQ\gs{uہI7#Fۊd@RJ$:&dL`|<(&pt2X]B=Mi.\]$|˸p:\aLUz&B1K b endstream endobj 2629 0 obj << /Length 1278 /Filter /FlateDecode >> stream xڽWKsFWQdxz8Mv N*! xH"B`ߞ w iuc"H3C8Q78Y|$R24#!, 2s)e{.NoV=x>Û/DI)beGz.z$H>4h(%8$!5 qz_Ow^A(p>}#Q,֛YoJAaBz!|_V~2|Zy}yF:3vLc)cR.l܎ 'wOcnF:KP;)ǜ ^U~W*(qʶ7eC[8ԉJg,3ڤ=Ubyq$&rpEwۓ҉ ](#:-@7FpR=vJF!N?r~#;KBM$0k. l%'PuOkPzbcf&*#D_fCIXXD+L}:ߪt/Ý/ :?t$DI*nuNQ'Cu*qIvFYl8P5\%<^(N>|"(a+ D n\b!؎xCx˕^˗}_r;n)iFe^L.`??ko7Sx2pn{ 7 TP Yٵ}>ϫ7+w27մ:+B*ƁqՓ9/2^p UYx2Od:`%:Uٺ"l0KXX6R}kЍ8OWKe&?~D]z j_*\.z#`fETRWaT =(VV cښ?uIص9?̬j:&5BwjwY8[Nce 5*3#Vfd R=pb+%qX6q35}IEfAЈ2b6" nHI HK=āJt wjR}mKQn`G n.ŒJhGB)\è0F^xBy9sAE۶\2L94" 1y|PEuCckCf!*X@30pCB:U4P4i-T; }.+7Σ[Yȱ KYуh<(Z endstream endobj 2633 0 obj << /Length 1723 /Filter /FlateDecode >> stream xR8=]>Z]JInCLcN ~Y2Rbѹ_Ei@{_p9R*&HJwg ^>x4?q@Ҝ`|HHWq0B!!e>I4d1ǣR}A4;0t1HcM  F1e$R,< ̡‘2Ӣz_qܰ YsxdќY0c}xttqz>>}{v`PNvTΓe1& PEv]MߚGZnװLUva^FC8vò̖-d9,uqb4<"c]DeXV}]ɲYUW1`n0~Ƅ4"ryXnUbJ̯F%+/3#(G N2Dsń^, t+bDh$MgsdIXdk:IVk{yn>Ƣ(6v},bZQ&{V4ۿ+?NG=T4ÕI euSi}ztG ?1% ^L{Zi-tf0-MhwDk}FH[N=@1 yG3*5T4T@[ ?`2,:^ ]`?U)Ln;&Dbdo^xx S30 WO_p0}z!5P f&Gh݆kiW]̓I%WuÒ߳A rNߏ߾ : /9FO|Y6쫨W7ygLN2+;d6iZҬO2Cp~27a7b]M:An,Gf3xYrj6ݮLaVҮ7F4Ldb3,% S |^5WH߲Ybs=c,A :0^9os_mEJk9tܼ)=Yx(3v6f4l?yR( FWSJ]˺* c L\"3h.ɴ>А!$UClV$|kA3lpn6u@P{erݻsqwcI98<} '(w)GwT{{ ҊΝ4$R[FMh(hD10E:kTyr-r> stream x[s6+3F C[Ijtvbp#8dþ!]dFd{6fXzQ4 V{t1{͐!!lK d2Ǵ(eKnLdW:8 'e҈# D/L:*#YRܸۘ̔44 o/f=bcȢKxVE^q^+_JXq(-'.:]~.Zo|JMٹF݃H-{u)Lwh&](rBU"lge SI9N-=E>q2γE(䥆#010^o35mԐ5ݎNC=E~O`F t<; pAbN} <ۄ :dJS>RSdߺ4_ $R> stream xYn7 W f%J$%ȡ |+9 rEQ ҿYyP3z(n)yGȥ`g8B`{])d{.bo&RdSgrJaA]6|T!($ .jV6R6)\!9!B.LʅM"RK|$2 Y"s0lkI7h6kwP9nSe|VCYlgۊ4llHl(#p EN.`#AhX'\`,@9je U oBa"Jڀ ⽍R &<@zRD7\lSa-q0*BxHX $vl*,dwu|`- dCHlT$ 2$x'pP%u"d5 .4`ּB0&6B6 ZC  IBiD@/A*A/a dp„**>ҩF!, `-W,lrCU3"{ 90&nڽGF[?9҃}ݫWU˝rk?'׶:}ڒU#N6 ?F<m#Lӯ;߼vww޻9ǿϰ}rwkLwۛo_?n7ß{oq\>ǯу{{|0#Ks9TQD?F߄4f-6wD=Fs\F}sC8e~01OvEBs\  .F1ܠDoX;Fq Om$\|2#~33i gq<ȟj 6o)Z h-Ht6ڐ9 i;I(29r≦~KiNxtbŻɟQVҖk9ʼAX6LxβAc8RL+X9r(\LB[B!PgݟMؓrfnR#Kllz*t NtR!T^[<5N6I)aHiȺG|^ -s銺p)Us:9KYxvE[K{@UfN\:.'xDAߞicmkX6b?'}qۥ!os$:[?W^*.Fi34vNչ^V6璭 }ͪVeh ܤ.\`'2Ewr13B1Aϑѫ&?ppm nc(~(ԗKWKz|g2zQFB~P—:=cX'|RO|)3vbr'1qۧ (/ynd-jxn cœ.M Hx;i}Z endstream endobj 2642 0 obj << /Length 1478 /Filter /FlateDecode >> stream xWKsHWpDUx đnlj+HZ^ HN}8TE MOޞwB-jK7|?JimN/[u,HZo,[k[l0Ofq.d&>v}zyW}2dtvp>m 9vdE١~7,< R;8<"XBkH\ku#,C:y#\abd'ڋcEٙXe̚H;Hd0B2'k_o{@2<~=[1JݱI~8 G9 A()D!LRf}[oȆQUW&NW'c aSfkX!q(l4]K7^"UrC;,᱕?1]2&>òF2M;.Tҽ!~"<>bb<-f<6O bq;ASQ!̟m 7/؞azg~鎌K~c endstream endobj 2646 0 obj << /Length 1625 /Filter /FlateDecode >> stream xX[6~_f&B˲X$DƗ{dID v$Y>>; c( (*nO›%{UH$ź<7聆/x_ ??}u V>R+uR LVI# tuz.I)8R^ -(Fɋxt=y}?A|Qpl'ټ %`Jfv foT]tRgTXE;7<F*l kEx[| Ŀ- VcԅՐa0~]@a/pJ=l@Dž_$F.4{u?!Lf>pR45 M g<2`^@8mC f吰 <CI3uѐ:p 3C`d;B9OB"쨞.qYLa1ߓôC&dcC} ?<{XL u(DҡEcll c;4=>[6&0[o{O.ݡPun9Tp#]<ˏ6~OːP1 F!LJ+H Q77}[R!HۣzS}iPlz;D]nDzt_i/C`b+=*վR!%ymeJЮ̓L]QP.v(TMY@ꅪ0SS>NWrhkE<`YYZSUڲPU蓮B7] WE%Pg3(L:mhQ˪ +pshL0!DIt=v5.Mw,3.4YW5+Pykl)XSR1"Ց$Y]*%t Jm.Et8a`xkemn);d=]2Ow?3VÙ@f07+TS+ 9t"2ȼIiyi|y3.!Ane3Rdy0Ya֯+9_fVItd.0%z.&U_:íܟfLaLM漳]oF fLxf1j25Pl}/X4 endstream endobj 2650 0 obj << /Length 1246 /Filter /FlateDecode >> stream xڽWMs6WVjƂAבRS۵t( 8H$Jͤ@`xo{1G4 =$bOIo5f0U|p>G0qLʋ1Ϯc{hp,$ህOl(YrZz P0E(1 7"(d9OQ' 0}!N0) bqCh G:^ A߇0&^>(USuVKɺQEu5b<1hw7D>$c٣@ ¦YXyl0Խ(ؓԇ#D Qd}U.'q~8(Xiç\6]Ұ u9(2n3NU|f  +l_(g7^@v ]bc$}fugH.]U atPcnލ@__F^)$$)JɤK]]ܿIrd>(0~{ 1$.l˳U&gCR4zn@ߚ Zcn?ao b _ &9fFy5,:!pE0|/ltDάlT*b1F_rz=M^Ƨר{(UPeSgn!b$9^~6yrn6Ɋ1)|N*&Ե%Q r\' wUXaJ]nT-7Z;KYTY: TutYhc# :/!A(dXY6cI[ )}(ALW&B*ǬXۏۡ**;$4 1^/5ƉzGN*(zԼ%,h|-"dr"w 'hJ'tTlX>0Apݩ.mGDe.4tNe^ij0 LM9U唽IbJ*7sOw4S6^o\@Fyw= z6VDlk*KwSIR2O#REo%}hjd#  Y Ԣ3_-Vlϊ\g0OC/Ae: .\| endstream endobj 2655 0 obj << /Length 1397 /Filter /FlateDecode >> stream xڽWKs6WH͘#JIjəiZ$PJn_J@`/D"q8A* *,/~>]Uq@0JpB24 #x0[WlٛTqQpM6ލ"JiX-E4]Bu8*t2[TXֺ0uv|~"+VNy`:2uS6y1gܙbaw_sN/x<*&剙vEb|ʜ41C5"s|W 7a:;cKib4S%GBWɜszWgEcÛ؄j_a]D`i&@Pd'/LHb1V3z\]-<`"hf ("ҥ>H C }8vBO _T aM.3l% ,)KP|B#&`N e9PFzED`!}؋N6hvjAb +ECD}:0>h(Vڼ#?nH:a*?ASW '$"7 pTxa@Hē# FR ɁH:wfӶ63WY>?j6M-jG]# daw[M7׬D!)Q柽|9. Z{c AaSI?q]j>ROWW2ZZCљn6;oҢIoF;y^MI$hTiN{l#-#aF[m[7ݔM <9ô- g" 2n endstream endobj 2659 0 obj << /Length 1245 /Filter /FlateDecode >> stream xWmo6_O X _}u%(efI%%NHwKĻx{ɂp#Fc0 id޽XI/pFcsܓPP2GIs>M7d9<Ѿ?#)#~6붩cY*s&YB q'Vɫ: gU T*6hέ[װdL0M4Х|N}ߺF_ RbMJs\=.^UM jW(v&)T|?&ד/Z" FF;5 ߹lKe%ps(4qx@4BG>32%aTBWA<)`])͠)}ѡ*` mJ!2^ɡW6iLY"_H$Ha\}̶*fLXڳWhr1s:> Eձ˺ngj]ט &kP/1K t,5i, *6OZ3p65CW1 ,ͬ6ڣO(oewhؽmE !ޅSC}ssF!gpC~:~-#QSAx窬=!);ƃ D^|{N^۵iY *R<3LuQyf *L!;"mA^D8-1)HHu?4 C'sZı`976B2&?AMޣ܅0L0n5s1o( 'Yaxzn߮m 9c8}gQu]"3+dl-N\)s~q-nEJ#Q"/t:CzC-d pW4vE?vt[g'Y' v.f]))nuG]> ~w㫛>`s3Ctroln'vK+>0@/qV{ʦZW6kvpPy8@'iuYwRٗ| ZՖmh;odC5`7Mx֍*fJc:f% =ZbbK.˜F<"vs!{vY endstream endobj 2663 0 obj << /Length 1003 /Filter /FlateDecode >> stream xV[o6~X "bijwN$C٦ɒPl+QbCaO~Ν= D$f*DZP#T'p6@HJR )NKt)LJ *p%߉$*ƭڜ$ë㫳%8"p৙{crc_sgڻK؞Cz"b PS #뮚yUYv,k Gfb=OͧPVjWʻ^|ٷe<" "wEJ,)l(cHaau)XAgRl[5X{(bn_[ЧĻr:'7O&QClfKКSuMYvۤ(,_9 qǔV:>lt81ފ5۝jf[U>IQ; Um(XD J}3@DmZ0~ ql`:WK2`)|ʲ aC`-b?B@νt2lgfq^1nߢvNΝ|IǴyl.ES} _7o:S dfƛֽTŴ: ]бQA98+(E՛WI{ܛ6 n OGNfϓY|3ퟗKH,]J*)t F?V^*KS-DlKEm0YyЪab3'h $F_j pL͠;!B)uwѡm~g~pkvQjVU[A+7_i}' jE>ijʪv#<0)6iVSi l@ÂG[lL׀pч1X{Clz߿z|L^rAQe*P}uA}Sqz=߭(X[{8ߤw> stream xVMo@+hK׻΍&BSJrpI,NY.)ڋwl{O##*PThS,&gηa1>,$-*8g{v/']kvYg!4eAt^mH))$+lq(?-^Oĕ\ HLt˘UĀ(ϒ7mpPshÃeZrul^ ( 8~PPB9yLInbOgevrb)_ҐѴvs|F%OZp&d/U @Cb}hk gr:V51(N2ODƖNtH$HNbn?l:N~>EЈ^YbiQg"OVd Ѫ,-7ގ_]hSi Zm(z~#,$&N |Ey[S֥mj%U X+KmDxw[AN.p|;F/l?`b1oȅ=RBU.B~K,UB>JlF5t:FZTY%ɟ^U,Jsaf몒/o _҄^QPU$՞W6 P \J_(Fo'9< endstream endobj 2671 0 obj << /Length 703 /Filter /FlateDecode >> stream xՔ]o0L$b;u-tt 4Hih#ABBcVAJ?4mWv>>y(G~"H3#-(c4i}{;~5~ [RHP8A! Z]9 S]R&\Nbz\IH2|~2' "$ Gݛ>$&AgXfa9pv{]sNߧ*+@Vi^`IEyge7*fwԾm_))h..e\WjU9YJYZZ!Ieaȓ';v0֓Ly;a*JKEo((µFUGppϺ;M&H$^#q9pܥN..qEMl\vb-nIj7iW autŭ4F1)jf`2ǵBJĒT 3(<|•>IQ\!%O_ 7P 9<@Yꆠ;Xq5C3h<玐pGpg٘;I쑟=Ki2Y^/Y'XY|K]-4|gq&jF?X9l@ 2vX^mn*Y܈ōyaZ*m6md@n?2cƫ:o5a endstream endobj 2675 0 obj << /Length 1622 /Filter /FlateDecode >> stream xڽX[wF~ϯУ|ġBcsJADd)P~}g-9kl !ۙoF˂ۀ/>р*VXɈ" n'믓g,-%ZJd\` KW]$e}v謁Yi2[ 0|{C&SyʇtZ. ʯ)pY;53ʧgVwr[c18;g%n/[[' `B7&%DUM$?xrqW Nک;teWIl!Tlv&,gၲh`\ZjH:Pu+0tCq (MB aR< ,VS*/bg<|(Knb+ 9' gdty6"<ƍ9"><]yImkG꥛*2o_el5];ӋʆoƄǗǯF?CK~rȦ>ש~Z՞,@uj&ysǚY ?gPh[q4)Ὤj˅+6ލ `#zq e0 ;HPprq 5a;^UEj+ǰnE>t [~eDg+Y骬j>3Rɐ|T;g\76>Lx7Mm6>fku2X \]IkePA l+bU[MUNe+OPPI,nT@G9gH6I~f5TYw9P :ARfT hpRYeޮˢU%N,n )gk1&`գt ˞1/Au jh…#h&& uxs&m:"p{| Lkvņ܏YZ"[)۷R"U3D7YQSiĈ692,͎d)gIb@n]'8AAX=&3i:֟0S(Cmoh7ŠMo] ?[쵁-rÖ#ӦGnPw]ޤ[T8KCd=8c8E`Z1p')w);q = Z. /m`[z-v\1&O.-Rǀ밌$ȶ2;r+{pCa޹rC>=ygf ɸ<6Xz(QF,=-?(iW<|3aDan(}̓ÆiR5kɤҭL칅Ly!2!$C"zf>;UnhYOc8ԧ"ǞϩŴ\|9eS[bTgPdtyH-4bY05G+j9hETDE>$F7l!XfAe ]7`O endstream endobj 2680 0 obj << /Length 1370 /Filter /FlateDecode >> stream xW_s8ϧ٪$\ݛAhB8o+ lI:}{Vq28o>a;,bs' #Gr'=v2{Ws"gܛ; }g8ܺ,&3v_Of28O,Yȳe\X|mF䪶?q$|\mfC̏@I'XU\&؅h6\sxsY[@O}܃e'bAEI9n֣%@קbV7:,9WBPK$mЊy|l]?l야VM\K_*p~5y3<4lb.7U)a?6)kw{_:=T4 j 2)(3J#sby~wu~mѰLQh/s@8|?:jjRcuUvg/r-bObcː >a}_MvuFϧ(m3{$Aqh^$a(e=bEb ]xP|tR<(+ Ga'jqL@Bq5b5Q{iVe spvCЩG\~-!+!zW͸ xe yEYF$A q c %{0qqQ년 57VvqI#SGh@&V-KCNi_ֵl6f;bJЛ4!҆b8 2b 7u10Û;QB; mպ{ʮ.jܘ-TYQ{chM:G劋F[G"2evh[ugUjt9a#-ڭ%zc~bV :%ȇޜ}L*S9ʩ O32M4M>)~ !,to'Aྐྵ{Z~~7d(7O\i5|8xUt$!^v(^Bwg u[NFbI̷0m8ط~}wؗ^c^e6KPg<ڶB!hJȳ endstream endobj 2684 0 obj << /Length 1845 /Filter /FlateDecode >> stream xXs8_Ggh?`xJʕ PB8NVDҤ-7s/,o߮~+\&$y}'8F d9A$MGKS$ihFBd%ҳGuZj\EOH+83?~WW~[H:Ӫ><=rsCb$" iHFTN,tv}w?*[^SV׼3xbȋ-+哺NO1GOx &eUY'3ҹJN3?QEvp4WO̶jQ*۲m/9`Yq]\y6@PQ;GBS I_#͜`E[$ Ii"A d2?'||`ęL7s6,B6nZLMnY4AY=AĘ&+sy &o`jqҡUP+X 4'̠^)dnPιH2{p kMpZ-?M"Hit"AJ .F ֒|ߓBޞ6l$A$x'1h1XCI!\Kţnm`ى\`/1ӝ^O#&bG'XʆIǂ0 $ 1R$@qL- bTL[L L% iB1.v'dӎ_N& C$肈ہ!rTt?ǝ=ji_}lS\E-IEn_e a~~6^AF:uY^ސYlo8j=+Csqs5 R+ǽWW !/I9n) 뛉0w/Y_r/BU(@CW>?%%ئJg"L I $ ml fmkr (^D 5v ٍP~l]x1%1&l]$1-3׿Et*R=<cIخ]I ݆mg`m!Fe[ 퀒!&!h>42Kohpzg~yCiJ .a >n-!3{G?pTQÁ/"l \l3l}& N $HNdzٻJ~?ޝk$axoi餲ePAE:׵qIBG..7sr(unpwW[ɎwlFXt] %i$<*繋(#m/*m P5> stream xՔO0W1Nxc]:i0ib<-%iaαK[ *B*;|E3DIG D(0}!>e뻸w8SD IHQgG 6@$$yȓV5ΝFjsY(cb])}gѷjlMqq] 8ihUiJIgQם] ~*KSdeA&ƇqMMZwbnHVƠ( ǜK+20@wW|`Qt#|D)`n R)Q 2uf))m>բNsG'Yr/V܀;Ǻfq]dK;A-:A_ś t &2/5DR`784 vi3 =BlB;hThu<ܧ|3Aԩj:-:' rn(g!}9vJSE 뗔dYNO0,XԪYx!! *b114jM,X勉UK*-7'~`gyq3°z C9: y> endstream endobj 2692 0 obj << /Length 789 /Filter /FlateDecode >> stream xŖMs0: -M֝iҙNfbC i}WqtҤi!iWjC3лEPHyUM{`g{o^( iPwLN>$:v}=+ ɤ=9YḒK|l]j>gI_QI\5GNfVM>*n13JCw{} ::qu`*k~,"it9Ѯ:ׇ;raMyg E"}ch f8Fk^;=l(ؿ%_ /}X8h9+}'hb endstream endobj 2696 0 obj << /Length 752 /Filter /FlateDecode >> stream xVMS0W"a Mg ml:ӡqm]Y28$ah;kvߓBQt>> !fa"H"|,$MQ%%s2rE$G8>M?%ˋMh¢> 1ˬY GHSȇzP/"!s@VPj]dv%RqXKg{CYjL~EQ/ުe:u9jhl^-$󍵊>DitmacN]g/faOrp&Gbx(&qi:#$7"I768QdxF Qq(8 A9C02lQ%!AK [ Q̱MHzBLP(BB[S\5:S}R,1KH)}%*LN16HƳ0;3a8d룋inu|\)NJ*BA\ٝsqi*/b'؅@q݇~} W'sBgg'Q]}Ppt-lkK7*[H endstream endobj 2700 0 obj << /Length 1019 /Filter /FlateDecode >> stream xW[o6~ࣄ }XS^f{%,+d;Xr"Yl^,k.rѲzu0L_RN(Mg~_}>"w#z0h@z7M"}4U[I>$-e=7J3P:>/rեg :%ێI'Qvr…[I6}LGYK{Xoޏ0]y0ĽSbIeOG&3 Ud604`bR]2 3<#7dlm8A)rN0 ñ-o09]cU ݑܠ~ )0ab^/Yʮz=xSsy^oRFYrꭣX*(ɻH*W?K: X'7p'ȷ+ofҬ=d Os~\a]lU|vBlw4mC˗IF[}]n﵇5~:,;4OiDe^rRNN^չ/|} ӖxYRe5['U,F6\?DYTkokYw/HN > stream xVMS0Wh,aY2@L8[I<vw%9BPkeWzBQt21  dTHQl~o'O'QD%8&1E I%Hr Qsoj?LxeiQG("4yKy]O==upz4NƟ] S1p Ľpν^uEǬnzu+BzOs-:BvMVUuA-u ]7dr|:Jx_8RR|26B.x||?1#ig1g(gXEڔew&0LqH2YPV/ azyЭ*Qh fHR 1$$0Y,ӈ@a)( e^5vߣb(!k?<*tϒd+3-;>x{F]]mGla$lb:N_|;jEU/ݚCx]9FDt3sm-CkK>u}l}oVgu7^aTxc 4 ]nw[`. "Y{/3bmymyЊhmuHnt94JRО^&PbAĿi @&M +҄)MXH[DAʞE̍(}t:VזjU畣Zzoࡽ]|,g>RM]12e_F2q8D?z;)Ґ endstream endobj 2709 0 obj << /Length 1220 /Filter /FlateDecode >> stream xX[o6~ T tX]ZboA؀%gl/~[6}:Ţs|G4EO:$VM ;}{2\@DJH394oTnL)Q1κFQZ12' bd{:X* ÏW}%8! u 9R$^a5i8W)߸M"v${2}opswuxaf'LcO~FYZd(kvS pxʎpICX3/u>\b_r1͟v9~ol+Ud:j?6]z=/ә?-^!/ ?J4t, fp}TGΑ3hQg[NKq(]l\+tY:@0%~ y^v?IIZdiӼ"9aPÛQ1lC c2$8 ¸#B 0N~;(; uePG u`DOF3*h(;P˚%K'm5eG#AAs\c!dYJix "<:֧߫cFE=[Ɂ>6 չ.\(2ji=|OFK#+ `25<]> bU/1c\?U ] P&" ߣ䏽Gɓ޿9qZ<23aSL7e/B endstream endobj 2713 0 obj << /Length 799 /Filter /FlateDecode >> stream xVMs0+tgзeni) IN'́A<5;,pC2^EҮ>1E DE{ d(1 ҂bܠy#,`}:})8xN3t*)egKS1O 33o@z_$Ѫ̧'mI `< ] QCR{1Amΰw0{w36YY$X 2Q2mI*$|Ubm *D` .75j'cK|W#q 7q&ڻ;^Gbf+ݬ-33'"yΚηM܌Sfbp}[/ݸ.juAL`jw%Ƈ4+s*ԾTE-bG`m6kxMmt r ׬2YK;M.*Ը C**F{1x웧HH u{G 6]CkKı]BAQU.·uBbMc\`8 JbIjZz ʹ~W/3j>F0tށ i/xmfӞXܩ<&zjV!PNׄS.?> stream xVMs0W}  NN֐t'`\wpcbgt !jh(DfAM!P2_r)(Ş INpmΐ:iQʄU'Jg+RD \UNMKĉGG͇d:֡lHПMg&ss^d]L"fݩu^5= w[v:zUta<΢t ?8Mio%1>Q$s\ٳ@J/~D=vP}UTB]l!P؟]O6&NjlYLJUu{B!Pϑ.vY yC KZ&f5Mmū;- 8ͳfmpn"mR#ץ*$lŻbF_UwJ%1wWlgi Uv bDUڱ|6cDir}PRqX'tFY#Sdڔ*{TXuw5`pqE;ޔ˞<wbc endstream endobj 2639 0 obj << /Type /ObjStm /N 100 /First 982 /Length 1384 /Filter /FlateDecode >> stream xYn7 W f%Q$Eȡ |+9 rEQ ҿ6n=ŦFO)jfS5ĐPRBj47(d3GH r@5zW % T7 Z\]%(:"VqƟ,i04sr7\Za~9jБ`1vq!I̢[}k8Uqs͂L >ͬXdREV1$1578n[5.ՇYn`egg6BF%J Pc rm X=p-٭D`qM[iaU(گD)AeC.x:VR8GP-s Q_>?0[p^L}ǶfLň 0 g1`bj a*dc[.7 ,YJYV+#06V#@DiI`!a H~qv4$GxD*!`H%Bf[Ejן{KN$b[`RA=v6ۗmvcxz40Ǐ6/^Bx}{s3s\{o-'@̾&rB[ ¤Wn? o}zvxnw7w`hmwo|?ڳvۯ?@ȸPj'L|n1p@ cf(KAq} e=I)IΕ#Y[8$-{$ L8#ω[z,9ɽԋYJA3 )PATFʰI`2ceZf"ň@x(!LG򍆈w{(GyP)tS:>I;ŁSs6BtKZM>GZ<B{P)A\" DgtH.2I,i ,{k!Vn)'W+diK%B]g>*Y|uR|ӰTiXak~4_GIɾDը3U%뼬M^ HqCk^Mb>G8}CL40rj݋)3zaS ݒOCmz|,fϦf>X\Mu~fR"QG4t擏v~'X 89> stream xX[S"9~W$I[:2[V@64N~N. 4('/_(G]4kD%f*BZPcThû~\ D)d?F! Z}m*L#jSdHѼLʴJ6$|Q Iڒ%h[Ṏ%8&15jse]essҼyby92r><S(fP4_ |QNfmP|}~;=c1ahLfƏr,h\.B?uzg7~azQ0}7n݄4[5ˇ=>u/Fl>)[L5l,sSgEO-)ᥙ^I1IY:wE>u}@l"cyc {u~B 2.Cjwnnb!\x0ƹ)sHL!),Z97 rn{Ld6̧I9L2^3% ?=s[׿k7v1#չyl.ӑϗ0BUOբkt qfuaq46~#hρ}VS$iFz a J"D 'YR".o#׷C`0|AR7[NnNtޯ7$ׂ'K.'C_-b"dvt̐pSCUGHly0vp" |k1EeG4l1M^v;xvbe¨W{^;wJ ,%+ԝj^fWθ벶GKEkMf슠~8K.±"0qf"dheugضQ&=N'WGx@AX3pV 1I$6DQD!&硲bACh^e'IOXrIGÕu+(TGja"P+eRV `Zoa 5=Qw,Ԟ(C5}eS2-*2~CL wg {c 78Ddr{a7B3pG 3rG 3z2̌c&)ZO2^CN$Tlҁ;\P8A0]eUd![`-E{!$ r^.UpMԯR7md\t̵Ci .5nkZ{P5g>L.iSrp-<1<mTEs]]+YnqD:LC9áR*fv'ֻ )aX~W^XӁ_nc%v«#`GT#G?NZy' endstream endobj 2726 0 obj << /Length 1380 /Filter /FlateDecode >> stream xWKsF WH͈}ȩiZJg:I4vK2v.Kautz>ļǼgQzQ^2f7GϟgQ1F(r%K%Qz˕OK$`GDYX&H"BwvJy1 "J9(H4%^3%2\OR_Nx_.Gxϯcv%" OeDPn5--^wu*]۝Yzf]l [U5#Nġ`؇lHFZD^UQ챌v/5݇%< :Q꿟$ys ~!fX'"i҅cW#Z CDmQŰҵ*6vNUuӓF$e1CIUO׻iU[ P/8|??[ ǪUӾ./\NmN1Ļ#8,t'= `,_W7%VtEWfyv+qd-= _uEk/Icm, zpNF/V1q_x*]B%! EsFu0-r-bfreK}iOztu=)6`SX~O*MC0(!X\ HC LJ鄧Fn)n^OYF$ c.7&DD2ܥ~WjW*T, D_^ 8 {>0:$$'IXYXD,tObk(_0޷Gc.",~oi3:H#o vbmק.1cFcpoQf R 3 tFC^bd3,GATs1Lc3>md]@HFQT-%q(d L7 ($廛?^Auh+o]qJ}|˫ޝ͖0 "p c!Ls,d+sRﮗ9d0*J{LHȎF‰`t2ދ'bbAAw5WӻBMjZ齞 ?n0.Zwխt ;}NWQD77<5zܟ8P6jɿ7_56۸I X=7PLpZPR(Y;6WOm>Zw:4(?2¡E?K3w}9P;?aG ^8ㇱV1}s>mdk I77G!M?hiZ=LdG/AlX endstream endobj 2731 0 obj << /Length 1114 /Filter /FlateDecode >> stream xWMs6WHX0> 7ב]۵th9I$& HN~^\}7h(:! J̔Aq"Gxw7\&>EEk0 'XE+޻i\L2齍&݆֟"H7-ğQ]Ki+<&]Ng. GNLɚ"Ő*,X|#A+xb7#[NlR Jq(%3 ~%STR8] T.WͲltuM/(!=WI:@);kq.,6 Gbhg4iQW͓.:+RǛ^gAl3{x?w7U#/Wy#XbxSˇwsD@,; Ȓ0]qnYkjg"pnMXwmt:fV8,6ub~ +3(7 /ʺffZ̗Whqw{>4Y0 4'js^lfdCf׭[ǧ]:\l>;ʾu^Z9GC, `YmD8":@*^s>^S^0naOB.ԂchE-0y燧3^Un] Heyv.vʦS;ZE.uQ~VbϯIrzZ9@JP܌Y̪]g(4-0Ʉ!Ϫʹr*orX9b:q1{S_Zrf>3c17hǜCab a~~ 3QwN;e4A(ߓ[.Cl@vj;]SN49S\%e=֞OG9/qެAf."Wz/ },R0VnFpo0y؝.sg.HѦޫN~!*Vf74OYj5:MN<!e >+# ff* ftZ(>Hihr [_!~(JS'ڑ*ϱ/H$zI endstream endobj 2735 0 obj << /Length 1487 /Filter /FlateDecode >> stream xXr6}W0.ąɃȩIXJm0%q* DwA)ӕE"b$X$x60x"P1A* t,G`dc?^8 %` $ $È8-7DDC,ƌu^n<|9Vg2dgcܕE$xzD@0JpB9DT!vb6+ /&gf=ܧtp$ ""Qih ,~Z6Ϋ , Ȕɭ>1IK%ZfgcnvrQ-4/M|^^,W˱ `}wJ=(<ʦxi\-]EnlO*/}62i֞0Ĺ78lE.yYz-T}}wRE\eT۠1G(/vQ~hH nYZ{J{hJ{&1rMl1F#hk9 \ y#2dci.W⿱~S3;D$N/ͼ٤uk l| VYf^ACV$1aefȻ 3yhGH8:=њY̨l=&!("!:c-ZbBBc<7 ދ)1,U^P ℃=Ph̼RL XYO[l I8@Q!qb$C7DX">ǰːYDLDER<ƈDV R}\.bqYtnd 'Fqlq#MO G LGIyɈP xNpee(=Ss3_`_ a`^Q;ށqi{jO+֣Iu:jiuF cwuwJtSdT dS|_ש.2N\ZSļn4oaPq-t5EF3Bl8boC9j 4Ԥ跟x_ ,ȐcĴIA$a7<65أ|ߤEG%Pd;b 6p33D;JL~BiWͯ߄]@J3W<>fbԤGh4>61}=$M$̘7pP!"5m+U13K W\0,\p9:yr=k몁_k500狅i20qnm̧EVۦiRӝ"]Y\[ίC;z]@"bov7[lJ94=cZTMidӕ+D3O Cㅖ*z3e]>712hrS M@ 8|3CeOq+] ,rwb߯uI3> stream xڽWKs6WHME{rq:]KnS2 (X(dI3^D<va:K'tΏNeGyI8vw,M04#'?-g6w> (uժR)HiӫLK`+/"s/2D3`4/lrs6*bt zYjI</X4ujz-$l|dӶÿ́D=iiR>iv!Non.gW't&*r?( ',ZtziPN]1s.; F %I:1zj< Lz5cvq (tW\*]ZTsϲ =0G#\hSh t|;c@|UT$]_ эZ'IZ(QW 7cʤ2N8-0mBJt fDalH p9ƍSHDկs[%~[ny1.D~2]LL=$ F: /tB$O8ȝ>9p1\#U;IwL 0I2?'̟f!@,CWYlbيxTㇶ㦪M;f[cbc>Wh3i3}5vHRZף> stream xWKs6Wԡf"LOcv3vjt` 0CH;]`AJi;bÒ ޜܝDA$EBXyLI^Z`<_N/XЈQA&X$yp-ϳyLjWv3H}{녖k2yD~jU ;B4^F7Vd~uRNuJT 8לrńR+Ƈ*-yK-Qe͌lDItk5^˺ms2̮GJJoF/Dy\<;mT^n-续0+7;}m#;eD7NhQ+Aώ.3wHW8~Nvz4ƤF 4 2ż$ Q2"Sff,On&q@))yLtdXFhhP0-XЕ% X/T%_Q42M ~pϙ7s~:8YgOgt6G !Gu(OQo)֮k@Ω=idO~}<>1&`e؟R7Ap]IIm.X7&o%X|C㊱{̓Ҷ%>^e OSD|@vaE`x V;*Ҕ bob/ާa࣒,!EgE Kb_ Y)Ow>_rVξ޶1Þ ƝwLʾrmg+m Y-M_u8*p> stream xYr6}WTDp%@w:S7S8ttHT)ʱ] %P|\^DX.\D xώ=D$8A*ě=ϓ'g!F7+F! =0{Z$qz?YҼRy SxޛsE] E2oE40enlm}1Nezih0LQ!^Io7v Hy*f{HJB0HDhzI8|ĸCמ>9S>ͤ2V/&YO1Gtp\MnTRM"ߖiXϕƃ-o7*4sM;p;/'f UD8>oBϸ?հ-"1$ۤn֨M+ȃ{UKNID A2xr2W@ҋZԚ煱DNm =5O|vjtx ^ QN![ /xr>n*VZ|[JQv<WuDH]ty_Ś.n:+x3dw~9wk/_M@f,'2:mt|2D|L˼yq6Mvif}ȖeQ[hvSa(<Ez҅Yiw_%*ܩX8^Bv bҦ.*܄r&@ 29Mp=Yz< ĖŵR&Zj Yp2 S(" ([[5K؆Hۈ]\ P%XR?@+T*G-TңKԂFK?9-1HޛUr|sJN')jzZF Il̀fmȜ8C![&)L\{} x+|.U`uu *~b~ (.;kĦބuЖcAĉB>p!TQԇ j":|QIٰ>AX@ )(h66Ni n%c0TWʈ} ~ #%!‚=*uBso |L"ַ"R_w]AG7tXWE턏@0'@\GmN@Ga28”\}RfDp#?^o5v>gbϣy 'Br#ioYdZބ\ܹὊΔ?X:mмrVEl@ϳƮvB.f5; LQ?En[vݵ _ͳufXiBC\FFSlcrarnx\ČHrZ9Esy[*UC?ŀ 2l/S dw2ϗ\wVS S &fLCn-d?^"[vQ&A%fW endstream endobj 2751 0 obj << /Length 1788 /Filter /FlateDecode >> stream xko6,OJ1`]tФM CW`#p%yI"%K ]ۉER{Gk8o_HN "rf޽ye288!BPg2s| #!3r> }D$P1,*Z&Q1r/a/e18NÑ+0n,FF'oE;.# sr:9:?I6|9rP}ctSq)A\0"_Vq|׊_XzœϺ\ 'g'AwGv|R<Dcf4(Ra:<ӻ4Vq6.0QK6fJF"Vhi%Jr4LpQ,4 k-$hwEKݞF.^ꏨGq7!"Pc|G~jdHٓ! sMBelDW{a#DC J}9K G?P"WB 7K`Cd®#o1 (  5 VE4@eYA$t]11J63?|Mf;~sH>2}LXJ֍=^O 5 êyaʧ\|P0܋ $ȴկĨҹTFVR P\r(B Lja=, SUJt^w^dXEE :2;Z#0>o}9V{FOpbE {93%yQD(\; $G[,9bAlAwZڭ*xJ:Pu?uq3\oI"e'IĪStim4XҘ=4\Pꊳ2]YEi u@3{&'ߢOpB&$hz+&>!Ya9$Stܱ~cGz腷 EiW֧{U4韛C_[`xRؘ֘1ZRҲZ ^TBuUe!BJ\c]vun9y-CAñE$nh6xXC{cmЃTj(HcP&U!# > 5dp8GRwwێ#5:jhЉuUh`\5yH247\M(Afc*>ͫ &ۘ#S@ɦ4B7zdE 8 KU_m ؠяkU_mhԄSݯ'?10xUDڹ?;՟o{np6/2RfI*3#΢Œ.  de ;D TkL0wg\9tnjLs1fE} >JWS/z*m^,1h˶|{|b+Iq6NԿ;sοL+D 8]lfiU+C&Ϊ躞Z=j-f7-i.-Jp+IWq3޻Uvk7y4QŨSb8(^<*iEg׻vv_}N5/\ Iji۬gjBD[^35ci.FJ?PCspc.zA~ endstream endobj 2756 0 obj << /Length 2503 /Filter /FlateDecode >> stream x[ks_5_Igr4ImΙvtA@&^X.N| v+$7 I~= Np"@TDsI,_׮tN2!lH$&a$4O:cŇwgϝP]6U_Ny6kci^x:~2"bܛ'_ZD!#9l`atQMq LYØ 1MʬOXఱNrIEl) X :}V%)~a2%(Ҕ )40i GJNph70TDazVIB@>.#;iXمI_7[2-=bc ɿcįL%USJ@ 护(fƑˠ_ <ffG4i:. D cdz$R^fs/7\"@zq?X^Ԇ\?y1!)E)el7 T Zs;8EUՏd5wQa J3$xCoOVoQVaw|3TA]#f"U$R:y+{/b:S(V 'ňc0"Tj1^qzt$ N)Cu)gYV166o+fQY*'Y6Hqi:}9yA!%=xK-pFb[PKNGy_IXߑE/}oBZJ//_:Sf;:}&~.J˴weڸgOɴ p|:ϳX,gj&4,ۡ/hz=l^oyޭmhi2es۠uT0_}n"x^>Oj(]7!,8[ruylGJgoWnKcAhjrT"yX؂*BW100դ0z-Sj=kUb~[da" aDž bZ]=b8FLpaJs`A/!vg\ E{Y ׶*L1 (ዿu, yVPe@g>p֚rI0h/ QJe=;ﶛae1VY ڷHŢ7ih6Q0/COeQw(j>F 1[7~g{=}*6DM{X,f9:v |<\Q/;kMQM1*5#lҾV5JY_H!2/QTa;j0:n"ѣdyVQVG87tdύ"rcךn}Mc4҄Z"sUGH$ UYyLnhΠe^Bk,^!Lx wa=ʍ;!5;%LFuj՚8*eN e)]BI Q' :-;`2c"fOeW@1 =1YiQ2%*>@躕1XgH&YVK)jǔ@.! xVn7Os8ї !RUDAjgEtqծd^l?lq!v3scy"8ܓ*v,zFYW=]-mL&8ǎ{tG2A?0hwAm|V?4CԘ{BcXK1gsD!ruD&PgWP ' ֏mn9fop'2{04}UCۤ||i\ P~.lo4j|״D#CTAu= /cA"*1mK2s,j)2*i{}e[dewfuʫizg12obbq)VH۠ B[e=<ľG-5ln,8HG>uiSJPe/@o ^ P?" N;Il& |n0~I|*rO8-|"xz{GE<==BP0-aqNk(k{ຶmɋa{ uu'L<n F<70ΐpY{s?4i< endstream endobj 2760 0 obj << /Length 1755 /Filter /FlateDecode >> stream xXYs6~#5郓8Q[4c 3PRw)AӤ=]!-"==x#T d9A:jO~/ pr ()&HH1d?ߘڌO=x"dRl̓0)*(JGc֞a`)0zd0%!"ӻE2I!Za8I@ x-PV`S, Qljj>$ ĐS%! Hu.4캡^u vx!++0 E2U@&)҂~k1-~h0HJEҐo)h̤77/jme[ήGcj "&%@`݂3cS so6jX]јs_]@Qyi^IAn )bқq0< Q i!E\t:wiF%;KDcdW !$z1KbH&?\qquG׋7Aq:PBy JJE<{~\xMvvV4FT%K55O | -gx/KŶȚ[VKSnOܘnC{twJU#-ڛt? ;vwη:c#sYM-S; r7Yw..L+3^p9ޓ4nzn wvt(lz"Pv42fI9q;btk T }|~jic ڗ)fVT݉W#`W΄P *uIF<1Dkb1m;&u%;ܯ]Qw&:6l5Rڽ;gh^- )tLh#aÑl82ҵ1܍o;`\w iP[& #HҾ [J5,G뉎j C/4BȎzI 䌇$8to^W".(ėz B EV}SZg&+eZ@7!ED- jgq/C/"\DA@QkA=$^]/JԘ{v]4OϪzDn zf Y9̭6ڎiaM;5n +'E,νg@SJx{pՠ7`q0qZ <&Nq rd`gJij<؍_o|;EY㜲yZ_NsfI7G>_z+|FWXDgj_I.SXJa!1|¨7F0ۯ,f| GR0̯5 Muv ojHn7wusːMz0!(q*"1IY'uN2YdE8HY a[Znp58a71= endstream endobj 2764 0 obj << /Length 2099 /Filter /FlateDecode >> stream xڭY[s۶~#5\ <$Ndڙ3mx"rw %A.v΋Rb÷%f~|A#)Id$#F?3陸.^KX(Բh4!%H"-(QFF4#^`_j\_l60+u\l"W~'U4+.+7aރ1C&mL鍺q1[,ʅ+}^7zUUP+\5vb0{}Wjf{ ѲVO -LFھD>,kFhY|n*\ק]CbRgnCdŧuE2jj;řW#o, r"I ",.F) }i.t<<=03U jv |h5m${TDkݥt$)};ļ m+OkW+n D[=v7לhqcFYF /l_jTt a(Q+LYmrG}ÑaD1OJi?c%D!s|t:5ס;u0Ƅu-#`}hL[+'J.79n@Ǜ$15Q3b#@1apB0rS]jja.\a@Mqb@I,X!Bp~!κ3 gNPY0bIO#īo;S8rY0}K ༩ȸh~ DSGSf3J!W/p֮*»%\~DSAQv 9 *yf3PXP4 Ǖc lS/PL'p[ZWK$j h\ 0g}&=[_ ΗMY1ܙuH(y)3 嬭5W'{ X@ma{nesy.ϛ2!29?EYbTf ,Â^Jyݗy.?U-A#7WCys ")PǬO4z;KzQB-V4B};O$)?z0'Ʒ>[ 4Rkrj9 HfEpnUv" zY x$d(-J($BqdH N}IL8@AC$wβdSF)F"՝$IBY\*%ÀH)O|K-}nPu0Mv`T9rlzelڿTfx6m$s{zr]gEڰ-(7d[(8+T8Md7m|wGo6]Gm} YKo*mLr2P,n;t??-hr)TvΦ<ǦDr ki#Da9.Rf 1-(V-00[s_aבft1C=D Ӓ"~Cw0WjbqC/ |FE endstream endobj 2768 0 obj << /Length 1518 /Filter /FlateDecode >> stream xڽXr6}W𑞊O7Sصt<(pF$UJ~})lюWg6 듿OpaJMPr ^<<2 lH0]a$4}jxاI#E+D@x Yh5YԇG$`i5l7Qο hYd 6k_%PJbOA+UP XOSn| $ORn$=^B>QaYZVߟYۏ 9ĵckN{|plsm0m~av1|\Qt^(T$/*MdSj9]'U6Ί0T,lANπ#Cj戅y9@z9^Uoz ]%+&,T"Y!Ř7jsPufV<|J7vҌ舾v?j Kxe9/-S$ؽ_$ PbDKwiۏ%Jts/N7'@& ,7lCւxaVdiEuo̽jw,|7OYMLE:C@oM]/tx}Tx~s"9y|9Pg)+7L2"t+4M=aNtmͪʫQ65x dp+Jfnu̖<?AaHaw{٣N zyп{.u:q76@/_O&yL8/SE1y1/=D!J$֎ cޣ{lbN:R#pWp[;?M>.PI}dIʪSLmPBes]sNզ]J1 m;s`m} %6,VgɃã8vgs%>.{%^ɰԐ⃼D+׻IvxwǙIb_Ā^ğͬgP0jOe+ӌryiAHyq! endstream endobj 2772 0 obj << /Length 1816 /Filter /FlateDecode >> stream xYIwGW jpcMl4hqF#b}g{l@NUUw2"˝?wp#aJFMtgr ^޺> 4M#E#0GI.Vh3BE *MpD |\?et0{rZ@LFFb<> 4 O;E EU4Hiȗ"[vYPjc՞L6aɛӷ#BoJΞ>ϷӖj$,9 |J xnk'i^N^dSi5#[f"LOZ3=}z+󒿟"[."kG&%$\Eaf?or*U箲yZE:O:]5!'DdDFR)?XίׅՁWGt) ?p{AB銢\BIWG[gpB8bu}cxXE4mE$~~ W#[LvC60lTi2 ;Q*s1d*C8*H(+( .XUh]~ 9@vK"(W#M ҊTbbC UDOEJAG0BIG$D .xcH8#R.ORaoa|n ō$ P x" 籫><܅P]S 8AvƐ1 lex쯀m¦g5O!H'Ϟ`<%X)C M@AHk]}spNN EbЍwp4PHmtE}7H8ό:?F[r0x(&% :7m8T26$ӳx;W嶮dte@IpaMWYȸnt`NQ.I} M8߽ ^"blB- XMԭ1H ָbc]Xʮĺ/Kt/8KFV']ah8$" ;-8rC;)?y^ӷix95x%IxuZ uXq>qڒCA5yۗS=xWip`͹]0W mt´V]l!x G+w P5ଙaHDmڃņjnHetV;]"*6 TڞEPPYf@PUBnC;0(͞* k J@g.[ HS,||N}h$k6*,tH7Y7\2kj+'To k*f>uZЦu",Ll6lmLکznWAv{8L'MxIN7b?|q>YjX&`;Fo n,02 l4 [{5PAC 7utq:YiW܎zw>y -e2sXҿ]I̓ : _tHzf)B߉֮{L[ j/@`rXbźUta H;9\Dl> stream xZKs6W 7~HYy7#MR@PPH @9Fl$GSt(Vb2bcQ냟 aQlh|4C,@)5LJ߼_i~͙7g5BQĞ\72|:k΍7{=C*uxT|E58c7TF1.xa:bתM{ܫOyu_&_Ԍ^%ġu$3hN2"0 Bi;[Fá sҶy$858}ud/#I0 7Aqh+ַ/oG )ٯQ(ى}-E+/b .TU=TyT&![JR\ .Vz">~5W w%GJe;UGGT1x'uU+ocnR2az?0[HBIb@oKB[|0:FH7[G7; !sӿ4͸Z1\Qa`KdY"~n tA>NpF \>cH?6tj蓔y,/mA{/!Z\'©Qɯ,ۡYCB8]1H+C1!F+J'wE>kPb9I{Ap~nAqz YgfJO*kd`1M7"gAlQOk=nhL:\ endstream endobj 2781 0 obj << /Length 1423 /Filter /FlateDecode >> stream xXKoFWHz5ة&q-@HD@;(k9h] |1f^}=*TGUM~ܽzRh))Hy4Dc*z/l0%OXjSs~Y,A"0dh1TF#51Bp)ƜwAMS'rHQ%D!ŅT KD7Ūto!o.$#E_n^ K&-]YU3]Ey\M>˫(aHp*;f,)fe^6=fjAW%!//7WףNG4BX&o6UY$MHj-:z*^5sO^W+2s45+wsw𲨲;k{#GwMU*C0 /->z36`gS\')ED(#-?CSoϰo~HE(UޚKXBCH?(-}`b y k&A>#Ѽ0M 3" TBDJ x PȆEPwŤin+.$/ERNZӊm "cޖͽ|=(ANH ̠BR;ȴm/~"~8QܖF3c֍߼ w@Ǡ 37@ d96@7Yԓ_QZqCm~=;Ky,-mc#w> stream xY[sF}ϯP!^~I. !ML-0a+:Uv Vq 3p>߫ u)bIh i>l( AeM}leOr>^y alW]m6guw'|f~}e1ǯ\hW *+/s\wkovDӧ'ǣG{Ao:BbPW/?ח|HЄL+>+lfe*fYq%&܊4iu6%pB)(BZG`cXG-~G99}ԋK,фW]ѨAYqcG1mB" $8Ckq@WF)mfFi:8SU5ﹶ-quvFrZ wAY.0/npO [[S30A@n6B6;xp$ %U{fRc_MvxV 5toohu> xYusJŦ_q_*?LuD#fMySw 8峫b+8GA[8"4=('o–pւQ8` u9|eЩ&Ht?HG>9gu7riGQnj=]6 ZDoQ<i.17 MD6&;钫"3ۘ@k'A.MxGU?ɈyB3N2HB P[Ԥ7ת0 Գ]%‹Bq׳Mu(@&?|>m=z#Hjv Aa#@?1JD%C,XK?\(j$E^Q`m(^DjKޤvStNI6H09CEIt].~4bVdS"EcAEqwPS( r002?qBX3RA"Vj ͂k?Ც"ښaىֲь fwrw@3Ly8묢7yu]zC+jO/x9pOоy5 7-\h_'wys) I)W6?ڠi9ݠ| ‰`8^je?<{ZZ,U=^:< ?t<\ D3Dge1?ƚz$8\yx>Ù,t9<\zaEcgx2Ñ\> stream xڽX[s8~3U]˰3@&.0;&QZ:q%'v°4uttwT\$x~8 GT@$(u< V.aߧs̖dqE6$bByX-t^ $9HO¾{,`,%*Ja)`x9b1P}ELxZ4\,Gc|iT)D)!ф"վmh`OF NQ=B=fbxDUx<9j }eI*JDtWz]9DT47AR=eYo6LUjVOͯUz$e87Ӈ@L }\Oiy18[?rvgՑDUqpX ]7 +Sh,$7iO&[smMWnH70K7*QoVcᳬLm  B?Hb|<ԤCJ:Wa"|@@pp'ıO]hҩzRO,Q|z[n>)ĝ.\ I FEw>3saĸt4%@bc=u?(q;r٣C ,:~@,-C z v1t ltv~1JcΚ}Ü!Y`d z0z% Kʎq|^~}TACY4u֎c_#7ܡbJ3xL}ͧIԺ弩7MmE"ufX@e3v"Xe䙄cȷRtiweE Y 3Kwr2(2eS6"im5U J vWz lߘb0Qs^wC87ڭ"4ŢӺj:<-"ݘc5NCnM Ca{&mwxwAk endstream endobj 2793 0 obj << /Length 1798 /Filter /FlateDecode >> stream xڽXKs6WHM,qڙiZJm#A'R]HLAjA,X,@&p:bD'Ae~ѹH"%@@ JIbI§ NUĕ%-sIS U>=0TAu=59NR\DC (r2!CJ!H> y 9 \P6weqr^7FMON/۩ﴘ$I:abvi]g3cògE ~xXqrW!kb~JKac@Ոu)]U9va~fUCv g[ZuZbD01l6gb"]mfXuƄ Tnsv^x4E XExn S-wY1/ј;scjh b=oGRYџn\E6`w8e7BD!U²?U*qrSvzِեi5n sYgDё-8'qy>pAw`}H36CX/پKiH*t Pdzu V"5U%ϗ)Ry}ON&fYt`gF\\oMGYjVo4l  Щfl} %x]+p &@[D8Q줣ث4H{yvO d[o\[>M*8|<[7#(_ɷ%cu7T8T p;e|Cp-ک\m}Jft $q~qX7 ;{DH3S^V2rymtOb{enЇeN A\N4dPzW؏$$_=ءepp_gBմz+öJ/l[2{lrs뭆`n绦At x=Ad8QdɿjT)i V}CQ5{C h'OK1e|3u yԄ֘|]E{ی_ m!?&<ƋP}A;W}1LS%YJ|Bہ*bC{$~xµ^>$ =Gܕ72 > \$@@%:r y/;] endstream endobj 2797 0 obj << /Length 1446 /Filter /FlateDecode >> stream xڽXKs6W 7jbxLcJ;t 8#*I5Υ Hr}"(,-];Dћ"H3M~;{D ILh4C,@ Eϴօ֫ї3QO &zL2]zRE|mk5`O19eaco_qr)U۳>roͼHXJLafSRKuXsZRIBffA**3ѫZnR1[ai0K RbbDZwqɅ\t}ZjQ[^c+q)YNS !KK92k!Pq3<1chUnLqto(9玡4j Z_2+ӱߘf$)p {^k8~"jhWZ5uD%C9WYX7RxH;V ./EQ NsxqA|` ՗Jt$9B Af CB#ep(w1{19ԿN5yRb0ܗtM!S^tk)4jћ??:?'vZ[߱k\ynҍlsd¯϶(l-gk5q`6)&Mg1L/vUg7>0F_,)"2);Q6e'NI4j:Ħ&(@>p %d[{7:[~)xHH%1ٖNLHp5 s!(koX?wp8?[_4V@vNCO: [zNk[|ڹ]eYWOZyu K P3D 3i q瑘G8X T̴ӽ69Y_ XŭfkL.0Po0 '%LVu7H oAݏf;MVܚeyZa0*sZ\VB{|=itr\]ǡUb~hx:clAc%JrL endstream endobj 2801 0 obj << /Length 1440 /Filter /FlateDecode >> stream xXnF}W[IZ{S7SJ"P%"2P;%)ZJz}̑)#^|JˋwW뱻h'~[!Ml# I Gk9eW\TG4"JԖZYHc{^#2M}s,-kVfɴXQ*ӧP8IIsݫN6P+0JMOPW"2Xix@4=Z\zc#VhoٚZbNaطS.Q0O3~N{dEW4Y:4Ͼsy)d*,co960F,<8Xr632?.|nkL=o8_.D n!A:uSXjO{hf_4~i8ԾF.: SȎ'9٭Cee3\s⧓0`K}@0VSzZ(&!u3_(Z1 5սh<*t@51>er:A^!J, 8-%$3_YRWg4:g>#v쟪AE̱QbIy`e4plVzX1vn,!rXX;d Gz1NQmG,e-]ܹ 2o Uа*T9P'Q endstream endobj 2806 0 obj << /Length 1620 /Filter /FlateDecode >> stream xXKs6WHMLu4Im3mMQ3Tl_ۻ @z .v~؇Xp@p:fDA]Ӄ_ |{OャsTJHI6Tx1e,geU"d'js~^ΊQ$)ubdRbwG: %)MA$QRX/g#-“1nۣH "ΈdԬŪ5^ʵkuxw8=̧+zx7Wo:|=R*<< z\D$C7+| j~]y1EY}FN(2Ad fM^6M:hlfA}tN:jj$kMswN9_]y?fnyQLe^, kp`eigW^M\oѓ+BS'~,k p!qؾ/Aw#X>"y['qD̾Jw>\q]U3.!d%R kvU'#Y2gM ])Od,kOKs*;AH` CӱĈ(*.4uB zB3t%k}%'w<…o]y<([@Y`b}Rw@RT1 ke"TtÆJBH Ks1dD2磂NvM:*G͑ aPLmYN" jXГ3-mSGje,PH__MDx` N2<$IOL%L7xRd{r#H$d_(߅x(?X&Ϩ'.K(xAČB1UԮntUmۢ$9OwJxN^#Dz[B7c[V05O nhy4h*h8c.\VvTv,-72iJR.mi0m39[Dž sxlf7`l6N>dsqKvVd@ʁԁpyLV߿~ss)*S \<8D&D|~ &y . &~d/TL7&{x3:;gqOjmҀ\E~Y=d?;/AYmhoyQtCjSoˢ]2uS1<iw4XTn[]3=ؓruxzoZi^zw$aAqU\$eE X]{6+gZ1Jb[w-i]Դe]κF Z*l" 8ML"{vfR+y endstream endobj 2723 0 obj << /Type /ObjStm /N 100 /First 983 /Length 1438 /Filter /FlateDecode >> stream xYn7++ #6@!H@`7Tb,>p$x]yv8J0'G .dTaqFqOr9&HNM N#EJ.9yk3`:`CA+82*S\d8K<m̳هj1ʕF,u9F:ɂBrJV1#TԨCg-d8x),L 4W9TEZj8٬ |A bSqS"OiJ`%S UF.lL걍`LC> .=("-Kt/|Sc\Op$8uFuLn- ڷ'CG³&WVVfDih+Z Lvˉv6)N Ns| 8a9FpKTKiKw+EKey=<וNrgDKg6 <*!읻d9]$g3Y|kgVY=+my䜯LJz%:U[퟽ڐ?ĖB~5sK8SRY/agJ{W:^Hr\,G ?wXX  $?j>h35E묹8yޢ Z򗤿|v~&(O.Ont0-na5QKKp&zS&'2JHt endstream endobj 2811 0 obj << /Length 1675 /Filter /FlateDecode >> stream xXYs6~@ߨ>Ƀ؉ӉJ$a$bGW)9_ۻ @!N<<{}풢+Dѫ"HZVECý|{uwp"[) fHs7@2Q.Lf-ΧޛH?"*6DT5lO>|"h 5kt&\]^TpVb8tG"|Ra+ ٪^'QY%g(Xtc՞ӳIL{3:'6IF]j*Hrc7qe>'@JLOjx=/4</5U7k5oi콻0tyYD0B+o~}Y-(BVvg1lW)Bǖ5KPSSDK;XBcqe|S{hV{MȧdWMfaV\"btWr,E(,&r^$H0ظA*T:i6bg)c(U}*]?ro; or4tOf9r¡Ivё4s_hlke^AF1Pr|A; ĠXd}շ63&Nb!?Hf'Nc!f"ehS-3LfHdՋ-G8x 0oI5fQ\qOm;heʢǷ9 < d00n~̗JdS${bdKׇ5F5qt%l2LT%pZ&Խ _.(PX2TږipՈ endstream endobj 2815 0 obj << /Length 1738 /Filter /FlateDecode >> stream xڽXYs6~`ߨi &nl'v'GmN0m3HG)G3n^$v=߂$:H|r G8@THstyt̜LA4FFa$4]zBEܴyM>LDF%Hcn7*8[n9LETGWv23EtHt $L=YE3IƷb)AGFsĆNS ȈQ}eD0JqJ̖Rf$"St`Y;:~cog@0UF$D:I"_e- :IⱯNrU鞜j.ͪ5jF_y;~v }7ݗ`LI&d$_;h;k(:c{2'o-JO~6Q=܄aB.?ۮ./Ksi 7Z{<ͪVTU9/3/\vY'WFSb~Eh0+3u],31 ['ΘxW̽ 8 vBlDJ@J{Aة(%){ sP6kQ{Ƽ,T7ZK4XA0dnN&>bOVHm` GR@doNS%)r`i_K +}OC̊>`(1C"^֏0,"⛸F d9H##e% ٵ{hND*Jj,H(ؔ)0P` @ !/@tP|箦unD2:^_l gE|73z!X4'[nYwví|h%5Ǻڢ={ȡx?Ţ JiEɖ{e.,X~_lY̲{ ߓ#~>j9d"tU.xu^!#( w({g61YY5m^71I8a+VᕱO#l#;Cܩ##>BB* mT 0&ȯ#I  ,F AKM*#GWyY_ +}BPx 1Ղ",_ȟB+3TdA%[7 4&IŅ_AɃZځ3@M!RSsME8kM #k簵~C+./ݡ]WĸA lH)Xf3=Upp5ǒU==ke-/kA(%rpn?( jЃ9KL7YtW.pÞh7ܝgmU+*a׍%B{-AӘ;{4C} /*7h:+UEK{eչp D= GAr*la*Ya|yוx{p;7~pp w}7jY _DYnp"SF{_7QU+?Sb.2ߪY]-;k{܀^f x|C/@o_%"^"2/^iH endstream endobj 2819 0 obj << /Length 1325 /Filter /FlateDecode >> stream xڽWYo6~ϯSaBJ%-ک$"P$&KIM~}gHʶ,qx|spFCEG"0 VS'X[_'ˣ-J cL8,eb}KЦe!6FYDO6#Dr 3t}x-J PA,sOrz=t膃 ^zx6\e5eS@/"-d^ߎ+`بJdc]=aHWv$ViZ oG,4#Nۇ s|0qbxL_n*^^&y$ t)M//nǗ7K,\ `pz}e Nz#f7t޸YyˆAhhEq2գeޔ+M9ȣxmf,\+.>͡t@*8Tezm-dm Eчr(͕7i* nw>J:ԭqx|=RMv-vV ׭㦶4}Эr*ż.u6[f{IE7f/myt v \y4]B?G-(d. c}NACǛOu*0flk^[^Z;u _;a*̽ثt[O[W iZcڹ( endstream endobj 2823 0 obj << /Length 1246 /Filter /FlateDecode >> stream xWKo6WTȀz;4kIM+B)D;)Yr$b{i6=B@译c8F0 l7 Gv<586pWǟ >"7C//edPz`\58Nx\yOB h&{-I 5uy5717`O[>@ ?[4⚯牚 =oqZX+7uSZy]Z v[ЎزWDv#i&}=ZL$ғ>ϓyP|~-o/o돧ȍDk7ؖ%T2P=3S5(rVeir5'cdұR<[5A>Ы|&9Ix7$␰DlnX&zRxG)֘l|+ϙWfrVTRV˓:ᐰ dԆZ@dYndऒ(& wy&6]ʋu!ȦZRMgWuZaSB8զrUD;;k2' "r\j;?XYuhWW~hCh4K|#Cpd@gOѧ/}G* sa,l= )%r!y!Y%lE a,B]s,Akm;ƋΤgo`Q_PP$VQm M(/i $5Q9}Dʯr3QY~R,8fS^ZAŻ?^'(6v`ÀQ׀قօFwVSDĨn 5 2Z6r9([)DK4$}A17̉D:^)À?VDt$ǪvA &3Ǔ~#ՋrZn`CO]uo *Ǻ5<7.I]1TmiPnR.ރm7JֺN[eZ%׿\z%chj2;X "h.x endstream endobj 2827 0 obj << /Length 1574 /Filter /FlateDecode >> stream xَ6}BO\؊[yK6ѵSH@kQ6QIt(*{|}g4WڕsEH >8C1kk1kVGV0'I-ŭO82bsM.,ưOw0 un?+깨5r_uUw`f/Pyg-AJTef /BlR,>rQG";f-@SųvU[^haX~- |$ p ZLWZ(2s:fҪF -z yLa^D~,"U^N//ޮ/޼~JD^2$ͽqӄWUŵ of fvky7`ݩ. :e/11Ba_ss AӆBqbBɆ5](t]tkF_A ɲXPȾ()}شe;oTƌؖ%YЉ:ӝHiY@/LK#`Ķ75Ѯ .=&r+~8X~dziz~_ nء~DeN;cMf!܈E{kpf*+4yB B&Jlгwd-6AAt`낄;@዆Gy4}"iM@2! $NS{:U|OZfEyo3d^ P( [ `6z̉)]F;]c校Ode:6[Q SbD~t5@VnW[eG' tE{Q?6rJ@:,d=6wb/4$ n: 1' C=Lz#`b>8]bE=+٪ (9;@u=6'@(| .gXLgߗƝQilr[_sn5f^oȷ` ~`ιEen˱?Q޾[~¶1U22s>~nͻ5,0Π?| 24iUM„bσY;ɶ7qmh)ءM=AweFZ֋,KȢLK Vעw>K'ʁ)RAEv =bcBiҗ茽狡Q`+xs_{Pq@\PU5bD#`tPV/dQԮؿ-u\ӆC6ҋ2d%1>RYC^[gO4%0C>H͔;T^c't;_%(1> stream xV]o6} ?$Q[:3,,eAhW%"~ܭ^KSF|DPŘiV_`g {^?4Ad+$8PQY~?ucq>AS&0RVQRS'Ai8dq M4rP͸3mWp8hRꦃJBbBQvحaӘyeWF0Obf8W-b8MǼx:`.7} P 2"/gs =r΃yXf_+'322"^(^.Lypcw; &<+bH;b@~Ǖwsy,VbvZ؎5{G~ O_lV/ P],u(u2E/휓?\2ᔦG''BItr=8 endstream endobj 2836 0 obj << /Length 2405 /Filter /FlateDecode >> stream xڵZKsFWHU+GnllV$|$m3PCQE V&ɯ'&3L:Z4K"zo_\93:ed5q2q3d4N8&= !`5Px3/.Y9)1q?Gޜ6e<$'C%YwqtzqvCNNh̊.ÜtPr}U׫rLxJ*O-&GQS]XgC.v /LUl ln>YO*LbZO_뼽WEMFr*n1\,ToO*fyM=ɯsD."rJ!IM`,稌5G9,gnb>'* NLj8$vhʮ1%d`HI.rSo :ߟ^\xI[*YO5gUb`uKPt4= JS6߇W➹i$d\#fJ")k'9?9= 0 2,)DԨ@;N{_e t5iK <"hlCNaXDZ{qkH%Q̉]gݫZ-iT!ŔΏ zdr&3 Qs 0dYŝZ"%?APZce:گ|3U6 C7(H ,fAXژyeRqymzg:KD5iQcU>oY]׋C ' ZGKoI );PW4 BV.ٹtrsc.Z6~F 2hS8:T_Rv~_-*uQ |]evRX8/^$V!>e:$D$ ܉IR>vX[ЌS[ʹѤw~zL2bA:vU,UQ: T*É40_0$Ӄ?/LCO:Me%&%?vÌu3aA O<)MwH11y Jecʥc;5@Ij굑M3f7Xo2%.DK ZwP(O QõhPҔSxJl3ߵ>[4J?L5Y3DŽ^cnCӜl[]sєI=VumtVh*h~nf G'Iņ K?6s*ݴmͪ΃lpW3lx?ѫR8d]> eVEA탥=yV)dDMp >زbQb6 $7niN ǂ4}ykö{ꂆ=n=Ԓv|o545LP1]lwIjUyL@1vmM \˃+lUk ~3ߢ\ }q;yD-9n~h(ARd&:]N{BIo{Aҏ]4?ݿChӯ7_3R]u힊Tn߾ʿx#XuV~.G)ڪjv%{yUo o"mAqme-qBnJ yմB(g[8|Y-$0ˈ>Uk(~PRveP^ 6Y#LH7ِB}uQVVCsM9\mqzFmhl_1ڇlVeV>6Ư">&q[%o$o:aa#b5U |͍aP8|ElU$'IOEm5HQ*mh,{T$[eXLvF%q)j7}fA%*63."vF'4: ~_b. }~1yumR㜁rMs]peA/MyqMҔhi+!,JX{P9hóֿUQŌQ) P2B ;DtzpY*,Vm9ZEKAZMF=#k+ch-f?>Mq~9t֮(1=R;j3ӣTr󯼪>ΫrUͧNn16B.ux E4|< ?u^7Jٓj7b;1cr;Coϙ4@=O̫}`v}_Tq.;&qo%aMN endstream endobj 2840 0 obj << /Length 3267 /Filter /FlateDecode >> stream xڽZYw6~ϯУ|jX 9}hӦMvv>0mD긿~B4()ϼ ]]7~{FtrEF2bES.n ·oN٧/3`4gx$B Jb򳋕jYnqm-waFa;lߕ~TjwYl`.~z R JU[ܠqrᰏ9쟞Cshf}bJbSjw ȵU;r0 ='u;,6ڬ?۬mߖͶF/E5Շk}.qY_K3fK}ōutX,B%s}o^x?s?f#PkBs_ݕ+!`/!$qIK0>[]pո.[7*%LڏQC+ΐgJU&VҌfj~! aA.*ˈGX>wx#ENag__@B[p.|4]o ]#B$½]jx,Ye` E aS&T$W3>pd [’3()at[)R${k+AKFĹlYozlJh=Jҋ=E qih_"#/AF²Z$}jQ<(yWq.WqōON][2 Ɇc)a}CU 5vbDnPusC|g4GZHH6ú9LG23e҃ܖ,\?0"!Y $Fq,Sᰥ6бDƮM1*f!Mp\kj0(?!hyCɴNubs!șγ̵f+rZebwhwQ}2@.HGHb e IJ"Xő$|a?O4;;o'al|uhDA%β(MCU{k2z4qQV>Id)1ɱ҂" ]!*Ԩ(GBIZM`D5G!գ00" mT.g#G"4믥}֣ϟߜ&;.1= E,[ڀuޖx,#ǖMņ0Z8a0tV8;Ll8`#8~(PX5cѢa\ا'ƨ>@'L Vi9ĸs\K 1- {k Q.ڇ77Y*L2%VoBeʘKH]y~2Vurb]7-,)ρβqʋvV2# aPtQ(+vӬnd5epYE_vrUxy6O❉ٱ  S]1}%Y2OWġQϦ0muiFx[31r" UG" 3X%!UOpWyLqr_4P:9'2"j̞>[6 -|,q25?@r2Ljr_uw6,c 윶ؖt*N:P [wm<\蕏!0K*xp$p|6{1Wvb龩M3 RE k IC\&39-rW7ϻth"&*!lNDds1"[v/O])9m&*:O$cOQ{ԝۙEYsiկҭe="2[Fku; ̍/txp,1Ytt`zV]9F02Cwe<8COt,j?hGȵ{ކD60lA+ `ߞ*ˠ6b|peWTY ,6wmoL#$}݃+ }Mͧ ά &Q^ '{@Ge- 6)}lរN|\sQ/juay˷e龹3>5f~nmyW9k'>PMW{N(nmN}?^}.w۫v]~$[~ ؛3<ԗX^ 뻪7o+[Y w6rUke. ݻr|=sp8&n Z$u;CPA*(_dUL{ pgt)}rI @M,ˢe/Z endstream endobj 2844 0 obj << /Length 1156 /Filter /FlateDecode >> stream xVr6}Wa\IoHv-934ٜH9wAdӍf2}ng"ΝC`GD0p$'HFNO8h,Cl FBrgp>!Dz>!TU~| o,4D8]c[30h,`h'EGr6{'X_zh}B:>$M]\ 4GphuTiaMa2"Ic~zW|N[+;)Nu6EswQ']'7{aev!,YNt8QO݆i_,;&A$ݫls4tYfЀ[A:c&.L!A,; I-p(AQqyj %jzKI1 $ѧ @|LgW7}ڒ;YTJz>P)3q<<6'/Y6(ĠNÙʙvk4PvYtkqJ-~P[y]kKF5b'{V̢Zmz zZq- ~EOU^2#`ݒsCY@:o4: ]D@Mkkڴ(7cltkPe{c*]@Z|%b~ԀNqЇ"F'cA'PbJ0x p3&٥&e}Xm=񪶇 [R{eqʌIl78yc6yurD&iTeŦr, a taƻP}A7(:>6ua Mc)\Y}ZCcqC؋84_bI7`l{vحLjlgKle MWmfb|X|w>#(` <], endstream endobj 2848 0 obj << /Length 1567 /Filter /FlateDecode >> stream xXKs6WHM%xd:=8:ĩd@QTIN )c7M',}|X ^ux'cI HP^WƗK=87_yyDF›/Oջ0&\FR|z3{12@eHZYDBzjz4 dRiٖ.ٔ"3dŸI$E`tB9Ҫ^:ՕNmUIniV07eU)c;"yY5]ݴ,eV$.w|ev:y[DVE]!S$#6S`"xߍrF丼G)ulSV[UٗU胵pd4T۬vƜ%,Zj1bҨnDJoJ\ˊd l ZWvc @3;)} XdDfv[ePD)]F 1<8 Xnf&ܮ[|}[Vf0J 0rW,PaC=]ZL?^ 0W͟?^؝m7 Ato. >ΡTQj#$4^9%0;'"pm<7RfJ$Ĕ,H1jq)#Ngۼ™ O/\cA౴rF>BE?9>ϟ([~Vʒ=0w T* D8 ;bw cgIpfJVS=Ztڸ[L G()#-pWH"MjG+;}GyX )?W}q"&?j򋱭 | J .`FDm#j jیӲ|WzW74-[ K~2sC=3 `LДCy&0L_m߬|%XHJ89Hqގ}o1@ =#>̦MŪAs m$~F=! endstream endobj 2852 0 obj << /Length 2190 /Filter /FlateDecode >> stream xY[w8~ZDC&d3s:$˞y 6v18B=b\T>UJY;9|8">)g5YϞ?'$w(#Qgr$s$'P3_:׿?\2BS)ϧӛۏ??>c,]L!1_P9n1Jq &"+="3|mH~]R i>ouRE@ r_}i]J?Ͽzɢ*[xxc5̏Ӄ,_|EZ Xv<[+f(8d (}lu hz詰J]=eWi=$k/{\e)*d+|oVe^1~HV|m%Ƴ UllR&qY E_ ԵW313v1)SE CGn&})M~oM\!"n%]hP{*Bksz2SM 14&Q%etZfRKR -^ҳy0+t;BR7y^l;6Yr3ƀ6E~$eCT嚩~lJўMĘ|yRx 1WKϩ[;˨Uw  4iV1D+ĨYk |<ʈ{nC7I~xޢNxjQŹ#j@B ҏ$ RܗB5`mYe֩V!w' RkP1+W ,_<É)%EJTz\l9L ۦ `6wx#~o*_*3<4ݲ(0& Nw~mܱl=JU&lгsB$S~ZKaJ'lxPZz@xސuaqA})8V[*He , ߴZxP"6M6@ V^T17C.CZ]@ aɘaƕyvePّrK /d l6̿";ǃУ 0< iEG>QODwk{HG)kGM|HJ+!pLVDzn"Co``u]8) %]6v5{3?5lKδpH#T=fCNK\u:c%/wVD( }?ʤڗ9mUٙ-tFJ p~1wsK9!-X];cRM^OUT%y &nγ^Z[-. v~GRjlGCQ;%ԌGzU8(%OWoV)3Ms+Z$zQ=2œ2N6皣c riQjªP?-F4`}Ө8X XWwiov N\2SEO"!p ]bHZLS5Ƴ8>x^nCX62069yK{p r5~ Dq-BiLMg0+A|}")܌vp>&NpmbHLJr Pdև+>H CM֩kSƒ?}h0R`ؙRdݞ%Ò3}$)ö8T7^^\]?/nW72z-S_eCǟ>{ҧe[63W,_,G7IV<4rϒ" UF%d]14?!nd.YYEO & b8oNp8?yPrk 8BkN~/PA :-,Hx \D)vuZb_.~nu ӛP?9}ք/Ci+ꛈ^Q,2~ж+u%)27R @Zˎ!7@_E1sO5Fv֗` {Gܳc K:{YN4z&/ endstream endobj 2857 0 obj << /Length 1868 /Filter /FlateDecode >> stream xVFPBORiId"KpjWǁ>vWٹώwH0 Hjp @T@s (oFϟ{T# @@1A"x9"KgǺ#73QƬzp,"%B.%KJ BTћ&];=?nOJ鏣V$L-䭛E+D'DzևӬDXL¨^Ybt0?پ$1c,7Vdj?ӑ]❫\/ǣntE%~|[Z`8&B-hDx?6V AԊ#j(ֈIrd1v@BX4Aq 7VvH2H;H-spѕ&hY/d҂π4r$X$n2Dڴϑ+ )%jͳ% dJПhZ+֦QNfqVq][-T^L7F>j}3u ȳ4ˮ]hSXp 6`{G}HS >f@ {4)Aa`8 !d "ȔB#%ԛ\{RB"C=[e`N+ueRd"!iW+-ڌa_:cO]sv8nK6Guÿ3$ ΰm w +S#]{Wyt Ȕ(\Sc4nCC_Rz@ P=[zÈnZ+e=5$#DD7.=ڒ,}PI7KDL?-b%p]w;WȰ%zwb2Gx+3[D.$?v-mMfU 6,(v)%XVi "7?'!Љ WMbpA=y?:;jyn5h3Q jJ9rRn"4u: uI%?F'0NX&|aÚoTߎ%lI#=tTLBo*4:}.$-E$L+Nt܊}Ŏ&( JJBo%p6I<:qvyP N } N fVu)$Fjqŝ̏|$olT$!Ӝ]ʶ!t=0 K['.e'F. 4XmS(&Q%:aKQMPp>Xab&|m ([iW3*dsH',=JVv+N^r7 0 <8+h1Z T戴\[ăqg /‰Ӄ+b뮐ChffOv&;!%:,4ď"f>AKB?[(f6_\<'٭NHcWYm[`%I=z0-Joz),K%eyEy8ww=Y1yF>VDߕFޝ-es J[ @1 endstream endobj 2861 0 obj << /Length 1414 /Filter /FlateDecode >> stream xXr6}W aәʭRy%HfGBYiN/6@,=g2ѨFi5GDH1J-zFw28)ҩtI$)Ey.pu1_g~zLgX2ʜ םp;iN׃⥿C0C$JhW7/̪2)ff5esW1O>Q82mQYlfn. #oEam!>y u#Д&y_滰hUi[l ۏ2i3db(ƮL T]s8pE1OVҦU#~ooCW1!i/V@zI ZNP!TOY;p1YdXQ{lɖ-("Hh + K֙ KԩDy=ŐߞX.Rf#:2Bi'8oFi R"cs` \#F8"B#]Pl{>pѽ\G[8 PvAJ}u|yz` F7;(8'5e֚lS@Tʘ5*Ƣ3P o-ڰCQU }ۡ TkYK`ٖH lUu JF@74d <^LaYZzU-^[`sUJyz.* Q*Ⱥ3&`T?jo$8 T\l|OǥYEGFw鱏گ.5T$j^Ui̡V{C[|Zxgyzb6o\մRgS%Za'r:)G HuN?1C_ ގ'0xg~OWIhZ;rOyHq*ii2γ iʒُn(csw .ܖvŝY_r[tn7I"qs%Ӧ)0J:V h3*ty1n2w}Ab'u93~?%_n/NΎ @jW4~eKt}uS}.,Z o&_5rb_6_ NI[3+6ă>=;7\,iAp 4շ Zr(Łh*k?vxOOOOAxӿguSML<`Z1t&f\r?H:#@jSluBNynL "%40` (QA=gf!< A[>BSbqdG {ӗĭAO endstream endobj 2865 0 obj << /Length 1007 /Filter /FlateDecode >> stream xŖKo6UV ߢzidm@ك"ӎP==w(񪫶n@O|83!E;DyFA2 iAPmvVvvE]<;Q#)(d(K-PA3R&:k.͟{ N_f9Io#v_]j(uEP"r7buk]L{Ź苘.|CNT6+!09"Llp^w>mQm$+Rr~w}b!&v] ɸoV* $>ƦNvf 9$w3ֶΩHw@8b+AK.Q4Ĝ)0 5eSDXj4i4E47g{? $Pr$>Yw WXEdMZLe E)uHy*hV,I5 1T=$|7>5Zc>*$4~"h׈`*VR`yx4⸁p˯qW`l۲+/H{˛ 64ޝ7buTZfw!f Es=Xy40[GrUtObVJ+mg%F1ŵ> stream xڽVr0Z"lv): )t, gMڿL< d,]{|α1X n DXf6˝ܻ=V31t8' @P̀GC@BĘpcEEy٤OIZf@?e60t ;lm ``U&IUgp}ӦƍIlkCG[} gPCI,-(h7LxGLͽTѹ8˼B~EɥxKm$6L!]ORt%bCZu@5B1=; Vl\,tUzQR ;) ޤ3<}[" " mJE4 ɥ"EyEGsGy%`'2gn aPָc0;|;U;Y ~ A8~nk\` ! dyx|FC ulDŀQ"%HV2c :)הRh崘%S3>/fژBNRLǗB~kKYUt-G>eU~ё #8R@nf?06f^FMe{E&z͛Iq+#+eI{;vM(yW]8qhc{ unBV4΢P*P~k7 ӮԜt%ܔtC1LW.:*^w?MB~c:rWw:C`Zî;JiE<F,)5oA endstream endobj 2873 0 obj << /Length 782 /Filter /FlateDecode >> stream xVr0:ZV-&@!Hi&`OSc7ӿdbېI; }Z{ $X(дU2SQKpD)Lc Q0A7P zL,zXekan $OǑ܊ѱBx]=jIQ}S݊ 朚N^lɬuv)}*,W0;L@YUGbv> stream xڽWMs6WHD8r*iǓ@KRtaW )j5$ \,oEO~D %fZ!#(6!Rt{vVQi4'X%|Dgx:z7_=gOИiLBϒ|I֣1S*hRAQzLд$Mv^o" jGH)8yBPa<21UpmmY\mHx ړzO#ÃSͳq PϺҸK]yC DMWܢ\I(MY6 ի/NuCAXňeLuXfdDМ:(+еYνjVܲiyI WYrpnقzX}Fi<9ϒB^?1KUt ,Ҽ7EU6O^9Ox"xni^a"f6_༊*[Oϳ^ (3K/|~]&!AcBS;&=SMqmc?UaW ҰYܷݤbq`5XVZPjϝ;`߂iSmS7-m:)H,i tlf(T^ut(ܘE}6F56j*;O@\PH sY`=ͻo) Ipץw}6s_܏Ξ4e}Y|9X뮊vJ6vBn\ꙐjfVˡ\)i<Ű6R* OG5 ES'Bv@Ocqߔ0&jű{3 endstream endobj 2882 0 obj << /Length 1491 /Filter /FlateDecode >> stream xX[wF~}):'l~IN[J6vj)=m<GBw R}6O\v> >$xqp @T@s $:N>ً!AUhFB`oC(S*"*r1%wXi){(Hѕ@HFg/O Fb Yk'l64 OG;O$sHQD N7UdbXA`77e#7l-,aHpKȮ}DM곡xz|qzvz~}CݩB4pf5WjixXY(w$xDB8!ںrq.ʾ>ʯAYqrr>ql =e&|q^{ Kq %bU憝vb`PPJք/>RD Z:T::N5Z  rΊMJfnjtˤH꠴+~{/d/?S"ӐhQC(yx<[yxe 6،͞]/}`,RptzIoS\kO q(j%۴Zڀan/@ L0*6.k("uԗ =zd'9~xG(V\|5 TN¬%Lf߾Iq fGaM! )wKTS&#r: ?Ngءvho9.ح#ntn)vwg|IJ0 Ў3V%&^(/݈ '.] w\2SZ,/*-ۅMl=rP hdЇlK[mXBNBk(90& endstream endobj 2886 0 obj << /Length 817 /Filter /FlateDecode >> stream xW]o0}W1owOij7H+Mm5e(!,@8R2hv&7+ A #0UiXhPlOxk}Z#l( Eb QG”?»Fg@)S»$tE֋h d _ZZ" ybFmN;i- B@Hŷ,]GOoQޠAEnt9/fe$'hɯ 6>4Vհ fi ۧ'·u q43U䤏=V %;򬌻X(9";/ヷW f^-tf=8x2[b ]C !m'[]#u$̌ r&(!bﴬBF%nj R.v,y:ɲ5GWiRϮxgǽͲ~[3.fPBq `)56lX endstream endobj 2890 0 obj << /Length 1159 /Filter /FlateDecode >> stream xڵWrF}WQx.ybؐ`Sld1`bHUh$@ 8Oss9""Nj/-pD}aI Xf9|x~\\|fk2|j #.=k2Ûϓhqi9oFOI4rN~=J%LX.nǥrq94^eL;UIfLMOqtaBU#ik0ĽxR%lZ+L M4>jE{nPaU2©·ksZbm24_ty$ۇ& 5g")Z=Aa ޤG=Aړ:*QH Uq#JL-"NpSzIw,EŹŷL q8#utXr tNhx7\#*w6*&;JlMyXȡt\Mc:뀘G r50QR[k]kdJ"D$b̸=lmEO0fֳ?Ei5 ٻ4$sVjڱQBj[%@qtJh!K@W=#k %x@9t BǭT'4 |Sq"eƃxMR[fh '3 3$=v4 񻋑etsgo@ >Ӷ3G>9_gpƉlK[CtUwUO]uOuԅxKyM^Ďj"+mʛJJ H^/>_7 ;/GPH:BH3tѷIh.a+O4ŝxԺiWVtVKgL*874x&S.PZvPuV-uHڄClFڸF%JUJݟYý4LjRmN%3 e%dPfm.WJg(V 1K'*usgPPHK0$I|و endstream endobj 2894 0 obj << /Length 1047 /Filter /FlateDecode >> stream xW]s6}WўEe卥egPNg0ck {e7.d s|չ{D_J`&}x -:Ó{x]ع Q $`x(nR&}~ ?t!Qd(Laex9<*@r ypw la @"ahVL:j2nKIXhk'iԃ)bL=BE (%XEMP1ql&NGng0.W#&X2iRbA}ixe z)JߍbFHOɧSYĕO u\Y}W͜B'rՉ|\ed2:JGQC[CW2TULMx;= (|/TJ_t< Ƿ76AILU.qb9t3md~(YX5|D,HUxlYx;.[YdcGAA#=ΞaΝ`D9vSnj5ݴX5Tٹ9|Zq_T漯H5QlU\lWwX׻ӗ`AJ:_nNl45اd)'O 3uuZPXI1C'3?EK5L!R,bQ"я`. D88W)۠5h rcBe(vfW՞UU<#saG~vT{jQM}qTSp} I[5Gu+vTP vbiXCzBS \֢jyX_݁n;֏87Nr׽-(}AmvZH7gо6 endstream endobj 2808 0 obj << /Type /ObjStm /N 100 /First 987 /Length 1422 /Filter /FlateDecode >> stream xXMo7W!烀CV Hsh$BQ 7Sj^YpސXB d)T 9 ǐK3JF5ʎ)A!AcABr`(E#9JB"rKIuB({0TBeãa -qv[XQ.2^e $vTʾIŁ̑bQf)G%yTٗP+yZu2BpCαy1XnGPs +-%}VASVn`yX"PR@/ %s] EW%Qv4 IfXţ"`TMlplr? &`G 9 nbV w-f́(,cKY")zVi28&Xrlp s R񉒋,ܢW"M$h8f,x*ޭ-K&k;S}C0R@KS H=udCE0́m➑jV1[isuپ WWa |`$7xr I'ߴ |gjOwO 1H,wI`y;f_ww]ؾ~*l݅ m?c=[?.Z67ۛ_>nTݧ>t-%r偠3v`=Nb>𮝃-~݈wϟAKFN"ӑǧ!cѰIFv霤%Lyee= ؂Ϩ`hku "a'7 tfP3[YLlM0C)&hs6Mlz?`|t7~oTyI[=oLu᳙t~UL崌YPQF8~ FeѲQ^(/<GTcxꍾjU& < Am#R`#'2C ;)L3#`2'!V蟯M"uхh":i EfI@tGzX;\YPO)`8Y jFmajialuVTSseMmaʖF#Dh:W.TƁ.חJyQ\ endstream endobj 2899 0 obj << /Length 1490 /Filter /FlateDecode >> stream xڵXYsH~ӖBysq6@6d@B"83#1I^=MPkjQbKDeou*59vw}9<9EZÉ0+g >о}?{O{O/|͕}aj_;_t=JLrZ/dVG"HuKaH`]!4U<פkDb$K!І5Eo u;~p\."M&^tXh:#y>W aClD2ͦzX$,Wcj0}Dau@ m|49"6!?7}B0#S! \Q+Y|D1CqyZ_8@UTx5T0;χG}RC"ǰ)s A^_s)cϸ`2;ȃ9: nTk(Gig},hͲuo1A]ݑn9Yw S00q\׌~Smyʑ\we]aZ|(ge)xb[m8C`f5vlVwzRiV-[UTхpqCjpTJgZ0OӏkQ8| yu( d&Jv e[Zi4k t2mD9+K@ȶlscx*9ΎEwuc>̴3> stream xڽWs8~_#E%Kzmr{\۹!9;o%Ablf^ioWqq{H H'S*x3wowƓ Q#Ln:HܙgRx>\/X`EFgurqx&Ħ"FAhtaEvEKq[G@ ϗqߩZ E(KT¸QiO.X {p,z_4㹝:KK\5%\"&n|KuU**DqkkdǿfʸIf3yw fmFb8m fl#OW7OF鄞W(@-%Fhkl;3<@7E=y>>`v>\iﴈ3I:H2 "n3tA[:UeVeVPO?j`/B6twËwoL;tѽf%Cl_Bge9ϝ14BwAix3W uIh":)b^d(0X,L- u?e`^*N$_^ p|::wW8c lZXk(FPmV\(Rß/z{IiYjjMcҙj5==U UՃtiF qѤ,Bj@*QoPHCG0_*OnV^2.~ slV%u$yr/? !&JrC`m[Z (ܳ 'Dȫ46,n=bvrۆ{y ~ۮT%$I&8Tj endstream endobj 2908 0 obj << /Length 1234 /Filter /FlateDecode >> stream xڽW[s6~W`E˲-an$3vַ3ô'ĂUB"ylŰ ]X[inL F!]@pNu?P=E0N Dnpl@Z e6a8~A~ }H$j2apQ'ǎIO8 -Sa7RonǃugjJEYmUs~ ۃsPq֓z l7%uܾ66}~Bؗ˯h{F;Çբ XMTۈ̘{orh̘FClѨ#=6Ru92/MES a#TjFhqDDДFhZjG-!/i#X/) endstream endobj 2912 0 obj << /Length 1806 /Filter /FlateDecode >> stream xYs4޿|s iB܃&00 &jNk{v-)S P"۫վ~ #}{h2ExDZ21}{ũc$SG(Q*(QZFYk`Wtir~t2a,Bq,b<#YM)lG~ >GLG[2 E4mXH*Hכfji0/#EiP7osF%ːn*C^$bd4cmĩl# ;{798hp9y* 2S$)8NeSoEQ~Ja3v:4LEO.ɋ?N,taWoO@arM xUڔL*waYzex sm=b(e-0͵ pv/Z[!}Lc 6i4fr_*\= u-뵩E8@:ȉ>>809{ݤz@S9li% 4eR}LXB 80_.S()VvsuPd-F ϫ]x/!+%$h(r26N9[ސQh+辻 4PvAESP%0[!bsCU/ϓ6%&͂ _y!d YדDK8Z6'?wg_B;gUaf66s^;ص]C46˵Ni } < L2"/cHءw-ʦ^? @1,Y*r2\p1b/14+(NՃnCұ8V〓rYxmaV_TfyYA8wGsQnʭ"wZu :>.L>+-&%;o4;lZ˅q'X-)m˺*Oyㅏ_W!IW$fi*&&j◢#Wێ 1kc$Yٯ f Ep MJCDdMX<@<13KpaS|V!AsdD1'RԥU˼¨!4'ZmqmP e{J!&K۱3>^x ]MDv!GIJRA$q"}rl| ԧWF*0ܴJ;g)4A\ ]%b !NNJl-I r`(I%HB@ ܷ"Ide|f~f+etoŧe,d=ў>RJVH`ݦkTYwTV!&lK|q)zASg3^}RPG-S$Őy[# c\rRo H"T׾:fb#p HAuc֮i+@B۹+c> ;& :zR -cxÔ0mpeQK- >HvڼA1 XA \yD;cv˶ ]3|. t%K$N`A=t4-n^"h= J}^{_nd;cw=#&F;d9D-ئpw$:uS;P[[_2\9C™ ږL;޶qɞnN2ݜ ̑kqrl[}حHŁ"z4#(cZNJX endstream endobj 2916 0 obj << /Length 1736 /Filter /FlateDecode >> stream xYKs6W7< НNNV:$9P-H⸿ qrA.>{+{8@TF8b72on<{z$x@"4 #x0C!!T*#`Ȥ?`U5I(ӃP`   _M7xz>@`H b<6Hո*WuV{Zs=Nd?_$_z͚d}Сw#  =s.U(b260Vd rYɗlidY_IJKZf Xgբ;b'R.Ңn?Y쬨YZm١i2͊YL3\v8v],ʬ@e|R..Ծ]^*$YΓjQ٤1Pe2 d}v{yxljD8V,WU!zj@N4M?gC-q,Bya~;'&I6=wԀ=;ôqF8m82Wp )R%(2l|1ֈaLM>\OM$sBhp:mZpyBmu5)Yy@ef9֩zm Ը!d|9FQD l?5L[!"[@$n ؒ=}H5@:ZԅdP+TZV[y1 m}߃@5{uyxԧ!QTbD#)%VEh"f5H:ɶ4hU0q3[Jk'ϩGB0(bچ QJO,C)2CB!ڮ`R.=Q .dǽa硇G đq0Y)|€8UC=Ho˃shޱp]]/GvQq(+-˶xk9J$@QnqAoTwblfR&7! 9L L6Kh*= Xp݃`$JB~]+qn+Qa׼0ēY '%"b8A\l,Z[Ҽg]m-J(}Fl FpITw@A~c5<>oh˩k? G}e'dEFA \{f~.nz*Wbގr5E5(7@J63y6Ѵs^ e%ݐ]F 'pm;iǧ'f/ӳ?E&u:5C$]S;}p/ۆÐ昄t)ŪKэ9em2;.&9!e<+z<{8ssPk\'NYh6+. lIѦݧs 8' zBfV7.I1c=fc}K35\wH¾XO@aTDp齡C55y%\"$<);IbH#A:ZknD9 $G-zF$kG?6`tc%SH(wˍ1C]SkK*c "6"pp(g endstream endobj 2920 0 obj << /Length 825 /Filter /FlateDecode >> stream xV]o0}ϯ#HƐMtZ%tP0%P]c6۲n_{}E֗A@`&=*4k}{;1 [p8p$C,|wڒ v(ezbe\º!L=溜k;g'j߆!Jp@! 7g aoܷ}n̷N{]m]%aD= #뺚yUkRuԞ-3w1U]0eo]RZ'= >9-=,4ruf2*QTz|Z$jL]*۬Ng!}yg8{i28MNǃp0vuv_-tH5Tg*j`:TP/!:Ƌi~H˹y ̦>*UnEjsem+_|],0j%ʧɀX|4RęemÕs+28AٮI%ڣftQ,NO ,q`uӀop4c:H wFqO42!rtΚkBF:R%o.1^o en̡{j%rtH%ؕV"ŎD%Gȣm(QA?#18 Bh'2ipb.wḁl4MјׂV[f&pڨJ| C 5Tݭ)R\Ϩ ߵ_4* ƍyMsk5TL"_ii,ieDn{p=A{AP{E endstream endobj 2924 0 obj << /Length 1287 /Filter /FlateDecode >> stream xWKs6W(uLuDv-L0)s* ' ~4E }|X|]g;GTSN2v6jr|.C0 p@UZ;7diO *R M\N4+YΡCwkfe\NfBLOO/D%o#˙K  ,oqDeNíWkWy]4?x0# p C :_%\ [4;]Xֶf/5In/Ag5jO:gƸl'Mi[vqF]n2+4ZGH;:qf)=\wLIꢩAQQ4iQҷ.2~ t;a/dmp$ъz% }Mܘ-a+8/%0R$Db~ p!Zk.ńs˻_w\WPxT0!'eub@V*s> stream xWMs6W(uDE:r"wbi@KͩH x @M3^\}X<C5x1)F Q2OU8C \1\>xA]"3 oɸN茋. ,C3m@aOT3Zs8/ЂR>l,|UF:GbnlDc3HaTaSkǠ(pÊ $E}&^N1d94`P8f>SH# U_(lRfCXp)oqUWm$*z3& dB :fk YckDv+Rnb~ya׻byy{ + q H4p:x=8!ncmg~2]G:i;:Mx=x[H7QXpKK|{/bhB)+S[U6GkxTp* l6hE..rN]qCA\^ 8JI`JHbWh~koD(8/볉 'Ƨ<9{V*mgTlNOIV wمuf1[|3]d:NW7ˣ˛% eW)''g7):]"iqc8R"ͫcOE|Q qɿ kZ3֝yH<_]W]GOz o۝*&~o-ʎ> ܪ(:!=b+Q~0lE{AߑɊEi5|A֗ЉpֿofPârIB Ĥ[}g7f*TnY=t4ƙq9EX#: 0cednu@nR ;UԬŏ[) f9 ;MYؐ3wq 4&cH@Dz f\rfxPBćGC^}A 4z?(xJhU!&RJ\U ,^@ۇi>lWS ~R xB_*BMV5D8͠ endstream endobj 2933 0 obj << /Length 2266 /Filter /FlateDecode >> stream xYKsWU<1|z%G^?NewIP ({oO @~~d}Wgр*V(0U, oݫG?Ξ]E,`4flhM4ׁ(#"5n*EdoϮ~7U)3}w3O2͹sdtP#nH$>bp>eTӬݗKw>6#g$+>x9e(;úϹwY/& (4xX XeRYRֈduTrbe^arӺ:+ bymuY;i̪hjSgur\#XzUnukmyYZcnF:PcjYnɼ׫TϮL˨ԏw/oof=wq5Hoι S8TD ͞5P54_ÒôC7 }nPtu/9` h/ tANS瘎05rFPFUybQ~Z 2.ǕGϫa?VxqNi}|h% c9/ԥ)Tsj@xS!ʼn>6Sc+m_?zg,Hc EA eU"n6%@wf~ TTX8w ~CZ]wg_>:;ȰY-79@QN!`lin dO"^B{Q-"odmJk2T.soQ:J'~@h]S!a M4gV˿](V% up껻滴ysMJad3\d,]L!/_lc6٩ǥCEjE@JQIBGHBj(];E`>_e&:*7F;孝/0_^^691n~=\ Ynen*{ Z yRWٷ(vea6o*c> stream xXYs6~SK5$>؝&d -R2;<Hc~ HIi[N8~{`fM-fG-jOxXcDFJ3ſbD4bh.%PPK%{P"M}4.1N95 __aӽDdY!B*}k\@%"uMUXhskj|bDϵh$#"yh e ogW0Zb5jqһ+$Ϗe @ 'GG)~6$.g$"lR|y"+mU(SGL9*熢:~oGïv9od+rW'ގy;B}i >8?@(cvv.$72U_ML$Ft~ez*+ftNmt&xe`xUiڬ,[Yr2Jv,y;Od95$+rUOQ_yWU $\wn^_*39os st4^8N Vk}TXٶ;!j0f[j|iI_tXb_YA jWeb\G޸v*sltYV!5?ėB7tLV=ѓec&= tUgz]aԓ7fb-u9føiySJ%x]PhqJ r'y̷_4-dYzfdO_+ӽPX3dcm?=EUfc3J&v&Ջ{\f³qAm 5ZpǘS;C"(5E@D asA\kw05v-Vu2f' 2=c$0NZlq(scHW*"Jk5(f.Wr_8jJ8B{cOpOP, !/v.DZLфD&=(dh #S!V%xlR,W_tneJs"U^(kJB)7=p(ʁ7 Bjֱs &y&$|J?גIaagVJD/(g?;|J8Éo PE!'akWd_btꂾM?ԉayis wF:7y$7Lh&Sr.=sI7Cls;LFEp6J endstream endobj 2941 0 obj << /Length 2772 /Filter /FlateDecode >> stream xڭZYs8~<-HnNvTe6qs#<_Hd; !` hEX2'AWg? |xٷ#0J D" D2\ynϗ/Η0rOGj6ldm]컼v~lmWu!P dby+WWy9ݴi;;|*WEveWw2?"l5f.}d8_2Uj_~˵O] '3ٲtU'Xl cr ?Uo٥MX 17f7Oҏk04I"}YeVGpx "ATcUY,;~,-p,EK_ӻY3{;cip*qE]~p,'}MKWSkC#Hyjzn5ﲶ͊PG:k6w~z7NovzJxDh9O+ʹfmӦ|No(XpU"5_b/0^{ /kf+t ƖXl뼙~Ҵ] r8kg{^k,͠$2wuU(¾vU]uMa9]yX)vMnڏK!Cl5Sﻩ;eF{Bq4FK(Y6ϯ޿yw?x<sMhzesL9vI"8iy!|w/Թ8[SsᄄeMǩ>51ܾ5;%VY k;-"r@~ªJIgEQ pP۴0JXn{|u5$ɹ &5 <<rgIloE-<] T0lC]:RF'B{J}78`1Ɔ]i <SzVQZx>E)˜W`N1;Ls<ߞU<'Z} }@|4\DD1HAJ$ԉf $QԥnU9RcD0rtүTp/HZ?kK[RrH|Hɦ??$C:>fպ9^=[٫Fj)y=B &60JOc5>ͤc0$≕^zK j~t6|S+dJ8"(E @oo"4[QOGL>*ﲸ\MBU9_ &'D%`dBnUVCiW`MA4T?'LZ[b_0>-;[Y r7ټ_voāND`Pڎ L I]?\W>!21*><|H nmDmPD[([@-r0|؍{@ EQ6Wl.H~ hḫ-c50b}| Mm ~)¿O 7q(OT$s aE,=Hk?= c)*7rfghKaT̿]2-&$r_xU& EkʘDOC22A-B_I$1K@BPa,~?rF$!Rd|j>fv[z1<؛&u: /5 .Yvwʲ_=kT'Wz$8>wT&%gPvGBg0!V:hI}Od|Rjg}rPLם"JW@1bp(17Biid1t>2h3)No=R'b"5*aȤBS)esL4땿;FtaoFo5%zW//k IJߛ6 &b=ld /=(l`@a6uKD=F0@B`h@CJ&Fn䜇Foi(>v5vUc\k^CsE"b=UKBݣxXJ̗PD),ɇ 8R@gFWdw{뾻?U&}".{yAOIk9FpԮ듉Os|qb&L+Cw3Ⱥ&}͏8֭||SܺŦY8"kjf w7̼7z`dyQכq3LNxD[iXCq\KÊ -ks۫6<_?,Ax&mۙUZى,#8 )[;eZW+?U޹m |;+4lkc5ۦ%# 8tpdx;ս^p 'ׄN@?TRK endstream endobj 2945 0 obj << /Length 3410 /Filter /FlateDecode >> stream x[m~B):$%"[T[Be[F9_Gv=/k4t?ivOHF2ieʌYSfO O_o|KLLsRH#el+*gf?]ysrbꇛ/>|.UwR% %EsV&\f0RdDa_13d.^'?)BYծ'Ix7( &L5dAnG4N)1"*/0YvH CHrٛ'DN ew16{VSx?UP˃0j?luS6K]w͢ }ҒH8;TQ0rEjbDjd‰I3&5pl7 g 5YpHcgkQ'I (9m(/B\4FqK0jâtTxRDNJ7ԝk/L Iy*x2 $Y N/~`g2*vVBs$(۫ĒRx""4 n]-UaIx.8l%rp3H@ateSDPUHihM6. j\ScM-mN9ؗ86k)U?o#;5jaӓ_9ɷ杧5;xq&f|Dr00¥0yEtx_1Lb5h=zBSʑsp57˔8D'`mpw,;̂)`4S C \^; 1bEP!O͝vqd%Rqz@`NWA.8ݕVopQ~]-*n0'|TmgS.mWn;_vޥSt3_pr ??onAR_EY!pac6om:5-⏒+rw(#WEL(.#!M/on 0w33Txȶ,p`O}W|QU yI }\m`/Z>CfzP?3@BpDHR> XT u$͊H8< ٢A7XOI zۥK2F$uq3:`TؗB L)1#+U*]O-(DJm듁X\ [;w:m,фu1<6pjʱ{* ~A!rN#ʧ ]'.#d#N-D<41LB㱴id)g.;&2fC2٦*u=']=)uծ î\1WtV7zW~6w~ݺ͟B0WXVr)F 6,h6K{&y Yi -$R1Zaz->Ig"~)yis>͜v.wI8Nuc/1= !W 9p(GĂ\ MY:n7MovBީ¸2 l]_1 0 j,e6b#=L}jsґ35^0WU¥,5s/ة |@-~ŅOkxfR qrcU:G^YlpD04ЕFkyH@KI >JhG\T0D5=Uc@^^}_;r-er: v4XnlF&d]<.(0y 긥I,9[ ǼևǴ>v0L3,|B^G-G@tF`S@ecL13$ҙgRCU&D帽d\&;fX$M`)Fq.yc3SdqmgoI,"Ǖ CS N%`NA7攧V,sg2jÂ`NAfssնj㕜a\ah Zכ:8pkT;nz}ExHjKcHgVaLSf}Qy4_.{1z]ߕ T:314?q>H]3kۗ&ECC : ˫;$@}>{2ȅJ3 ]HLcNƱWLgzXV3>uÊ팪UngNkgFW>GHGI(fBCc@/1*щT (Jab 8;q /ꐋrp YΛWFxkۺYm $ CR⤋*$\b+ŧtRtj̟?ӼØC?{Y!4Ās #W`@[&9EݜJɪV3Ka)|(+M- ̀1uEx_ե{wTf3h~o%WyD䪺]U"4nk 2r5SJ<׼ԥSwgANCf2(@$sXq pSfldL x/ԶȺՓ˵ܻžnv~|n]7Mx|ۦܕm܉Φ}S_GscSoʦݭؘ@e$m2M ҳ˿9]hg0~* DUS.?Ⱊ#磳;#я^MkwXLd#Cy2̗}_}77_|>W4r9BM9^$OM ]}XW~1'OU[cƵ ji7X+ endstream endobj 2949 0 obj << /Length 1233 /Filter /FlateDecode >> stream xڭW[sF~W죘z&tj@:Ӊ@@`Hf{V +6ssQB! i%fZ!#(61Zv7+xiZ D)R24]"͐K#t>E3Ż}Jo=2˻}etO$w<$ݾ$]f]N-^Zy(D Rg>gX 덍nuLt5CO`_\+Z"fhkzJKm̊l's=<gP#` *Y\ g\q:"ރ;k4;tFŅZ~7\Gwb戩LsƋ_q`W~0+{ۀ*`C?"f`/ j8Nbu+ʢ ,UHv? [ .=m\de½ m֒='!Jqĉf*(*,Ry-ÜZi11"VDL`Glfz; F8J4 ƛblP̾=Xlh(_{nB޲ޛX~.k>S8 &"ܞ%:)"ƤdB+,8G3A x6`KJˬ; \e a:TESbXEt)@I.meR`EbJ2X֖S g/cךZK*ї_QL0ׄ>2Yg=!M-k^Z@FPY oJTKf `S M 9iCd!;ׄ8րw8VdBFZCx-r^d4X[uH T/3ga tN+3~XlDOUb_RkheN=3 V$ZiH+<-(͉g>椆p?tpH~6fѥ0o}(0aC4 c~J>+8/V\`R _#ߣ Lv]ظu/$|0Baǻ}kڏ"-1L~"q ̍ endstream endobj 2975 0 obj << /Length1 2201 /Length2 18169 /Length3 0 /Length 19467 /Filter /FlateDecode >> stream xڌP[ր ݽww n!;3gfr{g/{V+ l"ršLFFzFFfXrrU gkaՁNvq::(]L,&vn&nFF3##&9z- \#T&..lƆ9CgsGDcCk\P;;s3089S,@'+WyCK%[8-P3uv3t>-N&.&@GGt,@h om# zXؚL-qYzgwgZ_NvֆF J .09;Z;;;YXU#_n>YDhW~@}`ZڹzL-lML*ŞA(%o%?kf@g###;'3@/!_5xL?X?~` ]gG?KLL cgeqmƏc0GZ{Q3(iI ^tl:f6F;+(Z;JٚNc{B__v PitF6F//]FX[KN1rv`U5I9~̂IhhllwנY[,ZtLG1]VׇGOK )fklgה1!cMb 8#_'`kob0!08    X #'_>"(#>SC5|/q}3C?i_dLwSQHEYB8KnG:X?*WGivEcjGco>^ GaL8 ]HCo #蟭R͏ a?qT=$wKcGǏӿ.ΏMay,kf4R輖zx3h4y 'bڃ[{m_=*vi(HY\9lOtԨHw3Dq4>'Q,^ZяskN8d8Z෨S^‡X ^%E| Ya1As28$؎At|hdnD^% C%~*&4;O:cmж3}_?1NIB&.+`N)9ExiY[x9s¹sb)?)&vĚiWbN"sL:3$4p\J1c #grJn0Ρ8᫁iL*=hO μf (#$tg'reqq7&hiۤ1 Ϭͳ@[߰a9RiWr*Bw9o)`vZVNQ:tP&y&}u4&=Bj)J^9gދI:^i-@ZOjB|cpiG( c<ۋsd3WT X+^ʿy銍-(S]^3F6r<hiB%4KܚǶgQ>햀E2Pu9!sv 9!>AS'Ur-bl}c] @rRfo,eA󞏩Q.>S(0D4`x@2aW{U6yomlRQhAe;V#*!Rp惆 kv)+5LԤufҐg Lt)#Kx#5P"o7y`Z?t+9a@/&oz~w{6 +>jǷ,#N)M4_u?PQ-`7S#Ks|wטbҡxyLhf L3i;K/*ڔ9[8o-B?6:jgO VfTi ʒڨo;DQUڹooڵ"_SMxpX"jp>Y6_?ƅ2k !2Kٰ[_E &'PEl3+,m]06/dv +lmR֞ p fi'Wa]AUyW!853oX83D%<~.lp9!-`spXJ d՛Fn7|)h1TZE\o@lC}5;ke1<BVlH&I!7qM L^YVc*ֶdkKˠ_2 D(kSOPK~>$a-)$z75_L^Q7KTxv3M$9~ޔpx!K7\Lv ,cp҂X}Hp tX\g% ``[Iς8أ-6>F0w[?ޠՒ$fiB* A +T`ȋطK#U3*onGkϵ[dX Ԃ3N+ uF}:0Q\B=Z4eßdEv[iJV8bГ="E)v$,H:e? cIgvnq﯈ `(3pQOآ4 V~xAqTrnb Dl.R~֟{ȉw5D^8wSB1/peU)8Bh,IfA}FGw*DJ7@aQaX0X,_;] pvV.<γ8[ݘ!Gp0z\樁c3K%eX”!OG\>Jt v ,]S^**tixXb ?_"EC8YlV^)#єCv݌賘1>v߈zCE {KB74%NZ^xrwkbg|uy$:ͺ~3?%}_8^ ~ګ7YxD<:{hCc>q=~r:0U̺i`t&MUeZr&A`/MD9a44M. p?ި4eǒXk'Z7`ݛǼ,+I `V&mb'sMn: z,Ň?s3aJ#L]E_ ri,ǰ2[CH]ޣk >#{ZGLc#8X?ϫ䠉=X- gj*eHix*?uv~MAИs҇ Ľ@䦞&m/"-=F:5#u(˖|}Y$^1sà(_Io2Qv7ugRHΌdRݬ\ĉYV&3i.Kzu|*g?)u qۮ< CH8S~7 mxuWc`&ʒ@hkgS>Mv }0PN]g%8f)Xouǚ/vɇZgQȲ8^7Sp'+!߲y93+y(o^wW8l׽G.o' ODj/Tc \mUweSͣnHʞxZ.T[^';[hEMxOT3' ){Jv|5KWkɈ MwSibbgMJ5#HbJv+r<'(4mnRfQ5虬u\DeSxs8I,f0u4"ΒC4v: Tp@ߦ.T`N_5@ڑJ$DoFy'Y%8YkphPy3}'0X}B<_):bq_p J{^]Dz;~:blԮ ,rHChk5;kRNhz2Lf %*x^ tmDW WB`Rvpѝw(s[p%C4*()$'N)U+ۺ߭OUd=N,FRxwWsЎ ]XfP];2vl*2HX 7}98W<&D=5BKh9=q +H '2UojL1H'ZIJo+kUd%zxD rݻ) PL1.]_ZC<ۮE? +!pp ͌sihuc v B'YR;!K}9mn;Gm쀨ӀKh(hIj"JRƑi&Yet;W)auﻚ2OZ5s,\y.x=ӗQ/ISIWyL. =oPY;R~8M0bR{Z~:`AN(Dcp~cN̑q`8[f_2DijVuy,;NK#uamXH-CH0=rh `U F$vSP 8k6  6&(-y50Yb!l׫WN6dٕkE2'c!3/<>b9tr~|-BQ\ N )I,;2|?j鴍x'ײ%gӽZrL!DսDIc#>O1q?KH(WfP D%쎀q4I'w/6".gt{|v TYlFb姁*D妆8YlszįDŽ.%zI\-=d#} Ё(tTw3UUŧSK$/az_tD`g|0[A,7h`fWZu1L0‹Nrt0{<_lӡɿ{QHO}QÅ:\V q[1,!zry䤪<;GX8 s|(Bk5 Lkm;ػi#m&ίsblZw |R!Ѻz7'2m9Oȴ!ܶK_*CZIvf`~zk@ÜiYcG_GCG-Ƴ.!mETRI RT?(Mr%3Eį@֟aZm zY$ G:}!gm zfi{:u+GVM]G/q0 g^CFl;}zfy(ddju{/T^Yܤ)[%Ise=ervtjqR6PG^4-IQR6s OVzEkeAm@q|8 }G_4CɈϷEI+ [6_Sl}Oi' ~+wWΈ.^fsf'N%27VUh28]*d^TIB]F3dF"@}wz逩[5d2pp[ b g$ Y ׻u`aC݉K v@E),'-b[zT%'d'@š#SaVw2++BRnO{ڤ'ovj<,]f Q5q!46fF;;'L?*qlBVɄɞ_L-neU`<)'=VIw/C;xgVs~rpj@|c%\u^!'ȖDiibDD*;X#HU*8JS-${\ab,-W[vj_Awc jq>Ԯn;/C?Yy9><&u%{]֮JJ?ߒj ӅGro}B1Įt|=m)$ $=YPFvP! tYGՌ7ӶYtA  o.* סउ|6w>d"E\;R)ӲR"@SYbVҷ F$ W׉yVB^%?z\ҕHRU4 3wQOiMa z.B9ez;Zn>7Njo(_쳷;\hFa0\@B=~!?s_=plNߨ%w_SRiB~y>,t4@@Z|8!VyQ''nx!80Fh-O"Ӗۍe+2́n=?B%%q349$y00pJh.ZDd$%&TBaV !hTG9FTQ|r -#n_d& Y$ *NZ8c2LJsdbdcWoV6N&-b#Mz'[<W8qWtRPk{G=fT8dϤ??;A0T~zZ`Na8DJd[[(/  5ؓrpzz}pvӶ6gl{)%W\ْK붾3UeOA+\CJYؑp(ʹoq{Ӂ*o\,HS%eZL: kEW^[t24ʭl$ 8n "|sŴ%4*b>i*^V(T&%1&qiAfDǗg=7Xۄht{ 1~bTz=|+ȸ&6qv ML"c]'Kc!O(4JuDnQ{K/z8_eu"jֺ=6/C>y)^>%vB&Äk܌Ŋ\XX-sz7&,˭ W{GX}U"b@:Iblf󬼵}{HZ,kjGoK/ᓗL]3҄ P6͖4O0REliA*qcH]m٨s]*\I}"/ FUa~BiMTlR:glLo5 Fd6Fsu9μyWT-d"2 -:zJoΛZLu=^6k`MlG}3232ap$>zZXPtA ]]Gt*8R:л \=UfWCR<50GdzRLC!}Ϲ`^agPg<^`ZƟ@:ڲ@כ˜s⊘SJgɷ%N И&~~B۾1(#* *[zPx!)Sf5b&.8]9XFào}w(_ĽL"~?ٝРA9 6癄}510w>L+YhB`7[bK@ISpn!o.ů=H urE_xl=n(E!Rh zߎ'?'=|ޑFJ){'QR5?,!jx2 z|;t;sю{UMkyDnTI÷.\ʇ 7Q0s}^2r/<)dJPOXV5F&Hz"L1`hG 90qX]l30n/Ƽ<2nkzeM xA,!8+VT ۂ#,P'5]9"%dٴGD(C!#bT0Ԫ>4AYogXHS>IKex]oɂR~QwfDL}+H{h|ɰʥe,L?E** -};4 :^M bY! h}Fg.0u2mf$Td6blVMpjĎwBYN(|;&6ӓmm[.džp%WDCبe98c[p۲h^2TG>yiѕ+st.(ޛvǻp2 %]/ ,p (pМʞЩ|M|A-BT+QC0;U.u~T!^,wp w'({V+B[t=*6y omւsvyTSzwSx]TGהEgtǨcوMa䣃1 ߦ^ň$)( %y42_B\T_v#E$=G %1cn5|JCxTo4X$3%[:)ӒY 8V:&38{*BWc($ͥ8…֊!S EfDݵjƆ=>u\{i%u|7䫙Lp\s˅Zwk&HH}ےL«s'Ifa`^zjZYAoLoZxF5Zm5K8Z߾(qӼ pq俏(ɡ$àNlA*0W bV .:;)0n}W^-uؿ]?ş~#FjH/XJou6ay=^NAl\,\gþLxg,U.KqpIWtMia%c=ʐ<-Ds.Ʌ)jBn rUe؁!E?K.:2֟2Yx'M[~N60٤z3a-V[6"\?]9KO "V> }h^{"&=npr >< ]" "Úwu7Q+0Z;)vxa8Hu=iUA ;l](adjD,/⩀46#6{!9b 3=`?D4z|hP<5iRA\# Uh| <O)C4r qT(&# U.5ua<*ת|- åeӽf-K[Y09pZJ&4s5ЭNC5HQ`5GͬGH P<]:r1[|oW7c(vλr4hz8C%hZqsp]QCf Q^zk6+MGwh4T9OE+b`:KDu,k_ R$(5Y .uI^k MgPᘻ`2%@i{raĕ2T8tKs":rǸ#_dUXkdT0qVEov @6Q!|YVs&I̎BDz*NY I:R^#R)fߖh oI߁z"bh.H^_}eGm7eV-ogPA1%Reb.Կzk3W z'(D-C]}5aplk,Jf8Dԍ 'W%аVX wүj_ޜFX'(E0U"$|άDbutM~O|s 5ĨA!DE37(گb+n}sO6aczuVabqmQc*#b~[ mR!]bᡣ tY?Y#b(aRw@Ǘ.<!AlC[ \ Hwl5e"U3n|cKV.1"kIv|4iQMѾ Y&tx4vkb*gHk4Š  $?4L2.h~ҚH^ m!}""jID 2Iy?X#5yb慡@%uQ"Պ}.$<Ýak;&1? ~I9/d>y]ò@+hEd~uI9T[y_pl?sΫ҆b'8qg?F1Tp򝛶zS%)cؤ;pj[ m2_(vw. uAp`,>(N?JwNQH%AR7;vJcP4YTKD &`yX=HTXmj+i8!kaRf#쳩u` AZO쩃fyϮ@ l[Oɪг ]$$)y$s 7Ar()gD{*zZwska R0 \yRs]B = up2Zyj>sh_.aR_Ct~ r>G-"bfl>0)Hוln? [HMv/ՕPC"3UY8W~J㡶?y&ҙ[n:-ba?/%s͖lUbZ#:6VaxFAOHt&Iۡ^tTTv ]Wj3궯_6(lQ%uhf 95Yx3x~`ow:M0wMe1<9&15aj@˝(Vf)Gz:Y}dgoϧ)0ĬhVIr. %G,4/rHIl>!,e*³CIs1578;v#(u]z{RNF0rn~͎q3 ~FޜiuwLlaFSwDv`.2mYCEti,J-tlp v2vqD-OCzRs\:CNUk]hUxL$ `zpjj^oN2Jt{+u fm n۰ B;o"TBz6Eb,#2H GpI"63^&=k4ڪoNJkU pQ}3D )qJ̈=8'/-DNѾ15O/egH^ 1i_U\5]k N-\G\!p)+5`rE_.ضv.4)ޛBvK7o{XU6iv@ixm$&*l;"S4㻧hr5dOPN9_h./UfF>`ýulD,i38ýy\ sSZg_@nr._ |낝u^7-VouzMw4G=o:˴ lA{` :\OQNĚGrdzB('6a5f#\t̼o$#ʘeH(btM)H\f8dc.}$ϼcuU)CзTbY/2RI.4Vl>ͩqp`$,3Н.wC¨g> ZGx^YoQ2[WHykT"hd&?A9G@Nث1lǼ%Er=8[9fھ՘&NƲ[)[Ѕd%t“u(ş䱾foK!LP'ZL0c7GX$BRKmw{#t_HύW1Dee؎fߜ)m%kTC᎚Gt}:[ǸJ g!}H)W{_JעC!,v^ ч&3z=ߠ 6S {*w.`Wo0U8Z##Q)4qXo,S)^HC 'KCWz/!7>ʿ&~E,rИEjpꥺ&!^1w endstream endobj 2977 0 obj << /Length1 2211 /Length2 15525 /Length3 0 /Length 16846 /Filter /FlateDecode >> stream xڌPZ !8Bowww'w';'Ν꽢ާɈU脌m A6֎tL9aM&f## =##3%?v2u5?"DA@w(=P d `b0s3qp32hc :6 2[7{sS3s@iD`W:@ don@V'-*6F G)AkhBr7姢;A {g1/yf;TlL] ddm P(؂;oqLL- [+hddce v36[ 􎮎_@K|3hցq!%9ٛ::;[ő22YXYOdÿ/?/N jvN )ǼLA6FFFv.r52cU7[пL9xyLiM@< 㟎ELLcs#G!Ow3o~mc0oflcm'_W̠,*Aou ۸rޗ61k˘@{{(1<)0[8yLlQv6_A0q0 `ޫq)A?轊ދ{ `0;3/b{XK_J22@߻e4tS/_6N` `0|mw,߹Z aiQ=}'f_l?mߋپ>X[LHo(޵:Ct|Qi;/rpG'q:C9C08كq ]l^]Lw=\qٮߵr{%wGς9ٿ'}{lxv<}rۛ%HXtDUa'4܇#Fy+BqҖ<׎4cD~NUpS[,ΉE1廄k@ϱ=jv(H9\ybG:8jKswhٓoq4^Q,Zяk=Z8hc‡؋%E1E&z vD˼e[8G~"evcɄ,Upr9g^^#*2~X8)2[~: 9L^d_1=C#ltE>x59)a }_u 8dFcp1 ͂Si4ױ nw~=GA$E;=%2mttWn^kQpfēLaC4 9p: 9,%^{at&ȸZ8sZlK( ٩>e;恐5\0mѿNgy2X;t<ۘ{s!ȓ}l5w>n}ʮqWE90t".}~j/8һJ~=8քNw4#G\$^~ZI*!p5jhTP\t4s!0ߘ:b'2kJOo&9caH@7i%mz5)?Rr`-kA\"iԈ}.jFYiKPlI27 ~#?0]RlSV֠wmE8Zq*S87o)- BWT.%,+I)rDi͎fktC 4 W-ET*[MPGo[v)YȺKJ''VE!D3nGs1@FVIʘϐb9Amݕ4PJR Vf e +mb8F'|{N򲽟B.t43)|$U Aj jG(a:ADCk-Rغgy;1E fٳ6Q7'9%x=`+<4:VҸO8#} V~\0Hљ^K#^*g`"p3BNMd~T2UF'X? xD%j1$|7ML:sBݨUQ%][VuμZJd叕~Rs ;*tL{?IÿK *FTErw(n8r5H[-"ȒEP,6h:1'YE>vԽuNXOTfHg-89<]5(3tbֽiQl;Td_-0 0!@AiacY=W*8EJnuɐ?DLE]z Cjltʨҧ߽O~]7UqU3OW|ȄV"~/n]g]|[!̜Fh)gF-Q砐lh'L4bRZݺQ:,N5DݐyVw]J9Ǡ -*wjd<JQe2Md|i&|A}7v!ƣ> eql$X@hmys9-gj.)2svUکb9+iYWvB49Ux= K mdTSdM `rn>sZvg+RyA~E"ԮeOeT7Z`sV{a~`q+ O ~UT`毭Wdtj?rMjT59B"ԠBi8.8X'w귾Z;ߦ+D ^߷|Ft+.Kd0,ar$˫xnh{iǾ%{:=D1ߦ̷[nF6]ᧆ0Ct׃z3wi𭅯%vB:`3fT*Ҳkn_'4L5:=%)[:FZ˛ߛkpݹw[.3D?Pu, z{iYO.Qk޶+AI'r^Akc~/ k%mp<-Aċ+kڍrb&RHV%jP _P9䃰K2ePù?~/&* 8XU&G`CfeAEs˅N*I_58 T G^$yHXHȍk{YY^r@,C0uyu'0ô6q+#ǝ[-uB@3A&-q} 1wOΡ\Z{]^Ĉ|fp` tna|PeM`)3tO%an3~)ӧNk CSTሯC!+z2%#L!@X󕧙Ժx$b|\F )6a 8nU_#68ӂ1 3PL eWx ×l-ׂY"ҐwL8 svbUeR-]~!:- ~`VHD9- ;a6`C޾Ǎ~=~p[fvhPަUf73:QUƢ\]s$D[N[ɹif z#w?\0p{Nu.J>Y .\VmHۧZ5%H9e_7!(AH&~J2ĮwGpuc"Fmj? 75)5NLɇd7]O] i.)t\ޜӘ`[yGq>{Lt꫼/?ћ K '}~2kAm˓a+LD{UFrY>}/\R,Y=^m"SjnZ9wjl β^:@PΧ+iޱo=qH^ [y*ޫ(}%j4{hKbYq2)RܞL{h<snrV=s؊' &1:bP&ˡ{dA.-T$q+pH-BM԰핃 %'S(Ԭ}Ջg1V%Ьh5o^Yrwx)5Q!:Mwj{")xQ>L&'4߁JoMt[6w g;_ 2n}&ƺ:Q|[%~ܦ$d9Εy~5;@*_$7QHNQq65娛.}\7+RyQtdWCGBX fȾ:W Aڂ G7l͛Ν1N6/ؿ$HȝlFpدƪ еoFC|ZZ(7-w͏蜐^,F U3њ>4ސn{t+vN[ Wf)R\u;Ҕ5,2ۖp8짾E`KU5Af(T?3]l c؍\r7YC _ u$(~~-b.L4o;D(yn UHc aJakzrۙnD棆KREEWXXO4_؛Jh$8τYAI3تtWA >Z +#JBl vtu/s[n]c}?eެVZde?m !r3v-H|y|VGy6ۧb;"0&_/1 q@GUP^`7r+W@XAZ3~Vgc>VT;N)1y%דNoV* ھ" b+j{Ƣ~8Q愂PQ+@cτ6*kT0ǑaaJx{RWW֫`LE. rSxn@"$s|\ۖy(Kp0{͆#jƍ(G3mF=@C 6`]uWLCopToah,_>AV6U.3HOE/m/cMvHWS-jI@@uckNJ?Cyf䩇h(}\O9خA_f f$H$Xr19c2Bbo(y]:;C 35A$(ZscGv F~cO*@y2ꖦ^U#30ǟ'9(>Y,$͹>@,~2 Vٞ=yAAe0HKiQUeohq)lgtupz&ܽ^V1Ec-?G^d Cݲ|;oT)9;,L_EfX$~<Ӡ Q;-&ٶ:gn  <]˯DB[S7 UnP:dp]#GB%^/] )У,8 [=O&>584 {s}sc4ꈙdž|!BQ-뭱%s%z{a8%4&{nYmJ"~ دNEh=-c]?=Yf YD.KfxAp؉OI41ҎlI1{<kʚ9*qt6Z8B 45I:FfMV9 EuڬШ,W[cי)ə _Вov!S}.= DunNn=ݪIL85 ap|vQn3`PXqNvl|Ȝ#8⮃3N^Dp3n}Y័oZ Ԙtv9]?:BwN` BlBڐ2>!ZQ?? spv §ᥡQGBo*o;jqZc{@}1N5biu?Npwmp쒂KA5|W ;!VOʰ*V4n>ɗҤk;ɋ"Cz6p,ta,wLDVKŜk #/j袛淜8Կ!i7Bv;Х.+JD:/FSuyτ +Sΰ ']b"c:bmt1ުQA.+.p-( n0b BvgDs2B6O cVrkmArZ1B$U>0=往8.8ζJ'>7)N<ߩ͊՗4Q/oQ2?VɖHs`dԆRviQ7'I/ Ȟ&~|+'n0B ;?F0yW; l_.KS$8ߑfc.|!NM  OGѯ!Gf0b&V("}Gxm97~П;pPp qAܿ}7, K%2f nb+MWs1vxIrwŰ: <+b4:v2|˿Zu4<}9Y٘cMHp}h;sCS݄ ),mty{Fǟ_6y3I\EC| 7`2 p^9PĤNY)]ͅ>]5H@P }O껑\'0;xfHXYݕU)wРƩ*0 l3qܳͧ8)τ=ESF9s.C7N^TV9HIn|oYY)w٘!-'\W)5 8X:+FA|e̲DmiJ}ТYE8HKW<T*S<_>t>?¤Xf4Ĩ\$!:L&MժAC5SK1Q-'*ɒ/]ty,t m̧E[sCv {MlO x֜EK4Ntw/6sыq^Ե'fپf5g%&Koq%|PX5XC632]ku ZDTE˲K6{^ 'Y񢈒 ] d( EةR*6vT+掤y/ Lsζ sY4S?Qޒb|2)0ϜשqihV68^L Ԓ|wa%t{ԗe[Vl,xpa\#]x`/r2LOۄR+]vl"aIC5|{=:6 | Zp_~-PB0\PS {>i4H+ԫcGRǃ~/p4 \jOhp:-%l9-Er<a(I3wѿvmPґ?TQx>(ah1~1vȜFx3Vz.MṶc =]y`.|جPD}}n3[CI6TYU]}dbT iv1Oz"6\ \WQ;Ig1&|]VSwz"q=-_~ z3@֤'pFV}x(NSz%f! )Xg>S&~As^]wu) si#:1,)\TB2gl{_=" z ;J39ilMF#VCY MJZw4 G8v '鑽V܎b/e왵Օ<^jej$%iX oH|c̣V/Hs昮K9qx& ;~V&QgӺDeM(apK.H`۩15N5CArr*C dnIlPl"á.J/L[4AM*ɭZ24|K5<ey?‚@aӣ5&3 g^jBA!02vFw7!WL[\4e$cp?&WS1j⡆@@034V':6n)G_ϏݒתX5@AU]Z G 90_똇! %>ylooH҇9єӇTB"tXۄ>QŀQ, n%/V]݇UZ{Z5=ɔۃ[f5}9ྫ*FDwR s4dSDNTb7ȇrwD(8;8JDUJ_2}9fi+J S@lrN2l*"y||/Z{9%V||&1X)$ѡ/28Bl B.Od5rV֘F8%Ӡ6vO߂*Q0{1NIItfQumYE* ЈC01IKӻ84+ Ճh+7ct"^a4&kTk5(R9Z(CvȇyO3+=DQUP%OÉȳ1yV.B{~A@)kϷHGRqY˙$ͤ_-HL _M1y{ Wb_Wjb5.Fyq3"G)%i=Yd+haDrr{ws$?φ}jP4pI3fpNBo<#~| Ϥ8d5:K#KNޱdPB}ꄷUqj&乍#ͱrF#Śt!e&+R!Ou0|yٓݙTEp= X8+ehha:{w~y\\r$‰Č ύZB3aбOVk@kKi7Jf`" 6vdz)|8 45ΎsiT|kv8q9٘ۄzfɎG6bn:]qBVi7. 9lq[5qEU)hd(:='l&֋΅vo~ n<DZhE$R㯟ɔ=SʙSi<)".Pf p4n'F b9'bI0P}!};3oqn!>KZ/"u 8 \xk\#af?S@x2Df, yx\U那۬ AUKʥeyZw$p`ɞGM jt;4R:)jZu0Swkgn>j'v8,vwWڬ' پL5roo]N7Lu,VJzHRcn.j6X>ѧQ}rQJ ~A!O% /n.d5>,W|i_#΋$| ;G@'Q{fXu@sBVASHeܵ ҹpchp@_"TКRnsd"K55wYTw b|`O+XUgzU>Qk}\ ܫ2E#oĊ{c7Pil1/{ Dz='i>߂f۾(i@vO%AU| :]<8Y]$Cu+t<][Љ8 NfZuF/| ySB&+g@Yn_XK^d6r8JGDcm6yClJVhӡ#8B!]2onP13c7k&reJy%Q;#KbiJdW2iv!?8+[\,ؔW|Ko,T(ެ, 4m\WAl>S2dp{7[+~*,GOqb(w`ˢxexҤ%9p-6IS7;4GiGW!%*ABDm`G^tS3bE_x φX;V8_8Q Y$\.%ۑrD7hL'L*ZēH{Ek$t(O{M+սqdCwVD#] >bGY灇Q^쀅Jш 0fޢ:8bô[1QXjcy`~y>UfW"B|̚^6uW $9K; ^㜵]Nh_IFEe)~T>qM7F^'<Bpx3UӘOYH&]UdY:ϺnUZÂܤŨ/a}2%.f0JR͆ha2 .ɯ:S;=]GYBAb =(:7WYaR$^%#W>.p/BK>5j(o'*:TAnBjBk?ʺpք@T}$-}9 dzKx$;ZCMo*mj=Fy=i-͗$,; 6;ydA!cS^ĸkqodtoҔtS#ܷlM"ZUYx?6 `2|wRAJ!X7Oi}S2e]8GgYJuOG(kڰz᳹3R1䃁&442KNW[%52hý0Z.F8v/z:J#M##K_ USAE :k9[(7)~kՃw0Vq3p n|6X;[_b;@>hA wV{0M۶8 U%s6h[7S <4oȘĄ߶<hqj֬>C1NF٠P*:VP> 7c!l(6vMDl_{O)) BV`֥+]ktT1g4:z?#ז!Qg1a endstream endobj 2979 0 obj << /Length1 1496 /Length2 7939 /Length3 0 /Length 8944 /Filter /FlateDecode >> stream xڍT6tt 04HK( ) 0 ]  Rҡ"H|soZ3ykϻ&: m.K9Xu>Ȫ>}!@>L&&=/3& AW, ryɁ\TaP=+W E?ȁ Un vd9z!6.g `` sN8  r;Le {~ydt90)%( x AjO" 1cp]K Z0_R_Uo"߆\Y?nѺ< *a 3OaSt= C8+@< ?Zc5c(X x= .{Ky׀ @p8 a-% \R|V087/㵦v:0'I' d1tw}n|(1:j]?h(82[#uS>eP2˔g=GFENob0gV)s4_՜j[rFrC2js)f)J ޥys%=;OwOYKR:䖎S.1|L{x'@ "*HiHi M-^%$fm¸U7}z팛Q08 (0bQ̻=E}(!q4j# 1U~L^=tȻ gՊ)*Hü`hmm=IU8O&2*eB*Jv ecF>FۆgTq{ur!{=3]E:&~+%Q5hIq o()bhlUIߕ+k9 ٠`UKKܸބj  FAyH'N+Nm݌U8ԗ#0lZžn[%>KfDs*3aẙ]y{¥ KfqHkrXX[{Zш0K[&hŞrG(ME)3H{0ZPU nwa+2hnvw'ce/'K KW}kpbg %QşUa\ͪodiń I|dtU\Z d&/s%P^kY%*}l>H{_B91lqrO6+fCб;PF1`sqK Q9AAn!9p0=5VvuC13Da)v;9հz$v6{kĒUo5EJl4SB Kڝ$)u0St@vHC~&Q3,=R7!#T ̾ܶYu;K+uqIo . jn?}rK(Œyf +ѪY폛މ9l˹<}1/`:s&g%mdI9q׀EAR-S Kvn22}"Rpw[k f*#nYrDrCЮ(j/|1SNXFý6dTAWjP~,K K-&A0qD q7&%=5q!ZwK_I1}^ 8h)m3F,=w9ǻϱO;wjdh3r!:Fbbe kMis$4wp,du|U.ǚ|Nӧ>d}>WC0Ͷw4kIdlvCPsEh!Wâv:?sv}&x#9SMZҍBLoXXk|HPzL 9E4[ք cG'"AV˜zϘ)^rWUM1'Ԭ~&UsU.9V(~4S g "6ü(jN7S=XN{R<tfyd*NHܥ2IVSp6i"Ls(K>UPT} o:/=,V46\z[ɖgǬnt1s~F^c'9άfq}dPBSM՛5W!ꔓE| 2 էYzq:qk;H3ip"C y_fd~>T,BR~ I9u]ߧUm;=FZO.R Hj^Ri5c*Xoϥ ĵr8xk}e$DۈxX*QዬPsGW";1tEḫk1_^V7nc >T%Ş!_v/sy{r&)$%nj,s ԓ(qܚ bw?{5ӇЪvv'}ҭNP̖w碖gcJ]](tDhSS])QtG?,==' A/EyjA;c 4;A"_Ec գ{TrBM|l hnvc]9{~r9eMU|V3?1wd t4)y BmlAD0'afx ⩞FΌDf*`*bPIvA_.~Ӡg;,1c}>ջB,ukHI@GK#U[['f2ЅN"jlYϞny0ĘY:WSJD<-}h ۬$fl-uB^I|Fa'4Wȗf{#J֥$?Ghn,Ϣ[j:t=zf{C]WꛡY$qM>h/JZ2@|$$_0FjK ZpTavr~^kgY>f~f9@X0.x\j."ϻVЕUݔQ\xF#aW)5#w< Biahi`ʪzjQΛ/ec_Ӌ}< ?զ--R7 ufaFJl kY>  z}k.f7*[s@OhD{L:@c=)>|>p?dIXȠa5IJi\F<2aQ._OyK%-`c!'#-g\Xޛt= Q mJϛ3_q"yhjW<+B1 w&*nL .faG" 630l [i <+b]_L$?=*{HlԟrzdɍKZ`,iHNo2zIhթ!HU6D@osTT$zu`qt~nMw׭m8Wϳ)clb #uqھwxB*psAF@r1[Eg*X{BI/GOM:7|d?d֯(hUҩ%v=K'IKW19rV]b<_܍@Svfi?όnyQ,XBoiodݤDBG2 TLJl78>RgCݞaU0LK q)+{sC;-15tֱI\It@i'aĈN9@CWl[{CXb Jdr1Q zηwGGW{܉}C/2y"yN"(8RLbQ3[VDHK9u1Q&{eo;%!5fM!)ҋ<ԋ~cJ "@ 2z v) "s7~7.ghf*K^h`XSJ1V-E^EÒ=xY#Xtʔ[UO0TtUu_t -CmtU025~+$v$ I/URu0J(^͹9*z.W&>Rvu+%OҡF) ?ӊ9KTml$v^hv{ 74W7ԕh"'i06ǎLp*"#+<\X̶D\)|h~rbzNf`NFlrc@K<],JgJtbWJ2H1P!*{2d3YLE}%&hʼnך,`#do. HT;Mۥ5kEkFDz_nMk~;J(kYK› VTMDJ[îrITݮ%>&=W_ nSjX& *Ҋ|S8\,<6{ Ðʶ8gӵ5E><]\'wJW/ 9{gG|n""da"F/}2ui̺$iQC+:DbAM7I0ZxcP(ڋˬjK>[-QtD3nGRzXҧȳd:ɛ#@^[e{]ɏIj*FmjF.{̞Tv6qSEïu 3%T!x b>J=@z[t޶k^wvȡH]t:ꙴi;)],ɞXLQZ\W X3mN|:tRzxA1Y6N#c5E*(bxC򁅬"/Ħ{2 yC7jH,yz"AbM [,:C=59;Y!ZR*o|n5&mu%b/Aq1sund`/JTދh쁊ǥ-]l;TbaaSS؏M0u1^*\9$Ƨ([l(>%%.fġ;6ܳpx!xL:N[pa0]T_F2xݗQBwҲOYG]^4՜VT->-P;cȶ٣!"^id_݅k=ҶlNsSBPGڨS4#TRU)%SW &P<@49O`u1z 6Q%NؔS\A7Qߒ?g~%S]6 b͔ 77XUvW]pyo[j҃^?(nh!!> ?ҡ ʈmW)j5.ʢ9O@AI -6`.< hRuZ<ݕ[3oI8gaU;gvKb=,Fm*魟IlQ>Rq̱w,Z}9eݡϩ_nXcEQ,B+)WL]+j6FŒ>LzIkHAUtMpEz8w2 M+-F跍AEpxI,Źumn*l:KDc]L8P\q /,>}xNpKkĬ8 KKDOD=T;48} uUQ] `B:LT 6H%)C$ ivnƣ?1R|5s',.JAxљ.=xLx*,@ձ Lu0c0(Ȃ:>[j%ȓG?y3B{ƫv%ps`kk-;KڻvyTMIO endstream endobj 2981 0 obj << /Length1 1972 /Length2 13061 /Length3 0 /Length 14279 /Filter /FlateDecode >> stream xڍTk Cwwt33t4%! "RJJ[3ϵ{H) YaPWN^.1%+Œ+**;@ B@WSFK=@f zO WWG1nn. Zqh]`w qa0tm .kt`V@g0I`C]|ܠ 3)=@GE  Xo'@rZZP/`^*qzrPoC - PZO.GW.&y$spC]]0~ |  PF@nzPXDd`W {ZpNK[ԅ#`b~qn`?+a@KWI ?Q 0yb /7'`P{?2K5-= VN p xyO/~GOrUZciP?4`ϒ7쉽`X>=x?S/L$E7{ Xcct{䉾nO{Z55`jU\O+! gE' q3~= ք@~_1N^{Z2Kk剘.O)ঢ়0^O' _psAaO.vV0gߧ,$ -An0[p+An?HpAO|S ~Azʠ=e>eAO1-AOQ+?g A3c-(ං9K_<ȿSL*tV'Փ+?Г3_jQ8>m_-=]j{o?U^yB >U/OV?tsv~"_iB`K0KΫ:g[GW|E\fur_T(. *ѐs]Y8@%pIkMcS%%gV|T9jRA8M(^ti#/s}bQjhFwo]Y kňsކC\fIDF& kDZ᱑TU݃\G( -+uIcD(4XA f܊ H*dW\paĕHZ+l c;6vv29Z 󖪢@"e[bJ*kX!b,c$-KHQf٣r DqezX^N _:pjuGr@xtϟ 7>y⋭bzأ^pDy|S qW鱛 ]B+ Zt]Etnz/]%Q`#ժO.Q$^B|^s_F:Gdm㪼j 3)b;#E_5%)iNu,1f"N~K`-ogUF}aC1:]UFxK$#t UĘ͗cZA{ 3aKg C}{k+'R<"N w݇fXSWʎ 8k[lGs,V"_ԓ$եz|N!48Ҳ֡SU:d9w|^Z裟巯yDa|(VlpQ™VyȉCIkG_6o[sktW޼lP@o駣唙ŰyQpEBz>T/^/B,͢,AGXah=Da"cx2SQE # po<:FSGWC3~/zvً"\$~3NR~Ol`ئݶ[ڙ& B.81g`.`v}lSf)W 29[* _ElӮnk;ay|*N>HXxk%ɣ8pȹOɿ4P>dzQnly@h||X=MAHf9|1MR%O= /}gaAĺD:>z(0fK99֑݇^hx!(P,jL3r%.BQhIg]=F1A. hG~+ 9YO2m :ә|!@.R_0f֟"0[l~p Aҫ]ǭ:->h*Gpx$M<4_Ya ߚʱ.8-E];>v9QĬ*,w.Լ&64+abjzCw.wZ/j%*o%޸v*Ú1s1N5hڑ_uM^%͍/`r펶\e.jkV8 1\:qqG8NT0^qB%{y&.VcAJæ)QZE=i%DFUN3B}VFle ]Gu-~G}Cg>o]pC%3}6{i'ˀD;7oW:7)w߆ ,vS\N+bR{;"VdGLYQ!hnE@ D!@Zk֞ږgC0{ ؛ O;\t hOza#i]TlVb0sa._)\QgKhz_+mM6gU7q]T:Z^+\UOjTqrMB lY6ŧUf{Y' kWhG} Ga]qCv:uc?\-$HsN3;o9UX)#.Z:tWGqUv:&iTʱXk <;SKP?kc76:TI6@rwTxdV9DTYqm`ѨTZ tAtR/^|2[̈́nm a# =RNeMʞYWg|$u K;SQݵʯRb"_\YЉ, UnSuWtܸ9 voCЭҸN\J ?c+IR @=8W<9)gOfDszܧaKwYpor8ЀR:a8Lغ6\< cC|&LPaa;_[71nO@..NR)21(yq}Mr廓 Q출ƸB} |D<3z?apL/jKWiz`i^%1rGfK(Ui6:mWv>去z ]~虑L3KclJE'` +鎛*^Liġ| OS v ϖ*;\`χL&j=Y{̺ܳw_% JM{"fd3:[$,;c"zvBk1xK  UդIyܢ bӉgb_]eJ ;}7!ъ6dmQ.AW>T-<XyUW7ïGm{mHZfC(9da!^*grMb";,t"g6؈;W~>U W؝WSU|)d>tZ5:F/(> P5m_؞<4ECM s0R#wX ;ѻM-@@*snc}]W6Rsc_zY]e'ɻmٟG1Y[B&??ⵯv4,q˧3R؄`{83Vu*!JDNfTYeڮ8$B(4Cev}[Q^ M?["w&ɾ$&Z%6#^(4ܼ;I،b9Z}/4!8<cf_!Dp)Ѝ5#wS$uy! DoF5BcdrSGY5$&j ْ܄mCRωM܌I|Cgq+ۻ,*oPS_Ic1'3,GOAN ‰~l0WJ5"vfDKUKZXj #(8r5%TL} GsXPLOZspunX.MĘ|n>zzIxxdcq)Ɋٱ2"*V̂IonsfSc͛mPo6]uN ӽ{u´5B-}iM}^sס7m0YG Cb2Yt,Gmu-/Ѕln=lKD{oe3H|μ(sX;>by<;5h>pGK*4eg 75dsI5Z|W]g:,Ҟl!dYw(4q@|Ϩ}zXwOC&6MTG[Ε(56r53Vsd 7 {e9 ?{ lK3ğ=}vl ҩ &.D+ws-yG}IIN¤*yuS;d'=L{ޘ-'Qe` iahlRt,<8 0o~%h+D#kB/*N[r"Kv>& }PHIΗcZ`BRRK^Sv[}ӛ!wSՉP `U{|OWa Gm9 v{p{Cޖs ]uQF'u0^BݢM fa>yߵ`{-:/k-=bCUL0\KДWmx8N6#!OنbW Et<d(+h_im`GY`mWNY˔pfv>uwOZ%HcJt;q%_I=G+>:'rP33޴LrqzUr24F~ЊijzάK_è_PiVK͐[!\d3f|EQa̤I>dmO\E x!\uĖîA|Lj L]#u\w Li(/Zgm#8$-%=P:G[%*},[y?'@aѹhF!Kn9O-9/cWr[c@ \hTy0ӅXmr˷+N4Fu0%ne Zi=p|y|i;d5_TsU8duub#܅X2T66z%a0zZ ӘA^G^u4h.xSQ :䩤e3<%=ݥN& BǃZqF n=Y\XcfyއP}Nq19 LH,zcCi)~U,z>Zle .[*](@žWe#\LBAMJ~+!(s5NՂh[BFRR2V"Fz>*~GJ@%!UIs>m߅ y(x5ʢ*񮽏lVhXjGtg3aN*JuU}̪ ![Mk)}ח ;wujD(C{NTiO^ڎN(~0)g~}l3R~,<I@٠s7?r4 Q htD#{4jGɆx)KA3(y1l2Íx{M]k /G/rH? j_[/l,@䯒ojN6Ǣy;Ѽ.UR2=]`;̈́2iiB Foɭjvo8ߑ}o_ܖ9\I4rp!N~# &Fog\upM˗ P ;^BmRj2J(lk%/,)$,d9 BN_YC{ {] H"}yVi%bFK\3 "x05Zۙx1M0&q~Ie l Jۃ^+|BFrXLo?x3n>65]jp~YT,Y+-|Xɴ8-Y֯у^8:Rlc &x2G'R~Z12|l]t&A }]hi 4ΣjN輍K^_R^Y ܴWm4{Xd{.b8:?o܎lTՕ,7r=۔'b4m\΄JQHV rFvN 0PX>40dxܣzs|K  aSΫF3醢յV.I# )f@adl=mO{-с $qL"B6Z!aP52늲T.~}չFH'oBo$Ng P%.,h0xϒAf$@NY!X0C8fOxkȵa<=܏ϲAB'UOFe6mX|r3D;páN}h{2D}))mvXOǪ)'eUo<""Ȉ,ǙFeNG⅔Ax^kD%1y_nrV/d$w䴢ZՆW:3=fŠ4q %ݣ~@4]ti{'`e`#O* ۫%A"Y*Ca= mQN _Z?x%eM&V4fFdҜ B^k6rld<=a`4cM=u,P07:@//:{3o_횑 hڡBlC}kF/c ,qW@<{34g68HNoAx=j*c_2t+F2j-LgCwńd~ jEޥ;cMnbLzk# ?y+nԅ!ŔbdX*rc)k~nՌV>"oq{/ (d:45GkotWBaղUԐcOL 4|׬_x*.*R1a"/kE fx3"Na_$^deUE&E,JHV+mb,ytN" -ܛ/9֨ژvѶ]Nmx䞮bQc'Lwy]7wO=\$L:?'ì;kSoʊ50'Ppʼn׏_x6P1"8޲߽%EMPf { A,i6z(#._d4ɪYՖCSrglЌbF WJxh@}juA-ϞVW)Wm,9u!H)(4Dݴ@]Sܽ{<0OZ֩]?a9i͔Pa>؇ t6ڹ"}|qb*zlzޘIc/4*+sXK%czw/Ѵ?e^}Bk^==t!?K_S4G/)_e\gC9`+g7!6$Re.DNZ(CCrZ̨.DT1YoiK;8PCEwT8BͻŪ2L_aA#$ctIT^@ĵ0AX,sBg#C"d>aӦ8e]-"7O j7S(Dvǡ;;ߨtRi{PUEÔþ||6kpUF1mԒX+\Q ?{ 4<{sjC/ g@Ķ`wm!un+Ċ( ѣ)J_*m'/s U w& ޥ^(Λ{K@N^2ȧn/ QH:h&!ԏ -M[ۮef~(7%]C_ƕ3qXEs: (]άHHj>OU;W*H9KA(RKcsx4*_]Gˢ 5 { YE4 ʚ`T Y^5_ag3L Y{mE9 6R4n% kBAɧ$_5\W#=$0'%&j| 6C00SD蘀qHE~FW\`!ue }S6aZgŷ-(RNZu/QQc?eNvS4> &ʿi?$ȻsQ(FJb,f2&3h'4HT@>87wْd }4 s +*[UÐFpİu?ޫxOv_ ۸&`\8vF.6ႚB\Dmmʞk߀YoUA"\lVs<9ZH,i1"Xĉe^#OAs3ɛZ" Evw_~fH-dU<$u)Dl{mcNyelTgkR'h"' \ ӧ{7)S0.t(DyV+GJA_0^wYn_V*b|,1Ҳz5,><{+?&`aT>m1YJZI@H|+bk͖!QmVy8}+dp e>'kg]y>]X)fV+v&}2s/_[]Z\Q6Iy@}hWF>_i [kmsc" endstream endobj 2983 0 obj << /Length1 2256 /Length2 10545 /Length3 0 /Length 11785 /Filter /FlateDecode >> stream xڍTfSK`NVAZ$$E9baVCS,q"U9r<:?r F= *򛆌+(5=*:A ^H@$(x@(:d= VU.3'( Qbc {KVHXXs#bil-N0_.Xla0gnnOOO.sG7.'WqV'f ]=V_%ƅб a`b =Cm%3ʟ qv/G斖NPo` qU`^09ꗢӣ9QR  sr86AdPƯd!`Ǿ{suP'ON2ܝuw_:"d6`(#( ^ܿx;_}֏e!n`; XA,a G1Bf8aVNPbn#uym-JJK;y|9y<@ (# s_fvc_C׆Kqt&9h?Locs;#yw?8˟ !i<;q Tߪ?wWlqwo3\)ߍCV\׮9@` '7ȯ =. 8 ;ע ]]ͽ1=nApsA`&NTmjn ~T{0i߄G7b; QwW0 ߟ +?E,~'F6y17OcǕ۸;XAܜ̽fB<0fkv~|t]/Ͽ?=9п?DwOp-~o_ N-/dn Fn11կxJ /7wG?~'<7_jn #~n?އ__l>'cyR4̮1^“sg,~+kwltֺܐOWR#}[r,+4mͨR5~H֚iX",=jBԑw Gl~X.QLp^i㇈:'?*g8uc,ț'CqRz]^L>QչXeS}^ {xfNJ{qcô[ㄐ]F_l`\1мFh kdjtxLa˔(ьgȦ*.zsa6 #gd*ekf%oXܕJҧQmQ/;?HYU4jyZzqDj ~M@igeuqRɁjY8aUrJ,)83ou+)|} W,v~,3P:\6PM]pksOr19ёY6~NX_$Wyf ~e),Nqu~_]NsRZ[(fOGm^2i_jt}RV8SGsS_Io -OՎ/̇jT# /BIW^Oo$. yM>y#E$m>UU^K zqubNh8ШBwjaUF@Pk-zBZ0n)k11 mzWWtQ 1_768n4Q&Y?bu;"ozmթ)o VE9 ] !X:{Y<*^pavƺo/& > "Rxå_aM|x+ .$}Ϫʴ,nbr@vEuCqWQʈ5A4j´;BO$W> f:Ld ߜVZPfzŭ1?T<*36>I3H6*3,Bet;cJ:Z<:%y8Xpp WyV%ECVR`U%sqbX+YHm 3Aaݨb{7t6 b9$nvo⫆y!쵓S5W3]]"$UxGE!,`(^q\XVW)Z&o{O!l% R92hâ8CyQuTBo`0txRٻF3]qÎݒV"mȗ,'!Rw'B *ӵĽG̩U9/=>W4{&hZFxr7@G Jhä*:`VWQ':kܑopY|z1NL^Ɯ=]I2/ S$"G‚@Զ=_Y{x'Gj_0z̈lϽtf;ww|QT'rROK&DTg F-8֨͗bHS3bMFK;B̨G'%cag_=&\yXh9=z%_džLO=/N~ J>V3"fw~G~ٺ?W\8SȘxpH]bb9Ur!Z+)unazmSAdAwMj$o|7wm) 2W _x7,1<|k@ ' Qx 2RCCƣç^o,혠Pr W,ZJYp0ĒPAۻ=mŦi3)4ZIG?>A<^f|5<Ӛ^ꊸI5كx,}it7[eYHT Ke8:7!>,3 k"pj7mlKFtLQY f!(fAld"ҏA s }5OM r\C5h5Wg\.+l7T{fl.܍OaU0pW -[u;pbYޖY>y؃v\pKD>~3zn:ZJ/D\CJ|6b $>F& sm!+) #2%AXq^`I `h ~m EҠ?qᙕL*(\G-*L[ p ^?"}+_eİ٤$v 6 W̱Cj;*fNQ\3W?*cCEPh\cz,66\IXCc R)x.(k8+"LuZfi$=FJ)S-*} fePKiçݛ|<dwXCQ膂N b/f"4XY ˬr5>M::.fF ~t3)[=53Եg_WϾ!#^lL(8_yx4$s)iw' M6XGZup,jwS8Sb=2|/^cmY.NRpyP$D.ebבwmT4KP]WCzՄfܱ/ F&ۻ]ݙ>9 Q]" V_pSψX;h!igsunG 3ܝf6BԍJDԷI&UJw5߬Ez+scJ٩R}[9vAeJ2 yXӉ2YO)LwH.9b"-ux*\ga?WLEjkz#btfiyG`}4ZwHN2 .bӎqЍ+G/?cUj~m7%!ﲙ.y=)I갺er5!QZ 'е@(ozp/[86v@v9?{%!^\zn.8][g%N/7|Ȣ w#6fr~_xMZmn&ѥ N|SPލJ7)2 l+ }|_#.KS3ĵ8DG T 󉊓Fdj8Q~TFGٌXL5tw9 E?= 9}edRK5i3~p+8!szu(6)_éY*1%+3Oϥ" T71\!Zt>7pCPwj,MP- JgmYDE#?˭gTF3 ]P=F +r 'ˤe Gǎc!SP#ӟ5'R8k ̠J=lZvF^+:f^ry/ m5UI;+E˥r1ݎ\~9 tc_Opdo2f)[>NjE5.[xSdX[X}?֤׷. :3=E_S#!fs#lцL>ŽrydY& a 4#/xFT *b?/c˿ ,o[v7}ʨO[ 9_U n3ݪs]6E~cuì) !=^Vp־J9¶ا6OȆ)w=G}DŔ L1?3%*rQRW9.?yT 1Иf|Rt"'E[>~db޺7OnɫU[礮I}Y!6W31 *>WS`qudBʀ-YpcVaSaueA[_%l_F#!m>X+sS&FKQ6 l-_;=3|<$x(dF0քc~{[m4>4'ytvJIWV/o-fqlsM''7 k'W8%뼉;X7M4ΥuA_37@ll -A3LnoI=n2RƶE)Xj5N0ƘgpW\"?.2>b=0vܨJwx?qVfo'{'/Q˻TܷCOlE]۫4Pj5/'_^C/4W@TSe9RBEV>oT` '?<9:mQ~Nɋ, ݋H]KSd&f=|EOʶT2ȋs)^ H_r+^9&cohp;3Y.9LF=LZAhqN\JBQ7.-Yg'F>?k'%40m8UnÀɓ32<>b%(GIphMP|P6%"݈IC /~L~?!܍UaaE=%FPU~kܭJ>$Ngpm<'y*˓#}׻u C@ӼrvbrQb&Rw >BQh1#É!E*ci,~.$ 2j)Ixt]%1D–"{"%|R8* Lw$Q_ J &6 `>k  zm9,!̽`GR6 ]} !>`n n3HHhHfFؿϨzs(=wʂ`kŠ w$!+az@=|_S2^o<"wQ5*蕡O7zv&hB}Z-R0 NKHdeL&fu3$x#ȯЫhrjcf"yDݕqm3Y#S#xbړ=6='HnD]?UXu*Xo^RԄy="O4t߱LO,+]qX&52HOyS:tƑ>$v,/_= s#ol-$ |]+$Y[v('!'OjB{ (x-/+VÝ9iۊZ{H_o/9kXLcUۇ [.DM4eKӣS9"\HXN.[W/y8672#jC."(ddQ{3}U~ % m2[n{wqLcxt͡j l._NUI$]l) |\ G g-_!g ]jTWwL9ulf ׌[A,z!Ue_@Mf!}s/&ruMTޝMGђK:xώUIƸ_#ΎFgVڳ\S-,:V \EO0jאe w+qkƗX?e)H♮I? ZHy1?U~j>4Nq]:fI~ q@N UtEwDlxNVYЊj ujJDx mKN>DsܰCwYK rMb|gYڈ}7ޣO8Xjs>0Í ./mլ˺E~!`N*v 0`ΫTB z9!&MK5 ]"Oބ=?j?!F*x]H@iai?A팹Wəb[R;yR,IaycMl:OygэkXJ 0b%,Jy7J}= o ?X뉾0|Z2RrE 3lTapVgO%ng,dVFK%a\i@9*B tǎ UgM7Bo1$i3&O#L"{ې($b_s(#dkØLJ j荧eX+Z`{l~g>e[.qD.gR1ߞh؃wc$e)̟Az*a6!UF|] }F}/q!G-\](NYPK HVQyMM<iW{Ų kh@Ǜ+:M1Β<`[ZԍgIC$qF@o+*SrbtĒI{=Z!e[;˞hƔs7|^+")lX_w_" 'Nv} {2Lrp9W~ecCV9Cʃ53)EN@vbdk6FVB.D"Je[V`jJ+l\l]kİE.+ W:R=MRF&,=u 7bn;nL̫}۸ζgzdIǕe]블8kΆo‘bH8Fτ 6?>44 )ҧom]cd[LJW}*uAفpC1m>3,,ieL>˾aI|0Fw ]JgUiE؏'5R<f aDhPWy+^ikį?nR߿F?tŴVFg0PM ( T[نٝ>`oxd;(/_9I@ˍ>$feҜ)e r;hDX JtS,̲[KԌF_㊅O<^P&9|H]߽!#Whsuةblr+$2O|g  c˖! +3z8EFr>d:VW_0 `hGrvkRhFݑ g #< u_WA*s15l5TmkB/Vԇz1G-RNzy6hI-lyey8|W̋F"WD$+?h`)w!cB4bOהDzjl%eeD\]` ,vVaǫ}l-3Mcr)ØjP6?!)Xԟ&:iMy_Tpd96cmPd#0emʠ@LU Fq5eK5PͶ4?bV4yZA3#Hr;r}IƼ)NGϮqo*ZEuqːCXgtv|ba6X8P`90j\nšHrxꩆa,n|ձCO7*5;b}Y +i/Ŝ9d>Vr 3S'dybL۵'LN J MDo^w|̼R9<NOW|˄pҎtn!ER…DR4[dҜ^ `|fKJLjY/sϡ )4"ԉhL: sƤVd!*Qµ&v>9ݟy/م9ӥ eg3QPYeEu9耋֜Us|Eg%PTE. ц;smlH5'qZZ};!.1G_ dXZp*cڈCj?؛G9JM1LhY^[p'v!qP~"S8c(/ग़]JSϛTB< W)#2CЏQoLq^󯦈[XaM(Fߋ hlZ ᢔ{x[P%Mgnǘ8;CG:w`6;>8ÝVsúz2뗕7ps5x7zD=aEҪwd$viu2"X|놷3iyXlyQVzӣ>j_w;E|ZPH ݩOrqC>`ښ{B%"%0 -cɛi;]U%?&&JJU羟dȪ}SF,pM] 3HM? @N!j5_%FiRщr$pFW+-ذޗCfWj :hAtR=7>LJ?]f,Jp>68L & _[SRWj| ܩAcZgYI4[^+J5QK>/DQtl]|Jn`{^:;)REfz=GZNnvz).#YrR3öӬ{qa'CcgFk? $C)PZ.w@{ o$2HǷ<e/`&o%|"{U;zw%T[sz2?AP [xDKwu3 _8L/K"ɍCN26BVc0c0<6Hu[y)%.rcZLFY'ڤP϶ҩd||~;;FKX9+&B8֣_oB$& /[ o҂Q>7\Z8O+gd*TYcd Q`sz oע$!˷\ZkҞe <ғcGERw/?0PA};+gP"߭>Pk?[ endstream endobj 2985 0 obj << /Length1 2613 /Length2 21999 /Length3 0 /Length 23484 /Filter /FlateDecode >> stream xڌP t4+HIwH.ttwHwIHwIw#) )gfΙa~wJ"ƶ [0#+ @T^^†DIfDrp4KBChb@0DP d`errXXx#h:26 G$JQ[;7sS304FV^^n" s# @6YC<F yo130lLi.`3  2N;5&$J&`!Xl!*N6 ;@UZhܿ.ې?@##[k;) Pc@߂@+G[>hn4: ! B2w~Fv`G&Gs926)5;>1snn4m@bLA`' 7;'d1vf `Ien|!y8Ao"$VV`25AcB C` f+O 3r#O>غ<l,V7(_6&~ )bv{ChkL2 ͟Iad1a<V_'F$de_?|ۿ% -dl&_+26w\i0"6fd`bQdd62{m@JO D [fd 9# Y9?A8mlo'tC48553f& `b\fߤ!.?,@F0q% V`Yx w?]]xW U w?]TBĢAb | hBbAE 3CX2Çjņ6/bsB_ lB3YAN.d+_"$؁j7Ƅ,%w ı_ $B6H@;#$O+_1@t~H@bvY?ead7O!!\[k߽l267S9NHvhkvlB._O eu0 &l2;:HV@ǿ: I 4Lv 翦b_"]//?NvN~@ #Y[#@*BƝp)}q_2eK$zY%,:>fخ%qH*oJj3r =qCD6􁄯СJ3F'i*%'uM| NLPB{gUQ.Mp%u֦utVNXB;8Je^~2;g`LqA"1ו_ Ұ< %Jhnk.̶/t$tr$Dt#ƴ[␝nB 0 ѓj.սZIl)$83$,=H '\ӫ-$* s[7$k?՗kiM6mV5efߏ)hu{=9jo@h_&+}v3-/7QwkJ ]k|rVk9̨[>ifaGx`$SsYVoIL1TBvhm+;s_L@;\~S}0 /Ɋ2",#O*Mt8_qx17̝vͼhPq#ZE/>NUN !0e]@#n'}1|sH#ou&1>vuŁ' GXUw7eȔ= " }h\NX,j>Bqݚ"a6}²{f<4f85~ۨZ ֏ W{&&j35F VZsdfЋ0K;snB"q:ĆZ~g=XĜFYW6dg!Q*8d2'U{M&~e2L{HKXvgWsEͲqz_~cj | [8Ft˳o^rGSZsrFJ7bP ~ 4տ?}l^ԿHb yk !XKQWbMc5)a6jy]&7yDى4 PIݚ7A >tP)bX>1Qq#W`vxw׀f2n {pɽW'DmU0+Unog8~cHTkhƠDV!8ɜ]VY,jm2FYcx C0+X0Hhn5.Q'`bOTI@2py;AV.ktt)QvB [6/ $'jxr^̂cX?n]*>sr>%1|UǕSz Z*=c~:(?~sN7gAEg3ŔE𵡑gEx~}$c$iAy<\k}\m8oY X^RͷS.䖣b"U8!h_"}knV4[rMlRS“t1j81KM0I]URvxh@)x2n )@q 8/aXGԪ5&94e=}'m%y.փ_Y|0>p_`_Tnծi{a7xr~qPG,Ifb罹Tװ9 ̇ Azf]1h1L j> ֧)״>CMnsTtCm'ƀhHJxSB ~]61$ٌ%ȒGԞȀ{&U*X_ŌeO ?ےv*')? 05~̮QJfN:q:!]&z5Trd}ybĴlmiO߸|h%"'B;y Bh=- [i=|Vq q9^Z}j/q?v7D\QZuF|Q4xYUQk'\"k7|0o>F<Ps~pG)֢ܷDo^j^'S28 hS>sjbI,%zt$Ilc2aBI-{SI~8lTbuJS#B2JHَ@u,DF!^'!i Ev5 cnEBjI4ϗ`O[nBx︬uXRWlֲ2p*VQ Sl0Mpڧ'[8j˭?P(*KU& ru},Ymw}BFv^v~fCH:7:CR}sF[;&3coોg4킧Y &ŠYЕƟDG^+QLZ&@tY)N?lt2ln&rcVj'3liDRlj_M@ { ˖0w):r@d]0OtJju`F x5͕ʆ6vҟ=1?<'4(CYrGvc+Njh@J#+7s9^֚u"c^1 O=80ə[qݥV'Wt$ $=3G3nQ9TS7!绒fEwIbS<(>9^~9";0=oEnh5n|7 _ ~D%Z-iՔr/#"cg1DUaHWp{ؑ҄rY=<h7ݵYeG6{gL|k~+&άBG]fqN/it rWχ}ڈUH3qFNOnM*~1_$uCa~5hW'=ۢztY#iFPb#q`U/ĔpEw(+5а"Y4M)iĖبR‘eO . 8R>HHF9{_kQ;p sC~Aid@Q?cShU8+1I8V4l+ / ,? 'XnΑ"S.p`(y ȮS uС`CО`vco:R)1v߈ ǫ9ݡ_[Y (WɌ cs \"iٗ=P /!؈Lkw9+nS# }uV(3`p=#jA l+"ӢY9Ba QwWL>Vp_>+A37ٕo^~=zx^6!Ncb_1;t<V~{ض*rdIz;ŋ)*pԯ\ L$nXd] f{ Ӿ\J"bHtV{O;twrWz c+!Mb_Zz3T.{ûČ&h,Pz~WK>><ܪvT5aWۣ[u)Ioqȇj@)$(`jPvE5;`$,\ך>ϋ}/Oɕ;"^#x9:nz ]p-ѝk9\!xvZ"b.:^[k~$ybJ~6F&/jvd"TnmǸSA0I dW_W#tR/X}Ԡk,g8?:'IEU[jqػL pEdp}(9Utn:}Y9Hksn1FS&iaLUBK\=gPJ-2WK4/n Ql.M<61WkJ!=<>Zh7us%񃐲zЏ̼.O*#9W^af{bbdsOKQq(Ј@G5]C2aCL桡++E'8h2Ūۨ{fɄR:h dƢ;Lw[΀Z2X q!y¼[&&!o+3[(P  YypKZiR8C_vS(Sl(SЊzp8 کN*U/c64{homHcP2 2¦HQl6aBց\UQDqxCAy9G8/)mG&;iÓf.+hQ>YJ0OxՊ^k5B[ Nz>;T9ׄRjva4;:u^t?-E [JאhxWbVސs`n6embT6zNFUX'F{ `}<"-Kvnh5Ee3 գ5Ԣwٜekۮ/HWrG YlwE`ބ=:iDaQź-nBUOQٴƥX*aSi;攝5d^42GrH;yk:wLK?KZS"36Gbn@˖c=/ yt23oZ.ܠ FC%,!1_.EwTIB[97x+Hh{eJ/7j ߛ|Ag$dٗ]+ &E1ǰ?PyMDZa5|پ|!IS}9 v櫦ʟJSºH;Z:Z$(6 V$xSq jvq xzv&dX$~'?$KHxahB4oyj^ *pĀcp_"zC|Z[})qL$S9C[baF1mm eQA^Ȣ9S'KOFeΟ#G P=ȹ擘k[U®]Xݮ`[ ; ' pF;z5[2mfUߚTmojT زy;N4}ނ{}|kA=0e-Zה$.X]16t~n u=_1L?}Kipv0c<UĎ`a8j 띇^ C 2G" 3Jz$XwR _fRlŝZP!y9?_vIbTgċw@Z M]>!?ԾSDZ^:WuΐkI9H31yrBM/0́K6wdQ7c%@?"Q d$VX: b3 @.˻pcS,c2A<@pL⮼}R3 4gGAz*v~\8bh6`/^>SǜElhG6=F؟,f]wWs3 / ] =6׽弥_I@;X/:N?3\Aؽ-5mttj%j EZ_/"Mf$ІM"Cf[ޢܑ@G%vnYv;K.hbbZ)gEc zc[R - cF8$x%ӎE 60^/;2J2F&\{Q?}]WNIPhٛ>U~S ml.}zPJMhMl[/-k#G%kzG2\o̍.zg}uex扳hO`c4&q>8bk! \=uk #idex\t ꯦVh%]Fks2uf/V}Ӱm$ʨq &cnuċ{>q6[Nu9V [E8u/Qʱ\@du Ȫp,GkYڋ[9p4"?/|Q#=qOVqH\=Jwؐ'nh(ñth&GCV]#[(FC6×3}TƠO.8KLMfzLxV,r?2#4gN#0~age?$=(%*o6ospFF-0T4%.}ojf鈧gHZ2j=^i +I9McuȪM\U)̜RcYF5‚jRPnUc94߭[CLwZVXBEЛ |<>Fc)a+K/98E>>=ASr+ZvT8ضWJCT ƳðB/'vP1lc>6K%?]/Y klr$ҍ:MwΑ%Dj?b~Uy rKӣK?O~,sFB'WŸ*M \&dp {%3RŲQz5@7Vmؕ9k4pn-H>ccJM#HluI|^h61I 7GeZ m ͉Hʂ'6(xoZ"DZ>"?R29K(32bDY̒nZ PF&-CJP'ѳwm/0aRG*\Z'WB5F/(\oNBj0B;wnVBK1vy4Xus(m 5ЍmB`"TG^;''bK»~F|hhoV)AϮ5ՕzI j,?n;p30u~lH[| Jeuɮ߰}}T~rdWtğnEezjOxl+;~*:jsZYESR,Qk9<-7b⼯M<}G)=fIZ)#W^Eg&y.gmkC-59 H/Hl5vG/+_QM5E33Vkb߯>bV<]CO^\%K*iaaquY;tX1gAwNr05[Ou׌fa?ph̜)+-뇭yK_6,i 񉩟yɈ((E|Y[Յ=0s(SHa,`C ,.61QoF_o&#N!}IҗR4Mi·o)jGiݶӝ"T'o 1 5GI;\1:}D1BW +5K$R)WL޿DV2!G'__Q@E-&jk'WZb'LNǵhs֦| eChS^†^9이$^tT>XßpY5)1\l+Q#ny$iǹSJJ MOKt.*V/tJ]xXŨZ$=-TvЛdcxUen.;~!ga/̻B˻^|3Vz!˩xG^9Dyuv0fr^ ڟKuaMgᫌ\7eˉW/nX}Z@*ݢГፌsTلNØ-sQ2vZ(V珚Z~LKt͟ܫcyiBȊ4fe]ug|)Ƴtxyn~BT>M{>̝> M-"\ݘ}Y+ 9lbkIt]G>bBH)۸bke'I0{Ӓu+6_Hp&;%te bپ5Έ^ Ez؎s޴vx~J4 Jt#j6O (ꖱ:G@*KYCqX3};3oϨŧ*$$Js!irFwy#V䩺s.{CbM֚Y,; eO`eJgDpmDXeEleI%P6њ8]uZF0IH.d[>PF;-U@ 3}%*9u]Q6V[.9 ,}WWbc8.<}ViHHA3:zk˗swZ>FY+?"ng> JY6c/}4tbp2TEv~dnU(5( nZlrag{a~ŌcW0zQƮ"<_Ῡ!OW9McE'=pO4h׈7\d]QDGu68.O\ `64)pꊶg&j1ј0Cy4\BSlEIzgqSjL/nn6)n}#b 邞/הϵӹƃ})?6988i`N uszhWܰMIh~zlz07)b1ۼVΥ|0b .ɃOc|nhp>K:شv?a}53 c-|vq+rX4$ m1&;oP8۹n??/jU3Sh\E(8ӂG[NwKaT nԛV<W!=noTSn!=Ϗ~[VScn/?17=PJcnuubS[&¡%y?<.8 Ĵ`>{t9%GJuQr#}* *sYO/CS֓kWfT1.ݏUWU*}P?'M$5wBƂAAt /3O zK%N~h\ ;~Keb gm0G%g8W]*f.9g>+eIxA8.`\y Ǘ!:.W?ި%)1#[i̖YS0hW|z k(yצw\e{#ܠA~`֩ Y5azsyrSQ8uAsyyռ篧2i~2S60{[tu=&c(n$ej5q!-E$psxvvcً䕮GG%2p)11nh$V[G7@Os1X 6D:W;0:>K~4H:~^n oDki2 4Џ4ݼۅ=1 MbeztKBiNݒEP& ^ H)Ź`P @ Զyy7!4v;Eia*[{@m{T_TBp鵞;d u5MI 'I>G$xx@LL>꡺3J?7BSy&$FÏVhs ~53Ք#6DLx00;An x/N,ܘ6Czޛ7S=5Zj'ʩO{%Pbl>!3)@K.9ޚMM؜Q&Biv}dBRFO>Bd])hA7]d>|&&>Ps8bdRry2G%.+P x#HhoYQfz>0 =ǐQjg^vGc&U:ǧ#FWX+?iTF\5x|KK ;xISWQk ϱ#?꽧7ⶌm;ʴoq5 &sۿ"?[0'HjK77dcw+(Wus/{(c_ $N *VL3A\#_1;+d&hiܨLZP&֜Ye\[}{; ^b`5q+cct%Yw̢}{bjjwq܀cSpHՊ( W Is:c^/}N6əeLhC'nDsB u_o y - g[eRr6>ii1ISgF$v@O֓a%# iؐ Mz>m3&E0vp9:p~bZ1)]r+;#l?ә6uA37ڈ^N_nF\;5n$4 tJmogz*rAM{ؼ'ddթ$R5iAuIF 5pK;$\U2F!o++_WJ[5n`lG_M9$G!ڝ1yM/CK(4X̹`$J_ >^ԵeԱ篳ƼЇB<DE0ۋ&;!pY2I1cZR,2b<*!IBٱRe,U K;f+|e>'"6{}V$ɘ3苮I"z YΏᦙU$?xϊ 8þ֒TxO$ Y b@{ԛb`XEg/D`Bv9{ \R$;vZvClЭTL ̖vE4&@!;jTI @t헡y{O(_Z}g5O} s@~Ѫ ?6о'&fp5U3${WM1~'?Jr Ҕj{pIPSW,3` cGh]`t,`_23\[UzIM_Bp*xٴb+xAu߳~]/wVP3,A\WdP_C9U|4f$ EQTc6[xv-j iԊj; -٭f:⠛9lt<_qNӓX]X_|fnU.AG#:YO Ba-Q).xiŌԭ,'Zu൶+!'?J cE{GѨ,D3]%n\Fz0cEis* y@ˉ wE |-]ߴ`vet=G} ޽ԙɉsAGsy͆E܈9zCa<H~i|%vx5O\*+{X(}z0'u m$I7R 2p!A-#{ȂxS%J@OS"s#RKdxV%yb~4<}w0*g^ O;\XCCa&jDKk@ZO`O| ?xWc~gOR 4H =$^,p]e۞wMXju|GYV\#{P[F~9UD>K"ow_^Ekfs3&fZTA¤NlݨfY]<9SÜ't{glsYP/tս"#AQgpr(ekGoxqn+~3VK`xw6vHK2Z0/eoX"MycJ5>e9@h<ArkDi)&z:3BlTxEksxWuK+oPK m-Ȣ!jS&XH \wtaǜx- ՚62 Rxw%kCtyO|200-_Tfe;(^~̿>ML ic+{S@ jMئ"sDTwwyww H8-ƒ_" dN?))*\9ڙJ*"xa5wz3r7̬ⴷo73O`?󶃪Q?6 G4}e7<ǂ8]"D$y91u pmg?;ͩxL+ŴdZAA`:-}>1hP4Kꦘ*8PTͤ> */o|?̵y]4w\eKL.+Le\,m"Pᚲ"+jr=ez' mx"eqGucE7(<% UQ me6|R}{(gOF2Y\%!mG6y?g4+ZC=\^S,uѧ?py]iPu>TQ9# &K_|OC~8+ /%\}=#8%&liMdXBRتȩO̫|B.Re1 &W^ъ;%Sj ds)pCdUc+*Yy eک{E&6 ?Od!]}Iht9Hߥაi }}Lkԅ40=Bh ;(|Z.hzr3BÖG}W~ND #AFLjp-b ?Ŀv}xRh:S1nJv6ZRb ތ ~-4KB~ZI l()qXF!L Dk'IX6_YA꜄7.w3Gl $bhmҶ/_ Tm[Iv®Yw`dgL33fpYy#mSUY nudj0~'/Aĭ:L R7P8J'Pٸ)3x[Ԁ26Qz\7z%6pZ_C)g[G~rVUGl mhDP2tnS&{v{h%UK=ѰwU.ΉIS3*㑝xSj 2 Q"sX\V)qN\p! XR`2)~CCAq:_dI\hf@.`rʯÆtpNauAʼQ Ӥmcʙp'$?*9!1Lh9dbt ?+[T/Ԉ!F(yyV 1G$ǃ`qA)'FICeE#2J[%y.$u?F~3\Wcj 1 =iCb3㝩+)G+@VLR+}yizִvҲtUCV~I[u(̽NaqsjꛀX '( l+Y4TxC g{Hg %#5.#Ю,sr\ SΔB=$BIĻ/O b Q87*׳ `YxuGتepa=))ßmqq^}\v%d ?n<+w=szO?_@%H_7d,+hETdu:o'25@W42~NeH 6Gv KCfNSb(C_Ȯ^x*!<6/p.2ew vu"0+AhDyઌ&G40g0yͮ1/&R_X %K'Yi@q vD2,<#$¬p%0( |*{l4lbNwQDMsV)I.=c02܆\[M@TnFbYIB]l\2gnuĜ/̴#h5 3tkU9`cpg}C)ki!*)/mD:J-@s[{@# sbT)82]#}G+E YGꈀѓM:;.г~S?Hf*2V9zC e^OQ?up N$Ü6)zg׆u \C"H9Oti>_¬JccDZ"+-ir$oT=~(*Y[ ]0(h0}TI!FO1yrW *A@#^3݈9:VFŪT:zE"淘Z͂s^Ĩ3O]XE< rmG6YT;x!*.X b$Aҩ_EVTJDA|?7kCo\uN[*9CE4RgS1e5a^Oum݈9􁨠P5V(OH3`f417G#BgZՑT7I`u‹Y2Uw'>^/P/|1/frHec.'( s?XW}JVі& @qW7-F1ց&9G(Y>Ea~rXT3\F3>\֎C!_֊˅h*}v8>x!ϭ2׳908EI'Brh5Bqo04^V =\0_>ݺSH$>EpRE,ٳjYO]5%nU䦮d2 ;'N8 v-+,u dP_Ø!v$8 έѴb=: c[S)&u/k3 ({;dDWt΀:E ͹Qy!98nˆPO(d8|P.|sat4-~=t2A˄4Ra8{wވň[  D.'f&p6 .뚄gA8TA.NPiռ@$,!D[ˣ2!g?#]Ab0[ΑKDj!p}U;uce5U; ȯw6`hS̱`ҲBjfSۧ7n$mdgٯ/fbN߅'DKY ޯ2?6W,7tZ r [ʹ ~k0A g>ѰnmΒMW: 5Yh֣<=iΖ:V5szw8A-kՏ endstream endobj 2987 0 obj << /Length1 1448 /Length2 6925 /Length3 0 /Length 7908 /Filter /FlateDecode >> stream xڍt4ֶ=Am݈ a Fa&z=1D'D^ D!zo=Y{_ܻ\7T"ma $-("jJ@1! PvrPp$B? TQ00X;]$ HʊHQ P_H,@ tZH̝[ꃂ;Ddd~]`(803 >+F {yy ]܅({>0P0(W= OeBci`, X`/iu @DH @.`a;A:Bho2;#`O0l59R6U;wE Ý(+ *@O Am3Y' `G@~p6A<`j`!ҿ1{ 0o>0?W+[n=a4J""(ҿca;|` rO!^P$o6z`h Su**HoNAQ @DT\ =3>W]5vHO6+cϿrLe- 7ɭ@#oEH <y5h"koS3؟ՅA.DǒYPD\(0> qC?ɯUs#`Hw_'lc%ð<$މJH(؇;z$evA0 !h [?"5f,Yή_(( vQ (" v-#- 79K6`0 "XrZ%>"O~j.*81G}z%('{^=rlSq;ߧZ:cAvЖ=mcܩ$[38RUdKP=8Q7ޒ(B{)t&yݦy kk{[2[Etwdo.qmyK[4ѫr`n֎ -o\O7Yĉ*M _xdRjP>0d W-Hnc$2w̎pH"al-,r@ItHMzf_568A2G<əX3o6cO)E9W@,a3ϻxAd'M"i޹=/dMx~a؛h ᬬH[iK]YQ+~PƴXڴem\tx=㠑͉ _^UwTknydc[x^TOP;j|!w F?/p3|-Z,zzx.J!El8 iI^3h)\<ۍex.5TySFM"}~SϿ-L|o"R%ӤUZvFS7e:NCB{JZ()Cb,)?@q,"T˧.146E E?cA-^쯿Le^ؽ[(#E-/eo8-d8b͑:rLB3%сf \%yy[Nɝח99·K7[bbSLI`ӮLw ƈX"P~z~)./*vO}:J16$&)SKGq׉=w󩉯`,П*G }AްP`&JM܉^r=t0d6B&注ۻuLjGzHw()[Ҳ֧4rACo碿VѾV&uw+iU7W+xJg+w DMkNi ^_ q-% n}l1lNBd—~n> Si27qK {qîY?hu&O}/caQ;;S'Z z{#zVmJ+cLˬ.]q9,ƟYo \x@ ({Q+A$6(ސ [vmZփVu{>:/4^|Rh0@9n?1N7,AޝI+-coAZlǞ)_XE]Ͻ-`*31B>n!!u}wm&$ ,J铬nڬNh±(D#6kVCNVt* ;{xk8@1dyz(w]Tp=C'KǓ:լs'ibmwx[Rz=-mH>;T4aV}kFC Y'@XCt D.ӑ%GHas'rz?ƣgyNodH hUrF cTۧӅU@~/N.O߆O>6} y~)vIA后7z#x2g3ɝK@=sqmXnMWvN7VYb.Knz%?sމ)ر[ ZfF{9-˼~>2: ~~oUL_*nOpӏ3.߶qTIyf w r'JWxVsq:mloKT`Ϲ΁˸X=AMɖۗ/-a%oK߯p!;8iMڟ1O8t0x#MhD]Ahyfsco_# ggJGP[6}\V(h&+bXR;|\A#c4P_Fo\x?agH ;O+E,%DX&rʝ~1BG#JjoUNї=TWHӳNũIVW@DVZw9i\JZ `jh̶.Ŵ@D`Wu/Cia Ho1c?ULPTLPaLU4%w N[~?IYt #AgPϒs)xZ̪떿j.gӡTg]zGSv{$d*NcI>fi~W8ߒ_֦ibNln&xoD4T˂1)Ĕl쒉;> g#2!v+ʭw;V4uK(B"Do6;iڟҦ wIM̩ DZ˰W ugg4OUr{[~/N' &v<}9"29rGn]w)oSg _CeS]Tlc??=I%߶m-b2+K(2a.81q}QEn{,!LOl&˞{7i$<%"Fmzl= "]G㹑<ZxgQ|1R0h}ȋd%gA.@!.c1 9:󬽇zxvfѴmIhc> P enZyÚ9Rr%M!{fpr][j%1}I'(Nz$\٧m?9{!gϘqs+fۨtkEU=mƶCn?_H)=a*{cI!^:+bCPW-bWqU<<_6:1EL$(kBZ9=kNV?'jm^׵?2{B3Stb-Y燿^U$VE ) WEcHGxyՅT*4;usI6ZڐѼS h Zݫ! ui¥0ɀQ!"̩ޞ[@XtjуrR2mE;mR3זppO[̚6u]65 ^>aD{m y`1ܭl*vmE2u)V6n%eI@0U4C~~!Ϯ&=fށ\9+'; u]LjE7XKz[^-E{]Em'KVg)\{EmnB22y63[Ep+b2TmRvYTTu >tgwnZ ^}qE:4h`P=<4j]Н|? {0IlS{e޿6)g'4_7cG^'7ŏ54Yó16d)QҍQc"'q9)BC7OWzC^$6h5PIPlF j[y8X Dt\di_\(}' W#FzC'D+WvP)w<5UybxH,,oopѓwx_9sG;=uhD&HJ.h Z1IƼ&w_pQ_~cChS6x5) zԁe([lOX^5 k*ܺCQlrDǥYS} ` VkK$0륖[=hGFe2ďKU>igX*axuw1ӠF̩q 0 IyKWz8_x6_† ›ghۘs?Ǹv@%T#,zA M YaC]qKʢ/4=O7K;yd(&'KǨly|;~{"Sf7U?ћƩ +ODM nϮ{!t |F%Hm1po3dg2wە31&N4 l]D*V64:)o؅|z^y)'=[grÀo|رQ fkobU5<oj"&ez%:&},P̍2ma3 XA\VPeXj6j^v!]%NVt(:P zVçq۪N׫=kfu£ב/3CrA+u+7hr|!ƍogTKg2Z w +-PSjyͅfMj~FALk)n lmFn\0?gVuv>U{=Km4u5 f 2-'@Dz ff>HMP~oWr+hY)e͐NHks)nq8[_3jC98ԻϜEN^5*R|[L,h̹8lWR<#g(I|l|V6 /;yg_޳ m('"TuhEFy,G: ꜰJS_>ٗt<նعĩ7pW] ~.^Aې3_|ae䝝WyX9% E2ԞSxYy1,ﶿ5g̚Z洂me|==7rr #unT/|H /&Rm84 @ (*~T͘ Tq/ƐJb-xb^@i/f(o|TCB?7"y!m} 1}"4 _tqҌfb;8eU+3 EYD_*4'} -h?BJGSX_6$AP0LΓbR 󏋌{үQЊp2)}BWWim{WhE)m/3 PKeX'^[ݜ&i#`PsxdyqiKcc6sF5kǂvKUz nU\U0MuLַo%cc>&cOVm1 O-RxYbqrn=$TI߶8Ʒm<ַ.>ڪQ%}&>nu.kj+Ԉ)ch*r {e&v[wfd5i%)O^!՟y(R[nh*Y^ w6Z.uRͬ:eN!BP[I$V7yHaun8i63qDA endstream endobj 2989 0 obj << /Length1 2011 /Length2 14434 /Length3 0 /Length 15673 /Filter /FlateDecode >> stream xڍP[-L`!hpep 0Cpw w #{ս5U3{{RB9EZ~##- (--```c``#%U2sm#U;Xs+@nw|H8YL +'?6!}g3#4@G*hcfofb<( )@6?~+5@Zd%@ _)(Mm9]\\lMx(i.fd`HJfm]Aw!dm/Pڂ +tG"3?6Vnf&c3K@VDՑomG;_YR=O~y{`hof@`fGyeak#A++AFZX۸X{ ͬ(ɖ^ $.wȻ  @Wra~`^ 8;d;w2(r-/sIk?ߺ qMַ2t;k'@}w*诩9Yo$[w3-/+HˮǬYYl\Y >`{cwx6? z!lmhc1ޏ<jrt6{^c{?@/ ؀z^ Az vF?=?}u ,ADoik=? 9A,;_ g/.2|k/?._]?ꭜU;?]߻N._Po/~: 73UQp|/_G_/.O_ldo?]?Ͽd8gch^z_ÏB3 uzH;V'<$Y& 1Zخ'hpc%7!0{0qK4 ,Yl& kdҧHI^׳BV"&*YS!ˡr`Pi<{*&`+R+,E&H.ޥi}`hp+O$YkWZe9svQ( t.&ܠ`^3Lgbh50#LĶBSߔ&p#!CSwPCۖ-Ğ%>Ut99^*Cn׬ NeSW'VK7=|ܒ18N]QNQfr%0*_BP涰8Ʉ)CؗJ@Tq8|*egaG 6BlZO' riYE&.⑙s%?#RcjCƼ~ ^Sw375CV9ZŒhw lC$'b.dQvtc뾕&u.=j|0۠ݓx ׽4UћHn.Qqf{8}mHѾ?8b9+bT-=Eis@7f}F}qכ4_#lh&dnĥ3cuUlvHMs>~qUX&0I"\=Gۄ֏$ǙdnE F~ul<QIھa!4DMƖ8gr!AZ{,{Գ:k27tY$c:oZ0K5­8ƗrȰCvMN< $Cٜ'#L Ԧ>0Vl23J64ZGCbzN;Gs!nWD4S-̓nw2vqc(ͧ9@X$3֕MB*vH{hJeT^puQ}~荤y jψW yZJŪ?t ߙT>դ{UoeԘ`풤(Ѣs芨sZmߍ=uhfbq6y}*ݾ.7B>Z,pZiv}!Fa\GႭ% *@|)o,fXFA U,Zi'# w"cGe E@em}P+?u5'oB 6p%fKsW{E{1aˋ2H,׈C|vfrRሠ>37$u'I$gClpx=_<K⭧UbU2"ۥj/. ͽ=~-b^'s''38nTyR._z}j n/鼺= b,1a1&I䝅UpճOpI9_.Vߤ a{6{[ۀ:/՟gq1=ʹՑхd iI bDv!j< BnxDo+Ow\( d{@F3+ʖc5] hƫ oό0*ࣖVJ:u30LrVTL+N6I q5F0Xȓu.y"n;T]/3xܬ"~Υq1,"*6-'⡱mUlI7h!lC8JR,jByЄ7~9֨M9O|_Brve)| 'pqrz(yRv? YZeV%3(RۼR.6@ɒz>@W$Q\_uT* 0N2kǰI$\ k\A3+T`.e# |+>ËoP ,5xY^, tAL{ ʨNEF+'("K3t0>5JB<D'{1fQGj7mQxpM^#Ctc1]Xy7a[I0Ks 1 ygQSeXkwe>̭af~IÁ&F,'VE`K}+nFu))D2!~GKXFqkA/e\W`}ü?Yvd'(0?Oآ||չm'+5rNd"^0d 8o# 'vXn%t{ȶ@XAi^+5ܸgT;+*ZK>apE|dt>lS.sSǤt E+J~o%EK`XwQنI>RsRΟ4!F%`6Pֿ؉`&p&[g?cE'?fe$yɟP[ep Wm"DYBu.+ֿ[@nGn&]HX]ӑ!F |G8~-L~m=$G?96Rҵa\sI2D]vNu[yW!D-3H!ONhqYGSk*@VtA\840+gǃt6V{]WS7'$j1ıε [@YZ ]u°_R>?$W!:v?|.X/q"9fUa\W43FdqPh82Ӆw~&M]i23iǝ >[™J Evǩ$F^5iڹ poNoiQ&f|2='3xIXH눦YAqqT܉ eA;H-A'rkՂK-'}b0,ЎpS/mgg&J||A(]U>lfCjŋ뉎dоfSy--*]v#9jX16'.ϺrITI 朐){EO`U4QG9*T_EꈂCF̖w5gR` No]cQIu\{= 4~Ќ^?*T/5B#"V2I O6ZDv閦w~;M!vOEqSlL7)ѯ wsnui]ҡLi93}q^BIR߇q+"Sh 3cy>R`5ǽ/>t-UǬ9%;dsRΓmt̅5dZ2݇] ;Yp9116/lKOG:hQk>Ls*^'_ sǧIQ?0ӷtj_o*l3YEP{,Z-x t\i[N5&TVI@jƷh=PQ5Fڗef<uh\~!y禊z'TñmAV䙇YNazS2CDLdgk)D3ՕD9{m#0ˑe3{Tg^x6xTKXxE@eFf|t[Z„kTu]:a3^L*撉;W:ǙJt+1uA 1Jj(TI#:GoQ(uA”e I:SX!\/r6/pgY~[}e0$5p} 0>Ljc0 Bʓa|!F~M lpVz1y ռ;#LӒbKF{\z 3.FdEuK PHzҖK4b7ʦʼnGw^ RGj?>TCY˄;xu((ws{F<[߉>O/A bt\۠l.jne=+AR7̣>HRkªMEBsMLSB5-d,*0poĥ#S_nzմYt_lX%tic3MIjNXyѫ[yY( bSDZYDaΘEذVl`:V$߽uj'EnC8U`#cxC= Wh}e+r#_,OV-gue` %4q~Ջ=ˈbz^SǏ[gr2Bo4<]Z27f3pm$ W~?f 'wQGwιRPO#HX,Fr_(pCcw|h,Dð&u"MF~Lj$(W|5g=qF2j]in-X-|RhmHpXk*[f1˷j.hROʙ8N8YJTmcgGB#n)ݛiy&ITMy6gSuIPf'xEj*LJF.K-ݥzSjp"ѳ]ɽ/* /Č9Jo"BY\ I<:T&fcf]}0J8;bxN | n++{._fPSMɓѯ%>/Dƶ(4c+jFi$&Uii&|H P%SQКU'5dF&3X'dŧ0,J'b$OjZ#H~~I/7զt<Iƿ}Y\s֦:Δ'b@I8ЧcckW_WӖF׹!蓼r?=@<87DzӳXu&-n8A3ZM\3 ?0k>j V< rboWYy|u3g.X4ic NrO/ż3C<7xFm@RAra0{{!>RNl;uhVcQDQ#^7J3ï]AΈr&2 =bo%iUJa 1ޮg#N;?N“z~,^DL#ypn?HLHVl(%cBaғ1蛛ˎ{(O_C*9Nd:Pgl=ӌVQ,-ˢY+uS%l֛"2gZMx0`>%e%"χQx\?%_YIOyubG-aߝ6EL\P38sUz0#:zqW (#&Vc /R0N x.*٤ܜhЮ;>V/x^jD䪐9f')@~ΰ| uw"1NlA&pG3( 16VlM()Ma!䕵&1NP{N^c1պF5w0ۄmzU .͞1e C|_ek:KN4i(C:z~J[VY~\vgږ_-?y'[}dhٛEɬ(:%(A˽ڝҭo`A/~J&}=Jy~If72c ghYTz*YM0S#Wv+Cٶ(?FLߩd!XY3K;*~m>RW/5׳gnc1&֨%3q̥WNm !@e- |{œj p[lFR!Ú&mz/9kGa]֯Juh Ŏ}K (ۑ> +D3BQ_"OV5z ,Z)BlPpIݔqM#ԃaCш2se#XYAc,U4#/:v-ŚGcѣyg{aeK+-CӞdLb#LC*=XYˢCoOfG|#ph]4UsQ:2O]!& vM 폣G@H L8y׼?,ְ. CƲw# ift›]Fp6n Mr'M L)#xϵUjyMA혐l.aױM= /{.hU+%=-P$_!c s26rd-PL_`f7^|¦yh8MbC3ZJ,`crWBl$kkl52tk܎f(:أ5Q ʧ2-Vv/-KԒg4`57@~@X"XoHt B|ŖзZ6ۜ1zz&SI$ 1\D.ܧY(<so!L1DP>KA(еC6~'Aׂdm6Hkh& zZC#UZZsJ?:,N@aVfv.c)W+i4;Z$:j,%8{ŗra zVK51ucmeSՔHMDp⟫xF[Z=z^㐅{ q:ʶ?{rKY-DPD |u^hI@+v֘mCSx"Nx7v􋐯]X uROMxhM Ƴg-$d@0YlUY1g/WZ,/:pDApk[}U 1񋔖a9e)MͰM,ff F9nGB 1nhyBJƓK}ƄMy8-]qc'LoԖxJʆ޾ہGm6%0UB'DK),}ce٭HY_9xߺsǗRTSMhG!ZrX͕ަZc8`np76ɶЄJ,qVv#?/6o7ҫ,8pk fa~%v~POsI#-BUR) 0L]Q1x$` \|C>WDx<9-95h3;uWjI6v4.*K16_\5BF+nei4zO r;\Kc43!ho u`jw~̗0}:C3mP5q2Co]?9l2~D[Г=Elmdֆ՜N/m0NM*RDt ݹ06n8gV>p%C]D+cU- a-"1gMKBceޑʼpa9Ox&'C" W+Z7bS 7:H*lF }}t7 Qfpx2`sAȢ:<ݡSe:ؓC)}GxAF2u+䕣F^jS@ԇmB9xڱAhyY%pqv2d.G& *&eΞ/ISY.p'`F<>dX zk xwSkR (I  Kttv` BϚZ+u+EBsbxaBw_B]/&QԘC&t |}xhBvgj`MVi -!$[p;]Xr ª~%41=j1UJ~w+L.Ͳ堂)ݢ@h߄ɤ~OLK\NUe&vW@ Lzk}a-yE5qs\7->#m_q\  K' AZDHvGbzDyH'|Cv vk;ʖ(WFb*$(N/lǯ>EI^n-W=uqI-uޗg-AwOᘰ4RVɄj,= \~{ߴʿ#EO2Hтkp0ȍY[li␗ҶW%k\z[߁,CD>۳|)Yv:]8K"B,v9\# w\G^Mt9]+3+ <x/h5E$B]L IyJC{ g2 Bq\hw!U;͂Q+`~%kOLNa1Ed&ørԬޱwg<]m 31;zzM3)zpΐѵ|V+;Mu XP9DG^l[e[xTf~pMz蝲; *W-gGZb~tp硱}dy݊GGu9Bi=@c`2~&F I+㼰D=cIlk5B(@^\)&:tҪZ#ҐqYXw,Pge&NfV++2b*c'nfmv=Vg6G|q'{k{12G፸o1f{9t9],G@ې|PX3zfllY L D*4jGd(SC:_oz0{}J ]-6q5Hvxgj2F ?37'!K=Z'@tqjIb gxfJDV1eR:,qltRZ͂ʙ[$i94Uo3VUʜ wgH3$,;7#֊N\Ԗ̌j=O~e%bToc&U\f1iխHzor8oEM/D}3~E8mF;gnK'_Ž~yeo'3URQ7,غ^$.o0Ƣ `IYSeFPL5$mhⵍt{Wv=M68ket,Ðh>yQ5TIG/=Bq&VtF`[<#Tsv.~>3"i[|"rGƫwu잒~3wAC6;u[ZɘIHW]8},33̟zYҒtp 1yokj8壆U=mk쿤u/Ft~#S g"IlX5 s Kͤ5%Oh+׉(9gb5qi<7EDE:ܳ`'cyPKLD4G.3jq."`*bfh XqǞofrnE;A6;ވ2F&+MӘv',PUԶ$+7GAtx!6k%e"MV <!n}" {-y"Fu3v=(MUh rvy&{gg7[č.{ /BZ ub4ԫN&Zگ' 64%D'/X͘7'e _bT_[t#f1hw}9H"l* mqBlT{ '/>4أN舼iȆ?=;jdNw Jj@Yz0 7[oLi"m( de|XWf oFAr^ .R/Hha\rT}"X6lH*!M؟u8\(b|ijRL=lف^H#9W6un&*璙dcWP-k^`~^!8#8)e%c`#mԺ 鞺#OkmkB#ܢ0+0wE#O2%ޙ }Le:TPx(l1l tD~ BE&%#s :< 9e_))s5<\`T›|WqeS>svpyg!_ULbVJ% y}$]tv E2%LyWyH\7K( t͜tnϳ^9j"޹lhO( :^dDis]5e( ȺtU8.o4Qx3Q#: W唄H`5oTG,\LEgPJf_c!2jx IBN!m)$,Qyշ_ancY:G2zA|%k (dI~#\vOa<7xӑ_tfE 5!+0*!tdT @F:#C:R&y)0~#j33ę gkԶیzjm2l~{7L.w:~U@a! endstream endobj 2991 0 obj << /Length1 1363 /Length2 6052 /Length3 0 /Length 6982 /Filter /FlateDecode >> stream xڍww4\m׾NDAtG'QftރS G!Z(A%5!J(wh$y}[Y{}vkqx8La)*` @<^h z u;Xpy Dv@W7vH0 h/ C!H];P6 jEyz{ Qwh* U .O1>h$M6V S[$@Rb2BD~0s6q]ax}= pO?%r0!&wt#(E -d0 o)XZ[YUT0X`Q$ ;3W!ᫍF`?._K"3^8oۀ$@P oE%ixP! 'n1@7gU0(۴=!PF;H-#=4p6x/ۏTGC1_$*! @X9n8I6MS@DĹKkbRKG# xB~Hbq6 ¡0[aUaM_*3-_<9$XRg^5QUqѕ?h6E/\,A.vOT7#]mi+9֛t*\t_Zה㭯8.w% {H --FA֬\Jyd6ǁv^QRA||:7ì 'kmLw6uæ`~>rݵ.?t5:UXj 2?J%I[FJWa큿TYP+{_HˆD\,c0!n r߰!oat]] +ъI+4 9]l,B_t|[Pi EtJE ̮yo |Bm fW[;^")1@g:r{RIeQFa^r(B)՞mJ ?o+iܲk7m갳xMʉk竴vwV9M{TI{$mۊK]0s<ؔeJg+MI 01,¥*ds3e۟I\ 1:֐Y We:JD7Iס¡' :{]gEuByJ(ݼ?MxAWm.NpODƵ ɒTgi_b=ORCꐴͦ(2љ?ya6x,@=iZvQY=ɛ2vgW vņSA"CB,x6%ԑ+U>s2;oO{P]5bg̩F-n5 )ѪN(Q%_{(Y/9pWl?OK~ Hvҍ=L曭2ϻTHi#26:f׾7I Y/kY470fŰeqfo} ;ySu 9rY/Y [zJ`3˩ X XhyBŝcUC[PaSGo Ve|R5i l@!FS;/mij8yr}n(]|p0"Ν*|Z3uY; XI'QuC^}Y^'ǕPHR4`Ĺk>wTHk¾%"[~Hl a;–$Roo1hk@[x<M}U`W;);U"ԸZ>=W6Rp0v]f${d½<=lS3<+ x<>zP`FY{,dBx+d\@˔`vvd>&sj*B9pN+U7'M9m7vg\)d)! :L܌ L؝O 7sYHxe8gTAbjV t*pX"m}#wN7Uh_i~ӽQg;}]ŘG! MJ ,ɴvD,Mi̤'Vϲ+?ڐ\譊F_C&@=pB!EmD]D ֥vL/m=чRowMޅߚG$CJHmmoy;u>'at['ؾOj|~4幪AePmxMlߝ.${󴫑G/M{ȍL/.QC!{د*_4QEܹvV 暹pICvl+tP@Q1œ*2]tmǜHT IَҮFEvi08鎮}v$r-%[T-L1pf'zv`$5y q6#s&95y7 aj(92ׁI F&ovvQolam3pHf5res7ӂg6P/LڢC+/ǀ[ l'+1S ~Ì>β\Ao9~ð:a)tf,DK]2iAS]g Lq897W2TAO'sC,;m4,^ 8ZٳKBs\2s%m^fT׬uSK+CݼmtI|^2)s5}. }ggds}p3r<)ܘ9k\<̓/2IY%޾1lޟ'!6$3-,S`t6[v}C~'IDb-8~`}…tw(ǂ7(w\\M6z]>dڭ upavxiץ/e(^1ZY,MxؽP6-BߋӒR4ѕP[xP2G񉳘8,$MOZ9fCϟn7[5}JSK{M4a!x3+L9i1 nv45omQ@˼ɩ &ݔxo?ue`m -E@śv^A#;k1r)̊>%[3rB OfG>B䛔 1W:WfVn }Á,(\Z3Hn +^t\O!quJ,bcdE+}~)m('Z69z(n)y% VSޟhHVm,7a*$RJ\I41;J9:z0 Jȧh<0z7/Cp{@޾]F1 I1ˤr]"_$SEEB|.~H[b45WXs5% -/(umx.Md}󒜩2_ ~N2# Nͨ底aZ"aMG#; iUdFެPA)Uʗ@2ecGC|7:)J u閺<"٥"^ I&+!vwWKE}e>D!=RmpӆP Ԍڈǘ2@=% %;{=׹OV }0C%6顭-թ}-JKL&z.Q&{%=7ucdC f+J4l (wwR4s+]+S0T ӏQUQCࢰ:'-\rق||vpvAܸd@VYZ.p{ۦ7$6 G̙63縋%'SfP~)vWxIv+U0\1=Ig㬝E\&j ?g/D5ua9Rz&*V`rsFVe%Sr?rcG# m {|3^~Ҏ)hjvv?Tŭ+"9)lӖnd9d")O)uvu[%Vlzlaw_ٞK,&bm^yOThVRtȋf IUi2)?4Մ7Quf$`CƱ&]hs㈓#^bp{V5'fC=qTa Bz)ƥrJIRc'r)b%Xv}0 4CGC8 " Ի {mɚIRbBud?l*rEN  to2aSa|&Ji;n?kl+ *}8NMlRPfҫevui_ZP5X,OANV%G/HDY+p D6Wv/l;T<6_[ a$.+{sbs A;c)#?/8Ҳ<_N=k2Q' zkݴdGo^~VrI=s.￷ DLhqJ̦jskI?Du<)TjoEJ8O}Er5OD^^ZF/߾)JKߗ&BO "&U~:'eoOntxЯgh7j9ӫ2}+NWFn(? d?̞M,Xk $7k M\cO1i}ؗey*J$_lbT{^v R\U#KTrt20he^l1~o &ۓpd ?K87E><&zԻ;5&JĴ|zEity[/,sբSZƥwM+=PǕr,YtTs BFt^2{7\,\Ptއf5BhB^Ep X='b+oݭ׼kkBR20gKc1(:môY?H< 6FDROr1юvϧ蕏/^w7h_PW zsY洏hZuAHS?ZQ1;0znhb ):.@2pqLVwZ+}~م*J&I8Ȑ2bX(kȗ J]+C}} }#*eHMh6B8ֈO3 K/qVxb?bU\`"|_͡-H\ers9$ByZlg vׇQPxOW3~wK #'>{k;vW+!/kO]_S"7V^oy0ky-؄Ih_^&}܏Ƞȯ#ңX戯;%gOi~%*$:9ٯ{CT|Yk9ǘ-8!S]_y*Ijwe޵QQTRw_~570:d,uE\XK[_;<׾HrQo lC\K-ua;8A@. I)X`xרbjW-$(8s:6_ZI ,3Y*}sㄈ0Oݹu_#n&=ʃ^F9 ,J'o1a,au`UMzCI@RFF(l#Ab.)G6.mNG;I0ah-)Ieׄ`,-X,+ܽ~3vɅ0dw%vYDC)[4,tɐfbʽNg> stream xڌTU % l:6 "!" tIKtIwH9wo{czf>sswAC"nhqtp $_sٹX9ih4A`;?bdm+AI)"2C nv.  ;;].)Sw@tEttrYY!i7gp1Mʦ`k=$@{'5$jjb% @wwS{ߕ"4A5-.@D`2:B<,.Hr@ ̀z`7?޿r657ww2u9X,Av@+ 0umhj7u7ٙA bn WB @ `2̀V 1o 9|'@2{?>BeSTRfunv ';AF?|,X*蟇܀oGKH/5_=к! Yk{i 7BA6\e@@ 5i[{@@5GW r4GY-s[ȫ2oJisG+ 0uq1B2|8 hkl` RF6g`|F6j& ֲ"Jٕ&lψ l3U~F*BN;=?D />C~H13pxn (Ri 괞]AyFo3]H-zbij%\HNR "5{F\Lm,W1FA.nva2p6ts2~o3-NH5 r}6 G0侁BX? Y6H;A8RdUL9%gr?A3 ݟIpD<g7G0?7>{;'$wT<(@{Ǖ @G2W;SW?Ch>܇l`k]mct!{89D?  ޞ@HF? 䌼B"y]NkrH> w_u@'y~\緭7,["itRX|]_|` ^q0؅!M)@T"9Qq뉭q}^R$Mmg_ [& 4>-]R߮UD/dՊ1*5˚&D"2bxbL]^}{"WgB;*[|w;\AHMG@ {=<α-qĚcJUܪ.[ nrvM ɂd` Mz?WPuXJ`FNѫW$VQK)<&{xPaS;"|vv=~na#*OTWf< CBxU̾ZsIdfHwFS )e;Yc*"WJX;.ޚ2c=ҮjyϓNy2[4 #pe~UV&a}{R!1nMmndW4Yhn$3CM w 8 M{Ry)y^=py9n@1ˆ@m7Ph2aO$54o>QyBuNlP|ؠ0(iĤRnD=ZF5[ ɘ IPhb=eP*`yI̶Y#kt5R8LĠCzEUO{9eQ*l d%N(t7XшPt8O_TΥx"XE8.Q ?YRaJ\ EÇ*H{{czFn8O20vM< |-^yՓg@mz*\AdX/}V* W3cb:JĎl1"b5w ޷ԇ4=_'q=~q:v*^[p͕?A@GK@,X A+~KqA[²*[X']&C]݌Ϧ*6=V|T_A;@|ӾGAg: ~Ɍ}>$}EOnJ"ew]4g 8۶p)Rl,;Jo(Tsod(RsLħ491 PuTF1~9=Ek$ kSy7cQ۵)8QLc?- J< Uچ9lò>}SXL]meh%nN["NGoG=ܒ"98GklF~6,6%@Bc7X4՞.C>"B\N߿1a!B_ϼ7"[Q3u&5+ c,ŮSf7s Y.F Pm]ʪ bn/! 9 1YYS5߮ΎΪ3kl"vqt:yí):~?L`Yhjd{]w|'⋊|loBwX'.(QJCUڣe@sVkv^ Hq2gŠH[j# ~L}ݩݚY x$Mg!'ݐ̲${ sX?z6/9*JPX48<# 5e^4 22!&>'|OBluYdeʑD\l㥦d뵓@z2qTG&KnnLGwB'ރu4Ȏ-U+=aS]fu8d<ǎvSVV^ XYT)ENghYaiWsŬ.Ըw=R 1b~q[hj߅:~N%#ŨGB XJ+K۟/8R^؋?~;?s[eLk)rgؔ0ioxiCJLC6Y 52(K&`CܴB˫uC;N9E |r٘LJr Jْd:Ke׉Sotu{cPfilF)ڏUGޑ~ >Pl^~W:I ]z,2dk4gj kptsZDr| ܹ˟ap:]a$(w]5gG*<'Z"+v!g@u>E6aDM"֋&PEs AW8 7x,߹^6fĖY<6fϸ|p gŦj''K{9#Y[kWoJ֍X6MK{fff1"'D·X=%o7=xF;y'?`(wZuP{KzѢP'8z3ߛ.`Amv#C W~@;[gK|Ė5$p-Jj4 d}X:;˃5{tdfzgPW^Ԗ_o'i[R}Ы^xGŽm?$wbQ{h" 0+2ItuеU>#Hܙb3Po)b狴Z'έ~Zn{V'q"M;q;V'Wo8 s˥|ʘ=K7wV:~L:{wx͏ 2w;DFSD(BiH?_ zܦx{SԹ̄<ߑsk ژa.4_>eh"4nBheX?7 ˺qldV-{ *2QQ?'x)x(6'sBM2{p9C BPeTu"\&  Y3JJ4$E5.Jkx`w W9IqgglVo4ݛbZ3(iowD N 0ʳ}7ENoI@w䎈.#Z>x5 EԌ7"5N*UtTyKY-*(vfSvō*wQ*$hK3-lL:h/shrTfّeoQޕ Lʴv\lZ8ZJyAK6q;o!n2[IҢ!}́>>+!T,TkdU3G -A1$r6ǟN꧇'0/t#$Gkn4泘ةǨ|%EwiHѫenk/L>zYٷ# IxA=SOE$ߺp.ɁkG%)psml沄Ӊk~j$ͱn3X8k=ZB0 ~o'0 ~zsr__+qSr. {ϙ1wϣđ?? ilJZi?^5=k .=xхp0\=J\AiŴT,9۸DSԻm<0W]DW,e4L:^{B1t6x5^m1"}#Zm3MSK&Ku%|T&[']\C[Jf0GCf5wڠq:)2y¦#_^1nذVg\qޣ|ECv< TK܋ĝoj~.XG-utX}' H>pwtTE%Ǭ΃{dc>,:;v.㬪(޾;ƃ"JX:^ȅ`"|;=l^)l:`\R'L+hP•sxX8b=Z&0vzb(nF1'WD.}o֜aZ_Y2wՇ_}ۏP>iH/9-QSw=X-Rj1SqI7g8Ҵs)߬d)>F@L4f`jr>H5n ~vR ~,W!߼3 ͡`zlj~Z^P>L{*bQ_8xܘ}rTvCjvf ;TRyp;޸Vyj7l}JvW1zrƶsqʃmy/2fʯb)=$YV}7-|Y1^ሆld]bPKIuO;AcέZnd1)|ˁt Jl $J /K"ȶpb/A{HCI!!zjy ӕ`16}f8݃/ywɭk$8FM-+eFFxAFZM?>*˽s;|QQ:4Ji,6qZ>~ 5@u{m] q8E<^6?>aT.Uߣ';~ϧPLZo5<\Z_bPEF# @mm%ug tn8d 9w/n1 6OB^O'Ke{6_>0|!< D޺#[=yQC:}ej% {X|Fz0+%ba0xٗ!!o+񔎷G3R  Ǡܜ 9iE}% "Zνß-;l$ˆJگȈ(?3l3dғ.[\~6Jo.8=·4#LCG |2% AiZuX0CVTdc٢WZ'7)J۴D$=3Vvirr {ְF~[SvQ+HKM u#Y 38`&&[F1 & {KQ} <\@'qVU_U kնq <#-\A:r*y9 \#1{ř=粓WTa ܴ%c9`p%'bβ!ơJcңc J,Ǡ>|\9~O؟>\LD CsAݮ2Рoꌅ*Qf=*\(&&.@e_[oKἎ$fGCEzb1k& |a64"r[5]^nU9yE9*尬[(HI'ّFY̡s'r/:*~IxJ3 aZ2@ zx?\_ P}?o(<׬6G(+w3y)ҷҧ V%b& tNͪe}V-7osR%ӸL`H!cL I1J?WӬ' -ɌAmwb#d]bޏ=-,^2."fAGF}Y YZ3|,pz:+G GDq[Pď,0pI4;cqtf2fxyY"&BI >E}n)-nG`X\@Kx!OOvT]8Kc`IYt,:RͲMʂFlm#'9zZD3W5I[{w6*aSuoZ,c׆CTzk"UG:>f_&)Zrnmg%Z٬,קX@m-m]5 CmU#gw2le ץY[-`SOwIt}EXO;oTP;cmGsZ77Y#굿Y`n\l;pv.ߔbWpb!dVYȄ!3}Bn!Q ^=CO~If;W V%2EQ9{=S:D Qjt9 PZ ]F l8k%ƢϿآU6P~֘uJ/ F>-}'Ƴy&+l'2;Fm-e$;"H;-R wՁ텥r=] 5; p:g/Cb+k3}p8h5IN@otn K4Geօo&4"EP_o b>9_-˛b r"N=m+9š8ȇOս)I ^m:1&vEJUF,FT9Xiqg ̾b^F7`aO3)5VE>A5[/e.~gp'ai9.hRpWjOUؙ*;Mkx}u/=cl5cdt"o(! Omh;P8tqb2Q9`YοV"g!''_b'yg9U4S\s]yj A^"K{^hvI0p߳Ј *{2])j SE2-bDfx Ңh*>~M0)v4"PȘ)ʬB˚xTD6qK b7iF|][ ˊvqb<'D{έQwJ5'AI,{5rp|v~Mv6slKy&0';꣥+IqX]mds%Gil2|(Cklyא,>9zQ$JO`$ @5Y4|a25_g S4WF6weP*u>jߤ Z-wu[4d?,ː殭iA8y}O&%DCZiͥ`qC.! 4/!؃@yXxVfϮ5|*]^k*1]:$HC_[Zn_m.c<^JAaI[K-r =/W/ۊst I'NTV X"ՉQ֯x_sq*ۄZ|L0fr8(*(&+5OS^QӖcs}o򦸷qO(zC2iVsPEyC$W&rЁ&W'=I"-#jaO&zD]ܞ&# 65HV|24zv2JI-V4B00,09rۣܯtOm5=B":P~jI?q'.|8YU%J75,A^wur%}:d%X!s7pscStd&|y`yݮp1_ڊ 1e@n}? z:f-iiʺ2㽀:C04zO4 Lu>3K+MNPd͠4<OIMQ='8aǒF}$L;`z96F$A{CKΗa~y7kݺbcWLZ(BBӔ?lʜ-|VI:!Qarhɓ{y8).{:H+ w=As%xT Zk|] Nj껵U̲ab1|2*/4sy>\j%|ࡶ' )l@zOurA٢I0$bM a,*G9c~7'e7lH{C?5k5 JZ=T^Ń C1S*$R'NgFSȳs%jN_ONV) 4kʚu0bFĚ\,Id}Byk8?늓#eMdz=ZdId`#nmyK+bIyFV"_~ka%\eͩ[?QQ&>I`СlNrXʦh`%c VQ*RWwqj"N_̿dOV~9Yg;d-'hۃLU*05XP!Z1I0eۯjq#]e!uJ`2s7/Md;pWYK]vȯ(V[suǣNNSEP y$n*-A;/ c㻨2yŦOeN' ocR;;Nthq3Dr:q*XQՐooI'DqVF4gj -mxFU3a#QW3{t3־rsDk{遱 +? U3Y`q 7Ͳѧȸs;9#fp1˲7y<)b{] / 4U=,h*זNڬ<U$ 0uQ%aNU &03X 7Wګ*mr;%k1vytW@cZ;@w}o])ә LNY~P) |r񀞨$;[]&X eщZNj9>NR%zzP9ti+9`dA?FI#5yo|g)/?c0 VO/Cll 6ʩMVhjKϒvp's˔c(P 3,ş8bv*i`W$E;Yȱ@vOmr}4M9;kʛ>3c&V>8DLU'4HO~6` ZlW1,#pA|Lo/O1c`>y*(l1r?)-ĎKΒgEohs5ŀN~bJ@_'%hL\J})onTƀUdX"ˎ ~WXHJ́_Nb #jᶸ3 *9YTi;jƯ<]f\A~X{I/!IKoAhc1\^Kd\47&W|)ge5[)W0HNTZ[UTf,v3a(jW= w(RcC'sy`o%2yy X49B\q ' 1agqi03ORj Oq_[TG!*Y𦗴pn%LMn(BfL8w:mZ ?Bp$@IPQ y#bBo 5˖$ 2.~1rɥ&ͬY'$Y*^UUݱȤ66g2bZ-RgW@Kjv\ԵoSRzu_i h6iw4 k]g^*#Tg"&' nB7u^,0+k}f;=WxMpJ~V (}ac,ʣ&@_Ʀ0I*=!裘̞jr۷N(Xec8zpौc7 `#Q&Y j#Ջ'FjhQk[[AWn݌oǦ> ̏^bZZ:Tjή\ݏ"^0GB|ldٻ9j%EnCE^ݾaaSU8~G"j"18i"2?ՌmXgBl^QZю' FʭU_]a8.:O Xq4ǿ=g+:RGoE80Dz5ިK5yfΩ֥gR %l^"6{c~`%NAZ|,>mQ B~RFV̓"|t<ղ/ub8_|+Se&e&rǮ*mq^תQjӣbŀHD8=r_`Q|̆.LntvWҺBP>E"P:ֲh_(* ??ZQ`q!_h')aGP0Lry*\5-A?U]!}zz!|2Ob+.Sb[ C!*il铚KX.նdiUu^@|45[*@K=.LzncS3_ Ww7  ~S1ձ}}J68 VvAwC[W-5J3|X~v8tZoH >X9-+Lxϐj:[MW|w.5d8Ȓ[qEha̓euD%Dnf݉ fPkgr,9ʎ8p/w?srLP^[Dё፫2 MOXl-_Sc šk+-ff%5@<[NIEmb܏}ľ`;5޽fLw>TW- aY^ڨOQG[>s4[O`Eq-yib'&|_m\A&Ma|ilW Zޑk) iͨ5q_-]LfWI{1*p:y9~4ragā{kdVrqĢd8> GU}mG/e [ _Q`v*7w𢀯L)[JM"m@ |u%6?Fn܂x(kd~2R7*ՅA}-:Lڡ=k<GHZ4nA(؞ϟ'h), 7Px :TGf?JU%yQrM{Y|@u\:GZyQ&'{ӎ+ #]j0'uS*`V Ԑ{&O Io<ÚY:O`z"tOw4caw7_& 4c?=&~UM%n`5sF bvBo,Ș͂\UoX1H/{B;}gs޵r[: UGP&}^J `?"QJ# ]#o %1rgi*IM&dخPI3y5LSUr+j0HA&}-|qʾ "E&~uCv@l2]4t`/k>O]Q@' H@,qy 螳'O p$$+WPtiFFJ 9sJAZ{>/ALcUtVP|6.7r2[E78NmKxA%[wvgi76ØD[2)<,e1DAyO=ʌT}VVJA.3l"Ԧ3[q}"m\S0YCPz~E?Mυ䈳ĔV3&J's ὰOqb߹ʱOzIOƓnGUfƓ"L%n D@u6Ty&@Vm|-g\J NF>a5nT(bk&lM3_+>, ps 51YQ8WǐR!A4H@<{l`HI@*LPU9=uϖ#Xς40SHy5CqU}5`7Lo:nM*M;w#]0Chp@9ԐHBQmahmܲ=|-Ӧp-VJ]=SH)d pnuV&eB'*׀-k>c*;^p}-Vx~Bf6.Ztڄ,=ܻ},KsJ 19Pi^R_Nu^r K0W^UBXkPؗ}=GMi8_T kbUi)Nj%`% G"2Yf= O*â!kOih< ˬV*!%5,FӣL`S2}]{qQq^)10lR_7_aJc౼\~{@Ӝ_oScKM;U!V]fWxV&;t1o˘DR3߷JG;w-xa=i\$-8.m5mt^0}_GoƜX:iTz3nЛC,? t{T$"RֻqgޙhYa}Gljw/0f6-_||YhU8vpR K̿!иTtr*jg\?d}B'jmK82fO:niMZI{/Sx L"/npl@r=ږ \\g8Ĥ:_p~3`8>=wN&ƄPo'"j7LtPKUXK iUfEz<Ƞ B:fjbiFYX}f >v$7eP$Kt=;4b[~KQkH!0 9 qLQѾDBp.!*k&W4>~_j[ɢ|κYlH.(f@䒱2Kw֣](.l #dDjQPcG%ts解LŪ[µu\AaLq(d6|4oq= !`$>p$d4:Sԟ:mq`KzEds929@9Hپqa^& 79GݘZ<+RI32\ lf񸡒aX ̚+VqY; VB憀atV(Id~R!kS%k-df(*apFDc*C%v?ۻnSDw0 _C)FL>}6=?9_zI">5_ZuK݁ejvܝW::{tp$tjZǗE^ghTWho<,\Cre0MLqYh9(E7pY3yԍC6w7vs3UTXpٽֹD`rïO+oO_K׆m1mK4<`yQv96J"Ne&ҝ޺{@yBw<߯YmjA*RHՁ 39Dw|%:Wq I4Q*$/@劫m@G7 ljrwX _{1/9yC_Spo):cfĵN fۤD7Jaq2[:-l/(uš,8ud, YmӳPȒ~8w@aFi5sJ~s&4?!zoMlca hӧ`jk+fX!k T\aN~Υ2uYf}|*Yq2'Sֱ zFC<ʇGM_M^e;$js|0Љm&|Sv5NOۋ*rFwkܪW5sHZJk(1C,Cݖ@?e4Y9 Z:)ݦ&">lXRG/gFHXkm:j7o *#g ݽ(oWj?bfrŬv*g4ΞEk&o;@zbnC(36_@C}$މN3Dp%0++E}lSUb@X֫̀5ЯRZ2_wvHq# ̨-D;Lj:;=~ 8JXarnݙi.Lrk'+!fm$Х~@ 51n.htn谣YTxAZݘ㵰V҈ĉA]}>x^WnӃqlJxJϳu:]Ap2rAGy7)f1m͖lcv(L@&5v|V*`F @Vq?5̇6p07GR~b4ByƆX?5%pX)};Tyя_ PZ(|\'qGKKK( et҅P3GQR6|??$Bz ']R0|CFo/1اdz? qV`Se(<,s^i)Pg*/0\f"{WEKbvI\p+j=+e_?\.:ˍԏ'poCF_l]/%wdJt IHQ5}]ѾHc"uyX0g›"Œ8 O2R'2TŌz!P5|(@E4梮 $QO Z+Q@bQsP* `b1g;?Ke=2Jh-e a!gys@qR}B(nvH{ *f7Ĭmqí`rec~gEhHirlI׏;K )H @D} ^y"Ti ]nRܑVhh{Hn~FJDLpjXLD1G|<3q@!TX\Ÿ3`ؓ鲛!WXw,sbL|rk/G@RJ0>s'r _% ^hL5xs:wH'cŞN&[IyU, qJIg 9J#Rwxs-F5O-tmx$`Pׂ "'oֻ_$9?[%K˗cK-?OO0$NyډƓ%lZڃ;2U?S@=L]V-/xJj#4V테,"B)T*.nb>B:dAoZ);ge(MاpJ\{+vac#;Y svֵ\"2س{*07YRc`,+u x߅K›5!,x"UxK;̃{ܪw,7ގ'c'.M+MPSF Ҫ)0ā"s>O80GkINd=ʿ'Ï,.Q`gJmˌ t$sp_l@a2-&֚rd^Rt! Hў֭;[uZOP9 -*Ĺւ*_qYK#2VJ\+3֜x(qY:Mu^W 3;$+-BaYb&>px<Ŭpq,̲DpWtmV>-l)N Lم1A6!D# *PVZÍ1mP7UIG@% \a/ҮT%;w? [ޢ_.fcpzbnfYw"RUWh"ݱQ\8S_!qg+ 9Wtՙi^32"oWuQ+n^!`✒7]T X:.MEB@:{Β<݌nʘuSyaórL A/d_1E/MhJr7 MこLr7yJͰ'xQRmA<j'4*3na`E# &u= w 'ש8w7F{/QY SOneµI8g{w-ښdݣ4[nVx V zd yn$]X.en5;v5~/=e/mĿ->Þv{F:} q ݸX13)TU^ F_@C٣3Zl~ɽGG'~bл N?5ozC(6-.+.Eʱ]m`~t*jR۲@BW۽^N*|Sr̀hFGb I&,=6f|=Hw),6Z˸o8-PsX"KsP(5Ux0O}!o0rħp@Kg~-ayՆczxj71s&)%E 4(jHw_d(=/QpYd*1&XBy`Ңtsj) %iݙHV3&#'eQ,Sf:_SEB EWFI##%@1rkQ BBS?qp!$C?Dh!{&CD'}yVե)AIZtܵhIzɠE;0FQ*Ko,0;@+4?Fm7o%'ӝVпij_>"#c?8xECJpMC}hZzAk"v- ߇ J'|@45YUЦG1~$īq9Z\A_IHw;EXPf^"z]yHɪn*UD[jGki;fl)xP&%Ss7/$Փ0c,wY0(m%raIU4g˲']0V%˒l|kȣbxJ?R~]9//4\^ _.t#鬝QJ67 j,F֤S \wv&Zq47n BPj@pG"ɳV3*I _Gs.fB4&m!Ϥ{ ZBD LPKDiI ze@i8>C <.G|`~ 4 scVڛj .lmoIjbp"&z CR]v;w,|ZKq1m:wv K>KɝeQ_Jy8K0 g^ 5m^jwuՁS~fr`~zsu`Bh Ŋ򇒊.UD4 w; * a] 5A3Jn6؎mУC2VxN S=]ⓓPFP5sd&PuN(F,lҽ Gؤ@ӵCZ2t]5UE׌#dIISKWeQo2p6qH"@L1oP%< -!nc@uY2/GmrJ;Zj 4EeVDr: 2vL͜ZҶ]L$M,FRoe3"Gi@,ed7a?c ހ'U(e?[ *uͱfyg ۹鿍fGX7 *l&sd6N'Δ.l"°!DĭHj3=XUD %Fӣa@%?|p%e)];ASilG3US"Կ'kV) GFY Z!G9]1H2GV2:};oe 5$ɢJ6\{ېt¿(v #)j8il]#qⰰt(-YZo*]U&>m\;;e3oc\˿pJ@Vr᱗KQ{BR-D,ͩF+$4WQvX jqPUBѱhɧ~1;(lZx&$+P86{ ]ڗ]@`go(>@Mi+{@1$s1K1NYuGJ_G2?)ox=l 2-eFmr.&_sXɬ=A^35YTlj YJdUƭ .T,3Y1?R"4'gKHqs~4F~uގh01R:bBlT S ׸FޒO.B|YER% `6p|!L1HT[ۂ;}~]StXaģBΤՒ$+Ο> nPNhm?ڙ}lt!UJKY)uoyjz0u6sopX.6%a-t^{o~ ƴ֭^@v$q> stream xڍwTl7] #FFww7RFl0FwwJH )% t !! ywW+~}΀ :ܲ6HkzB# h'-r#b.A7:M;XX @qD  @D܈Ho}s6(;,**; C@98P8 /6 {4EӓƃDIs~Vd;nmďl{ߥe+Qmن d\[1;Ԁ"$:Eg#tko]sƙN s 8xNNWK$߉/5]K8Y4sa1~}rwpWn#]ތe`UTϚjc 5/6jlrJs)C @Ge/o­n\)km'zʉ o/5so)Jŕ$ĝh)ZЖ~'^0>!4$KC乮2M-Q'T']<7#UY9O8-kM')_!<˟l4VAb>>zHyĿP iD| Ό٧#\y{\Z8mn|,L v 7%͒nuiеRG-rû5-]4̞%5j6"F|fqFvB%_](1䷰Gl,xoz81I'۴CŕT 3_pcٞ8e|\86Jsi9΍s !wN 2+] f62K@tI:;Ӌh͹ YsA-` *Rwf7iOJ|5Y sU!va9gtc82[AЗ-p ʋ uTmBm7z[v}zkFՔ"D`kONTֽë[-.ƴ no}Hl v8{Kߞzڨ{AFYIslNy7?U$BX*v2‰43 I-&EȺYH4)X .ja޽.#<)?bGjz@^Wn4 ĪT٣.0""c+o-i›eOr>GW(%7 5fr}|$2\ Ɔ?&Z0h$Ә҄Nx?zkHA{o$fS!40h{@kܫ:eo]<K g 8{mHvK+:|@r&k`WE;Z,1)jE&jjj) O7T0i\c+1?ELn_,8P&st=Tff)bp|܋@#7>5x=![} Yx_(S PPA=w( ^9cG.YaA&+K |qYyLkG3DY}Nƪ«OAEO6Vz\4^:hgɡ[w =z=Uf ^݋жE>/R B1ΕL|u^IHTUjӬEz͝5RXּۗ$[FY? H86E{o Twc#[~ſez^78%؎[#ɺ$o<6;R!~pgz˟K-R5^=;JR 钀b=Q$6|?wV*fa~pzqRubŹR7R43Ψ-SoZE-1EYڽs{2L",;K Eϟ 6*,MM%^iQoFOlEV4JuUzhSx}rGOЗ Uki U~dd~0(pSy=''9 :|( RTX%w-7>8Б $! W]jvT&ei◨T{{mĊR6V{!2lm?h{\ԊN7%\1d?paLV8YMKbP|Ӈ[6b2t Ogz*'*#'~f~،eOm-YE8zf~&AS 2?*HYEi>"^IiXu[6.|6% 0Úl}QU3_ms8v"V?]#]76?H⹃$+HuWvV`Qׄ_nlVԞR|;^.Ƅ܆WwŚ,FYGC!!ZOF6Gd9Y=p{a)ކYLzfYvՒ+3'ƾBEg6FH+cͣuϯsRgιm'o{ ,a;0Smbɷ(uaڱY '-vE;:jjl[Hf\r:y<2޻?bqn]uMqyHoFGx[ p'b?A-u)|Tz\,>v1ЮfP-g)ZJ3CI֔LZӇLՅ2/6#X8AcP4d64,ʈCETx^lhGP**#!3C)/Eޜ StB YJПS0*?킵sɇ4־ušu0:KsLT;ʧ;5VRqڠtƩ(xŻ  fuwǃa=o\c!a@iZ>=tJDۏK9E7)A$UʃSs%sMNs(-m?.02Ů)8*Q,(<`ΖYѵRSy &3*&>d!@-t UcN:X>:*>QNdɈ(X .1n5%}^GEJRˑˡQtāaFAV\'(~ ׯ),\Z6'HlM(p^c.S.Fӑ!X]lxЊN 3)7_=ګSGV:2-z`2VłGA[iG5@<T^?H6}` = 9':[="a;isᗡ&7v, 6Rm%H`ac{ZM[)YSA?̲c9K]-j'C(VQX)V'Y? $ z`~xa`\٭׳`c?-]s:gioJ_j>XD9;s_v/yYؖFkBlb;FLOŤ^Z0Z" Zo2nx >AYKc$ y&n$;E7}H..\.ݡkU.fG{?akuPt6>- ˎ,J }d6HQ_V*s.m]$}x:}24km$ԭ|{֍cbwFCV+'l'WIX=wڣ+uIĈA1 yڬ |D.`PQ!iTy+FTk7M5«]+# ~Rv)i!ȍI}޳t(ddL- 8@T2/)֕/+YXOn@C߼R a_DIbT}Bglf̱xqv{jUi!)%bD|?쪛CU+,83Gɔ<\.vhpbp$)6@<ټל-UaP[g6^ @kƻt/X҆zHHv.ZWHUSNcj\d)sQhCۜ *I&(w-fJ=,^kH8.EQ wҟ}3->/ekeI(JWG/e6SNDR/OcQ zVo"W(dD4TW~fbVz|&FDK&J'c#A̜Csۯv)^gG84UpBN'o6%ؼ>].K~>4`"oVW^ݿ }/F5!^|UAAPdIA8ǭރ@S9A-IJ_j0"{H$Cղ*S*e7waqΚO+,ʫoP#JGAF~펼U7un G1{R??T-̱*fr/ AD?x?DX GZ)^$}8Yy IJ[tR\(@k>brĿBv=>eAm Wڠj{_}Hڜc4}`}.B8lWmNV)!g@kChnTIv;Mc_v$.K{*̲=2:$$M'~_E,Irp8`U##uO-.1W,I~*7:ף?F ZxpatpWPo|paySK২~Mȓ w@zLuFEF^X질gQZaxe l%YUx!{9Yc=쯨)<;mJޭ l%5h H$|Ϭ>HR$r xỵ2C\KgOF0ZTF'ť6I:R]ЮLES/aU_=~.U?FgG=3ag!usT G/smB:[QB)ʄnhȼǝ˴ċ^f~)9[ä96F WK&+⑤*6i&yεqs'9{½ уwdRPxr9jӦ|l5$8,KI"wj'b,~"ܫJU'6#_ӕ`8˳Z (u͆VQKC%ϋFːe'Df+eLasyU; Sן9<?7wG!74<nlyKtPs68nITW1͌XA+\ tJE8 6},UMDע-G2 UﻻV_;G*ˏ)1֒ %8j\L8R*k|Kj]ȧ-Qw;h@'*h@Do{⑘fu(|2VE;_(V `̇ŒIaKժH|y[Ue4xNX;\N#^-[P~M }|_]|WxQBGL2Z{T$9PIAVպ"(f [qڜݦɦA endstream endobj 2997 0 obj << /Length1 2077 /Length2 14265 /Length3 0 /Length 15533 /Filter /FlateDecode >> stream xڍPڲ ݂ ;Aww!Hp'<{꽚~ݫ{ :)PWT~`feeGҰv#E:X;w$L\@97;7++ &Ef@%lmiZ3://7Q{ hjhfbPw0zV|,,&.ΖBtkW+4U.@waT +k&@ rywp eG c i W k&ff& /k%PR`vte24sqx7q731}7 @JT`^s1svtuavB¼7Yd.`o Ohu/la 2s7GMPV?"?2K+ t=ͬX [#puv[` !.Zo>xlֿ>=ϖߗˢ))wU9x|>p9Ylܬbb|eAȾwitK}b?jyv7EGo-_>"je]Mw@di&ZHY{U]ͬ-5b׃`bce?2}4\o}iwJI_0qv6Bxw a{_Cs `a9X88#u\ѿD . `/bH\My,E3"Xd?=DO(@?Yx%*{$?_nb37WwGJ]e[_z'A;+ k9o&̭o_ݿ;]?8r۾KN-T*㝳˿WQlh9S|wqy87O޽Stp{\?]pP~7(fno@OʒM}HC(+ΝnO(t5ٟ6DSGv%ioE~6†%?%#|.>m$'b9}u lwrAQ)|lX[W=G|cՌ@U`GD Gqቺp{77F*ȀwGw=q{Jݥ_cbG(Mw٧dy"}sr>{_IʐjK6:fM& Y GŚܦw rw=lN.>Ɩj?W FYw:`c0WςkgM؇92;v2|*,*)o WÓ4.E0*ݐ8Jf-_E'։j iX%NzBѪz21lFڃ  dwOP)ŶИ^OI66B6>nhI&0Aޥ7llK|FHF&Vt,VZe+d7':FKPf#d +lӂ{o!t}y Gry5<'61fBI#'ѦB?rNOD:,'l*O!@ty?jW#$ , )VƄ AoBŖO%%V)Oaث[Lr.SR)=dcؑ:DQ舜wE@ZNYBhrC; C(n37+n.QRb&PY{aS!4p]E;eZh j+ү^D2>f 8PlG}]sؑ-RNJJQ;p:6aẺ31*.x kԟȐ $d+}ګz'w1zٽטu‰cQ-wg`Gmq6%fn|-0jX+Q֒mhShy;M̆:uWÈ6y]ۻjxleWө_*2A< .u]t,1WNrLX20I+yL2~`Dl܀db\jC%iB[Wt䜿(ApCdp, fLa\YJB5F(AB+Ht'/m_qK=cKCq`老R%=žlKCG;! g£y#GoiUB)eB/$9֥bzSj^oAvyX뾠* fEЅX?8(] j׈|>Qqno#_i8g}~?|e=upwcq2"TJlgeXGmX.'ETsׂlCm.dՋҡ0 l?dKkddBj1 \ʜOb7[v…c:wӄG<{O. rTGƄP3ʣ5HqgtlVW+j50K|I͞gR"~wo>:3"a7ck 9hR;#Ttc|g/<;~PD&  4Rm-&.\|򊪤g=98"T ^#w~ra5_Ҋ(9xYNe/U[Z_>"{d*qdU_l8U *R- (I`.3n ڨ`SJ9LЏ_Τ RPJLq%2zH f/qjģfiqXUzERu4ʻXJDg0E{9}aH9 ^8ozjzWɴ8r巟qJ>g@Ө= uJ)k1fJ% ^džlGI;$%E)Oן_M j_&J0l i~td3 1=Neu)ځ֎ XABѓb̩\N%pF/MnAۈW=CEm9̩ɉB e?2#2v)ij,6~*mߵ:J?a-掇'OD}+d0ǯm>kļw4r3l7l6| [hBiT};:?Iɾil'egw R3xˇGV{)=:l9V%poN"S/7}XGⰟBޣ3jbԠww&~l0Z—EFcvU:*rTYx`3>&x *pڮ*={ʾbW.^2n0ENMXaq"FG; ;˝pbUglNOS#>`QaL&$1L+UK-wĮ! bV#MjC=E3}2>$g8\e)LU(x~2Լ^we׷f^kSg( 'T-sJzYzs"FA>1 ŲΥ2ߦ u:^H`ޭ|qE[_Y$]ۓklnŽ,uB%kn+xK/4@5}&Xf+2X+Uf5wO=xQ-؏J-n;ߑH4o۸ ZS\%Y$M-=,قsʵ_|UWۏ{4@Ʀ| O !" EU\jpRCuuJWo0U]|IŻ'& ʩx~;@tw ֓&p2ߞ/8Cll\f f 6+1Ÿg!00>KV1)&R8TO0 %!QIT3N5tiXQ ',IhXO ׳cqem˄z:; /_$HoUAHE{{!1\ě?2ei}D)STp}` ]7 ՝G^e0?@mGֈ m^yCDl8y_õ90 ;a4)r 1:2 D/b =a4o+'/E̹]VJ7Q#\8ȕ5z;Μs5^M5G OUt{Td7;Yo<&h SLƬJwůJ[/8]gOdMݵo:U߰""LeGj0gmlYE ~q, &ÂT{ oՏ c=Ee7VB e~+&s i‰LH{0՟ vg;b9`tPGz ՝GB{c%ua#boD俤(7䳫$Ŏˉ< Gk(,=~3l*prz=wRĥ_ą2TPul/=/;;u'E C߇9MdzKcMƭwK,.?YC#kwW(ƋeRG;Rtf>i柖$VQ2 Rd1u_mON…,V%_۸>Ғ.k;h:#gbc\Nڜ~mK +||@ÎyAP7][e9CG;_P b=T\ \H8V審].r`KW.Ps|Dd΋2sL&e:7p>(_KA+Dx==EM9Cg=>9c8vMcI-"J1!j/:v0TfGIz4{<x3~nD4CĊ}znG(otg(rv&)5?28#Eq_]>ju'6ȉRc6=O]Ԥy8%_h^ӟ2 #/5}?Ye F%~"xuvU! +)pUy_(D<˳߉_oX=6bp%+GfqѬvEh] xa}#;?(A[:LkJGCVXg ͖ty˲$%IPQ![RZXxbF)w_FW]DΜQS A+XJ5{\C\ɷ _'NnajKU|S -ϥɤМъuz*m~Ӯ@!6ݎ=5mL4o(N]c:RV4EG9a;_qJ> hˡP+&/\`*m8:D! 3\ů~]?xٷTlȫ5peb_;FQ4k@ IKו~*/n3z#)#zӂ{J?)퍩DN0gJMRJH, Nlmn`UjiZ?[Ǎ A\)?Usp,h9=VdP8lzq(]befa /_rYZ4Roˎ [%MDxN/bP0L}|6i0! CZpJiW֩ gWi)T7zs{?KU uXs ֍UDO;h\F*s:fEB6nf 0XX(jN%!lT sүPbi^Osق{t7sj̊L>$.ēWU~ӟ3Tc|CjeSsKtS|# rĄj]E3P(+kHeR[ y*ăf:%w5%!~/vXvҳr>< e_hZSC\u ar*}wWH\Dꧩd*ЈWxIyYC?3*Jm)3ȯtQ2'B$ɫ`fFKLytqu]Bկl-D'ĵ$2Fty+ٮ_PǠ}H_F L ҡ[ssN_{ 9nd+Nr78N!0%yf#Q ڂUƮ Bqۓ2 z N\hcA=ȸ;{YZ!1 C* AIJWQ1)P*t?&m_  Ym7+_?*RD:_V\d[B-Ʃey ap\#7P4SE-Ebj{,҅_/79F~ʌ29A[Jz6fk^0Yj]A0lD_nz cx\OjŹ^W>kɇ.F ịА֜pCBJCݹ9ꃃ'x J O-x8-D,G3xT}Sؙ쐈RhT%i¸(nUXBj:%K*@DZ\ưS߲*f Y.Up9Ͱ}[Oyၧ9Ddl kPkH|[~IIE p^{v٬tlڧJxc3l(IТj 2>y 1 ` G[ho2HLfƀ-B,#yÚzB2=wŷ#&a~>)7˓ m_rN~P OdjF:l*Oz*+h2Y1qKL,MdLYq;z (.6/$PSHT[sGi/!!^bmS̞rYМls,rXR]dyU5IPkvT?c□X2m$/eq7i[U71zf-/[%/z][aNBI0+qyt[2f D>M#H"̀+~>&h#8D _/N1%ۆdA YRX J 8tpޝA T@:ǵNon)h*$!>#1I+n>wȿЇ0|uh2ϦcX2+&{ $7,\Mr5]Lj.V+e8C 'SW\,(FT(__rBJVvfF7;w'#(L} A#![e*wMm^p4Ҡ,1c)۳)4 m6YuJh`7oaO}= j&/ D4쀅ǫ nм"wꎷjr%_2Ѳk&7UMUFXS.:+I|)kc0dC3QIlv_T9t3?щi⼀ۦ$o/0 ICXk~z=!;_lE>G#Hl8@K>e^}XdUvh6ttvx~*>')>5QcAnj8%9cWަĂkzOYI0aEXJ&#_fӈ #E˱j0d.:(<aG4ʅ,SGS7}S. I]>୔i-1Gu^4LEQ/Kȏ{V\'f,[%a6+DI3VV 4AO Q]Kƪ|e;>wc9 .ƌ6]OM~HwVu f/n,Y`HV9ɊH=z"@.#$^p")%!Z}^]-^yHMtR$"&BR7AmKKֽO62X̪hk Yebx |xȲ|M}SeL>%U4OK 2xB@,z9 9,H kcUog.>sd{’n2恆ȃ#Ȅ*ҴT6FLjupr&Ӧ*hvцZN|]ۋ| $_1jI)z/ԋ(]ٓv4хr仐V?n0poreqcO\],>Khǃ0>h hC*$?n0vaJfz5{$J?J{@Ekٯ$<ԗx1<(e sLhkE莍܌@hsHwfmN[~T34$4'WZLG[7YHIoj+x&85JAxngĻp"t,$1I2~Dpbn:#Ẓ0-,ȧ/]\1S,p_h8`$>H:SU^j}).lu28zt MД= ^9WTJ͇^IrA" F Y\͡ >͊:XVڑuRN"@BǓϘxY.ϠI~Qޖ}Af*|9Ma\,#k: *v3T7}yγ V,ۡ缲*ruܔUϋq?Gm@S5>L?LS`F$3ۏ}@LR>~7_y!X!6tB(B{AwQsNTS~,0Pn?\B-n[j[=W1=:,qXwcO0WsB؂Urer&7(yv,C8v͵}$Q !ȏ(dފBCR=)߻aa^BN "U~9v5mG/*,~QN%_iq8?s0* "l4gqYm$``y/ 5"`8a\@$ŸKlqLT¯Jíƅv=5k}M̋Ņ`ؾC{փIV%e{"lVx :SHaaE ]Nuz񡔈!߅MiO(+'*, WrGHo Z{bSZp}kri;HUG^Ck-aq.C] F!8Aԫ T?s,۷y.0˫ҭ̩+>ˆR%wT~pnW6>*ʹ+ufRw-YumeMl(.}Y7׌pf7KRGvGV,T1%son:VAb\QBcfӺ;ђc$*`$/a4awf::Nts2vRpi[rk)ھhڄ"`~9E :4&Q|Pqz|w|ƍ``]eI ՗*opu#DŜrh:D: ?-qmLFl?Tٚb#eMN4j<_eBq [`bd C׵K1IYm%R¾a3Gv۠>\^^-jUE7]$}e'e;T(1SIZ`* *eR$V Eվ;NJ-o37y=W|Hpׅfu$=jjW$7Օ!Rry_>9GJl #qt)*Ь6P[xCk=0f:_6cYh7'o`+[h X!] Ҿiں9}i"_q3'FTc-Cvg悻G)uwǟOR4 tj.\8%vJ1.DH%w}wƚ|c~qA}A5Ui&5@i:Y>o%3$- Nejtd`+W=JJ:ƍtNI\/yg˷'~vi~ZEQ'NE5e~(.OmILǛ,ȍVV4nen6pץA͝Q d3Ȇ _^Ly! x?v-)i(/łKUAf@Ȝ[&Vన1XCm_u#%]X6u>8 \Z+ܾ⺝&G6% s7yӷoq-aNx||Hje ́D8RS5 kG:f |_mI[Ώ# ѫb:6P Fx:.ģk4$M`-u-}00#z4(,AٸaK}A ;Y :<88[؅GejJ ߶ܜc-KK'% 56-dTmT40,CL)ep oSC?CYR>cW#; ZI % FFr=*ZҸ*6(/8b"bJ=#$I5 ;{ $ !'sJb~-= fԐfeZvk= Hf\ G"W@݅)Ay/WHJXG5:^Fb}tfI[HbSלVN*yFnnk,Ny$ƴR߆\V e=aĕe2ELox>[s뀐;,PNUo%,x`ĎX Ryv#ds&F,hwu h3|Kt\lؗq?EӌQU \(r|V>LJ2PȆۮ:-;}O)t7V̷:MrlN澹A (eC7-`!0jq$Z*+klh+j)q/!JcK_)~J3[HT˿T"T)C&}{ J_m28/|-Z`WV&qiPaow4eWUOlo?uD}tPBc88z!ܿd`*BpUJнFQOיpY/3{q" o[Y؈ B<9pjٺ7'7IyK'؎ZI+G_Y&dJ:MBúb/XLhMݠ-ܳpqz/Y ~ѱb,)uڙ?3jU endstream endobj 2999 0 obj << /Length1 2126 /Length2 16382 /Length3 0 /Length 17670 /Filter /FlateDecode >> stream xڌPJ upwwwww5n! .-hp`sw{꽚^[Vݽw%:P `aagbaaC"Pj]\A|Mmna9w;+;?.| S@ tEwtvYY?K9-t=dnP4uڿhnjPw4ݼ3'+-f P]<(. a rǬhi@@w }o@ O?  tw7 ` ܼڹ:zLn U\]@NnL *d%,nOݛkuptgm r w'fM;PV?&?6+ ṱ"vd `^d |Au5\܁vo ̀V ?f?]@^}c,}zjj_`eap/7)?*X:X:x~J#?Oo.%h4 '6;_wW^?^S{C"nn3 `eCJ* 7sZ_fr8zP,,>U{?Rbz#_;0398X: u\fѿL . `x/Y򿈛,e v`wwP/a0Aj;ΩsjA:EA>?""wO_l/^3_]!__wVv{ldxߥ k|oKCMkw{rw~'szpZxANCb}_'^q!ǿ+g}b0Y{f7O%/~6yl|]!_e^/O #,/84u<ԋx2MRig2.tFM tME]ۑY!y=nkl6׎4=8Yr,4@OȨ!l ]ٝYƃgWձ=:.y3qsEfyd0nDpt^(swo$rI'q쥾z[l>lxxzDcTbr8kK^m$2Qr@j1} c]i0jAݔVLc2ev v[ azǝVM L`4C~_7{QAxiR<%3΋, 蘶:gC\ժms!^JaNKN.tOUg{h_>A v7*oAcϒT/o2\Pح}'}QIM0=JoZi+ lF&\A׭)GY͇ߞaܿ(^.3E> (`FAφ,ǗW{N1*_W.NKWlY4I{ZBhKv5N,.dx hɉHJP`CcQa)hKizXF;drʰuahe `Ez wwI3|E(=@DQ/-ǰ128z&rL&eXkYgNuh%d\ LjtJAoq@4<5[-@X @3Vp$BYShaO2>q|*!z=6D{ga"K]OpUGCm0cC Zx8^-:^i;gŗe#~w+HA.OGu0זOY=#[8jrjNw{4[>Ģq(GfƟ|EfN[,h5:yU9 7_Nϖ^zVkIWʽf8_Լ]3R)̘ODY?CaZV,odrΒ?m T,!bGuqIM~ǵ*8U ,?9daqo 鎔 kZ!\%/,LCyC;`ݏmּQdBsxD"c6_ѭ֜{h+@_9 ]7ȪFvװ?dwiZ۵<AKWLzKiTkuzQehj6Vk ge s.OdO;Dʤ'n.ZZM2v y#1I,A3ma;@(?1$]h9M/y-:;*VC|5r]G 2Mh..8?0H) ybڇ+mאּ#`J |B}/}_4G`iFV JmXTkҊI40 q.M|ZiLl1x4 #![3,9%qRօ]+ Jx(D/>Fԙ/qhΟQ"21}򋉡 %iWVwG #S߈}S\csTU ^IxD y7N璯3.6 5"aZ4Loȫx8dh5d'|mMW{㿙 ,'Ƹ  2 Yc=ȇ'0˔?ΎVw>-D~,Vن&b Ptr[A?-[UcXՙ?ɡ23:s3qg jSbg3둩`P7F>gCwmlYeaat\%|L=py-f,CV--nm?02*{(9JҺg}!D2/'>gSO!%6*ʷ6bqOG'_j=gʥCYzts~PZE~z\fhe f 4 D]{φX9b?.kxj|5,~R6΅'_:h,%k|u]`lhe0 uFӾHxrMȮ< =v^tX O(+ H#= U(Q#27iz\릉#0,cmTT-kq#*tKb!{ \_YYPrMOMvb " ].K{B'ڕObnבlc_knr~,J_5/Y`]0[ 벊Z h>.Y|q҈Qі>zbl)n5ɓ {)F'\mIU1z!i5/|#7@7rA>ɨsHҚ7!6Pw@jvޡĤ|}%7D!H?Q޾f8yK~Q_z6+6dmjn>lVbM#L }L>^}=!1o@uzdDGp W$<%6|1CYh7d;Z\m/‰؀EZAG5xhy kq2nBٰa(W3v7}Bgnj?%ɈU~#nef] _xVǑzT&@q8܌L9\^!2Rc_2g].QfzL3A7/c3m%dplhױnȤkMɸtjF1Z虱HZ(i"-X~%2 A6-J|@眠 _ S+sӕMvEg E 9dH9C 3 (!òclN]k.er9S7P̄75c6ۃ%aúǻ=obC؍}׀ܮvz/zaI-N;3pztN̲NT_}5' 0H@ ~}DƞTDo{.KFU!ݻN3ߴT{a! jv2|Z;?!{0y"Uխ\Da|^ 1͹IoqV8Sܾ9!ZtuOv;45@S(e\6 .@<!gdA"zb=r{s(9cm#W%mu|I}5"OHt9R=, 8 a526FOH 'i8f&"}$hyڷ$*aNhdxOJe&n؜G>a;l6wzxYim|TDnft֭OetzTѕhPz{%ZGrxGQuU-+?*V4|bzU.3$C^u#@-L[zOk'qPIZ(SwK ;E4 ERm$)`V1%Y<ٷ vY / b9$7sIP[ؚS|:Ք:l\j2w맹%nQOko ߎ [' :C2 mjy`RcOTߣ뒤V7 S{Qy=Y=HNCc/|.H$J1! }0O?2$V"X*N8,జ2Yfdz9ܚ;2ZsֹG|f_¹;7(w/{)xJ^ꏽ¥`V1tnjdF¶|D8P Q/ Q'=NG+I+>ʐy2!9Eo**Gk K'^W ntJ*ۉ^[nͶ2Q2?'YRj.-&A%C(JT`{D+2T7k0"k>QiZg% 9п\w}ŜuॵXꊭG^pG9cazě B yy0j> ߄/0oi<5U*/!26vHIue(K vT04huhLCJD>~\Rkui0S,u^0,F'[75pVLLH&2UnHBT6D@.C7wpX&)זM4Gh0ԨqOgZ-W:탕z W@NL<,)J_iR@mz#p/oQ6zPc`R\L(EzJJ!D;$ָX~$B31L4ۿfa#B9ڽE*6uIvW1<ŦE&]'3Uުi)p[PWy ĝP20]}pNA0xלg @q^m;ԲAtSf`U`soV~%rS &o|RaIaKT m^uG.ydn6TAVf6B)-*cӀjT:6|+JB+5d:ck>P}O2֠݌WKSn8E62љ?LPm'G(P% ll>U6{y}X 1#_kﺠFzhn Q h_h$(MY fcnꞗS*SEަǢN\Y~BtV9ܦP1|Ƭ'"({EZ_ YOH:J+:@[W0%-lo,_`=Gp%'o#@#Xu :R!{rplwsz~95܎m:MUY&ojٛ;{x8S ^2 y+cRRž.ծBTrٕNI27ztI[dQƟžyrDPx~\#)j_ʧPq%;p/O JL:sM}-Z8o_ ^;qID#<SL-?vMYp~*MwR%E5-5bB؞4e*sɰ)p6Ї&859P')8߸:ŖNRUAx9w.TxBEl)kcCG"Yʪ[:r^6jҫ*OƜb=y }_(w*+L-Y -_b$ >hgyY%lGsfa䢌M'jķF2hٟǑ#{$A%0_ch}$4ﺝROWdXSπۮA(f,IxZn]i3t-mG4c`ll- ?tC&'0VCYh V׈[xjR24uS ?6}Ț)CT'-QtMZAyh뼽O9$v)mEdOt@9J}ܢPsbH'`0W~f"zn ;Ydj=fJ>fMI)"RՓѯjQ)m%?]0R݄g#}|K! l$YvJ j$`ټT"TQVn3Γ e$M[׳Ǎ6lY~pcկ?LA,߲ێ?Ԫ,d93،e4g4"dۊ!|l%2Ŗ4J-c+viӃ ۂHF 4$Ƕ{$5CΌH|w}hbt?0Hl}v,um 0K*NefFj)Nghh-ؠG]@yTzRzCK[m$̧Q)lj-vO!#Ie$ju AN i:uWHY|N9N-q'Hm8;/1I+ωdj@PNJ^i{hʦE2r%sj8oLgJƬpɵ@~.3 ƞuG y˜優7`atp>l6J-4=^xEa'KڮP`aS.Tjy|AILWbQp߱}cWʫ{?}^%lf%$f3uZ/DDWk?'+.KKz1p(eJu?iI6(m\zY#Ӭ8VԚBiksk>xajYm6Q5 xJ0ǡE"ax[$Tzo`T,.+2!s cLunX`$ Q9c#,<7z/n3dė7G±!'8 KI=JWŰ ltCˢXB"$XqIҥjR~1A;^8kHY_c}>[^%] TB7Fy\ V̐N.+ȵ򖥮2tO 2hUr-u 0uo|S"gM:whAX\ Їa^ef60ʉD %2RK^*6P57=ABWwZOϚϯPwe%n04ΡY{(%r.3eq(`Y!g?j/uY]7 ~@;,TSRG@C^3 tJ[e@US;mB L!gf$sfq10%}_Q|ȁ2+oƬ8,]a4R)3DH5LԎ:<rYb:zÒtՐ*䈀 $U;Y_UiQ~;TeJmt5-iV+B>5b\2|t&ĴFz 4gqOv|fIjFϷ Vs1p`v j;j SvjfR0x2gtdVKrX'yR{lgjDީ݋ <(1%*i.woKxUZ!l0(oφ4jϺ`*' R%jV7H }YuǺzׂ6 805?er9tFFU8OZ{$gC6r :c7$XiQUid;׸ uJo"_c x1eJQ70'q@ļl+!u|E)BoGxơy-uaŁY"|tA暷YN÷#l$\-(s;|RԼX0O*<-0g!qfkTyFu&:2 [,}ZAi.9gK[u4mn!XLCQʇoW n??~7S$6E%^(n JBcT -qe>lLKJT4vHWbJ~[Z |# >k]z˕.*H51ͣcg[Ρ6ZvQ]ׄ]{k}j*sdӖRے,¿c7-Ӣc6{dg~K<2a:5GN~m2f͖O$ҡ0^9%uuT\KRioA"XlL۵4!nDvcc_lakV" Q>(/\P(QXO ^ʼnBL,|63C3)oࣃQ3(dgkڪu%R0"4;4s3Ɛ!LF@XTDγѮ33A Ow]41[fl_?ST۾PK|IUaؑY$rJ[}Kp+VB5̚t J4n9#e0l}ƮGPŐ\]˹=P|SX_yh 2\X hFNZ!ngCٛ@0lm Z>Ln*׎<"ÍdG\iHc: !hjZqKj˃Wp%9X',۩gi< &@1GZ~(35!/@+D9-Tg 咬sets:FOcw1)fŚKy?]|?FzH~(h/xg@jޮusu^zd*FSuƴ3{s<0uq`/1e xgYW[."xU3 %xUG|К?KN|׾<;_ѣY e2Gya[od}:; )dBy`S'l_58`yUCְ zYۘzŏ+W8-XB;~G=*u2餛'AU &ŭT@( TPq$ w osA9PZY`[K:J~ɵtVHP6z!ybO `=Wr4MViȖӲx5ߐ3`k`UZdCV"IehxI{i/o{ ɣ)GgԴ–:yԅ:'gV4Db_?^,Z88Xnt6b*WoU#̭4ŸZ%2S>NJu2 b@rަ&Ťe7UW3ߊ[YUkKrP:ˇx"2c>S+ _jx1)0^H }rȫ]EsuIwB`KȊf7[uV:B:sPû~rYChb f)19\~m$zm> O?᜘OHg5;!F M0yg)8Ѓ~D1gr&6BwZ[Ozsef~V$'R͔閅lm47KRE]H7L2NŦ2<"k2YnD)R_1FJby%j &|@or%iX#? Ě~Ыdv{xI`@xa"xw˷:6é(>I@wTSlv4c:@ǰa&EgTq5!v<}~uO+J8(T6p!ﻃ:LzNϏ`DBs |TQ*4P>=嗞'g~}kmX"`)S'zT{KCuO~&3LZXTƅ[ʸH̴ |7YCvq[x*~nxơt,/K xchqpG:\? f][%KIB+QXZ/KiS YPD %pyl:`d2Y'&qkWJNo v=POL]7Rǽb υ|{ojUaG/]=^COx:S$X'7;i4U+! nZ}6ptȼ^z4k7oNt ~bհFэ<~`p/ۙNi]˺~h+[ ~+ ?!&C)Jo$qrYq(d0}p8ϴ2``2`,2qPQQnj4K^tܵiyc궐 S3H.$AÖhJ p ?6U} ُi3HGh)v{ܞc,C)UJW8$/yx4|>> vY Mr$>m"ucl]P/^b}p ?O%ԏvR{7 ^,LQ{f<ԽLZE_|,T_6+ae̙#@˲ԭһ~:?Mp_PB"x'JyCY&5=E|.UN#MQu"9 'KG lYF2}YXL|s1֩ WLze'uӫ)(ѓD&LsklnN-m۹M, )Wa8K#= $"aTa?mļa8=KžQ׷NkF"f *oT9!F$Lo4MlTQc*J-JOJ>-ͻb:åteFO q|vݖHhOtP`qM'wU2Q:%U];io ۏ|^Γ3Afksz4lv*tW|q80hφ~ An vĥפ-lK40aLFX=,aT YL?+y~zfzM/Мdfi(.N^UwX%#LMިp'UU+ q>Ŀ] ,O ӷ)R%ÄaڣJC m+<[d+sZl9NA*xcޜ鳘]`yDϘ1:X,  Ѽ1hU|*V1LrGT;=JuƓɂ|0+hތllvz|(au`1 ލͩhWB6Q;};@K$BXXDn8!,"^71Q92 Tޠ:=>d82x.-!Yr=wO+r[@;->xP0\\mD9哐ykq7^OIc_V ~RPVNoVHΙxs.ɻWrP4?HnV)Pr-e@a[;&-lrh@D?Vi%~a?!>8yB1 I.JegTYE#Ѭnq^=nvpldA9 ]S|e=1h9sV޴co$A >I9{sism>nE.иB(?L>ׅG7 Cڦ$h?}ObZ`V-m#p4C6R {EVa6|UXhAQQ6ÏLE0{X@8 endstream endobj 3001 0 obj << /Length1 1584 /Length2 7387 /Length3 0 /Length 8418 /Filter /FlateDecode >> stream xڍwT].]"C7 ) 0 0CII7 RJI H![wZgyk׽fzm=nY; X Epzz|@(c33C.̆`8_`B<jUOOXODb< /@ 07_#a>l>11?`- !+ڂ\z0[l8/7pfxC]0* r]63@ˡGx<  ?xBz*-70`7/ٿ ?A0W7uC\-%u a /dA%Y¿z@p8Whڬ8)@<}p0o?U VQ;F@(Pv}ly-PC `P8b~xaA^`v[bf0zxP ;#SW65rr00_F{+Ujۇ6c%|K \0́B@ۇo/{GJ.. ? WD< ajkr5vO @ upl A:&k_w /x:?Q?L.3~!a |a>!RaؿTX+F^H /x~#~o$UX4o=F^Hk=pֳ<4?epg)N`-V"̩&Zʛ{u}a5:Ѥ'J#Q#7w9k 4ɲ *aʹ$Şe0aD$-zh?I Ռ5h&\S`rn* pҧR!esZcM虖_L ==U Fnc! r-qf _^ QxLA\>gO^6X˒Ǻ :NBFhkBm!eN1RT-esGhF-jJI%욤em+,!;GS2E. Ϯ'Er 1T^}GWHZ̟O_dyN'x×uLJtT!ZⰐЩτF,bFCE <|E@Խg45p7D}ƂO(~؞n4|M.R&[RmCZ]߿]jis,p)c4 ͣYL'PKPg[;fiu %J?V䌠Pt9Ȫz=;1Y+[ o 'Pg?um[+,toB pۓMag Kyc6lۧ|jUSG] *Ŵ9И˫sҚf_rnqϟ_>m`siD)\6mpc^ ֶr27gϩ '=vf:PDO zз QNuλo9]rۯ!!T^_fX6 gMDi2z{˜l;fOdaw̙in:Fja"g$uN2 188q ƔHH_*TwR>$,M)`%> J Cf0 OD8>|Bs~Sۣdl?2(b,~M{5}ʾyٶ;Jg ,;r\B% ̇3ygkӵ7Aӄ(Da9s4XEy $IqZí^T@ړƀTl?;|GR9!ptѩ(cQ?w(;܃yX^#4;L {fBp=۽AoT\9t7B3i1G_JS*ū.[9Spo2v}A ѵ|=Jssߢbb=-b7?+J;*CfO)Gl; +VH`[Wȉ ڨ)LD }x2Bs$YMSjL" 2oWWoT_;} #-έ}Nt\4WLX(qfcOpF74+Ǚr닃Ӂ_</f>ȃd%{F ;lf?bS10\8fOdgd1U#y9ӂQFU6Ҋ{ĈtXp}FǞ~BdCi$NbVP*Rοy +(NP8;ţ,ʴq%/VG8 *Bo\̛u&6&8B@ㅚ:m-0tT@Խd^%]shxУ@N⏉wxb^_X6/]OTڮO3Wm6%o-lfZGßcmהV؜%Xix eT,\5}ĭw'nWP‹61u&鲴֤ h{`N@jՍ%#E)}kq_`t<)T!C~>T% 0Jx%9{, `Tdf8V@/eڋpmnR&ـ\vPUEKU2Y}l0n2( ^:H%[-UμEHIdt؝hTo*Y@b9CIw㸛Dz T(''M\i/ނHTE ך^\`\4㴰A_*ݾlSMZ%sN0xc=YR%\Aݢ>N`'*PU}׮oD$Rȥ;1@hr4!A4)cx<@ޗ>B2aWq ! I>a]6iV:w0wMuz RPOK/w >̌Lr%m/xlrz4p摎=$S-p6#PrzrS8]{}xw[h _g{r`F6a~=,M&OFY0a}Vʳw{N)Hɻd ɠuHzm],i|DO9Ṳ('R~_{&9?Qy, ) T=SՂK[E &ۘ_ )&91uc#7>  ,5R+J)[oeϫ;ԦY%?[r`0ߕUϏw3(ӹOxI#'2LI%V6%Z^D}VqqJ|*̀d 0qt=} nS?  I5^GAɁ%wYݹޡָ q)7ےNSQeSU)Զ2;IڎCoWbn7:P$eI2c\G$"aʼnƆ]&wըWJ8墁~[5׌g*$^w)q犧/٪Zvx;&ۇ?\9*tFaubs[+Oyul$ 2#R8k޴VMڙk8qre(ttLJftX``8V,fc:cP6nbX1ѓҖanX_֡o Rqrp"*#;?zS]r̷pNznKލ%ɑQ:\QڋꖱXzG,LG/L7 E*U xK&_ bl/¼/7=pT#CPh_1{ 2iwJ*Vy'MEǎb݊]آ\TM+(a(n߬M^s[VWngP7 _!nyjAH`HM<'f @Qk(؟6.f<,|Q\B$1dtUG)_j1}HըBW2`v8F=2 i&6a*pE4rCT߲C-nݞ dT",#<bU4m Ut!hNq_"l>~tfVA!qyojXc"(F`W r{C=@5|@<g#xDPe>t.FݐзW&+[/CU4H d?]MY4/_=fn`9Ĵ0VN\%.;J~{."IӲoLSqH"Y.ޠU ԬW]6csUU2dxiAGMtY?Ú`{ A/HͳuxspRE35tB׹PQxy;e8V" `U%k[^St=SU7`޷y*{#.Jiw{06`^r~*>\9[#!v) tWb'룫vИ2J5ٸk _EM} ?:+!j:qj9CGxjLV1=vF0Mk3W^bGu!)e9?+3p4|pYe`ܝl|yRS{!}([f¢jAw\͍XbY#(ٙq${9z9PȒ 9 ^ˌe\}ۑAae]/QX8 >6>#?DqA)h^&Ul`꠩ E`S'8 ɱ6,^aX>C1wW3l|ґny̐NN-w$Zx MXХ@2u3)P6uEK4`S]w@3L0w}h,SXOzGD,tvÐ?dml%,6{ǟ[p<}lw5?ttMox9%h / #"{^՘޺̒i/ĀyyK<.v8_OyqkGiH& 8[u:EěL(;pN8+v/btJhj}@Y򛧒uu8q;Dt,hE| ^yaP& zM4_ѯgHdM;]?cc -\ɿJДߓ߫`S@*~^F}zeŷA#\Z`ƀˎp}Pu\r)8,•92ԮG)~\nnЕk4UԲ=]}T:>BǗ^ΑNE]lcZ)=޴BF px<&}^?&nLC]u#&T9aZY9ej(sQV5e%%eQy)aɭb͇Cs VicAU{T`%ĢI27y꺱lSNܦz%MCkZ87ݍ#. YYk I%uA]nDKh(d mO|uJSTϵJ2m/Z] N#eNA<?ixU|lYҹٮ;BeHC@,j"G4γ; HWrEJ!<K ;?6֘(.^^5")1 sKЗn? ,ܾUYHkY7A.VK|"!h`ִ8qӈʵ~RӱH!gs{;x{& n4Iȟl?rRocezF,?f^k5pkٶ}~ǚb endstream endobj 3003 0 obj << /Length1 1879 /Length2 8987 /Length3 0 /Length 10183 /Filter /FlateDecode >> stream xڍTk6 HKw3 ]Cw# " C3 ) "]JJt7zW8Ap`wOWWpYFN0{; N 0TځHCu-Y/Oq|1G!'oefq: `"@0I @EA`O~pw P;%+;@a^PONP;_iyNO=p? G/F>n02?78xwp }9[HlyN ~d av0(+j(i*pI?BEE7WP+!mGO$ YCo[:0d4c~~Mu/+F߈T< rٹhÐ_)9yTay*N`;=' 75o'(XwaZ#CE-#g~ ݯaظ"y @>( T s q]2N FnC{/пdnn0oS "qww׿L AmD_q/"[Y kCbO={C57[1ٟŨ9 jyUC' v01U$}z')ź66 o:$v3"tZDBn.ss&eĠcxwFc7hϝbZg:.~+&W)w(<)G ¦(rTL]pTA߻~!φ=`"erײ~񩚓y3XYڡ 8x+F``u|Ӟk}iz*d1Nu$.+I@2M"޿ZQT6doZ: @JJ~Oycߏ׽Nf)ӭm]0fY=;IM"gME53Nk΄܄@\twR%fǙLg6Q^K+M|/R):J&Y&M)a@':5&^o)O}^S5&-}8>*iAB]#HtjdaG}t/ޏumz5\J3A*DZȣ-lNݻO XK Ym5]?U| !d Z}&ᇎe8 xCg(}#DN EKUóny:F/^Qз%GXggOih`F /D4'L)jZ RSK&alÿ84a7RN=.lIB;bK]}aTxEf(PŠk{Tf,;ta (.ŁFi? g 8с 4ܰ,wX#TY;0Ϥ~?vj5bT*sE<ǃrp }W9~?~Bu{WbN"LJެH1}1YWj$ 5e|lKKeJͩ&ַZRgcZ>RlzCG\j)yk~v8[{ȦZy]\i \(*!f xpXOOslN}m[>pC˜E~,CnnZhD {롯I<},̎%rur)n\< f(e VU S uEҢ[#4>ő-abS8axION"ǭ:~;^+\QLpo..hϮt⳰Rm_5U%o bO҈=e@Ռvѕܿl H.׃)?_pAE &̽˦٭ǰw!V3,Ml'ǖ␴&x [X`ʊgzO revC|k+h\LQEЯFo2jژ'H-#~Q}yS鲜Po@6nЁSK~:e!(ۇeBJ/k6eY[r\/\Pl_܁%BMS 49n ~6DΩ$dS׿H(+.ĵ#ciɰ uI,T _wFQJ ij֤%0z >i0g|8<#ܶ՟kճ! >oNێ٥1{ Dڭ2~v b3oJ\$]u~] ͚xA,,x2Yh=ɑ*Σ }3;ͼlZ(/ej2覄]2SmV߰)*ږYB.!Ok>ѽ) C>PVG w)Q~!={P{f?:6e۲$FFȻ%lGpQHv 6Bj;dX 'iTįZVJo,%/5 v1-G^g?)bk?aT/8z_.6 {KD_s %qT…KSA߹BPXi D,4^AۆY:@mJ)-@A: g5 HCI F$^f%=pGa2PdE|SˡrA+E sK9@K?/ք"BE*:_*fne)V,?;"d\|0!܀Y8]JϞN g<6 W%I<,5\Qvzц䷌Nm*6֡2 J zkm !?7<.߭æ;Z֌khP~BA`zm Lf+岊ObɣP]5 K/fw0LW̕s5J?aw݃KgoK1Yw}^ZBt佳e= DLV#Wn~E8j->)9,8R J7@Ij~C vD]W~EϽ稗3XM7i9g.,..,»oAo)\ 4]đJOF}"|*+ |`oYgy`I%qi񊎠} CCLe NNiWS!2c˟RdĞD/0V0qKHե |{Ό-תBe&bn$Կ rFȼZ U K^ao-N>A}|z>7@&@yJi:9cjdޮf>txCY\F;` 1_5&&)7M0~j #~7LryiZTw/ynbw(Pdekz:cxHV>,X%kUwc"aȌX6ꄆgik;o1=9)%~e>ڰ)UlM+_78/`:6oC6{ސ `$< CrP#wJ(SA3!wlT>6Ǩ20nsڧD_3`Èhq %6mi<A܁ʝrx"QlS=q)ʦ\"u6XwG,jQT+&bzRTP֎6d=;}1E!yqIWq-W Q,^Z YX͡&v]_qkK`$#w3Ev4"0n`nۙL=z/T`Tc=z+o?8(Ƽ*h["KP]=E> kׁrf?LV729ݳ)=Ĺ~Sa#(=q1ǍN*˩ȿ-ӕ/dNRYG7zbFL?iڮNtk܍r Jڧ5/zOw%?XOi8śqD\oSb%?F?{JhEb;oy$:Nʳ0hk$ި{SL7/u6rh ]E0nhe&!fOo%k8ܘenA3|.iݟGOHKܒ_5/R*k(zUt%ê6hJaBI$RG1}JB635ّF'脽xW_Y>cZbU3i+0|bӒvI|jS_ro~Ѝ^b:^5U"|ɠE!>AҾ$sb'nm+B!JlɷtxF CsdβQ-}}ƒY_]E2 p%`vF^&k1^BT?/PGV z!_ .kc əd ]QvJkMh|)HdPUOqk1JKa(@UbҀ9r16pzF< }u*B: q+$2\4aZOxܚGN/SC4>vJhW:(^\+$aO| Kp rhI G<9FdVB{%.˂ j4S!k+pz7.ќePWut/cGevn&LSxPDMz0#0aS 'Z~C1Xaڶ+oJ*#K83"r4"bG#ot B>OstwPfR? &FSÃa&(x,|J\dVZ{@ka0|T 1 \Bz+P D{ʹ7)b~MEv ] ]ŏZWӚ KM=OMbh+F .wn>Vܣfw'^>3Coql磍i q=a@8-9L#9w¼]3jV4tQ!#JdnI;#Vm*V ~TV 8#!nA(0NHlKRk<'[&{}U~:*Fkmn:Wb} ЌX{:'|/w1KN~aF';(k/3-TE v1eI-C<>N6^ P_FS?ɶa0v$Eo`Mv_&pƌ֔ޕɝN#\kU[O,v&@2Z v^5>K&oG(#ҷ9V-#+BJ*K>X:,5YX?<,9K}FVrRsmt:ɋr2,XC.SMvԓ6t?)ȼYGvfms"fu0k׵F-bCgi%I2y+j~NSubu掯;f%$QJ\tamH&1)W3=H<}Pb8o´EZϼbyҧq\hw3s #pCkr~.oWVbaCwt"jlD72XMVr}dbnGk! a;7̼4Yoq~fᗳbNqߣrN8PQΤ, I?awq F]rAs:c$KrAcf0xPCl V5Au֌޿u"S=92 bGA5P }x˞z/zM71Ux0?=f 4^m9ť #,v|&j6Ak' N͏)c(xx[W7 Zhp֠Qo3<ܤΒ4 )qxrifdd 4f5HZ/~JGܜ+tv0- EM{kUwnrSۦ)K2Ǡ:=hL9"_*E7  oYڽ6JNqDs:ҥT̄ %{۪dBm]C!k/nh >ϢaȑIi3RKO<6;!59egz㗥 T{=jg*+1jc o<ȝe|ŷd+0hQ7FӶҗ&jRQVsMnlp !Z}6wh'C[+C ${e_:[䯈Y1Z ~PBE#g ]uo`GW+uy? =5vs'dr yvie:B]fsNE=mY?}}?e>^d+FV*8> stream xڍvP-ҫ4Ԑ{E!$"$:JҋtPRW JSH)_,ߛyo2k9k&\"p=B Ɖ Y$@b&H /Lkp"1hEPvG@qxLt1h ,KʂdA $/"]D@R*c\}ܑN86z`)E Puc`H%p8WYQQ/// bo 8'pD(e@ ^78༠pAh,> G5u0@U 0(W(v8 ]}5 ' ῈP,"]xΡ5EC/<,H_E*AhW*Hw >nB]8 p_"hBS/QsD@xÜD7qEx~W^"Pa\Q8#hT?k# ЯϿǠ]|C}ZƦB;HDd$vHIKY?h @OSWÞlYK7-ۀ  )77;;(_޳8u1)@7gfup꿣8(~юx/% ?8F 8MM 0`^-,b9_X-羪hk ;ԇwmd(Sx;ůkB)QqF 0i L.~uHq"0R[dew.I`acl_Gm:ΧjT?+tD\c9JL-ΚfiTjӳ6쪕&(>Je*mF[rX X]qN04}{F;Rja:.c`n/;M|@udy+W`b/+SBV=O r<%7O߈{ BJ*"#.%k)\ߺ_"0~>z6# vVwAzpqۚ,}ɬVط< sb/7sO?'h $!Zu];4ؿ4F̗L]zS1}%aSBI -Fy+cv`>T:%ɿf| <7|pdO%fDP2'Kڕ4Xk>->al8|j{)ԔƼ֒mǴՈ~Ϡn9miI^Y˯Ez_6fJq_ZoK0s:ptl캣6wwWZd~%Z/JTT F\/SmWZdpOxl%>xx {ꥌpqB"Xl"cd5 M+E^?t ]XKUM0{`QA~Nӻ/M\/E%ڧ- Փ4Gl3X:1_bxmtCeŬfI|1ʯ2}`().Y2Cw^籐Nsfm Bonc.8 wƚ5m?Q?rNQ[;ٔrIa] XOͯ*ٹ!\c]YeF}:U4N+QBJgējviEli(!n-&Js+x Y5ZKl '!ڠܩ-*0Gc*YdA![Xތt|e oƓ9 _snHtI=փi?WѐCtL)Xj_#ؑF^毮jLzN6vbi;Xۀ˩E}4%JedkdپOO Qܸ]ݑ1%8!{V:{8y#$c)$E6EY.\f'yT0S*UfZuIl*A"/Mn'{=yP]_Pt}kp|ͣB2{C]=%ʗI _Ωv nEkO:\W#+:;!1Pv14BYbq3%zjXbLjk^7{ysB@x-_ޠoFFWVVXs:"/Z| /PU%DvB1"^Ʊc]Ǟ:Vـ;7roY|zuT܁iYg'/XF9kCdဥ8xջ6v1N/?sf$pئjcL1-(9FR1gQdz4C°F~Αj^^n=q5޳ks v*s g ,#L=.j zu2n"bF(QEF]yY`en*};8yH\S/bYSj¬Rߊm=rŗ@E'mhV*ҍ[b@5)Out`@xZFwUN.h`T+#64Bv=oS(=uyr^{R9 oTl>Br\}VSi_Q.).HeiZc2 -Uذċt#%и6)|QtH(9۪ $3%q Tx _Sq/Ԍexn,4MZ6A>^7p/#E-{ށ^T_ԟMf2#eЎy "VB1Y}ą>2,og3DcN-mơf YCm:ߨ< <%5gaSImmFGQߕT&fVS2Agg_S'"[N.%80 Z߻fϨ+-UA>er#ė쓇'rϒ[H$)#EJOZC">%Q<-'z#;f>8IӋ q̕uĀ(sS Jrc}#몑VnLIdu |bm1zʟ>g.(M5(`/>?aq|U%'5krMɛɫޭL$oy?s %k784PGm}CQH1՜t)-eȖBjA#O[WJ鋳/)Gf/]7n.DY͇{w"%rOT"e|kQK8i/P% 8W !ϦR+׿sxg31M*ȜD\Y%:2q9[!~ I[Q?5_>T|w{])M{v2e~(fŧqeOT廏r⑧l^c* ,oEțE׸@V˵zw{erlae생&K>,ъ"4*%~o_tZ2 >]wE.47M.yE[sM,v5/i(yrC/zvd*H6:f\m Dx~)=>mR }Ȕ6at=Hp6 b,;H-i/W(mdUa+e+}j0)=O6OImtc,MSZy9m^ڎ7o=<&4y[Km~RZ]`@וIbB6'>#ĨIpټ jKZ6-sdڒVioa:|GrCJ&x]v#zU\4'0D/3yuGbg\&$n\32~RkqOXE~KvͪFI$h[+qzE!s!c+] .PD=BrGM fIw=/:O ZE!G%&Oɒ"b<q #&4>ܓ7̴o#1 g'VaFUw$q4~vp-b<"{pJ1zL#oBZI 3<1T In_O3f7Pm:>t%3ۙ }0 :j3$eDHݴ|@3bC(H_H M /CӘ~A.:QT3fyLف&^Qհ}2Ytk+[Ajո NǓDm~>󣇨X۟nFf1N LNW950at FR7#LG|O2] Z-QڮGܵe}0(D2ax)@4EE+U rfNS,`stc}[ZZ}G_ec?Ky ȡ+aQdF2XjƽT}yKFLS5.}Jd ^^Y¦bF;f݆eqY_ |Fj'=|]HbKnu1B!+s ubIv7Hel$GM)OjtEP!#}J2Y{u4K tQkbOI;%__:.!j(Yb/KK o]c Bkʍ9.dKW~|4G(R/wd|84GjǵL0JkB{1A9_sLǵw%&J{&ZFfG9+^ $^lT/kAk) VcƋ:y¸@w=ʨ϶IQޔ.Sal6ૅ:ovn׍~Z\|ͣb2v'OX3d?.{kDC {βڎb$CjpO];6Xw^-3͕Vo_H۱s^.O"8ưx/3d]fޯ#g?]^БtMۊi~h_ 3œ sr<0bxG3M2Ts_St8YaoCq>t=Dk+v[֏]e**Ƚpp=*'/.;n({].wC7ڧ4G}NxcDSYXG=[杦U\?7K7LܔN ~"ܱ='((rJ 3B;W|yYº$9X}'lEp`T壊cNtޞU O۝bwugdrBlRi019>xҙV?&;P =Vq> stream x\Ys7~篨p#1([,Y"{\k'U3H-SJjh*Trt!ZV5XB5؀Cbb] 2<'afEkA@ÒR ᫓}5;?<ͯM~Ӿ̛~7]t1>Gl~v,uwy~5;.Ŷyw4?<ʋُ <Z)FgĄ*NgB,nKy5zC-iU:pk2q=H.z`%$(i_ vznjjyE[ecYsKYJY en-ax kȊ­ - {V]#8v5:{x.Vp2춃wb]~s{Cmex| CEScQfT=,HbAV[ˈcY;<_ )v?cť+@Mepؠrڰ#Ll78|Fxo5QH`mEoMe0}*.Y#az br\xƉ탼SObY.J]EӺ ,x+x1 ɏdjq'#d J>-W/B69ܽ'F,Ji/ɝ*+׶)yW%|MXr6Dk5&v:RHRUӐ[P,3dDPq_"trarQ{4'|R,c٥rwd&X;cEb۱_6exl+|%j@ g!.z;rq ,Փ$3R$;>eR޻§.e.s8Q@~ $Fs1O>2N8K郼)Xp(7Ƞ5 H]jQZx͙/kI)℩ H%-gW"4B($JOBs>;"P:(S(*^XUOTXEoLRko.H3\ҒvnLZ $5۟R}D|)yq}y۰^(PJ`F\g\u_[E^b}T<2q])$NdBWUm@)\ʠ,P о~=0)"wPZ!kR#Joʥ\$ɼ(4Aܢ`PI!}oi.UB㴃s/ƺW6$u|oC?vT+w*,jx;V//kL@n7dy]swZIQ%EYj:kUNЉIm!,o1%іJ*P퓅u/i]CJL//,7Z ՗+u Sꗨ=unB@ޢIKN ^9IS͸ R>gH_Ϯ%%;d\>V( ZR\RTNBXR9kC怃"MWF(E"-8ҋ}%t\^%c'"b4VB3'yoR^H}LUKVꮼ_HSdS&LFo\*Ր\^`dO-ZΣl^JRbg$4FJ[>|奍Zntx7ָ'ѫ%[FtQ˧ =Uh(*}RʰKDfK5;O|ڀx8% ÔB]AٌG_j#? )R--eh;>)^@::> Ƈ?Lo{C*"ʽnr|B)< }x:9|pv<b0N߱QkߗAkA}>iۧwy}oڷ/GmׂE4OWN=uy{NE{&Gl/Y{9^NǗ'̺y^?/_wD'ç&߿e%bX@-OφVN\1=>ͥ6=o-ݘ>3ؿH owmǟ޾`zthծQ8ܣ+{=-}\֋e9HXNOǤ\Gn]N.r`Y6(ͬMΎIon,@Ӄٓ0dS5YbT "ma}_>4'˧ç~:9Z>/Pǵg"g2gx6M./ye<̪~>NSa~QY~8Yy<ƇyΏ՗G,~6>^zY%ͻ"OpOGݟL忢6:^>~Z8.`u67mʏ27knߓ@}<8aLR [&Dx̄dznae%UN 䜽䘦=/=$pH+U p!ѰL+rVyli{[؟>y}k)GKQ  Ɋn2B^ӆUtWY3nx@îB9tKRaHHEHGa|+?Ï?}޶+&LhFhCр=3c X^BWd1^vH޴o`V ռkǧdj.gGeK;y)9}ׂWi}9$W"rQ9ydz>iO8B%WsR>N'<;"|+GN-fRJvJ퓒 \t|ٴ[o<{jCѫ{d 7|W)aa-!3rvᢉ+!kla[uXti[~YEjl(9GU\LEF`ko}ԗz[|!|p0vqӵw{ U}GVVo*u+g??`u:ekRI Rk|-iAn Ύk'| @gvEx6;S&dze~)5順S?&= a e՗ӫÓtrFgj:\Lj 'VLDO#IFld:HV.o>_ K{ߞh]&~zg# endstream endobj 3007 0 obj << /Length1 1604 /Length2 7473 /Length3 0 /Length 8550 /Filter /FlateDecode >> stream xڍvXm6-N a4(nۀlQ)QB$;EB$$DBO}?;wW}'"iSC"0B Ai$PPP$(( 4c\aNS G"2 `10맋D<]B"@!qi! iAA(i ꂀZH TFNl<y @!)) @E7 #` [v!!p_)xd0wiooo Byp`Pெn?@c'8ntxQ0 pC`46@#M; Y NWDp`0ts#|GSa|0|@0Fb^`+{`mᮿZ{ʪ2 G c3Y:j.`{x4UrB0G(&(%..*ya>'_}aB`lHw X ^0  ߆BB@(?ٱ0;|h%P',H?+`aauO۔>@~A PHHR (!! w}0mp@{Lٱ_K纏IJւb7+!5OWf v%'+]$Vv5. to&"Kf~!QVp e& Gh%(_6 .o +UE@_:Q(/@K'a|~3(B 1 @5V16 *gâ1,߸8P @0Bة "H(V?l wWOE%( (07~:B' M )$D&MDI"7aϭ-c0\/teOx(=Lӟ) `}2cݞڽ˟c"G%.S<1MEDZje+zRj,<"gMe)n=`&DY{k^=+5ҟ.[g etiwVEQSi &<֪Gp))$ѿtZwwZI5鳯<9PWc%P`jv׻J)Լ I:%h-o_u0ez"߫LFL qѧٰE\"S|C&?c/C"J aQy\MimUCD7}e-A|j_SFȺ{1Bc;al_vlα!؍B;hw]UJۓz[^|)mwz_2==x#UG{6޼4ZtK)u܈xɒ6N]xK6lRxQoä!7رC5G(>/͓qߗ<aN1=Üe%ʄ'jWZc>`Z 0K0(zɞ=]ISݤ,EE왎9iIf^Fe'q%|w{*=Khj++ y` c{OH̚==mP; 6pv/@Vі MM”ܟ+)[Fɩ*w)Я(E@Ts2őh!8lGI`2~b T3S;#cnoB\%|9hN])p NVt!}0I2F2@q7@?Kʉ,-3T.S`ExAꖳU)yj ?(idJ@]iF {?ft+vPGCj؍@O SךL՗{p)>RTz@Heq AX޼u5<X8(t5k%Db&Þ|8᝸V& NCb0u)A8G~=gƝw|imfr|_37{pX@^$|.)t'=2z!;3mԨH[  {/}2YՁbP$sS?kXkI3m.Bڂqt3o@r]# -#:] u]~^⡤$yx2G0LatRPC`ң_KQ46eq<yC:kڹzGsX|5}bLQq"~;Ɓ -3 ; _tTQ.{a+^ݸ(ǙMӔ-+)C 56_9o;RJxN!,?,awqOE4'֞⇱3c [?mUZsR嗄AݩJ)>a*L+ ȌX 6e ~f7NS2u{e(в$XQ}1]Е+KQiG, n\ olF"nBW^q5g9dHe\xfsJ=ZyYËhꯒ]WsҼ'l/TŇ;^96pΉ_h_uKӎ MZ繺aKUɪ$:{TAI=$ Zİa,Gd4Ņ0|{+*29ΊK):j 74l Wz%v;H_B_gku/d-ɒ2Ւ `QG䷜;=?x>vrNdZg*f)Hx ;9,~~de>p$MʼSYcf_; i^#.Xm-tdM|~hW,EP &o㤶k#?JT! i䥋O)6gits%2FQ5mN=i=UXvQh|V2;Ą|2)Qͥ9 HtqYw;I6^ &_#I){%x' <[zï2/w:1W5}ԃSݴh|IFD@UrkLbUAHn<)e'̂#+D&|^ 2h"C䬹JׅjGի88˹hW~HzqY/te̤y& |T[6y?-mjL0+ oBEɊ7mfVՙhƵd# ,}-EK忹>o* >ݱȭ\I [HMak҉@RŏBiZp࡞}zV37:Oxt0n<{qyd6 7O yY9G!L >lDoB,BFx)R`-@~wG[γq52y"r3;ԿSTx9*qIoKHHvߣݴ҄@{=Hulx$J,S7HDq&O׋.<+p(ƅ9羘.zd6,ATf!l7N+k۱fO[̐`;jK&¥Rm^(NktDrWݖX"_KCι]VzbQN#QmSC[wAs6 @UKbjD(`NJ'=!i?xCc) h/[Wd}'bmYDq_8|w ` }qdfRPKzַvfrl.*f*SjV2d}!Kͪ{ {] zqgH fK{*?dሳՇ[..A4lI'B1$rQNN jQyB`$NNv367X̮|_AH>RYU)!8Lx' )`,m&gjAraRw۠ܣE(P%$c=f.gųWΗ&)M |ldm4|.=:M5;ZGf„Z+  5(hܚ!TDҫLXBU^TXuQѧB81޽s5 Cl|W;/wB&{sL |:0g>a^;]!`s40mު F&fmC^OG5{óūCD$tljx Desu,rzv1i>Ē9H1C(8-Vg2&y|mOiF+*C>€ī#okityHL]QuJnٕ"~L?q^y'By ҿͻ#}C)Syr%j`;Χq7 oIRk8#˼d|&=B>Ym5o^RQ{eˮkٺszv?ܙlll~~HCHP~S%) u_Vd,JR1{A^j6G9btl4v|2yW C\XqL3+fiK [-)<{l|auP Ui)Bz 4B1a*k~9RBNc{4|/v4Sq !kE2׻IJ2֑Y~вJ2uJ^9ObM:h|E3r[u6UW,F! |D%[)>[#ٓ7v:n>MW#,'2`O̹1n[N!Ui)k ۉ5EiWΖnO[y7ȩ՚ խ Ep=ꮨE8~)G9}mQcjh> &I {-q+޹b7oI=Ş8G& &r/I]&5GT{ ?Xx\r-~Ǡϟ53${$mzt7HKFU9F"o^dfY%@߃g{">H \=+hPOJ浴̫-5]C7-:*٥s}z#S#H$WgLS뤫qR=/!!t>Ǔֱ2 SG=u=p]},L>/%_8R\ΣD$.GǹŰig1[TbÏDٺ);OTD\R?}1KX^n u7fUAOW:/"ČN f־Ņ9"j/j d%Ä-2~Luy'-N[.p||m +❺Mqf撧9=3j J"GFiڋi-'e\q0r+J&Cd@K/p{5J/ rbroW޼%DUV8oO1U)ժCG0Z&.CS8ٍLѲ5VY#nE^  t,i1C֟jqƮY|xuNu~?"6u@O޶|? 5k]vN|ps"QtO!V'BVxJQ,5J<0ЪT4|pQatK6i>~N-]Z S{j>,޹#qnrڽԦYt[74X2x4uUؼ\z)Up } u'M^ }ʦxF#f*P5'pk)_CXm-ooUK W˨4MY՚{ J~摧m`d->WM&ŒS[sQPz6lƛ}Hch G"7:-uT/Fg*M/.[ߒz7<ټ蛶mzZY ^ތf endstream endobj 3010 0 obj << /Length1 2193 /Length2 17494 /Length3 0 /Length 18806 /Filter /FlateDecode >> stream xڌP Awwww2';] ~gsUTͼOӽ{5*ꌢ@){WFV&>,+ Rj R r3]&an`sXXXXl,,1tpHL9{ 3?3Z+//7ÿv@g=@ hhfb Pw0]'#3 -jP݁怿J(]%@ Bx؂̀..n@g;;@]VXop+_&ffv&^ {KPR`rte؛ehbon51}7W&)QU{F¼$@@sbwsm<},@aȬirrJ]Gf tpN_^)Yx/ n@?*!AfS%Ow1og'@}X,}d>a^bfM  IQ_'`eep?oпt?){h >@͟Agd1{bi4, |4s:tڱ.q*PKV:L&$:?9!|aӽe4PSnRq")XUT=ɺaw:DUQn+y yv-ТU=b7*)YΌ#$*~mG|r:XGO`i-TkCh^ b?ъI#CeJV;d(W9HB8ȍD G'xM M]JXM$W?͙! -Fo(7'iB8dq6~/Юnw-7H{0J6~9q%ۡGMO#:mxk͍QiEB!Vcr2: JA2kUM=Oϸ25%(]Jj`޳< k0Oۇy5T8 A\})z$`);,y[7ϻ=y\i+Tjѥ,E"ϵV~ɬ0XKӱ`ʨ,j 1a[ =7?P[W uAP4 Jj\mR([9<IWn|$x' ˧C]y4>%^f%6%[oR^](%^@ j53+@믶#fôs-1$8=a9fdx])Xf]cXjKZNC>`+dgҔ/o͜sYAIwY H9j*V}`Rhزy]+u{ d~b{,TWa|n_<:gݻn]LIauxN;.jONV㚏vc'8 ڏH\ % uNE/y)q>Gc b`c&;Cź(#U1]Y. M$;hpTe'AwIo}l,Ǝ;h.D2阷M1Rf"YkμnnUlA*D,xP1Kӊˠ ]{]ӦDm^WMEeb Ե7as <Փ1{ ~#b*ՔΌiQEl9=FOP}޹YP*H tp~H8 SG$Ȳ{c`@.9}UGI.m6?&=XG9.Uٺpx(2:ޏ@M-( ;*=c6!*|xce^Sh45Fndq$u6ʹ YoT8rli>_m5[6ұ .<LS7w|^ߐU䴸>m 9>sR]\7}ԞxRTSl?(mcrnx4RH /+U 'jג0}3w6AjXb֛p̜JxajJ O^na)14st8G>"wC:mdڒ(Ƌ-"dTS6|z* #vb}]뷌HėУNZz@j^a:(ׅLsOw7T `/ۺ_<{LuAUQ 6Vׅk9M>MԜYK6v1E#h ] Yc]1|P-6$,I77}cKU w/h{K\܉GlU- waQn?h6H>"IB8c*E?]pFɹݹT:74VySlvԧ ޷XE w]\b3ϋWXul(**O}DyI]X8&-9wmb%AEt}8ϰoP~ϒ:!**oBYX̛jGGhܙ75D! D,/v-&PpU=c)Y|{K[w.E?tkÀΨ_|BKT:of V4>1h{#ޕVyoLy loLvd)pSo9Q&c61d 3]ߴ_G'9L!ax!fȳV#} u2gGqI=D~PQQ/o.?c gnG H]^Xw}61_|jw_滿;}+6=QqcZzbU@̙2@#zz|jLѡLڏݛwr9!櫤㺒^0n%Ъ3,ZXz8h5-&ZSc_pwӷ [ F2G{Byqb~O,y6GOn4ϋt~ƒmp{u+/ C~%/Dh5r2Z7f3n Ggv2>OoT'^"ZS[:N 7͏ݬ7cuˎ/r& k.F'%td12W;h=W)_m`ŏUvjXk leN)Kzޗ慦$:(稪ajTឤU㨖C%27/W)o-CdR{fWmWlר20=H]'= rzȸcvk ~!ٌU rq>Fw#1&WK= }8ͯɥ:AuZJXS$~I+[ 4sBWs6]j*#W%pp^n TcNTi=PazŠEQw$ZnpH60 v+jqxej)|S:Q{=pxnYM%qtd9Yu2g쌐ppD0meۺ8 (AbW6ĒdÖG$iOd^dg=C/qx.n0Rp٦4u:zϰY*mٗW sh=?'\Mj2/=]? Mw6 թXH~_e29I']0qG8#YIdMy<{s&zǬk*ҙy!Ы Cd4S }McCr43+'qLN&]{7I'Y  =~rٗkXipw;`fHAs݀mtclH5`r׭ $t*bf2Oc֠a ޿pDc ="}*\w4(S ٦39bz1 @%}bە-ߠ9E`h >#D}帰g_yq݇w>l'p,_eݤD|?TO|*0]z*AI =k8 :N4xeŀ~݂,8q;nFsy1`4Fq/':c8W>;ד\ICBjs9 ˂ "|4ݘߺU?!^J4 ;N~#Η "B: 9]ü˅ňݯ3{?kLNu핶:h ˭c^  7϶[;b];@wm=Icir90;n΁?Se@QDp _VZZٱ*ϞoȚZ6y W@rFdZFfI(G|cXH/ {pl2I&VO}*rQKܦ_EV`En0~\bc̐HC1WLڑ2ndl‰7}W\/嗾Yw|Q ]yظ#~N?} blҒ~hn'ax]P-D>t*vNi_ZI-|ur q Wnb]8=<^I "rW RityLlS> 6BIJH;SIOq!՛y0m[SKJ{ƾyZgix<3zpq|Y}Sx x_OI8.[p[Ȭg}Xl5d?W}9CU<<2)bn/41K/61r:c&t@e-HE=uM}Y+9sjk3zkY[im9nhs(/Qǁ`sR8m]ԣ>!JͫɨJ&a:Rꯄj'l =q*!Lp̱:~wVs>͒w ~!Ϋ4J]͈6Z 锫;p'vr59e$F[1|WeG3|Ֆ]m"Yg< ؠ.r8~ /_ *&70dn-?wD )9Vj)`X% *pdw%\Ig#a>PL2*;.-4Vb(ıaJ4ƺϦnZlB=fBqo^o nS%H]tj--]Yf8ph:T[Lf7l*xetYͪ9̔a*2Ċ0fp8K?~0 f*dܩeFkMX o(Y7Xܦ?UD`s^YKj/rX}t ݂y dzW颭OquFWY|)Z4ؗBw>fHVpօ-B֯\%^ۋr'8'_gTHR/);> Ib R0g@Iް-gX>2Y'>Yr~?aOj0 \ô&/-m[wLKd4Z4-{yR5n.NZS9F'dG҆1FYEJw;r:8n1M{щAnwNQ(?q) 7˺&^ּ=e3> PFȰ(c6} -}EzTXw-hNub-BDn^)<ijN,ف,(&zj+½_O(;+ۊH0MܡЂ\f i`|.i/ي [gQ#+aprdtO*2ĭCXL(# Kz%Lt8ɩPC.3O BE^nhӼ&c & DmEi &.ب՗'xQ-hO0n՗yB`稡Xღ^ IBfw燎-՚ʣ'h@C~4{!2m;|}[zrc&݆ҏ#'+_2~W,~G =n$w-:[/ l=쏩a oBɅ?e0? hLx`Xd}O E@Mر'ŗIEmfx> qpD(2Loڢ0W5 R 3z޴-3&$%7e DʁWܣ9o9ӑ"zB=qC7VoG(M:.`oxm q|r7kWddRi-uJP'Je^f[e7Rqr-w)#NN;F @W "O=rӖF;c1-H촙Pn.Mu)\j J:iX,&ݵ1ج5P4T\kw~hn 9+pfkVRl&q*+ڂ|lB.K? MLMN$;ARgKe>n+;h,=3ƼV) =\?epoMDž6Qk(S &j= S3K*h18=x ZI#M>zU>ԛC)K+9<V{̛*POnh;t?9bcFQ00q1zalqP=W%vn* 丼pSD!(HH^,a:##͝V]7bTqgwA^ TS$LԄ5t1ߥʝc LQt >[.U88y2ѽyCgrVhV*mK[0Go\P>)Ţ=#!ymċ?bФUkND 0,!ӄ:_V9Y<$k9}E ]sZkz0"_00NR~UVj[h?ʺc+3jޞ1{|ٔ"M>WK=ii=Cub^>0[b Q2GCІ>ѵOlOfhec^Gl;LG\Z;@^/? aQ ]w֝I*)1g.K-qgrYJcIy94Gj%tg2֤Vvɵďç: _p!! \Y͸`㥁tȥ?Ǩ&X_Ymh,(e2s{*{fHB-h QaYQ8}-Hhkgŏ^ b@e-tw[GFSz [LJpMPQXtPKr [ EmZ7Dq.zI1G֬2%gBjfPD:Wi=4AHj 5Dp<:jDj9CX_)k!զ [XD.鄱:@֮uml8p d&*9ՂlVl*W{v+k'6Uxo36\CC]p~aw 8(FړdX$Ce-WœTضlhz;Ȩ7]X5z(?|i'Ni7;j+Y"]&aX :ϱDu$HvږBB6|xz¤΃R]fzGyZ?!EGQ'lW~#BJ;͓R}ї.leϗ _ u<S8C)a(| OvgMғ@Atpv60Mndr/X h;Qш#岗ҳ!w!ca$ۇK'[mxV TF\-zhccf"_3j(oFqw`]_-([Rс_ǛW(JS Vk\.ҕ{x\$cR9\rV v.!Ge2$3M;p˧dl6n!?,R]L>P% 2)sʑLuQ0qϔ|UG/ge:%BCuM͒Lq84vLz]0jI凵Kj^ 50TAȆ~^+Xp/墆KfP gXwAMSSٰq{&#8d^%D~ƃ }ߋf@x%3&LI3Aoߍ4ˍvQQtG) @nLuxzgJ/HQ4׭خ| }.a7Xz&5a3j}7~9lѠB_ES}48~1hMRWQb[M@qR;2ho:žl~2n~w!eeo|[(|F~$}*R5DJJ2)do3pji (ǥy\E3fhw#uILP#!,=naD〜E_ˌLymI/hF<>+x?O[~|l4HW[|`._1@ 7dìV>á.5~_c6ɭ`_qDM=ǧSTIVKLѥ:v'?S= Űb|l ؝ʴA񵋰Z{-Z=^1 |.sWdM-¶bF,1Šſt>wy.#HWRZ=Uv$Z;cHA'V΃TRgbH6#)ԜsX(e~nҤAU>s/=-rKr9ܭ:q1^=J$W2 =K???| 76`v< W+[gD*~\9U˂,byRl4țt,᙮C4XtuW\sKƣl8<@Eٶ+@g=EF3u` шT'ܦI5p(ƥcAOV.V5='cLq2(;tkkPKEގ=}^/ٻ֠n!!ː%@nԹ`MjK{|^'y&ėֽ!sӝ%,HhVP.eeOgs|y?ƾZKI5mX[0yxjɑkX*@98bhs%>)\e/ <+Y jlܹ| 2>s0Œ Wz=tN}a3Q3 \IP{UFr Okq:̙:ZɏQG[XJ5y%ZTMCE 2C~I^Z VDwa?l,G;$f*s+_>C7B"ccpE8=ۿkfXH5du[}ypNxm&yU>D$ĜH*pbV&QK\:\R"#/ 1xj Ȅ{{G9ko=YtoK[`[ w3b")1 ||HL2 ez*U^ЌȲaL%z-t"x~@h ?idQUrN(\KwD-h0E_wh O~/ILE0t> QC.{eC3bhfDjϊ(MG]<#وji(hh)3/ %SٲEmw͵Y _rA/C_KdF)яpΒfjAwba6(鐬#ozB T؊i3DLД}{;3Oc =)6 :Fr M-d"̒ rу̵uhn.Crvu \3P#{MÆvHY-Ϋ2m-mțMmPz-GeZ!lQvIیxɠ((/ ˻*ȱ%AM'ՉEۅih=8[GOuTir{d4V]нhLcu?M8MO'ɧRb9RJDiyOID ~㸤{E1ُY:.s|b#P 3x*>YVHRgx=:_;/ K>/GëG3JWw]<]o]KhitNki䁿WY-s**34\ { N7jG/h^e8Q=C&n֞&%J .aGx63S3جsɤwLY3C&\zϧ[O&i2xauOp!yS}m*G\n h"-׾0CrRHl-//!2,$#>UzkC~IlF[VCEf{=S\Ȝ |0(KU!1Gu> q &K⿋x%=r-c,1*NZ9UL>Nr!bjPbgКE:㏅mBv xҠXT`؈xَ !7ك0ؼ(lTo5R?xޅE|Vo&wZ [oUlrwbbMˣ-/gkI|s6|UvFD{b")ga%ܧxnjgbȯl8dN& j0a׹N/}77xZ8\yپ(q$&Zg?#j.pn]fN/ KQc+!~?l~?ɚWӋ8}YŷNQ,[ =6`ˣv uM$:;IśARGet5Ȭ!ހhH, =LlޱdE YhNn`֋e T{cC> Ӱl|xWY͝/k1'.|2j]>)gE#*رO\J¼EB݄a&Z !T'"4ii٬w2*" =0"x򈴂#" O Uf%RZ-'i/bح@%| ?lݶPʏ/m~lHJՖߊdWy\q9K ΃BC u>O&VΎIuvUeGW1|XY[WÅ~+Sآ,}33Ņ=:;`"f C~ *4^Vc —&*XHy+%|9 oFh-s|HY49JR!X׍u/QE9=k<|hTy aUSXu=-\K>^Ƨ8)BA훣ݞīc"ȫ6;qP v 7]# HT=;&"|{LXo#gfNȠBjQ{6!m`w؜uM!iɈRj 7LvZc&"a\>Up" ? (o)wN+]kTF_Vml~1]OJh5j8=(V>>S0qxRa:(|t!ca~HP &28ɭp0[Va)\C*wgkYM/V,9-B]5'Q~\J_t7WTz{%Θ(q<%P&i'`q4/j\qb8c؛5A<wZɱkR6݈Np)^hs~bd՛#/:ڸM9ksFDQ+ttc EKs[S~ްntˆ6+t ~c"da~~?bQߪ v위oL*1+7tbEzZ$d#J f;J]&:VDT'y!<ʧq>\"Jm=H)4!PH6H@}s*-i#0'SnNV*]jVc$(Bpڐ͆VtY R.nR*S; ;wyư$'[TLp-Ob72}}Դ $oz7mNѶ3=!iFXd^iL@wE| W^<+ؗųd\OVZHlyVG$Tz7sp‘0/:7vxM /DI7z8Y2CDATC %v{cq{on 邰.4yVbь,-9a! VMpcvۡY~~q ϻdza@Gh -k9 W*_IA CJF쳷p WMd!)&ߠ*|@%VPGY{GFErAK.]%ە!dG ,a39 `ύ#v(pgY, ٸGW oN:$6u.a K<iFyF+¤Sec4N^ 4}A9*kW=1ȧ4KNฬ6o9Ȗf{{$16Gpf_R=lFtPhZTf +1BS1*7­*`4V".ʔ޾Y1d[L+]„#n*]`.}e?MB.BHȺ@IZ+O%.FT R4kDѹQ}^(OgXBFnTg{L2OaqvXoW3 ?4jأk-"ϤYPq}汘K$ Dx+Wú:d5qf01puu10KʶhǂRsL'gPk-~1)/UKTI*`EDM1Za~(Źpn%{͖cg,Cs@9<r2#$*>Eߡ'ϒ endstream endobj 3012 0 obj << /Length1 1651 /Length2 10035 /Length3 0 /Length 11108 /Filter /FlateDecode >> stream xڍT- q54@-C܃`xdfkzkuN>EM,j` rwe5dll,llW[_fdj- _`M`s9@n~ ?? ;s S;8z9C,\_@gF0;C@EeG3-@ v/ :A+WWG~VV [z& v;(vƂL аiWwp9/[% x.Pvg௳YbG2dX@le)WOW&w %؂L_U^=3g wi^NY\l> 3ؽXY{{wn'7_!/&l`W/;{Yr6txi!Wg7Ͽ@9` #b[_. g{E^^qbz⢌vOL`fbӨ Oj_?%\J/,?R&-H7d+En/2 sh7ʺ^AE@N6?)'\jfdk5[=Xmybc|ټ./~Wsq@ /䗛~A\@=P2%ңrsXE@<VUo`UF|/7<vX~wj/__j Xm**Av ˿K/e l/`׉9;< ú`3%3PΟDߦ9цnw% U9 E{6K[ltް}͈ oa;%tƾ'ӣgaonUmFdb Mkm+TW0]]bu ݲT.W"SI$RwC\ëLА #4G죷܄&3y~I :S uaJݙ+XY5sH\ګ6/̭|>/< "<x Mel߰>\b=S7F_S4I2.Tf{rtr>lEHotPn͘dq@0)pNOp?v`Uj4AZ{ œ*ruJrߕh8Ib,̕w7:s ?-#l ⷼ;;\%M}$bN#);W@̹~7US)Z;q3,}>w#<#As_L2öϟDG1W f烿x<0=ɮ.N,f,#GmϹ)MM.W0%hW_.4D6#q|瘞stjt{esw\Azλ˕tPqfkh7bG 6wq"A(,0 7}fqٯJ(#-+[ԯœGeQ^VXSErOR'zkKX~j)2f`4\] ~Wh\şm e6-9?[=iuO]8UpoV`$XȪ 3^n0:6>!U|9YZC(5n2l `t [ c_̝m%T7UgZ\'v&JN ;?~ |qH6-H. jGΡfOكm_dMw&ν{W;ё}%i?̵kFO?0L8x XDL@iƨMyExW1Ai54h(덹ǔZ GSaBRh(sqCQ+kǓ.,l"4'dy% c.X O~M)nH+P)h*#N(]A8k:K璝oSH8jSgfQu =E)T穛 2X:Mb%|L0{ٯVÍLP,=f{tVҺf&adcGKXAlu{W7[ dE;ڔ~jL+i"Eͤ$5jj`c&~TNzo:ma֥l pkeo ?;V~ۓ}̀aN$E6!sT;B. *T ;1n8˞:%ffq;:(dӬ2ŴE]فt;ǩUwnPW׿l;{q5BYaZY$K20CCq < (=L- _^җp:tܙ6S>q%wۡf̫z3ǍQʣ>M)^wJ u/~GA&X|ˍi&f=LgQ+W_dr 6a2dßk=3b 8z*f'< R(oմ/ؼ )JXCy52Ҵ9 'W i6pRt"7]ZP/* ~ŕa%ا-/K~?Xr̃ wTXlT4sچ\;\g_J._ϟG#>zts . $r!891, <~ $>4GLvt֔8VڹD~+kwh^Р eۘo $?ygpl\X4 ~3?s0V*Ri,Ws A2<+q#1>:}vjoYXX(Wg79M\Ijrx{؏xC%HTՓr-xv\S)[ hC BhZ<ؿcskai翭V.}҂6KC̀3֟)CPmƲ@AwJbTqfѯq FmomnX !hxXZr{.!@w(Y2j^b>iBеgm3΀sn(MIU\E0wc-T"QM~l!&0ko G sA3=SLJUQgoyDi"cXqo R:i tֱ&\a ̉~6䭀TqW #PkAhFSĚA5 :XH{Z/ Svԥb= 0 ҄;!mւbq0aRw:HÙt>Ky>!kh~]=Z><1R\#[dk5P$ק`ew&,N ۜ2ﺡ]DT%,Oè8ѰCAl~e[Qԏ5gd<9:g1)mYa4v|{ HWGݦLZ]C3UVrID,sd'S5]Bޝ5ߴF$Z3Oև[JԴ փqt3s`p#u]eD˚:Whm}oo {&bռԌ휷bf YY^Mt32ecޓ~x2gז8sW]_gi/vwWѓ/\a]@!+}1=WմQ-i> 5+"Uq>ؠB6]&™ɬ TNfe'*$8}lf5_]QוWO:?karгZ Gn`ǟ6{ ;()A skN娅ڡW2JXBf ݸȟK6n `<=60@p3ԧyBh|5Zt"WdVP^SI4YK6r*.9CQ;M]lY4W!д]ݞ%sR i"ʊ#E^1 F"|vއ'pBmei d7.CP-2 JE[Vb*Ď׉3T#acQOiWںMipD1g>#_2Ԗ[qƳCf-%f 1(݌泠iD3%&>'1F!/2fړoWHٻ?IYҿҙVLzT{YDMjbs\u?cQ74VO7iU ;{d*AA{rnQ6uV0{Ngo~jP Ғە/A:EH㠐Q/ᐋ0%IuAѼ׉g*xKhypQ사[bty%i! 3aĭНe5O;j<`YOfě$ev2 @];_TJQ3 K7L<{DƸd3*%icp F]_!W6Džiq'kj:x),~g<[|_*pY!)]@MKb*ڇx*-H*q=oqk Rñz>+Iͷw)M&~""fPxRo)r<-ܝO`Y(AJKsI*15rTIkʲ !kl(Y+S |iVRonЛljBNIoko<4]PwNLKWC>6YQW nџ+ fϩC9 DN>Z@}Qs.}{Hʳk^K 7,Dܠ} `(PZ#_a[3CC2u4j.~EczA6D&7rg>|Oh,é, IKYA2 sB&?M,jL`d%ẖÆI?Inzc WOBr *D,΅džW jeweo v v[؜\Px7yqEd&fkZ-Y*" Eu >&OM:VZU+?8sJAOAn=u1m5}}fzR܁'%L`qӰy:d`UOQE֠@X7V L<M}Ň7gkp?~=Ҭ4!Oefi*YݒGMv^6!`Bw\2N2M79xفˀ}ۭR…Z7d(Q^QZi;c.Tojf4SwQL17ih&.'Avbnv UƄY_AovJ5@:;PrmCaX~{+wvSn"w6wis% YhaK0xL0N=愒Puc53]|eT8N}ӯJl $ 8Z(j/1~YQ38>+=|1Ўuh9Ȍ.W1ZXS1T_l*[sBayZY?$DTwcgUD&%`_1kK| L G 0r3żV zmϣG:j]mhC[4# +d4z@(S/r3Uwͦ/ԏXuoDv::?}PG:{ai" ?Ḵ;s>/_|+g*;>,^^, 6ȧڒ]"**bx-' / i!|OʺpG=7{ #tX 1_\nrs"C.unW0+rႁ[%S2b3 *6؊?Ɏ(/SJxRf*V,5{8ͤ4};Uea'a NcU]3n}.4neўaY[B_j%S|Co`uM.H0>:3saep}C_lQ\4{gI5~x3 uJ&5>$gSo{jAܝ-Q\?Z;#0"uFxJfD6i!fz^lD0}.u7U*jإaߜ8hnLڏF? +(#(gBT$F,Z@͂v!t=CK6O0cϗ@2M}I<ўrJ ٟsPY:@;/7Ug B2i ^oRgs70"s%m<7R^U}i1_YlPCh4]gQG_<Ǐ`"L4@?CZHHn"`C$c{ج~+犽<g+ppu}d5$s[66?դFguMt',qgp7FH<7aA露/`K CNknp1ȕ;Ico>(iǖuzױ{x|7 R4K˙jP+Ay_XwXc!GA[&p*ao(Fː[_p4]ؑJ]C Ҝ[ pḛkr)8x*lzGZBtfkz%KӰm!Xd{V Џъ6c+IXsU珧|ma$uε|6&?:tTc;s2p'i+vBV WFj|;O)铼1^nv"&p7Fbů9lQR0J i\"\{lBDUj-wqʎ/HvN)B{ s6A +Y;2HN M=rC=o^4e̷TpfwT߉ѩB>JWlVFV|DN*6QIie!9SޫoS f VWGfS5o{Bciꪠ$[(ZƖ :ixMcEV@8.`/᪎ }􍼘t_&`.5W)9+μFdY*H%oTjvoDM)Ql{,C9fBk-IU8\ײX2{7cF6D.] Qٗ%3ل(=Bc tf;18PEms~hPZHE{_6g [h#W^+,V+; kՑpnWIʨ7>gPppZ]Ŧ|W3:$Hsن k: Əv@%YBA%d.J/T` H?Tq#s$MnÔlL2#y(Wm ` Y\uΕ-M`XvO %2FQON'IqmW+B!{>! –5R${^8)job==ݚyje-Ae1 Fq95"Z5oOB> =#UJ@8 n%AnΕر(Ӵ1EvRPt7;P o/>+kVsƙG":JGG!7=-pJ;% , ^BԤgE=J^ ɧ0uM?<@!;Ec}]Z{z9*< FS)ѦOkꞭ~]$<^'2A$)ťo3F3$PH ?;1|2~XE(f2X +v 'ChIVGe~㜉 dy ˾K@`7ڥv_:|;= QX5s1_D<Ѳ}/t=MK&M-)^cc=q|d@!Bӆf+;|38 =A- NۄVhHa3AC ]ATv..u3m /1TJX|DGS){VeJo\ &4vF{% J''3}44L[ğ]wMfFB E<;pZI d"7Vڮ' UV,:t ?p1"}XTr4~MT}@Ɩ endstream endobj 3014 0 obj << /Length1 2717 /Length2 19619 /Length3 0 /Length 21179 /Filter /FlateDecode >> stream xڌP c .wwwwwg='.%w}{a֧{urb%Uza3{ =3@T^M ONrWOtrB h 26fV33'N<1c7@ cot'wtYX+ʔI;@25XmMm tqqadtwwg0ufw\,*@g d-j (T]܍d sڙUi9?r13?d'`%\<\vf mn c_ԍcplrpqfpwpDmmv.{2}vvE ;3e:0ہ]bۀEd@;+ zZ2NK[ `. 2{;.N@_+33@.Oth >'@ <~|O󿎘Q]I[VKQ{,vVN7(f/Oi;s{Ȃ_nOA X ;)oGH/= ƶ Ͽ-sy{&_SMWhrZic.YHhr1k6#Vg6 ;3gfb?:rZogHw3ۙڛ^2v'<xXm4z5F;{ \/ r8"'Q0AF'Qb0JA,F?(e 0?Es\ 0A`.hA`.s~ Vx~_؀Y;@ 'SWl,9[10&&Ʀ6ΖHY~!LmO&[?L%f+&3jb Ϛ3.' ๴1Wp-An [m`?Izߏ_MX-=,v@`VCO^?zpwUf҃bk;ֲ1-u`/F?Gn _33ffpf;9mA;Ymn=;839Cp2attk(Mqq8iߝۿ v__|*^8#yfSW'_ @Sy{S`රjawjB>ώ>͐2乎\Jwu}?FCww8dJգΒdA;x?{}33J$G {[gjs.5~ wqQB65hH' 46(okcww;F4G 8ߊz vC݆9њɻ)xzn,\k]Nz o\iY{uŐſ)(!n5q0_&~ W0|(M]w ;nj!e  /l'y:\^ 6E&hMDVq':Pit 9C5˧:}LMQ Kդ~:3:UQ5bq3h ;-s$|};:O_[1>G.H5F 7x~ծL8^AbpA/u0f*9?dd" sZv6`Bs%;ru)V2N年!X Y?i/BXj+J WciA!Z5ټwV}Z eDm?bEۊ6"TXO%lLRislgHߓӳwXt]& 3-"dn,@1 (}BB{^BG}WQ96}XCʬYJ\L6ZS+n#k & *5.T؈#ĤcIfD|!lf*YIY=EXpďQP4{,]ylE9X;69~{N1P71]F{iS IYulΛbǺ3#F?ݍHfFt{~Wrsx^XlnqL:'R$.Av/{QUfPrLmֱLwJTDĝ|N9)ʁE8ZzLATH n9x7˾Yd+<;H0:\aEcj OzRD\zQ9,mP`:,= 2q %_SFTI3ie7g(rP3וx#TY%YT8r )~_K`18Z~sshd\Z>P0ըj3]vCbĝx3q͹7pXm:B $hGӑXԟޚ`_XEcniۃ#]f'nGm|=mf~+05fa@YLLSܼ{S9U^xF ܈; GA4&˝!G)4aNKwlӆddՑ.YPշNAVW a@ͼ|"TU#4Mo{2FKN Hhhh_;r!b5`.?ZSdh/CF|qBD"^[05?$>n)wx |/g*t1M?\:L|[Y hſ˜rlO!E1n% :4&J`/Xs@]k?`:nEF]V3v'&fŗE.$T|G1+'F fx> H2^MR:dKi\хcuPF>C\sVmczxcq}ᓨ/@Ϋ`wv+xidk=ccPfr'Lsnr.sAsI'wMOit]ﰿY[6xqx9)h A4)% 't#]i8T?6=WAjMd8sT^WĒTWXZl辶z^֐z"H*7{ }Mu^D w? 5vܯ =wLcH1 _഻>:͜?P+A_V8$AuAX~30n؝;_|01C.D.*P6!O|T+1l1da^,]dp^F C^愍83zSˆR mɰ,SĎ> =V pr-2.ȣ޴S>!,Z nr@$fCU7W8;d {*zqxD`v&#ܩOJHWY{eXYdK%eU5 B^Yz%_.`pAm?fa_|7E*AmEyb;uOI$^ )߼ qKs&9+CR˴5cߘbϷl %`֬  2bKًsggXS4M u_P"A* X{ S }.ӾJOlj._e<꒸gTl0`yb5|"?hfy٣7d Cp9q+Qa]^PCѪ3C.m=&ܤsFJ$u]je:\̹HWqs33 | :I_Qnd_M39NU|6~ѿRصd'Uw  礜׃W0/6["G5W]w-"OQ|)l&w: ך9q3&c `<͜pyy64|1V2yϔWh oKz8IHR/Anj"Ǜ⩰\uiOo3R{2AEFk4E}mh+B,.껢B!)!x9b-#kY! j& :s~騆xl*$1X gH%!2)5):1}4u' 톎s)~/vԌ 1Zq&s#!%Lb XxI VD[%vK-O8u<,(,l3c"uLȐ%9Zx{זDžܸb/%呒3=t (vWþ8Lk8_ ;mC3+_չ_mßSJSoBw*=O|>SKݘ'60E0锿ZA!5(=o;S-ڥ=9O腌K#O2 I:*X͟ڟFH%a7q,6kl>eRnҪ}p^xqKt'0\G&ZBs+ju:mÛ4vc!ԝ"E,>"LB<֮w~`fф[TŗN}@ADUQy/f{Zx{ IO\4i4TYľ/K0C8Ϙ V(4V( G8Bx.N\aO9ii*r=2PBM̞Cw@bsYDIC]K%yJeb RƯyʹ!@%2rapa5 ^)XUpIB ^jcW"V1Po`)1r:d[zB惢 xt#3ꐈZSܬp!J O^b~KA9.|/0l-ƨx`Xbr"XAYeqIC1n /R~GT*?2i)9c\UrgsQwqր].<*4 \)si& )Et 'DFSVTH  M;y m4%覠 =SAC ykv^Um✺!~k'=O Gcat9([CP\MЩ9Fa F_o\FQ1 mA;qli]#k~jPĺ W>6*31Z':x~΅H;p11I)'[>k/ä3H^7^6CznJ=k|\OJ# YC]HՇy{y ^y5h]5cʂDªbJ.ap7h}UYᶖ] r֊$BӭS~-n.D 2#Tcn^L.oh8iG1 ~#)^y%i*0^K>9n,+.lgTKsi?5-s$o p R]u5/fÎ /0ܺ0}I 0N_wÍM.[_X=_ZrvarSr4?Ɉ|4;G09+"֑֎|[xCUF׈f6N1tY+Ǎ`Gu`ZT鸡%@6R凕#waIqT( ^~wd%+d͖+Pm)|wWVi,-x-!-"뛝vJ_maF+$ QWp=(QUJ( tBHv>hz8>(Kl/~SY[N5'WT =QQ!$}W^ bY2jK?4v+ Gr_4%P4 * %PU~Tg[e@FcId,VY~bq9pϮXu@ۤ@#K 5o"qknoG&d?t'i l<{}_)[Ջܛ"z+8.y'Se&WM9P oJz5d,paۡж#O;}' qSv+4"5YpCse8QGMyE?*]ߒ'o_Mҥ57␨+O51spalޘ)]I(]ā-x 'fΪP3MDK2ki6\zex_41Пߘv ׊گ0t@*0mMʸ'TbYa{8*m`eoR&ӓ$ʨ;t@G d^iA:jHP R?;'8ho3Wƥs jobRˆU%Ȧ*!6f^0 ]% Z}T7a:sCa6Բ[RG͐ T5F*0G{ kgs|)n;s,|rFKƄA*yC-^ QUzɜw&Cnt{NKt/oj![g]~`n@[it$. O"ckd:|g0'pyZ5?[O~y.3+-hs\PUUp1$օKXZ@FT&I *"<`άgs#O$PMy:j{_0Qǔ*#&bpWsmR4IOu 0Vyg\>l~_ĜRϗHA)2 2rDb.H+}>ЧJw]I}_pul_7X.ƽ%J6xMjUA 8HT "#8H8@8~;Ž0nG:Kj탤ryf]FBaQ r+XTXR9ᕱH l@6U̪qB o%neytXE9>[/sK+˃-M-xB< ,^GWGX¥hQBŜ #צ;e&c$Vm{V (8m }+fy} 0s}6$Ff:Bt:Z5)"BZa ^E`8e1IF[OȺ6 6FB:pEb'_hk|e-EבgӖLvkG}ΓU,׼EfzLM7>[-O:j$&ĖRy\kd!CzSv=z(B ɡN+StݱH+&}T fl~CR BgU&*JSHIo+䡴`+;2NfRpW_Ȓ֢4RCah,uFJ<}waQYmn|z ŷi?|j[C).00wZG8j7Ǘ[ ޓ+:f"ޗ8T)\߳-k]xVRVv |x.Ys\Jk/2 eYcOь,|uD3‡\:٧X:Ø̟:{#o嚘]ixh0W)4WT4{,$؁qirX}R Mֽ9 L;/<nj":aS8VIJ^ү6N aj"X d/K|R-uMYS!QR۝Ѥֵb"gP "56]x^v| nZy~pìpbg_mұPN.-&U*Ln.S&.kOmZWubSsUȶrSw{x Rsw+Kתٴ7Vׄ^\? ivBN?`UhL:lw I&;S?!ۚt7/#lx ILۛ/pQN+K^ &h8W0(b*ra32Q4%{Ϫ1t~ɿaEPhG^F 6[ g'pҐ0|`⾟1xiG/hfJp .0PqWHMHDX84jӄ^[~ڰw+pIq򢺨V2hNjAd8ĝrfƝUB>D+DiG5,U̟u *qA BGӶR˜4~^kDX+dEۋRK%[ M6)Sz1}jC/hpeHůN,Fk3ME"m醓$Nꇎc8I$7(|,5*ȭWjz~Re_ Ygh$>.S0;7J[| /|9jQjcr+)eO}]I;X?6e\0碹S$_5(!>hbnY9KN)$fBtj Uod*&jB:F p |t1^^N0UÓɠ%3}+j{5"#b̍/h:CbݙAG[)VrpY ܛ!"ۈ%*14[)Ih1}ly D.I;> zwY(ʦeɧ+WgrZO4IS@ ϏլBCxFwU5<[w;L-5Րxie i]GŔc[#F+E {ǵp@2pF;Y2xe.{_Ι>ypңxS]]:[LW+̜-#2o|nA";|"ha~bWP{Fe'½^Dy5lև*+\wwK dLB(nGwi98ZLcހF>2`pco[d1z:XO$ զ5[F??OVTv|)S4xVLA1 77EU_8öpd(1[ZXPkDy9`֖( C}QyBY"E{#+Z9t\MgvV&aJu0y܀B{ك͕/AC3TRuSڱ9 eSI; /@v%YV̄!] >ACHB .QFC ;5COyL&T1386d?؂6BD6졘뜞0A&^ Ζn!I.RNF)1&gK pckJ m2(Y*}o #:8ga޾hkFLb0²..%E@;!\OlҨz-n㫁WWhq;?E> Z7CHw O6_RU3Mfc8=)KNK X[]d6~6ICٴJ=?BĆ˭rKꪷ/6tKLpĺؐkqM1gy_K NYRd >{i0kqsH8i*^o5f;YwwhU}+e%/ v/'bkgΊ ]!tmPY2-OZp/,+>3+Ɔ6ShЍtc_i(H30 1ME{lZSX4 oO`^Ӯ ]@2704V8] :UNh^hb~9zKMA{@~n!l!QW:..-%wq(yΣ(okwpE! 0zK1CK l. J4 HNꗵ}D ґ"uNNÌ`o@j'x0a-V7!Pezz*M2jI38uO&!q\Rp_5LF _>V. t F+5dEUM*aOIغ+@OZ~PߢHqf5=vH .CuHE{Bg+aAGjf,g.,R XA.fKc8u/"'}?)jE;՘"pQq2>Q;FXCr!*gʼ9^c-& !#l}@VB$|!$ $4enOGI,z9aԶHv2qia0vZ =ɆU(2yÂ`]A5"2=yit.VSEX}$m EMʒi9+%8!,LI?դg.XnN7KgBmwr%wM~2zKf#ȥ&/N+D1hzU )QyqVmx k6$+D7p\=~GZۈ$5Q1b?@e{g!(EOTL Q-Y! 6Jfn`%hm7B(m寲V;.9<AL#6, -!WA'wlճ#&k{w±QCZˎde)4 <rrt=72}ERV$5@4+z#$j2@Eaj=UkcV|%5ŝݷUW"T%ߔӝjHiޠ@veI d扒ûv X"%ʂ|$r1zC`bz~i𧻷sUjsdk,|> bxFmZ\$OFG: S.4 6M |)P.8i"בIKUS  SVkq7-{Uqٕ@X  BkpHHg9i4+Y/m@7E'Σ1ܐ{z Xj\jГ ]{a6&\0.#"QV.ʏl+@uc(yATID /pc?%ӭH*eFn$y= kElKBe>]=1 )(nG?̿ hT;8t4Kn|frAZ[FO]>+1d2īko=|ybψzJ'^fK$z{Ǧ|>Q Gw C 1RU>.iL)-_~=u+:˹w]7"͂c 9 )YQYB ՜_*)MBB~e瑀$8׭ҳݵ3twjq H֌w)/`Wã*wMDjҌ$!\=2]$ɓp XHRKaJyN1=D1,/J?+sǣ|8.QK^aZ9E0YMJ(^A|{X։]1@ NT,bIH`Ӂx'le5o14,3 y,sga}֦ h1XPGlxg|ppu٤hhSk%Utg ?ܙ{66q=Pf~{2ZF[L7WO+&U~)^EĈP~Z(Jֿ2,3 fxM\cd݋ܪ?YF@b>7쩱d}XiZc, eqK~%ҝoRPyc i!*Å^8>Q0v$  fgg헼5-hRD6Iw-:/L!Ж\2uN2ǹ=η 0yVJ*Qec &Q<+1Us\:V A+y /&㨰:F;oK3Ɲd=g}$wf*F䃄"BA|t_C@]Lmf5ger$%CB%VO4f;1d;`>o\)@,eTFvP,mrkK2>"J5ZX ovkMk O5F8ƒ@yK*||(kDh| 6Y?)',p*;ď{,L͎t,TBFd]k[ILb<ƅ4ZjAѮ3gL_e2*nlfKMIvҶS:hf,S6ixCi5Rswз{R~ /QBRm|"Ļ)6_CV Rr,'kAu bۍV+ƬٶlҘ\M-3ouQ /b]Ew_OQa{s\Zii; Iun[[3&7$y' >"9:z654aݐFW21Y[nե1GT1<>)Z"Us^ei?po}6KRz0K÷uz=vnL}{vuͽrHT#'aNqG.栚_$i ႖\.0ZNDQS}s:KAP;\xF 34}>0VA3iC:C&r2CT~ Ii?x<G?־ö<^6"=]e44tqxpA秌eK!LtJ1&v=BsR-SKrBL15=jκNq+ɇCeO`a#f3XXtao-]5I>'fa$C:%z+ovCGtIxۀ&dFls4+zMRk݄7$1߂O"V}U^ՎuH7 DnjCr?6*&3,vSoܯ*e:.ZC  {cD+^ɮ*g nj&- x7js#3azm*NW7d+eB/1b-,w="4eyv؝NYgE̠'̬`$SI>b&pܤq$ox$DTa#F!3-h=1IcCͽƐI7/fWǟDO.SAJ?NmWT4̭'ob|)5~R;7o'?|>rK|%2'޵ i.9nE%8д^ 0Me ڋ-,Y}0?$$zB[$Y^*yD\qdL9"OAzwҭݰ{v 6TBYt6 ; h=YPWCJR۔zw~~Jt5= *`q6 g> stream xڍ4?N0Bx۽ޛerVvdGvFIȖ7QP m|>|s~sϹ>|'A!B`i@E" "B`0'c4cqH ZX mP<1P4 ("@ĥ!`0 KJP7#hbp w)) _递3Aрw&vAQ!=SGw݅8! ^WpG8u?Gt? QqFHo!wbрBh1cbwPCsk[OBHd( qv=h{D=um!^~BQ8 1EĀ_ԡMJ|8 ᐨ3~!N GqT?"p=A. qG!h;1. c4ҕPC4Q  i&s c}8Xq!axnDSN41HLQav4o++3NeepG b¢*P࿙hMxJv? .[8WV`10?2R'P<?~3'[:&7{quvHz5P.(Q$#0_m6g($!,  q`NG/;a~.8bT`Ā;6=~ 1xb @@`T?TJA~#IdI ؿ';1@cP!Ad  cP !A" cu i8" 1Hc17_7 ;'Z\A"O1H7XH @!Q ?@xw̱b 1H$w  1H/9b%/8wHFb-&Q=0q L&ȱa<+ s4] Efn|*#\>>tQL׼mwj{web<ϰr[d0hL_S `Yp7]Ul|zrֲ m7>,('$;{F8x&=ǿX=妯v֝&3ӗhߡi HƪM[y,լ%diאD/W VU%'_sa@wdglW>$/cWЂb?!R\'`YR-p䎜p]ʋ;&e%R"\U;n2T@FT$YCxAfn|PPgngKX 9kTõ#i@3V rwڨV)Ppi`usY=cҥ؞:kim'W6իTZ߷dr&.||Y+.m4;(ݔQqreSZOiKxF}ݦlYh%cE9vry`us.U%qAk'Q9TUEMpks'އ4ʀ& ؕ7-|B'wi8(/z*;"W:iq浓'*[O:v{'_Zm_UD t%e,.}Hj02FegC;Wy0R*\)Te6̜A_\'I,tSsBuK FL߮}bnq"ݦsR j.+Pzr+aDWG?,P3!g"p6;H|mKkL\fkc&ƼuV~$ xIn9d ތWgYؚFk) ϶N ~X1-HnyGaA RI)(JT_MC,O7=jśLԜQQ/VuRfڨ=m~;dqcTJT{k#-'n`Ԧӗ;ʣhz'=\ȃz umXܪ5\7%[WW|JI'H&̜Ek>]^x7 ٕW?q̕?)z3nE>OL&w]yK|zAިҝ:er,8X> wZPեb]C۬XvR{dȒg}4e%<_ HfX~;^޸LRaxs \;pE鐹gJl( @:lhŃ}V٫olڇPCEsڢ>]%aQS` `o1x➑:ܭXfS૮ݾ):*ƋkX}s^WLן*̵C5ݎ-[887ӄ䞮T%it\5N)yw9\濝 ֝`ʺ_eݤS`ܥkm㊔@tkеxa!klcM3#W[ۤJӪ#.Yqهv/-סf$$9Qv.eđ91[M'^VGy8dpWgC%S:\shJ/A]syŭaCJ cL삘/stS:r4קg׏_xGzE=YV:B[i˲(tSp˕r;:dSFM1}pB ϜsveY_u,{w/Ǝ|v 8ޱ&5^S5-քF^(y20Gŵ cW".N{bBf=i&muNh&~\bHT(WBc'fST$̈femmŗB)64 "Qo1'd5Ŧ}njy?8c@c6@N U@g,\hr9Y򻨅72 4eQ.HM2ɏ'RԀn䘸u3XNEd7S1z=*U.PBfh;3T\ǖbVH^T-:WU !PN^ j0[]XE{}$%W r7 &*L˵I3<͏.7s%_ C}zKGKQZg޹wȾr-"d0:0)r5HЉ0%;x{ \_MGS= #QyoD@"V*1Q~y_S6FϹ<•{) E!x1:h::Ljd_A=sV#4'>:'n;+zi%-LtO8?栨Z.L{BvQ 2GQg]YLRSaFI ,+\n,sskzid|v4ބ }'/08#sĭ4VH9ezzIAE5~?.0uȻ͜.W|m[)A7z^KpA}bq}i?FjY箙}#r;Uڲ)Ybh]ܕ34 'KfvuMi>*m8"eiH;'r甦woJ:ig<7]dLhWUn&J-afܧqNDtx#e#*KI'չw} ;e>_m{I$J5λf<ƒN#ȥ`HMܙYҩ,Œ'njߌbC{TsGo {҅A|+"~a$5uJɩUuwe<ד\#3jBbʲ U#왩L*:/ioQ-}28sswOJmQ;+ >H4Ƿ3pKv鶐۾/3+dr* {iĮR%cnOpsa>_ ῾LZSa>_d#ԙ*P'Q9Lj5١QW/rO9UN[T^[znš7 HQR$ƽ,.b?4>xJ l zPrP\S |[*M|C UַK^䢴0"0Nw:C!e5o .}>۫,P6urD,V`(/8[geUB6kBD/$_Ҡh֕x:`e2{y"m*Wa{;ԚT!҈c, Hߍ`V\0=/g\mOve|*\FD_#3~LsecFڰGTW2!`ɥ9#gM[q9a2nXGے'm /sx_MU@_:DsѥS\XXfj8 \ؚ!-mPd岳QH/yݥ뼬3͔)o2L%-0{SaP~ul1#[Lz[{_ͪ4./Ty`'υ- A1_2H}ǔ1ݓsQfS zjc_䇣(#QNk B|xmEӲ]شuYjpwDu5fTkGQԑK}6?Yi]ekHUW"~,h[g&7h]Aj' {5鄌Uoa.w鿸eN +iFI .Ɣ YdU+$OXL[\l!6p0 K*7IE<\3Z/4R+ٓΩ[%ß5E^48mXؓj,R>wfEH)<:=TwjS.dm (~bػDS%y[_XZ-ZmjקʉGn e@QխܤX>9b۽cQ$J`,M^Ksa"5CkG9#IMqA{YՊ1T\vY测>u0(_2Yw%UDў|4jUgwbBg}YlNͿe3}4b2hzs,͔"mb٫R4:]ŷ^3m|t \#m<1WyyQ 40ܹ觼yמt %u{Ta0곧p9!ƭn TEr b3gkyp1ϋ&um>vKՑ=;P1s^yWe)~t/$t;4e6/Qsׇ@9RpckZl+,ոW3oD\LsLSa>.SCYLa$ŚҭGSՁiVީ<[ mOnuڶ ^*T{\JԌb&z<qƹ΅yJxu*AIaxk0|}+ 9u9yXS3ZG-W֭ӖO%=2m2 k6o,)we#4V}r%_ M)N2+[QVw\-}l[()|wO ִ3޹G6z-F9M6'h9X.X, endstream endobj 3018 0 obj << /Length1 1341 /Length2 1434 /Length3 0 /Length 2301 /Filter /FlateDecode >> stream xڍS 8TmNZ4(/!|jȐMi(K9fΘ̜3fPHӯWZiQQҢ&-T>DBP;3u5u}羟Y24ɋl ŝhd* yӨJeT:&W;f.,##!B P!4h,*ЩT@LPddIU2$N#$ A(p!,!^AbWCRT*ɐDNdq@B,M I6 \aWB21ƒQ9AQ|XAX@%~pP? 4ȴoؚ@%C<&B A`;'B $cJ1KC5@Dy2DrD C` r&?_D󈾫(U /ДWH)sP$^`-ʠM8P77NL&pr:e83qH9N( 7`?]O_SNЀ؃c`ra`]1T&G|hܵrM)_3b+b߮~HU? 6# ɯ"v k"g#0?y~h0~(kքtLHTB tb`jO|8Q+C@!NPT'&#iFF!+FwBy"]д^)d2b%zn+ '糖4晶HgvmmZb2{4WeۥuJOWM*LZޚ]vwGb2ȓ_#`ȥr߿=hu3 `d}ZIlޖ[{ s^9z2a.hyl7حuϩ&.A.KצU,xR+9'J2kw\]pC;9n]]__-%m-9qdgf߁Rc%+v' RY9[*YHMRnyEcY3kyxfkčeYx!Y.7%%{6߭hpr}AFۓ=[n̵m&ݰtoXel .7%&C-'??0U4MQذ/˯#icEو*3:̓ |zչ"COڗ fGU:h _SJX)@.nh#3?O$; %7O<aO"{XLSlԫEizSs8dx7emGzUpMWZ3,aH\xU9:]r!i=nP_-FYHvm%ݱNqO;g7ej endstream endobj 3020 0 obj << /Length1 721 /Length2 6909 /Length3 0 /Length 7498 /Filter /FlateDecode >> stream xmwuTk5R5t 30 2tJ ]t4 HJIy}}׻ַ~>g?g=k8X5'TD@DPX`a/",##PCAAh,  " !!=Q0W4ۉo`A`0 G>9>}G( ]g P3Zih5 P>`8 s"<g$ '8!_x EsF!=*u5!S5iiGeN("U? sBPH/ߴH?0Ax@}pACQ}$B Ŀ, C s@0o X oϽC!0s$?G􍍁f|-euCL  ? >lZ῾#e"Dbqq hBA 3˿ߋAfNrn!E|㣎f|"s#G6^WS|_0I(Jy85nᲘ%jڨ6Ϝ(ݭ*Us,k'_y5?u̴M{G>tFrAZX5TIfuYx*h6h'gg~ʧd(MK~ 2@4KZ*,bfIvjA:7"I쮿eW3}ݔ0`o~ϔiRm.*2ua-ɗ!FYicD'jz>+dDBKx|'V6_x_w'ȽiB&Jw'M* {b#"߼p7)T)M¹hkXw6=Y,* ׷]ٌq or>+'~\"&3P"><_{3z `<,G/oM >+f4h,h3Ʈ V=6dEMo1dnhe>/ȍrf SN`f]ȃ)%IFڪڕEi,n]t!T>sffVx]ͭ](pxu8^\Efa }0iOO nMl: 9]%iL #ǥdOxԓ4Vu|K* eOtn>ʿ1ډ6fWqiڄ︯OBٛn0?tZUc7$GdXP*=kDɠyBe/r-r8wlt9*[ /{#NI53~rݡ0&xͮ >،}*6qDg%ҿG@j3KC 'eԩ 6짹3 '0wτ-}0|KH)'QAɸ nGCK=vrȐ޷?6j `#i9Iݝ“0u ^iV)g=qAp-`j*ǔAoS5ѝۆ>F:!jkTOTwq7OS7KD]a =Hh"xS#%o~+#+R:иa T<.l3_|V{{4.9jV Q^C)}RWG͖ P$a6]mM_42TUjj͆m~KNT]16RR q->hlsFcs~ ~OAɳ<z*}oLsGKa[@h;U1o9Uxqeb~gf/^$@:W=CZ J";K 8 EAgzE.M/1!ݑmН=<2+gեrPɛQh4c|& Ͼ'|aׇeޤ/ZEԌYk>!wn?Zʡ9l e/2@g;?z2$铵ЦO4~C.iJؔrIkRDP4*PWw+TO8!CՓ$S&O,o]ULUh2v͐N9Ռs&вĭMhc&WwڌRlu'~p晻 1g2p˒>(+4v$ pie`"!\3okWɥUT|NS?j K&?Rf ߠIeS[b[}{\w_SG'!Q31~XWΪwqjV cOtg[}i*`Aw9nd!.b :pr3oX!S1Qyez1H1;ۗ3>NN+ᭆld 6Ufi YB3VMZⷀga%ڵwL^O88 xP̷w-7;kKj},cv&ub:qD{qӦ95"  \YH${#)s`AXKn6Kݝ;c804rdYA74MAѡQ]$AJ'ݸ!􄕝M[KXeI͉tE"Tr}~is :u<1x=CmVyn25:A7|%55@x=dǍH>`ϱvBA}csoTur>KmY0s0G\ K-o9evVb*>䢻pKrZAf,LF ݄IՖ4;S)!Q޼񣮍@X=ah>c`"](umX^A"1Y2%L@ z߯wMK'ԎP&+b QLK /pb1Kk^1aaO145gZS瞍Q:Lc7slT6 Ҁ,1k3;KY6PvŷJY,L] D^\}K*̍bWQp [GCYgm9U2sd% FO;P/w wo"6{^Bgʨ$e%XP<֦mx4;5 ɱJռHg?:S0k.O=Œ7&I} +1{]o}yHwwK: wlyzMtg؏jx6[݆)Qƾ5-JzVansf8Gfϥaos/Q=e}ւc1T1˨ ߏ1`hWg@FLuyn %T]|,J9? -fZY0$atӫMG7<MNX2 +t0jАUU@5%)r`%6.tY29=E/wlaE ӤY&(Zuj>Y"l_я 1b}Tϓ)Ks,И nUoDnJTl~H 7z2UaӬm'a^kn~Yz?#4n.E/zMGR^Od,JJZΊ؉C-ا H5wk?\sutVrlm ;gפj 8߅}@9 (]jG2Ucًq|*1YݾfdE5läkFZ{1mDɝWjs3Ud4f5rv_JJi ď/<7ewt$|x >n{Ł#٥ 2?Z_iy\q^(P'6Х{+a8sY|:0Lx@ p}l^4)dh>`6A<3]oVŊ}%+ӟ=y[0 ." 3M-IY)^߫G{|+q"IbYLpp @Z-^: %4d L߉mcדm*}r<KwZ*_{f=uF\e&G'WfE ;R(nkK=$J0}]BuU~ ἅuֵiU;r .COvIM=*GE+ xOW-n"~_{z ?7 :Oԍ>~ZMMف9H~+yo* ƒ0n;)o.B춬u^# 8P˶8':wDO*3~6U'gs)>hN.{4|~Nc0FVhՎh&NB MٻȚl.cg+U1C,44#'`Lk)u*T/MFeIu:i8HQV$ 'ށOI@eBEwK2G?Z}N!V5W{ٟrf(Cm%ɧ Q v o%5akeO(kR![{Ma`s4s~L鲲>YQmyq3F6˒>v?eoJ]kfdU5  `7&b]rBYOm_Kv_Y}~7fŖ'‘Y S69v2~hu"^nRSm]7ٔ|޵ *Օ?ڱyg&mb|u_&> ӣfDt6rW\{t9Iܐt̺u_Uo nbVsnG թ9 C0]_ !<=ۼ a:q1aa7 T{Ү(kF3 2J,B*Kn> 3䑆Z-ZSGFJS endstream endobj 3009 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 3030 /Filter /FlateDecode >> stream xڭZr:}WqR)[խ[&vD۷H͉,9ZODˤDWҼZ$ѧF$s8'GCc]04B '` Nמ(\!!,2wDXUB \p$D d5ܕF8k" pCD 8A<]M> f DGHfb1^whC,x,\`TcT ΰXC8 c F2/sG8(I:`yC򐾗 #7W4Xx̓7L76Z0" wq}<{eb! `Bz4֡( D08,3qX"Y0 fDNA0LOyMM88&T3k,M"vfðT m0`z9'x<x'<{;WG'oz)Q_ [mҡ{~>A=Ȟ Qvh@ rnϲa= szI1&稴&Ҝ?l:'S6{_ dbT~ӧb4gxh<a|@i1)r:E?$n?kWM0ul*0B lCqkiۣ#zL @9#4_i>2:9ŏ>G1тQ1阎>g|4gU*SRM iO':07{ۿF7ݖ轤"#q#`ؘ/-6*ӛպ2S64-a}5絬Eְ\ֳf";m,O wN%2Fi1foeɄ \psCy60{º'P<"z tj J|<_Q>QSQF R\&uקozݳgX#smrKK>V|8gdDC7?ǃb`=ģ~>%si/,~ iu,To5`izd: 0A>d/s1=Nkp[7DSn%>y{WG\cUʶvsF X@ʀ~ȿ&t^+&/FW_?G r\:cbz XAT!췫1j : n+a]fy8Ev$K8q_&\ w*]q>^H͖V"x(5?K[tʣ㔞awe ?0$(!б@(WJB hFav!PD(}0O0l2bu(nR[ FB-sK(AH4h$b@DRa15b̳l,BT]"]1b:|(Nh"%S¯'HY)YVA#+܃o eEq40 yz N'}WTښ34d"tҒHYiKV;q:iN fټŽq54.+7B1)+ ~- l}[Q.P N'4Ⴟe[nl@&=fw'b,%+JĽ@oG26kjԘh$&@2eb:aV)~.Sw[xteJ$>asJaw҈=f˔3)+L9\.ScV~E֠<.S[y0@2yl}^14f%kX~®ð9VmVWWUjr8pMvu9R^{X^L^ŦywY,!(%ٰI[ҁ܊v1 b/+eR\ ??~U_M$Vv\z)k'+X5Ǘ^tGZO4[z*v[ۅ?OWzQ]CzF=TEծP=TjCUzȺQYC!zF=dEٮ!=DlCTzQQуzF=xEޮ!=ox;JɺF=W菷-%?m?]'i4xOszhgt?*t?Yv=lM w_Eۮuz؊][6a+zv=L]ۨa0u=^~u endstream endobj 3030 0 obj << /Type /ObjStm /N 100 /First 984 /Length 1542 /Filter /FlateDecode >> stream x}AF E>n'À/`A.,Y EOÕقU7#:h8}@F |Ⱥy;nf:4n ypLfVܽ Ň>utGa7ސ5 367.ć?➼,Vlx]D_Fax7FT,QZ4xkX}-Dsh΢k߈͙̾}#3F4gFgGq_#߈Lֱ͙9{ٛho9;Û`o9;Ûho9Fsxs5Ûk07ho\9Fsxs 5Ûk47h XtK]匉t^Es:}#ќ79oDsR߈椾q3xͿ.* oL?_~׻?@|}ǯ_kzmv.ok9Jq_̓ky˓39ky<򐖇$R}.%\fK>s}.\eTKsI>R}.%\fK>s}.\eTKsI>R}.%\fK>s}.\eTKsI>R}.%\.5~ɜxH?֔w >[!os5/}sn}s>G9>G9fϑ|>Gs$c9}s>G9fϑ|>Gs$c9}s>G9fϑ|>Gs$c9}s>G9fϑ|>Gs$c9}s>G9fϑ|>Gs$c9}s>G9fϑ|5?54G5属U<[:SޞQ')o|Cgy8k}6׽ϡSSy㸯y> stream x}M\7 swSd 0AY"@a9~~#pe UOU5ݥh*e؅oCWkWk(W{hv5r:.ơPIZ.kYUdm˸\84NX}M<1}gNO:Ƿ?ʷo}}~o'zONo^z%^Itz?'[[7^z-+Nu_>ZG}v>}Q}-}Լha}TG G%>jG9(yQ>GG (G!!G! ̴݇N/C&>zKq=}},^/C^\u_>,}ч}Xzavay;м}X؇}hއ>4<s y.%xKs9x.9\Bsy.\Kst}n=RvFņ-RvFf-R±kYpEZl"e-kHY ZDf-R±kYpEZl"e-kHY ZDf-R±kYpEZl"e-kHY ZDf-R±kYpEZl"e-kHY ZDf-R±kYpEZl"e-kHY ZDf-R±kY VsZQҷVk!mZ5Vۦnj߁<|Đ}b0|aVsZ%[+[h-ކӊٛޢmgi겷({k-^wf?\p endstream endobj 3032 0 obj << /Type /ObjStm /N 100 /First 883 /Length 1606 /Filter /FlateDecode >> stream x}j$G E+VnI]@B!?~X lϏ4vF{wnNw#kd&Fk69N:nthVHsSwMj|&ckjin溴}hSx66`=S=G >@n,va h5,0kڬ5#C5N6бXǚkΥsjXN66:\nXuyftyLg[p[0rFC7vͬMѕc6"ˈa][ѰZa kX6/ e, oˀ`ets!4=0Yfjeaа]5,֣ t@l`׶? t@Pqe[`py?XF\lu'b+`3teqo3~tEd 3]{l1F}{qm7]C/qCLˈn!},(geϏ {pۇ߾rVz>zv/o__?W?o{Ǐ]z>]]х]uABJ|tBȺ]K=ؓ='g?K3td?{Og?K#G~3c?(ُ~d쇳%؏}wdξWwSW{Rv=aϛʮg./]|T箄=wBȺ]%{yfd/+teK^{؋=gg%{%cΞK+猽Krp-gew-Z\Z.]ݵ\k9s-kt-rZvrZ̵ҵ\˙k]˥k93ײwgݮ|+[9㗯~7n2]OLcz^/;!ϑwyMp&~U.>F"vf̺|٪lWNgUU3Z^5TuR5U1ӪCSVjUWUX%]*Pa.v %.+K;W9` ;;v3˱ 9þ}eؗcGʰñŽ}eQavrTavrTa2g}a}VgNg}3>}f؇c paR J=xrRz1TJJ]RJET"S*\TdJ+RLpR*R)TTJEP*2•JJETRQ)AȔ W**"(RJET"S*\TdJ+RLpR*R)TTJEP*2•JJETRQ)AȔ W**"(RJET"S*\TdJ+RLpR*R)TTJEP*2•JJETRѩ*-.[2>jUUFVEѹK :Z**{T9v#.vPa.v%.+K;W9` ;;Ua_;?.zv endstream endobj 3033 0 obj << /Type /ObjStm /N 100 /First 868 /Length 1964 /Filter /FlateDecode >> stream x}ϯD W={ qofҦ4咧VLOLrSN|۔zu"*)C2|yr=,Sf?png'@NΏF^&Ȓ95#TNS9I]rx#,9<&ɑ@rx,y.#<4ȓ!IθAlX$*axG["2 sr[@>蝹ptb`(!+9 1Hd! 1TNPG ' e N@,DrH8CƉ;4pf g*de@r' gH, g:G3J<\IM<[O=S3Yx#ZYCиʽ*n=NmuL{#pz_^ΟOaYzx|yg/]ya}kJoMqT*TvJ1{m[Rx/TnTqJeŞ#`'{V9Ž{gŎv4س;F`G;*vvPa=!ž vbOd=)aO{;vbm);]K+EZ*.RkRw[TRvUK㮔boL){S-޲)aoEث={<#wuzTqF4ҌiSҳ2rQgJ';ŝsZ_7o _{||gv雧/\%>Q*.l"#gQ-Gd?>^w-ym^p}|'Q$޶$Z?=#foMۂ&Je)M[$v##MIl=G[4͙KdZZu'=4YΚwdغ[y`lfyzKL#fAҁ&YG r17 oG̴ND[> stream xڕ\ˮ,9߯%G; XY 0B!fѧbsTJv8U}rr#kG 9TQkE<:J:;.cɎSU9u2x%{G#ňpз#YFT=S3v$9r>wR-ѭWm Oic F[>hvXkp}QRbk;[Qje>ǣ战t  jCtø:!r1FGˎ'v~Nl1Lo[ø^=`\cbk9<2zxc Oi!>.aA8CktǀGӡ/r>NH4lX-+iMQ1Zqyb- dc1bg)1LcRVX RrVruVJuVZuVCuVS!&k; ˦4F}̆q9Fk|`rJc^l\X% ={1Z(0yly9F8эNZh#ѹc}o㇟?obIFed3 m6*m}aC/ك7~ohc8xl MM/r/k#&^m M}djc_mK&aHxnƒ7q3p~}jG/=)Wgҕd4Mw!&+M]\Eb$b&*1)Đtf% Ekwvnj״eF_1dFOw1RƓ 5-+wQ\9D{ZoҊ!RMWiz݋ "j=D*O+M `Ts2.ً-_])T0R劁G.SGF^#WM/^)ȏUJnW,Rr5J Tf85*.M*]}WMpT'vg+8\M&]޸W:}XX|4M#PD0m,0,CnޱY]R*W ,\ªc{DA]SĦ27YQĔ,(CnޱDbaSXKشYJ)$Jҽ͌UG{e*aӌgQʞ5DIWXB639"Uލk<*SIT;#53NE/ mfn3sF՟~?럿&b?+yشق!&lovói|zN6Ft6?/ ;>@Tsqݫ?xunq}se}j-v>5E454`Z]>`ᎌj& :Y*4[:(Mއk@Ǔ%mȑt2plQI8PJVaQJ e$a=-BFJJ^fl)&mWKR63^<R,dUVV7"vimU ?>_I/TMjk~ ,cՎǦ3E8WŹI. \]jFh|YtHhYtx9I;Z5-=֥Vq!, [/KM"Wawrȅ.˅0W>""wBHj{X," rd/Kޘ%@v]BVZKwEL :E(P*MGB [3dtszz\Oq=WO'èn|Ny;=ogN?{yi'vgDWOo# 8> endstream endobj 3163 0 obj << /Producer (pdfTeX-1.40.22) /Author()/Title()/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20250307214756+01'00') /ModDate (D:20250307214756+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.22 (TeX Live 2021/TeX Live for SUSE Linux) kpathsea version 6.3.3) >> endobj 3147 0 obj << /Type /ObjStm /N 16 /First 149 /Length 509 /Filter /FlateDecode >> stream xڍ;o0w PE@H>TdP!A %m&"Ϲ璔48sDZ 9Zrcg1PX\b*y&S̊+cYi;-9LYԊF ,5Mqo 0@D@Wi?׿L,-"%DJ:,bY S“z7vC_a}f˒ϛۡ5 >:ad% endstream endobj 3164 0 obj << /Type /XRef /Index [0 3165] /Size 3165 /W [1 3 1] /Root 3162 0 R /Info 3163 0 R /ID [<34FF548C348E40E777743F39C4C2009B> <34FF548C348E40E777743F39C4C2009B>] /Length 7613 /Filter /FlateDecode >> stream x%{pYyQk$˲-۲-!Kd[-/Vɲ,[ e@ B&BVl1M`%N-UPY(H"PI%Ew>tsnL&E6f,io\fZ_f@ 48 m96 Mhv hYЂCmV]+VMAہUhht5m$XtmUh'm#F`& hЍ2t3m+%V`6`;Z`'Z/yh/ m8t7m79^`1hm/Y 3~AQaZ?Zz@;6FNA; NC;F;vA;_>6v/~mMR}mT7Jث 4\%U}m;WhdJث &mP^U5ɐ*a*Ѷ@ {Ua_@#U^%MFP^%MFJثhW {E~W P"^ɣ% { m=TH+5ts{m-T7WV*a2U^$U^$ ҁ[m%W {en; zPS%N4 ɫ&(J7W {e3Z3W {EBث Jث T6#U^@ {W4ʢJ+@P^%M7a& W { |*aC[*a0VW { %U^a*a hW { FJ+GBuW@k}(a0@{ o\={ፄr Sh3@+̢ih f-  h& h fuh@+Цa0@ag򭝅v&h?3F Vv&tPцž0NCž4 {DV; _N& 8aOjhžPՎAu{B5W& Ym" YMA& YT! YMI" `T$ `MX& Y T YMã0: {mt 4>@&"@&,{voD.4{٬{l'4D3 Z{ D36h@ؓh[aO4l{ e3 8Z7t@ؓh]N'6A7=Ѥ &$~aO(j(}Iž(롺@ž(9=Q8Buc {pv=Q8@=YB=y zh Oa [BsVBGN:CS4dǁhT pMpN)$a`M!U(B=ESHd1@ǁh2,z&ghd KZzS7R>& GK):7h<4-`Gt:F݃wxE9.ˇ.T'#4^H߸ܮF; 'xE Ȣf9A)MC@O(㣛ЂF݀+xDסmJ4$hxP`?ZY0utd4 = L]{im:L= =L}:`t * %*$T@K2~9a/QE'ℽ$SW {j.: #%&H_W7#]Ȣ#P#&ȢCP#bXF a/1qGY# @><@lq 쪪=Ed)^o}E®(څF]Q'넽NUE;NUEN]%NJ]%NDꄽNUD۠NUDN=ىJ]eJD넽NUDP^' wD~넽NUDNUDažf6@*H/I}=TH]_C7BBuc {[ h QD.G h7 { H' {":aO4q붓:aOdPS'&n ɫDfm:aO4qk {IJ#h,"YGx5A {,&sٌϡ$r~M,JѨP,/7a_ABq54<*1KP^CU'hx<\4eoL {.#»PC>t*<ZBA|-p m4h< hpЦy R<uf4^7 h+'mVQSv`OЃ֠pEi^֣*؀F^n64']@7Mx؂  lC /B{h`'Mx Bǡ=hT79^`e|8ao)Sghh?p'4УOp:CcC'xCI5h^A{ur_N]h'ℽ PRM 1na/ uu {Y!j{v.UL  B<B&CPy25a/ B^Ajx&^f̃ LR5-L.LRm}{ {YF߅fa/S@2Nh eʞp{YF-L@[^ѷA^ B^ѷ@WLnv=ѻžR]N2&F4Q0aOe P"ž2)GKTF_TF!쩞k=u ži 쩌{Ji{J=`%0@S*P(@S}t )O!;>l=5ܧža2R{*7A=L(=8@SɄ2zz )R({O=Ճ  j)P>&žR-K)TK"@S`z )Rp:j){ʃ =Z BuhxTK~DʏxTKqx4]n}bQ2 #$5:yN_ t#@=BL@,2t3xKЭX=p;@e=>4/j]~p#Q`ǁp8gp]\DJ7QwW]㡁jh52\r,3vZ@< r<P=9.0 "4L3Y 8@h\(-@+hV*`5@'ln`3 lz`' vs1-].{}~p#Q`ǁp8gp%20\׀I &p f]2gypX% |,c X>𱀏|,c X>𱀏|,c X>𱀏|,c X>𱀏|,c Xn.f2#~e|,c X>𱀏|,c X>𱀏|,c X>𱀏|,c X>𱀏|,c X>𱀏|,c X>߰뾤>𱀏|,c X˓R  .ՃKYRo".KRӸ;.UKyR7T.K Rm.՜KR.K)Rc.UKRǺ.KIR+.յKRTn(G4৺,=Y?-X9,)\.Չ˲e=qY,\L.)Ue]`sYɹ,\~.Bբ2e}tY,U]ְ.[Ure첀vYY,].tջ˲e" ˫w ./\^EpyV wW?^Wqy&]h`X4.@[Xh&[Z6a]X\ $,vN6`q#@+nh=MV^W ж+żea]`n|/uD?Ѕ/t܋}qzq^<I/ϋEy @8!/ŋK=@x]rz->vuqe׵4s"xJ>ΪVVݩEcQ%<@% hreCQ ]V-k |ӧ˼Ҵ_^oo<$WfԦn|:/55a#ڲɀ.7*DJUMf`IYix,5,GxY[m2dniDd60(Mt3_.mi6(p+ͮHm_dv{V74>Gi77{8+,TkXaY6{'먜7{l4['쓯~!-ŵiW=ڭ pX3f Hr•'Mfϧ:]K͠,:' %\yaҴ@n}O3HIzR ON?O[%i,-t$,sefH}2` OIc`''-m\'mlKcRќY.M;fevISF9j=:/=nٱP@)Ӗ4"7hN,;U:Z'uhٟZhͲK5Qz鎌 j9wbG"X YKS+˾ {ڥ!3mC⼗#8=#:AgT'z-I3],OK-wJӦ@clY p 8a4^Fi)aԲ3%`ܲϿMv@L- YşJe2D~lUv!gK}9X, %Yc_hh ߔFJ˵4Mjpa5yP_Nu$M @?*M{uܷYnׄ@^Ԁ?qi9M~rgu`KG-wf4u>aJ=~ir32h}j|rwW,ijC3{mNKw-f%ƒxҢҖYj3(Ir{ TBc}@W`[^1> i$/Q1x%#BcN=4kI^rO@FAi̓<'MSnoӉ:,}i}>=_(Uw*sɸ%C槤!1xQy˿'m `A2nWD*d4$ Trr?i)ܰKjmNYysISkP}0mGެ {5eh3g痤"/8ʑkkNs?'MۜPk9Cvm; 0xVo]OGN bz9v(̹Y:j3&igK9/JSyl|4^)z,F'Y9yNڼ;}s-svE|i19wQUONsN @ݜ]V P^k m7iiC0[wmv;)]F/:=<:Pq9:·9 M3 LdP#"Z~gya& |ۓvWeiW[9 M]<ަq>0gd!Ћ.:ZQih[󳢴R`i?%@YyKt廇Xk PE NlX}4ԀnߕFR5z-/~T?g *M}&”U;S4`YHt^'M_R˿( 1#UAI/ZH#-,Ei%uߢ :0m˿YL{Hc8Zo(+\v/9 9ԾhG~"MB.xWYOZGij_OƢS/1"M-X_1FOoF:`G3uѬZ+FڣZ)ilءoFΣ15]xy\e[_IyC<&1/HbS 3sń$fFLb&!&1шYL$ , fb,fb,fb,fbb &11AL bb &1[-bULg9i"fc>fc>fc>fc>fc>n ?7Ȁ, 4. X+vkBCfI endstream endobj startxref 707275 %%EOF elk-10.4.9/docs/PaxHeaders/spacegroup.pdf0000644000000000000000000000013214762655577015261 xustar0030 mtime=1741380479.323065208 30 atime=1741380479.318065182 30 ctime=1741380479.323065208 elk-10.4.9/docs/spacegroup.pdf0000644002504400250440000056067014762655577020021 0ustar00dewhurstdewhurst00000000000000%PDF-1.5 % 53 0 obj << /Length 426 /Filter /FlateDecode >> stream xڕSN@ +|L$bƳHeM[$Tuw[xUN߈)Kyl? endstream endobj 72 0 obj << /Length 600 /Filter /FlateDecode >> stream xݖn0~ K- tQNI- oߑ([JV@O#qf8dhQDrpX|ֳ/ـ6]͕DL!5GDY* o`{rb8XCQ%ʆŎ+28:vm{ł1hyCMn/"!)ޯ\uI4NE72 _(fl\tMEŜ<֠ Eֻm^eWخ z}]ԛ]m5L`܎1M(f( 19G[>DN-[f~t >&j4*_6UY; Ћ.H+J' > stream xڭn6=_@"Rvmk0}e&*K(%"Yr:<M]DwW_p#sDEe AY2^_v݃[D$A,IiFFaij$Zm1Y, <^0wmXºN5oirCGK 8uoE)wmXifIS4*vGPe]wE6;dgI,C ' Uo \Pun rlhM4c AK."fyc=+(K9ț#:DCN3ҒC.TN1:`c\PAsӡHxֵ_3"1* r H(2S*F`5]8 VZM"f'V/0g' (K*@}a N)#tj0#|lTF#|a)8#*ׯzr1 ӧ|Br9d ݦҒQ(>VCKvb{miNad2>/|Ecr/]s;F|pU 18N;sKNu斡d?YC,\jYkթ;,!][JtX?2(Pyl`l 2!xjW6RHZAtFE0{1!sKy:fAwP&(^O1aN/aA]gP3s:h!Bcf.J0#й^WpCھmJV9:s!'&ӀxhP=8 JOZ9gEP) CJ䗠j$`@34f)E1N3WòA <a)g~,6f> stream xڍVI6UF%,qr\q%8ݔՈ qģ}-{[  7oh@+$$#Y:7f+6ۗ %9YPAʃTP2ϰ}ꬋ*~ھsCL%s+:a4#! *5;U~L,ۖEikrЎ kPNOW.05 +$^a%1n,7yyBgF4вØKczOs$Qϊs>f9uX=U,(2 ݣE÷v?yNs.)_82-~9}{/cƈIRu-~lQ0kqkPD,I{xyXC2C0`On( cRgXKMcJ|| kqIrՑq OV:;sΠg%Nϸ;kUtIB K|$MUװ lEicE))'f{b4(1R)f!3:γ n-z|Wa_&.Jo6<Ƶ1V2`y& 331@RD9ÔTMv".Qz:FӚPuyGE"Ux ֿg~9 .{뜎[7ayT @AӟK0 7mU5<[onp3:ԙbF|2q]w3fvi>jJ簕߸hsfgA7;?/Yw|WD5rqsOws7yu9Gl{wQ;?J3CZN ' 0q~](_o endstream endobj 92 0 obj << /Length 2989 /Filter /FlateDecode >> stream xڽOo>AaI o׀WE\m}+w9ҳ{xϜ%\㠇~qW&!94|0v'pWzcbގun~e~0*;?J%y)11D m$*e﮾ޤAj'=m(V! ~~~?oMzu/oy՟STV ~"&<"!*"exׇ?>qIb?Sɩ% yV9$|-C~<9b~C JqĚR2_m[BڒQ^ . }{mmgwt8q@FtpO Z\PUb{QVը|A2Zb%fфvh;{OZm^%pΰAb=6LE[Ũı݈ Elik k1)AU>e.ج [ܳh%mU[3v'sC4!no o0FT턹[ܳx%oU[3S{NA7^ɷ7ԃ@Js)"p㹛Om-qښy8ۙ?Cr+C#}i} }6*?Jǣ>irE}<,;;H[W50ՓC4!nin nMp3IinEn<, m[Tē&č=Пk8N 7inm<,e [ŨTzN[^SsS6gB&̤܂-iښyTiBxR~4hե, :*$U-徘 ZT}ZsDg!Xyr-*o y[U*$/yAHw2ȻguֽQU=`;a˜7Ȟ -xk =[s݋s/٫z=iosF—7Gq[/Nx;5" ªO~KM -:k]*eXHlQb/RA6(Ct!ӟo$ W>gT {!ϽBHwRȻ QV]j Qں1fDq[yXҝ5|0 D4!U2(_))@v2#?a**{AL_}g†4YE ?"ԤQbRSş0 Cr?{wu^(F^QИG2 ^9H -y4BF=k|gBHXu)'h$ .=J| -y"?^}l6~<ЅUU;bc 埠%ak6Ҥ- yI0݉!>3|6)D&*RJ̘ bZ~$5(~L'Mȏ^;W#M_=u7iAТ!M[Is/"N J2?DNjm槧bKLgHns7sN҄Ճ:Ӥ ?aEĒ*vӁ{́[|.FYU=n6_ݠ/jhWG;_Hns_ ҝVweѐ&dzYtA%`S $.y&aHwBXuF UH!orYawBG]]RţBi.F< !Ia}w8#zI;4<z5NP!CHwrXuFcDrțm:&NoQZF^V! Ͻ@HwXu5V۔ M/r6N,Dzք!ޘ.v0 M>o,ܚiA>Snwݔ_@+Sǃ`iJXv:^|XABXرwn@Nn<1dAt'MX2cϏ|AW5FVP(n70n=yHQS֛#C#=ygcҼ<ˏ5FGD/Rwq'>3]*ZW[F{'~c7QÃ4ow{6J_(B_Jzm3&z NϺouO)Dnb endstream endobj 96 0 obj << /Length 3103 /Filter /FlateDecode >> stream xŝݏܶahC$eYq7@-4 `oA4w1fg#+Cw;ݽne*ݧw7OyfۍoNv]H߳uǏ7?w??~ʎя5Z a司G0zGǭx7/5ӽQwoNOH V+ﻷ?u?/L}zqHǷ-w2тD0?N~~}Lڞcĸl,ݧχ>_C8pSѺ[Yӫ w*WZ@亯'їڡ j b;C>w8?Zw~6Z{=i-ЋpBr'wIY`߫~A(;Bt3\W0^p ;Xx?NY, TM&U +W )Ȟ ,d zf~6g(10,|;HE3v\+`qZ'C6r]C\taL;NU9b3v\+`NޏV+Ě Bq+wvݐnT+RՅgW@,V^qB r+>+Z*֧=Փ@ D7u};ub.$7[S&~/4$O`^~Lۑ3{3D%7sxXP6WQށ4FEByf(U"JD LBt3\w&iIffdr'af?(շP&TAPNp:Z*\*$ IH$`tvkxCd&v G&$zuvP1J 4D%O`Z*;%C\ sv )>m`K~ct3\K q.+K8q%QYU?0(mN-Lm^= L&j n&" Ygk7%wsx}yޮ^50"9F8cɅ0X"ErKX"+lV`i}Db),c3\x,i"͌*%,nKp,(:A(pn% 1Y+P)/X" [ U("+Bg$p;$AYę<{/Po;R=”;]Ĵ]ijP Š,-a&Nz>qZ1ɘifLзC&7N4QCި^fT (rDఉHC|4 v' ݜ)la˦Q9ѨlJ%&Yh7 >qS|Bd>4'>͖ KҊl{P$VW8pr]D!8yv Cdr?gk„CO`@tz5tJkL'm0K!:Yڻ!vNfg]Jzzj!KC3\:zD!.yC`r?DTΛ+`Q9jgR9g0.iN` ZZ8$TCarҾDkF5:CJ ,XDYݬky)~cf (k@v}]єuzֺ)FƧT!ʙO'bCq@]!Z%4+hiwYP[])1>8=G$! {>Z'!NʸTE'.V Q=aT(݈(Cr݅KV2 bn6Py(O ^5D$݃HDLdrr矒 ^LKhnծ=$-푀zDY: ѥ{Ȳ>eϊ*;P;6h OLkԮUzU Pf|W,tc/7CuefJF2%f!rbN0}o{USCz:K)X endstream endobj 100 0 obj << /Length 3018 /Filter /FlateDecode >> stream xŝKF+ji/DM,Nx wY5VPI]Jb3qmwK|iR$'7;U"ӗ/wH)ߩi.5)E4~ }i'9I 3鿇&0zN<N4n :7{ F8;c{NII1YMLQ{㋇///4,&VȨ?l~1?r}e7G!ey|\m/E&h16KQ1b:Ᏹ@6TTAOrW[( W)ݾ:1yxa1ɈaN8N7FF+t: 6+GjrpQZlc|K.3Z5EA if4 q-uqvBQ*Ia߲Nl1.pOhGz)t(J W(y\&$m -5Œ 'Hf%MFU=&_Mob$m6}ÛbӆtLӳP i\Vt^aP/Hج A-vQbtRN8մjޔ sEZEzA i^4/` 6#ԩnV>}`jRM(>$mpmB.5A2f<åe&Fa=h/Z8S,sO[뾟?Ok)aSzc96;bvn4t: +fR0`Y'\5q 5@CH9YCZZvlѰ5\]o#t4LgxоNXc|uo""fӜlq.mpg*>X6G @ ]dF& HY-6vp4B?NsmSa2"UC^+Bj![Dl"23ABmE'!\Ma"l"fՎ[LlO^?c B"aJ[&*RmfH9YEZMRq ܢb=p&g4QFx 2Q'|\/66؈)hcS!Of0ey`W)~ID)'HI#DWF` WF)::j>#zN^6Z-EZt )'[HY6\ό YL3tT|e9^Yӆ}!di5z`D "9@;Zj"cDzH7SNVOAY̌3t\NU]U_F ytłGj&6ŬYADP-Hx:%|m6D' U j"ŏ7!di5-w [\lg.K8)::(m8+}Ց_͆}RNVVif -*6س5v2¡S6 oˎ3s/ZH,th !d i5톻-6+p[hhT%'\+3gHѷqRNvVVHυd&!:> l7+/,>hHɷRN֑V=#Ć{>{:et hYSxeV C z)%+(Ֆ "E?y~j{ .ݛ#hyΙsfG @H-GI)i]pf)43 P 1t.RMbH1G i-kgÆz9S:9 c@=O?Q#=yz߉9*~b#N8?[>j4G"=̐zIb(I-#{/C˭()V.t> stream xŝMs{Fb\ReURVJπ4zacGzb$ţi0LӓMqިutlLbJJ@*niQ[ Ǯ7G(}V&0}P9 ì|0 c9]);#8Älk`HW<^Eu䡟SrFdDIF^GFH*#9E`d>9WӕtRrXM&1VB&/9yQ &NX.`_/%pMVY{֪64M:ri#$NՑ):0؀UF8\EGFzV5v?κ SqJCc$!`BI\k2F% 8YJ+I4'!yMkpx^7q)+@#myZN+*Yȩ4h !q TSihBT <>#a{Yp4:*]Un,2ɋZDDSMy^xK&6܋4 &pm˥L٪&^!c#@GLMǽtp-8^DlP>\QA% 9u>cT <4 @^Lxr4v ^7r:)zgLy)Ϣ!hWZ!yR`InQICEyNx+AϟH{z멒C!SY;ֻz~;ԓ'O#n 1\M3\BuGNzX=ǑNr1tq1 endstream endobj 109 0 obj << /Length 2984 /Filter /FlateDecode >> stream xŝ]o#+r ٻh"{B7HKY$u(gw9g8Ҩo~~V8O|~gzNMǿRN馐X;w?$OR9N{t?6M-ߦқoop$mns~o>}㤤嬦?O)ᣚI~<}> f/L ¹vG/>pTOCTƦ>_Ap=mkv:*0{P1A|yU O;'w[CxH92z0be b'#f76RU"{>R翌/Ʀ^6/3$Nֹ{FbJ{c̻{;`_~x]2:>J)<|V(o"]\dsQ\.8_q.6ⶸe\.EXBT^"Y†n@ `맭~A(bO * 30}!]S ߊ-Q{s, /[ռya**㞛u O*_myB. R8L*62QquC12= ]|}l>"v7^hXKhR,Mڛ*ž/NR^%{Ldg*luݍ='߫w+:~( ?џhI_0^"܄n8_n"͆[ݪ>f k,ʇjFDHD'H<\?VEO88\õnV"HePN 5@YCʽ4' igpCE[.f! @ .j.5BDJ8YEaϭ@ņȍEtlVx@6@>j #!Z$uh !q433+CU†{1+?3ё0#h9'. fa^F} &Nyόlyyn.# .E\17#FJѰmq5g#[ml6p`|QH]-!Z4Uj'kH<=3[5l{:r,h )+l(kvan{# i4#3g-ZALӾ:<-CDJ8YEm!b]2ѱ1ahƐ+W#!%l: &I&#{c[$l22^DGB?Ak6u!"" "BdiGVp/nF":":/-2tPtUs3_l/17CdiGv66\rDkuh" Ԣ!P58{vvF` mF":Y(Zgƈzc_oB."<4OܕjHW7pnp  Uzff፪ro!$N֐y@W̝'ё1M@ Vz!ˑM27oCFJ^:ktmqR]A` E\hbփV͜0g;>п`l؈s~-6ܑ;1X1+!9#6]\Ә8E3[]l#w/WxЂNXS!Z4пv4"澇ba:FBH,! s+}lr7M5t i-cYn#@J]e*0@fs8z;:VQQGKhUgcGW@E]*Bdi8px-Ƌ訥52j+B,:ΌjBW ,#$L*R)8\DGAB}Q*<!!DCH! o6RyD\>E.ZC=5HC=p bC0'0KtaWBW2J!hYG+GIipD 6&HllWrmr:1A:H62} [l$q-4&Lyi[ *#-ciV BZuٳEHɫ:h Ma6;."Uņ伮pE-,CkkRag-5%]Lא0YKEKnD9m\3^KGHD (!,fv/VRMV0ap!ri9\LGKiЪVɵٜZ"EK0YKEKnD|u͇qkEMtjBWYM &M֐̅GJHW2GWё0:,슃 u#qda%YpA."6SG:B=d[xH!CH," yԁ`{\/BЊJ{'YV5o醠|!a4fzV)z[>7#¡nS6 oy^^lU "#DFH,# sH@UFʽqqF iP 9"77] >H|$<,hu yрԋ_#Y>ʽ}('h͎-Q=8ܓtG=*z|0Nz;>D̾(!(=c$k c}yFDi|;o$ܛt",+;Ia{ྱڙJZ ICg?ӖqN?CNvwq ' 哋Ӈa endstream endobj 113 0 obj << /Length 2964 /Filter /FlateDecode >> stream xŝMF+xnn-aqؿuh 3z'lE`wAa ʦ8doTO]~Ͽpz*D7>0~U_8h<饇Y??_~HvH60FC˝ ~<}̓jԣ>!9b6_m~׿xyTPe[f4 ?&Bl(A0Ң:<|u.=hgXt2MǏkwIY_mX>ɟC>d4I| BU@N . II?0+Ӌ lfo썾{zƈ813.˹^هy]ECCG+}LJYp.rbnPTiyv#M:r6<_뺚Ռ90fQh.fń^.c{S\V#x [z]FC@t Hj MB$\}-Lr'}4+}0 byyૂiHCf:Β.ȹ_xڣIKi8Cʂc"'˱4'CGqDpIH]˂U4\tV]Tޜ !Ԫ!ZdHC4< g,܋{2\ihʑ4X?cE5$]D!y⢰vpEk'%h3#(/!j"'DD2Q%9w5*J+*&ѨA&ZG)C>ɷL![=maD쯢aP/d5ys W9&6"Ґ^dP\Y^`DN8d"3BO%9L jǸPڦ5lՐciDҐǙck;0y&{14|te'PڹӮ$po #"<i#dRO*vpj,jp^|qȇtՑ_0@tD!y2OA&UOfޛ[T'eP;qƔe}AqHPIPiDIPNn7.e9_s8UEGN$7ŭG5Zjeqea'_؉Cv8Ov &Lvr A*JƨumҪ!!Ѓߐ8!S/:Ad"cNIK*&[ӣW!ܳ{{IDzLG^(hAWӱ^.ըO? iY=0=A)Z7_'<^.H'[*j z뱿0=0[^¼c./ԕó:khMFv!)q/QJq_` N_n$|wsmD/r">!G'6UNzP-p_#oI*9 endstream endobj 117 0 obj << /Length 2967 /Filter /FlateDecode >> stream xŝMs7sB ov0UT|@Ҏ*[񖓿 E4{Dg@UXDq̇> fxwƠlCFqqOgξycoC*_~Çܘ/ 6{5j_yl|ӐlRaF]mܿ̓eӣ6`hQ1? k_m^ߖ??~}nW0&ǀjb ~ |6Ꮟ;/FzH!1ͤ?~ݭ|ۧo|9ŲU .*~9;lp`2m8y d,X6$U6{sݬ h~>0+UA&ey=ffu]xx̐^6.\04HR!*BUE]f5h"O󰓎2BUD9ͬ%4LYZ *kM5P@d!'_GCH!s'{c bw /HĘZT?4Bd#_`#`NSuye\ґs~`t쮡c1IвtA[`!JrꢩS%qҬ% 9,WhXR Zި™A&9yQ?SMqvk#K&r|?.a}|w0&ڬd'9::BTyj MJrٚp~D 'KA8W>Յ$LDzӔɳXRc\W\@?F#@]gtYCC|<̞a}hr&sR'&"\}\}$Νx"[Upv~_ECRDi A}1mE\rsYT.bzO'9::BTytP%9EI":zbDJv$EhTSUq ^ \RsI"*QZ~):i,1,iȰ,` !i,vnF& 9J_54AZs.9ɹHPCT+yVA&-919i*m@+^G=uə<6Y˦V SqW"$|i\MJF;ie5!}Q$AM_BU _ :W1y5)1S?Bd#G_FHj#sY*!dqBn7JjbR]ZIΟz,%MRruĩR8) |vdcw }R@לéCʇh3ĩ28wۙ  ZvnSQ&'9*L$spRj2I痲J:vj,EZRl=\ᓓA:y7ObNλ+j82{8c{ؼ{Q8 SqNJ'G9k k9ӎ卵 ;mQ.f#0B *fb͜Ĺ߬ !W) gE 5V:־74n<55lR&$NU9)K3 <4Q ZIQ%t<ĩ68o !XRao.ڰ=Z!)i҉.Iȹ!q<>5LN dw- !X(hzWl; )ᒐ-ĩB8!1A&!9:㷿N cw mP9dq4IA%9u"$NUY#4K"rj]CCBcmkbh!Jr2 #XBH*!H'B$!>PtqnJ mUj|L&r&&,)s&9:*BTyMR lґϺ*>"GAk/>sht tD̡!y%u:=:X;@C҇3hyfKс`W*2$?e% 2SVd`ː`pՏ$?f%?@r,g_u[wUɡTu8J}9ʘ}BAjwd{?t{O=tSNT~KuShG+O.۲yuJ$ek} endstream endobj 121 0 obj << /Length 3011 /Filter /FlateDecode >> stream xŝKoGF, B6Kyڃ,a_s 4|ֵrK{e_ʂ[*ũ[y2݂mnXr6䚦sT!`܊Eh[yЦV4la v5 ϋ6zVMRU*ƨ_ѳz)tM:I^ēdz)LꐫI7mz%RsLu`@BźYB!$Hn5\*3)$m=Q %:\;i |G iu n!nrNIi[,a75 rEfg'[iNV|&__rn{j{s'ȇ|;\M򙬲 U96 Jqꦙǫ9x+ڇ}۰d1O觃J]3gwҬ %9wnA $ & ~IG 2ؑWoW;S{.RK\R"IT?DL1[4^?o<|`_P*d]WCsFBMyjW8Bd`^ o#ὠtѫHŘULTFBTy EH9E^Σh@Mc[gj=- J-PCNthC"!f/C .&\RAکR/.ǹsm ~j~7ood }KqOyRǏ #J[ORJ.IɹjG)fh?N$g +ZV8%8o a^3IdT<먲gyp&0iWϺo nճ?V̈́#bQ)>9mLAdn&ĤmG A&:ppP(#<B?A]um8m^WU#,BS B%8uӁg<$m{q %:%犹+VPbus wu7 &Y1m>@U1(RV%" TS75m H] BBiBrNCc0gHXquu?z" XcNfGY)Y9B,'J}@LXCP, d!j!&!d!Kv~}n'N8:wl&x`B} BH9MC^N^&;|VdQ5(# XcoRNs𷷂.yqOp:@CAm™KMCc[N|r4DpIÎ{4N8ihKR1 Ҁ`v !Uî|'x7{yC ""$b]s&I6P?*mą K6r6-L=F^OV&;Fip2X,lM?]Q@#]{t$AFH5MF^aW`Ӎ.\3BSJ fڪ[,ع+1^!!/稡p DCa410ZJ4([ZYQ_ÌbVba,D=Aif:dT̠6IA%O m,ع@Bij4B<' }CVƁ&ں+[}<ع@Bijw 0i؁{  π:o]f#U XҐc箋iiȫJ"a>PNxXK;UJ[16BC%9v9j!LvSt&)A}fcÆB[%9v:Ա2f"/x/Di8b uP@$rh$Tk/L Prڕ}uWtpl ٴck0AjYc ԉYt ^>5+A@|>pRj/f/7Jئ_&N0zQ~ʅ8Ч=AgAg>sHcȰ'],y:V*9Ýʺut',n$ɠb=!ŴLbOՒ*Dp6|' o\y^^>b0*CuӚt endstream endobj 125 0 obj << /Length 3140 /Filter /FlateDecode >> stream xŝ˓6Who0x?r܇ڭYǷ$8oy/(PS´/5P !qR˛?n$'O*ͿO>柽xFMԤF)k_>I nʛ -Oy˝y':<Φ}㤤H2oʑ`޾~~:>{|o[A i"3"ῗqha` qewoyOKp~Uk6}> *f "xlR>3o_HA;\:n2`a޳僑| ?(XȦZL햱nRK~qy8R HCij~Ppryq#CExHzHˮw,|q_xFݿcJ%+DJH=:*`'%%J"$piU =W-R*-&R\=|4ko(|. H@7T$ W!"!>d4""W&#ewFglq<4HHD !آ#с-l4yr#f$/\9xMȡFgȸ)uպŃK#""MfVqϬ!!%k At,TQDiAj-o&v)wUM `Ti2ct3q#SE\~ctB2 Jn+)ID$S+#ݬ싉=p*D &R3F#MU"F\4- yqܯt Q(d$S1b$>d4$S!$e_Ff==FEo䢏]]j#[LU&&zMUfsgnǬb f"E7l)!Jf*"[!X9JHDhS"Ƕ-nbE4l4[fMW2Jhl?Mm̬? ULJ9|$$j(ͦUL)JTLn9KGI-EШ)i!!"$#db>\!y!` #D[PfFavG,B(kCmN[dlRWXX`X4; j3k-f)FaZ:5H-B~,s){TkA]S lQkaFG8VBPXG+i׭^1rAE.]% lQ mv-WqvG.ӠR8-EZXZ$l,El1k1+]^en(7+̵e'F=D6U=݆CM=\;$m59^dLGcS}}l}47~PEpY1;i:d?nX4!lfmQf;Lr&ԫ*˕Zp-Q.l{gE`\ nm.J0iRhk1`0J: VhwF3' f؂{i<;\IvDNNN*zp^"b"\BV vJwq_ˮ*?Q-pQ}`}L-QحWGY "MLN4JȹQ1G k*ծclQRncr@F[U2W ܦzWjZ1¡.v+]m:)u~PADUAlVnSp>Sp8Ԏ3Ҡy2Sqg1"#,x`47Fs' &|}2^pUSÆEl \\?EDE"sm.R\ߵ21t,P'WV혻n`/v4IORv܀@6d읡t `^J[M&[üT3#8->0yT ǯȉHIRɫg*'v{7@1vq~(e>zKrgs?jނ:TSM=mvmG=JPlHWL(>|Z)2"S.zK%qklbW8_n=.I#ϮC6;Go:>?> / endstream endobj 131 0 obj << /Length 3118 /Filter /FlateDecode >> stream xŝr7EZJPrz8b&2w2%ˎ5aMHA?2`BUxcda˫?ii*LO^}_~?);YM~|Տ?ӻLcC}EwSv%i/R&z•f;]:ٚ~>eoMJ'rԕ'(=|"XqrbJ}]qZpXFtFwX=\ѩթJ#FL =:pW ;"!bvJ+c+KF7ܓH=͜".F|ώ|S)$_6r]Z' nUĻIf |..&D .m""KI*V/NWmW(uuf2*ɛ{um4TĸZ=H]+mkֆM 0A5BZ2(LJcr'=",{&nʎ5ԃbI1k1+Z3GP#=hFY{:K,DX6K&ezZ UwcV XrKbWZ~lBedmoB`٭{t+*n ;n)Ǹ劙U܂`-]Vs ݒa&*[ 2wܪ9 m0!S9+g̒Գ7)fX2עbT WSRmBy5ׯ9j/gX{łedmOfAV=,U;no5C[Vѭ6~` aŐ{M1ۍ2`ɽ{poL!brC8vOcĎ-Nܹ.pQ '٦gʖ-|fgAڐjLKN|,'sXŰ|zUC> ެ;ZIB)t4~;Wu=",%i2pٮKCc}bUwXeeC%ulO:YY0u*˂I.OsY>;m;&&P4$OMЬ40XObǶa)"l`e\] 1pvfg7jF`@cE ʰkf 6`^mg*8TA_ %ՉYAۀlc[V) K 6a)h B` uG|B<`f(s1KnjQ,9(c{V]!aAdU`vDѿ>ѱ,YS4S_(M ,vjXCY6*).[pP  C >;lQ*)(cKz ŰmQ e=ap4CG@_Osj]ըU[K Jv~Lհz1цA-lXCt4t5P b KJ&'jXCYMV `ְP St":'o?msyt2אYVyx߿ F¹ 0Pp.3=DjvRS@|{K'[:ms*R/ Mwܬ8aSC&D%t31Rd5]b!أm~2znܤ~uEpɸ^[)#9@gԛz7~k޷.^=ܻhѾ>: =h~@=ڛ2{N{JOYK$gN("ku3;KD<}*,Ḧ́wSj{ endstream endobj 135 0 obj << /Length 1962 /Filter /FlateDecode >> stream xڵn7ཟbbX/]h"ޥY8sbI T)lb%[¹> jxqBrp 1 _|{˅R2Q(X;l/޼6 IqS!:|3Dᒧv77ٴ㗻uI&5ܽF;vxs+/]χWo^]z$TL siY5x |{nK*"ڙ|z"%ˇ>焊LO_/?ޏ& yGmd¨;-!%ıwSO A 6 "4\7Fm$1dGj#;o=!rdW=^ƘK}/`]"PJ!Sb(PW[zB Klciq(x Gu8ro|{ x$W /ǒ[Qs9>uGjU}GlQQRE*aNtvd#,iҹnuk5)P` ]uը ʿu *_ %Klc0G3]#G.ZMM*˥4+Daa$%±M,ͮ"]qUj JO/,UR, Ұn#\r{ǫ&V*(-+EJXb +4^yG3`tG0Z/7u*O&aT9)V[p&\ pfGkoo>0 4odœ©Ma^, /\Œ[tr6Gm Q(4Zi[pئ--:oGk o<Ty+ L|>"Y[&ytE;ݯznzU*1T9eRwyb =4Od8<\<` ]"/IJgp7yb<4sqTyt%sUp< ߥBOϯ=eRS<mΡQvCzBoLK^e&_ClKjS]tCspO-!حr KFl"z.}2.SR-plڌStH@> stream xWKs6WHXA|&rdL'Ɂ St@ҙw ʒ3E\}|S8yus]! w;'8HBgu>dʹ/e;IUi Fu[ |Y!qBq3C +q+Έiu3u1 sߵ ۡ$w&ej,OUVgOxv#UUK+0vL{,R>=@@Y=nMt_ pd5w!LW٦miuj?݂_n[Z`/m%#+#J@ڰ,-Vtb^~$CI~¢ rF6JP3lR7Ź./yqѡ 7ֳk"qo&q^./O>&hzAR7RwP Xh3Ry,ŵo=B|y) \ D @y2( m#GVyJ+SN1R0|bYC_]㊙Z=u$,HWA\ ~>olY"HR}0 Lm 8`6[Tw(H*ZMz_By,M!Hcw_a~UG<䴃MqC+ +c՗t!3~ZTB6ٷo;J{;%)8 [maJMN;,2IC N˜6[)LtQZl75+ڻYWTjNe 2;1#gN,6sKǙؙI\b?1wٟ=ɿ6yӓgWX)a5_:iv*N>g#.Pܷ*'ڐhRဖpH[-~+J:=6XjvY3^߻>^94aSާ;D|)~hڼ,XGu7++f*I;%v2G}VQm׏VzAmu8ȎV)8>T6 P-B:ڣq X5vN_2HA_mcvx{q1n* ̛0zIx)=Z_j9>KbAaVMxzԧƻ%TMos8 ۗ?dD8Q9ɣ#@_) endstream endobj 145 0 obj << /Length 999 /Filter /FlateDecode >> stream xV[S6~ϯУ= ]m>P6ن]hL`&vY_#Kq0COw.:)E}5 K̢)AQb+|o?'RKP@C'X*t ,R&/t<DYQsml@"&`DhJD ILaC{k2}Ž)ttl= (tEE(` S-Һ.,*ڒ2z31 1}PһK`g.(N'_F@|:L ?tYټX\]VRi>w7|Xt:bbJ9"[șvYVϫ8Xtp18N'=AYI숍3CgRSeE.uZVvV,cwgW&:>LLtZ3֘9N -jzym4Nè uNvEN6 JEZ~ st27Te̻PerJ.~ pLB8O>ea挶 [-[e=썺rtw^&S LƇ64s9nZi'u)"csCIN_V>H^ޗi +4%fOGMf.-_&|ڕ{*}c[Yi`Q>ҡ?Te})r*k^VٺmQ9S92c^+b}Wu[xmJλw-7!%8-]+ [r$ܵyYl6$4 o"|X RHRXޝ<  endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 810 /Length 1642 /Filter /FlateDecode >> stream xZMo8W^(C"(x(,I&va;9-_‡DμfDqXeTPd+kʒőqlF1DE]RrV΅s* *SVF,XLY +!<v`)J0% 3!+&{Y90M6` -<]gNg\ )S LIp^ 4i3")EŬ)h-d> zO*&@uFE@e8AP}"G1:J`X&Fj ET ~p!DQ!4! |a'1@NpbD(XIr [,ZOF΀7Dx ` $ ADӣ9 儀X h FjeLtDMȡ$!fq="" Q\lLbʩ\#璱bC[@-H$qI%89Q*T^ PۗE_0|f(T4#iy___uNf"͕47 [zi* \ojT_T)7MמGzMs\aW~&64XK xUjj[f~\(^-B"wځZJAmP7MCo[\PMǫ j#sY4?Q-O&uV31tOr+nMծm\_oRgҞ¬X*gT7g&rJsW{MD%wR7k=iƭ0rKN$uDUQUٻ^ 6$RNFmGx#-gAÃ^r9 2cQQ bT:ZáHQm^rD&d4ɊHL_^^h;v(PBPGQ 2v$tx$A96ڙ dD;@9|T]Czh6v(P|R L~;><TfR%TrRHP"@ĎOl6{by 㱓X]ɴ~%0ّwi.L>"=cJqP-𾢦eQw5]DmrbW;<רʢZsd[l:o9E*A{_Zܢ @˚ X㖉 ɧNkQPmj+tlOGݨYwbZJmj#5gZ{qO[F\jQ;2R+o-#O2GȳOO: RKl=o[,kжqlQ5~7~rvE SP|;||~4m8q=:GػT,jտir܅ endstream endobj 150 0 obj << /Length 752 /Filter /FlateDecode >> stream xVr0Z3Xò(!)Qp:I#R`L iW$@ M_s EA@`&=7>q6N=( ( qIN]Эd; tV&H3S3Ai3S9|QsHPqpӲx4ϝYʨx-z\J/,\D)`(hrJ!uƓxjsjብO,Ri> stream xڍP4Npww @;݂w Np$Kp -}-oLs5梡Pdp48:p $%8\H44Z`7;H4: W"$]@@7-Pnpp 8"z-ʬG+ ?zs??/q{ PÝvMGs0J Y9 yzz]Y]D`7k12@h{4V$5/'x3؁Ao) ;@S^ r+Xf߇`o(v3hnht;X,v 3`G -lW&{>Ws++(v 7W?ݛ˵upt;XX1$/w̛  r̭ v6m ?}_@V`Aw{ `_Fo pt'+fWVӓe{:%$,x,<޷ǿr,vNio \c7,?S*Bɸ+y\w-Pv| ku%,O Vv=F dv3K.ٵX4;H``g?2}{>\4 ]U?:>i!Gf:L~ ;p<M^,o`i6 l_lw=oMI(\7+S ol5ky!ȵYyv$)tK%V_1PMgLЭBac ,JIE|3,|{B.;BOux!dy0{~`'~Y*{11VVi?Bp`J="9!OY 9Qʪܢ|ӏcv{edP%t84(^9OM %Ӯ"o _x%jYE3aH`ZF8[׽Qj!)Mketq:7eMUb?Lhdox~{FԘ6ƤzR·JaAe/uV L >5hƷJ{U6zoOSjmL].2rJu`(U%iiԏkLtYdlfM=4ҎjZrBC#h;mC鷥 SjxwWWțJ/[k*MweʅP1 $iFDfMC}n^mɶ} kK-"XY@ #גixR68z(kR-~w׶"S l6~QQsNkOoӾ9j`,Hc'USK>xMLz}vtjb\t.+cįGVS=I )b]" rA}',PgC(n6\C;>~0o"AGM,{ot#RG满mcFg-O|0pP0p=äQ*DeP>Q܋>RM3\WImz bSUbU3.X],Z:uw&r1 l;x'X0^C$^H0(K=e%{v /ZAIk5BTaN¥vr?zwq*s\\xaXص97BNzrx2|!3|&eXj r5ٴN~И gAn鸱JACMiURѱF-y}ضSZX nR%0L21u*4&LC~s^6 lxCQ]dԒl݅e蟆b+VG igW| ;=Ry-$'~^ߚl*}&SƋgȐl=7%IH9$3AwƃЕ*: 5 ܭ_ 4uG?Ds 9SI =5\[yz{k L_/Ia3P 0]WۖMf;L G{$G٠`A%?|5* hNDN5A\5 AvGu5Sy7y&26 J,IN6d&~ eZVCUi\>t9z-z>e\xHѺc5>+q ؼ*.r lh1Mj`K_ރrVIr#mt*#ɽw pmHvy>Q y81JNU)Qq@2<}/">֏4PLV}M?m' `I*L|aOoi jL B*HH#J7FiORdaEyO_cZWxpCa)O]saC>b~drLA=w. X4w5BcRKpm , 9[tYQ ^fs8tꈣ3`Oi<(J }_P~!TD6wb\.lNͳ؏b'uKus7hWx !jH)vJw19[Qˎ6 i<@zGxKpӰ͈y/p^D_f's8i9neɴIS5L螘WY/،C3Q Fl''bXٹTC=wY,-Jh? z`M[TtXcc~O,\L6_Ē"vV] x1!7/> v^)? wC{׵29!̡rv|R0o/W?ܓ#; Ũ;UBZ%$z TxohՂk&vO—/{SP"?<Cf@t3BiNiVWgVehLZu?Fg0YFP5&r2 M]d\XHN,ޜvS7%T4^aDСz4*C^Ĩtk2cTgҸ׆0CV8R~wimU%)ˬ=Wacj!GZ$dc{Ƕ/z9jKQ_8EG_!{%Cϸc< 6+@\ 98j{3=`GHs\V4u zFZ͏/H4՟Qy`IԦ,󷹓Q`@&Pnb_WKM>gNDM$?OjDh({%][﨓>Spn\AUtrb3֒[ㆳ"~Vm DÇAy{}vey})5>0:B޿n$qpr&&`2[Sj) Rcs}Bz#93rGm\rx#a jwiT_4Z͵H!s[-Viz)hư*U:Gx~}&\~ȥ҉U)^zq4Jm_9-r1 "#C*6|_Pla$ؼ$4uq%ÏMWY󗬘'csXaI߰*᯸`LZR -zn9DaTÏa!0J&!z344ۦ'Nl~i"|_z<,t6Ipthz|'&X҈[wQG5LmeY Qs>{Xcqw>L~&.FҲI@OVeߍ^<ؚV̪0b-v.5jWeEE :Z/Ƈ5_L9cg"b`g|5Q,7W?ygr(5iU [.Gv52O\x55IR%6EiJ !}Z4"u|VaPh{g54]: 롬tF37[Y׽<ȸHrr{|Y@ JjؚOlZ55Rg3Fd3R<'f b&&p Hd7]/]e 2m8v@\X;i}:He:2/JC !x{O_ X R2jza(_q[aly|EȽ#)!\t5jRQMHo9׭:$+zC| "ʉmroi;BErć)̜2M{nr 7=]ת"xp؂.)j$%Uξ_X@'eDQQR96"5tjGAQDnDWR=2ݗ9ẓ]v&Z*Z#Wū*/6>QwB?vwu *B9T3[GUfP2ͤ{O0X-yN q&6* EFϿʃ9) %wM"wef'8}zJ 109BcqG-!Ƣ Ұ }{jW°d Ges>Fnի }o,Cȵ[kBϗ+ `季OMm%`-;LNݠg쒢1h= Wp:̪tH YeMǛgRFp.C,_!FCP TIj> (ሖӣ:(]57]3퟈h*&U\S\lsCq$qTd(^IUW=tTʔBxH;kZ|~D/"ڪ ŷQnVVY,)u蔱5gNʧTܫ<;*.t<6ġ> ^) cc>zlQCX"p{D4jT 8.h^J߽EL%4.1gLډzfD7iiQ޷3Zgy QD($![[/ə؇n",ͥy@dFMz SDPַqP,],9Rf ^Fm-H$ C& i),5KUgx6Ζ7Dһoʃ[ΉKr֎:afm*v0H(~n=K!u)e8 ,%Ldt!-"||/GVPZĔS^'凈TGI/XE =se?>4>ųwr3Ca1F|죛#u@Wz#`>֠-OYY+mV)^˲-Oi,'Y 22׃g߼-w,)ӑǰRqX;ϡq՜h\jO=}swx#hA76{8tž,?L̐h:dޱIu߿ G짩m1~vʁj4$ib>5#VJC&4RFf~K#NlvNZ紬ʶ8S"7黛Om$D<_+AD$宩i:SI./Kug2MYER R`ZV,3vCA⾰V/ R1_]RʹZttFqG/;d1[qĕi*{y$/Y{pX xض[~|C'|DW..Jm=IֆFh[1Qu8򭓪{YdVw [1_a=S/7 ]:Iԇ7dVJuMrm>JPYRsa '˄)  NM+q(@}܎>+_& >n^ùRrV˙e7h"SiTJo?qDl<˖ݧ$SP(hzdI\MR[Kf-T2;43Pe2׶!c͇kuW-ZeѼ*¤},ԏ *93qdG= sb<`TZm]n]:r!(zꖓG2҂O( 2!PI2;GI* 8򺉵4Ƽ#4b<0:`/mȶr NiI_'L_ij47Uh3o$94Ŝ Y-IO#Ӯ{@[ ،Ya|tM?i([cI1M)V0x`Ϯ3ݬqn ɠ&S8x6w=~ocD%*H9!o7?LB ʻI<2=Ox~@7L+h ZP(&Fs{Հ&DȯnJ.-{Ƚm,Gx7[[_%LRK鸄r*vE2&2Jq8=ȡ`wD_;9Wܗyv@4DlV&TLg$Ψ*WՍӂ3NإiObo@%_OȮCpu ۫ iJƠT5%1y[㳴7Cl͵cM'zEvsop/d쌓oJ1BI FR tTqB<ɂ>A `K2U Px s车YOXՙQp\ZU>jSg0>p0y2~kIVb]mDvW;;f3:F'O҆Q&bq4\Sڌ=h,% $-Lx٪>o*4lFZ*bi$D#EI0&BF۫C}Q^Iz) aub}[ S&? trԯ2#H o-kΗZ1O &Z :8ڮsOӚTN>?Rk-\PwqP~iΞj ÉXo @E5T=4=dzC"b7$PY\To]; aAqs~dŢeSᔜtf ms ZC*l@3=mه ]x|1ʲbFULfxפ/?Z}:` ͐-Նb*N #Vc@І ]!#3aؼ|dKFB^eF2_E5a.=ڕ&Eed7_~* fEY@RG>3*ك/QqB_%ϵ0H >]3$#ݔ`6pRLҪ9v8Q7,#Q=[>k#4{/,Q-0^ꟌǬR!L? ;*@EO&͇\21VcUd9DP)˩h.3$CUhwq.F BQ%'Jy\}]iǬj~}qmf+,Qݲ0I [}HZVC!>k'*:&wUH gEe>P.宸K6Ծv\+#lU&o]5ъ&u`H G[ǝf$)l%K ֦nig<HiQbO>7- [y Bc5Z`tRlyT{ -x6$ʇ2`t>\*!^+N.pKL$q2'ͽ<9m` alE|ޗYE@yf&.8h ~8Tju_%Euf3p}\ԧ ZVJ )$J!A&"54uZvD=E0 6/'2VMz/h"Ui̚\_§/{}N֮ Olfd;i[_!JF`b5q~t1%s}MLDSgU)p_57@nBCU#8<u`:&/#jGiqvUڤJ"cn a2itΧH}kȩ'W4qs}|p:?^m\jbu45Bh43P)[ju]G:v&!E}c˕!QF+F(A``&Uȥ̜%"'GG;5JT;ou~{./wႲN\ģ7 )XqXO`xCjU4kQ$O}{_& 7&:ĚaIxHLqT9) e!jÚjZ} 6*>UϳЮ+d( xdPf2#^M=bMsVEW0/ \zG!zpJ,$$ǵtK!>8Kʼ4(Bwf,}CsJw57b! %iTs\ضa?Ef64DpHLEoE!J.ER%ë+ mM+$qhUtE("iv[)`IfAbقkgzyH`TrCm@ R;*3H;X<9_%]om^"q4߯#|f!ͲzKk_ANŎPqy I+)ɞ:;Z6LF3Zw&B6F b=鮜#Z3G~~"&>WR1("X;Sf@ E+9heW> stream xڍP n5 2-$x܂wwd}Nޚ*fuuLEI$`fbcfH(백XY9YYّ4ȑ@.VbH8W$JTtȹ8ll<vVV@7+3"3@D%lea ~ZS:_1;)[^#mV YXݙv.tw+%@ rv~ Pځ) aiBt^V {WW{335:@]V7OslluoGVMMVs+[@YZf~.@7-W@*Z?:[9]]lk$@`IZ9L_;{[ٛ.ՑE$+UGfXYYy 'Ԓw OG_J|e|A_H.@7  0YX#*_:~lߟ2|03{[?EZBRM[្wx3qqعll|.VQZ[Y{s?)3,})9N.@g XXM_LMo/3vKO7G:-PtxKfW' h"m2SZ=.5/=H`bce?2y>\^g/uy7-cHf{]G3_S `aw^;8#>Qno_u T/}eA?NhA\"W?bXL^umwX,?|WA!&iFVۿ;:b/ZտklIl5yBWcQ&G⶷=sW^_V'Wt._wXk?1_לl W7_S;Շku6<{Uz7uu~-=p@ )¬@uMHm;֘Ֆv*s=|2]UkoKRWOu-I> j[H}? 3in<9h@7CvQ8aݺx RݮG~,dь6,5ɜ'3 czO_]Oafx!K`@=([cZ.`w"$'MÛ.'՜hQYMֹ X20qD DX:zv>fN-Oq>jWTg`> {xD۷!W"p)sy}|~4u/ &`noQ2YGă!6KlGY}/6D1P#իr^h/ߕLEDQ4\CJAr0yUz3M0EF!Bjx*/)y4M7*$cuœ*}&dKƏCPD(nK[YVkDi{8[4i1s[c b0ƛXOsuϢ_&koFs%qVYRruSr, [mV2*ol"Fd*Ҥlz];^ז*? |+)Q8-%nJiӃ0#ӹNBN1x=iew-K䟫4̓G-՚ |~iP3DAbc^8$k`gq:Հ\%f~&-Paqy(6 Z2vfq4Syu0#K`'"^{>Z19XD|AQG)h#Nz"ҤoHP>zݡM-%#T7Vhbk`Xv>2d~NX9+JwCrN]Qlѝr@xKEHT^M* c<$لd,?r8%{nS%Jo D*$}ܧCs>r6$u/~1o I NpF>9 k9< |#d݁x(j1TfvX՜ү~ *( ?/!>IɊr"kx*OQ( ɒB>i= [TDyq{Od11Gveܝ1h *:ë^&h_L'o|_͕ї+JuLuvgsWfh [\wGS(+|AL:\\m̮69M\“po5aCE#nq[P`N/̥Y E!F>:`GrPW^Axe+XҜ9*@dIhb TF:@5|uP )$0A"0ySt![ICgE1`$ 73KÔ$}ᮨ_)":JRw خx^EP:pA%h}xׅpv8ÞEw?*ѦsMcE<4rմ '$l*nmsT!T؎[L+VCɗX8{*SxXx˅vԨ"SE!_XYvaIUek̢xQR_Zv޼\)XweRKCi,~Ypk yοv/rTiD_(^ԽѷP~ٿ{=k6w򾓂0.9cCLrfb=\YTN$UWxR5dQ0l 3Tea#.!9>CXD!(F̮ 3n  EЇ 'A(&U% ;b&6f(:FEY f8`kb,T0po7lj ZdX$o, ʜRmRzlma1mO*7-nV{ ;Of/P߆O0\V2 AwS'H[@/"XKKޡ9[2ٳY5}e.m݅IHK7mK#cD .pd|)}Pn~95ظҜg`]ZeCB92R " *, Ω4rͫ4txY CMq4a>0X*q'FelvrK*`q޺a|uX{SO6giXIRp. 5QoU3R.k =Jh֧hs|ƣN)#Tcncޖ',#;꾓Gr^.a3 fVj2 &-)=z>'C׃ùWa S[^ֽnB AõC$d 4T˜)a]uc[p |w{@|QtmIRԎa9+}y]uuF}}᮪Ϡ)ԄKdΞqZ^\HMRN[R(^QKO f 9J;( )s>p?Mb]1 կ?dcW^{@3+:/jH)3,Q0:B܁nx)eb+3 zôܡYK۴9nk/4/ZY20Z"oӸBwd'm7ZҾl(ftT^ %1i 8zX $۬#PJ m`/,O|KN lMMy;x2OzrEm| #>$,F`|=''ѪQUnjh>5޷M#[ޗƵđm٦E{$UNGWVa~z53} k;a辥#g6tugx{%w]UlTlY[yD 7t_k x]4 x$tS;(d6Ŵz+fud􁮫?.M6RJu'(EVe7P]LX @jP[~Wع_c6ZĿD=y/?0[&Az8O~8`s_}۬# Q(4tjmkZgP(-XO1D g>;ZpIYX|+*+a1|6$k|0Sb3pH5ܫWxTؚ¸k6npzT9=ߵL(BfFc ͼS4GG?# ~ SUNAJO$n7u#FQYQ:5!{BZ5w?J=7QRwl{ѭ)]3ߪ`WPt5~f[򇰅z ď DJ|2~B v`.\X+m R'ԋ3_eӏm|I*dy?auWOř)eנo-a݊f;Gi+uhԆ- WF&=d̚ jʯ8%0o;vUӖdq2Ӗᮨd7)ņᄕ)9arH$GKX$KE#')?9u\ 716]>ORkml\l <7C$(řS#7Yduk M_=,K+ka>T9 ⊸^o'jS\l6~DˠLŽ\t6wIwaႚŕ N`bho0C ˲S~v\<cx;HK̮dEUqbXd:={hN!`"`}Q6&MDcL͝?Sj54rhm ҳBW'xrJ1I/gI˅=-(å\RJ(0trZXPbW@\Y|Hݣ8_,/l ts*̨Šv0mg7w!Ta530$Hm8\~9؄WfcikrUҼVF| Iѐ! \Bv\nX'›쎿^[*Sk\l9YE/9dcN$(̀"ބ!+/+-v6U/d]m/>x} zѳR$zg 'dH< C+vrJ.\M 䳂]%>Y;yr[ }M2-&1 qIAT!S.sL/Ls@˶yKwrB۽Sb\BZTՒR"OhL(JV@;)l]a{Qui8 ջ]+ll6^U#LYQй u4{m_-2P8YD"G>?G"+t]:J:gZf HEJrVncv;#>"h;;y'Yq\QtWF&>h߹7,M-3idfTRi,+Ɓ'>ɞpznZU22ymdg>-NgzXtL+.#|bjnO#ڹ^#Hq)#=W@|gN!4gxͣ{)zkD_;}R;A]j aapGep\gPTOJh'`" ))![f<\KBby_6PjXG}4g ;뮋_RJ To}<9y.e&&hV}":U$QCsQ]$J!ߠ3*dYĨՎ,G^f~nܨ<dϏjG!R^2#ۢ6zC_ аŕ["iã{G% nC[TYfjx mo$PRTokP;wO// tQJXO$ 8m"~@@.9)߬dK HTpEܙ9+P B.:@MRѨ 4Fx 4Kf1)򇬸@X{ľZJk&0~ d_oZ~GoO?2Q5MȦwYly(Tr_uvqGN.}U!sh`a.{rj6ɱ<[̑(eMlQV Ҁ81W=w[_iJ}dxFժqz㬅 4Nkv:+DȲ]35ZZ9uԢ, 2`%\ojIas?mUG9ƓIM/FPs9bq"LӍ7@r4JqS͋@MzP#~;BxE嚌=z>?Wت/a-XV[(knFŅ@2 o눉Z@€9z Sbb=-k @T Ǿ#M3*&+ t "شI-Pϲ(ީ?T-Garw"N LwfQ8Nxۣ/'0;h4xBaoҳzD7L[safZN>4)g;W8Ҫ]6S],}pl :Z[C?hO]{~Wd\7)50ŞH{;q9m",?$oz#.?4e7y^׎VDHc1|rP40]tW9[ddD׺mfiX|3&k<SS>vʔ`@צހܡwڍDeK|<0#qǫ2PÎ:Bؕ#)^-yj T[v;}7sD0Ms[ۑcUt!!N\o8xDYPUY k/;1W5Jt˨ޖ1.S:~PIXKyBBu\v';~:ߦ0 <- ց6JM<&x{[?V$b4~:\&:!LTE( qɯ|soD$ʹHw]<9T%'w,M&z9>d*2e_د, L[*MOcKYA2eg!fA8@$8|_-5Pz麢/ b*nxmW϶:L8I,Ie"g܉0j84.ARXmr{tv_WrArI^7olH5^B[wiRctQh_[2rtt|9np0y0wUƜifg< cB3(I>{JeBQq _ Gmn+ O9/ =nGA:hcg"zp}7`qp[ $.YuēȘh u Dz僱]M2s7|f܈QTK؅ms vRNVnBXT <$.˴߃+1m'O-Gp|ɐbI;\:*rzlⳡ/Gc^˦^; <`KG|k/sH LM"A:O - «l3b)[jԆ̟m( aՆCw7|aؒMt蝺%qz ĄOhR`( i.Go1cT͏ :끂Ϻ0۝prƕٷdZf)Jl[2k5 wp#c$FG}Q[o;yڑ_Gd1EG8ޯ?߭*T>eZ>BIpk-'sYB^U jLVnة[!!Yi%&6`:Ul3]\|T5IM7a)d$sJ$R}xM7~B%HnQa(%~)bf\\K~QMvV/Qྔ%)L%sxYSjH7q`[^܍OV;A줱\w_̇| Nnb/F44-Z4ԡ)H=XpSqM]۶"xՎf3ƤjcʤHЌIꇊ#"5ͮ"%&X <,=o tjfS/z |7aӹNR@zbtں4cA!|s؞q\;QW ["h='UxM[gq6m[3d6cq D{A^xxx G[K˘A")0 ;HƐ[odyj~Wf jdTZ@'>7D-Q'-]E|qa^֮}ӣ&,wѲ[B}9;7J0\ϕXy F7MĘE4βPG< j=0?5>@x$kٜMClC7Btem*+ bEmj*ws‡{7 N@'*}WاMG<5YrҸ0g9æc,c. g@뺫iJIe/Ρ{m34*:њd"\A:Q\!h`<@59E^ϐIvpCn[R f(H10=_uc1Y"İm EoM7w*&*'((] mpcNenbhV5'ɱ7ӟĄ/FoV*I~jji 2h\e2ҍ-lَBAԟ>>##F<с>e (~@kw,"5E#Ob+0~%Kt!7 ?y7o/\n9xۏ8= ֌[cVI[ z٣bͳ":C%{}oG8;xE)^MKRh~2p8́r¯lgkKB7QוIS243з ^,eSUc?\zJ>[x1`%*@@8Cia }iȓ;'uP8:!d-!S# HH8S~IU8Me{b__)A:@.(FR*棴EšnBe2OEx=LD刁S'Dq~!gRIַYp%:%y'^04UD.+^٬W+9~@a O[ϲ} MݧuBmx`yyt[GPG^xH}I~LIy('`7l)>ǚ%%o,?I4hh!jG B;Y˅HUKU% |,z>㗌DE7)ApFmO9U\NzJڹ!L9'0 oj_][@fHήՄ>8sh$U8c "4se^1tmTU?&1}7͈VC|C(h84Vi<\>:dUQG2 m_ t}XqG}zh@2jn댇Sb0x[sk?F+IbcQNP%R!@"S,ZI0`߃6ztD#+5WI;ke`UŸ.qza$( Bܻ,H^X8֬a5FK45޼`*Ů" s)B¦d()UI%S\AJ㭲'c JUlƱBȸ3T!չ̰ih?z 0]JFHzYKu # :%o:'GcW*UdHk$O"k/… ؟*U8-pT"%XH,g6;?)=km#~-2 ԱlĞT E._>o1O7>݂$ endstream endobj 169 0 obj << /Length1 1851 /Length2 11690 /Length3 0 /Length 12853 /Filter /FlateDecode >> stream xڍP[  0hpw 083Cpww]r^9ޚguݽ  $ ;2 $%$ll,ll(44֠:Ph>, `P$A@W$䝬vv^66{$A(4[7{ 3sׅ32[E9uEc5@ blrttB掎...,@0= r;L(m@nn/h-A`' <@MNY_&wtW0bc Y GiGWG&lv@W_b*knсOҼDbc;:Odn9_+0_hj61ӈ- $'oҫ o@Pwdc~b 0}mea zAp:N /:L,F 3 0_ W [t^`L `k2:zW\ `0spxy^Gh:*6SFfˀCBdJWt] ?YKv@ohcaoʫ|_GA:KkA&N6+| 1Adlhl/ˮgެ- eş+|Cflz8 _.9u0u)1qp@7דEܯBxR_!!v{??/Uo `7*x,JE|VkNkOEY#~kb~ 9^M,@ ko;Z?kV-_|-o:ׅ }}`ڷ@Q뜲>_# _ϟkN˻GNk_E Qf!Ƃ5mUb$.ۣB'ɷẒy{& 6b?H/tKlWXUK^uL.gFn=r =qr *[3QLоJ4 'Y 绚8Z"i^6?:Tul6W$|iBAJK%z`2V7iG)u#`[I.O9菙·)F28&=%L8۞ :çOz"Rߎ.AkɃup1I wR8#UDl)X]@i]&̅0mulw-.:A0pI,X w?‚HBw']z-ʜVpqM߁t~+"^(r/ e?#ؗ3R]n,D}-@d-\lت:oZ~ Y$o5*R_D?e3 c$pz6 /Rp?a}ce3$O~;sb}kmm\6y3%8hcL0?|(uJ.7'S-t\7|)D˶nNNUCAQzL4U(e,eNzKN1O{~4}R02^Y|M Kr ,Bxc.-kIdμSeΚZ;[-w؛ʹ6XS3Lrnؐ-~N,&LJ 0kj*p ,>I| 0Rt635S~F$֎ۆTʇ1):[Ӊ*M+9rd M4?qILqk&"iϞ/q(¨Mk9"]zo+HkI:TCAX{DXF( dx"b Jg@J~c8^lm8$HupS0pG6z][b* ʕD]C=y%F.A}EF߮*fM(_#Y" BE1Or /L i_Ta4ED&\' 6 xT긖Bq_IRUZJ/>9߈UP}( ZvيF@IqD~iT ,*j̷̄2젷ǀGKQ2hFk,8/Md7FÞyF36⿄d'z3 3X5t+ZQ)Yh ]T>y|_YdH$}wgi̾i7Q|/~#$wOcJGL*{UW(.}j8d%"VLh{_BuXsJ13V;a<OiV $So1Q~~f䭶y*á[AT37vnJgyT+061婾=%gjOC?CF}cn`=38,ITp{UFMj1򑼻HqmKn9}=7%)~WޙH$Y>Ws"lTd{vߚd/#/Swbm[me Y[*a%O|qO)' .) ā~MA>_UQ. ;Y6xZQ|9NnW8 #Slp!V?4+L̏ jF6LwOL&#}J:9j\)*Tmo֗#a:M>>s?{v( \^;vm~58Mlڧ5p㦎 ~fs ۱NOBT9bP-Q@\e^4k?lcfZKdp;eCd*S5">~imSpKO$sFR! sf6_HB ).8rk T=@Qf4i)XȲV;kU]> H˧l[]n{aI|rV w 8M7. #*rzlaևT;'Igtt&9Kw-wJӺ<2?9`f8>r͇w 9-R2K~ y*'m vI{ck™ȳ= %8ܿCiP0{L:C&۰$T: ym./ApDežԌTc9e30/wXJ 9(_'q{8!] ^.19cm+m[\zT ]shW/ASVy 'rϟMRlJa55>/GY !ӻnh |NcEX⒛䷫Uuav윝X!}RKah,F͹yjuw:cM}}A{-0l>!}5@jYWj lb7e Z97m)ݴd{bLAwOԵ}upӐwB]0=/@LX|TxŻj"Ff=mf]!{]"*ѕ( .cs$ 䧬J+]sQ_7fٸSitkI Yu|bԙtdu3#u?jGz7I8-תh[_"tMrc<13ѵv-~^?g.qwf.6=x䐊ϭJD=Ai,jB9)t+ W.Eبg-&"7itPY$yyBR)O&k@/ _PQ׌$N^RpZ&=̫ݘ0,h49۾!;jU$#ߧB]0ƽQH {L.aH;L'xL4[$0ӟ1u|v&jC5]>&h6+hJgj^҂ 0N 0yQPnĜRŦ!J-`|9-x9q:a08q!Եl)*76f@ǖ>d4ƈfX:9nћ˖SFZֳOiM[,ePJʊqZ7_:"زg͜ 5o`l'V(wqm [ܤI xO(%IW8nSwXoïUAb/Ccz[hP'EϜ87Wћy7R}@2qnY^rh)Hlyݳm˅fTw`&~xܘ~yXX-([3PF?Q{:XVQ,%A{zoԔGY+ItG[KEv=$8[ܴqo=+#jbV2KJ&XbB޴%jZTkK7$OW$D;"jї+wH7 ɘq3ɧ \C1bߞh/ uP%)q N ҃45ٴ;(DU/amRTO3diu x?M4? 7Qvٓqe,F-qƖ`Ve ߒD2jqsN%^UGÖXfoTP5 bF)E GIA< Yͮ Y Cz)йYf ^8G+ + f5k^ SyrY,Sv:+IJo]?sTH<]#z3,읬 &uAcd#rDN/ uIFTIxmo5"}[H;$~$&+3B ):Q~ݮM=x}WnYH&:+%Xl/htoG/ qU]#Q3̩&W: 46?бʜ+%5~Rk8CIMSѧf4uo41YVݯg+ vt6 F ^8.C# ÷_CЎB'J|ij ?'lqz| Gcjq14(h[|22 7Eֻ}N5< Aӄ8̚n/- R/<*cz[$IMf- ?6QHDZ95MQ{_` ۍRb0H"'sFvLBVE}G\S&bU =5jwì@i;tojRG0Pi0<sQ͠2F4ZïE1_o`ULkb;MlBQC>jYiL~ @bbrx=j t+ȋjhh3.Sm-o⑱gwgeV Q}* s}|V.jN*-BLId\v3-ΛOHtK$3s4d!J[@:CxG>Xk̎l°$۪D9Rsp.6ni4*,YvZ!M~bo$C"rrK>Ɯ%}7z\0m^JN~Lf1Z'_IK`Лx")F M` bimΧl,U}Xfp~ɤ筷aT0.FPdi̚KZ,PHSd.ԉRLnt Kuarj~~Xmj{jIDcAg#y"D۾{o g|HywZo"ێ3䕩`K9EF^9%_Qu=.vͨA&e '? ժȱj$V ʬ Î$Q–ڲ!*ՙ_R_M+fp>q-kwm0/c6 }P#KRk|%!u;:Ե1[E.\߻lO}݄@?G=x=y6AiVR l Ѳ2O3{ "`w/\,C*1wKсD ԯyJ>t:MmIшFM HxI=Å o,qWͲznԨ"VJ*0 4[lQx>A2 :N9x&&\0,\~kŭ%[Agj֨lk ~܀̌T~qB^.KU1XE3r!-sh I/\ ZpB[Ie2çr>qQ,Yx?5@ޞ\EwVsʛKAu^qZJ޴b򏆚>2ϫQ4?;FtjW K>4<1[&("r_tvPfGNh qwig%ʈmK~0^; 0flo%nY/yIC?[ڧxMpc,7XB-Kא% 2VRw ڢkA 1pXW"sIXFf F@^Ͱ -ߚE*t&L%dXx*}P4ܬQɒ?SأV/E,2a0vhb!0x׎jݭI/֬/w49Om;ʵi2,e#_Z쥈A~,GZeꏠ*/6}ʏζ0E1cM}5h5;C{7ڔY3lrTľ`듧hFxҽ'j}})~A0TҊ\QɊoؼYD~q.@qc4߾ai滃P4qU]39Kk|;J U}#a*:+YTUWg DÖH>Ӱ\bn5VZmȐXٷ#: k2' "+&!7Z^%K>JP, XQ5D} 29?Kӫ Imձ.}PQ6u4^4}ٮᨹ&Wj͗ Fݧʪ^hDY[ Cg4L{ XhE!Q1V@-tsn)kʸ =1T 1̵wŪ3 K_5Mzi<5pa}e /J]oVNZJdw-.Q(6͡ Z=R!Qeb wӖC [|̮q rBJ<F|_Vcf_ʠ/tcЀ83.sJE~'wtO?#bʜlcUPFp#psLrJ5܁UUf7Dywg`%;"x'ۭws ƽ0fHn*G35L]dJRPԩV3S!hNmmr%sKIEtBld0ȑjt>Nv߉ Nk̺Т,p$T:(>o~:͂wRmw9jy>~+hQ! щ3_g> A%. ~r}C1Иɝljh\ s)q96ֺÄП^ $Y@t ;\n8~wNe.󚔻c㴾Kd"D컄[D;0<sޜq3$y;j-:rS[vokqov/lH @b^~zeXkX6r}?;OCˋpU^@2 /Sf8ޖn@h*㣥}=h/ 8GKe>5ΰ^`bjOYR_kcTT"K{iVR*UwF֙pm5F7 ;rZV qxs6aR냳MT$vTN>1 \Y4ˌ9r[Fk~pKy?8ߨiҬ#8!$4\59NôtYx(| JT`CyR1?R΍M5=X3ˌ~zGzb_4ٍ;Tb'\,tw@?rEi@@(Hd nY͠oX<T}B%M T3s*3Rt¦ea~ Qlo~>?g&qDdh?Q 5XF=8&.⯴cjom'*;^WTBeꀳy-CіH}-KQIݩہU%oqzHwMQsOs>Q{mhśP՛Fý)ɽPh2ILGݒ1|u/ 0 |Bdzm]%8;z˥zFr4;V4qJhu8!Y}$ё "U9rX\i|x!IvXgIoM0!f@،E endstream endobj 171 0 obj << /Length1 1500 /Length2 7172 /Length3 0 /Length 8184 /Filter /FlateDecode >> stream xڍwT[.ҋ(M&*DJ$! H 7RETQ HQQ?z% F.,*/A @ h 4p(CF1}^l`q|PhC0PW쎶x#=== hA 8h(j52@ 3)+`xBPPw0P"Zo?ٿ ࿓!W$ ;a.P ~!.h6@l߭C*zv?mQ0$- vWW(&՟ Ş7:p߿-{vHUWH9@1}!1 u rcgE"{P=Cꋆx@;?H`:TǺG ,Я, C]bCu%]C?#oPA `>v: ?}G:UW؃g?$n ԅa#U2;Rqwq !0?,u1Xh#b7vv0wc X9 *0//7%8z`@aUf}+Ac%}l(VTCn>AQxb/k|XA~#0vf=Eń@_@ GbqXͻD"E8@ȿ` lQ(숿o ڒL!l%CC3zJf4-$)[$jVU,:u~-N5>gUt`I:6{tgf S4RT.Y;>~{>&{rҔk-Ѣe7Ij3h.r@w/듐GQ:Yw4:NH焙9O*(܈ˋ`kI>Fd^/>=;3|n?O;Ij#ǫ8pܶ{ikʼ9!]r珸&M2 eJCM)=`F7͎|}/wt(pκb}o^f*xxXh "|]EHXʷ;Cڢ<[[:8NuT3Lqt}kw' vEWv LUސ '}Q3 ?i' ogdWiP% ٵ=&V$H#X=Mfn:Zﳯ-7C "0BsÄ.۟wQmp׆OzߦAtJյl_ i(-lWf2XPUSXZrT?EݶH+,MMdT]w`wo3\l%F^ I2)3CXyiaEJz s1&]DfԻ(p.=h RX+'PH.qPLuXO }g&.00dBg'\Y9޿e~|=Whӭ9SY'u#NOco@Ex;7f[Y x!oVƵ/cF]Q=gKo2IRj<^QgɶajqVӷH6 r*ju&[ӡ?~>A(|y0$ϓm0WQWOUYr8V܈5TiVNg"8tSŜ+yII(] 'kF{Au帽.{ղ2qb30FǏV|638(O:ֳui%t4|:h^{ Ўp95Tc_zgBa9ш0!Q? V@EOkЂN5g*C#\cPWr`L;@@M\#uT< ҸTB?ʫ)*t:?dg!UfB%42>6ʌ8S};|{yV<.D43#+ZCu7 >v?ʤޠw~}ϴ]\m ݶNx^3ȂȆOO-ypj]k}yYk@&I}8Y!xœr+nlTwZ- !G>E),N}Ha]ŸOjw& QVtόlF@y}G! K$bt]ؤ"H3?f33cyO8RpKKh61f+܇VP b#[/oWb}"^ZJo;3_0'h|ͱTJ N*ލǢ{fB> kX. ) yUMps{yXL YE08ʘ7> vYHRڒhJ+_S:lOs.^98{R hU$ocaD1>uRy\W2`{(2Bd 1Wy9v:w2ǒ:KGZUKn&ϯ]h}_:^py$ҨT&DH<][=0^X"Hb2|ʨo;zӬ-)5mݡL :/ ڻz=Ji c 鶵.?A\3xejayrdp|\ýt{H vaqx9](fJo}5&kkaU^JǏ5٭01ğrh?TÉog=TBc8 ?W{OyQXk3Qǻ8bdc ?[y;f7Om3”zG02\7Wk6mw59Go֕O!' RpXhOS$9O z>A7e{oi2K zaۯaghWqKQhWo/c[GT'97eo SsWc2䴒!/7}:k1tI+1%#^|ZYi<%!SEMxyV{1iHPr\M[2X"YM 9`daRPW-+>hkB^EE*M[U 2[̢#UkkGfvŽAK#!w*<:cZ.)qd3O'7Djae]:_P]<(>>`mc D 3X "{:~/bQ7;?$&ROm wE*@џfҚ֔H&I^t>9rVAA ';>DqV[ZrMsNֳ)X~_!5 iqC;t<͢l!$*&}evǪ 匕QE9ZSq6ڸzHKMes)g"kKSrтn.e>k6I Sw~Rlwbygn٫[QYz 4"0L'o|5[p.yq~v9Im:$[ V# e?ơ(ʷA~& _qm,mzȲQʬaH"8O.gn 3s6f_n>Wu8}rTiN 'A?2Ls76f@M]y_o+%kGIJwtiF}DMiLCj[h~i@ +14 1=\ :P\Pq$8e\ [ X5dO649x QIͧc^SHOfFOByp PcyFb}$: rs\wDR?1%.6tɟGMcÐb +yHeϡܼ1Ze[*iíRoRLvzHDf)oπqm[i5K:zk.T2vWټD2II}`Du^l8[sp9eAП(k>jZېUC>~zg{BAAՁ#|FBq#Y%)]싢o/'U}ZR}?@ٝLӜeȾ}%F+ fm/m-OK!sb=$9IoFO")M:}3=p*qcIF D;0umCPO,d1ZbcuHw,Kn)TR1$i^m}1K6).xkuG>"['e]iDISQ]'U10J/pRf:\MJ&@<)խo>A ~~+~\CAy9 oW_i?M p'12/CZMj~IЁ=к!?ۙOBMݼǥXVȤs<"Uך~͜d/gB$dx BqgMGҢZdA/?X+^ 5*-)&C"1͋C]p^^I^)4m/vTj` B|I k6wO{~.GEVu8f9%L̢{3EZv2QDrgB}3Б{ZH{dHv{mR߆cl)-J;ADZY>`)xgx9 J[ԨP%kYNf8ci":" 8z֯p󌞒}tlmSq{Px<m<]OoiX8Y.4d14F{L,c-V_E|'Èj6~v w!iWUԚUw\ԻōBW{=!-6eфS[Mꭻ? #.Gg"%_SKCZ7m,\8疞,H-b;M̦$QCKD[Jc~*ڎT"b +hqߋK0X;szF0BK/Ik4o TQ1dR&~@!G=ziJřKėA'럕tMݑjjǟ!3?̓8K8#6&c~2w./;Z3b%th[qCƇgB"+x@mg1 ϳ9#wԹ6|&I߿T#al}y+9,>0^ gkV}swnWM''$Z'-7V9|(XQ=V0 í=p:ږM-UivIaaS'|⇾ǯW!Dv_]޾{pb&gC|eJE(>7Zˮ.Knԙi+[Pwɵ>vq;ގp_ gYoNT?oWJ3f/{ZYs*u]{|j&x MD;Aq8(\y^d[)[Lzp!H dI7)QFgqecn$MHPuElv/vU%M ?ͱqK󃼛k"-ZDsRfP(߳h˿}GB|(t/JyA TK9rG,: 91n C0J/](-vZI!\&1L@]&u&|qhI%K\^ՄwE:?]f=Ko\w?_3IPӓیE!Lᴙ\iYfxȅ.IO/ocfoRvCw w`FIHu2OSQ_#G`<1Y (T5&,\~&3;0niԪAEj GI˅H o_i[:f0l-'YtX70s8_Vk*ƥ5nWKzL3<ƾa4VjL!6$bͲh{Uj~@ڗq5]|G$/#5@7𫔶3%Ě:y컀l6|V'roMτ_> stream xڍtT>!RJ4  %]R 0 0CKHK7H7 *t"-] %Z߷fߜgg9>,z<2Hk"恀9 aXXhg_fC; DAEPp@!QCQ0tC= @X䐮>p{6Zm8ܿ2.0w Ѐ`.7;@zH8 h(/!%9^p@{lhB]`:?v= 60&a slSQh܀A_P+G0:@Pg& ;Co+etЛjewE@(y9e@~'wuB ~;8WLE/ʍo=  ?0o_}\a_\&`p; =`~'"@p4fG o. xF^Hkcjhde?> @7 ц*w  .U_ `k:8L- `!? RpvfP_zo&@y3L^4fd7jp"f G8Ys#`Hrflnԍ0iC_v3OCa5x|B;ԇo r30HMgҝ5xm~~_:( QM uSwL"mBkCjdhx?e|(Cw+Y.'dϪU(tA-4er}Nx7&O0ǓNi&`ҋwchEKw?f}?z\jXfk{MyZï+}Gly+.!1fO53[ IzH:zgG* V+$V"{QKI'Wv1C2%qKadP9`gpz8S}nP۩15g&lc2zюU6< |$yA $]; 5Lp*,s)~cEE[~;CiT3##V/fy^ ]NgM{5⨂*(ۤ {Yl_fTb@qDPDʹtn~+ d&AyC@wR^3/biwTRs*,g)*m +a)яX5' 2Y#Mxd44prnS1A ӦVk5 wع<.w]TR 4XhnvyDc`|})$jJMdjxS5SmR[V< =LhP 'cxEm*\kNB k!rPFA[9ΒWq}~ *Wb)bf}#1D}X8YoB鸪Eޭg^b|ȳ#˷QZm5t{4DžRLUQd0l }^&]R$TzD6Aԓ$`q/AtB @AV&jҰ| z\״MSo4>=>VAJk'y ^?jIgʪ|eLu<>.I~O"rʀ|@ճpa~)bqU}gtܶք1[HyH#Ҽ $Z2<̷jc:HʪZ y#\g=XW4H6ϿVIPaȓ`"P4Tw7 5{eXUƇt!ӄyTLS_,)=Bz^۸ТeQ6FMO~bK8JUDv}v-J{5sqWoR,Nccs @+]^S8W 'rfkٰESv(Kq==WP/`/nz$ a^s>l8 PaJ9n]-ԁCMe4u7:L5ʋ#`Dk2KLƒU)9*uy!PA0T ȌßeƇҀ", GQՋЦo('֣WK,,䖊eo+#,P&r-> +;z+qDkLsGg]u%) q6C~a!"{tA%}pcW _\_ξ,PR_xu1Mny!;wp7~vOLf䟹&3F{[EJT^-:ȳIYDasGJc y2pT >L&nIkѳFԳ& GJGP\Etvj\.y "ϿWߍu)l{|vD*]x1UHD?>hfyk $S "zfV8Q9'6NhTv4xxn0s!kFT&ݯrp,ɠ' 8z_?eQKgfvM&_ 哕@vV$ubfi!jB1<dPXc2Wju>{BM'xG-J :o+Uen?ݸSLTFTvK%=I=-hˣHړ4k@Rݙ֜a@Q ڭx7M5Ngko4+K `aX*K=t2VCʳs0y`t+XTzQ&K$K~Sa#,mމ!)097֭U9%¨8PҌ bލl7kȁ.")B,CZI6_F{&V ZxwlaYE]07~^޿ҹ[rdVݧAU'z}6MJOb%NwSkOP>;m l$2u^ێ4JsTzFr #7N/s.eAYYɨRIUZ%zx! &k-g65k#eR'[GC1&Uw(};枞iwWUTEߟD9W-= z1SEȦ;~TRV1Vf19w]aʱL=Z5yzM29"T. qOpۺm8[js! K A3 ׺-)(LDB埂};Q\ }7oIV^CV}4 jVٳ_a}G;[cs0_uQlz(ʾS'RJlB ̆jKgs3'OI~[{0E9]4:n-rLcjy~^ 0O-^,avyVsOb3tZGҷebEI82Smz݊^E;  ᤴ7 !ض/8Ē6QiukH~׵K[]\Z\eq?ɥq$-DHmKw|~ܧ PܝJ޾7UH6tW˴I &v֛9^YvTi"30jbOca~8Zd1=fA{04*tgϭ+CQ\Nw.DS}$7x}S.0s_upzԻr:SuXv}.u _x{i5krkBit?ͶT3su={Lb7JV|C]^H̀̍ Rf,%}ݹdC]nHS8zup=#ح'D4LE{dF`Dl'4| z/0bw`z@qduSY2Bg=^|ԐHboMʽט.!7l;L)S#loV߹r_̝&%| tnKkçj3O(${sd3Owvϗ/~*,{XI6_ġ8kk% WOJڴ(FQs.nA{v E_RTjPג\䧯.ScqK:NEF"3 bR[ƲY=|]KԶ W _u,T`,+Ng&u'o( !;m.;ԌWPTxjoeqy% l؈,HJaX̱}MTa_D 82InI"X63]Rɜ DY8A:f{ސ]ê}UbLvPr6ZoHuijaC?uC%Cq3xhv)}kQ,cioqj֑JhP2Q3Aw2G1C%(n#J*MBv7w:-hɷE^J->'8rdjIZ sWuj7 zZ^k4xn.^oޓswvEoD2QEh71XFŲ`0, Z^q\J":z3ZJe\ך [Ry"n`Uf]G+N Zyfwj}5mh[O{Մ))/WF/#UZDa\"KrbCE ؼpgEhKVRvִ`zud;eB[>{OPp$$xӤlUKE0kSw!ƨr]}>Sv&X,CZ>*'9uGC|J˹㽙`﬽&+qG6-bwL_3 Mً L 댹afN$:r/K0~R RrcK9ͦq[e\rĐOΠoɈDF/hI-Hv]JKNg㊡R :q< "gBZrm}2ր5Db9Cmpl-Ur~{MOq1L2upo=V:.֟%]*Ρ|J9Y[57=O nGԒՖaRQ{E kL%9a]I-[;<☋/^##U9Bo´LS5ZJظW)ڹ9wK)KC"\ 4_4v+jFjJz٣bBT|1UXSe%fB5KLtp[Fx"SЃE GP->(vi,f2UyR2%zZw_{oṞjA hnۖXR6q ܻI!F ܊Y ݕv;aɔGӺEhh~h粚eQڹ(ZxW5%юI!1N> stream xڌP\k-nAwwwwwn% n nw^սE1}oouCNJ/lfosgf`ʫ03XXլ\lÓkxe 4vČ]@vvW3+ ?N<1c7+3<@ O.jdeaJ?*Sj377'_a[@h hjlP7xW*>KFFwwwc[g{' j:%@ tr~7 P0<9@oXAvf@'(9@UZXo:f`f`'`ne(J1x~8ۃ݌lM@Un VO{ΦNV. V6[d4eq;3Q{[[3Ĭ{2}̭7ang  HGft311qr%j̿Š|&V@xogc7 o#xff hae':H 43?O zx1|Eh @`M2NЃQ2O3p]-hLS@w,{k?$cbg2b_. F]_j @uu-=h &凌Yo1h,lLo-We6Vv@%{g t4KZ-ӏDɿT@wJq;S{+0vr22AhF;{ Ԟ/ rF AF? (qALF?( V.A(ʮeW@T P>? iA|(?32;8b #R1w#gGbudb3⟜l%F?T Z  _y9~]A{Ԟ207tO0N2eK,=,vɬAm~MߵhA#jڪAr/5z?jP0N?>O6Ф@ ?a)~=?'*hkߴ`mt׼AQA 5lclT ],b Qw9b f/_y{ { F8P$/ߩ^3uu7 h 4oob5V;8 f*5S#d̠u[mqeֆwmIO>φ *SXpjB{>/>![ː:r!+߻Iz UޫEx.Q ,%3ɚ!q'A;x?{s;3F$@ {Z䭳0Z܅KCy6:E-r"]Z2WDDe%J%ʮmtNn2 NR]Y3"fMaKG 7sՎ[ns/oY$m〖n/m#ݾ%4►+?y2@Ati1PݒC.D t{GOs}.b}m̢.ظs(|r~^k*nF!)o-R+q6| A̓H.q}bMZwwz8R/TJ=@x$~1pH$8`붢B^=Bd8vS3$7.g4I(^8_j"nĶq5Ǻʥ)e}Ŋzqk>4|TCDY% Ij9ܬq'AU>kwazl6M^ [_ =: &xa; j*:^.W ˔ݦ޹EK`vDڱ{g^YhKFP&#tcf !~_Ly^d&O comۗ _-w==idF]L1- Z^H ٱ^SdKzݗrQ&PtH?[*<6{(S!Ll1(HOl5ªp lWLșRiҏ%'1ft+jS1cf eV{B"m[ԂI$K VYODSæ1<0~G0DЉ#P[gygM+|ǘ&qAՓ4m¤d˪.m[D? MCI@5jQC$NSw_:jEu.]YZə V VQgD dyRAT=T1F*յrn ۍ[p$ڈ|7o(d'd6八>iX31SLHS3V'O;hZ> X̊u11VȠaEU1O|jïǿ!D"(+qgM#0ֆƢ;kd*f|.e˃123v{QdlWYlWB7컪By|l/\Xr'Ȣ`7oQdrVI‹6l87$@F'af_z޻ߔ#ЅgNOeʮp] ).rydAu]恩L"[5$CBƭρAhYMmՈ6|hsY%ק"b@"blأ0wA;+|I OwU?>1Zn/}>=*ߙWj%Z/?"]X?4ǰ!hYᔂbx}bMyEX^.% aO Fl8#_"kx6ߕ*gš.cxߩR"@Y axTS1IaTv-Q<7/k(sV} cBtQNԤ*m~s!pBe B&E~y$$نb 8h. f)R:SoC0E#E;x\vV{t&WH)_diTZC* j yTW9Lβ\~7OӘ -Y67K U6 *>E <,&e䱒#<9_S7KM/EJ )rz%0|jG+èyY0[LHU" # fƅ%QWe\%Lٱs1CmJ\qd2!:iܗu=%G6dY j>ԻY"-MrAbogQRocDMQ_/dZꯐ“-+RR0=/D煠׏ *,tʆz4aȰC{My8'ҟF v?X}l (mr_7wnfzFN?Èפ; .Z+~4j>vDr\!sLYJv75ue#~Y՟zpuNW%zϊG2bhOjCb!ƷWI,J׃>zI͋> )=8_n]`H^8?Db<ԶZXq7;l1dgXCV'_>0gܼQ 2Qn.x>p&a#j̋W64HJfo\b.~z=3u.ILvϼ܂ے౴\_Lh`UR}jGL\8h]ʵ2gusdM @'.fٌJ* I<z͸prk[w Vu[67OMXlb8I1Xw #`p'4U[5 \Iti%aYDO{v mK~Da&F%`ׇAp#{!<"eٞSOFyhCH5(FFų zO ? yY]`Z =D{;l~kdG\c#Su<%вȁ^nb LH`PJc}ع\G'DRPڟBIbJ:,,ƌwb]$rzѵ=W[+'!i: ,nX{J3. '_3S]!%&Nr P^IgCV sz1^?8<}ֺN4/(˜zxyE_*?)IAb8$%ʉܵMX}fbzI@b/{k;,2MB.WU<5mO?q徼 fMPޞ>K`iHc9cVJn096B ߂[F|x! +sBdg/ XSiZwD-m7~i|ikz;U"9=6$!Gr+3a1,0WM#5ӨG⽈ {ƪ5p1#i9Tz^:B->Y(ѝ=,φ5iQk f;Ag{$VDxYHIθm*p]ΥOhoA\*zdOymGI0Y*K?n¼nYbҳLJ=a%2N{.߬2^#1_qGezd|.B'53S3CtWԻx𡂖 ޒoRh_Qe)&ˬ8P;X10)쇅I Sy@j@TիUWFWLZcD/<5KїLY6<@Yz܅U"]jrI>GQ3I)%n_;_%ӇD>m吡_)mAZln .z;OY=Zr;%{yPտW2Q С\[yh_Q`6Y'D@{_zEeet>zOEI=tq\Jd OA7p( J˴Dfeآ'h.h(.(\SUe=)}iu&aMVHiL{RAJ4Yi^QjB-F6J\ `ݢS!tS99mMpvnek{is.6I =G̾a c(_t  9 aV"Py,ɴ-1s;XWjR0 pD–-#wy =˗9Gcpm+[Tj"A~D6_TZ68vw#6 Rt`]IE{r9l-# i}E^?~m-iv2Vl`8+C,)GuJB]m$ 2:VZsyc PxtŸZ%A}AUqJAv'̂R:Td<|,i.> >;3M+(ێ@..g'ò<5+fcf99,T^@'K>'n\~$DANuODmYXnMnGV7h[㰽ɂiM}{Dim|x>rEŌ>Ȕ;,}T7o$Q:z h2W)ءs+ fh)ryaL0:ͩ+:v2v\]94U]p1^\m2B ! |Dv`l˙hR@8ۍv 2M阻ݓ֠or]fG>AiWpji*}:qpTvk%L3|,u}ϔvۅ1vGHAG[#O3]:Ըԛl/6(T ԇrd}8+=4OsҬJ!G}<uU!!J=tLTRݑ}͛HQ-3˓bHFxRG?+~z>}6wae^ϵc4KB,ql^/tlSX\Zׇ# $z5h?cd?\YЀ*4P)l`358! ӧ1: [UF;t\OAc2Nb_ClLQ"u =/9,+y_0ۢaM^BF_óo{q*'+ݓU&To,*D*)% Ý-AB53zDo^RBlNbo%2= BH>rEcb};`#tO8G?{to6K`R{x!^YQk?"]:YMuqYDLb Y1ڠv.Er='6; !ii+*҈-A/J'|JƘiT K43 ֞ΗbL`]ܭ!8pgJ<]f$Qڮ}# D]% eCqjREڶMKcqqD2G.Ft XU&DM!C3f7qⵚc2 )o8L~a̬O,*Vߤ{%SA4qB@l'U2O\/ .5{f2PuD3*a2: i2:لȯ >+~,ew 'K~JQw(bWO56msKUkE8qfu3mZ_ǎoP"Rz|\16SzlFDZ_uGh() 'CNREmS77{!MR;WosMPWȷ؜1CD~׳fidfW/ ?/zQK|;h$Gݸ%6Wg>ǬDq˒aclw$f0S)Yy>/so#s@5nK:{@+lHB@! AmGF1kڭ$If]^9SD%4s;s}  1mc& R0}5xw&iee7O@F~L1m{Mu.L Gj%,֝]g}:1.Y؛8޽7!f;`'垒 U~#ЈIIΜWg=TR"p ~㎴hŷV,go䶱d¡ц'O%:E T qPHDU>rv076Jjfw鷡mmIJw!)JāCjws:ˣTme╔sXINЉ΂C5aĚXoxOvN:9Ri7p~NR}+b'³[ ^c ȩI(ȣt;P]*n8T$& PY1`Un@\07|sI=(&4mqq uu Fs5d-̝ 9BH4ƓMH UA5ަBVz4C ة|Ҿun$kۆai FUC}:oJ`w G!{;,Vw|7{kl-Q_|1M3Ρjv)7#>WujT}&O< !ӑ5Hi#/ƷglHMm~k? 2LY~oJ񫡥h9fh5CNTY}asɟmPaݴ--.28G[}ntCkWLYx ~Wgߵf;@t0ы2W_ih~^j3}<΄]2]Uh>[Lx1Cl2;0m҂k$44ܓBzpSL "X$=^k3g?4$|˔ -ܧR /qD A} Ftnc3ut^uw5JsP PY5Q_t-Ica4NTnHRb+#Vcb(7i7F#N8,a-5pSe3?T=v38I> Y' [ ?W=Mڟ}4bvͭ. ,)IԛX#\_WM y_2>Y!dN"4ec@_zΒUs}HTfw!oCn Mz7 ,m!EN>Ji4Kئ~-%v{.T 3EJq2DTG2YH{d` G̓NVe&<+{g#4]D"S !S}i"b $CH_r8>\/4HC($`AyXB{L|Ǖ3mL~eK\ B`3Koy-d8>񔄓DĨ45 *#Π5eoS3*6jٗzʹЍVH;>Q>-e/_)jI2w4п'0$;͢6~៚*/ HoE|HW}O,|^$1)% 0!4xEi[{G>΀c"HL KS˂O ᳇UHL&= wV]kM.C=hlW0cTLA(sL统jLH &DoBj{#/1xL 5\tSMJ̪mEu՞-X#\%` JĊv>A?TZ؋Oj;ʚh"qLJUW<((/9%G@g7|+z42EZexC12BY24\ 0LվޣMa'iK'//.|uݜI/#5I|hg|rczƼm?oQNAd! 1@BJ LQט0^̓V'`IaTiQw#nMbrD3qO(WIh~勋k(NY ܀<(im9f4DG!;)%$k]^h̫|\7CxX7d[ms0۵bh}Gs piD!WW p+FeJ-l:`cUFâ:v_r&z|q~^N#i⾖ĄϛeAЦxidVܽɐ6j:bZ_H9 l LyF W4AaƒCPIY3A6.]x2K+b~Ϝe c Pkevxv]G)B c3d6+E`:|%TluE.MdC{pd'<9C4֯. =ׯh@vHXc<ǃ%W,: 3C@sDLRqO_'mؾB& *8p|-UfjNH%tFvmgQi*x09a4d) N~wpน3h=]htێ`eᒋlVa/zTSd^Lq0x=u+aG|z[x>i ĂY5vbL۔c`a+O=bb'Q 큈o#jي! Ia$4'(~R|PtN+w5Κ1JwvOУ+:i)jʳ]a'K-+Xup!N;W37sBhC.>]I*pD7QH:}$xHۈ]|"efHPfꤰ$23BgE[ɑݍ]3Wٷ]lLz Njp»+A+زsI n;X ebe.~Z? |rpٯit1 ,rPR+a-麡~;Lq˱T`v cAbH`RNx5[;VCtxu( *xOKa W' )XvUby@>!l.Iv8H h Y|HRCf&@j.G~·?Eeu/Ws/#{ڂMYG=X3DJ_q>ߤm^n 0FxqcD8^Q5n?k@TWMX6(gE T%0,<Φ+t2$2ql tX#K1w=̘ i'eYlΠ3$7}1xfH_Ʉ |Y&{X_EɆu9SYeNلBӦ&SdC#˙.L>~/nni괺9+O $y.J-'݋pa.SљVLq婆(DLNN52\ 7Hӎ͌|׋dž 9r*Ŕ3J|Oiz$ȆVb$!xz_2sp,,uDJYVT_ǒ3=꒑\z2 ^qJN^ޒj>X3)>ߪ-F\:I9XbJoN[F/6c5 @PړTQh =x'bܗ>5թat67XyYt.'5gc.mXp%cmJN"-3[JaY_{Kvb7R^0NV<: Vܯ/y _=Kܖ .4bq]zzF;횘%KmI6 G3A}*(Y&㯲BP˵#Ɠj[C21$^Sq6  Blʀ͸|f|``~wba]q5ʦ):{mIUt}/N!1 r( [+zPgUn"}yb:/PHF=n^N\YAV.AݦfL}0ulSȤEV& Ïi7IHS)AvhBD`Wda3aZ˻HC3mw;hٙoe[ |DG_qF`gǴۏI*{T>! hs!wQ ۑ2{k2ބ_lzf^w.nT’4D l:v&J{ɟs[xFxȘj+2(017wdi&׬x-ҟV2A}G1ՃQpr.f*<lM߸(Q(+b@ Rrs#X2KG_nZtC!wVE٫m^!ie3ǃ.\huۭ$m5lSh}9HY^Vt+&h/qF_Cjr)?TIJXcp:w+)6j9ߜ zȌ|tBL{v~ʏE*ov; LsAGXm1#Į˛zJJ2ˏbmN XkH>qb͹$$Mf:r0p .i/۱.X mX ]b.uKTt&+vrwuH~M0~~b^u Q7ƾ7 !ό7#E:ЙdH)ecvDN Y-R^dbצZSlOjulzڒSpm{j/ N[:Q Vfb\?` 9YAM]wUV8H)l* Q`F̅rϙ$N$bBSe7 Avë0Y*Np~)2RFq*ǂ-IdZ7k|*Y7iz.=*U k_$~Ğ8)jx"WkrS.GEMC }&qs23V50suv#\DTd>f[l&iyNݾ!*2"@?%Ry]!YcR%-o0ȡb{~u?"9#rnPkqj>kM?09 $V M{DdYg6 0aIQs aĶҬǼ\Xb2nEt(;!6fbTI`F8G^xD$ul<ߞhXhm ahq+76OM .Y H[ "^aQ,sc7 ]o|PJ WOΤt.S+urh{iT^F[6s6L 0eOWTu&B^ē$ء\@KtiSƒuۃkI ,C;% ٵ& +eU霧4ozx^ڃ'p`s jޘP>Ԍv02`\h Dk$ZH0ְ]Z^s Xqr`H#C`ChxyHP:UK'3HRqZ@Ѐyqn,G@wUYJW[N\Kj4 Ԫ&RD8}HI}ÌՎeIby|ƒEu8dSV_3.e,f|?$kE ;YEyg%z8fi0)Z'W;a o߀4 8et)+Mż5-F˼~ZĢ̠#1BOqǼ]y7!,s6QB1 7oObzJ;q\g(D߂Б7`tDY2YcXyJCHd #fe`5-"ck,6wI5x= 27}L6I|SVثsrIHWel}VڭQڑ!^p(V-2vDbn*̠.NH!uEg6ToxIbZl_F;_q pgr(/P6^xfxӟ2B!qMRP (biy"_w (b3z HRN }!q-MwYbF mޗ7Xo8k(n3u<7 o8(z/ 23um] }AHicVu35h|zna1%_@Gk:c:w˴4܄I k?bY:wWP*ch'Vn%ڃ|,:Տ$*(fs6>~.ݚ8PJ( h*jg&܋4Z#Z)n?kϷoתs)FheklԳ\CGYqt=ʋUͿq0,4HJ\e?]&v4xxZuxӱO!9鯫VvdoQbpHD`=;r/[*TWA .^O/L*reDXc>H, ݞ2GѥA\+ ̴Jmb:d;r~@Vd͛ 7v .$$v'/i WuJg":Nnw`rO9[EzgJI;MNˌϝɱ]WkJ2Q^=RO=/H!AYv#ћV$ i Ёti`A&ғ,.a&ŕH>HmM֔HCmVڅŸ4P;~ spp>@hw!ߨ3g?XgADwHXoڧͥ`&Bn5 ユ}S0EwF I H'Ŗ]Y,V 1dzAʽupxIwBG (^%!"2q< %6_)4Sl#Ķwj-mݫt\yb"T {o얱+N.$mmoRiWl9Խ%LF`>8hxZIRC:Y3Ŗ?^E2x&X.^؉ [L= !nXhq N7Iψ M޶?oe{PN*Kkϗ IAuiMyU85)V/lG~be$YqC3 "k!/8oLX TJ Y$Yn ]O۾tCSm USx9Z:L}ƮX΀ު{^9mfV "MkυxZA>/.?y'٩w[Wpv58IOrѰrRwek؎8оUV؇tzvOQYFGΝ'-lKWZ xMlۚ'f= ŏywoq@ ;g%㤹RnkBvnvs , fu! `4@mGVT Md* ]p(-=H 0ɝ7cQuيT]#1 3Po`{\V@;$G9%y`¡C^[hΰ[0pE6`& r/E#^fKw«U47.E_ՕqKU.?FBlsZ g!8|A ֨ɪ.ۈR9Ys/o"@-0Lx ͶO;ɭ}`y=[1AAjVqn?ݕ}Y-=6t?I'aeyH PS7q#։fikFbK{+1 NHمI<6s:8E[KM/ўYu,]s ffAC0Or赿9ʹ+Cur%wha VhR4^)=F \U haVB@Vњ8ӷ% *0}q:-súݞ]}v*T[w&`}L^ѓ c6G\nIqdkX8f=~a=ڕ"eO 2KUpmyYMˎ.N̺ pɑ6=22 ʘAy_gaL3oeSZf9z s$&J׃Ľ O [W$$ޘOY.{m>AN !c\\~7-Ύeaa7)Νƶ˶sZWm|D8vң3eB2`sUO@IShyظS;ݧطQw1R:ޓ:#Aje|NXǟAJs!/GI]~8I|PF}7u %檧`/jr F1_7zw7uvKlkBr'{6 57:'H]qSiƮ&A05/dPU,B"8\ݤ+w??H+X ٔjUvu((%)/s?3uZa4U _92W򚖲nԼ 0x8<%WzwGPTS(J]2>vͫᗩ7::b#qYu{P]tXfFFv݌E4r(H4ay0M#IqK{ˉZnC:$ډ}T|v"HT*vvq+Mq"}jE]/SOxLd?ĬͲ=(/xHS4e#7~ʸA4K6-ogCʼ8ub!|XfaX]؁PzmX=;m?4nΛƛգ MAlF+Ya‰}mbb̗` [6"1XIDOq>e4 μVqO~~#Pwe4.pŸSCkFsy`ӷ.8E@L"AwyfC[HũS~]lӫ^:3xD#'9&TңC]X0*`0 GޮYY!e"T\}Y ٥NFe>1SY,Q#it녁*hsPec;+w$$ 1kOǑi=rKܘ s=k'X^!>̗DGZpF{aP'Bed\zVHenq9B6?* arDHk F=5v31q-iSBxL-\^& bu2EUW>ݬ .L~MZQ> stream xڍTk6Lw Ctw4 1-]ҍ ! 7yyk}ߚ, :ܲPk5D||<||8,,`3b@Vp`GiB!5gPc<Mrap-9m8@11Y lchZ@.mP0p8/;f ;@ '\ wa<8,Xjl#< q7@_U 1ci@ lecuq!;3s ݡ+O+5wV%Y]s]<`_ xdE<O  ^݇w[ P/ߟbk[W'HU/ fDĀm++7? C ہ8~V  oſ% ` A`?0< 0Cd-j)iip.o- D"CXʂ_U 'Y+'aϿ`pK `, >gvc(o>Jο /=p5 SПqق=\W B̀,G+A:`0g0uZ(n SeX>VC+!6P_/$ |p-FHB? b mA޿ @'?%!? ?zDDvb^ɈyA7"@l[x0!/?1E _%x`MI{G]@ o +,}mnhImHқn8I?QU@f0 S%C@ҫWٻby4|~[wFXb;I쳐Y|9JF 87#coٳjI8q~&?|W ݻL(PHFXv_=X++^Qmw}.a{?YY&٩(yQTcbZT]J1s?yivNk;XOg K}IIohx7puzE # WatXHI%Ge,->ë3tzIc`,NRzp!0(_5BFMX[Z=I%Ą(/)>quspH|vA*,Zql'KXq&=i])D0<=}Fx-#$t|:MK2e㎅\%QPЉDXn3U6[v"[%?ƨ  w_{dNY(IDp^/[5ѮiyIi7jP_lL{4y% mv:Qh UD}CudpوVIꮰϒX(.khqe_^&&VhLɾG_c)19XM۸؜*Q4Im0*P(z`3%I. mRa a0)ilX?"; 7H &8io]s}ЪLxzhP\v?tLPGa7)ijٳ#Go"g9Z%d4IG ֪;P|TΛEF N_cL='oSI'MG7|8b >|~fXl3!ބWA V򤅨u.Af1یpD*"#=I-85T3{,֙,m(={ m/Ghr'8CGNSJw;-͇| ox8Ş&^,/m66ߍ͔S?5p/\7G}I,b%<^cVi˼Zl]Ɯ%Zp92/(r5=9tvFgp;#kFҶk5Fmz5Y~[rˑE]9n TR.Yl`|]{ zmѺ(pӑ^yX oVTX;9(f_KqIZ18̞O{i1l@LYp˩*^ͱ30h%ko@fSSK_&y*df?̢^"2Ә|2R &)S]z̟5殮̓↾@XΒ 0 Ls%syEmo+G%TFCs1t1K{/>{`DŽ>ږ(I/Yo 9V_Nq:~{axc}_M"bpl[H)Ȱg֒;ExΚp KѤpLPV)a_vn ;_5iDa{8oWZknvDcj%|IY |X?r-85=.LA\{e8Wa7lG} Kk~wwhz/I E= 123 ̏Ϲ c}˚IِpŒsx)XQ].ʆKJ$ 8śCF8]Y3ɷϵۀo \=z{1cO3r9ny''QtHmRȯ4i"|k|fcFa%#I[,<̯ؤ?a:(.w1JjI`IYUcˆ,n s3v@6TXE,rK)+Knv>7g=䛮? B Qß,l%O' UNtB ';ijGd#\ˎf%G'+#~ibװ ۢ]Bn{N  IJ@x"2&Oz;xemZM"v?Кk?̿A:Ҩ^b0 !o\Q=D}Ħw%K,1WB6< ^$RJO'uk܋h"eh,G1~AK0q1sњ>M=YXbj&SXrPTփsv7݁H随OVv L6^S`Xr*21NsS<|8+jˁ*V_5QYC϶qZךq/8A0F\Bՙ?ŞsEIݢ*>}'NM-x5br x:tLp+p-Mpo9 Q\)áH"$@ߖRK8Mn~s}m}d퉬o@9ӑڨ)Y l*+K'bYhϲv>I.PEů nTMH^^H D'%-qOM 0L&: ݊XqTaa7@JG@(@v^˒ qdDFEMn `I. ?MJOE 9ՓfRn\ TEӲb)찜&#-;XX[l?Xƨ$ jwF?ܩz;TֵƤ=K/zmHF,ZE:[xvjQj`KB9~hKzF1ZpdLB0nҔzkB:3efۃDlD +5ū*0)`/./Jc]cI^QR\̓焋L ߡ kV+!5}g#їW^V63CpJ܍f؛0Ǐّl@z܄q<$04lj']^M?F<6>?48:J*Cn6ff1a&%n1uwB tRk=}]11V{2H}̯GK}w=RFh1%O:bEqhW"^16=nV-M<yʀ<>SErOQIs; X VpMˮgXc])\8VKdiX3PYS1i6ٯVh#FGgwedZ=GYӎ/Ge$bYïa(6O:.Ҧ`zI7ۍBcsOPNPˀiSo3+IwNkdA gfa`-62aǯ_/4B5x}Ǔ-EGT%D;j4lSo~OGnZiX'bP<(tD%sjt,sJEiR_xٝb^<޸[ ]RUaKucvTP֖C~^&d`*f)k&Cظoe*#f%miFLm!=|.^ՑL~oiN~(X-EWCKbױocRSI YbD-6z+ MפH{fdoҥ#^?oZK.8fy/ r0mC&acB)Pڋ6l{r*m^"UN G'>YjoD"~/p'iR0!ٟt${ OcwԽ",WpO/8MhU=Z^ܞK9'/܂ZגLv,w4|:Oݛ8'1O+X7v{`nۯjsB:vl _Pmc^ AvfE bz>o#.*8Væydm姜h>!kᨒ+!0h7UZbBefNG ZO) ؎z<r&16L?Y]QjF_.,!IyTUL|+fCH >RGKri?>mb3I$$5E9yݴ7~܅!Qy_hKwYb1WRgl4/GȚ7N,TwtF>ჺhT΍6ulf=7x&$kTOJg^oɝ [gOЖCqi=,'>c8XwT2c ZpؼK)Zㄥ3Nc W! J=}0^zNA?|r{>6U\6U=ɏh,4'm!&#)}hf%#n[yn^;jn(Ty7+Xq!ś26x%LO.=~2A&IkHn=]& (^ Aug *w߾v،X_Z֟dE3?-U.\ \앝kRiun8e*m:ų2Cg#h Ջd1m Zvay5[A|L)gbkoFgI>)~r_c*V˖ŪtdbC0ű /6%:Dވ;ہ_ڐgӶ5P;!uex)Cu($nq){C"[rXgzD┆ M4oTqu*c\3PokK3ԁC\g7;@t`L@_޺c]/o!AY.CQf|(K|6?d<P i٨T($/k'{jm~(UJ[cu)N19 FvH&nE-h/ J(-jek:>%OW$ПYDGT<$!lu5CaL%.([t}Q}?[) w/Ǜ[F~i̕<)b֙k$zpL}Ќ'QS (r kAUvswj|+E^8AjO}|/ t@őŗdrw]x455ӇLˉ0Xj@;dXsO· Uۖ7՗;ѓ2 _>kxz4ZT@\bǏ}3t[~"9RƑRCUdxEpAqi gi}jecn˒ =&ò;IL~LrMJ7I@[C 2vzstdVqḯ:g'jE*w)&-9Ѕ{hO"f /S Jm(C\GEmJ;\csH=Ϥ, &p'‹ ~p&SiQwv8d@Rן/O.=ڟ9M~'-Q̴+`:RaI?f4Ƭ[P]h\g4ILiKxݍTd(E&S:QCJ\[F`pㆷ}fFF+M1N8drPH91^twk.1P><;~YO:HﶖtOSw%{Ǭ OQLϾ]e^:":NPbU+QѻSHGglbW-UFIIy*Bi4&x+sykG^= a75a]o׃C;p< x{[HucF=,MK v ՕW .OB}`/ |sXeZ4D#E@tZk鹢pwfda>pAҎ'MRe[Ikc&Z$XkŪemOSGhW ;Sij_9|Q a Lj a1IJ|F_ruqT=+߸Ś6lfL'0$9fD'&Z7DTɥɜ9'VkCJj䆀ZI7~IrA&huhr_|yzӵ6: endstream endobj 179 0 obj << /Length1 1584 /Length2 7387 /Length3 0 /Length 8418 /Filter /FlateDecode >> stream xڍwT].]"C7 ) 0 0CII7 RJI H![wZgyk׽fzm=nY; X Epzz|@(c33C.̆`8_`B<jUOOXODb< /@ 07_#a>l>11?`- !+ڂ\z0[l8/7pfxC]0* r]63@ˡGx<  ?xBz*-70`7/ٿ ?A0W7uC\-%u a /dA%Y¿z@p8Whڬ8)@<}p0o?U VQ;F@(Pv}ly-PC `P8b~xaA^`v[bf0zxP ;#SW65rr00_F{+Ujۇ6c%|K \0́B@ۇo/{GJ.. ? WD< ajkr5vO @ upl A:&k_w /x:?Q?L.3~!a |a>!RaؿTX+F^H /x~#~o$UX4o=F^Hk=pֳ<4?epg)N`-V"̩&Zʛ{u}a5:Ѥ'J#Q#7w9k 4ɲ *aʹ$Şe0aD$-zh?I Ռ5h&\S`rn* pҧR!esZcM虖_L ==U Fnc! r-qf _^ QxLA\>gO^6X˒Ǻ :NBFhkBm!eN1RT-esGhF-jJI%욤em+,!;GS2E. Ϯ'Er 1T^}GWHZ̟O_dyN'x×uLJtT!ZⰐЩτF,bFCE <|E@Խg45p7D}ƂO(~؞n4|M.R&[RmCZ]߿]jis,p)c4 ͣYL'PKPg[;fiu %J?V䌠Pt9Ȫz=;1Y+[ o 'Pg?um[+,toB pۓMag Kyc6lۧ|jUSG] *Ŵ9И˫sҚf_rnqϟ_>m`siD)\6mpc^ ֶr27gϩ '=vf:PDO zз QNuλo9]rۯ!!T^_fX6 gMDi2z{˜l;fOdaw̙in:Fja"g$uN2 188q ƔHH_*TwR>$,M)`%> J Cf0 OD8>|Bs~Sۣdl?2(b,~M{5}ʾyٶ;Jg ,;r\B% ̇3ygkӵ7Aӄ(Da9s4XEy $IqZí^T@ړƀTl?;|GR9!ptѩ(cQ?w(;܃yX^#4;L {fBp=۽AoT\9t7B3i1G_JS*ū.[9Spo2v}A ѵ|=Jssߢbb=-b7?+J;*CfO)Gl; +VH`[Wȉ ڨ)LD }x2Bs$YMSjL" 2oWWoT_;} #-έ}Nt\4WLX(qfcOpF74+Ǚr닃Ӂ_</f>ȃd%{F ;lf?bS10\8fOdgd1U#y9ӂQFU6Ҋ{ĈtXp}FǞ~BdCi$NbVP*Rοy +(NP8;ţ,ʴq%/VG8 *Bo\̛u&6&8B@ㅚ:m-0tT@Խd^%]shxУ@N⏉wxb^_X6/]OTڮO3Wm6%o-lfZGßcmהV؜%Xix eT,\5}ĭw'nWP‹61u&鲴֤ h{`N@jՍ%#E)}kq_`t<)T!C~>T% 0Jx%9{, `Tdf8V@/eڋpmnR&ـ\vPUEKU2Y}l0n2( ^:H%[-UμEHIdt؝hTo*Y@b9CIw㸛Dz T(''M\i/ނHTE ך^\`\4㴰A_*ݾlSMZ%sN0xc=YR%\Aݢ>N`'*PU}׮oD$Rȥ;1@hr4!A4)cx<@ޗ>B2aWq ! I>a]6iV:w0wMuz RPOK/w >̌Lr%m/xlrz4p摎=$S-p6#PrzrS8]{}xw[h _g{r`F6a~=,M&OFY0a}Vʳw{N)Hɻd ɠuHzm],i|DO9Ṳ('R~_{&9?Qy, ) T=SՂK[E &ۘ_ )&91uc#7>  ,5R+J)[oeϫ;ԦY%?[r`0ߕUϏw3(ӹOxI#'2LI%V6%Z^D}VqqJ|*̀d 0qt=} nS?  I5^GAɁ%wYݹޡָ q)7ےNSQeSU)Զ2;IڎCoWbn7:P$eI2c\G$"aʼnƆ]&wըWJ8墁~[5׌g*$^w)q犧/٪Zvx;&ۇ?\9*tFaubs[+Oyul$ 2#R8k޴VMڙk8qre(ttLJftX``8V,fc:cP6nbX1ѓҖanX_֡o Rqrp"*#;?zS]r̷pNznKލ%ɑQ:\QڋꖱXzG,LG/L7 E*U xK&_ bl/¼/7=pT#CPh_1{ 2iwJ*Vy'MEǎb݊]آ\TM+(a(n߬M^s[VWngP7 _!nyjAH`HM<'f @Qk(؟6.f<,|Q\B$1dtUG)_j1}HըBW2`v8F=2 i&6a*pE4rCT߲C-nݞ dT",#<bU4m Ut!hNq_"l>~tfVA!qyojXc"(F`W r{C=@5|@<g#xDPe>t.FݐзW&+[/CU4H d?]MY4/_=fn`9Ĵ0VN\%.;J~{."IӲoLSqH"Y.ޠU ԬW]6csUU2dxiAGMtY?Ú`{ A/HͳuxspRE35tB׹PQxy;e8V" `U%k[^St=SU7`޷y*{#.Jiw{06`^r~*>\9[#!v) tWb'룫vИ2J5ٸk _EM} ?:+!j:qj9CGxjLV1=vF0Mk3W^bGu!)e9?+3p4|pYe`ܝl|yRS{!}([f¢jAw\͍XbY#(ٙq${9z9PȒ 9 ^ˌe\}ۑAae]/QX8 >6>#?DqA)h^&Ul`꠩ E`S'8 ɱ6,^aX>C1wW3l|ґny̐NN-w$Zx MXХ@2u3)P6uEK4`S]w@3L0w}h,SXOzGD,tvÐ?dml%,6{ǟ[p<}lw5?ttMox9%h / #"{^՘޺̒i/ĀyyK<.v8_OyqkGiH& 8[u:EěL(;pN8+v/btJhj}@Y򛧒uu8q;Dt,hE| ^yaP& zM4_ѯgHdM;]?cc -\ɿJДߓ߫`S@*~^F}zeŷA#\Z`ƀˎp}Pu\r)8,•92ԮG)~\nnЕk4UԲ=]}T:>BǗ^ΑNE]lcZ)=޴BF px<&}^?&nLC]u#&T9aZY9ej(sQV5e%%eQy)aɭb͇Cs VicAU{T`%ĢI27y꺱lSNܦz%MCkZ87ݍ#. YYk I%uA]nDKh(d mO|uJSTϵJ2m/Z] N#eNA<?ixU|lYҹٮ;BeHC@,j"G4γ; HWrEJ!<K ;?6֘(.^^5")1 sKЗn? ,ܾUYHkY7A.VK|"!h`ִ8qӈʵ~RӱH!gs{;x{& n4Iȟl?rRocezF,?f^k5pkٶ}~ǚb endstream endobj 181 0 obj << /Length1 1444 /Length2 6237 /Length3 0 /Length 7221 /Filter /FlateDecode >> stream xڍx4ֶDd^{uf01F{ѣE%z N[֬5;~>{3_p!(~!@YRE@aBvv( 'd7x"b({BPhL&"-/@H $&%$.@O)7 h!$!2B# PtxBAp#@P?BpɸPR>>>H7rAOod;oi(q h/8 @0{@:|W޿A῝@  w8Aap`H spD~PS48+[ @!PدA*pwQH_@=! mg~4CzA4Ur1g @ _y@~<'t AtP^m g(0O/'8-TTWR[JJ_@$_R 3oWHI}NW\hB\(~oE 3R~۹;V =,j30(4(ъ/"ՠr?yAA{eC } mg?U_&,*pt#D -fB5+)t!0*` @ B F^0/?Ryyzy})@  $:FJgle_(cy^C%{KsQ3 <.eh0T֔ u0cOcS H9g"ŻE6_m]w"7$w32 Tb^.cKԐD OL/Mӱksx~k։YCrjTŒ7:@GՄP=S.OOf+vX²_1Uߖ2 ଧz[F:l^1zwAbXlJ`jX~653sFw QZvn1Q8}BvM,Lb %1ǰ+t%=;&=>o/w[ڇlLTٻ;)MgxTPڳ.;`Z?bDVv۰;m瑠0v~}~2q7jKr2H|f)_ie٣N ?m6[(XbtMٽxa՟Șf|3}W qH]j5V٘$ڪOkj~ڌީ;PۭCTs"k/uC8$b̂UIP;7 0\ a w7Ǒ]{0.R2 j α$~x|,h/OU{hw!Jn nғfBˤG:kv-_#4h|' pv{!/.2e>9.jI[Zx5J,V NqK;꾛,JS@j'ߢB͆,qXYp/F綦 lgٚ8⿜ېKғ֛-oWWmYL8`T̏׭PvH'm_yb*g)ɒ/zL_f%ՎFNSL*Oe>f̆ܺ.9z>OT땇a#Wl0ZfWֿT}\r(϶9ݒ#?vD2]RncJqI&l Y = &3x._ct##OnHW] KET-8+˳B}Xj3F 6Zn:>pv$ޛ*sV|boi$z'!`=?}8ꊾPDb|ha qg*.GGCӓsPX/ϘwQsXWymoMVu =<E7Ox7k[̦.ǩUô/yPg ସ?e (I:T8?cr>?GceJt~Lݻf'-o;PQk P_n!SA,Os<ĩc4-8~Y5a0 43LEA)U,q3Ni0sxB]Iܛ[8m_Lb{QZS2pJL)y8H1t^L$ y6ڽ[KcՅ;( =rWMP`u7g}CxxTLQ?$,ɑW_7 M 1JBn\+ @ WL+w6%:nGLjn(/Ai{;_`O݋NWrOCXGOeٷڥLCO)(\~|I2aB[@{ȒHUd*C4/SU0{bsO6Nv7Y#{Eu&O{tFIvmUe%GRHgYY2 ȸ],bi4nAhdM|6L~A2[k)sb4B&^g¢ʃa9ߦR31 l 10  3PF+q>"z.whDBMjFюdH!v##IVdWY6ʭg>8v"jS]u)em)URt<|=v4Lzw8WNNfNq{Z,LP#+\&!xgL e'Me4:FjjSdi_ubugBWp7HKa~q?1CGCi 9 w鐯C 0jI3eghSpd.ru b{c`¯ɚ5mit/H 7n,3 a YIegS+2lF/q7l[X@R4YK#zfl!e#jI'M'WUf8ۯW샌pI>?( !_vs*t8Axi< &۩?^: ^0՝ZMJ(=.eN'}nr$Y&Ū4NTR $Mi|&$֙T SEąxdxB:w=k `}%W'2bqPg^?L$0K7yqnI_~2N>NK+M0UUT(yIp*H:4U9!вY`ys%(8/;,J~Th:\^[E^Tx\)2,Ly旡4 ~ᒚ$ʟEFQZeg֎q.*.$T5zt8ce7\nK%*7-$#WBRzmӑ[ +O4(Z`*%1-}= . gIDȢ刲1͘@qZ$yUkq}6-n%kM*{=ȵ8yAyŒkL\MA;j@*z5sRܳѾySi%[$4]$[G˳:XT,ۅzOx*0E{I$v|w?%N\?@9niе8_w)K=R34h3}j4d e“fjLϝ%LjK98ďX#UFI_Xmb9 `Ʊ?5wMXč;ByNKy S6Up|e3)s&fZKEYmSSYpNx!̶"U9ޓՌ·/4/]8;˹e7:͆ Zp} 6RܳTH3:YLSi1]B( HOQzP0\ᵾ{s53`(EnA>'YMI-53dFev(9__Vr[j35މ,s%jRUpy. Eo3so z \,Ϳ`n"T^ K9Զ~cFwH [ Y}.@@NA\9Lx\VA}?T 4`Hjt^xYnP(f]+iypo)y O\AO*-9?͍Q&S<ͪ?xwç( \VK̕zBl|mZLi5a̺ `rܳ]rSYzsۮ{˛p+#J=<,R#]3{7ڋSoAx_hWoB %V߳D8tV߷S=je䉿:ITOEѻ0J>ݺV)]P0n9s'MZڈx嶛{p1Q)\~!k$6 D-YD}o~EK\cͿ飋4 gg6d4:[r!G/սɰwTݽne}w-&{$ 4E!~5M?Mys6ڕa!*:#iTwgle. ^#"p[-\v0[ܧ|j# 1tLZPqDٜkOWt6X;oWBDɌܪ[kجA%EUQDdՍji}L6{_JnvUS*i}1?EԃfN3 n戴 mb’TO#?,[y rcj 0PҸsCy>(\~d9ٽټcSϯOڭG?% endstream endobj 183 0 obj << /Length1 1372 /Length2 5935 /Length3 0 /Length 6880 /Filter /FlateDecode >> stream xڍuTݶ-A@%Bґ.А%$A JEDtKA91#\ss~b30Rw(, T3b 0XeĹ .3DdAQ@mPDRVDJ 2"1@5'(v qmEdd]$ AqW0  C"p>(+ù {yyX'BF,㉀ uE 8"pc= A @a(8o4!PȺg_P E Q@{ G (/"C=Hs(!xXÂH_# *?eu\@ᰀ_!1}ܬ3 G{ -<%22@; sU ;( Ov@ 0 "#a8:FY/Bx>~ F~Z 17OH HKd,cEm\-=([1cϿk>?kEUG` 0 %-)77twwC].> xzCmo9ipGpPQx1 p$7@`$7e5$ a"[Y`9X.xs_u 3Q I x9OoH8 Og ڣ1_*. v a?J<0~+ֿ@x#` 4L.ܩ:RK{_Zb-%pܓu/gj܇]O3z92¿q8mݖ2G޵%w怸G3; I,Po>2IyB yl>q!.\Tpւ]Y RYpsZc-8YZS` &ZCg8#H|ƻ4< ɲHZ&:_m&GXn})L]#爠]8(S凛va#VbLj 춺g8Ј4G’g7WyH)Z$ vn+憯rǁw)e%md$"t2tթjܞwKT(]y7w{0!ט>Vxb quC 5~fҶfgwYߎkuz_<ٿ5v1vZ4[:mϧ)~x[~鞰0lFaP`y{s%I:|ڕiZxUH|V?*/}i;`R$1QKA^zCLtog;UD~+3 DEpd㧏h^@idJrM\UC4 e5k6AeLWwK`9w)B |E r!n+uw7NJUԀ4t/X 6L6 ^xV٩"j@ټ0;ŸkjXGLJ3=(N\G&7inzha?7r[:ikz|c| d#q2|PPgmKqS%PDYٯ{>o={1)]="&njyXE`9P^xN(e?>ޕ}@:G&*9rd٧Z6'b-*]m(GʱCИa `rv* RYelptcq>2h?|wBuuZT!<,z,w5IGj'ƒ*˟Oi8fsNCzorIw.`gd؟Kx^x0#ye)p6yIʗ4?{~rKkG#4 Gdn>y,ȼa<AҾ4PN""1 7/JI딖a f&l^- &v^^ao@ug(3$#5#x ;X{O>}:Ktxqqc Ng)6gAKig/+޾~c9ψw7A`P "E] nS̴SPTb)sc,RG0ϟGd6M~䗆(o:0X BEO>ȯ fMtCdh킻 `"y'*f:DflYd&eK.a Ob]^}2jD;"޴&:<ǛTnupEWf5³ &N9)+yi+Jn+d~= .-1桽έhetn~Z^ƒcXi_x-0=آKCIQ秛ȟĂmHnEOZd08vwvxg "Y;#6>ݲ&8a_bEvYi:,$#IzCmַ  acx9R]4naK %nS nQ'}o{uyKCiqő($I_c gng^ËՏ-'8Pzf&I.1 LRV,xF( ܋^R;}OX5s#(|ijCf&{=ɅĪx bO 5[2 !PǍD5=3eXUhRqS3g;j T PV3Q֟}+mфC#-_GFoQ;e:GuҢW!{YɶZ8n6#gَVe[<5߼S.%gpg'sPpH)TR{ )h/|/xEY'Q2n?իo#|$%um%=K_'S_v4ײyE8+m~!q(O4Uԍ~a a{ RYd]~S.(@d Of.AblMJ]fԗo7Ǐ]b5?i,/HH|ꄻ^ Xtl0ZЖQ$KC{kĨUqfb7Iv7}|j3VY9>#rUw{bmYˢ\8Lo-Y#yH Ѽtӿlx8cXl MN~e˛{r]^UҤb6`Lg.Okx1^|? Hm!UJtkѠu@RdavK"n,qqg1O̸.mSM#]ܛk="Z$IAua ( nl: ˯|b~(v:S4JigS 0b,ktm73%`SPF~F$ImtV:"3I˔ {0kHmťQ1QMsɬvEaRTE|!v//ˆvGEZ]U(*b P[9ZTu EݥTdU{$/Ȗ~!۞WLv}J&hݺ}N`+<`vsrN])AU0fv_Umۓn1c=3Y*ȼ [G^#Җ~|[,ּďpԖwZku>yIEmvc*|7tAZ#6qrxYh%Y ǜGqAzؐrHɢkWL%Qg (?"XۤY}՛y۷%M\ ٍizGTok95<[پԚSLB8*%yy#vm2,]Ֆޫ`Ik7,/*d~`N~D9IP|›<x'k"U q^C%t7J Wܠ/\hѩmn>ҋe{ŕOL>}7ڄ 1b!O7I0i.*'?2\E5ʰPi/U:Sv`nɋ5@OWg.4kfqqzqaEDBQR3}uPO{.pAOUћl֊J$v=g;`kՁ[p)\2'e WzVt<T' Ru endstream endobj 185 0 obj << /Length1 1552 /Length2 9715 /Length3 0 /Length 10751 /Filter /FlateDecode >> stream xڍtT/€t -)%1  14"! t#)Jw~qsZY?oo? zܲ6pkkxyxxyqȿ8̆W(&,] ģLx4Ԁ/|>a1b~^^] w @0Ý\v<:>Q\d!.P0!!  #=$zxx]y.vR\( qCl 9BnouKEx\ G >l .=Uu_\w N f:@ZJ<O  G?KduuBBG1+lᎎ.ܽ_k/d цuv*m(GfAxyyEEgl#O%|N6 ~P[+@A|? F!vP?ۿ@=fa6p?^1P]KP{|B>>~AǃAlѿ}ӿJvl/;?ci CB7t(OwEJn2? GuCI?[@TTR w[iWp5'b5_x }פ|4zmYq0pdK K醿nRf4Y1DA^k .3a ޳@%;d<<5-vs|NyW3,t 3ĚSh #QVNGO:q{H?K? ! ZTɭnEZ+M=zUCӖǚxK|eI_osiH?@/5k8d-@%U|ADFBk43m(5zO~Vmo|o $Dx`B FJ?na٫$ޛk1,p nT~DO!d,\g4$k߶Ex2%Ѵ/`=ZS(Z q?Z΍벊5NRn,+M*XD6M].cYWN gOg}w6U%~b>Y# 9J/[է^\sokŹ&ERQi(Vbv4:vA/M8JZIֽ^fD|gz YOfR?" H }h/p(OnJy -fDۑ(>yaVf-:Ըr[܂̫d`g5旵H~NO6oQ\4fF4>sħjĪME7m֪]):XS,C ƱgTF/:Pݧ&qSChXǃM!WMU^9ߵZjS.D~y7~B#u2^ ǬJB,GG{9 FcL:bc#/;G= ['2%GV-ՓdB/J?5{- 7Cn;C]-~msGK8b6]-tqqƂ>% }>o? *+kBn ].2al ] ނȯjB; %}#ufqP7n:"z)GӽOJx]kG<Ę!<9oinDUߕKdX<.JB :#S'_G}2} uPԑpRd'dٓ _T| '.-ee)𵫤X.2Ƞom>E5R,,޴gF׆mzP\ex/ ~xgg?3 꾄p E󆒆%UxMj5- YG}E];[bR0k}|#C`r~ ~PG)E/cސ ,`I3敊մe`/5!X*ʼE:e`t7>t=F+a݇I%z>]2U,k guvN>ߘ?=`j؈C6/2zmElKKԀukj/?fJ]/ԭ$lV;85aʮ* R|FlIIvQF!zzKێt KʡC5`qQ!o=ArŻٹ*=c5pFxkx2j+eEͮ!0lIYe 6<ߒ1d yF= ~^̑/?kcBkI'/'$$eVk-:Pۧ a("d! $f̲ ]1ʒg71~[<o?v9o܁»0z">*_hz?PZ|"nΎIj(PvR.[unmڛ,:Y}`a{A۱-q=b ˿Vpk!XfZ]N15V ƒv[omHA{-"Cp^1r^E,;؝޴#)Wuܹ mKa"c~L2tHxpaa%} IX#9y;RuӠ(Mj%tCбee3Iӌ_±pNu˒wL b7Rg".J iveGP:ztVu7[JF:y2KŝfNU$!-G~HkFɸQAޅ׋: 총ȨHLZthߨ j(dafbqyHa?`t{)Jqj,^5,zFMJYKV~ 㭜k(:;ߎvIT@  {t/FuS`t\#ťbRK_|ꍳ(˳˂R08y&F} Ϛ?y8}anًǔr R<<+Al J ΙIeYQtL9QE*o<| T# =QO,Kza"ω*{:%^q17G`!ߞ_}nAZv=/N^L#;Q%5tvr~UɶS~h.dJ1lF6d 7jLKXᰪ]|!+ܒy|®>@Խ4qDOo e]#$p&xY_'}y=TZFV0w2P3;N^IFȴg _yHpz~xHn#ޞ2g*]'vURZ>t;&<ݠO).TQG'"PUj.h*̠@w\7듨ߡU '&j$;*^(;gNeodY#d}uԺGBvVǗ"sL-R:+$i؆eӴ^ukl3PVGgfE59ٍ;d)m4ʄ>{Q->;u׎:,6uۖR$Wt~0^_+ZDQKw`m~$hP׽'zʖ9nFQ /׆BB S]rxtAܜ\ >rcI j\34L̍ĨNS }6M;nώ#uAK)Sv(BK/6"NNjtv[,%w[ay^}>;VVl^q#cUOdudӪF}MLz֎b ogx!)Nu7J73 D U %ӺU6-6^I0>ŕtct~!&\6(NmhdȅηZ*<ԾJ)׫lAdQi GqYe 审+kdS!u1Z:ހ"^_lTf@uKW4 JV}zƟ<:oĐ$qºwtp#nQW8aH`Ǽb!Y9v1e)F6]]u}r,+hgqx_ \$j}^ [,O?{Ձ.]r ^0gOߏkiyTybOh@3لAeo&L V1 bbFw_$pd7g߰3'amxDW]0O1(}>< x v2E/t ,U!܉_~0j7<:= ]+e9XZ+ZKvI&C|/a??>špRNlgqUz=5%Ytq4S_Y_xnYn9Whz~VOjp/Eelxzy96XL>A\ɂ} [pQh鈗L{iPnJ]k`2Ro7絷xa+F+1ACav6\(D([)kD[,&ST1?.tڜ94"N>'$v6~ ̵w"_CO5ș*<z*X2dyh(V9X,ɒ`vRYV=Sܯ,P5~'~uKo FQ1:9T{"J $u~[-s1SK{$ 'P :O!T*+)z|V9NlуlSnBVX}컺V eѼsL@m\GU{F-$"=mB}~ |ڭ>EVE3F̿MJ2X̱ίhz9]D0+adWEӯ|?]$Pkrm3?ӓ'< o}=0RWymFFT1Y̿(,SSkbdr??s#ϱ\Bp}kD~0n<#nq#i>UM*򲓛cFxGW\vB#ϹgEHkYGqߨkz !2Ǭ^<+#q:xēN^[nϱcP4Jm J0$.\MzP9'4̑E)S >O6{hfu/0XR,oнbArڑ<ۇO8& Tg.h{C&չ?%-6?P}O%6(qE# UȻv92gO#-p_'JŇԚ;o*7q%`a֌u ) =2VE9 TU O ;C>G {" u[0a 6h!xS[qu"D:zN՚#9YJ%ԇv ݦ'{%VE#qe6 * \CzK#G:veu7^RY3ai-Ml6/z@؞Wیr\dEAI6ff|Qvm?fLro47ͣ3-X0AN7t{B鲟Xw?驾(F@_- g肟N.Լz")f,9##5ȃ3h:z0~lR~cB]M/i=xT)ޢ0q;`#;2M7o_I_PJ QEqM*;> stream xڌP\ cwwwơqwww +9>s&'VR6%@N L<QyUUf&+ 95?r8ruȖ@Cwӻ< l `f0s0s01XcrX2 [#(=TfnnN6@ cC[9=5@dltrT|NNv< 6 3j:9@tp P09@_ .0:8ۚ*rE;e@ws oYlhl 3u5ZXr NnNtC[ A.ֆFn 0|go~vN qd+{mMDA66@['Gpݝ߇ke r2513PZ6"?23݌Jn[`Nma |t4tޞT/cfX;fp`az?f_>O G("BoUlzVV;+'Q -]?Ҡ]!ΠLyFyjoˉS}7 sg$8tdŒfN:t/5ߌ`P ,K0_jq>y7['MKYǟicVB G%rܓ ɬT M}8=/{2A%5V32N- v8ww ʴ%LA*KyhFWL9]A7|,OeF) 9|[g/qI'mT{G{}m&>NX&Z^/ 7`%)ÛyK)5hء79}TQUD=8;SO&n/l^cƚNsIeaZYH,[U U?ȵ-/6k*S҇X$d}B8T9W"xc⢤i-B4z'طy#\A78[y*\NlLRsl:Z})_Y8MN ,D5f _Gem,@ D3yQHr/˨cʼԦ~ DbC?T5:ݣ̚WffK\xnC~b!>J>66i:)qTwƜ$>0ݲ/8͌WP/,B}[lEAlzwҝX%Tcx:a3[e`1{/e'v1a+3B!QnhVD{k=O.|^qdeS)y]%"!gY\kūʾ 0Krd oeb{ߛNOd4ؓz] FW9%g1t?˾Ud#<;H06\iEɀUO .Gv2^NY9\HJZlV Ocz* }:PW8 y!sXZ~PA"tVِ($Ηߖ6 ~ N5R%WPBۤ?R"n R fo*)zFJ(# q|Ҍ[9b7Opsd`X^:Pf7VbPUu!]!c6mJ0ݱXu: J(`GÞXb [aaL^t/jtT8z9c,*/mv~?va @YJhDUܶ[5UYxA܀3S1Y.7.ϳlna{Kt_KL)FRn\?`l%>;O1{:5a`wmw"w1GA~`T)2ܖQ$xW @U d@::^:NX]aO[eHS=frC$onFHk^W#pS `&'rSW6קE.d4|{1cklmU@Lg8(Xx)]zS_E(KSp~[FfDtD}@,G F)'yUk{ h u>l RH1߆`gc4ZC/EsH/7ZN( QK;X l{H~!䭾yx#L "[ 6i3'QСW9c#Ίr3ozXs6,^$L:`JbE%K},HPy["wp)hNE1(bbxHt"#R ܣy _orb^8(ۣsSu|jY&ho)QcbH쪉a^7yŠ $=, =OIc K50].dP03;vH$gb|ykuErگ/Rp[,a5nDĂ<[m){(XN}XmSwfA*]@X7`xÜ:QҒ1cPbˍsaQ lX F54 |D$chX6}ԏ**&>iPVLZuޕ ;)!]jviifU*#\,|ITB;k,J#7eO1c]mPuKHSMzT Yw~_ ýE$ $o\IF MsH@Xd☏) a-)]gw+pI0kRkA5ȳ7a!X.y_P*Q* Tk˶}rǯNoJϧIN%2n \ 3+[ _< t0JɏX{b9{9(5FN\JTYU7|TJXާmM:ϩFRߧل)Rjúe..emZjluh iZ}=VE'BR BrtG6lC9pTQ|2PY#qrؔHb '/@!21=]m^TAǓRrCB&}A!W85U_ya\iHF ܏-|H`6[C+Gh4CWchKɅ9BǨ m=>/| 7SJ!j7n8g|KyS:Qoovn ~<>I*u*'G V~G8S蔃r 3toy Sg3j,Wf+0H༵adu~u RV%QPK,C<1sW KPȰU¤ ?FH>(P/))U1IqyA,PzO;B΃IgyjOҁK ;Fq{;_TŘ_ͱbE35cv&/cWF_7KʫJ%.@z3Urq?BXwPm!}0xWz,<"f(j ]獥j6S1a9kSmBX)9Zxs׎qBmn|E瑲T=k3X#tˡ2 g%6>wC2n~np6·U-8noY~N 7s1SO9OC2 $Qy^}h%yBd^֩*$z|jܔdgq{6FI[0M[8 S36Q4GvAaY۴@/{n΄yD@23说$`p N8 ߜ-ve\ጵ{0>LZD,/I7;xqY=$n5`UdJQagt* ]Qv h)^^ HUcˏwZ<"IIġõ7KgajW\c'L V(e4VL{x#/B#nN#a`t"9YE'FJƮRvpK.(ipIQywo,aAjS28dቹD;bV @7XMsa.p-A*cL|߯!%!ie|~n#unHD1q 42}WJ7#8HDͺ\-`YXyUYܝ2]t}vrH=~kHw<x [d5(9 ,3KkP1t$DÂ'R~OT:?:i!1s\Ezw}IgiV].i]U^k.I9Ԅ4 M"]:20,f٘*8mi檄IsdK@KƁ6_8m都q&+0t2F[cf5 !΅"h`h`]|0}bY4KŨ/+Zk3yJ]42 L6iA遁H&yɬ:1O..9ʟ2eqR =@SjAV<93+քhxN{Aԋ 2}py~]yUh &S$šRJ.Wd0rZq(a ֙_e[nXZ1 6wu_H7-qm J3Y{TEufb~S凖592<Ɩ,p Mfh9c<\[Ǘrzں51?v28Y=ɟ$(9}8h|>Ow~zV`m +/RHB @fc?#9Xv=:;zoXK=4حҢձ̃m!i?vaq$?ڦqa|a0B{Q'"tEDߣC$I>pip72ul+|  Dj.`|֏IXH!)#0ւ y$5Ѓ'@Av(05ۘw mRtl5C1;ef\ĝRsu4U)fvAI@IDaC)1yqG3֯?dwX|3 CX7S@x 6r-m'~͍%Mf$B9qe1TkF?|<<6nM/ݱ}'G/U޳[(ԚȎ߲I ,kw/˔q1™itzZ%|DӰŮ;Q}ߊ*X[g,Ƕ]>0#sY< w'90p_%acjӝĠ)(Hs{Vp_"]>b8_WgG9I?0/&=gt ѤTqPrdt'\:_AH͆  g1Xg""Hh+v 3)_(_)ac`?ĕ!+T okNO2DT"?\q%J?cW?6D<6! *KkÓIIR3HS{c>0%Y= 7ByF` /H]Ax/,n|-+Ѫ`v'~j]2zN9= G>7ȆXlfzZS.u >7$& |:d_ xZϚ <Q Ljׁ"Һrх{gL?[,F^Lv,FfBXQ,$'sQ/qlB1LD Ų\e?2{W: zCX=ڑq.}EҦ̭8f|ZSвeoU sl,"}n, @4Ttr͸`5{^\l&<*!Bd$ Z%Hrt7K]Q̐ ޽{3c#h}v/ku c>CiOe^O mvcE^&,]-Sy.hݞpHheyx$óc !`XW7Ξ]^({$  "`-885c: ^g78 LN(\}Q}´,]G3Nξzs=IXC#!yWRF2q_B])^"4a38M*\ѧ7ȟd$J2x@~gQIU%pՁ8ḏS#]M0OI`5H RXZg'-x7%9#&\'ڥ˂֯n\Fٿ)ʊvvv~G$!cqM!{$'4' 3]Y[,8`4h{YԞU&T).ti v[α}vL5|A Hm/?NNĠwGsĦ? o^gY^8ѝF)@=rFBbzCGd]YDs.YѕJw1ReoQX?'uc0R* d:c(Xh% Ic+ ]QrN8Ok-F=|Sݩ>}0C{%ꎢ LO܆kb};.TtcV1;*Kn˹CtX94L5E~ Tن#9(E}-ф .]ڪZ`1AVeUq;]ѿ,KnvB:bD{k)9N8ό; ^)6 "鐜zXA X"6 !ĒO@J~G+$%/EfPoӢۅ`$|c> ,O׍?{1>E}m^p2GfaROv"LV*|>6U^A"50{[2'tRlc 3g~P=qF7WQ2W<ø,B`PwN5@9c8ݧ,gݭp GK pcs&@FhR+$5u=oê~U[(<>)jۖCrB ~)A`; G Sdp0a?JȢkz=&쌻Y|z_72TH'=qRj "B&6)*R_D#{Yƴ.٬;֪Yov! YP*6Qgj(Vn=]c%% oG#3Ny)(6q%$忷=Ik[o2Z \DelUuRQh G!$" hz9gZOq8pVbKyc 6`݇GŋRZ}`/8E\D614 tuyxEZ[׎#XᝮdsiU;Cޭ7>H-LFƭ` h4]g%M+%^2+]9%BƣkZ)%f.~dOH-0.%&#\`BxH[lC9ᡕ%cdq 'R.G؃ѝ)&\q/>zx1iQPRW}#m@ T$MXMP{R<^}gCwB#xM*rBJ1Yz8!=rhN^)}E.^?׿Ǝ#:T ,]#uϯ2H!Ňkם1rTf/v~p<KL%1 & Qwe2uBLRq6X&O42|-j[ Zk򫴣Q΂SɇYb|*&f׆͋a\pGvJcB:2GD )P|&G zʭ*×2}1PTNRgk_*,!ﲵj4ËqEI?|.٢T\tAGtt@powiE<\`Rtw]Sc,uRY Gi0E헙+c VlKðd*1U:7VGyIwZV(nM,xKA&J?z<\t`#i7@MˆM'rPjWo`+U{Q]&`ˆcJ p漫 қrJ@y)xng0KFCc5p_5%J~Cq#֌G8Kl`Ժէq')5C +ȏvg޺p'MEXG؍0J3 OWP~{9Jazmܨh)ۉ^Ռz5B ge9OqlĵHum9iG; U_fqXLR~r5=e, Nh##øX')=D\E`P ^XrzPHOy˃n,rEq/lCuV3ɗ]Kd2lA*H1B#\ \qe1֡|M70]y9m&Oނ1a{՟heG;\_:yit: IThO&w>`騺XC@΄iӡ2p+3k1ߣTj.^4['!:{ٻvG^F[zbQ%869S|Lk&9Q҉#Y̆A3L;fSl u$6k*TN6Xb$:u^Wƫн4QZ}M&ز @܌HNݾibxe+^j ~EEJq;Y$pZ=oMua: ZrF?0YsM![.~ZJBIkPv] =8g^) 'omNS]?%#鉋pa WCjY_Ӷ3y_OZ'MF"<=qԊYJ7;BZ$L{Ljl9vںw$Ib3 TLXQG>A5l}0B䑕h' i6%_.ъe鿘\#p`2ʾ=c &&1Y5箠0&j^];:76_Цվϼ3' DS< #)nQ b«ni +MLi_XL܏e>&~c|0v.tmN!0x^_K>!2WLg^3r-.EC;)U"喚3a%p|&zoƞiOA S+:n{al&ur oZ-܎l7 zLίgyg` jh-I0B>d皩 8x[i1GӔ͎.HxQKWz[_@T稻!49E*Pj5{5 uMȨP 8PS.od^֠sډn_^}[zʦgC{t"ѐӃW,u wGʫ:t-fqQZ6eu/ ^df!R^3m=@H\ _Iந&xX8ףKtBhhϲ vظzR(Y0%tm l'#WsqU~MO4So2¨MLex+]eqY`E\MDּɻG2ʊw1v$Q!ؿ`)N ;pbF֑EAiYv*oȩJ Cj9cʦ&{O,Xuy-ji>]$)Ra""S3F/OnyfТ!cޏ)QUaХ{*&pp.Hl~DL? |n@\' &oEζMAzdk@m"Mj<)xDxɕp* ϸPQm$S7m0 1ArJ]YaoF4)l cHW[4 >XrbCQy"vT,!sG ¢CL,nQHX!J@p2T)~KG1Va5nP(u^+C4]jԏGV|h-mʌ5, >j߁h?%;΂䶗q~|4_zE4n޴]Px(}HU_7PzʘqwCQސc^)adQOHVgm@*_P5s$-9da`V^^dTQϩ>ev}TMcr)3#dMQKWVqEa\*haǧqYsJ<ڔBJijtiwzڃb9f**:k˒!yk׿>a%eQq]idvRL@D+ j A 0 |+$[`qj9jΥe9m@F>nEcGdWZm./ޚw`k'W M OB: '덤Rӥ5YSO'XzǗ`mMHi IP50Iu"ճK:Q4vJo>Z{oHrmVa|MD$mM`C #ԡT]:F& |thrlW5uI!/Hb~,Tz3nǬ:YϾ/ LY27GEoe2a{j\gۍA>E'U%PU2x\ӣZBm3j5+0pn9&K+/T KXCU:1/XgUCMλtHѢjjQb6*p~[J3]wBB-bjq>aL~EAVq0GP!iɝJ U<[d\ JQjxD'+=ȸ-ߝwhi\}hg# o0Bǻ+=0ܼ.J1.Ֆ=6o߾pCq? wfJVFity$&608, :ju`lAHʪ([&sDQu P 󲲪V TOU,?S?( +`yS `|l>O@ ٿ< j0z!^E4} a~eAQ; @~ܝBZ8j}7=<u(E|gV>UW[ޡ֪ȵ?vяQjfrUG.:9C@œV+XN/8 D>Ks{ݪ! dtC?Fa왟"9CEO44濨͞J7<ݥ H~E.h?-R[2`X1Ł60EbVUf.[l5r_>BI(=0!'NV¯onR~];I]ZPO~*<4G*H;,,86WLtӠD%_v[`ϯtda;P19;aEr*Fgy͚w DC pk'`$t DoL;:EFܸM2FpFjd Ń_xQ)eGS"3$Q39k -[T˓F/f7v+˨ewabJ*>=t47(Ζ0 CkLOGW~&|( aklDiÇfHoŏ9u/79Fhrt= l$8sUeɭrO5|}Ԫ16.&տQ=+bƒ&1' a5a2LJ[#Ku3r3k?tBrٶHl3|(1%!&; Ԧr¿ e$ˋE"m?`G p]D4$mD[n8&3Ys1];J)6|cNxڣe8/hUX$!' Mgw-=3/aj,w no ]4Gmx;lR!1 &kaxI4T/Fd7ŎO'5;@w)ɎW26 |o.0.n(,JAw~˸J(&読nda%s|{kaa^O䕽 3̞ޑHx˓*lnE=e,` v<ƴۋ)~eMٹ.f:YL8+/=_N/7 endstream endobj 200 0 obj << /Producer (pdfTeX-1.40.22) /Author()/Title()/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20250307214758+01'00') /ModDate (D:20250307214758+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.22 (TeX Live 2021/TeX Live for SUSE Linux) kpathsea version 6.3.3) >> endobj 152 0 obj << /Type /ObjStm /N 67 /First 589 /Length 3529 /Filter /FlateDecode >> stream xZYsI~ׯnb#|`ilȖG_yZdq#puuuV_fef. %B+#i V\[amYZ[AhkkmO{ W2r堄\1ª`| -Np$>Q oBhF'|L(3pI✔QM2"d|Qg9-$bpDRV [Ɋ wJ(RQ̆JLY9X10(nɦx ,H7IX,rIV0`.<ɀ`@6L@ PV+(c.0 ;i$ k@kFs70ŧ@1:S(c _8 =~ܓ_o! .̚"AA=t|7h\t|_; ~{i,8$Hʁx)r [1Iqs7H1}oY*vAc!!ɴ0x 1<UGy)z8gY3C!ϛ/3AB]yZ}hv۾) W+>he\Kj/!cSJ\FLA7RŜ^O`C1Dr8O=@" ))$F!Иj$M @=IcN,-`ƵFn+t<#U(#YJtuTA+7U:-iʼnmE@c H vhXTX5Y3ӨPzHGGB|̼xУ%N|3y5/FBrvـ>PQQc60=`zo:g1 #Z ora0yRy{1Π@>8C#(1 DѮ ѸBCZLN hi0ħ՛b6`Nh#WY{7 "1D&t '!| u2"CiR%$fE%4)R0oZh)YG j#a`;H)9KR:tZH [2ES+F&,/xx6 W!uLWx,ٔ+՚ǸS^62T5,Yj:,}UYCk}h"Q<٬VTΥJVvBjw^{VB C bVQ+O͂Gq_f tR+Is1\}\pR~1}+JJҘESҔx=&KMSO; %o]j J؊9ujt"=J)'M~tؖQsg(//2"hZazBSReQ1™n;!VQ#`Go^'<y7T+Yb܊W (b2'?{ Sb~zxdbP+>iWpBO|Hã`4ؽ5؟͚뗘zu% x\ &K/Py*\A^ȏD^ʡky#r|[9S9~`z%grv5i9g,6p W24f4{ρF8Yx4!h5.`7Ck-7j>x6d8Ȉ6~_x޸ ogBOy*exk FSAku ]!'KͤZ Ye\6=:;E\6Hk游􍰳#D b &tAo,67ܴZ3t?ڴZL6lƪ7GvO|܇*UmxѦ]@ 76Jưѥ%շY V *S~K0lS4ͦ F7[cyXwP~R o80m*GhM,@f cGNmtx<@3> Û͆'m}O~Ԑ2s?a};^7lw}y o.~^NI${RԴqOVn^|;?XeVk9Tjd*޶c~`Soy{ECn WX҆ P}-.{iCC29ʂp89bO>m٫Ք>Z|+>u#v{+ }G~T+%ﶗm͊zIZy{F+u\Kשi87lK_nWΥJdnwґVSwS\ Tlw/nJ?%_Ia־K +\jU<~H5/X.>JÏSG\K&."bzK~&jSF=X@êrYWZVPEߢ'B{z7AI!K0cn«pŀ]h#y67m~;i> Rӷ;=;K8\ZFش 55زq15m٨lW|ƆU6E܃q5M bSCl@lZzyTuUrHGÿ[{p5ph{`5`XLhţ`2\/p]}vzEJWzJC/Ж}W3~v暥ǕPX1_Dv ʿՊ24R 6p2-b=(cu꩚jZmNK^n(Op|/t_tKkdWt^^BjE݇) uP5레kA׬֯Ymjլ~SynCxUpipr-ŗ{3IE)x^Z%|JhŹ% ~|^Res<fQOo]@Tt endstream endobj 201 0 obj << /Type /XRef /Index [0 202] /Size 202 /W [1 3 1] /Root 199 0 R /Info 200 0 R /ID [<8B79006BCC4E82CAEC2C6014811DDB39> <8B79006BCC4E82CAEC2C6014811DDB39>] /Length 519 /Filter /FlateDecode >> stream xMSaϹ%^^)'H =,`ƌ9cgccȂijcogQ溯?s%dn?C9Hj(xAm-ƣ@*[#m`;ׅʀ20wU*,MJPŒƃˤjeIqe u2~=N2AfVF/^*S4JFnE&*]noLq|}nOS߭MI =0g?y#<86[(ʻKnɻ