pax_global_header00006660000000000000000000000064147551141710014520gustar00rootroot0000000000000052 comment=4c3acca6ce357d74b050cb46481af00c0bc96e32 sep-1.4.1/000077500000000000000000000000001475511417100123125ustar00rootroot00000000000000sep-1.4.1/.clang-format000066400000000000000000000054071475511417100146730ustar00rootroot00000000000000# SPDX-License-Identifier: MIT # # Copyright (c) 2023 Intercreate, Inc. # Author: J.P. Hutchins # # Python(black)-inspired .clang-format for C repositories # # Includes Zephyr and Arm macro compatibility --- BasedOnStyle: Google AlignAfterOpenBracket: BlockIndent AlignTrailingComments: false AllowAllArgumentsOnNextLine: true AllowAllParametersOfDeclarationOnNextLine: true AllowShortBlocksOnASingleLine: Never AllowShortCaseLabelsOnASingleLine: false AllowShortEnumsOnASingleLine: false AllowShortFunctionsOnASingleLine: Empty AllowShortIfStatementsOnASingleLine: Never AllowShortLoopsOnASingleLine: false AttributeMacros: - __aligned - __deprecated - __packed - __printf_like - __syscall - __syscall_always_inline - __subsystem BinPackArguments: false BinPackParameters: false BraceWrapping: AfterCaseLabel: false AfterClass: false AfterControlStatement: MultiLine AfterEnum: false AfterFunction: false AfterNamespace: false AfterObjCDeclaration: false AfterStruct: false AfterUnion: false AfterExternBlock: false BeforeCatch: false BeforeElse: false IndentBraces: false SplitEmptyFunction: false SplitEmptyRecord: false SplitEmptyNamespace: false BeforeLambdaBody: false BeforeWhile: false BitFieldColonSpacing: After BreakBeforeBinaryOperators: NonAssignment BreakBeforeBraces: Custom BreakStringLiterals: true ColumnLimit: 88 DerivePointerAlignment: false ForEachMacros: - 'FOR_EACH' - 'FOR_EACH_FIXED_ARG' - 'FOR_EACH_IDX' - 'FOR_EACH_IDX_FIXED_ARG' - 'FOR_EACH_NONEMPTY_TERM' - 'RB_FOR_EACH' - 'RB_FOR_EACH_CONTAINER' - 'SYS_DLIST_FOR_EACH_CONTAINER' - 'SYS_DLIST_FOR_EACH_CONTAINER_SAFE' - 'SYS_DLIST_FOR_EACH_NODE' - 'SYS_DLIST_FOR_EACH_NODE_SAFE' - 'SYS_SFLIST_FOR_EACH_CONTAINER' - 'SYS_SFLIST_FOR_EACH_CONTAINER_SAFE' - 'SYS_SFLIST_FOR_EACH_NODE' - 'SYS_SFLIST_FOR_EACH_NODE_SAFE' - 'SYS_SLIST_FOR_EACH_CONTAINER' - 'SYS_SLIST_FOR_EACH_CONTAINER_SAFE' - 'SYS_SLIST_FOR_EACH_NODE' - 'SYS_SLIST_FOR_EACH_NODE_SAFE' - '_WAIT_Q_FOR_EACH' - 'Z_FOR_EACH' - 'Z_FOR_EACH_ENGINE' - 'Z_FOR_EACH_EXEC' - 'Z_FOR_EACH_FIXED_ARG' - 'Z_FOR_EACH_FIXED_ARG_EXEC' - 'Z_FOR_EACH_IDX' - 'Z_FOR_EACH_IDX_EXEC' - 'Z_FOR_EACH_IDX_FIXED_ARG' - 'Z_FOR_EACH_IDX_FIXED_ARG_EXEC' - 'Z_GENLIST_FOR_EACH_CONTAINER' - 'Z_GENLIST_FOR_EACH_CONTAINER_SAFE' - 'Z_GENLIST_FOR_EACH_NODE' - 'Z_GENLIST_FOR_EACH_NODE_SAFE' - 'STRUCT_SECTION_FOREACH' - 'TYPE_SECTION_FOREACH' IncludeBlocks: Preserve IfMacros: - 'CHECKIF' IndentCaseBlocks: true IndentCaseLabels: false IndentWidth: 2 InsertBraces: true MaxEmptyLinesToKeep: 2 PointerAlignment: Middle SortIncludes: CaseSensitive SpaceBeforeParens: ControlStatementsExceptControlMacros UseTab: Never WhitespaceSensitiveMacros: - STRINGIFY - Z_STRINGIFY sep-1.4.1/.github/000077500000000000000000000000001475511417100136525ustar00rootroot00000000000000sep-1.4.1/.github/workflows/000077500000000000000000000000001475511417100157075ustar00rootroot00000000000000sep-1.4.1/.github/workflows/build-wheels-upload-pypi.yml000066400000000000000000000104711475511417100232620ustar00rootroot00000000000000# GitHub action for building the distribution and wheels of the sep package # and uploading them to the PyPI package index. name: build-wheels-upload-pypi on: [push, workflow_dispatch] # push: # # Run this action on the trigger event when *any* tag is pushed # tags: # - '*' jobs: # This action is split into three jobs: # - Building the source distribution # - Building the wheels for the distribution # - Uploading the artifacts to PyPI package # The first and second job run in parallel. # The uploading jos needs to have the other two finished without error. # From now on, we run the tests before continuing with these jobs. run_tests: uses: ./.github/workflows/python-package-tox.yml build_sdist: needs: [run_tests] # First the source distribution is done on ubuntu. This is not related # to any operating system, so we could do it on the default os. runs-on: ubuntu-24.04 steps: - name: checkout uses: actions/checkout@v4 with: fetch-depth: 0 fetch-tags: true - name: install_python uses: actions/setup-python@v5 with: python-version: '3.12' # For the build, sep needs numpy and cython and we add twine and wheel # for better testing and checking. - name: Install dependencies run: python -m pip install setuptools twine numpy wheel cython build - name: Build sdist run: python -m build --sdist - name: Show files run: ls -lh dist shell: bash - name: Check metadata run: twine check dist/* - name: Upload sdist uses: actions/upload-artifact@v4 with: name: dist path: dist/*.tar.gz build_wheels: needs: [run_tests] # Second the wheels are build for different OS and python versions. This is # done with the help of the `cibuildwheel` package. # # The wheels are built for Windows, Linux and MacOS and the python versions # 3.9 - 3.13. # # The three operating system could be done in parallel. name: Build wheels on ${{ matrix.os }} runs-on: ${{ matrix.os }} env: CIBW_ARCHS_MACOS: "x86_64 universal2 arm64" strategy: max-parallel: 4 matrix: python-version: ["3.12"] os: [windows-latest, macos-latest, ubuntu-24.04, ubuntu-24.04-arm] steps: - uses: actions/checkout@v4 - name: checkout uses: actions/checkout@v4 with: fetch-depth: 0 fetch-tags: true - name: Setup Python ${{ matrix.python-version }} uses: actions/setup-python@v5 with: python-version: ${{ matrix.python-version }} - name: Install cibuildwheel run: python -m pip install cibuildwheel - name: Build wheels run: python -m cibuildwheel --output-dir wheelhouse env: CIBW_BUILD: "cp39-* cp310-* cp311-* cp312-* cp313-*" CIBW_MANYLINUX_X86_64_IMAGE: manylinux2014 CIBW_MANYLINUX_I686_IMAGE: manylinux2014 CIBW_BUILD_VERBOSITY: 1 CIBW_SKIP: '*-musllinux_*' CIBW_ARCHS_LINUX: "auto" - name: Show files run: ls -lh wheelhouse shell: bash - name: Upload wheels uses: actions/upload-artifact@v4 with: name: dist-${{ matrix.os }} path: ./wheelhouse/*.whl upload_to_pypi: # Finally we collect all out data from the artifacts and put them back to # dist directory for upload. The final step waits for the other jobs to be # finished and starts only if the trigger event of the action was a push # of a tag starting with as version separation. All other jobs run # without heading runs-on: [ubuntu-latest] needs: [build_wheels, build_sdist] environment: name: pypi url: https://pypi.org/p/sep permissions: id-token: write # upload to PyPI on every tag starting with 'v' if: github.event_name == 'push' && startsWith(github.event.ref, 'refs/tags/v') steps: - uses: actions/setup-python@v5 - uses: actions/download-artifact@v4 with: pattern: dist* merge-multiple: true path: dist - name: upload_to_pypi uses: pypa/gh-action-pypi-publish@release/v1 # with: # repository-url: https://test.pypi.org/legacy/ sep-1.4.1/.github/workflows/python-package-tox.yml000066400000000000000000000016471475511417100221640ustar00rootroot00000000000000# This workflow will install tox and use it to run tests. # For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions name: CI on: [push, workflow_call, workflow_dispatch, pull_request] jobs: build: runs-on: ${{ matrix.os }} strategy: matrix: python: ["3.9", "3.10", "3.11", "3.12", "3.13"] os: [windows-latest, macos-latest, ubuntu-latest] steps: - uses: actions/checkout@v4 - name: Setup Python uses: actions/setup-python@v5 with: python-version: ${{ matrix.python }} - name: Install Tox and any other packages run: | python -m pip install --upgrade pip python -m pip install tox tox-gh-actions - name: Run Tox # Run tox using the version of Python in `PATH`, append platform run: tox env: PLATFORM: ${{ matrix.os }} sep-1.4.1/.gitignore000066400000000000000000000010101475511417100142720ustar00rootroot00000000000000# emacs *~ # -------------------------------------------- # C *.o *.os *.so *.so.* *.dylib *.dylib.* *.a ctest/test_image # generated by tests data/sep.cat data/sepback.fits # scons .sconsign.dblite # tarball sep-*.tar.gz # ------------------------------------------- # Python __pycache__ docs/_build docs/api build/ MANIFEST *.egg-info # pytest .pytest_cache .cache # generated C file sep.c # PyCharm .idea .project # Eclipse .pydevproject # Jupyter .ipynb_checkpoints # tox .tox # version *_version.py sep-1.4.1/.pre-commit-config.yaml000066400000000000000000000016431475511417100165770ustar00rootroot00000000000000exclude: "^data/" repos: - repo: https://github.com/pre-commit/pre-commit-hooks rev: v5.0.0 hooks: - id: trailing-whitespace - id: end-of-file-fixer - id: check-yaml - id: check-added-large-files - repo: https://github.com/pycqa/isort rev: 5.13.2 hooks: - id: isort name: isort (python) - repo: https://github.com/psf/black rev: 24.10.0 hooks: - id: black args: [--preview] - repo: https://github.com/numpy/numpydoc rev: v1.8.0 hooks: - id: numpydoc-validation - repo: https://github.com/sphinx-contrib/sphinx-lint rev: v1.0.0 hooks: - id: sphinx-lint args: [--enable=all, --disable=default-role, --max-line-length=75, -v] files: ^docs\/|^.*\.(rst$|md$) - repo: https://github.com/pre-commit/mirrors-clang-format rev: v19.1.4 hooks: - id: clang-format types_or: [c++, c, cuda] sep-1.4.1/.readthedocs.yaml000066400000000000000000000021151475511417100155400ustar00rootroot00000000000000# Read the Docs configuration file for Sphinx projects # See https://docs.readthedocs.io/en/stable/config-file/v2.html for details # Required version: 2 # Set the OS, Python version and other tools you might need build: os: ubuntu-22.04 tools: python: "3.12" # You can also specify other tool versions: # nodejs: "20" # rust: "1.70" # golang: "1.20" # Build documentation in the "docs/" directory with Sphinx sphinx: configuration: docs/conf.py # You can configure Sphinx to use a different builder, for instance use the dirhtml builder for simpler URLs # builder: "dirhtml" # Fail on all warnings to avoid broken references # fail_on_warning: true # Optionally build your docs in additional formats such as PDF and ePub # formats: # - pdf # - epub # Optional but recommended, declare the Python requirements required # to build your documentation # See https://docs.readthedocs.io/en/stable/guides/reproducible-builds.html python: install: # - requirements: docs/requirements.txt - method: pip path: . extra_requirements: - docs sep-1.4.1/AUTHORS.md000066400000000000000000000013141475511417100137600ustar00rootroot00000000000000* Emmanuel Bertin (bertin@iap.fr) : original SExtractor code * Kyle Barbary (@kbarbary) : Conversion of SExtractor code to library * Kyle Boone (@kboone) : Bugfix, matched filter * Thomas Robitaille (@astrofrog) : Exact aperture overlap code * Matt Craig (@mwcraig) : Windows & OS X support * Curtis McCully (@cmccully): Parameter uncertainties * Evert Rol (@evertrol): setup.py fixes * Joe Lyman (@lyalpha): Make deblending limit settable * Michael Wuertenberger (@mworion): PyPI wheels * Ingvar Stepanyan (@rreverser): Build system, public API and thread safety fixes. * Gabe Brammer (@gbrammer): Fix memory addressing with large arrays. * Peter Watson (@PJ-Watson): Add extraction from existing segmentation map. sep-1.4.1/CHANGES.md000066400000000000000000000054371475511417100137150ustar00rootroot00000000000000v1.3.7 (8 November 2024) ======================== * Test against Python 3.13. * Update the Makefile to support Semantic Versioning from git tags. * Update the C libraries to allow for passing the version as a compiler flag. * Update `setup.py` to pass the SCM version to the Cython compiler. * Include C tests in the Tox suite (for linux and macos only). * Document any and all changes to the C API since forking. * Restructure changelog documentation. v1.3.6 (7 October 2024) ======================= * Fix wrong int type in Windows ([#2](https://github.com/PJ-Watson/sep-pjw/issues/2), thanks to @acenko for pointing this out). * Update tests to run on multiple operating systems. v1.3.5 (12 June 2024) ===================== * Small fixes and updates to ensure compatibility with NumPy 2.0. v1.3.4 (21 February 2024) ======================== * Include .clang-format as a pre-commit hook, to ensure consistent code style (improved readability, easier maintenance). * Fixed `make test` to account for the changes in [v1.3.0](https://github.com/PJ-Watson/sep-pjw/releases/tag/v1.3.0). * All header files include the correct definitions. v1.3.3 (7 February 2024) ======================== * Add changelog to documentation. * Add tests for re-running with seg map. * Fix array boundary bugs when re-running with seg map. * Fix bug with precision loss when calculating threshold. * Improve error handling when object pixels exceed pix stack. v1.3.2 (5 February 2024) ======================== * Move documentation to new location, fix package names and imports. * Add wheels for Python 3.11/3.12. * Fix C compilation errors on windows (VLAs). * Publish updated version to PyPI under new name. v1.3.1 (31 January 2024) ======================== * Formatting changes (follow [black](https://github.com/psf/black) formatting style). * Fix `bench.py` and `test.py`, removing deprecated functions. * Move metadata into `pyproject.toml`. * Add pre-commit hooks for code and docstring validation. * Change to dynamic versioning (git tag/commit based). v1.3.0 (1 December 2023) ======================== * The `segmentation_map` argument of `sep.extract()` will now accept either an array or boolean. If an existing segmentation map is passed, the object detection stage is skipped, and sources will be individually analysed according to the provided map. This change is backwards-compatible with respect to the Python module. Please note that as no deblending is performed, the calculated thresholds (and any dependent parameters) may not be the same as originally derived. * Use 64-bit integers throughout, to fix memory addressing with large arrays ([#122](https://github.com/kbarbary/sep/issues/122 "Original issue"), inspired by [Gabe Brammer's fork](https://github.com/gbrammer/sep) with additional fixes). sep-1.4.1/CMakeLists.txt000066400000000000000000000021131475511417100150470ustar00rootroot00000000000000cmake_minimum_required(VERSION 2.6) project(sep C) LIST(APPEND CMAKE_MODULE_PATH "${CMAKE_SOURCE_DIR}/cmake_modules/") include(GNUInstallDirs) set(SOURCES ${CMAKE_SOURCE_DIR}/src/analyse.c ${CMAKE_SOURCE_DIR}/src/convolve.c ${CMAKE_SOURCE_DIR}/src/deblend.c ${CMAKE_SOURCE_DIR}/src/extract.c ${CMAKE_SOURCE_DIR}/src/lutz.c ${CMAKE_SOURCE_DIR}/src/aperture.c ${CMAKE_SOURCE_DIR}/src/background.c ${CMAKE_SOURCE_DIR}/src/util.c ) include_directories(${CMAKE_INCLUDE_PATH} ${CMAKE_SOURCE_DIR}/src ${CFITSIO_INCLUDE_DIR}) link_directories(${CMAKE_LIBRARY_PATH} ${CMAKE_SOURCE_DIR}/src) add_library(sep SHARED ${SOURCES}) set_target_properties(sep PROPERTIES OUTPUT_NAME sep) set_target_properties(sep PROPERTIES VERSION 0.6.0 SOVERSION 0) set_target_properties(sep PROPERTIES C_VISIBILITY_PRESET hidden) if (MSVC) add_definitions(-D_USE_MATH_DEFINES) else () add_compile_options(-Wcast-qual) target_link_libraries(sep m) endif() install(TARGETS sep LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}) install(FILES ${CMAKE_SOURCE_DIR}/src/sep.h DESTINATION include) sep-1.4.1/FindSEP.cmake000066400000000000000000000024551475511417100145520ustar00rootroot00000000000000# - Try to find SEP # Once done this will define # # SEP_FOUND - system has SEP # SEP_INCLUDE_DIR - the SEP include directory # SEP_LIBRARIES - Link these to use SEP # SEP_VERSION_STRING - Human readable version number of sep # SEP_VERSION_MAJOR - Major version number of sep # SEP_VERSION_MINOR - Minor version number of sep # Copyright (c) 2017, Ilia Platone, # Based on FindLibfacile by Carsten Niehaus, # # Redistribution and use is allowed according to the terms of the BSD license. # For details see the accompanying COPYING-CMAKE-SCRIPTS file. if (SEP_LIBRARIES) # in cache already set(SEP_FOUND TRUE) message(STATUS "Found SEP: ${SEP_LIBRARIES}") else (SEP_LIBRARIES) find_library(SEP_LIBRARIES NAMES sep PATHS ${_obLinkDir} ${GNUWIN32_DIR}/lib /usr/local/lib ) if(SEP_LIBRARIES) set(SEP_FOUND TRUE) else (SEP_LIBRARIES) set(SEP_FOUND FALSE) endif(SEP_LIBRARIES) if (SEP_FOUND) if (NOT SEP_FIND_QUIETLY) message(STATUS "Found SEP: ${SEP_LIBRARIES}") endif (NOT SEP_FIND_QUIETLY) else (SEP_FOUND) if (SEP_FIND_REQUIRED) message(FATAL_ERROR "SEP not found. Please install libsep-dev") endif (SEP_FIND_REQUIRED) endif (SEP_FOUND) mark_as_advanced(SEP_LIBRARIES) endif (SEP_LIBRARIES) sep-1.4.1/MANIFEST.in000066400000000000000000000002271475511417100140510ustar00rootroot00000000000000include README.md include CHANGES.md include AUTHORS.md include licenses/* include pyproject.toml include src/*.[c,h,i] include sep.pyx exclude sep.c sep-1.4.1/Makefile000066400000000000000000000067701475511417100137640ustar00rootroot00000000000000 OS ?= $(shell sh -c 'uname -s | tr "[A-Z]" "[a-z]"') DESCRIBE := $(shell git describe --match "v*" --always --tags) DESCRIBE_PARTS := $(subst -, ,$(DESCRIBE)) VERSION_TAG := $(word 1,$(DESCRIBE_PARTS)) COMMITS_SINCE_TAG := $(word 2,$(DESCRIBE_PARTS)) BUILD_ID := $(word 3,$(DESCRIBE_PARTS)) VERSION := $(subst v,,$(VERSION_TAG)) VERSION_PARTS := $(subst ., ,$(VERSION)) MAJOR := $(word 1,$(VERSION_PARTS)) MINOR := $(word 2,$(VERSION_PARTS)) MICRO := $(word 3,$(VERSION_PARTS)) NEXT_MICRO := $(shell echo $$(($(MICRO)+1))) ifeq ($(strip $(COMMITS_SINCE_TAG)),) CURRENT_VERSION_MICRO := $(MAJOR).$(MINOR).$(MICRO) CURRENT_MICRO := $(MICRO) else CURRENT_VERSION_MICRO := $(MAJOR).$(MINOR).$(NEXT_MICRO) CURRENT_MICRO := $(NEXT_MICRO)-dev$(COMMITS_SINCE_TAG)$(if $(BUILD_ID),-${BUILD_ID},) endif ifeq ($(OS), darwin) SONAME = libsep.dylib SONAME_MAJOR = libsep.$(MAJOR).dylib SONAME_FULL = libsep.$(MAJOR).$(MINOR).$(CURRENT_MICRO).dylib SONAME_FLAG = -install_name LDPATHENV = DYLD_LIBRARY_PATH else ifeq ($(OS), linux) SONAME = libsep.so SONAME_MAJOR = libsep.so.$(MAJOR) SONAME_FULL = libsep.so.$(MAJOR).$(MINOR).$(CURRENT_MICRO) SONAME_FLAG = -soname LDPATHENV = LD_LIBRARY_PATH else $(error OS not yet supported) endif endif INSTALL ?= install DESTDIR = PREFIX ?= /usr/local LIBDIR = $(PREFIX)/lib INCLUDEDIR = $(PREFIX)/include CC?=gcc AR?=ar CPPFLAGS ?= LDFLAGS ?= CPPFLAGS += -Isrc CFLAGS += -Wall -Wextra -Wcast-qual -O3 -fvisibility=hidden # -Werror CFLAGS += -DSEP_VERSION_STRING=\"$(MAJOR).$(MINOR).$(CURRENT_MICRO)\" CFLAGS_LIB = $(CFLAGS) -fPIC LDFLAGS_LIB = $(LDFLAGS) -shared -Wl,$(SONAME_FLAG),$(SONAME_MAJOR) OBJS = src/analyse.o src/convolve.o src/deblend.o src/extract.o \ src/lutz.o src/aperture.o src/background.o src/util.o default: all src/analyse.o src/convolve.o src/deblend.o src/extract.o src/lutz.o: src/%.o: src/%.c src/extract.h src/sepcore.h src/sep.h $(CC) $(CPPFLAGS) $(CFLAGS_LIB) -c src/$*.c -o $@ src/aperture.o: src/aperture.c src/aperture.i src/overlap.h src/sepcore.h src/sep.h $(CC) $(CPPFLAGS) $(CFLAGS_LIB) -c src/aperture.c -o $@ src/background.o src/util.o: src/%.o: src/%.c src/sepcore.h src/sep.h $(CC) $(CPPFLAGS) $(CFLAGS_LIB) -c src/$*.c -o $@ src/$(SONAME_FULL) src/$(SONAME_MAJOR) src/$(SONAME) &: $(OBJS) $(CC) $(LDFLAGS_LIB) $^ -lm -o src/$(SONAME_FULL) ln -sf $(SONAME_FULL) src/$(SONAME_MAJOR) ln -sf $(SONAME_FULL) src/$(SONAME) src/libsep.a: $(OBJS) $(AR) rcs src/libsep.a $^ install: all $(INSTALL) -d $(DESTDIR)$(INCLUDEDIR) $(INSTALL) -m u=rw,g=r,o=r src/sep.h $(DESTDIR)$(INCLUDEDIR) $(INSTALL) -d $(DESTDIR)$(LIBDIR) $(INSTALL) -m u=rwx,g=rx,o=rx src/$(SONAME_FULL) $(DESTDIR)$(LIBDIR) ln -sf $(SONAME_FULL) $(DESTDIR)$(LIBDIR)/$(SONAME_MAJOR) ln -sf $(SONAME_FULL) $(DESTDIR)$(LIBDIR)/$(SONAME) $(INSTALL) -m u=rw,g=r,o=r src/libsep.a $(DESTDIR)$(LIBDIR) uninstall: rm $(DESTDIR)$(INCLUDEDIR)/sep.h rm $(DESTDIR)$(LIBDIR)/$(SONAME_FULL) rm $(DESTDIR)$(LIBDIR)/$(SONAME_MAJOR) rm $(DESTDIR)$(LIBDIR)/$(SONAME) rm $(DESTDIR)$(LIBDIR)/libsep.a test: ctest/test_image $(LDPATHENV)=src ctest/test_image data/image.fits data/sep.cat ctest/compare.py data/image.cat data/sep.cat ctest/test_image: ctest/test_image.c src/$(SONAME) $(CC) $(CPPFLAGS) $(CFLAGS) $(LDFLAGS) -Lsrc ctest/test_image.c -lm -lsep -o ctest/test_image clean: rm -f src/*.o src/*.a src/libsep.* ctest/test_image all: src/$(SONAME_FULL) src/libsep.a .PHONY: all test clean library install uninstall sep-1.4.1/README.md000066400000000000000000000254141475511417100135770ustar00rootroot00000000000000SEP === Python and C library for Source Extraction and Photometry. [![PyPI](https://img.shields.io/pypi/v/sep?label=PyPI)](https://pypi.python.org/pypi/sep) [![PyPI - Downloads](https://img.shields.io/pypi/dm/sep?label=PyPI%20Downloads) ](https://pypi.python.org/pypi/sep) ![Build Status](https://github.com/sep-developers/sep/workflows/CI/badge.svg) [![Documentation Status](https://readthedocs.org/projects/sep-pjw/badge/?version=latest)](https://sep-pjw.readthedocs.io/en/latest/?badge=latest) [![JOSS](http://joss.theoj.org/papers/10.21105/joss.00058/status.svg)](http://dx.doi.org/10.21105/joss.00058) *"... [it's] an SEP: Somebody Else's Problem." "Oh, good. I can relax then."* SEP, SEP-PJW, and Package Names ------------------------------- `sep` was originally released by Kyle Barbary, at [kbarbary/sep](https://github.com/kbarbary/sep) (``sep<=1.2.1``). For a brief period, the package was maintained by Peter Watson, under the `sep-pjw` package name, at [PJ-Watson/sep-pjw](https://github.com/PJ-Watson/sep-pjw) and [PyPI/sep-pjw](https://pypi.org/project/sep-pjw/) (``1.3.0<=sep-pjw<=1.3.8``). Both of these repositories will be archived, and future development will take place at [sep-developers/sep]() (``sep>=1.4.0``). Note that there may be some incompatibilities between ``sep==1.2.1`` and ``sep==1.4.0`` when using the C-API directly (to fix an indexing bug arising with large arrays) - all changes are documented [here](https://sep-pjw.readthedocs.io/en/latest/changelogs/changes_to_c_api.html). About ----- [Source Extractor](http://www.astromatic.net/software/sextractor) (Bertin & Arnouts 1996) is a widely used command-line program for segmentation and analysis of astronomical images. It reads in FITS format files, performs a configurable series of tasks, including background estimation, source detection, deblending and a wide array of source measurements, and finally outputs a FITS format catalog file. While Source Extractor is highly useful, the fact that it can only be used as an executable can limit its applicability or lead to awkward workflows. There is often a desire to have programmatic access to perform one or more of the above tasks on in-memory images as part of a larger custom analysis. **SEP makes the core algorithms of Source Extractor available as a library of stand-alone functions and classes.** These operate directly on in-memory arrays (no FITS files or configuration files). The code is derived from the Source Extractor code base (written in C) and aims to produce results compatible with Source Extractor whenever possible. SEP consists of a C library with no dependencies outside the standard library, and a Python module that wraps the C library in a Pythonic API. The Python wrapper operates on NumPy arrays with NumPy as its only dependency. See below for language-specfic build and usage instructions. Python ------ **Documentation:** http://sep.readthedocs.io **Requirements:** - Python 3.9+ - numpy 1.23+ **Install release version:** SEP can be installed with [pip](https://pip.pypa.io): ``` python -m pip install sep ``` If you get an error about permissions, you are probably using your system Python. In this case, we recommend using [pip's "user install"](https://pip.pypa.io/en/latest/user_guide/#user-installs) option to install sep into your user directory: ``` python -m pip install --user sep ``` Do **not** install sep or other third-party Python packages using `sudo` unless you are fully aware of the risks. **Install development version:** Building the development version (from github) requires Cython. Build and install in the usual place: ``` python -m pip install --editable . ``` **Run tests:** Tests require the [pytest](http://pytest.org) Python package. To run the tests, execute `./test.py` in the top-level directory. Some tests require a FITS reader (either fitsio or astropy) and will be skipped if neither is present. C Library --------- _Note: The build process only works on Linux and OS X._ **CMake:** To build using CMake, enter these commands: ``` cd sep mkdir -p build cd build cmake -DCMAKE_INSTALL_PREFIX=/usr ../ ``` and follow next steps from the build folder **Build:** To build the C library from source: ``` make ``` **Run tests:** ``` make test ``` **Install** The static library and header can be installed with ``` make install make PREFIX=/path/to/prefix install ``` This will install the shared and static library in `/path/to/prefix/lib` and header file in `/path/to/prefix/include`. The default prefix is `/usr/local`. **API:** The C library API is documented in the header file [sep.h](src/sep.h). **Rust bindings:** Low-level Rust wrapper for the C library can be found at https://crates.io/crates/sep-sys Contributing ------------ - Report a bug or documentation issue: http://github.com/sep-developers/issues - Ask (or answer) a question: https://github.com/sep-developers/sep/discussions/categories/q-a Development of SEP takes place on GitHub at [sep-developers/sep](http://github.com/sep-developers/sep). Contributions of bug fixes, documentation improvements and minor feature additions are welcome via GitHub pull requests. For major features, it is best to discuss the change first via [GitHub Discussions](https://github.com/sep-developers/sep/discussions/). Citation -------- If you use SEP in a publication, please cite the following article in the Journal of Open Source Software: [![JOSS](http://joss.theoj.org/papers/10.21105/joss.00058/status.svg)](http://dx.doi.org/10.21105/joss.00058) Please also cite the original Source Extractor paper ([Bertin & Arnouts 1996](http://adsabs.harvard.edu/abs/1996A%26AS..117..393B)). The DOI for the sep v1.0.0 code release is: [![DOI](https://zenodo.org/badge/doi/10.5281/zenodo.159035.svg)](http://dx.doi.org/10.5281/zenodo.159035) License ------- The license for all parts of the code derived from Source Extractor is LGPLv3. The license for code derived from photutils (`src/overlap.h`) is BSD 3-clause. Finally, the license for the Python wrapper (`sep.pyx`) is MIT. The license for the library as a whole is therefore LGPLv3. The license for each file is explicitly stated at the top of the file and the full text of each license can be found in `licenses`. FAQ --- **Why isn't the C library part of Source Extractor?** Source Extractor is *not* designed as a library with an executable built on top of the library. In Source Extractor, background estimation, object detection and photometry are deeply integrated into the Source Extractor executable. Many changes to the code were necessary in order to put the functionality in stand-alone C functions. It's too much to ask of the Source Extractor developer to rewrite large parts of the core of the Source Extractor program with little gain for the executable. **What sort of changes?** - Source Extractor reads in only a small portion of each image at a time. This allows it to keep its memory footprint extremely low and to operate on images that are much larger than the system's physical memory. It also means that a FITS reader is deeply integrated into the code. SEP operates on images in memory, so all the FITS I/O machinery in Source Extractor is not used here. - Error handling: When it encounters a problem, Source Extractor immediately exits with an error message. This is fine for an executable, but a library function doesn't have that luxury. Instead it must ensure that allocated memory is freed and return an error code. - Options: Source Extractor has many options that affect its behavior. These are stored in a global structure used throughout the executable. In SEP, options for a particular function are passed as function parameters. - Array types: Source Extractor can operate on FITS images containing various types of data (float, double, int, etc). Internally, it does this by converting all data to `float` immediately when reading from disk. SEP does something similar, but in memory: SEP functions typically convert input arrays to float on the fly within each function, then perform all operations as floating point. **Is SEP as fast as Source Extractor?** It's fast. It should be similar to Source Extractor as a lot of the code is identical. Source Extractor has the advantage of doing all the operations (detection and analysis) simultaneously on each image section, which may confer CPU cache advantages, but this hasn't been tested at all. On the other hand, depending on your usage SEP might let you avoid writing files to disk, which is likely to be a bigger win. **What happens when Source Extractor is updated in the future?** SEP can be considered a fork of the Source Extractor code base: it's development will not track that of Source Extractor in any automated way. However, the algorithms implemented so far in SEP are stable in Source Extractor: the SEP code was forked from v2.18.11, yet it is tested against the results of v2.8.6. This indicates that the algorithms have not changed in Source Extractor over the last few years. **In the Python interface, why do I have to byte swap data when using astropy.io.fits?** This occurs because FITS files have big-endian [byte order](http://en.wikipedia.org/wiki/Endianness), whereas most widely used CPUs have little-endian byte order. In order for the CPU to operate on the data, it must be byte swapped at *some point.* Some FITS readers such as [fitsio](http://github.com/esheldon/fitsio) do the byte swap immediately when reading the data from disk to memory, returning numpy arrays in native (little-endian) byte order. However, astropy.io.fits does not (for reasons having to do with memory mapping). Most of the time you never notice this because when you do any numpy operations on such arrays, numpy uses an intermediate buffer to byte swap the array behind the scenes and returns the result as a native byte order array. Internally, SEP is not using numpy operations; it's just getting a pointer to the data in the array and passing it to C code. As the C code does not include functionality to do buffered byte swapping, the input array must already be in native byte order. It would be possible to add buffered byte swapping capability to the SEP code, but it would increase the code complexity. A simpler alternative would be to make a byte swapped copy of the entire input array, whenever necessary. However, this would significantly increase memory use, and would have to be done repeatedly in multiple SEP functions: `Background`, `extract`, `sum_circle`, etc. Each would make a copy of the entire data array. Given these considerations, it seemed best to just explicitly tell the user to do the byte swap operation themselves so they could just do it once, immediately after reading in the data. **I have more questions!** Open a discussion on the [GitHub Discussions page](https://github.com/sep-developers/sep/discussions/categories/q-a)! sep-1.4.1/bench.py000077500000000000000000000162531475511417100137550ustar00rootroot00000000000000#!/usr/bin/env python """Benchmarking SEP against equivalent photutils functions.""" from __future__ import print_function import time from pathlib import Path import numpy as np import sep # try to import photutils for comparison timing try: import photutils HAVE_PHOTUTILS = True except ImportError: HAVE_PHOTUTILS = False # Try to import any FITS reader try: from fitsio import read as getdata HAVE_FITS = True NEED_BYTESWAP = False except ImportError: try: from astropy.io.fits import getdata HAVE_FITS = True NEED_BYTESWAP = True except ImportError: HAVE_FITS = False import argparse parser = argparse.ArgumentParser(description="SEP Benchmark script.") parser.add_argument( "-c", "--condensed", default=False, action="store_true", help="Only run a condensed subset of the benchmarks.", ) parser.add_argument( "-t", "--tiles", default=4, type=int, help=( "The maximum number of tiles for the image background benchmark, " "i.e. the image size will be `(t*256)^2`." ), ) parser.add_argument( "-a", "--apertures", default=1000, type=int, help=( "The number of apertures to use for benchmarking the aperture " "photometry, by default 1000." ), ) parser.add_argument( "-r", "--radii", default=[3, 5, 10, 20], type=float, nargs="+", help=( "The radii of the apertures to test. Ignored if the `--condensed` " "flag is passed, otherwise defaults to `3, 5, 10, 20`." ), ) parser.add_argument( "-n", "--nloop", default=50, type=int, help=("The number of loops to run for all tests, by default 50."), ) args = parser.parse_args() if HAVE_FITS: rawdata = getdata( Path(__file__).parent / "data" / "image.fits" ) # original is 256 x 256 if NEED_BYTESWAP: rawdata = rawdata.astype(rawdata.dtype.newbyteorder("=")) else: print("No FITS reader found, generating random data instead.") rawdata = np.random.random((256, 256)) data = np.tile(rawdata, (4, 4)) print("test image shape:", data.shape) print("test image dtype:", data.dtype) t0 = time.time() bkg = sep.Background(data) # estimate background t1 = time.time() print("measure background: {0:6.2f} ms".format((t1 - t0) * 1.0e3)) t0 = time.time() bkg.subfrom(data) # subtract it t1 = time.time() print("subtract background: {0:6.2f} ms".format((t1 - t0) * 1.0e3)) t0 = time.time() backarr = bkg.back(dtype=np.float64) # background t1 = time.time() print("background array: {0:6.2f} ms".format((t1 - t0) * 1.0e3)) t0 = time.time() rmsarr = bkg.rms() t1 = time.time() print("rms array: {0:6.2f} ms".format((t1 - t0) * 1.0e3)) t0 = time.time() objects = sep.extract(data, 1.5 * bkg.globalrms) t1 = time.time() print("extract: {0:6.2f} ms [{1:d} objects]".format((t1 - t0) * 1.0e3, len(objects))) # -------------------------------------------------------------------------- # Background subtraction print("") if HAVE_PHOTUTILS: print("sep version: ", sep.__version__) print("photutils version:", photutils.__version__) print( """ | test | sep | photutils | ratio | |-------------------------|-----------------|-----------------|--------|""" ) blankline = ( "| | | | |" ) else: print("sep version: ", sep.__version__) print( """ | test | sep | |-------------------------|-----------------|""" ) blankline = "| | |" for ntile in np.arange(1, args.tiles + 1, dtype=int): data = np.tile(rawdata, (ntile, ntile)) line = "| {0:4d}^2 image background |".format(data.shape[0]) t0 = time.time() for _ in range(0, args.nloop): bkg = sep.Background(data) t1 = time.time() t_sep = (t1 - t0) * 1.0e3 / args.nloop line += " {0:7.2f} ms |".format(t_sep) if HAVE_PHOTUTILS: t0 = time.time() for _ in range(0, args.nloop): from photutils import background bkg = background.Background2D(data, (64, 64)) # estimate background t1 = time.time() t_pu = (t1 - t0) * 1.0e3 / args.nloop line += " {0:7.2f} ms | {1:6.2f} |".format(t_pu, t_pu / t_sep) print(line) # ------------------------------------------------------------------------------ # Circular aperture photometry benchmarks if not args.condensed: print(blankline) line = "| **aperture photometry** | |" if HAVE_PHOTUTILS: line += " | |" print(line) data = np.ones((2000, 2000), dtype=np.float32) x = np.random.uniform(200.0, 1800.0, args.apertures) y = np.random.uniform(200.0, 1800.0, args.apertures) if args.condensed: r_list = [5.0] subpix_list = [(5, "subpixel", "subpix=5"), (0, "exact", "exact")] else: r_list = args.radii subpix_list = [ (1, "center", "subpix=1"), (5, "subpixel", "subpix=5"), (0, "exact", "exact"), ] for r in r_list: for subpix, method, label in subpix_list: line = "| circles r={0:2d} {1:8s} |".format(int(r), label) t0 = time.time() for _ in range(0, args.nloop): flux, fluxerr, flag = sep.sum_circle(data, x, y, r, subpix=subpix) t1 = time.time() t_sep = (t1 - t0) * 1.0e6 / args.apertures / args.nloop line += " {0:7.2f} us/aper |".format(t_sep) if HAVE_PHOTUTILS: from photutils import aperture apertures = photutils.aperture.CircularAperture(np.column_stack((x, y)), r) t0 = time.time() for _ in range(0, args.nloop): res = photutils.aperture.aperture_photometry( data, apertures, method=method, subpixels=subpix ) t1 = time.time() t_pu = (t1 - t0) * 1.0e6 / args.apertures / args.nloop line += " {0:7.2f} us/aper | {1:6.2f} |".format(t_pu, t_pu / t_sep) print(line) if not args.condensed: print(blankline) a = 1.0 b = 1.0 theta = np.pi / 4.0 for r in r_list: for subpix, method, label in subpix_list: line = "| ellipses r={0:2d} {1:8s} |".format(int(r), label) t0 = time.time() for _ in range(0, args.nloop): flux, fluxerr, flag = sep.sum_ellipse( data, x, y, a, b, theta, r, subpix=subpix ) t1 = time.time() t_sep = (t1 - t0) * 1.0e6 / args.apertures / args.nloop line += " {0:7.2f} us/aper |".format(t_sep) if HAVE_PHOTUTILS: from photutils import aperture apertures = photutils.aperture.EllipticalAperture( np.column_stack((x, y)), a * r, b * r, theta ) t0 = time.time() for _ in range(0, args.nloop): res = photutils.aperture.aperture_photometry( data, apertures, method=method, subpixels=subpix ) t1 = time.time() t_pu = (t1 - t0) * 1.0e6 / args.apertures / args.nloop line += " {0:7.2f} us/aper | {1:6.2f} |".format(t_pu, t_pu / t_sep) print(line) sep-1.4.1/codemeta.json000066400000000000000000000013641475511417100147720ustar00rootroot00000000000000{ "@context": "https://raw.githubusercontent.com/mbjones/codemeta/master/codemeta.jsonld", "@type": "Code", "author": [ { "@id": "http://orcid.org/0000-0002-2532-3696", "@type": "Person", "email": "kylebarbary@gmail.com", "name": "Kyle Barbary", "affiliation": "University of California, Berkeley" } ], "identifier": "http://dx.doi.org/10.5281/zenodo.159035", "codeRepository": "https://github.com/kbarbary/sep", "datePublished": "2016-09-30", "dateModified": "2016-09-30", "dateCreated": "2016-09-30", "description": "Python and C library for Source Extraction and Photometry", "keywords": "astronomy, Python, image analysis", "license": "LGPL v3.0", "title": "SEP", "version": "v1.0.0" } sep-1.4.1/ctest/000077500000000000000000000000001475511417100134345ustar00rootroot00000000000000sep-1.4.1/ctest/compare.py000077500000000000000000000031571475511417100154450ustar00rootroot00000000000000#!/usr/bin/env python """Compare the output from SEP against SExtractor.""" from __future__ import print_function import sys def read_table(fname): """ Read in a whitespace-separated table. Parameters ---------- fname : path-like The filename of the table to be opened. Returns ------- List[List[int|float]] A list of rows, each of which is a list of the values in that row. """ rows = [] for line in open(fname, "r"): l = line.strip() if len(l) == 0 or l[0] == "#": continue items = l.split() typed_items = [] for it in items: try: typed_items.append(int(it)) except ValueError: typed_items.append(float(it)) rows.append(typed_items) return rows def fracdiff(x, y): """ Return the fraction difference between two numbers. Parameters ---------- x, y : float The numbers to be compared. Returns ------- float The fractional difference. """ return abs((y - x) / max(y, x)) if __name__ == "__main__": fname1, fname2 = sys.argv[1:3] ref = read_table(fname1) sep = read_table(fname2) # sort by y coordinate ref.sort(key=lambda row: row[2]) sep.sort(key=lambda row: row[2]) assert len(ref) == len(sep) for i in range(len(ref)): assert abs(ref[i][1] - sep[i][1] - 1.0) < 1.0e-3 # x coordinate assert abs(ref[i][2] - sep[i][2] - 1.0) < 1.0e-3 # y coordinate assert fracdiff(ref[i][12], sep[i][3]) < 2.0e-4 # flux print("compare passed") sep-1.4.1/ctest/test_image.c000066400000000000000000000207531475511417100157300ustar00rootroot00000000000000#include #include #include #include #include #include #include "sep.h" uint64_t gettime_ns() { struct timeval tv; gettimeofday(&tv, NULL); return (uint64_t)tv.tv_sec * 1000000000ULL + tv.tv_usec * 1000ULL; } double * ones_dbl(int nx, int ny) { int i, npix; double *im, *imt; im = (double *)malloc((npix = nx * ny) * sizeof(double)); imt = im; for (i = 0; i < npix; i++, imt++) { *imt = 1.0; } return im; } float * uniformf(float a, float b, int n) /* an array of n random numbers from the uniform interval (a, b) */ { int i; float * result; result = (float *)malloc(n * sizeof(float)); for (i = 0; i < n; i++) { result[i] = a + (b - a) * rand() / ((double)RAND_MAX); } return result; } float * ones(int nx, int ny) { int i, npix; float *im, *imt; im = (float *)malloc((npix = nx * ny) * sizeof(float)); imt = im; for (i = 0; i < npix; i++, imt++) { *imt = 1.0; } return im; } void addbox(float * im, int w, int h, float xc, float yc, float r, float val) /* n = sersic index */ { int xmin, xmax, ymin, ymax; int x, y; int rmax = (int)r; xmin = (int)xc - rmax; xmin = (xmin < 0) ? 0 : xmin; xmax = (int)xc + rmax; xmax = (xmax > w) ? w : xmax; ymin = (int)yc - rmax; ymin = (ymin < 0) ? 0 : ymin; ymax = (int)yc + rmax; ymax = (ymax > h) ? h : ymax; for (y = ymin; y < ymax; y++) { for (x = xmin; x < xmax; x++) { im[x + w * y] += val; } } } void printbox(float * im, int w, int h, int xmin, int xmax, int ymin, int ymax) /* print image values to the screen in a grid Don't make box size too big!! */ { int i, j; for (j = ymin; j < ymax && j < h; j++) { for (i = xmin; i < xmax && i < w; i++) { printf("%6.2f ", im[w * j + i]); } printf("\n"); } } /* an extremely dumb reader for our specific test FITS file! */ int read_test_image(char * fname, float ** data, int64_t * nx, int64_t * ny) { FILE * f; char buf[80]; /* buffer to hold a line */ long pos; size_t nbytes, nel, i, elsize, nread; char * rawbytes = NULL; short * rawdata; char tmp; int status = 0; float bscale, bzero; /* hard-code image size & element size */ *nx = 256; *ny = 256; elsize = 2; nel = *nx * *ny; bscale = 2.92273835509; bzero = 3713.66692596; f = fopen(fname, "r"); /* read first line and check if it is a FITS file */ nread = fread(buf, 1, 80, f); if (nread != 80) { status = 1; goto exit; } if (strncmp(buf, "SIMPLE = T", 30) != 0) { printf("not a FITS file"); status = 1; goto exit; } /* read rows until we get to END keyword */ while (strncmp(buf, "END", 3) != 0) { nread = fread(buf, 1, 80, f); if (nread != 80) { status = 1; goto exit; } } /* move to next 2880 byte boundary. */ pos = ftell(f) % 2880; /* position in "page" */ if (pos != 0) { fseek(f, 2880 - pos, SEEK_CUR); } /* read raw data bytes */ nbytes = nel * elsize; rawbytes = (char *)malloc(nbytes); nread = fread(rawbytes, 1, nbytes, f); if (nread != nbytes) { status = 1; goto exit; } /* swap bytes in raw data (FITS is big-endian) */ for (i = 0; i < nbytes; i += 2) { tmp = rawbytes[i]; rawbytes[i] = rawbytes[i + 1]; rawbytes[i + 1] = tmp; } rawdata = (short *)rawbytes; /* buffer is now little-endian */ /* convert to float, applying bscale/bzero */ *data = (float *)malloc(nel * sizeof(float)); for (i = 0; i < nel; i++) { (*data)[i] = bscale * rawdata[i] + bzero; } exit: free(rawbytes); return status; } float * tile_flt( float * im, int nx, int ny, int ntilex, int ntiley, int * nxout, int * nyout ) { int i, x, y; int npixout; float * imout; *nxout = ntilex * nx; *nyout = ntiley * ny; npixout = *nxout * *nyout; imout = (float *)malloc(npixout * sizeof(float)); for (i = 0; i < npixout; i++) { x = (i % (*nxout)) % nx; /* corresponding x on small im */ y = (i / (*nxout)) % ny; /* corresponding y on small im */ imout[i] = im[y * nx + x]; } return imout; } void print_time(char * s, uint64_t tdiff) { printf("%-25s%6.1f ms\n", s, (double)tdiff / 1000000.); } int main(int argc, char ** argv) { char *fname1, *fname2; int i, status; int64_t nx, ny; double *flux, *fluxerr, *fluxt, *fluxerrt, *area, *areat; short *flag, *flagt; float *data, *imback; uint64_t t0, t1; sep_bkg * bkg = NULL; float conv[] = {1, 2, 1, 2, 4, 2, 1, 2, 1}; sep_catalog * catalog = NULL; FILE * catout; status = 0; flux = fluxerr = NULL; flag = NULL; /* Parse command-line arguments */ if (argc != 3) { printf("Usage: test-image IMAGE_NAME CATALOG_NAME\n"); exit(1); } fname1 = argv[1]; fname2 = argv[2]; /* read in image */ status = read_test_image(fname1, &data, &nx, &ny); if (status) { goto exit; } /* test the version string */ printf("sep version: %s\n", sep_version_string); /* background estimation */ t0 = gettime_ns(); sep_image im = { data, NULL, NULL, NULL, SEP_TFLOAT, 0, 0, 0, 0, 0, 0, nx, ny, 0.0, SEP_NOISE_NONE, 1.0, 0.0 }; status = sep_background(&im, 64, 64, 3, 3, 0.0, &bkg); t1 = gettime_ns(); if (status) { goto exit; } print_time("sep_background()", t1 - t0); /* evaluate background */ imback = (float *)malloc((nx * ny) * sizeof(float)); t0 = gettime_ns(); status = sep_bkg_array(bkg, imback, SEP_TFLOAT); t1 = gettime_ns(); if (status) { goto exit; } print_time("sep_bkg_array()", t1 - t0); /* subtract background */ t0 = gettime_ns(); status = sep_bkg_subarray(bkg, data, im.dtype); t1 = gettime_ns(); if (status) { goto exit; } print_time("sep_bkg_subarray()", t1 - t0); /* extract sources * Note that we set deblend_cont = 1.0 to turn off deblending. */ t0 = gettime_ns(); status = sep_extract( &im, 1.5 * bkg->globalrms, SEP_THRESH_ABS, 5, conv, 3, 3, SEP_FILTER_CONV, 32, 1.0, 1, 1.0, &catalog ); t1 = gettime_ns(); if (status) { goto exit; } print_time("sep_extract()", t1 - t0); /* aperture photometry */ im.noise = &(bkg->globalrms); /* set image noise level */ im.ndtype = SEP_TFLOAT; fluxt = flux = (double *)malloc(catalog->nobj * sizeof(double)); fluxerrt = fluxerr = (double *)malloc(catalog->nobj * sizeof(double)); areat = area = (double *)malloc(catalog->nobj * sizeof(double)); flagt = flag = (short *)malloc(catalog->nobj * sizeof(short)); t0 = gettime_ns(); for (i = 0; i < catalog->nobj; i++, fluxt++, fluxerrt++, flagt++, areat++) { sep_sum_circle( &im, catalog->x[i], catalog->y[i], 5.0, 0, 5, 0, fluxt, fluxerrt, areat, flagt ); } t1 = gettime_ns(); printf( "sep_sum_circle() [r= 5.0] %6.3f us/aperture\n", (double)(t1 - t0) / 1000. / catalog->nobj ); /* print results */ printf("writing to file: %s\n", fname2); catout = fopen(fname2, "w+"); fprintf(catout, "# SEP catalog\n"); fprintf(catout, "# 1 NUMBER\n"); fprintf(catout, "# 2 X_IMAGE (0-indexed)\n"); fprintf(catout, "# 3 Y_IMAGE (0-indexed)\n"); fprintf(catout, "# 4 FLUX\n"); fprintf(catout, "# 5 FLUXERR\n"); for (i = 0; i < catalog->nobj; i++) { fprintf( catout, "%3d %#11.7g %#11.7g %#11.7g %#11.7g\n", i + 1, catalog->x[i], catalog->y[i], flux[i], fluxerr[i] ); } fclose(catout); /* clean-up & exit */ exit: sep_bkg_free(bkg); free(data); free(flux); free(fluxerr); free(flag); if (status) { printf("FAILED with status: %d\n", status); char errtext[512]; sep_get_errdetail(errtext); puts(errtext); } else { printf("test_image passed\n"); } return status; } /***************************************************************************/ /* aperture photometry */ /* int naper, j; float *xcs, *ycs; im = ones(nx, ny); naper = 1000; flux = fluxerr = 0.0; flag = 0; float rs[] = {3., 5., 10., 20.}; for (j=0; j<4; j++) { r = rs[j]; xcs = uniformf(2.*r, nx - 2.*r, naper); ycs = uniformf(2.*r, ny - 2.*r, naper); printf("sep_apercirc() [r=%4.1f] ", r); t0 = gettime_ns(); for (i=0; i DATE = '1992-10-26' / Mon Oct 26, 1992 ESO-LOG 03:04:08>-START EXPO EMMI RED / Start exp. on EMMI Red CC ESO-LOG 03:04:09> EXPO EMMI RED NO = 24887 / Exp. num. on EMMI Red CCD ESO-LOG 03:10:52>-STOP EXPO EMMI RED / Stop exp. on EMMI Red CCD HISTORY COMPUTE/IMAG imAR0051.bdf = #0001-bias50 \HISTORY COMPUTE/IMAG imAR0051.bdf = #0001 - 1.51001E-01 \HISTORY COMPUTE/IMAG NA36Rc501 = #0001 * 1.00000E+03 / fRc50 \HISTORY COMPUTE/IMAG NA36Rc50 = NA36Rc501 \HISTORY COMPUTE/IMAG NA36Rc50 = NA36Rc50 + NA36Rc503 \HISTORY COMPUTE/IMAG NA36Rc50 = NA36Rc50 + NA36Rc502 \HISTORY EXTRACT/IMAG intex = NA36Rc50[@0019,@0003:@1042,@1026] \HISTORY Renamed from intex.bdf to NA36Rc50.bdf \HISTORY SELE/TABL cursor MA36Rc50 2 0. 3 Y MA36Rc50 \HISTORY READ/TABL cursor interclean 0 6.85000E+03 3 Y \HISTORY interclean Renamed from interclean.bdf to MA36Rm\HISTORY 50.bdf READ/TABL cursor MA36Rm50 0 \HISTORY 6850 3 Y MA36Rm50 READ/TABL cursor MA\HISTORY 36Rm50 0 6850 3 Y MA36Rm50 READ/TABL \HISTORY cursor MA36Rm50 0 6850 3 Y MA36Rm50 RA = 5.648169994354E+00 / MIDAS desc.: O_POS(1) DEC = -3.018300056458E+01 / MIDAS desc.: O_POS(2) AIRMASS = 1.068349957466E+00 / MIDAS desc.: O_AIRM(1) HIERARCH ESO GEN ID = 'ARC-0001/1.2' HIERARCH ESO GEN PROJ ID = '000.00.000' HIERARCH ESO GEN EXPO NO = 24887 HIERARCH ESO GEN EXPO TYPE = 'SCI ' HIERARCH ESO GEN EXPO LST = 2.420000000000E+03 HIERARCH ESO TEL ID = 'ESONTTB ' HIERARCH ESO TEL LON = 7.073450000000E+01 HIERARCH ESO TEL LAT = -2.925840000000E+01 HIERARCH ESO TEL ALTITUDE = 2440 HIERARCH ESO TEL FOCU LEN = 3.848200000000E+01 HIERARCH ESO TEL FOCU SCALE = 1.489000000000E+00 HIERARCH ESO TEL TRAK RATEA = 4.200000000000E-03 HIERARCH ESO TEL TRAK RATED = 0.000000000000E+00 HIERARCH ESO ADA ID = 'ADAPTB ' HIERARCH ESO ADA MODE = 'STD ' HIERARCH ESO ADA ROT = 0.000000000000E+00 HIERARCH ESO ADA GUID-1 X = 1.294000000000E-02 HIERARCH ESO ADA GUID-1 Y = 1.717000000000E-01 HIERARCH ESO ADA GUID-2 X = 5.070000000000E-04 HIERARCH ESO ADA GUID-2 Y = 1.110000000000E-03 HIERARCH ESO INS ID = 'EMMI #1 ' HIERARCH ESO INS COMP ID = 'HP RTE-A V5' HIERARCH ESO INS MODE = 'RILD ' HIERARCH ESO INS OPTI-2 NO = 1 HIERARCH ESO INS OPTI-2 TYPE = 'MIRROR ' HIERARCH ESO INS OPTI-2 ID = 'RILD MIR' HIERARCH ESO INS OPTI-2 NAME = 'RILD ' HIERARCH ESO INS OPTI-3 NO = 1 HIERARCH ESO INS OPTI-3 TYPE = 'FREE ' HIERARCH ESO INS MIRR-3 NAME = 'UPPER RED' HIERARCH ESO INS MIRR-3 ST = 0 HIERARCH ESO INS OPTI-7 NO = 3 HIERARCH ESO INS OPTI-7 TYPE = 'FILTER ' HIERARCH ESO INS OPTI-7 ID = '#608 ' HIERARCH ESO INS OPTI-7 NAME = 'R ' HIERARCH ESO INS OPTI-9 NO = 9 HIERARCH ESO INS OPTI-9 TYPE = 'FREE ' HIERARCH ESO DET NAME = 'THX31156' HIERARCH ESO DET ID = 'ccd$18 ' HIERARCH ESO DET TYPE = 'CCD Four_Phase' HIERARCH ESO DET PIXSIZE = 1.900000000000E-05 HIERARCH ESO DET BITS = 16 HIERARCH ESO DET FRAM NAXIS1 = 1060 HIERARCH ESO DET FRAM CRVAL1 = 1 HIERARCH ESO DET FRAM CRPIX1 = 1 HIERARCH ESO DET FRAM CDELT1 = 1 HIERARCH ESO DET FRAM NAXIS2 = 1040 HIERARCH ESO DET FRAM CRVAL2 = 1 HIERARCH ESO DET FRAM CRPIX2 = 1 HIERARCH ESO DET FRAM CDELT2 = 1 HIERARCH ESO DET DKTIME = 4.000000000000E+02 HIERARCH ESO DET TEMP_VAR = 1.000000000000E-01 HIERARCH ESO DET TEMPMEAN = 1.376000000000E+02 HIERARCH ESO DET COMP ID = 'ccdr-V1.0' HIERARCH ESO DET PARM1 = 'CLOCK=tho1k' HIERARCH ESO DET PARM2 = 'HLO1 : 2.02 VLO1 : 1.01 VDD1 : 23.03' HIERARCH ESO DET PARM3 = 'HHI1 : 15.00 VHI1 : 12.01 VDR1 : 13.98' HIERARCH ESO DET PARM4 = 'HLO2 : 2.02 RLO1 : 1.01 VGS1 : 4.99' HIERARCH ESO DET PARM5 = 'HHI2 : 15.03 RHI1 : 10.07 ICCD1 : 0.00' HIERARCH ESO DET PARM6 = 'TL 1, 5 telem. data' HIERARCH ESO DET DATE = 1.989794555664E+03 HIERARCH ESO DET MODE = 'SLOW ' HIERARCH ESO DET GAIN = 1 HIERARCH ESO DET AD_VALUE = 2.100000000000E+00 HIERARCH ESO DET DIT = 4.000000000000E+02 HIERARCH ESO DET SHUT TMOPEN = 5.000000000000E-01 HIERARCH ESO DET SHUT TMCLOS = 5.000000000000E-01 HISTORY ESO-DESCRIPTORS START ................ HISTORY 'WIND_RAW' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 1.9000000E+01 3.0000000E+00 1.0420000E+03 1.0260000E+03 HISTORY HISTORY 'STAT_RAW' ,'R*4 ' , 1, 13,'5E14.7',' ',' ' HISTORY 6.5800000E+02 3.2767000E+04 2.3813201E+03 5.6562799E+02 2.4699001E+10 HISTORY 3.8941301E+14 2.4969999E+09 2.3490701E+03 2.3460000E+03 2.0070000E+03 HISTORY 1.6000000E+01 6.5800000E+02 3.2767000E+04 HISTORY HISTORY 'WIND_OVER' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 1.0000000E+01 1.0290000E+03 1.0550000E+03 1.0390000E+03 HISTORY HISTORY 'STAT_OVER' ,'R*4 ' , 1, 13,'5E14.7',' ',' ' HISTORY 2.1200000E+02 2.4400000E+02 2.2111700E+02 2.5815699E+00 1.0815500E+07 HISTORY 2.3924700E+09 2.5441800E+06 2.2058000E+02 2.2050000E+02 3.3000000E+01 HISTORY 1.0000000E+00 2.1200000E+02 2.4400000E+02 HISTORY HISTORY 'BIAS_FRAME' ,'C*1 ' , 1, 7,'7A1',' ',' ' HISTORY bias50 HISTORY HISTORY 'BIAS_OVER_DIFF' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 1.5100101E-01 HISTORY HISTORY 'FLAT_WIND' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 4.5000000E+02 3.8000000E+02 7.4000000E+02 6.2000000E+02 HISTORY HISTORY 'FLAT_BKG' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 2.1311699E+03 HISTORY HISTORY 'SKIM_FRAC' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 3.5154400E-04 HISTORY HISTORY 'AV_WIND_NAME' ,'C*1 ' , 1, 5,'5A1',' ',' ' HISTORY fRc50 HISTORY HISTORY 'FLAT_FRAME' ,'C*1 ' , 1, 5,'5A1',' ',' ' HISTORY fRc50 HISTORY HISTORY 'WIND_FIN' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 1.9000000E+01 3.0000000E+00 1.0420000E+03 1.0260000E+03 HISTORY HISTORY 'STAT_FIN' ,'R*4 ' , 1, 13,'5E14.7',' ',' ' HISTORY 6.0423798E+02 3.2842602E+04 2.1606499E+03 5.5936798E+02 2.0734501E+10 HISTORY 3.5516501E+14 2.2656100E+09 2.1273799E+03 2.1162400E+03 2.0150000E+03 HISTORY 1.6000000E+01 6.0423798E+02 3.2842602E+04 HISTORY HISTORY 'WIND_SUM' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 1.0000000E+00 1.0000000E+00 1.0240000E+03 1.0240000E+03 HISTORY HISTORY 'STAT_SUM' ,'R*4 ' , 1, 13,'5E14.7',' ',' ' HISTORY 3.7136699E+03 9.8528203E+04 6.9033799E+03 1.6677500E+03 6.1352398E+11 HISTORY 2.8897399E+16 7.2387098E+09 6.8047002E+03 6.7938701E+03 2.0480000E+03 HISTORY 4.6318802E+01 3.7136699E+03 9.8528203E+04 HISTORY HISTORY 'LHCUTS' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 5.5000000E+03 9.0000000E+03 3.7136670E+03 9.8528234E+04 HISTORY HISTORY 'DISPLAY_DATA' ,'I*4 ' , 1, 9,'7I10',' ',' ' HISTORY 2 2 513 513 0 -1 -1 HISTORY -1 -1 HISTORY HISTORY 'BOX_MIN' ,'R*4 ' , 1, 6,'5E14.7',' ',' ' HISTORY 3.2100000E+02 2.1500000E+02 6.9644336E+03 6.3300000E+02 4.2300000E+02 HISTORY 6.8900532E+03 HISTORY HISTORY 'IJBORDER' ,'I*4 ' , 1, 4,'7I10',' ',' ' HISTORY 1 1 1024 1024 HISTORY HISTORY 'LHCUT' ,'R*4 ' , 1, 2,'5E14.7',' ',' ' HISTORY 3.6236699E+03 8.0148297E+04 HISTORY HISTORY 'ZEROMAGN' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 2.4671000E+01 HISTORY HISTORY 'SEEING' ,'R*4 ' , 1, 2,'5E14.7',' ',' ' HISTORY 1.8308023E+00 9.6358800E-01 HISTORY HISTORY 'PAIRSPRT' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 3.1899800E+00 HISTORY HISTORY 'MULTDTCT' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 4.1900001E+00 HISTORY HISTORY 'PRFLCTRL' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY -5 HISTORY HISTORY 'OUPROFIL' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY 5 HISTORY HISTORY 'STMETRIC' ,'R*4 ' , 1, 2,'5E14.7',' ',' ' HISTORY 9.3000001E-01 5.5799999E+00 HISTORY HISTORY 'BRGHTLMT' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 1.8387699E+01 HISTORY HISTORY 'NBSTARS' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY 17 HISTORY HISTORY 'PSFTAB' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY 1 HISTORY HISTORY 'THRESHOLD' ,'R*4 ' , 1, 5,'5E14.7',' ',' ' HISTORY 6.8047002E+03 1.1384800E+02 1.6730800E+00 2.0000000E+00 2.5446301E+01 HISTORY HISTORY 'N_SEARCH_ANA' ,'I*4 ' , 1, 2,'7I10',' ',' ' HISTORY 822 806 HISTORY HISTORY 'N_STAR_GAL_DEF' ,'I*4 ' , 1, 3,'7I10',' ',' ' HISTORY 46 744 16 HISTORY HISTORY 'HIST_BINS' ,'R*4 ' , 1, 5,'5E14.7',' ',' ' HISTORY 2.5600000E+02 2.8824686E+02 3.7136670E+03 7.7216609E+04 0.0000000E+00 HISTORY HISTORY 'HISTOGRAM' ,'I*4 ' , 1, 256,'7I10',' ',' ' HISTORY 1 0 0 0 0 0 0 HISTORY 0 0 0 10 64 23 12 HISTORY 3 3 4 4 3 1 2 HISTORY 0 0 1 1 0 1 0 HISTORY 0 0 0 3 0 1 0 HISTORY 0 1 0 1 0 1 0 HISTORY 0 0 1 1 0 1 0 HISTORY 1 0 0 0 0 0 0 HISTORY 0 0 1 1 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 1 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 1 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 1 0 1 0 0 1 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 1 0 0 0 0 0 HISTORY 1 0 0 0 0 0 0 HISTORY 0 0 0 0 0 1 0 HISTORY 0 0 0 0 0 1 0 HISTORY 0 0 0 0 1 0 0 HISTORY 0 1 0 0 0 0 0 HISTORY 0 0 0 0 1 0 0 HISTORY 0 1 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 1 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 1 0 0 0 0 HISTORY 0 0 1 0 HISTORY HISTORY 'STATISTIC' ,'R*4 ' , 1, 11,'5E14.7',' ',' ' HISTORY 3.7136670E+03 9.8528234E+04 6.9033760E+03 1.6677493E+03 6.1352378E+11 HISTORY 2.8897433E+16 7.2387144E+09 6.5048496E+03 3.8995779E+03 2.5600000E+02 HISTORY 3.7182184E+02 HISTORY HISTORY 'WINDOW_FROM' ,'I*4 ' , 1, 2,'7I10',' ',' ' HISTORY 1 1 HISTORY HISTORY 'WINDOW_TO' ,'I*4 ' , 1, 2,'7I10',' ',' ' HISTORY 1024 1024 HISTORY HISTORY 'NBMODIF' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY 1 HISTORY HISTORY 'STARS' ,'R*4 ' , 1, 51,'5E14.7',' ',' ' HISTORY 2.6300000E+02 8.8700000E+02 4.6759199E+04 7.5000000E+01 5.6300000E+02 HISTORY 1.5854400E+04 1.3000000E+01 3.1300000E+02 4.9727699E+04 3.3900000E+02 HISTORY 4.3300000E+02 9.6787102E+04 7.0100000E+02 1.6300000E+02 1.2378200E+04 HISTORY 8.5500000E+02 2.5500000E+02 3.5242898E+04 7.6100000E+02 3.3300000E+02 HISTORY 1.4904300E+04 1.0110000E+03 3.5700000E+02 2.5686801E+04 9.0700000E+02 HISTORY 4.0100000E+02 1.6969100E+04 8.4900000E+02 5.2500000E+02 1.4543700E+04 HISTORY 9.1700000E+02 5.4500000E+02 4.4644398E+04 7.7700000E+02 5.7700000E+02 HISTORY 3.6737199E+04 1.0010000E+03 6.9500000E+02 9.8214500E+04 8.2500000E+02 HISTORY 8.0100000E+02 2.0127900E+04 6.3100000E+02 6.3500000E+02 1.6520199E+04 HISTORY 5.8500000E+02 6.7500000E+02 1.5727300E+04 6.5900000E+02 6.6500000E+02 HISTORY 2.1833900E+04 HISTORY HISTORY 'DPROFILE' ,'R*4 ' , 1, 25,'5E14.7',' ',' ' HISTORY 3.2567519E-01 6.4562768E-01 6.5725815E-01 5.2960014E-01 4.1916752E-01 HISTORY 3.0000001E-01 2.8000000E-01 2.5999999E-01 2.3999999E-01 2.0000000E-01 HISTORY 1.8000001E-01 1.6000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 HISTORY 1.4000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 HISTORY 1.4000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 HISTORY HISTORY ESO-DESCRIPTORS END ................ END EÖZvEÖYÜEÖYAEÖX¤EÖXEÖWeEÖVÄEÖV"EÖU~EÖTÙEÖT3EÖSŠEÖRâEÖR9EÖQEÖPäEÖP8EÖOŒEÖNßEÖN1EÖMEÖLÒEÖL#EÖKsEÖJÁEÖJEÖI_EÖH®EÖGüEÖGIEÖF—EÖEåEÖE3EÖDEÖCÏEÖCEÖBjEÖA¹EÖAEÖ@WEÖ?¥EÖ>õEÖ>FEÖ=—EÖ<èEÖ<9EÖ;ŒEÖ:àEÖ:4EÖ9‰EÖ8ßEÖ85EÖ7EÖ6æEÖ6@EÖ5›EÖ4öEÖ4TEÖ3³EÖ3EÖ2tEÖ1ÖEÖ1;EÖ0 EÖ0EÖ/qEÖ.ÜEÖ.HEÖ-¶EÖ-&EÖ,˜EÖ, EÖ+‚EÖ*ùEÖ*sEÖ)ïEÖ)lEÖ(îEÖ(oEÖ'õEÖ'}EÖ'EÖ&’EÖ&!EÖ%²EÖ%FEÖ$ÝEÖ$wEÖ$EÖ#±EÖ#TEÖ"ùEÖ"¡EÖ"JEÖ!øEÖ!©EÖ!WEÖ!EÖ °EÖ cEÖ EÖÎEÖˆEÖEEÖEÖÉEÖEÖYEÖ&EÖóEÖÆEÖ›EÖrEÖKEÖ)EÖEÖêEÖÐEÖ¶EÖ EÖEÖ|EÖnEÖaEÖXEÖPEÖLEÖHEÖHEÖJEÖNEÖUEÖ^EÖiEÖvEÖ„EÖ–EÖ©EÖ¾EÖÕEÖïEÖ EÖ'EÖFEÖfEÖŠEÖ®EÖÔEÖýEÖ&EÖQEÖ~EÖ­EÖÝEÖEÖBEÖwEÖ®EÖæEÖ EÖ XEÖ ‘EÖ ÌEÖ!EÖ!DEÖ!‚EÖ!ÁEÖ"EÖ"EEÖ"ˆEÖ"ÌEÖ#EÖ#YEÖ#¡EÖ#êEÖ$4EÖ$~EÖ$ËEÖ%EÖ%fEÖ%´EÖ&EÖ&VEÖ&¨EÖ&úEÖ'NEÖ'£EÖ'øEÖ(NEÖ(¥EÖ(üEÖ)UEÖ)®EÖ*EÖ*bEÖ*½EÖ+EÖ+tEÖ+ÐEÖ,/EÖ,ŒEÖ,êEÖ-JEÖ-ªEÖ. EÖ.iEÖ.ÉEÖ/*EÖ/ŒEÖ/îEÖ0OEÖ0²EÖ1EÖ1wEÖ1ÚEÖ2=EÖ2 EÖ3EÖ3hEÖ3ÌEÖ40EÖ4“EÖ4øEÖ5\EÖ5ÀEÖ6$EÖ6‰EÖ6ìEÖ7PEÖ7´EÖ8EÖ8|EÖ8ßEÖ9BEÖ9¥EÖ:EÖ:jEÖ:ÍEÖ;.EÖ;EÖ;ñEÖ2EÖ>EÖ>íEÖ?JEÖ?¦EÖ@EÖ@`EÖ@»EÖAEÖAnEÖXòEÖX]EÖWÅEÖW*EÖVEÖUóEÖUVEÖT¸EÖTEÖSwEÖRÕEÖR2EÖQŽEÖPéEÖPDEÖO›EÖNóEÖNKEÖM¢EÖLùEÖLNEÖK¤EÖJøEÖJLEÖI EÖHóEÖHFEÖG™EÖFìEÖF=EÖEEÖDâEÖD4EÖC†EÖBÙEÖB*EÖA}EÖ@ÐEÖ@#EÖ?vEÖ>ÊEÖ>EÖ=rEÖ<ÈEÖ<EÖ;tEÖ:ËEÖ:"EÖ9zEÖ8ÔEÖ8.EÖ7‰EÖ6äEÖ6AEÖ5ŸEÖ4þEÖ4^EÖ3ÀEÖ3"EÖ2†EÖ1ìEÖ1REÖ0ºEÖ0$EÖ/EÖ.ûEÖ.jEÖ-ÚEÖ-LEÖ,¿EÖ,4EÖ+«EÖ+%EÖ* EÖ*EÖ)œEÖ)EÖ(¡EÖ('EÖ'¯EÖ':EÖ&ÆEÖ&UEÖ%çEÖ%{EÖ%EÖ$¬EÖ$HEÖ#åEÖ#‡EÖ#+EÖ"ÓEÖ"}EÖ")EÖ!ÙEÖ!ŒEÖ!EÖ_EÖ‚EÖ§EÖÍEÖöEÖ EÖLEÖyEÖ¨EÖÙEÖ EÖ@EÖuEÖ­EÖåEÖ EÖ ZEÖ “EÖ ÏEÖ! EÖ!IEÖ!‰EÖ!ÉEÖ" EÖ"NEÖ"“EÖ"ÙEÖ# EÖ#hEÖ#±EÖ#ûEÖ$FEÖ$”EÖ$áEÖ%0EÖ%€EÖ%ÑEÖ&$EÖ&vEÖ&ÊEÖ'EÖ'tEÖ'ËEÖ("EÖ(zEÖ(ÓEÖ),EÖ)‡EÖ)âEÖ*>EÖ*šEÖ*øEÖ+VEÖ+´EÖ,EÖ,tEÖ,ÔEÖ-4EÖ-–EÖ-øEÖ.ZEÖ.½EÖ/ EÖ/„EÖ/çEÖ0LEÖ0°EÖ1EÖ1{EÖ1àEÖ2EEÖ2«EÖ3EÖ3xEÖ3ÞEÖ4EEÖ4«EÖ5EÖ5yEÖ5àEÖ6FEÖ6­EÖ7EÖ7{EÖ7áEÖ8HEÖ8®EÖ9EÖ9{EÖ9áEÖ:FEÖ:«EÖ;EÖ;wEÖ;ÛEÖ/EÖ>‘EÖ>òEÖ?REÖ?²EÖ@EÖ@pEÖ@ÐEÖA.EÖAŒEÖAèEÖBCEÖWhEÖVÖEÖVBEÖU­EÖUEÖT|EÖSãEÖSHEÖR­EÖREÖQrEÖPÔEÖP4EÖO“EÖNñEÖNOEÖM¬EÖMEÖLcEÖK¾EÖKEÖJpEÖIÊEÖI"EÖHzEÖGÒEÖG*EÖF€EÖE×EÖE.EÖD…EÖCÜEÖC2EÖB‰EÖAàEÖA7EÖ@ŽEÖ?äEÖ?”EÖ=ìEÖ=DEÖ<žEÖ;÷EÖ;QEÖ:¬EÖ:EÖ9bEÖ8¿EÖ8EÖ7{EÖ6ÚEÖ6:EÖ5œEÖ4þEÖ4`EÖ3ÄEÖ3*EÖ2‘EÖ1ùEÖ1bEÖ0ÍEÖ08EÖ/¦EÖ/EÖ.†EÖ-øEÖ-lEÖ,áEÖ,XEÖ+ÑEÖ+LEÖ*ÈEÖ*HEÖ)ÈEÖ)JEÖ(ÏEÖ(UEÖ'ßEÖ'jEÖ&÷EÖ&†EÖ&EÖ%­EÖ%EEÖ$ÝEÖ$zEÖ$EÖ#ºEÖ#^EÖ#EÖ"®EÖ"ZEÖ" EÖ!»EÖ!qEÖ!"EÖ ÏEÖ €EÖ 4EÖêEÖ¤EÖaEÖ EÖâEÖ§EÖnEÖ;EÖEÖØEÖªEÖ€EÖYEÖ4EÖEÖòEÖÔEÖºEÖ¢EÖŒEÖxEÖhEÖZEÖNEÖEEÖ>EÖ9EÖ6EÖ6EÖ8EÖ=EÖDEÖLEÖWEÖdEÖtEÖ…EÖ˜EÖ®EÖÆEÖßEÖûEÖEÖ7EÖXEÖ{EÖ¡EÖÇEÖðEÖEÖFEÖuEÖ¤EÖÖEÖEÖ=EÖtEÖ¬EÖåEÖ EÖ [EÖ –EÖ ÒEÖ!EÖ!NEÖ!ŽEÖ!ÐEÖ"EÖ"XEÖ"EÖ"åEÖ#-EÖ#vEÖ#ÂEÖ$ EÖ$ZEÖ$©EÖ$øEÖ%JEÖ%›EÖ%îEÖ&@EÖ&•EÖ&ìEÖ'BEÖ'™EÖ'òEÖ(LEÖ(¦EÖ)EÖ)\EÖ)¹EÖ*EÖ*tEÖ*ÔEÖ+4EÖ+”EÖ+ôEÖ,VEÖ,¸EÖ-EÖ-~EÖ-âEÖ.FEÖ.ªEÖ/EÖ/vEÖ/ÜEÖ0BEÖ0©EÖ1EÖ1xEÖ1àEÖ2HEÖ2°EÖ3EÖ3EÖ3ëEÖ4SEÖ4¼EÖ5&EÖ5EÖ5øEÖ6bEÖ6ÌEÖ76EÖ7ŸEÖ8EÖ8rEÖ8ÛEÖ9CEÖ9­EÖ:EÖ:~EÖ:æEÖ;NEÖ;¶EÖ<EÖ<†EÖ<ìEÖ=REÖ=¸EÖ>EÖ>„EÖ>éEÖ?LEÖ?°EÖ@EÖ@vEÖ@ÙEÖA:EÖAšEÖAúEÖBZEÖB¸EÖCEÖUÝEÖUNEÖT¾EÖT-EÖSšEÖSEÖRqEÖQÚEÖQDEÖPªEÖPEÖOtEÖNÙEÖNúEÖ>VEÖ=²EÖ=EÖEÖ6EÖ2EÖ0EÖ0EÖ2EÖ6EÖEÖ>lEÖ>ÖEÖ?>EÖ?¤EÖ@ EÖ@rEÖ@ØEÖA¬EÖ> EÖ=mEÖ<ÎEÖOEÖ>ºEÖ?'EÖ?‘EÖ?ûEÖ@fEÖ@ÎEÖA7EÖAŸEÖBEÖBnEÖBÔEÖC;EÖC EÖDEÖDhEÖDÊEÖR¸EÖR1EÖQ©EÖQ EÖP•EÖP EÖO~EÖNðEÖNaEÖMÑEÖM@EÖL®EÖLEÖK‡EÖJòEÖJ\EÖIÆEÖI0EÖH˜EÖHEÖGhEÖFÏEÖF6EÖEEÖEEÖDhEÖCÌEÖC1EÖB–EÖAûEÖA`EÖ@ÄEÖ@(EÖ?ŒEÖ>ñEÖ>VEÖ=»EÖ= EÖ<„EÖ;êEÖ;OEÖ:¶EÖ:EÖ9„EÖ8ëEÖ8SEÖ7¼EÖ7%EÖ6EÖ5úEÖ5eEÖ4ÒEÖ4>EÖ3¬EÖ3EÖ2ŒEÖ1ýEÖ1nEÖ0âEÖ0VEÖ/ÌEÖ/BEÖ.»EÖ.4EÖ-¯EÖ-+EÖ,ªEÖ,(EÖ+©EÖ++EÖ*¯EÖ*5EÖ)¼EÖ)FEÖ(ÐEÖ(]EÖ'íEÖ'}EÖ'EÖ&¤EÖ&:EÖ%ÔEÖ%pEÖ% EÖ$¬EÖ$NEÖ#òEÖ#™EÖ#CEÖ"îEÖ"›EÖ"LEÖ!ÿEÖ!µEÖ!nEÖ!)EÖ ßEÖ ‘EÖ EEÖýEÖ·EÖtEÖ4EÖöEÖºEÖ‚EÖLEÖEÖéEÖ»EÖŽEÖeEÖ@EÖEÖúEÖÜEÖ¾EÖ¥EÖŽEÖxEÖfEÖUEÖGEÖ$EÖ>•EÖ?EÖ?rEÖ?àEÖ@MEÖ@»EÖA&EÖA’EÖAþEÖBiEÖBÒEÖC=EÖC¥EÖDEÖDuEÖDÜEÖEBEÖE¦EÖQEÖPšEÖPEÖO‘EÖO EÖN…EÖMüEÖMrEÖLèEÖL\EÖKÎEÖKCEÖJ´EÖJ$EÖI”EÖIEÖHrEÖGáEÖGNEÖFºEÖF&EÖE“EÖDþEÖDhEÖCÔEÖC>EÖB§EÖBEÖA{EÖ@äEÖ@NEÖ?·EÖ?EÖ>ˆEÖ=òEÖ=[EÖ<ÄEÖEÖ.¬EÖ/EÖ/ˆEÖ/øEÖ0gEÖ0ØEÖ1HEÖ1¸EÖ2*EÖ2œEÖ3EÖ3EÖ3ôEÖ4hEÖ4ÜEÖ5NEÖ5ÃEÖ67EÖ6«EÖ7 EÖ7•EÖ8 EÖ8~EÖ8òEÖ9gEÖ9ÛEÖ:PEÖ:ÅEÖ;9EÖ;­EÖ<"EÖ<”EÖ=EÖ=|EÖ=ïEÖ>bEÖ>ÓEÖ?FEÖ?·EÖ@)EÖ@˜EÖA EÖAxEÖAçEÖBVEÖBÄEÖC2EÖCžEÖD EÖDvEÖDâEÖEJEÖE²EÖFEÖF‚EÖO‚EÖOEÖN†EÖNEÖM‚EÖMEÖL|EÖKöEÖKpEÖJêEÖJbEÖIØEÖINEÖHÅEÖH9EÖG¬EÖGEÖF‘EÖFEÖEuEÖDæEÖDWEÖCÆEÖC6EÖB¥EÖBEÖAƒEÖ@òEÖ@`EÖ?ÎEÖ?ªEÖ>EÖ=†EÖ<ôEÖ$EÖ>šEÖ?EÖ?„EÖ?øEÖ@mEÖ@âEÖATEÖAÈEÖB:EÖB¬EÖCEÖCŽEÖCüEÖDmEÖDÚEÖEIEÖE¶EÖF"EÖFEÖFøEÖGaEÖMåEÖMlEÖLðEÖLsEÖKöEÖKxEÖJ÷EÖJxEÖIõEÖIrEÖHïEÖHjEÖGäEÖG`EÖFØEÖFPEÖEÉEÖE@EÖD¶EÖD-EÖC¢EÖCEÖBEÖBEÖAuEÖ@éEÖ@\EÖ?ÐEÖ?CEÖ>¶EÖ>)EÖ=œEÖ=EÖEÖ,ÄEÖ,LEÖ+ÔEÖ+^EÖ*éEÖ*vEÖ*EÖ)“EÖ)$EÖ(·EÖ(KEÖ'àEÖ'xEÖ'EÖ&¬EÖ&IEÖ%èEÖ%ˆEÖ%+EÖ$ÐEÖ$vEÖ$EÖ#ÊEÖ#wEÖ#$EÖ"ÖEÖ"ŠEÖ"?EÖ!÷EÖ!²EÖ!nEÖ!.EÖ ðEÖ «EÖ aEÖ EÖÔEÖ‘EÖQEÖEÖØEÖžEÖiEÖ6EÖEÖÕEÖ¨EÖ~EÖVEÖ0EÖEÖíEÖÏEÖ³EÖ™EÖ‚EÖnEÖ[EÖJEÖWEÖ>ÐEÖ?HEÖ?ÁEÖ@8EÖ@°EÖA(EÖAžEÖBEÖB‰EÖBÿEÖCtEÖCçEÖD[EÖDÎEÖE?EÖE±EÖF EÖFEÖGEÖGlEÖGÚEÖHFEÖLDEÖKÎEÖKXEÖJÞEÖJdEÖIëEÖIoEÖHôEÖHvEÖGùEÖGyEÖFúEÖFyEÖE÷EÖEvEÖDòEÖDpEÖCìEÖChEÖBâEÖB]EÖA×EÖAQEÖ@ÊEÖ@BEÖ?»EÖ?4EÖ>¬EÖ>%EÖ=EÖ=EÖEÖ2EÖ(EÖ EÖEÖEÖEÖEÖEÖ$EÖ,EÖ6EÖCEÖREÖbEÖuEÖ‹EÖ¢EÖ»EÖ×EÖôEÖEÖ6EÖZEÖ€EÖ©EÖÒEÖÿEÖ-EÖ^EÖEÖÅEÖûEÖ4EÖmEÖªEÖèEÖ )EÖ jEÖ ©EÖ ìEÖ!/EÖ!vEÖ!½EÖ"EÖ"QEÖ"žEÖ"íEÖ#=EÖ#EÖ#ãEÖ$8EÖ$ŽEÖ$æEÖ%@EÖ%œEÖ%ùEÖ&VEÖ&¶EÖ'EÖ'xEÖ'ÜEÖ(BEÖ(§EÖ)EÖ)vEÖ)àEÖ*JEÖ*¶EÖ+#EÖ+EÖ+þEÖ,nEÖ,ÞEÖ-PEÖ-ÂEÖ.5EÖ.¨EÖ/EÖ/’EÖ0EÖ0~EÖ0öEÖ1nEÖ1æEÖ2_EÖ2ØEÖ3REÖ3ÌEÖ4HEÖ4ÂEÖ5>EÖ5ºEÖ67EÖ6³EÖ70EÖ7¬EÖ8)EÖ8¦EÖ9#EÖ9¡EÖ:EÖ:œEÖ;EÖ;—EÖ<EÖ<‘EÖ=EÖ=ŠEÖ>EÖ>ƒEÖ?EÖ?|EÖ?øEÖ@sEÖ@íEÖAhEÖAâEÖBZEÖBÔEÖCLEÖCÄEÖD:EÖD²EÖE(EÖEžEÖFEÖF…EÖFøEÖGjEÖGÜEÖHLEÖH¼EÖI*EÖJžEÖJ,EÖIºEÖIDEÖHÑEÖH\EÖGäEÖGmEÖFôEÖF{EÖFEÖE…EÖE EÖDŒEÖDEÖC‘EÖCEÖB”EÖBEÖA”EÖAEÖ@’EÖ@EÖ?EÖ?EÖ>ŒEÖ> EÖ=†EÖ=EÖ<€EÖ;üEÖ;yEÖ:÷EÖ:tEÖ9ðEÖ9mEÖ8êEÖ8gEÖ7äEÖ7bEÖ6áEÖ6_EÖ5ÞEÖ5\EÖ4ÜEÖ4[EÖ3ÜEÖ3\EÖ2ßEÖ2aEÖ1äEÖ1fEÖ0ëEÖ0pEÖ/õEÖ/|EÖ/EÖ.ŒEÖ.EÖ-ŸEÖ-*EÖ,¶EÖ,DEÖ+ÒEÖ+bEÖ*óEÖ*†EÖ*EÖ)®EÖ)CEÖ(ÚEÖ(tEÖ(EÖ'ªEÖ'GEÖ&æEÖ&†EÖ&(EÖ%ÌEÖ%rEÖ%EÖ$ÂEÖ$mEÖ$EÖ#ÈEÖ#yEÖ#+EÖ"àEÖ"–EÖ"OEÖ" EÖ!ÇEÖ!†EÖ!HEÖ! EÖ ÑEÖ ‘EÖ IEÖ EÖÁEÖ€EÖBEÖEÖÍEÖ•EÖaEÖ.EÖþEÖÐEÖ¤EÖ{EÖTEÖ/EÖ EÖìEÖÎEÖ³EÖšEÖ‚EÖmEÖZEÖJEÖ+EÖ>ªEÖ?*EÖ?©EÖ@(EÖ@¦EÖA%EÖA£EÖB EÖBœEÖCEÖC”EÖDEÖDŠEÖEEÖE|EÖEöEÖFnEÖFæEÖG\EÖGÐEÖHEEÖH¹EÖI,EÖIŸEÖJEÖHöEÖHŠEÖHEÖG¬EÖGÒEÖ>UEÖ=ØEÖ=[EÖ<ÝEÖ<`EÖ;áEÖ;dEÖ:åEÖ:gEÖ9éEÖ9kEÖ8ìEÖ8oEÖ7ðEÖ7sEÖ6õEÖ6xEÖ5ûEÖ5~EÖ5EÖ4†EÖ4 EÖ3EÖ3EÖ2šEÖ2 EÖ1§EÖ1.EÖ0·EÖ0@EÖ/ÊEÖ/TEÖ.ÞEÖ.kEÖ-øEÖ-†EÖ-EÖ,¤EÖ,4EÖ+ÆEÖ+ZEÖ*îEÖ*‚EÖ*EÖ)°EÖ)IEÖ(ãEÖ(EÖ(EÖ'ºEÖ'YEÖ&úEÖ&EÖ&AEÖ%æEÖ%ŽEÖ%6EÖ$âEÖ$ŽEÖ$EÖùEÖ¸EÖyEÖ;EÖEÖÇEÖ’EÖ\EÖ,EÖüEÖÎEÖ£EÖzEÖSEÖ.EÖ EÖìEÖÎEÖ²EÖ˜EÖ‚EÖnEÖZEÖJEÖNEÖ>ÑEÖ?TEÖ?ÕEÖ@XEÖ@ÚEÖA[EÖAÜEÖB]EÖBÝEÖC]EÖCÜEÖD[EÖDÙEÖEVEÖEÔEÖFPEÖFËEÖGFEÖGÀEÖH8EÖH±EÖI(EÖIŸEÖJEÖJ‰EÖJüEÖGNEÖFæEÖF|EÖFEÖE¤EÖE8EÖDÊEÖD\EÖCìEÖC|EÖC EÖBšEÖB(EÖA´EÖA@EÖ@ÌEÖ@XEÖ?äEÖ?nEÖ>öEÖ>€EÖ> EÖ=’EÖ=EÖ<¢EÖ<)EÖ;±EÖ;9EÖ:¿EÖ:GEÖ9ÎEÖ9TEÖ8ÜEÖ8bEÖ7éEÖ7qEÖ6÷EÖ6EÖ6EÖ5ŽEÖ5EÖ4žEÖ4'EÖ3°EÖ39EÖ2ÃEÖ2NEÖ1ØEÖ1dEÖ0îEÖ0{EÖ0EÖ/–EÖ/$EÖ.´EÖ.CEÖ-ÔEÖ-fEÖ,øEÖ,‹EÖ, EÖ+´EÖ+JEÖ*âEÖ*zEÖ*EÖ)®EÖ)JEÖ(çEÖ(†EÖ($EÖ'ÅEÖ'gEÖ' EÖ&¯EÖ&VEÖ%þEÖ%§EÖ%REÖ$þEÖ$¬EÖ$\EÖ$ EÖ#ÀEÖ#uEÖ#,EÖ"äEÖ"žEÖ"[EÖ"EÖ!ØEÖ!›EÖ!^EÖ!$EÖ íEÖ ·EÖ zEÖ 5EÖñEÖ±EÖsEÖ6EÖýEÖÅEÖEÖ[EÖ+EÖüEÖÎEÖ£EÖzEÖTEÖ0EÖEÖîEÖÑEÖ´EÖ›EÖ„EÖoEÖ\EÖLEÖ>EÖ1EÖ'EÖEÖEÖEÖEÖEÖEÖEÖ%EÖ/EÖ:EÖJEÖYEÖkEÖ€EÖ–EÖ°EÖËEÖèEÖEÖ)EÖLEÖsEÖ›EÖÆEÖóEÖ"EÖREÖ†EÖ¼EÖôEÖ-EÖjEÖ§EÖèEÖ ,EÖ nEÖ ¯EÖ óEÖ!;EÖ!ƒEÖ!ÎEÖ"EÖ"hEÖ"¸EÖ# EÖ#`EÖ#¶EÖ$ EÖ$gEÖ$ÂEÖ% EÖ%EÖ%àEÖ&BEÖ&¦EÖ' EÖ'pEÖ'ÙEÖ(CEÖ(®EÖ)EÖ)ˆEÖ)öEÖ*gEÖ*ØEÖ+JEÖ+¾EÖ,3EÖ,ªEÖ- EÖ-˜EÖ.EÖ.‹EÖ/EÖ/‚EÖ/þEÖ0{EÖ0ùEÖ1xEÖ1øEÖ2xEÖ2ùEÖ3zEÖ3üEÖ4EÖ5EÖ5†EÖ6 EÖ6ŽEÖ7EÖ7˜EÖ8EÖ8£EÖ9(EÖ9®EÖ:4EÖ:»EÖ;BEÖ;ÈEÖhEÖ>îEÖ?sEÖ?ùEÖ@~EÖAEÖAˆEÖB EÖB‘EÖCEÖC˜EÖDEÖDœEÖEEÖEžEÖFEÖFžEÖGEÖGšEÖHEÖH–EÖIEÖIŒEÖJEÖJ~EÖJöEÖKlEÖKâEÖE¡EÖEøEÖ>ˆEÖ>EÖ=¦EÖ=3EÖ<ÁEÖEÖ!ÿEÖ!ÂEÖ!†EÖ!LEÖ!EÖ ßEÖ ¬EÖ pEÖ ,EÖëEÖ«EÖoEÖ3EÖùEÖÂEÖEÖZEÖ*EÖûEÖÏEÖ¤EÖ|EÖVEÖ2EÖEÖïEÖÒEÖ¶EÖžEÖ†EÖpEÖ^EÖMEÖ>EÖ2EÖ(EÖ EÖEÖEÖEÖEÖEÖEÖ#EÖ-EÖ8EÖFEÖVEÖhEÖ|EÖ’EÖ¬EÖÇEÖãEÖEÖ%EÖHEÖoEÖ—EÖÂEÖîEÖEÖNEÖ‚EÖ¸EÖðEÖ*EÖgEÖ¦EÖçEÖ +EÖ nEÖ ±EÖ öEÖ!~EÖ?EÖ?EÖ@EÖ@¡EÖA*EÖA²EÖB:EÖBÁEÖCGEÖCÎEÖDUEÖDÚEÖE^EÖEãEÖFhEÖFêEÖGlEÖGîEÖHnEÖHðEÖIoEÖIíEÖJjEÖJèEÖKcEÖKÝEÖLVEÖLÎEÖCòEÖC’EÖC3EÖBÑEÖBnEÖB EÖA¦EÖA@EÖ@ÚEÖ@tEÖ@ EÖ?¤EÖ?>EÖ>ÔEÖ>jEÖ>EÖ=•EÖ=)EÖ<½EÖEÖ>EÖ?EÖ?§EÖ@3EÖ@ÀEÖALEÖAÖEÖBbEÖBíEÖCvEÖDEÖD‰EÖEEÖE›EÖF$EÖF«EÖG1EÖG¸EÖHêEÖ>‰EÖ>&EÖ=ÁEÖ=\EÖ<ùEÖ<“EÖ<-EÖ;ÈEÖ;bEÖ:úEÖ:“EÖ:*EÖ9ÃEÖ9ZEÖ8òEÖ8‰EÖ8 EÖ7¸EÖ7NEÖ6åEÖ6{EÖ6EÖ5¨EÖ5?EÖ4ÕEÖ4lEÖ4EÖ3šEÖ31EÖ2ÈEÖ2`EÖ1÷EÖ1EÖ1'EÖ0ÀEÖ0XEÖ/òEÖ/ŒEÖ/'EÖ.ÂEÖ.]EÖ-ùEÖ-”EÖ-2EÖ,ÏEÖ,nEÖ, EÖ+¬EÖ+MEÖ*îEÖ*EÖ*3EÖ)ÖEÖ){EÖ)"EÖ(ÈEÖ(pEÖ(EÖ'ÁEÖ'lEÖ'EÖ&ÄEÖ&sEÖ&"EÖ%ÒEÖ%„EÖ%6EÖ$ìEÖ$ EÖ$XEÖ$EÖ#ÊEÖ#†EÖ#BEÖ#EÖ"ÀEÖ"‚EÖ"DEÖ" EÖ!ÐEÖ!˜EÖ!bEÖ!,EÖ ûEÖ ÈEÖ šEÖ bEÖ EÖâEÖ¤EÖiEÖ0EÖøEÖÃEÖEÖ^EÖ.EÖEÖÕEÖ«EÖƒEÖ^EÖ:EÖEÖùEÖÚEÖÀEÖ¦EÖŽEÖzEÖfEÖVEÖFEÖ8EÖ.EÖ&EÖEÖEÖEÖEÖEÖEÖ%EÖ.EÖ8EÖFEÖUEÖfEÖzEÖEÖ©EÖÃEÖßEÖÿEÖ!EÖDEÖjEÖ’EÖ¼EÖêEÖEÖKEÖEÖµEÖîEÖ)EÖfEÖ§EÖéEÖ .EÖ sEÖ ·EÖ þEÖ!FEÖ!’EÖ!ßEÖ"/EÖ"EÖ"ÕEÖ#+EÖ#ƒEÖ#ÝEÖ$:EÖ$˜EÖ$øEÖ%[EÖ%¾EÖ&#EÖ&‹EÖ&õEÖ'_EÖ'ÌEÖ(:EÖ(ªEÖ)EÖ)ŽEÖ*EÖ*xEÖ*ïEÖ+hEÖ+áEÖ,\EÖ,ØEÖ-VEÖ-ÔEÖ.TEÖ.ÕEÖ/WEÖ/ÚEÖ0^EÖ0âEÖ1hEÖ1ïEÖ2vEÖ2þEÖ3‡EÖ4EÖ4›EÖ5&EÖ5±EÖ6=EÖ6ÊEÖ7VEÖ7äEÖ8rEÖ9EÖ9ŽEÖ:EÖ:¬EÖ;;EÖ;ËEÖ EÖ>šEÖ?*EÖ?¹EÖ@IEÖ@ØEÖAgEÖAöEÖB„EÖCEÖC EÖD.EÖDºEÖEFEÖEÓEÖF]EÖFéEÖGtEÖGýEÖH‡EÖIEÖI–EÖJEÖJ¢EÖK&EÖKªEÖL,EÖL°EÖM/EÖM°EÖN.EÖN¬EÖ@ŒEÖ@6EÖ?ÞEÖ?†EÖ?,EÖ>ÑEÖ>wEÖ>EÖ=ÀEÖ=bEÖ=EÖ<¦EÖEÖ1ÛEÖ1vEÖ1EÖ0±EÖ0NEÖ/ìEÖ/ŠEÖ/)EÖ.ÈEÖ.fEÖ.EÖ-§EÖ-HEÖ,êEÖ,ŒEÖ,.EÖ+ÒEÖ+tEÖ+EÖ*¾EÖ*dEÖ* EÖ)²EÖ)ZEÖ)EÖ(®EÖ(YEÖ(EÖ'²EÖ'`EÖ'EÖ&¾EÖ&pEÖ&"EÖ%ÔEÖ%ˆEÖ%>EÖ$õEÖ$­EÖ$gEÖ$ EÖ#ÞEÖ#šEÖ#YEÖ#EÖ"ÚEÖ"EÖ"aEÖ"(EÖ!îEÖ!·EÖ!ƒEÖ!OEÖ!EÖ íEÖ ¾EÖ ‘EÖ ZEÖ EÖÝEÖ EÖgEÖ/EÖ÷EÖÂEÖEÖ^EÖ0EÖEÖØEÖ®EÖ‡EÖbEÖ=EÖEÖüEÖÞEÖÃEÖ©EÖ’EÖ}EÖjEÖXEÖHEÖ EÖ>ŸEÖ?1EÖ?ÄEÖ@WEÖ@éEÖA{EÖBEÖB EÖC1EÖCÃEÖDTEÖDäEÖEtEÖFEÖF’EÖG!EÖG®EÖHÖEÖ>„EÖ>1EÖ=ÞEÖ=ˆEÖ=4EÖ<ÜEÖ<†EÖ<0EÖ;×EÖ;EÖ;'EÖ:ÌEÖ:rEÖ:EÖ9¼EÖ9bEÖ9EÖ8©EÖ8KEÖ7ïEÖ7‘EÖ73EÖ6ÖEÖ6xEÖ6EÖ5»EÖ5]EÖ4þEÖ4ŸEÖ4@EÖ3áEÖ3ƒEÖ3$EÖ2ÅEÖ2fEÖ2EÖ1©EÖ1JEÖ0ìEÖ0ŽEÖ01EÖ/ÓEÖ/uEÖ/EÖ.»EÖ.`EÖ.EÖ-¨EÖ-LEÖ,òEÖ,˜EÖ,>EÖ+åEÖ+ŒEÖ+5EÖ*ÞEÖ*†EÖ*1EÖ)ÛEÖ)†EÖ)3EÖ(àEÖ(ŽEÖ(EÖ!EÖ áEÖ ´EÖ ‰EÖ UEÖ EÖÚEÖŸEÖfEÖ.EÖùEÖÅEÖ’EÖbEÖ4EÖEÖÛEÖ³EÖ‹EÖfEÖCEÖ!EÖEÖäEÖÈEÖ®EÖ—EÖEÖnEÖ\EÖMEÖ?EÖ4EÖ*EÖ"EÖEÖEÖEÖEÖEÖ$EÖ,EÖ6EÖDEÖREÖbEÖuEÖ‹EÖ£EÖ¾EÖØEÖøEÖEÖEÖ#˜EÖ#õEÖ$UEÖ$¶EÖ%EÖ%€EÖ%æEÖ&OEÖ&¼EÖ'(EÖ'˜EÖ(EÖ(zEÖ(îEÖ)dEÖ)ÚEÖ*TEÖ*ÎEÖ+JEÖ+ÇEÖ,FEÖ,ÆEÖ-GEÖ-ÉEÖ.MEÖ.ÒEÖ/XEÖ/àEÖ0hEÖ0òEÖ1|EÖ2EÖ2”EÖ3!EÖ3®EÖ4=EÖ4ÍEÖ5]EÖ5îEÖ6€EÖ7EÖ7¤EÖ88EÖ8ÊEÖ9_EÖ9ôEÖ:ˆEÖ;EÖ;³EÖ EÖ> EÖ?6EÖ?ÍEÖ@bEÖ@øEÖAŽEÖB#EÖB¹EÖCNEÖCâEÖDwEÖE EÖEžEÖF1EÖFÄEÖGVEÖGèEÖHyEÖI EÖI˜EÖJ'EÖJµEÖKBEÖKÏEÖL[EÖLäEÖMnEÖMöEÖN~EÖOEÖOŠEÖP EÖPŽEÖ=EÖ<ÐEÖ<‚EÖ<3EÖ;äEÖ;”EÖ;AEÖ:ðEÖ:žEÖ:KEÖ9øEÖ9¢EÖ9NEÖ8ùEÖ8¤EÖ8MEÖ7÷EÖ7 EÖ7JEÖ6óEÖ6šEÖ6BEÖ5êEÖ5’EÖ58EÖ4àEÖ4†EÖ4.EÖ3ÔEÖ3{EÖ3"EÖ2ÈEÖ2nEÖ2EÖ1»EÖ1bEÖ1EÖ0°EÖ0VEÖ/þEÖ/¤EÖ/LEÖ.ôEÖ.œEÖ.DEÖ-ìEÖ-–EÖ->EÖ,èEÖ,“EÖ,=EÖ+èEÖ+“EÖ+?EÖ*ìEÖ*˜EÖ*FEÖ)ôEÖ)¤EÖ)SEÖ)EÖ(´EÖ(fEÖ(EÖ'ËEÖ'EÖ'4EÖ&êEÖ& EÖ&WEÖ&EÖ%ÈEÖ%ƒEÖ%>EÖ$ûEÖ$¸EÖ$vEÖ$6EÖ#öEÖ#¸EÖ#zEÖ#?EÖ#EÖ"ËEÖ"“EÖ"\EÖ"&EÖ!óEÖ!ÀEÖ!EÖ!^EÖ!0EÖ!EÖ ×EÖ ®EÖ „EÖ QEÖ EÖÙEÖŸEÖgEÖ1EÖüEÖÉEÖ—EÖgEÖ:EÖ EÖãEÖºEÖ“EÖnEÖJEÖ*EÖ EÖìEÖÐEÖ¸EÖžEÖŠEÖuEÖdEÖTEÖFEÖ;EÖ1EÖ)EÖ$EÖ EÖ EÖ EÖ$EÖ)EÖ0EÖ:EÖFEÖTEÖeEÖwEÖŒEÖ¤EÖ¾EÖÚEÖøEÖEÖEÖ>šEÖ?3EÖ?ÍEÖ@fEÖ@ÿEÖA˜EÖB1EÖBÉEÖCbEÖCúEÖD’EÖE)EÖEÀEÖFWEÖFîEÖG‚EÖHEÖH¬EÖIBEÖIÒEÖJgEÖJöEÖKŠEÖLEÖL¨EÖM4EÖMÄEÖNNEÖNÛEÖOcEÖOîEÖPsEÖPüEÖQEÖ;cEÖ;EÖ:ÐEÖ:†EÖ:;EÖ9ïEÖ9£EÖ9VEÖ9EÖ8ºEÖ8lEÖ8EÖ7ÎEÖ7~EÖ7.EÖ6ÝEÖ6ŒEÖ6:EÖ5èEÖ5–EÖ5CEÖ4ðEÖ4EÖ4JEÖ3÷EÖ3£EÖ3PEÖ2üEÖ2¨EÖ2TEÖ2EÖ1¬EÖ1XEÖ1EÖ0°EÖ0\EÖ0EÖ/´EÖ/aEÖ/ EÖ.ºEÖ.gEÖ.EÖ-ÁEÖ-oEÖ-EÖ,ËEÖ,yEÖ,'EÖ+ÖEÖ+†EÖ+6EÖ*æEÖ*˜EÖ*JEÖ)üEÖ)®EÖ)aEÖ)EÖ(ÉEÖ(~EÖ(4EÖ'êEÖ'¡EÖ'YEÖ'EÖ&ËEÖ&„EÖ&@EÖ%üEÖ%¸EÖ%vEÖ%4EÖ$òEÖ$´EÖ$tEÖ$8EÖ#úEÖ#¾EÖ#„EÖ#JEÖ#EÖ"ÚEÖ"¤EÖ"pEÖ"EÖEÖèEÖÀEÖšEÖtEÖREÖ0EÖEÖôEÖ×EÖ¾EÖ¥EÖEÖ|EÖiEÖYEÖKEÖ>EÖ5EÖ,EÖ'EÖ#EÖ"EÖ"EÖ%EÖ)EÖ0EÖ:EÖEEÖTEÖdEÖvEÖŠEÖ¢EÖ»EÖØEÖõEÖEÖ9EÖ_EÖ‡EÖ±EÖßEÖEÖAEÖuEÖ­EÖæEÖ#EÖcEÖ¥EÖêEÖ 2EÖ yEÖ ÀEÖ! EÖ!UEÖ!¤EÖ!õEÖ"IEÖ" EÖ"ùEÖ#SEÖ#²EÖ$EÖ$sEÖ$ØEÖ%>EÖ%¦EÖ&EÖ&EÖ&íEÖ'^EÖ'ÐEÖ(EEÖ(¼EÖ)4EÖ)­EÖ**EÖ*¦EÖ+%EÖ+¦EÖ,(EÖ,¬EÖ-0EÖ-¶EÖ.>EÖ.ÈEÖ/REÖ/ÝEÖ0jEÖ0øEÖ1†EÖ2EÖ2¨EÖ3:EÖ3ÌEÖ4aEÖ4õEÖ5ŠEÖ6!EÖ6¸EÖ7NEÖ7èEÖ8€EÖ9EÖ9´EÖ:MEÖ:èEÖ;„EÖ<EÖ<ºEÖ=VEÖ=òEÖ>ŽEÖ?+EÖ?ÇEÖ@cEÖ@ÿEÖAœEÖB8EÖBÔEÖCpEÖD EÖD¦EÖEBEÖEÝEÖFvEÖGEÖG«EÖHDEÖHÜEÖIrEÖJ EÖJŸEÖK6EÖKÊEÖL^EÖLðEÖM‚EÖNEÖN¤EÖO3EÖOÀEÖPMEÖPØEÖQbEÖQíEÖRtEÖ9¨EÖ9dEÖ9EÖ8ÚEÖ8”EÖ8LEÖ8EÖ7¼EÖ7tEÖ7,EÖ6âEÖ6˜EÖ6NEÖ6EÖ5·EÖ5mEÖ5!EÖ4ÔEÖ4‡EÖ4:EÖ3íEÖ3 EÖ3SEÖ3EÖ2¶EÖ2iEÖ2EÖ1ËEÖ1}EÖ1.EÖ0àEÖ0’EÖ0BEÖ/ôEÖ/¦EÖ/WEÖ/ EÖ.ºEÖ.kEÖ.EÖ-ÐEÖ-EÖ-4EÖ,çEÖ,™EÖ,MEÖ,EÖ+³EÖ+hEÖ+EÖ*ÑEÖ*†EÖ*EÖsEÖªEÖåEÖ"EÖcEÖ¤EÖéEÖ 2EÖ zEÖ ÁEÖ! EÖ!YEÖ!¨EÖ!ûEÖ"OEÖ"§EÖ#EÖ#]EÖ#½EÖ$EÖ$‚EÖ$çEÖ%PEÖ%ºEÖ&&EÖ&•EÖ'EÖ'xEÖ'íEÖ(dEÖ(ÜEÖ)VEÖ)ÒEÖ*PEÖ*ÐEÖ+PEÖ+ÔEÖ,XEÖ,ÞEÖ-eEÖ-îEÖ.xEÖ/EÖ/’EÖ0EÖ0®EÖ1@EÖ1ÒEÖ2dEÖ2øEÖ3EÖ4"EÖ4ºEÖ5QEÖ5éEÖ6‚EÖ7EÖ7·EÖ8REÖ8îEÖ9ŠEÖ:(EÖ:ÅEÖ;bEÖ<EÖ< EÖ=>EÖ=ÝEÖ>}EÖ?EÖ?¼EÖ@\EÖ@úEÖAšEÖB:EÖBÙEÖCyEÖDEÖD¶EÖEUEÖEôEÖF‘EÖG.EÖGÌEÖHhEÖIEÖIŸEÖJ9EÖJÔEÖKmEÖLEÖLžEÖM4EÖMÉEÖN_EÖNòEÖO„EÖPEÖP¨EÖQ6EÖQÆEÖRREÖRÝEÖShEÖ7ìEÖ7®EÖ7lEÖ7-EÖ6ëEÖ6¨EÖ6fEÖ6#EÖ5ÞEÖ5œEÖ5VEÖ5EÖ4ÎEÖ4‡EÖ4BEÖ3ûEÖ3´EÖ3nEÖ3&EÖ2ÝEÖ2—EÖ2NEÖ2EÖ1¾EÖ1tEÖ1,EÖ0ãEÖ0›EÖ0QEÖ0EÖ/¿EÖ/vEÖ/,EÖ.ãEÖ.šEÖ.QEÖ.EÖ-¿EÖ-vEÖ-.EÖ,äEÖ,œEÖ,TEÖ, EÖ+ÄEÖ+|EÖ+5EÖ*îEÖ*§EÖ*aEÖ*EÖ)ÔEÖ)EÖ)LEÖ)EÖ(ÂEÖ(EÖ(EÖ EÖEÖåEÖÌEÖ²EÖœEÖˆEÖtEÖdEÖVEÖHEÖ>EÖ6EÖ/EÖ*EÖ(EÖ'EÖ(EÖ-EÖ4EÖfEÖ?EÖ?«EÖ@MEÖ@ðEÖA”EÖB7EÖBÙEÖC|EÖDEÖDÁEÖEcEÖFEÖF¦EÖGGEÖGçEÖH‡EÖI&EÖIÆEÖJcEÖKEÖK EÖL;EÖLØEÖMrEÖN EÖN¤EÖOEÖ5EÖ4ÃEÖ4†EÖ4HEÖ4EÖ3ÊEÖ3‰EÖ3JEÖ3EÖ2ÈEÖ2ˆEÖ2FEÖ2EÖ1ÂEÖ1€EÖ1>EÖ0ûEÖ0¸EÖ0uEÖ01EÖ/ïEÖ/«EÖ/hEÖ/$EÖ.àEÖ.œEÖ.XEÖ.EÖ-ÒEÖ-ŽEÖ-JEÖ-EÖ,ÃEÖ,EÖ,=EÖ+ùEÖ+¶EÖ+sEÖ+0EÖ*îEÖ*¬EÖ*jEÖ*(EÖ)çEÖ)¦EÖ)eEÖ)$EÖ(äEÖ(¥EÖ(fEÖ(&EÖ'èEÖ'ªEÖ'lEÖ'0EÖ&óEÖ&¶EÖ&{EÖ&@EÖ&EÖ%ÌEÖ%“EÖ%ZEÖ%"EÖ$ëEÖ$µEÖ$~EÖ$IEÖ$EÖ#âEÖ#®EÖ#}EÖ#KEÖ#EÖ"ëEÖ"¼EÖ"ŽEÖ"`EÖ"5EÖ" EÖ!àEÖ!·EÖ!EÖ!hEÖ!AEÖ!EÖ ùEÖ ÕEÖ ³EÖ “EÖ sEÖ HEÖ EÖØEÖ£EÖpEÖEÖHEÖTEÖdEÖuEÖˆEÖ EÖ¸EÖÓEÖðEÖEÖ2EÖXEÖ€EÖªEÖ×EÖEÖ9EÖpEÖ§EÖâEÖEÖ`EÖ¥EÖëEÖ 5EÖ ~EÖ ÆEÖ!EÖ!`EÖ!±EÖ"EÖ"]EÖ"¸EÖ#EÖ#rEÖ#ÔEÖ$8EÖ$ŸEÖ%EÖ%rEÖ%àEÖ&PEÖ&ÃEÖ'7EÖ'®EÖ(%EÖ( EÖ)EÖ)œEÖ*EÖ*žEÖ+#EÖ+¨EÖ,0EÖ,ºEÖ-DEÖ-ÒEÖ._EÖ.îEÖ/€EÖ0EÖ0¦EÖ1:EÖ1ÑEÖ2hEÖ3EÖ3šEÖ45EÖ4ÑEÖ5nEÖ6 EÖ6ªEÖ7JEÖ7êEÖ8ŠEÖ9,EÖ9ÎEÖ:qEÖ;EÖ;·EÖ<\EÖ=EÖ=¦EÖ>JEÖ>ñEÖ?–EÖ@;EÖ@âEÖAˆEÖB.EÖBÔEÖC{EÖD EÖDÅEÖElEÖFEÖF¶EÖGZEÖGÿEÖH¢EÖIEEÖIèEÖJ‹EÖK+EÖKÌEÖLmEÖM EÖMªEÖNHEÖNæEÖO€EÖPEÖP¶EÖQMEÖQåEÖR|EÖSEÖS¤EÖT6EÖTÈEÖUVEÖ4nEÖ48EÖ4EÖ3ÉEÖ3’EÖ3ZEÖ3"EÖ2çEÖ2®EÖ2uEÖ2;EÖ1ÿEÖ1ÄEÖ1ŠEÖ1NEÖ1EÖ0ÖEÖ0šEÖ0]EÖ0!EÖ/ãEÖ/¦EÖ/hEÖ/,EÖ.íEÖ.°EÖ.qEÖ.4EÖ-öEÖ-·EÖ-zEÖ-;EÖ,ýEÖ,¾EÖ,EÖ,BEÖ,EÖ+ÇEÖ+ˆEÖ+KEÖ+ EÖ*ÐEÖ*’EÖ*UEÖ*EÖ)ÛEÖ)žEÖ)bEÖ)&EÖ(êEÖ(®EÖ(rEÖ(8EÖ'þEÖ'ÃEÖ'ŠEÖ'PEÖ'EÖ&ÞEÖ&¦EÖ&nEÖ&7EÖ&EÖ%ÊEÖ%”EÖ%`EÖ%+EÖ$öEÖ$ÃEÖ$EÖ$^EÖ$,EÖ#üEÖ#ËEÖ#œEÖ#mEÖ#>EÖ#EÖ"åEÖ"¹EÖ"ŽEÖ"cEÖ":EÖ"EÖ!éEÖ!ÂEÖ!œEÖ!wEÖ!REÖ!/EÖ! EÖ ìEÖ ÌEÖ ¬EÖ EÖ pEÖ FEÖ EÖÚEÖ¦EÖrEÖ@EÖEÖßEÖ±EÖ…EÖZEÖ/EÖEÖßEÖ¹EÖ•EÖsEÖQEÖ2EÖEÖøEÖÜEÖÄEÖ­EÖ˜EÖ„EÖrEÖdEÖVEÖJEÖ@EÖ9EÖ4EÖ0EÖ.EÖ0EÖ2EÖ8EÖ@EÖIEÖUEÖcEÖuEÖ‡EÖžEÖ¶EÖÐEÖíEÖ EÖ0EÖUEÖ|EÖ§EÖÔEÖEÖ6EÖlEÖ¤EÖßEÖEÖ^EÖ£EÖéEÖ 4EÖ ~EÖ ÇEÖ!EÖ!bEÖ!µEÖ" EÖ"cEÖ"½EÖ#EÖ#{EÖ#ßEÖ$DEÖ$«EÖ%EÖ%ƒEÖ%òEÖ&dEÖ&×EÖ'NEÖ'ÆEÖ(@EÖ(¾EÖ)'EÖ>ÐEÖ?xEÖ@"EÖ@ËEÖAtEÖBEÖBÇEÖCpEÖDEÖDÂEÖElEÖFEÖF½EÖGeEÖH EÖH´EÖI\EÖJEÖJ§EÖKMEÖKòEÖL–EÖM9EÖMÜEÖN|EÖOEÖO¼EÖP\EÖPúEÖQ–EÖR2EÖRÌEÖSfEÖSüEÖT’EÖU(EÖU¼EÖVNEÖ2­EÖ2|EÖ2JEÖ2EÖ1äEÖ1±EÖ1~EÖ1JEÖ1EÖ0àEÖ0«EÖ0vEÖ0@EÖ0 EÖ/ÔEÖ/žEÖ/gEÖ/0EÖ.ùEÖ.ÁEÖ.ˆEÖ.QEÖ.EÖ-áEÖ-©EÖ-pEÖ-8EÖ-EÖ,ÇEÖ,EÖ,VEÖ,EÖ+åEÖ+¬EÖ+sEÖ+;EÖ+EÖ*ÊEÖ*’EÖ*YEÖ*!EÖ)éEÖ)±EÖ)zEÖ)BEÖ) EÖ(ÓEÖ(œEÖ(fEÖ(/EÖ'ùEÖ'ÃEÖ'EÖ'XEÖ'"EÖ&îEÖ&ºEÖ&†EÖ&REÖ&EÖ%ìEÖ%¹EÖ%‡EÖ%VEÖ%$EÖ$ôEÖ$ÄEÖ$”EÖ$fEÖ$7EÖ$ EÖ#ÜEÖ#°EÖ#‚EÖ#XEÖ#,EÖ#EÖ"ÙEÖ"¯EÖ"‡EÖ"`EÖ"9EÖ"EÖ!îEÖ!ÊEÖ!¦EÖ!ƒEÖ!`EÖ!?EÖ!EÖ!EÖ áEÖ ÃEÖ ¦EÖ ŠEÖ oEÖ GEÖ EÖÝEÖªEÖxEÖGEÖEÖçEÖ¹EÖŽEÖbEÖ9EÖEÖéEÖÃEÖŸEÖ|EÖ[EÖEÖ>«EÖ?WEÖ@EÖ@¯EÖA\EÖBEÖBµEÖCaEÖDEÖDºEÖEgEÖFEÖF¿EÖGkEÖHEÖHÁEÖIlEÖJEÖJÀEÖKjEÖLEÖLºEÖMaEÖNEÖN¬EÖOQEÖOôEÖP–EÖQ8EÖQØEÖRzEÖSEÖS¶EÖTQEÖTëEÖU„EÖVEÖV²EÖWFEÖ0ëEÖ0¾EÖ0EÖ0bEÖ06EÖ0EÖ/ØEÖ/¨EÖ/zEÖ/KEÖ/EÖ.êEÖ.¹EÖ.ŠEÖ.XEÖ.'EÖ-õEÖ-ÃEÖ-’EÖ-`EÖ-.EÖ,üEÖ,ÉEÖ,–EÖ,dEÖ,0EÖ+þEÖ+ËEÖ+˜EÖ+eEÖ+1EÖ*ÿEÖ*ËEÖ*™EÖ*eEÖ*2EÖ)ÿEÖ)ÌEÖ)šEÖ)fEÖ)4EÖ)EÖ(ÎEÖ(œEÖ(jEÖ(8EÖ(EÖ'ÕEÖ'£EÖ'rEÖ'AEÖ'EÖ&àEÖ&°EÖ&EÖ&PEÖ& EÖ%òEÖ%ÃEÖ%”EÖ%fEÖ%:EÖ% EÖ$àEÖ$³EÖ$‡EÖ$\EÖ$1EÖ$EÖ#ÜEÖ#²EÖ#ŠEÖ#aEÖ#8EÖ#EÖ"êEÖ"ÅEÖ"žEÖ"zEÖ"UEÖ"2EÖ"EÖ!ëEÖ!ÊEÖ!¨EÖ!ˆEÖ!hEÖ!HEÖ!+EÖ! EÖ ñEÖ ÔEÖ ¸EÖ ŸEÖ „EÖ lEÖ EEÖ EÖßEÖ¬EÖzEÖKEÖEÖíEÖÀEÖ”EÖiEÖ@EÖEÖñEÖÌEÖ¨EÖ…EÖdEÖDEÖ'EÖ EÖðEÖÖEÖ¿EÖ©EÖ”EÖ‚EÖsEÖdEÖXEÖMEÖDEÖ>EÖ9EÖ8EÖ6EÖ:EÖ>EÖDEÖNEÖXEÖfEÖvEÖˆEÖEÖ´EÖÎEÖêEÖ EÖ,EÖREÖxEÖ¢EÖÏEÖÿEÖ2EÖhEÖ EÖÝEÖEÖ^EÖ¢EÖëEÖ 6EÖ EÖ ÌEÖ!EÖ!kEÖ!¾EÖ"EÖ"pEÖ"ÍEÖ#-EÖ#EÖ#õEÖ$^EÖ$ÈEÖ%6EÖ%¦EÖ&EÖ&EÖ'EÖ'€EÖ'üEÖ(zEÖ(ûEÖ)~EÖ*EÖ*‹EÖ+EÖ+žEÖ,,EÖ,ºEÖ-KEÖ-ÝEÖ.rEÖ/EÖ/ŸEÖ08EÖ0ÒEÖ1nEÖ2 EÖ2ªEÖ3JEÖ3ìEÖ4ŽEÖ52EÖ5ÖEÖ6|EÖ7#EÖ7ÊEÖ8sEÖ9EÖ9ÇEÖ:qEÖ;EÖ;ÊEÖ€EÖ?.EÖ?ÞEÖ@ŒEÖAEÖNEÖ?EÖ?²EÖ@dEÖAEÖAÉEÖB|EÖC0EÖCãEÖD•EÖEHEÖEüEÖF¯EÖGbEÖHEÖHÆEÖIxEÖJ*EÖJÛEÖKŒEÖLEÖTâEÖU†EÖV&EÖVÈEÖWfEÖXEÖXžEÖY9EÖ-dEÖ-AEÖ-EÖ,úEÖ,ÖEÖ,°EÖ,ŒEÖ,hEÖ,BEÖ,EÖ+øEÖ+ÑEÖ+¬EÖ+†EÖ+_EÖ+9EÖ+EÖ*ëEÖ*ÅEÖ*EÖ*vEÖ*NEÖ*'EÖ*EÖ)ØEÖ)±EÖ)ˆEÖ)`EÖ)8EÖ)EÖ(éEÖ(ÁEÖ(™EÖ(qEÖ(IEÖ("EÖ'úEÖ'ÒEÖ'©EÖ'‚EÖ'ZEÖ'3EÖ' EÖ&äEÖ&½EÖ&–EÖ&oEÖ&HEÖ&!EÖ%ûEÖ%ÔEÖ%®EÖ%‰EÖ%bEÖ%=EÖ%EÖ$óEÖ$ÎEÖ$ªEÖ$„EÖ$`EÖ$=EÖ$EÖ#öEÖ#ÓEÖ#±EÖ#ŽEÖ#lEÖ#LEÖ#*EÖ# EÖ"èEÖ"ÈEÖ"©EÖ"ŠEÖ"lEÖ"LEÖ"/EÖ"EÖ!ôEÖ!ØEÖ!»EÖ! EÖ!†EÖ!jEÖ!PEÖ!7EÖ!EÖ!EÖ ïEÖ ×EÖ ¿EÖ ©EÖ •EÖ EÖ jEÖ GEÖ EÖæEÖµEÖ…EÖXEÖ+EÖþEÖÑEÖ¦EÖ}EÖTEÖ-EÖEÖáEÖ¾EÖ›EÖzEÖZEÖEÖ#£EÖ$ EÖ$vEÖ$äEÖ%UEÖ%ÈEÖ&>EÖ&·EÖ'2EÖ'¯EÖ(0EÖ(²EÖ)7EÖ)¾EÖ*HEÖ*ÓEÖ+`EÖ+ðEÖ,‚EÖ-EÖ-¬EÖ.DEÖ.ÜEÖ/wEÖ0EÖ0²EÖ1REÖ1ôEÖ2—EÖ3EÖ>ÌEÖ?EÖ@6EÖ@ìEÖA¡EÖBWEÖCEÖCÄEÖDzEÖE2EÖEèEÖFžEÖGUEÖH EÖHÀEÖIvEÖJ+EÖJàEÖK•EÖLHEÖLûEÖM¯EÖNaEÖOEÖOÂEÖPsEÖQ EÖQÎEÖR|EÖS'EÖSÒEÖT|EÖU#EÖUËEÖVrEÖWEÖW¸EÖXZEÖXùEÖY˜EÖZ6EÖ+ EÖ+‚EÖ+dEÖ+EEÖ+&EÖ+EÖ*æEÖ*ÆEÖ*¦EÖ*†EÖ*fEÖ*FEÖ*&EÖ*EÖ)âEÖ)ÁEÖ) EÖ)EÖ)^EÖ)’EÖ?IEÖ@EÖ@ºEÖArEÖB+EÖBåEÖCŸEÖDXEÖEEÖEÌEÖF†EÖG?EÖGùEÖH³EÖIlEÖJ$EÖJÝEÖK•EÖLLEÖMEÖMºEÖNpEÖO%EÖOÚEÖPŽEÖQAEÖQóEÖR¤EÖSREÖTEÖT°EÖU\EÖVEÖV²EÖWZEÖXEÖX¦EÖYJEÖYîEÖZEÖ[.EÖ)ÜEÖ)ÂEÖ)¨EÖ)ŽEÖ)tEÖ)ZEÖ)>EÖ)$EÖ)EÖ(îEÖ(ÒEÖ(¸EÖ(EÖ(‚EÖ(fEÖ(JEÖ(.EÖ(EÖ'õEÖ'ÚEÖ'½EÖ' EÖ'„EÖ'gEÖ'LEÖ'/EÖ'EÖ&õEÖ&ØEÖ&¼EÖ&ŸEÖ&‚EÖ&fEÖ&IEÖ&,EÖ&EÖ%óEÖ%ÖEÖ%¹EÖ%œEÖ%EÖ%dEÖ%HEÖ%+EÖ%EÖ$óEÖ$×EÖ$ºEÖ$žEÖ$‚EÖ$fEÖ$LEÖ$0EÖ$EÖ#úEÖ#ÞEÖ#ÄEÖ#ªEÖ#ŽEÖ#tEÖ#ZEÖ#@EÖ#&EÖ# EÖ"óEÖ"ÚEÖ"ÁEÖ"¨EÖ"EÖ"xEÖ"_EÖ"HEÖ"0EÖ"EÖ"EÖ!ëEÖ!ÔEÖ!¾EÖ!©EÖ!”EÖ!~EÖ!iEÖ!TEÖ!AEÖ!-EÖ!EÖ!EÖ òEÖ áEÖ ÏEÖ ½EÖ «EÖ šEÖ ŠEÖ zEÖ jEÖ JEÖ EÖíEÖ¿EÖ‘EÖeEÖ9EÖ EÖâEÖ¸EÖEÖiEÖBEÖEÖ÷EÖÔEÖ²EÖEÖpEÖQEÖ4EÖEÖþEÖæEÖÎEÖºEÖ¦EÖ”EÖ„EÖuEÖiEÖ^EÖVEÖPEÖKEÖHEÖHEÖJEÖPEÖVEÖ`EÖjEÖyEÖŠEÖEÖ²EÖÌEÖæEÖEÖ&EÖJEÖpEÖšEÖÈEÖ÷EÖ*EÖ`EÖ™EÖÖEÖEÖ[EÖ¢EÖìEÖ ;EÖ ˆEÖ ÔEÖ!%EÖ!zEÖ!ÑEÖ"+EÖ"‰EÖ"ëEÖ#OEÖ#·EÖ$"EÖ$EÖ%EÖ%uEÖ%ëEÖ&eEÖ&àEÖ'`EÖ'àEÖ(dEÖ(ìEÖ)tEÖ)ÿEÖ*ŽEÖ+EÖ+°EÖ,DEÖ,ÚEÖ-sEÖ.EÖ.ªEÖ/HEÖ/éEÖ0ŠEÖ1.EÖ1ÔEÖ2zEÖ3$EÖ3ÎEÖ4zEÖ5&EÖ5ÔEÖ6„EÖ74EÖ7æEÖ8™EÖ9NEÖ:EÖ:¸EÖ;oEÖ<&EÖ<ßEÖ=˜EÖ>REÖ? EÖ?ÇEÖ@‚EÖA>EÖAúEÖB¶EÖCtEÖD1EÖDîEÖEªEÖFhEÖG$EÖGáEÖHžEÖI\EÖJEÖJÔEÖKEÖLKEÖMEÖMÀEÖNzEÖO2EÖOêEÖP¤EÖQZEÖREÖRÆEÖSyEÖT,EÖTÞEÖUŽEÖV>EÖVìEÖW˜EÖXDEÖXîEÖY–EÖZ?EÖZäEÖ[ˆEÖ\*EÖ(EÖ(EÖ'íEÖ'×EÖ'ÂEÖ'®EÖ'˜EÖ'EÖ'kEÖ'VEÖ'@EÖ')EÖ'EÖ&þEÖ&æEÖ&ÑEÖ&ºEÖ&£EÖ&ŽEÖ&vEÖ&`EÖ&HEÖ&2EÖ&EÖ&EÖ%íEÖ%ÖEÖ%¿EÖ%¨EÖ%EÖ%zEÖ%cEÖ%KEÖ%4EÖ%EÖ%EÖ$ïEÖ$ØEÖ$ÁEÖ$ªEÖ$“EÖ$|EÖ$fEÖ$NEÖ$8EÖ$!EÖ$ EÖ#ôEÖ#ÞEÖ#ÇEÖ#°EÖ#šEÖ#„EÖ#nEÖ#XEÖ#BEÖ#-EÖ#EÖ#EÖ"ìEÖ"ØEÖ"ÂEÖ"­EÖ"˜EÖ"„EÖ"oEÖ"ZEÖ"FEÖ"2EÖ"EÖ" EÖ!øEÖ!äEÖ!ÒEÖ!¾EÖ!¬EÖ!šEÖ!‡EÖ!uEÖ!dEÖ!REÖ!AEÖ!/EÖ!EÖ!EÖ ýEÖ îEÖ ÞEÖ ÎEÖ ¿EÖ °EÖ ¡EÖ ”EÖ …EÖ wEÖ jEÖ LEÖ EÖñEÖÅEÖ—EÖkEÖ@EÖEÖìEÖÃEÖšEÖsEÖLEÖ&EÖEÖÞEÖ¼EÖšEÖ{EÖ\EÖ?EÖ#EÖEÖïEÖØEÖÂEÖ®EÖœEÖŒEÖ|EÖpEÖdEÖ[EÖTEÖPEÖLEÖLEÖNEÖREÖXEÖ`EÖlEÖzEÖ‰EÖœEÖ²EÖÊEÖåEÖEÖ$EÖGEÖnEÖ—EÖÄEÖôEÖ'EÖ]EÖ˜EÖÔEÖEÖXEÖ EÖêEÖ :EÖ ˆEÖ ÕEÖ!&EÖ!{EÖ!ÓEÖ"/EÖ"EÖ"ñEÖ#WEÖ#ÀEÖ$-EÖ$›EÖ%EÖ%„EÖ%üEÖ&vEÖ&ôEÖ'tEÖ'øEÖ(~EÖ)EÖ)’EÖ* EÖ*¯EÖ+BEÖ+ÖEÖ,lEÖ-EÖ- EÖ.>EÖ.ÜEÖ/}EÖ0 EÖ0ÆEÖ1lEÖ2EÖ2¾EÖ3iEÖ4EÖ4ÅEÖ5tEÖ6&EÖ6ØEÖ7ŒEÖ8@EÖ8÷EÖ9®EÖ:fEÖ; EÖ;ÙEÖ<”EÖ=OEÖ> EÖ>ÉEÖ?‡EÖ@DEÖAEÖAÂEÖB‚EÖCBEÖDEÖDÂEÖE‚EÖFCEÖGEÖGÄEÖH„EÖIDEÖJEÖJÄEÖK„EÖLCEÖMEÖM¿EÖN}EÖO:EÖOöEÖP³EÖQmEÖR&EÖRáEÖS˜EÖTOEÖUEÖU»EÖVnEÖW EÖWÑEÖX‚EÖY0EÖYÜEÖZŠEÖ[2EÖ[ÚEÖ\€EÖ]&EÖ&PEÖ&BEÖ&0EÖ&!EÖ&EÖ&EÖ%ðEÖ%ßEÖ%ÐEÖ%¾EÖ%®EÖ%œEÖ%ŒEÖ%zEÖ%jEÖ%XEÖ%GEÖ%7EÖ%%EÖ%EÖ%EÖ$òEÖ$àEÖ$ÏEÖ$½EÖ$¬EÖ$šEÖ$‰EÖ$wEÖ$fEÖ$TEÖ$BEÖ$2EÖ$ EÖ$EÖ#ýEÖ#ëEÖ#ÚEÖ#ÈEÖ#·EÖ#¥EÖ#”EÖ#‚EÖ#rEÖ#`EÖ#OEÖ#>EÖ#-EÖ#EÖ# EÖ"ùEÖ"èEÖ"ØEÖ"ÈEÖ"¶EÖ"¦EÖ"•EÖ"„EÖ"tEÖ"dEÖ"SEÖ"DEÖ"3EÖ"#EÖ"EÖ"EÖ!ôEÖ!äEÖ!ÕEÖ!ÆEÖ!¶EÖ!§EÖ!˜EÖ!ŠEÖ!zEÖ!lEÖ!^EÖ!PEÖ!AEÖ!3EÖ!%EÖ!EÖ! EÖ üEÖ ðEÖ âEÖ ÖEÖ ÉEÖ ¼EÖ °EÖ £EÖ —EÖ ‹EÖ €EÖ uEÖ iEÖ NEÖ "EÖõEÖÉEÖEÖrEÖHEÖEÖõEÖÍEÖ¤EÖ~EÖWEÖ2EÖ EÖêEÖÈEÖ¦EÖ‡EÖhEÖKEÖ.EÖEÖúEÖãEÖÌEÖ¸EÖ¦EÖ”EÖ…EÖxEÖlEÖbEÖ[EÖVEÖREÖQEÖREÖVEÖ[EÖdEÖnEÖ|EÖŒEÖžEÖ³EÖÊEÖæEÖEÖ$EÖGEÖnEÖ—EÖÃEÖôEÖ'EÖ^EÖ–EÖÕEÖEÖZEÖ¢EÖìEÖ =EÖ ‹EÖ ØEÖ!+EÖ!EÖ!ÚEÖ"7EÖ"–EÖ"ûEÖ#bEÖ#ÌEÖ$9EÖ$ªEÖ%EÖ%•EÖ&EÖ&‹EÖ' EÖ'EÖ(EÖ(šEÖ)$EÖ)²EÖ*BEÖ*ÔEÖ+hEÖ+þEÖ,˜EÖ-2EÖ-ÐEÖ.pEÖ/EÖ/µEÖ0ZEÖ1EÖ1«EÖ2VEÖ3EÖ3°EÖ4`EÖ5EÖ5ÄEÖ6yEÖ7.EÖ7äEÖ8œEÖ9UEÖ:EÖ:ËEÖ;‡EÖ€EÖ?AEÖ@EÖ@ÃEÖA…EÖBGEÖC EÖCÍEÖD‘EÖETEÖFEÖFÜEÖGžEÖHbEÖI&EÖIéEÖJ­EÖKpEÖL3EÖLõEÖM·EÖNxEÖO9EÖOúEÖP¸EÖQxEÖR5EÖRóEÖS®EÖTjEÖU$EÖUÞEÖV•EÖWLEÖXEÖX¶EÖYhEÖZEÖZÉEÖ[xEÖ\$EÖ\ÐEÖ]xEÖ^ EÖ$ŒEÖ$EÖ$tEÖ$jEÖ$_EÖ$TEÖ$HEÖ$2EÖ>ôEÖ?¸EÖ@|EÖA@EÖBEÖBËEÖC’EÖDXEÖEEÖEæEÖF¬EÖGsEÖH;EÖIEÖIÈEÖJEÖKVEÖLEÖLãEÖM¨EÖNnEÖO2EÖOöEÖPºEÖQ{EÖR>EÖSEÖSÁEÖTEÖU>EÖUüEÖV·EÖWrEÖX-EÖXäEÖYœEÖZREÖ[EÖ[¸EÖ\jEÖ]EÖ]ÆEÖ^rEÖ_EÖ"ÆEÖ"ÀEÖ"¹EÖ"²EÖ"¬EÖ"¦EÖ" EÖ"šEÖ"“EÖ"EÖ"†EÖ"€EÖ"zEÖ"tEÖ"nEÖ"gEÖ"aEÖ"ZEÖ"TEÖ"NEÖ"HEÖ"BEÖ";EÖ"5EÖ"/EÖ"(EÖ""EÖ"EÖ"EÖ"EÖ" EÖ"EÖ!ýEÖ!÷EÖ!ðEÖ!êEÖ!äEÖ!ÞEÖ!ØEÖ!ÑEÖ!ËEÖ!ÅEÖ!¾EÖ!¸EÖ!²EÖ!¬EÖ!¦EÖ!ŸEÖ!™EÖ!’EÖ!ŒEÖ!†EÖ!€EÖ!zEÖ!sEÖ!mEÖ!fEÖ!`EÖ!ZEÖ!TEÖ!NEÖ!GEÖ!@EÖ!:EÖ!4EÖ!.EÖ!(EÖ! EÖ!EÖ!EÖ!EÖ!EÖ!EÖ úEÖ ôEÖ íEÖ çEÖ àEÖ ÚEÖ ÓEÖ ÍEÖ ÆEÖ ÀEÖ ¹EÖ ³EÖ ¬EÖ ¥EÖ ŸEÖ ˜EÖ ‘EÖ ‹EÖ „EÖ }EÖ wEÖ qEÖ iEÖ QEÖ (EÖýEÖÓEÖªEÖEÖWEÖ/EÖEÖßEÖ¸EÖ’EÖlEÖHEÖ#EÖEÖÞEÖ½EÖœEÖ~EÖ`EÖCEÖ'EÖ EÖöEÖßEÖÉEÖµEÖ£EÖ”EÖ„EÖxEÖmEÖeEÖ^EÖZEÖWEÖXEÖYEÖ^EÖfEÖoEÖ|EÖŠEÖœEÖ°EÖÈEÖáEÖþEÖEÖ@EÖhEÖ‘EÖ¾EÖíEÖ!EÖWEÖ’EÖÐEÖEÖUEÖžEÖìEÖ ¢EÖ?hEÖ@.EÖ@öEÖA¾EÖB‡EÖCPEÖDEÖDãEÖE­EÖFwEÖGAEÖH EÖHÖEÖI¡EÖJkEÖK5EÖKÿEÖLÉEÖM’EÖN[EÖO$EÖOìEÖP´EÖQzEÖRAEÖSEÖSÉEÖTEÖUPEÖVEÖVÒEÖW’EÖXPEÖY EÖYÇEÖZEÖ[:EÖ[ñEÖ\§EÖ][EÖ^EÖ^¾EÖ_kEÖ`EÖ!EÖ!EÖ þEÖ üEÖ úEÖ ùEÖ ùEÖ øEÖ öEÖ ôEÖ ôEÖ óEÖ òEÖ ðEÖ ñEÖ ïEÖ îEÖ íEÖ ìEÖ ëEÖ ëEÖ êEÖ êEÖ èEÖ èEÖ çEÖ çEÖ æEÖ åEÖ åEÖ äEÖ äEÖ âEÖ âEÖ áEÖ áEÖ àEÖ ßEÖ ßEÖ ÞEÖ ÞEÖ ÜEÖ ÜEÖ ÛEÖ ÛEÖ ÚEÖ ÙEÖ ØEÖ ×EÖ ÖEÖ ÕEÖ ÔEÖ ÓEÖ ÒEÖ ÑEÖ ÐEÖ ÎEÖ ÎEÖ ÌEÖ ËEÖ ÊEÖ ÈEÖ ÇEÖ ÅEÖ ÄEÖ ÂEÖ ÀEÖ ¾EÖ ¼EÖ ºEÖ ¸EÖ ·EÖ ´EÖ ³EÖ °EÖ ®EÖ «EÖ ¨EÖ ¦EÖ ¤EÖ  EÖ žEÖ ›EÖ —EÖ ”EÖ EÖ EÖ ŠEÖ †EÖ ‚EÖ ~EÖ zEÖ vEÖ rEÖ mEÖ iEÖ REÖ *EÖ EÖÙEÖ°EÖˆEÖ`EÖ8EÖEÖéEÖÂEÖEÖxEÖTEÖ/EÖ EÖêEÖÉEÖ¨EÖ‰EÖlEÖOEÖ4EÖEÖEÖèEÖÓEÖ¾EÖ¬EÖœEÖEÖ€EÖtEÖlEÖdEÖ_EÖ\EÖ\EÖ^EÖbEÖjEÖrEÖ~EÖŒEÖžEÖ±EÖÈEÖâEÖÿEÖEÖ@EÖgEÖEÖ½EÖìEÖ EÖWEÖ’EÖÏEÖEÖVEÖŸEÖíEÖ >EÖ EÖ ßEÖ!2EÖ!‹EÖ!çEÖ"FEÖ"ªEÖ#EÖ#zEÖ#éEÖ$[EÖ$ÏEÖ%GEÖ%ÂEÖ&BEÖ&ÄEÖ'HEÖ'ÐEÖ(ZEÖ(èEÖ)xEÖ* EÖ*¢EÖ+;EÖ+ÖEÖ,tEÖ-EÖ-¶EÖ.ZEÖ/EÖ/ªEÖ0VEÖ1EÖ1³EÖ2dEÖ3EÖ3ÌEÖ4ƒEÖ5LEÖ?EÖ?ÝEÖ@¦EÖAqEÖB=EÖC EÖCÕEÖD¡EÖEnEÖF;EÖG EÖG×EÖH¤EÖIrEÖJ?EÖK EÖKÛEÖL¨EÖMuEÖNAEÖO EÖOÙEÖP¥EÖQpEÖR9EÖSEÖSËEÖT“EÖUYEÖVEÖVãEÖW¦EÖXiEÖY*EÖYéEÖZ¨EÖ[fEÖ\"EÖ\ÜEÖ]”EÖ^JEÖ^ÿEÖ_²EÖ`cEÖaEÖEÖBEÖEEÖJEÖLEÖPEÖTEÖXEÖ\EÖ`EÖeEÖhEÖnEÖrEÖwEÖ{EÖ~EÖ„EÖ‰EÖŽEÖ’EÖ–EÖœEÖ EÖ¦EÖ«EÖ°EÖµEÖºEÖ¿EÖÄEÖÈEÖÍEÖÒEÖ×EÖÜEÖáEÖæEÖìEÖðEÖöEÖúEÖþEÖ EÖ EÖ EÖ EÖ EÖ EÖ EÖ $EÖ (EÖ +EÖ 0EÖ 4EÖ 8EÖ EÖ EÖ àEÖ!4EÖ!EÖ!ëEÖ"JEÖ"¯EÖ#EÖ#‚EÖ#òEÖ$eEÖ$ÛEÖ%TEÖ%ÒEÖ&REÖ&ÕEÖ'\EÖ'åEÖ(rEÖ)EÖ)•EÖ**EÖ*ÁEÖ+\EÖ+úEÖ,šEÖ-¸EÖ?„EÖ@PEÖAEÖAìEÖBºEÖCŠEÖDXEÖE)EÖEùEÖFÊEÖG›EÖHkEÖI=EÖJ EÖJßEÖK¯EÖL€EÖMQEÖN!EÖNòEÖOÀEÖPEÖQ^EÖR,EÖRúEÖSÆEÖT’EÖU\EÖV%EÖVïEÖW¶EÖX|EÖYCEÖZEÖZÊEÖ[ŒEÖ\LEÖ] EÖ]ÆEÖ^‚EÖ_YEÖ?'EÖ?öEÖ@ÅEÖA–EÖBgEÖC9EÖD EÖDÞEÖE±EÖF…EÖGXEÖH-EÖIEÖIÕEÖJ©EÖK}EÖLQEÖM&EÖMùEÖNÍEÖO EÖPsEÖQEEÖREÖRèEÖS¹EÖT‰EÖUWEÖV&EÖVòEÖW¿EÖX‰EÖYTEÖZEÖZäEÖ[¨EÖ\nEÖ]0EÖ]òEÖ^±EÖ_pEÖ`,EÖ`çEÖažEÖbVEÖc EÖ²EÖÀEÖÍEÖÚEÖèEÖöEÖEÖEÖEÖ-EÖEÖ DEÖ JEÖ NEÖ SEÖ XEÖ \EÖ `EÖ bEÖ eEÖ hEÖ WEÖ 2EÖ EÖçEÖÂEÖœEÖvEÖPEÖ+EÖEÖàEÖ»EÖ—EÖsEÖPEÖ-EÖ EÖêEÖÉEÖªEÖ‹EÖnEÖREÖ6EÖEÖEÖíEÖØEÖÄEÖ²EÖ¢EÖ’EÖ†EÖ|EÖrEÖmEÖhEÖfEÖfEÖhEÖnEÖvEÖ€EÖŽEÖžEÖ°EÖÆEÖÞEÖûEÖEÖÂEÖ?“EÖ@fEÖA8EÖB EÖBàEÖCµEÖD‹EÖEaEÖF7EÖGEÖGåEÖH½EÖI•EÖJlEÖKDEÖLEÖLóEÖMËEÖN¢EÖOyEÖPOEÖQ%EÖQûEÖRÐEÖS¤EÖTxEÖUJEÖVEÖVìEÖW½EÖXEÖY\EÖZ'EÖZóEÖ[¾EÖ\†EÖ]NEÖ^EÖ^×EÖ_šEÖ`\EÖaEÖaØEÖb”EÖcKEÖdEÖîEÖEÖEÖ$EÖ6EÖHEÖZEÖnEÖ‚EÖ–EÖªEÖ½EÖÑEÖåEÖùEÖEÖ$EÖ8EÖMEÖbEÖwEÖŒEÖ¢EÖ¸EÖÍEÖâEÖùEÖEÖ$EÖ9EÖPEÖeEÖ{EÖEÖ§EÖ¼EÖÒEÖçEÖþEÖEÖ(EÖ>EÖTEÖiEÖ~EÖ“EÖ¨EÖ½EÖÒEÖæEÖûEÖEÖ#EÖ6EÖKEÖ^EÖrEÖ„EÖ˜EÖªEÖ¼EÖÏEÖàEÖòEÖEÖEÖ&EÖ6EÖFEÖVEÖfEÖuEÖ„EÖ’EÖ EÖ¯EÖ¼EÖÊEÖÖEÖâEÖíEÖúEÖ EÖ EÖ EÖ "EÖ ,EÖ 4EÖ =EÖ DEÖ LEÖ REÖ XEÖ ^EÖ dEÖ hEÖ XEÖ 5EÖ EÖìEÖÇEÖ£EÖ~EÖYEÖ3EÖEÖêEÖÆEÖ¢EÖ}EÖ[EÖ7EÖEÖôEÖÔEÖ´EÖ–EÖxEÖ\EÖ@EÖ&EÖ EÖöEÖàEÖÌEÖ¹EÖ¨EÖšEÖŒEÖEÖxEÖpEÖlEÖiEÖjEÖlEÖpEÖwEÖ‚EÖŽEÖEÖ¯EÖÅEÖÞEÖùEÖEÖ9EÖ_EÖ‡EÖ´EÖäEÖEÖNEÖŠEÖÈEÖ EÖREÖžEÖíEÖ AEÖ ”EÖ çEÖ!=EÖ!˜EÖ!÷EÖ"[EÖ"ÃEÖ#-EÖ#EÖ$EÖ$‡EÖ%EÖ%EÖ&EÖ&†EÖ'EÖ'šEÖ()EÖ(»EÖ)PEÖ)êEÖ*†EÖ+#EÖ+ÅEÖ,hEÖ-EÖ-¸EÖ.dEÖ/EÖ/ÄEÖ0xEÖ1,EÖ1åEÖ2žEÖ3ZEÖ4EÖ4ØEÖ5›EÖ6_EÖ7$EÖ7ìEÖ8´EÖ9EÖ:JEÖ;EÖ;æEÖ<¶EÖ=ˆEÖ>YEÖ?-EÖ@EÖ@×EÖA­EÖBƒEÖC[EÖD3EÖE EÖEåEÖF¿EÖG™EÖHtEÖIOEÖJ)EÖKEÖKàEÖL»EÖM•EÖNpEÖOKEÖP%EÖPÿEÖQØEÖR±EÖS‰EÖTaEÖU7EÖV EÖVãEÖW·EÖX‹EÖY]EÖZ.EÖZüEÖ[ÌEÖ\™EÖ]eEÖ^0EÖ^øEÖ_ÀEÖ`†EÖaJEÖb EÖbÊEÖc‰EÖdEEÖdÿEÖ+EÖCEÖYEÖpEÖˆEÖŸEÖ¶EÖÐEÖèEÖEÖEÖ2EÖKEÖfEÖEÖ˜EÖ³EÖÍEÖæEÖEÖEÖ8EÖSEÖmEÖˆEÖ¤EÖ¾EÖÚEÖöEÖEÖ,EÖHEÖbEÖ~EÖšEÖ´EÖÐEÖìEÖEÖ"EÖ=EÖWEÖrEÖŽEÖ¨EÖÂEÖÝEÖ÷EÖEÖ+EÖDEÖ^EÖxEÖEÖªEÖÂEÖÚEÖòEÖ EÖ"EÖ:EÖQEÖhEÖ~EÖ”EÖªEÖ¿EÖÔEÖéEÖýEÖEÖ$EÖ8EÖKEÖ\EÖnEÖ€EÖ’EÖ¡EÖ±EÖÀEÖÐEÖßEÖìEÖùEÖ EÖ EÖ EÖ *EÖ 4EÖ >EÖ GEÖ QEÖ XEÖ `EÖ gEÖ YEÖ 7EÖ EÖñEÖÌEÖ©EÖ„EÖaEÖÀEÖ?–EÖ@nEÖAFEÖBEÖBùEÖCÔEÖD°EÖEŒEÖFhEÖGEEÖH"EÖIEÖIßEÖJ½EÖK›EÖLyEÖMWEÖN5EÖOEÖOòEÖPÏEÖQ¬EÖRˆEÖSdEÖT@EÖUEÖUõEÖVÎEÖW¦EÖX~EÖYTEÖZ)EÖZýEÖ[ÐEÖ\¤EÖ]tEÖ^BEÖ_EÖ_ÛEÖ`¥EÖanEÖb4EÖbøEÖc»EÖd|EÖe:EÖeöEÖlEÖ†EÖ¢EÖ¼EÖÚEÖõEÖEÖ/EÖNEÖlEÖ‰EÖ¨EÖÆEÖåEÖEÖ#EÖBEÖbEÖ‚EÖ¡EÖÁEÖáEÖEÖ#EÖCEÖdEÖ„EÖ¥EÖÆEÖæEÖEÖ(EÖJEÖkEÖŒEÖ¬EÖÍEÖîEÖEÖ/EÖOEÖqEÖ‘EÖ±EÖÑEÖðEÖEÖ0EÖOEÖnEÖŽEÖ¬EÖËEÖéEÖEÖ$EÖBEÖ_EÖ|EÖ˜EÖµEÖÑEÖìEÖEÖ"EÖNEÖ?'EÖ@EÖ@ÛEÖA¶EÖB“EÖCpEÖDNEÖE,EÖF EÖFìEÖGÌEÖH­EÖIŽEÖJpEÖKPEÖL2EÖMEÖMöEÖNÖEÖO¸EÖP™EÖQzEÖRZEÖS:EÖTEÖTøEÖUÖEÖV³EÖWEÖXlEÖYFEÖZEÖZùEÖ[ÐEÖ\¥EÖ]zEÖ^NEÖ_ EÖ_ïEÖ`¾EÖaŒEÖbVEÖcEÖcèEÖd®EÖepEÖf2EÖfòEÖ¨EÖÈEÖêEÖ EÖ*EÖLEÖnEÖ‘EÖ´EÖÖEÖùEÖEÖAEÖdEÖˆEÖ®EÖÓEÖöEÖEÖBEÖfEÖŒEÖ²EÖØEÖÿEÖ$EÖKEÖqEÖ˜EÖ¾EÖåEÖ EÖ1EÖWEÖ~EÖ¤EÖËEÖñEÖEÖ=EÖdEÖŠEÖ°EÖÖEÖúEÖ EÖEEÖjEÖŽEÖ´EÖ×EÖüEÖEÖCEÖfEÖ‰EÖ¬EÖÎEÖðEÖEÖ2EÖREÖsEÖ’EÖ³EÖÒEÖðEÖEÖ,EÖIEÖfEÖ‚EÖEÖ¸EÖÓEÖìEÖEÖEÖ6EÖNEÖdEÖ{EÖEÖ¥EÖ¸EÖÌEÖÞEÖñEÖ EÖ EÖ "EÖ 0EÖ ?EÖ KEÖ XEÖ bEÖ XEÖ 9EÖ EÖøEÖÕEÖ³EÖ‘EÖnEÖKEÖ'EÖEÖàEÖ¾EÖ›EÖxEÖUEÖ4EÖEÖòEÖÑEÖ²EÖ•EÖxEÖ[EÖAEÖ'EÖEÖ÷EÖâEÖÎEÖ»EÖ«EÖœEÖEÖ„EÖ}EÖvEÖrEÖpEÖqEÖuEÖzEÖƒEÖŽEÖœEÖ­EÖÂEÖÚEÖôEÖEÖ4EÖXEÖ‚EÖ®EÖÝEÖEÖHEÖ…EÖÄEÖEÖPEÖœEÖîEÖ DEÖ ™EÖ íEÖ!EEÖ!£EÖ"EÖ"kEÖ"ÖEÖ#DEÖ#·EÖ$.EÖ$©EÖ%(EÖ%ªEÖ&1EÖ&ºEÖ'HEÖ'ØEÖ(nEÖ)EÖ) EÖ*>EÖ*àEÖ+…EÖ,-EÖ,×EÖ-…EÖ.5EÖ.èEÖ/žEÖ0VEÖ1EÖ1ÎEÖ2ŽEÖ3PEÖ4EÖ4ÚEÖ5¢EÖ6lEÖ79EÖ8EÖ8×EÖ9¨EÖ:|EÖ;PEÖ<'EÖ<ÿEÖ=ØEÖ>²EÖ?EÖ@jEÖAHEÖB&EÖCEÖCçEÖDÈEÖEªEÖFEÖGpEÖHSEÖI7EÖJEÖKEÖKåEÖLÊEÖM®EÖN“EÖOxEÖP\EÖQAEÖR%EÖSEÖSëEÖTÎEÖU°EÖV‘EÖWrEÖXREÖY/EÖZEÖZêEÖ[ÆEÖ\ EÖ]zEÖ^QEÖ_(EÖ_üEÖ`ÐEÖa¡EÖbpEÖc?EÖd EÖdÖEÖeEÖfdEÖg(EÖgëEÖèEÖ EÖ2EÖXEÖ~EÖ¤EÖËEÖòEÖEÖBEÖjEÖ“EÖ¼EÖåEÖEÖ9EÖcEÖEÖ¸EÖâEÖEÖ8EÖcEÖŽEÖºEÖåEÖEÖ=EÖiEÖ•EÖÁEÖíEÖEÖEEÖqEÖEÖÉEÖõEÖ!EÖLEÖxEÖ£EÖÎEÖøEÖ$EÖNEÖyEÖ£EÖÍEÖ÷EÖ!EÖJEÖsEÖœEÖÄEÖìEÖEÖ;EÖbEÖˆEÖ®EÖÔEÖøEÖEÖAEÖfEÖˆEÖ«EÖÍEÖîEÖEÖ/EÖOEÖoEÖEÖ«EÖÉEÖåEÖEÖEÖ6EÖPEÖhEÖ€EÖ˜EÖ®EÖÄEÖØEÖíEÖ EÖ EÖ #EÖ 4EÖ CEÖ REÖ _EÖ WEÖ 9EÖ EÖúEÖØEÖ·EÖ–EÖtEÖPEÖ.EÖ EÖèEÖÆEÖ¢EÖ€EÖ^EÖEÖ&ÊEÖ'ZEÖ'ìEÖ(‚EÖ)EÖ)ºEÖ*ZEÖ*ýEÖ+¤EÖ,NEÖ,ûEÖ-«EÖ.^EÖ/EÖ/ÊEÖ0†EÖ1BEÖ2EÖ2ÅEÖ3‰EÖ4PEÖ5EÖ5äEÖ6±EÖ7€EÖ8QEÖ9$EÖ9øEÖ:ÏEÖ;¦EÖ<€EÖ=[EÖ>6EÖ?EÖ?óEÖ@ÒEÖA³EÖB–EÖCxEÖD\EÖE@EÖF%EÖG EÖGòEÖHØEÖI¿EÖJ§EÖKEÖLwEÖM_EÖNGEÖO/EÖPEÖPÿEÖQçEÖRÎEÖS´EÖT›EÖUEÖVfEÖWJEÖX.EÖYEÖYóEÖZÒEÖ[³EÖ\’EÖ]nEÖ^KEÖ_&EÖ_ÿEÖ`×EÖa®EÖb‚EÖcUEÖd&EÖdôEÖeÂEÖfŒEÖgVEÖhEÖhàEÖ*EÖSEÖ|EÖ¦EÖÓEÖþEÖ*EÖVEÖ‚EÖ®EÖÞEÖ EÖ8EÖfEÖ•EÖÆEÖõEÖ$EÖSEÖ„EÖ´EÖäEÖEÖFEÖvEÖ¨EÖÙEÖ EÖ˜EÖ?xEÖ@ZEÖA=EÖB!EÖCEÖCìEÖDÒEÖEºEÖF£EÖG‹EÖHuEÖI`EÖJIEÖK4EÖL EÖM EÖMöEÖNâEÖOÎEÖP¸EÖQ¤EÖREÖSxEÖTcEÖUMEÖV5EÖWEÖXEÖXìEÖYÓEÖZ¶EÖ[›EÖ\~EÖ]`EÖ^@EÖ_ EÖ_üEÖ`ÙEÖa´EÖbŽEÖceEÖd;EÖeEÖeàEÖf°EÖg~EÖhJEÖiEÖiÛEÖnEÖEÖËEÖúEÖ*EÖZEÖŠEÖ¼EÖìEÖ EÖREÖ„EÖ¸EÖëEÖEÖTEÖˆEÖ¾EÖòEÖ(EÖ\EÖ“EÖÉEÖÿEÖ5EÖlEÖ¢EÖÙEÖEÖGEÖ~EÖµEÖëEÖ"EÖYEÖ‘EÖÇEÖþEÖ4EÖkEÖ¡EÖ×EÖ EÖDEÖxEÖ®EÖäEÖEÖLEÖEÖµEÖéEÖEÖNEÖEÖ´EÖäEÖEÖFEÖvEÖ¦EÖÕEÖEÖ2EÖ`EÖŒEÖ¸EÖäEÖEÖ9EÖcEÖŒEÖ´EÖÛEÖEÖ&EÖLEÖpEÖ”EÖ¶EÖØEÖøEÖEÖ6EÖTEÖqEÖEÖ¨EÖÂEÖÚEÖòEÖ EÖ EÖ 3EÖ GEÖ YEÖ TEÖ 8EÖ EÖüEÖÞEÖ¾EÖžEÖ~EÖ\EÖ:EÖEÖöEÖÔEÖ²EÖEÖnEÖMEÖ,EÖ EÖëEÖËEÖ¬EÖEÖrEÖVEÖEÖ8EÖ8èEÖ9ÁEÖ:›EÖ;wEÖEÖ>÷EÖ?ÛEÖ@ÀEÖA¥EÖBŒEÖCtEÖD^EÖEHEÖF3EÖGEÖH EÖHøEÖIåEÖJÒEÖKÀEÖL¯EÖMEÖNŒEÖOzEÖPiEÖQWEÖRFEÖS4EÖT!EÖUEÖUûEÖVçEÖWÓEÖX¾EÖY¨EÖZ’EÖ[zEÖ\aEÖ]FEÖ^+EÖ_EÖ_ñEÖ`ÒEÖa±EÖbEÖckEÖdEEÖeEÖeôEÖfÈEÖgœEÖhlEÖi:EÖjEÖjÐEÖ ´EÖ åEÖEÖLEÖEÖµEÖìEÖ"EÖXEÖEÖÆEÖÿEÖ6EÖpEÖªEÖâEÖEÖVEÖ‘EÖËEÖEÖAEÖ|EÖ¸EÖóEÖ0EÖlEÖ¨EÖäEÖ EÖ\EÖ˜EÖÖEÖEÖNEÖŠEÖÆEÖEÖ>EÖ{EÖ¶EÖòEÖ-EÖhEÖ£EÖÝEÖEÖREÖŒEÖÆEÖþEÖ7EÖoEÖ¨EÖàEÖEÖLEÖ‚EÖ¸EÖîEÖ"EÖVEÖ‰EÖ¼EÖîEÖEÖPEÖ€EÖ¯EÖÞEÖ EÖ8EÖeEÖEÖºEÖäEÖ EÖ5EÖ\EÖ‚EÖ§EÖÌEÖîEÖEÖ2EÖREÖpEÖEÖ¬EÖÇEÖâEÖûEÖ EÖ *EÖ ?EÖ SEÖ PEÖ 6EÖ EÖýEÖàEÖÁEÖ¡EÖ‚EÖbEÖ?EÖEÖýEÖÛEÖºEÖ˜EÖvEÖTEÖ3EÖEÖòEÖÒEÖ´EÖ–EÖzEÖ]EÖBEÖ(EÖEÖøEÖãEÖÏEÖ¾EÖ¬EÖžEÖ’EÖˆEÖ€EÖyEÖvEÖtEÖvEÖzEÖEÖ‹EÖ˜EÖ¨EÖ¼EÖÒEÖìEÖEÖ*EÖNEÖwEÖ¢EÖÓEÖEÖ@EÖ|EÖ¼EÖEÖLEÖ›EÖîEÖ GEÖ žEÖ õEÖ!QEÖ!±EÖ"EÖ"€EÖ"ðEÖ#cEÖ#ÚEÖ$VEÖ$ÕEÖ%ZEÖ%âEÖ&oEÖ&þEÖ'“EÖ(+EÖ(ÆEÖ)fEÖ*EÖ*®EÖ+XEÖ,EÖ,¶EÖ-iEÖ. EÖ.ÙEÖ/–EÖ0UEÖ1EÖ1ÜEÖ2£EÖ3mEÖ49EÖ5EÖ5ÙEÖ6¬EÖ7‚EÖ8XEÖ93EÖ:EÖ:ìEÖ;ÊEÖ<ªEÖ=EÖ>pEÖ?UEÖ@EÖ|EÖ¸EÖöEÖ4EÖtEÖ±EÖñEÖ1EÖpEÖ±EÖñEÖ2EÖsEÖ´EÖõEÖ7EÖxEÖºEÖûEÖ>EÖEÖÁEÖEÖEEÖ†EÖÈEÖ EÖKEÖŒEÖÍEÖEÖOEÖEÖÐEÖEÖOEÖŽEÖÎEÖ EÖJEÖˆEÖÆEÖEÖ?EÖzEÖ¶EÖñEÖ,EÖeEÖŸEÖ×EÖEÖFEÖ}EÖ³EÖèEÖEÖPEÖƒEÖµEÖæEÖEÖFEÖuEÖ¢EÖÐEÖûEÖ&EÖOEÖxEÖŸEÖÆEÖìEÖEÖ3EÖVEÖvEÖ–EÖ´EÖÒEÖíEÖ EÖ !EÖ 9EÖ OEÖ NEÖ 5EÖ EÖþEÖâEÖÄEÖ¦EÖ†EÖgEÖFEÖ%EÖEÖãEÖÀEÖŸEÖ~EÖ\EÖEÖ{EÖ¼EÖEÖLEÖœEÖîEÖ HEÖ  EÖ ÷EÖ!UEÖ!¶EÖ"EÖ"‡EÖ"÷EÖ#jEÖ#ãEÖ$aEÖ$âEÖ%gEÖ%ñEÖ&EÖ'EÖ'§EÖ(@EÖ(ÞEÖ)~EÖ*#EÖ*ÌEÖ+xEÖ,&EÖ,ÙEÖ-ŽEÖ.HEÖ/EÖ/ÂEÖ0„EÖ1HEÖ2EÖ2ØEÖ3¥EÖ4tEÖ5FEÖ6EÖ6îEÖ7ÇEÖ8¢EÖ9}EÖ:\EÖ;ÍEÖ?´EÖ@žEÖAŠEÖBvEÖCbEÖDQEÖE@EÖF0EÖG"EÖHEÖIEÖIùEÖJìEÖKáEÖLÔEÖMÉEÖN¿EÖO´EÖP¨EÖQEÖR“EÖSˆEÖT{EÖUpEÖVcEÖWVEÖXHEÖY:EÖZ,EÖ[EÖ\ EÖ\úEÖ]æEÖ^ÔEÖ_¾EÖ`¦EÖaEÖbvEÖcZEÖd?EÖe EÖfEÖfßEÖgºEÖh–EÖinEÖjBEÖkEÖkèEÖl¶EÖ @EÖ |EÖ ¸EÖ öEÖ 4EÖ sEÖ ²EÖ òEÖ 3EÖ tEÖ ¶EÖ øEÖ :EÖ ~EÖ ÁEÖEÖGEÖŒEÖÐEÖEÖ\EÖ¡EÖçEÖ.EÖtEÖ»EÖEÖIEÖEÖÖEÖEÖdEÖ¬EÖóEÖ:EÖEÖÇEÖEÖUEÖœEÖâEÖ)EÖoEÖ´EÖùEÖ>EÖƒEÖÈEÖ EÖPEÖ”EÖÖEÖEÖZEÖœEÖÝEÖEÖ^EÖœEÖÛEÖEÖWEÖ“EÖÏEÖ EÖEEÖ~EÖ¸EÖðEÖ&EÖ\EÖ’EÖÆEÖúEÖ,EÖ^EÖŽEÖ¾EÖìEÖEÖFEÖqEÖ›EÖÄEÖìEÖEÖ7EÖZEÖ}EÖžEÖ¾EÖÜEÖùEÖ EÖ /EÖ HEÖ HEÖ 0EÖ EÖüEÖàEÖÄEÖ¦EÖˆEÖhEÖJEÖ(EÖEÖçEÖÆEÖ¤EÖƒEÖaEÖAEÖ EÖEÖàEÖÂEÖ£EÖ…EÖiEÖMEÖ4EÖEÖEÖìEÖØEÖÄEÖ´EÖ¤EÖ—EÖ‹EÖ‚EÖ|EÖxEÖvEÖvEÖzEÖ€EÖŠEÖ–EÖ¦EÖ¸EÖÍEÖçEÖEÖ$EÖIEÖrEÖžEÖÎEÖEÖ;EÖxEÖºEÖÿEÖJEÖšEÖïEÖ IEÖ ¢EÖ úEÖ!WEÖ!¹EÖ" EÖ"EÖ"ýEÖ#rEÖ#ìEÖ$jEÖ$íEÖ%tEÖ%ÿEÖ&ŽEÖ'"EÖ'ºEÖ(TEÖ(ôEÖ)˜EÖ*>EÖ*éEÖ+–EÖ,GEÖ,ûEÖ-³EÖ.nEÖ/,EÖ/íEÖ0±EÖ1xEÖ2BEÖ3EÖ3ÝEÖ4®EÖ5‚EÖ6XEÖ72EÖ8 EÖ8éEÖ9ÈEÖ:©EÖ;ŒEÖ?EÖ?(EÖ@EÖAEÖAïEÖBÞEÖCÎEÖDÀEÖE²EÖF¦EÖGšEÖHŽEÖI„EÖJzEÖKqEÖLhEÖM`EÖNWEÖOOEÖPGEÖQAEÖR9EÖS1EÖT(EÖU EÖVEÖWEÖXEÖXúEÖYîEÖZâEÖ[ÖEÖ\ÈEÖ]ºEÖ^ªEÖ_šEÖ`‡EÖatEÖb^EÖcIEÖd0EÖeEÖeûEÖfßEÖgÁEÖhŸEÖi|EÖjVEÖk0EÖlEÖlÚEÖmªEÖŠEÖËEÖ EÖ NEÖ EÖ ÖEÖ EÖ ^EÖ ¢EÖ èEÖ .EÖ vEÖ ¼EÖ EÖ NEÖ —EÖ àEÖ *EÖ tEÖ ¾EÖEÖTEÖŸEÖêEÖ6EÖ‚EÖÎEÖEÖfEÖ²EÖEÖLEÖ˜EÖäEÖ2EÖ~EÖÊEÖEÖbEÖ®EÖúEÖEEÖEÖÜEÖ&EÖpEÖºEÖEÖNEÖ–EÖÞEÖ&EÖnEÖ¶EÖüEÖBEÖ†EÖÌEÖEÖSEÖ–EÖØEÖEÖZEÖ™EÖØEÖEÖTEÖEÖËEÖEÖ>EÖxEÖ¯EÖæEÖEÖNEÖ‚EÖµEÖæEÖEÖDEÖqEÖEÖÈEÖñEÖEÖ@EÖeEÖŠEÖ¬EÖÍEÖìEÖ EÖ 'EÖ BEÖ DEÖ -EÖ EÖüEÖáEÖÅEÖ©EÖ‹EÖlEÖNEÖ,EÖEÖìEÖËEÖªEÖˆEÖhEÖHEÖ&EÖEÖæEÖÈEÖ©EÖŒEÖnEÖSEÖ8EÖEÖEÖðEÖÜEÖÈEÖ¶EÖ¦EÖ™EÖŽEÖ„EÖ|EÖxEÖvEÖvEÖzEÖ€EÖˆEÖ”EÖ¤EÖ¶EÖËEÖäEÖEÖ"EÖFEÖoEÖ›EÖËEÖEÖ8EÖvEÖ¸EÖÿEÖIEÖšEÖîEÖ IEÖ £EÖ ûEÖ!YEÖ!¼EÖ"%EÖ"’EÖ#EÖ#yEÖ#õEÖ$tEÖ$øEÖ%EÖ& EÖ&žEÖ'3EÖ'ÌEÖ(iEÖ) EÖ)°EÖ*WEÖ+EÖ+´EÖ,gEÖ-EÖ-ØEÖ.”EÖ/TEÖ0EÖ0ÞEÖ1¨EÖ2tEÖ3BEÖ4EÖ4èEÖ5¾EÖ6˜EÖ7rEÖ8PEÖ90EÖ:EÖ:öEÖ;ÛEÖ<ÂEÖ=¬EÖ>—EÖ?„EÖ@rEÖAaEÖBREÖCDEÖD7EÖE,EÖF"EÖGEÖHEÖIEÖJEÖJúEÖKóEÖLîEÖMéEÖNäEÖOßEÖPÚEÖQÖEÖRÑEÖSÌEÖTÇEÖUÂEÖV½EÖW¶EÖX¯EÖY©EÖZ EÖ[˜EÖ\ŽEÖ]„EÖ^xEÖ_lEÖ`^EÖaNEÖb>EÖc-EÖdEÖeEÖeîEÖfÔEÖgºEÖhŸEÖiEÖj`EÖk>EÖlEÖlñEÖmÈEÖnEÖØEÖEÖaEÖ§EÖðEÖ8EÖ€EÖÊEÖ EÖ ^EÖ ©EÖ öEÖ BEÖ EÖ ÞEÖ +EÖ yEÖ ÇEÖ EÖ fEÖ ·EÖ EÖ WEÖ ¨EÖ ùEÖIEÖ›EÖìEÖ>EÖEÖáEÖ3EÖ…EÖ×EÖ(EÖzEÖÌEÖEÖoEÖ¿EÖEÖaEÖ²EÖEÖREÖ¡EÖðEÖ?EÖEÖÛEÖ(EÖvEÖÂEÖEÖZEÖ¤EÖîEÖ8EÖ€EÖÈEÖEÖVEÖœEÖáEÖ&EÖjEÖ¬EÖíEÖ.EÖmEÖ¬EÖéEÖ&EÖbEÖœEÖÖEÖ EÖDEÖzEÖ¯EÖáEÖEÖDEÖsEÖ¢EÖÎEÖùEÖ"EÖKEÖqEÖ—EÖºEÖÜEÖþEÖ EÖ 9EÖ =EÖ (EÖ EÖøEÖÞEÖÄEÖ§EÖŠEÖlEÖNEÖ/EÖEÖîEÖÎEÖ®EÖŒEÖlEÖKEÖ+EÖ EÖëEÖÌEÖ­EÖŽEÖrEÖVEÖ;EÖ"EÖ EÖòEÖÞEÖÊEÖ¸EÖ¨EÖšEÖŽEÖ„EÖ|EÖxEÖtEÖuEÖxEÖ}EÖ†EÖ’EÖ EÖ³EÖÈEÖáEÖþEÖEÖBEÖkEÖ˜EÖÈEÖüEÖ6EÖtEÖ¶EÖüEÖHEÖ™EÖïEÖ JEÖ ¤EÖ þEÖ!\EÖ!ÀEÖ")EÖ"—EÖ# EÖ#‚EÖ#ýEÖ$~EÖ%EÖ%ŽEÖ&EÖ&®EÖ'DEÖ'ßEÖ(~EÖ)"EÖ)ÇEÖ*rEÖ+ EÖ+ÒEÖ,‡EÖ-@EÖ-üEÖ.»EÖ/~EÖ0CEÖ1 EÖ1ØEÖ2¦EÖ3wEÖ4LEÖ5"EÖ5úEÖ6ÖEÖ7´EÖ8”EÖ9wEÖ:\EÖ;BEÖ<+EÖ=EÖ>EÖ>ïEÖ?ßEÖ@ÏEÖAÂEÖB¶EÖC¬EÖD¢EÖEšEÖF’EÖG‹EÖH†EÖIEÖJ|EÖKyEÖLwEÖMtEÖNrEÖOpEÖPnEÖQmEÖRkEÖSjEÖThEÖUfEÖVdEÖWaEÖX_EÖY\EÖZWEÖ[REÖ\MEÖ]FEÖ^>EÖ_6EÖ`-EÖa"EÖbEÖcEÖcùEÖdéEÖe×EÖfÄEÖg¬EÖh–EÖi|EÖjaEÖkDEÖl$EÖmEÖmÜEÖn¶EÖoŒEÖ&EÖnEÖºEÖEÖPEÖEÖêEÖ:EÖˆEÖØEÖ(EÖzEÖÊEÖ EÖ oEÖ ÁEÖ EÖ hEÖ ¾EÖ EÖ fEÖ ¼EÖ EÖ hEÖ ½EÖ EÖ jEÖ ÁEÖEÖoEÖÆEÖEÖsEÖÊEÖ!EÖxEÖÏEÖ&EÖ}EÖÓEÖ(EÖ~EÖÔEÖ*EÖ~EÖÓEÖ(EÖ|EÖÎEÖ!EÖtEÖÆEÖEÖhEÖ¸EÖEÖVEÖ¥EÖóEÖ@EÖŒEÖ×EÖ!EÖjEÖ´EÖüEÖBEÖˆEÖÌEÖEÖREÖ”EÖÖEÖEÖSEÖEÖÍEÖEÖ@EÖxEÖ®EÖäEÖEÖKEÖ|EÖ¬EÖÚEÖEÖ2EÖ[EÖ‚EÖ©EÖÍEÖñEÖ EÖ 1EÖ 6EÖ #EÖ EÖõEÖÝEÖÂEÖ¨EÖŒEÖnEÖPEÖ2EÖEÖóEÖÒEÖ²EÖ‘EÖqEÖPEÖ0EÖEÖïEÖÐEÖ²EÖ”EÖvEÖZEÖ@EÖ&EÖEÖöEÖàEÖÌEÖºEÖªEÖ›EÖEÖ…EÖ}EÖxEÖtEÖtEÖvEÖ|EÖ„EÖEÖŸEÖ±EÖÆEÖßEÖüEÖEÖ@EÖhEÖ•EÖÅEÖúEÖ4EÖsEÖµEÖüEÖHEÖ™EÖïEÖ KEÖ ¦EÖ!EÖ!`EÖ!ÅEÖ"/EÖ"žEÖ#EÖ#ŠEÖ$EÖ$‰EÖ%EÖ%›EÖ&+EÖ&¿EÖ'WEÖ'óEÖ(”EÖ)9EÖ)áEÖ*ŒEÖ+VEÖ?GEÖ@:EÖA.EÖB#EÖCEÖDEÖE EÖFEÖGEÖGþEÖHüEÖIúEÖJøEÖKøEÖLøEÖMùEÖNúEÖOûEÖPýEÖQþEÖSEÖTEÖUEÖVEÖWEÖXEÖYEÖZEÖ[EÖ\EÖ]EÖ]ýEÖ^øEÖ_óEÖ`ìEÖaäEÖbÛEÖcÐEÖdÄEÖe·EÖf¨EÖg—EÖh„EÖipEÖjYEÖk@EÖl%EÖmEÖmèEÖnÇEÖo¢EÖp|EÖvEÖÂEÖEÖbEÖ²EÖEÖVEÖ©EÖþEÖPEÖ¦EÖûEÖREÖªEÖEÖYEÖ°EÖ EÖ bEÖ ½EÖ EÖ rEÖ ÌEÖ 'EÖ ‚EÖ ÞEÖ 9EÖ –EÖ òEÖ NEÖ ©EÖEÖcEÖ¿EÖEÖvEÖÒEÖ/EÖŠEÖæEÖAEÖœEÖöEÖREÖ«EÖEÖ^EÖ¶EÖEÖhEÖ¿EÖEÖlEÖÂEÖEÖlEÖ¿EÖEÖdEÖ¶EÖEÖVEÖ¥EÖóEÖ@EÖŒEÖØEÖ"EÖjEÖ²EÖúEÖ?EÖ„EÖÈEÖ EÖJEÖŠEÖÈEÖEÖ@EÖzEÖ´EÖëEÖ EÖTEÖˆEÖ¹EÖèEÖEÖBEÖlEÖ–EÖ½EÖâEÖ EÖ &EÖ .EÖ EÖ EÖñEÖÙEÖÀEÖ¦EÖ‹EÖnEÖQEÖ3EÖEÖôEÖÕEÖµEÖ”EÖtEÖSEÖ3EÖEÖôEÖÔEÖµEÖ—EÖzEÖ^EÖBEÖ(EÖEÖøEÖâEÖÎEÖ»EÖ«EÖœEÖŽEÖ„EÖ}EÖvEÖsEÖrEÖvEÖzEÖ‚EÖŽEÖœEÖ®EÖÃEÖÜEÖøEÖEÖ=EÖfEÖ‘EÖÃEÖøEÖ1EÖoEÖ²EÖúEÖFEÖ˜EÖðEÖ LEÖ §EÖ!EÖ!cEÖ!ÈEÖ"3EÖ"¢EÖ#EÖ#‘EÖ$EÖ$”EÖ%EÖ%¨EÖ&9EÖ&ÎEÖ'hEÖ(EÖ(¨EÖ)OEÖ)ùEÖ*§EÖ+XEÖ,EÖ,ÈEÖ-„EÖ.DEÖ/ EÖ/ÐEÖ0šEÖ1fEÖ28EÖ3 EÖ3áEÖ4ºEÖ5–EÖ6tEÖ7TEÖ88EÖ9EÖ:EÖ:îEÖ;ÛEÖ<ÉEÖ=¸EÖ>¬EÖ?žEÖ@”EÖAŠEÖB„EÖC}EÖDxEÖEtEÖFrEÖGpEÖHpEÖIpEÖJrEÖKtEÖLvEÖMzEÖN}EÖOEÖP…EÖQŠEÖREÖS“EÖT˜EÖUEÖV¡EÖW¥EÖX¨EÖY¬EÖZ®EÖ[°EÖ\²EÖ]²EÖ^²EÖ_°EÖ`­EÖa©EÖb¦EÖc EÖd˜EÖeŽEÖf„EÖgvEÖhhEÖiXEÖjHEÖk4EÖlEÖmEÖmêEÖnÍEÖo®EÖpŽEÖqiEÖÉEÖEÖpEÖÄEÖEÖoEÖÆEÖEÖuEÖÏEÖ)EÖ‚EÖÞEÖ:EÖ—EÖòEÖPEÖ¯EÖ EÖlEÖÊEÖ *EÖ ŠEÖ êEÖ JEÖ ªEÖ EÖ lEÖ ÎEÖ .EÖ EÖ ñEÖ SEÖ ´EÖEÖvEÖØEÖ8EÖšEÖúEÖZEÖºEÖEÖzEÖØEÖ8EÖ•EÖôEÖQEÖ®EÖ EÖfEÖÁEÖEÖuEÖÏEÖ'EÖ~EÖÕEÖ,EÖ€EÖÕEÖ(EÖzEÖÌEÖEÖlEÖºEÖEÖTEÖžEÖèEÖ0EÖxEÖ¾EÖEÖFEÖˆEÖÈEÖEÖEEÖ‚EÖ¼EÖõEÖ,EÖbEÖ–EÖÈEÖùEÖ(EÖUEÖ€EÖªEÖÑEÖ÷EÖ EÖ #EÖ EÖÿEÖêEÖÔEÖ¼EÖ¢EÖˆEÖlEÖPEÖ2EÖEÖôEÖÖEÖ¶EÖ•EÖuEÖTEÖ4EÖEÖôEÖÖEÖ¶EÖ˜EÖ{EÖ^EÖCEÖ)EÖEÖøEÖâEÖÍEÖºEÖªEÖšEÖŽEÖƒEÖzEÖuEÖqEÖpEÖrEÖwEÖEÖ‰EÖ™EÖªEÖÀEÖØEÖôEÖEÖ9EÖaEÖŽEÖ¾EÖôEÖ.EÖmEÖ°EÖøEÖEEÖ˜EÖïEÖ LEÖ ¨EÖ!EÖ!eEÖ!ÌEÖ"7EÖ"©EÖ#EÖ#™EÖ$EÖ$EÖ%'EÖ%´EÖ&HEÖ&ÞEÖ'zEÖ(EÖ(¾EÖ)fEÖ*EÖ*ÀEÖ+uEÖ,-EÖ,èEÖ-§EÖ.jEÖ/0EÖ/øEÖ0ÅEÖ1”EÖ2gEÖ3=EÖ4EÖ4ñEÖ5ÏEÖ6°EÖ7”EÖ8yEÖ9aEÖ:LEÖ;9EÖ<'EÖ=EÖ> EÖ?EÖ?öEÖ@îEÖAçEÖBãEÖCàEÖDÞEÖEÞEÖFÞEÖGßEÖHâEÖIæEÖJéEÖKïEÖLôEÖMúEÖOEÖPEÖQEÖREÖSEÖT'EÖU/EÖV6EÖW>EÖXDEÖYLEÖZREÖ[WEÖ\]EÖ]`EÖ^dEÖ_gEÖ`hEÖajEÖbhEÖcfEÖddEÖe_EÖfXEÖgPEÖhHEÖiEÖ¢EÖEÖjEÖÍEÖ0EÖ“EÖõEÖUEÖ¶EÖEÖvEÖÔEÖ2EÖEÖìEÖGEÖ¢EÖüEÖTEÖ¬EÖEÖYEÖ®EÖEÖTEÖ¦EÖõEÖDEÖ’EÖßEÖ*EÖtEÖ¼EÖEÖHEÖŒEÖÏEÖEÖPEÖŽEÖÊEÖEÖEÖlEÖ˜EÖÂEÖêEÖ EÖ EÖ EÖøEÖåEÖÏEÖ¸EÖ EÖ†EÖkEÖOEÖ2EÖEÖöEÖ×EÖ·EÖ—EÖwEÖWEÖ7EÖEÖøEÖØEÖºEÖœEÖ~EÖaEÖFEÖ,EÖEÖúEÖäEÖÏEÖ¼EÖªEÖ›EÖŽEÖ‚EÖzEÖtEÖpEÖoEÖpEÖvEÖ~EÖˆEÖ–EÖ¨EÖ½EÖÕEÖòEÖEÖ7EÖ_EÖŒEÖ¼EÖóEÖ,EÖjEÖ®EÖøEÖDEÖ™EÖðEÖ MEÖ ªEÖ!EÖ!jEÖ!ÐEÖ">EÖ"®EÖ#%EÖ#¢EÖ$$EÖ$¨EÖ%3EÖ%ÃEÖ&WEÖ&ðEÖ'ŒEÖ(-EÖ(ÓEÖ)}EÖ**EÖ*ÜEÖ+’EÖ,LEÖ-EÖ-ÊEÖ.ŽEÖ/VEÖ0!EÖ0ðEÖ1ÂEÖ2–EÖ3oEÖ4JEÖ5(EÖ6EÖ6ëEÖ7ÑEÖ8ºEÖ9¤EÖ:‘EÖ;EÖ[EÖ?REÖ@LEÖAGEÖBCEÖCAEÖDAEÖEBEÖFDEÖGGEÖHLEÖIREÖJXEÖK_EÖLgEÖMpEÖNyEÖO‚EÖPEÖQ—EÖR¢EÖS­EÖT·EÖUÂEÖVÍEÖW×EÖXâEÖYëEÖZôEÖ[ýEÖ]EÖ^ EÖ_EÖ`EÖaEÖbEÖc#EÖd#EÖe"EÖf!EÖgEÖhEÖiEÖjEÖjþEÖkòEÖläEÖmÓEÖn¿EÖo«EÖp’EÖqzEÖr\EÖsEÖ•EÖìEÖBEÖ–EÖèEÖ:EÖŠEÖÙEÖ'EÖsEÖ¾EÖEÖOEÖ•EÖÙEÖEÖ\EÖœEÖÚEÖEÖOEÖ‡EÖ¾EÖòEÖ$EÖTEÖƒEÖ°EÖÚEÖ EÖ EÖ EÖïEÖÜEÖÇEÖ±EÖšEÖEÖfEÖKEÖ/EÖEÖôEÖÔEÖ¶EÖ–EÖwEÖWEÖ7EÖEÖ÷EÖØEÖ¹EÖšEÖ~EÖ`EÖEEÖ+EÖEÖùEÖãEÖÎEÖºEÖ¨EÖ™EÖŒEÖEÖxEÖqEÖmEÖlEÖnEÖrEÖzEÖ„EÖ’EÖ¤EÖ¹EÖÑEÖíEÖEÖ2EÖ[EÖˆEÖ¹EÖîEÖ)EÖhEÖ¬EÖõEÖDEÖ˜EÖðEÖ NEÖ ¬EÖ! EÖ!mEÖ!ÕEÖ"BEÖ"µEÖ#-EÖ#ªEÖ$,EÖ$³EÖ%?EÖ%ÐEÖ&eEÖ&ÿEÖ'EÖ(@EÖ(èEÖ)“EÖ*BEÖ*öEÖ+®EÖ,jEÖ-*EÖ-ìEÖ.²EÖ/|EÖ0JEÖ1EÖ1ðEÖ2ÆEÖ3¡EÖ4~EÖ5^EÖ6BEÖ7'EÖ8EÖ8úEÖ9èEÖ:ØEÖ;ÊEÖ<¾EÖ=´EÖ>¬EÖ?§EÖ@£EÖA¡EÖB EÖC¡EÖD¤EÖE¨EÖF¬EÖG³EÖHºEÖIÃEÖJÌEÖKÖEÖLáEÖMíEÖNùEÖPEÖQEÖR EÖS.EÖTEÖoEÖEÖÊEÖôEÖ EÖõEÖåEÖÔEÖÀEÖ«EÖ”EÖ|EÖcEÖHEÖ,EÖEÖòEÖÔEÖµEÖ–EÖwEÖVEÖ8EÖEÖøEÖÙEÖºEÖœEÖ~EÖbEÖFEÖ,EÖEÖùEÖâEÖÎEÖºEÖ¨EÖ˜EÖ‹EÖEÖvEÖoEÖjEÖjEÖjEÖoEÖvEÖEÖEÖ EÖµEÖÎEÖêEÖ EÖ/EÖXEÖ„EÖ¶EÖìEÖ'EÖfEÖ¬EÖôEÖDEÖ˜EÖðEÖ PEÖ ¯EÖ! EÖ!pEÖ!ÙEÖ"GEÖ"¼EÖ#4EÖ#²EÖ$6EÖ$¾EÖ%KEÖ%ÞEÖ&uEÖ'EÖ'°EÖ(TEÖ(þEÖ)ªEÖ*\EÖ+EÖ+ËEÖ,ˆEÖ-JEÖ.EÖ.×EÖ/¤EÖ0tEÖ1FEÖ2EÖ2öEÖ3ÓEÖ4²EÖ5–EÖ6{EÖ7bEÖ8NEÖ9EÖ>ýEÖ?úEÖ@øEÖAúEÖBüEÖCÿEÖEEÖF EÖGEÖHEÖI&EÖJ2EÖK>EÖLKEÖMZEÖNhEÖOwEÖP†EÖQ—EÖR§EÖS¸EÖTÈEÖUÚEÖVêEÖWûEÖY EÖZEÖ[+EÖ\:EÖ]HEÖ^WEÖ_dEÖ`pEÖa|EÖb…EÖcEÖd˜EÖeEÖf£EÖg¨EÖh¨EÖiªEÖj¨EÖk¥EÖl EÖm˜EÖnEÖo…EÖpvEÖqfEÖrVEÖs?EÖt(EÖu EÕû2EÕû–EÕûúEÕü`EÕüÈEÕý0EÕý˜EÕþEÕþnEÕþÚEÕÿFEÕÿ²EÖ EÖEÖÿEÖoEÖßEÖPEÖÄEÖ6EÖ¨EÖEÖEÖEÖwEÖëEÖ`EÖÕEÖKEÖÀEÖ5EÖªEÖ EÖ •EÖ EÖ EÖ õEÖ jEÖ ßEÖ SEÖ ÈEÖ ;EÖ ®EÖ"EÖ”EÖEÖyEÖëEÖ[EÖËEÖ;EÖ©EÖEÖ„EÖðEÖ]EÖÈEÖ2EÖšEÖEÖjEÖÐEÖ4EÖ˜EÖûEÖ\EÖ¼EÖEÖxEÖÕEÖ/EÖŠEÖáEÖ8EÖEÖàEÖ2EÖ‚EÖÐEÖEÖhEÖ±EÖùEÖ?EÖ‚EÖÄEÖEÖAEÖ}EÖ¶EÖïEÖ#EÖVEÖˆEÖ¶EÖãEÖóEÖçEÖØEÖÈEÖµEÖ¢EÖ‹EÖtEÖ\EÖBEÖ&EÖ EÖîEÖÐEÖ±EÖ“EÖtEÖTEÖ5EÖEÖõEÖ×EÖ¸EÖšEÖ|EÖ^EÖDEÖ(EÖEÖöEÖàEÖÊEÖ·EÖ¤EÖ•EÖ†EÖ|EÖrEÖkEÖfEÖeEÖfEÖjEÖrEÖ|EÖŠEÖ›EÖ°EÖÉEÖæEÖEÖ*EÖSEÖ€EÖ±EÖèEÖ$EÖdEÖ¨EÖóEÖAEÖ–EÖðEÖ PEÖ °EÖ!EÖ!sEÖ!ÜEÖ"MEÖ"ÁEÖ#PEÖ?MEÖ@MEÖANEÖBREÖCVEÖD^EÖEeEÖFnEÖGyEÖH…EÖI’EÖJ EÖK°EÖLÀEÖMÑEÖNâEÖOõEÖQEÖREÖS.EÖTBEÖUUEÖViEÖW|EÖXEÖY£EÖZ·EÖ[ÉEÖ\ÜEÖ]íEÖ^þEÖ`EÖaEÖb,EÖc8EÖdEEÖePEÖfZEÖg`EÖhhEÖimEÖjoEÖkqEÖlqEÖmpEÖnjEÖodEÖp\EÖqPEÖrBEÖs2EÖt EÖu EÖuòEÕù“EÕùúEÕúeEÕúÏEÕû:EÕû¦EÕüEÕü‚EÕüðEÕýbEÕýÒEÕþDEÕþ¸EÕÿ+EÕÿžEÖEÖ‰EÖþEÖtEÖìEÖdEÖÜEÖTEÖÍEÖFEÖÀEÖ:EÖ³EÖ-EÖ§EÖ!EÖœEÖEÖ‘EÖ EÖ …EÖ ÿEÖ xEÖ òEÖ lEÖ åEÖ ^EÖ ÖEÖ NEÖ ÆEÖ›EÖ?œEÖ@žEÖA¢EÖB¨EÖC°EÖD¹EÖEÄEÖFÑEÖGÞEÖHíEÖIþEÖKEÖL EÖM4EÖNGEÖO\EÖPqEÖQ†EÖRœEÖS³EÖTÈEÖUßEÖV÷EÖXEÖY#EÖZ:EÖ[PEÖ\eEÖ]zEÖ^EÖ_¢EÖ`¶EÖaÈEÖbØEÖcéEÖdøEÖfEÖgEÖhEÖi&EÖj.EÖk4EÖl8EÖm:EÖn:EÖo8EÖp5EÖq0EÖr'EÖsEÖt EÖtþEÖuêEÖvÕEÕ÷öEÕøbEÕøÐEÕù>EÕù¯EÕúEÕúEÕûEÕûwEÕûìEÕübEÕü×EÕýPEÕýÆEÕþ@EÕþ¹EÕÿ2EÕÿ®EÖ)EÖ¥EÖ!EÖžEÖEÖ˜EÖEÖ•EÖEÖ‘EÖEÖEÖEÖŽEÖ EÖ‹EÖ EÖŠEÖ EÖ ‡EÖ EÖ „EÖ EÖ €EÖ üEÖ yEÖ õEÖ qEÖ íEÖfEÖáEÖZEÖÔEÖLEÖÂEÖ8EÖ®EÖ#EÖ—EÖ EÖ{EÖìEÖ\EÖÊEÖ8EÖ¤EÖEÖxEÖàEÖGEÖ¬EÖEÖtEÖÔEÖ4EÖ’EÖîEÖHEÖ¢EÖøEÖNEÖ¡EÖóEÖBEÖEÖÛEÖ%EÖnEÖ²EÖöEÖ6EÖvEÖ²EÖìEÖ$EÖZEÖEÖ¾EÖÑEÖÇEÖ¼EÖ®EÖžEÖ‹EÖxEÖbEÖLEÖ3EÖEÖþEÖâEÖÆEÖ¨EÖŠEÖkEÖMEÖ-EÖEÖðEÖÐEÖ²EÖ“EÖvEÖZEÖ>EÖ"EÖEÖðEÖÙEÖÃEÖ°EÖEÖEÖEÖrEÖiEÖbEÖ]EÖ[EÖ\EÖ`EÖgEÖrEÖ€EÖEÖ¦EÖ¾EÖÜEÖûEÖ EÖJEÖwEÖªEÖáEÖEÖ]EÖ£EÖïEÖ?EÖ•EÖðEÖ QEÖ ²EÖ!EÖ!yEÖ!äEÖ"VEÖ"ÌEÖ#IEÖ#ËEÖ$REÖ$ÞEÖ%nEÖ&EÖ& EÖ'@EÖ'æEÖ(ŽEÖ)èEÖ?êEÖ@ðEÖAöEÖBÿEÖD EÖEEÖF#EÖG2EÖHBEÖITEÖJhEÖK|EÖLEÖM¦EÖN¼EÖOÔEÖPìEÖREÖSEÖT6EÖUOEÖViEÖWƒEÖXEÖY¶EÖZÎEÖ[èEÖ]EÖ^EÖ_0EÖ`FEÖa\EÖbpEÖc„EÖd˜EÖeªEÖfºEÖgÉEÖh×EÖiãEÖjîEÖkôEÖlüEÖnEÖoEÖpEÖqEÖrEÖrúEÖsòEÖtçEÖuÚEÖvÊEÖw¶EÕö^EÕöÏEÕ÷@EÕ÷´EÕø&EÕøœEÕùEÕùŠEÕúEÕúyEÕúôEÕûnEÕûêEÕüfEÕüåEÕýbEÕýâEÕþ`EÕþáEÕÿ`EÕÿáEÖcEÖåEÖgEÖêEÖmEÖðEÖsEÖ÷EÖ{EÖÿEÖƒEÖEÖ‰EÖ EÖ‘EÖEÖ˜EÖ EÖ žEÖ !EÖ £EÖ %EÖ §EÖ (EÖ ¨EÖ (EÖ ¨EÖ%EÖ£EÖ EÖžEÖEÖ”EÖEÖˆEÖEÖvEÖìEÖbEÖÕEÖHEÖºEÖ*EÖ™EÖEÖrEÖÞEÖGEÖ®EÖEÖzEÖÝEÖ?EÖŸEÖýEÖXEÖ´EÖ EÖbEÖ¸EÖ EÖ[EÖªEÖöEÖAEÖ‰EÖÏEÖEÖTEÖ”EÖÐEÖ EÖCEÖxEÖ«EÖÀEÖ·EÖ­EÖ EÖEÖ€EÖlEÖXEÖBEÖ*EÖEÖ÷EÖÜEÖÀEÖ£EÖ…EÖfEÖHEÖ*EÖ EÖìEÖÍEÖ®EÖEÖsEÖVEÖ:EÖ EÖEÖìEÖÖEÖÀEÖ¬EÖšEÖŠEÖ{EÖoEÖeEÖ^EÖZEÖXEÖXEÖ\EÖcEÖnEÖ|EÖŒEÖ¡EÖºEÖ×EÖ÷EÖEÖFEÖtEÖ¦EÖÝEÖEÖZEÖ¡EÖíEÖ>EÖ•EÖñEÖ SEÖ µEÖ!EÖ!}EÖ!éEÖ"[EÖ"ÓEÖ#PEÖ#ÓEÖ$[EÖ$éEÖ%|EÖ&EÖ&°EÖ'QEÖ'øEÖ(¢EÖ)REÖ*EÖ*¿EÖ+{EÖ,0EÖ?4EÖ@9EÖAAEÖBJEÖCVEÖDcEÖErEÖF‚EÖG”EÖH§EÖI»EÖJÑEÖKèEÖLÿEÖNEÖO1EÖPKEÖQfEÖREÖSEÖT¹EÖUÕEÖVòEÖXEÖY+EÖZGEÖ[cEÖ\EÖ]šEÖ^µEÖ_ÏEÖ`èEÖbEÖcEÖd/EÖeFEÖfXEÖgmEÖh}EÖiEÖjœEÖk«EÖlµEÖmÀEÖnÆEÖoÎEÖpÏEÖqÒEÖrÏEÖsÎEÖtÆEÖu¿EÖv²EÖw¦EÖx’EÕôÌEÕõAEÕõ¶EÕö-EÕö¤EÕ÷EÕ÷˜EÕøEÕøEÕùEÕùŠEÕú EÕúŠEÕû EÕûŒEÕüEÕü’EÕýEÕýšEÕþ EÕþ¦EÕÿ,EÕÿ²EÖ9EÖÀEÖGEÖÏEÖWEÖßEÖgEÖðEÖxEÖEÖŠEÖEÖ›EÖ#EÖ«EÖ3EÖºEÖ AEÖ ÈEÖ NEÖ ÔEÖ ZEÖ ßEÖ cEÖ çEÖ jEÖ ìEÖnEÖïEÖoEÖðEÖnEÖëEÖhEÖâEÖ\EÖÖEÖNEÖÄEÖ:EÖ®EÖ"EÖ“EÖEÖrEÖßEÖKEÖ¶EÖEÖ„EÖêEÖLEÖ®EÖEÖlEÖÈEÖ"EÖzEÖÏEÖ#EÖuEÖÅEÖEÖ]EÖ¥EÖìEÖ/EÖqEÖ°EÖíEÖ'EÖ^EÖ“EÖªEÖ£EÖšEÖEÖ€EÖqEÖ^EÖLEÖ5EÖEÖEÖîEÖÒEÖ¶EÖšEÖ~EÖ_EÖAEÖ#EÖEÖæEÖÆEÖ©EÖ‹EÖnEÖREÖ5EÖEÖEÖèEÖÐEÖºEÖ¦EÖ”EÖ„EÖvEÖjEÖ`EÖXEÖTEÖREÖREÖVEÖ^EÖgEÖuEÖ†EÖœEÖµEÖÑEÖóEÖEÖBEÖpEÖ¢EÖÚEÖEÖYEÖŸEÖìEÖ>EÖ•EÖòEÖ UEÖ ·EÖ!EÖ!€EÖ!îEÖ"bEÖ"ÚEÖ#YEÖ#ÝEÖ$fEÖ$ôEÖ%ˆEÖ&"EÖ&ÀEÖ'cEÖ( EÖ(·EÖ)hEÖ*EÖ*ØEÖ+–EÖ,ZEÖ- EÖ-ëEÖ.ºEÖ/ŒEÖ0dEÖ1=EÖ2EÖ2üEÖ3áEÖ4ÊEÖ5´EÖ6¢EÖ7”EÖ8ˆEÖ9€EÖ:yEÖ;vEÖzEÖ?€EÖ@ˆEÖA’EÖBžEÖC¬EÖD¼EÖEÍEÖFàEÖGôEÖI EÖJ"EÖK:EÖLTEÖMnEÖN‰EÖO¦EÖPÂEÖQàEÖRþEÖTEÖUEÖ. EÖ.ÜEÖ/°EÖ0ŠEÖ1fEÖ2EEÖ3(EÖ4EÖ4úEÖ5çEÖ6ØEÖ7ËEÖ8ÂEÖ9¼EÖ:·EÖ;¶EÖ<¸EÖ=¼EÖ>ÂEÖ?ÊEÖ@ÕEÖAâEÖBðEÖDEÖEEÖF'EÖG=EÖHTEÖImEÖJ†EÖK¡EÖL½EÖMÛEÖNùEÖPEÖQ7EÖRXEÖSxEÖTšEÖU»EÖVÝEÖWÿEÖY!EÖZCEÖ[eEÖ\†EÖ]¨EÖ^ÈEÖ_éEÖaEÖb'EÖcEEÖdcEÖeEÖfšEÖg³EÖhÌEÖiâEÖjúEÖlEÖm EÖn0EÖo>EÖpKEÖqUEÖr^EÖsfEÖtiEÖujEÖviEÖwdEÖx^EÖyTEÖzHEÕñ®EÕò)EÕò§EÕó&EÕó¦EÕô(EÕô©EÕõ.EÕõ³EÕö8EÕöÀEÕ÷HEÕ÷ÐEÕøZEÕøäEÕùpEÕùüEÕúˆEÕûEÕû¤EÕü2EÕüÀEÕýPEÕýàEÕþpEÕÿEÕÿ’EÖ$EÖµEÖFEÖ×EÖiEÖûEÖEÖEÖ¯EÖ@EÖÒEÖcEÖôEÖ„EÖEÖ¤EÖ 2EÖ ÀEÖ NEÖ ÜEÖ iEÖ ôEÖ €EÖ EÖ ”EÖEÖ¤EÖ+EÖ²EÖ6EÖºEÖEÖ½EÖ:EÖ·EÖ2EÖ«EÖ#EÖšEÖEÖEÖòEÖbEÖÐEÖEÖ5+EÖ6EÖ7 EÖ8EÖ8üEÖ9øEÖ:öEÖ;øEÖ<üEÖ>EÖ? EÖ@EÖA"EÖB2EÖCBEÖDVEÖEkEÖF‚EÖGšEÖH´EÖIÎEÖJìEÖL EÖM(EÖNHEÖOiEÖPŠEÖQ­EÖRÐEÖSóEÖUEÖV;EÖW_EÖX…EÖY©EÖZÏEÖ[óEÖ]EÖ^;EÖ_^EÖ`EÖa¤EÖbÅEÖcæEÖeEÖf%EÖgCEÖh`EÖizEÖj”EÖk¬EÖlÄEÖmØEÖnìEÖoüEÖq EÖrEÖs$EÖt,EÖu2EÖv6EÖw6EÖx7EÖy2EÖz*EÖ{ EÕð%EÕð¤EÕñ&EÕñ¨EÕò-EÕò³EÕó8EÕóÀEÕôJEÕôÓEÕõ_EÕõìEÕöxEÕ÷EÕ÷”EÕø$EÕøµEÕùDEÕù×EÕúiEÕúüEÕûEÕü#EÕü·EÕýMEÕýáEÕþvEÕÿ EÕÿ¢EÖ8EÖÎEÖdEÖúEÖEÖ&EÖ¼EÖREÖèEÖ}EÖEÖ§EÖ;EÖÎEÖbEÖõEÖ ‡EÖ EÖ ªEÖ :EÖ ÊEÖ XEÖ æEÖ tEÖ ÿEÖŠEÖEÖžEÖ$EÖ¬EÖ1EÖµEÖ8EÖºEÖ:EÖ¸EÖ6EÖ±EÖ,EÖ£EÖEÖEÖEÖtEÖäEÖQEÖ½EÖ&EÖŽEÖôEÖWEÖ¸EÖEÖtEÖÏEÖ&EÖ}EÖÐEÖ EÖnEÖ»EÖEÖIEÖEÖÎEÖ EÖFEÖbEÖaEÖ[EÖREÖHEÖ;EÖ-EÖEÖEÖôEÖÞEÖÆEÖ®EÖ”EÖyEÖ]EÖAEÖ$EÖEÖéEÖÌEÖ­EÖEÖsEÖVEÖ:EÖEÖEÖêEÖÒEÖºEÖ¦EÖ‘EÖ~EÖoEÖ`EÖTEÖJEÖBEÖ>EÖEÖBEÖHEÖTEÖaEÖtEÖˆEÖ¢EÖÀEÖáEÖEÖ2EÖ`EÖ•EÖÎEÖ EÖOEÖ˜EÖåEÖ9EÖ’EÖòEÖ WEÖ ¼EÖ!!EÖ!ŠEÖ!úEÖ"qEÖ"íEÖ#oEÖ#÷EÖ$„EÖ%EÖ%®EÖ&KEÖ&íEÖ'•EÖ(AEÖ(òEÖ)¨EÖ*dEÖ+"EÖ+æEÖ,®EÖ-{EÖ.LEÖ/ EÖ/øEÖ0ÕEÖ1¶EÖ2šEÖ3EÖ4lEÖ5ZEÖ6LEÖ7BEÖ8:EÖ95EÖ:3EÖ;4EÖ<7EÖ==EÖ>FEÖ?QEÖ@_EÖAnEÖB€EÖC”EÖD©EÖEÁEÖFÚEÖGôEÖIEÖJ.EÖKNEÖLnEÖMEÖN²EÖOÕEÖPúEÖREÖSEEÖTkEÖU’EÖV¹EÖWàEÖYEÖZ/EÖ[VEÖ\}EÖ]¤EÖ^ËEÖ_ñEÖaEÖbŒEÖ?˜EÖ@©EÖAºEÖBÐEÖCåEÖDþEÖFEÖG4EÖHPEÖIpEÖJEÖK²EÖLÔEÖMùEÖOEÖPDEÖQkEÖR“EÖS»EÖTäEÖV EÖW7EÖXaEÖY‹EÖZµEÖ[ßEÖ] EÖ^3EÖ_\EÖ`…EÖa­EÖbÕEÖcüEÖe"EÖfGEÖglEÖhŽEÖi¯EÖjÑEÖkðEÖm EÖn(EÖoCEÖp[EÖqpEÖr„EÖs˜EÖt¨EÖu´EÖv¿EÖwÈEÖxÎEÖyÑEÖzÐEÖ{ÐEÖ|ÊEÕí EÕí¨EÕî2EÕî¼EÕïHEÕïÔEÕðcEÕðôEÕñ„EÕòEÕòªEÕó=EÕóÓEÕôhEÕõEÕõ˜EÕö0EÕöÊEÕ÷eEÕ÷þEÕøšEÕù6EÕùÒEÕúoEÕû EÕûªEÕüHEÕüæEÕý…EÕþ#EÕþÂEÕÿ`EÖEÖžEÖ=EÖÛEÖzEÖEÖ¶EÖSEÖñEÖŽEÖ*EÖÆEÖbEÖüEÖ–EÖ /EÖ ÉEÖ `EÖ ÷EÖ EÖ #EÖ ¶EÖ JEÖ ÜEÖmEÖýEÖ‹EÖEÖ¤EÖ.EÖ¸EÖ@EÖÆEÖJEÖÍEÖNEÖÎEÖLEÖÈEÖBEÖºEÖ0EÖ¤EÖEÖ†EÖõEÖaEÖÊEÖ2EÖ—EÖùEÖZEÖ¶EÖEÖjEÖÀEÖEÖdEÖ²EÖüEÖEEÖ‰EÖÌEÖ EÖ*EÖ+EÖ'EÖ"EÖEÖEÖEÖôEÖãEÖÐEÖ¼EÖ¥EÖŽEÖvEÖ\EÖAEÖ&EÖ EÖíEÖÐEÖ´EÖ–EÖzEÖ\EÖ@EÖ&EÖ EÖðEÖÖEÖ¾EÖ¨EÖ’EÖ~EÖmEÖ\EÖNEÖCEÖ9EÖ2EÖ.EÖ,EÖ.EÖ2EÖ:EÖDEÖREÖeEÖ{EÖ•EÖ³EÖÕEÖüEÖ'EÖWEÖŒEÖÆEÖEÖIEÖ“EÖãEÖ8EÖ’EÖóEÖ [EÖ ÁEÖ!'EÖ!’EÖ"EÖ"~EÖ"üEÖ#EÖ$ EÖ$™EÖ%.EÖ%ÈEÖ&hEÖ'EÖ'¸EÖ(hEÖ)EÖ)ÔEÖ*“EÖ+TEÖ,EÖ,èEÖ-¸EÖ.ŒEÖ/dEÖ0BEÖ1!EÖ2EÖ2îEÖ3ÚEÖ4ÉEÖ5¼EÖ6²EÖ7¬EÖ8¨EÖ9¨EÖ:ªEÖ;°EÖ<¸EÖ=ÂEÖ>ÏEÖ?àEÖ@òEÖBEÖCEÖD6EÖEOEÖFlEÖGŠEÖHªEÖIÌEÖJîEÖLEÖM8EÖN`EÖO‡EÖP°EÖQÙEÖSEÖT.EÖUZEÖV…EÖW²EÖXÞEÖZ EÖ[7EÖ\dEÖ]EÖ^½EÖ_èEÖaEÖb?EÖciEÖd’EÖe»EÖfâEÖh EÖi/EÖjREÖkwEÖl˜EÖm·EÖnÖEÖoóEÖq EÖr$EÖs=EÖtPEÖubEÖvrEÖw€EÖx‹EÖy’EÖz˜EÖ{œEÖ|šEÖ}–EÕë£EÕì.EÕìºEÕíJEÕíØEÕîjEÕîûEÕïEÕð&EÕðºEÕñREÕñëEÕòƒEÕóEÕó¸EÕôTEÕôòEÕõŽEÕö-EÕöÌEÕ÷kEÕø EÕø¬EÕùMEÕùïEÕúEÕû2EÕûÖEÕüxEÕýEÕý½EÕþ`EÕÿEÕÿ§EÖJEÖìEÖŽEÖ2EÖÔEÖuEÖEÖ¸EÖYEÖùEÖ˜EÖ7EÖÖEÖsEÖ EÖ «EÖ GEÖ áEÖ zEÖ EÖ ©EÖ @EÖ ÔEÖhEÖúEÖ‹EÖEÖªEÖ6EÖÂEÖKEÖÔEÖZEÖßEÖbEÖãEÖcEÖàEÖ\EÖÖEÖMEÖÂEÖ6EÖ¦EÖEÖ‚EÖìEÖTEÖºEÖEÖ}EÖÚEÖ5EÖEÖäEÖ7EÖ‡EÖÔEÖEÖeEÖ©EÖëEÖ EÖ EÖ EÖEÖEÖøEÖìEÖÝEÖÎEÖ»EÖ¨EÖ“EÖ|EÖdEÖKEÖ1EÖEÖûEÖÞEÖÃEÖ¦EÖ‰EÖlEÖQEÖ4EÖEÖþEÖäEÖËEÖ³EÖœEÖ‡EÖtEÖbEÖREÖDEÖ8EÖ.EÖ(EÖ#EÖ"EÖ$EÖ)EÖ0EÖ;EÖJEÖ\EÖrEÖEÖªEÖÎEÖõEÖ!EÖQEÖ†EÖÁEÖEÖFEÖEÖàEÖ6EÖ’EÖóEÖ [EÖ ÂEÖ!)EÖ!–EÖ" EÖ"‚EÖ#EÖ#ˆEÖ$EÖ$¢EÖ%9EÖ%ÔEÖ&vEÖ'EÖ'ÈEÖ(yEÖ)/EÖ)êEÖ*©EÖ+nEÖ,6EÖ-EÖ-ÖEÖ.¬EÖ/†EÖ0dEÖ1FEÖ2-EÖ3EÖ4EÖ4öEÖ5ëEÖ6ãEÖ7ßEÖ8ÞEÖ9àEÖ:äEÖ;ìEÖ<öEÖ>EÖ?EÖ@&EÖA:EÖBQEÖCjEÖD…EÖE¢EÖFÁEÖGáEÖIEÖJ'EÖKMEÖLsEÖMœEÖNÄEÖOïEÖQEÖRFEÖStEÖT EÖUÏEÖVýEÖX,EÖY[EÖZ‹EÖ[¹EÖ\éEÖ^EÖ_GEÖ`uEÖa¤EÖbÐEÖcþEÖe*EÖfUEÖg€EÖh¨EÖiÐEÖjøEÖlEÖm@EÖnbEÖo„EÖp¢EÖq¿EÖrÚEÖsôEÖu EÖvEÖw2EÖxAEÖyNEÖzXEÖ{`EÖ|eEÖ}fEÖ~dEÕê*EÕê¸EÕëJEÕëÜEÕìnEÕíEÕí™EÕî1EÕîÈEÕïdEÕðEÕðšEÕñ8EÕñÕEÕòuEÕóEÕó¶EÕôXEÕôùEÕõœEÕö@EÕöäEÕ÷‰EÕø.EÕøÓEÕùyEÕú EÕúÆEÕûmEÕüEÕü»EÕýbEÕþ EÕþ±EÕÿXEÕÿÿEÖ¦EÖLEÖóEÖ™EÖ>EÖãEÖˆEÖ,EÖÐEÖsEÖEÖ¶EÖWEÖ÷EÖ –EÖ 5EÖ ÒEÖ nEÖ EÖ ¢EÖ ;EÖ ÒEÖhEÖþEÖ‘EÖ"EÖ´EÖBEÖÐEÖ\EÖæEÖnEÖôEÖzEÖüEÖ|EÖüEÖxEÖóEÖlEÖâEÖVEÖÈEÖ8EÖ¥EÖEÖxEÖÞEÖAEÖ¡EÖÿEÖYEÖ±EÖEÖYEÖ©EÖõEÖ>EÖ„EÖÇEÖêEÖíEÖíEÖêEÖåEÖÜEÖÑEÖÄEÖµEÖ¥EÖ’EÖ~EÖhEÖQEÖ8EÖEÖEÖéEÖÎEÖ²EÖ–EÖzEÖ]EÖBEÖ&EÖ EÖðEÖÖEÖ¾EÖ¦EÖEÖzEÖhEÖVEÖFEÖ8EÖ.EÖ$EÖEÖEÖEÖEÖEÖ'EÖ2EÖAEÖTEÖjEÖ„EÖ£EÖÇEÖîEÖEÖKEÖ€EÖ»EÖüEÖAEÖŒEÖÜEÖ4EÖ‘EÖóEÖ \EÖ ÄEÖ!,EÖ!šEÖ"EÖ"‡EÖ#EÖ#ŽEÖ$EÖ$¬EÖ%DEÖ%áEÖ&„EÖ',EÖ'ÚEÖ(‹EÖ)CEÖ)ÿEÖ*ÁEÖ+†EÖ,QEÖ- EÖ-óEÖ.ËEÖ/¨EÖ0ˆEÖ1lEÖ2TEÖ3@EÖ40EÖ5$EÖ6EÖ7EÖ8EÖ9EÖ:EÖ;EÖ<'EÖ=4EÖ>CEÖ?VEÖ@jEÖAEÖBšEÖC¶EÖDÒEÖEòEÖGEÖH7EÖI[EÖJ‚EÖK©EÖLÒEÖMüEÖO)EÖPUEÖQƒEÖR±EÖSáEÖUEÖVBEÖWrEÖX¤EÖYÕEÖ[EÖ\9EÖ]kEÖ^œEÖ_ÎEÖ`þEÖb0EÖc_EÖdEÖe½EÖfëEÖhEÖiDEÖjnEÖk—EÖl¾EÖmäEÖo EÖp-EÖqNEÖrmEÖsŒEÖt¦EÖu¿EÖvÖEÖwìEÖxýEÖz EÖ{EÖ|#EÖ}*EÖ~-EÖ.EÕè·EÕéJEÕéÞEÕêtEÕë EÕë¤EÕìEÖ ×EÖpEÖEÖœEÖ0EÖÃEÖTEÖãEÖpEÖüEÖ†EÖEÖ”EÖEÖšEÖEÖ˜EÖEÖŽEÖEÖzEÖìEÖ\EÖÉEÖ5EÖEÖEÖeEÖÅEÖ#EÖ}EÖÕEÖ)EÖ{EÖÉEÖEÖ]EÖ¢EÖÇEÖËEÖÍEÖÊEÖÆEÖ¿EÖ¶EÖªEÖœEÖ‹EÖzEÖfEÖREÖEÖ‹EÖÛEÖ2EÖEÖóEÖ ]EÖ ÆEÖ!/EÖ!žEÖ"EÖ"ŽEÖ#EÖ#—EÖ$$EÖ$¸EÖ%PEÖ%ïEÖ&“EÖ'=EÖ'ëEÖ(žEÖ)XEÖ*EÖ*ØEÖ+ EÖ,lEÖ->EÖ.EÖ.ëEÖ/ÊEÖ0¬EÖ1’EÖ2|EÖ3jEÖ4\EÖ5QEÖ6JEÖ7FEÖ8FEÖ9HEÖ:NEÖ;XEÖ„EÖ?˜EÖ@®EÖAÈEÖBãEÖDEÖE EÖFCEÖGfEÖHŒEÖI²EÖJÛEÖLEÖM1EÖN^EÖOŒEÖP»EÖQëEÖSEÖTNEÖUEÖV³EÖWæEÖYEÖZNEÖ[ƒEÖ\·EÖ]ìEÖ_EÖ`TEÖa‡EÖb¹EÖcìEÖeEÖfOEÖgEÖh®EÖiÜEÖkEÖl6EÖm_EÖnˆEÖo®EÖpÓEÖqøEÖsEÖt9EÖuVEÖvsEÖwŒEÖx¢EÖy¶EÖzÈEÖ{×EÖ|âEÖ}ëEÖ~ðEÖõEÕçJEÕçßEÕèxEÕéEÕé¬EÕêFEÕêäEÕëƒEÕì"EÕìÄEÕífEÕî EÕî®EÕïVEÕïûEÕð¤EÕñKEÕñôEÕòŸEÕóJEÕóõEÕô EÕõMEÕõúEÕö¨EÕ÷VEÕøEÕø³EÕùaEÕúEÕúÀEÕûoEÕüEÕüÌEÕý|EÕþ+EÕþÙEÕÿˆEÖ6EÖäEÖ’EÖ?EÖìEÖ—EÖBEÖíEÖ—EÖAEÖéEÖ‘EÖ8EÖÞEÖ ‚EÖ $EÖ ÈEÖ iEÖ EÖ ¨EÖ FEÖ âEÖ|EÖEÖ¬EÖBEÖ×EÖjEÖúEÖŠEÖEÖ¢EÖ,EÖ³EÖ8EÖºEÖÄEÖ?ÚEÖ@ôEÖBEÖC-EÖDLEÖEnEÖF’EÖG¸EÖHàEÖJ EÖK4EÖLbEÖMEÖN¿EÖOïEÖQ EÖRSEÖS†EÖTºEÖUïEÖW$EÖX[EÖYEÖZÇEÖ[þEÖ]4EÖ^kEÖ_¢EÖ`×EÖbEÖcCEÖdxEÖe¬EÖfßEÖhEÖiCEÖjsEÖk¢EÖlÒEÖmþEÖo(EÖpREÖqyEÖr EÖsÄEÖtæEÖvEÖw"EÖx@EÖyXEÖznEÖ{EÖ|’EÖ}¢EÖ~¬EÖ´EÖ€¸EÕåßEÕæxEÕçEÕç°EÕèNEÕèîEÕéŽEÕê2EÕêÕEÕëyEÕì EÕìÇEÕínEÕîEÕîÃEÕïnEÕðEÕðÈEÕñwEÕò$EÕòÔEÕóƒEÕô4EÕôåEÕõ•EÕöGEÕöúEÕ÷¬EÕø^EÕùEÕùÅEÕúxEÕû*EÕûÝEÕü‘EÕýDEÕýöEÕþ¨EÕÿ[EÖ EÖ½EÖnEÖEÖÎEÖ~EÖ,EÖÚEÖ‡EÖ3EÖßEÖŠEÖ2EÖÛEÖ ‚EÖ )EÖ ÍEÖ pEÖ EÖ ´EÖ TEÖ òEÖŽEÖ*EÖÃEÖZEÖðEÖ…EÖEÖ¨EÖ6EÖÂEÖMEÖÖEÖ\EÖßEÖaEÖàEÖ\EÖ×EÖOEÖÆEÖ8EÖ¨EÖEÖ‚EÖèEÖNEÖ°EÖEÖkEÖÅEÖEÖmEÖ½EÖ EÖSEÖ{EÖ‚EÖ…EÖ†EÖ„EÖ€EÖxEÖnEÖbEÖUEÖDEÖ4EÖEÖ EÖõEÖÞEÖÄEÖ¬EÖ’EÖxEÖ^EÖCEÖ(EÖEÖôEÖÙEÖÀEÖ¨EÖEÖzEÖdEÖPEÖ>EÖ-EÖEÖEÖEÖþEÖøEÖöEÖöEÖøEÖþEÖEÖEÖ$EÖ8EÖOEÖlEÖ‹EÖ¯EÖÚEÖEÖ9EÖpEÖ­EÖðEÖ8EÖ„EÖØEÖ0EÖEÖôEÖ `EÖ ËEÖ!5EÖ!§EÖ"EÖ"›EÖ#EÖ#©EÖ$8EÖ$ÎEÖ%iEÖ& EÖ&°EÖ'^EÖ(EÖ(ÆEÖ)‚EÖ*BEÖ+EÖ+ÓEÖ,¢EÖ-vEÖ.PEÖ/,EÖ0EÖ0ôEÖ1ÝEÖ2ÌEÖ3½EÖ4³EÖ5¬EÖ6¨EÖ7ªEÖ8­EÖ9´EÖ:¾EÖ;ËEÖ<ÜEÖ=îEÖ?EÖ@EÖA8EÖBVEÖCuEÖD˜EÖE¼EÖFâEÖH EÖI4EÖJ`EÖKEÖL¼EÖMìEÖOEÖPQEÖQ…EÖR¹EÖSðEÖU&EÖV]EÖW•EÖXÍEÖZEÖ[?EÖ\xEÖ]°EÖ^éEÖ`#EÖa[EÖb“EÖcËEÖeEÖf8EÖgoEÖh£EÖi×EÖk EÖl,EÖ?CEÖ@^EÖA|EÖB›EÖC½EÖDáEÖFEÖG0EÖHZEÖI†EÖJ´EÖKäEÖMEÖNHEÖO|EÖP°EÖQæEÖSEÖTVEÖUEÖVÈEÖXEÖYEÖ çEÖ ŽEÖ 5EÖ ÚEÖ |EÖEÖ¿EÖ\EÖúEÖ”EÖ,EÖÃEÖXEÖêEÖ|EÖ EÖ–EÖ EÖ¦EÖ,EÖ­EÖ.EÖ¬EÖ&EÖžEÖEÖ‡EÖöEÖdEÖÍEÖ4EÖ˜EÖùEÖVEÖ±EÖEÖ\EÖ­EÖùEÖ$EÖ/EÖ5EÖ8EÖ8EÖ6EÖ1EÖ)EÖ EÖEÖEÖöEÖåEÖÒEÖ½EÖ¨EÖ‘EÖyEÖ`EÖHEÖ/EÖEÖýEÖãEÖÊEÖ°EÖ™EÖEÖjEÖUEÖAEÖ-EÖEÖ EÖþEÖòEÖèEÖáEÖÜEÖÚEÖÚEÖßEÖæEÖðEÖüEÖEÖ#EÖgEÖ?EÖ@žEÖA½EÖBßEÖDEÖE)EÖFREÖG|EÖH©EÖI×EÖKEÖL9EÖMlEÖN¡EÖO×EÖQEÖRGEÖS€EÖTºEÖUõEÖW1EÖXmEÖYªEÖZçEÖ\%EÖ]bEÖ^ EÖ_ÝEÖaEÖbXEÖc•EÖdÑEÖf EÖgHEÖh‚EÖi»EÖjôEÖl+EÖmbEÖn—EÖoÊEÖpüEÖr,EÖsZEÖt‡EÖu²EÖvÚEÖxEÖy$EÖzFEÖ{eEÖ|‚EÖ}œEÖ~²EÖÇEÖ€ØEÖæEÖ‚òEÕáÂEÕâdEÕã EÕã°EÕäXEÕåEÕå¬EÕæYEÕçEÕç¶EÕèfEÕéEÕéÊEÕê~EÕë3EÕëéEÕì EÕíXEÕîEÕîÉEÕï„EÕð>EÕðùEÕñµEÕòqEÕó.EÕóëEÕô¨EÕõeEÕö#EÕöáEÕ÷ŸEÕø]EÕùEÕùÙEÕú—EÕûTEÕüEÕüÎEÕý‹EÕþGEÕÿEÕÿ¾EÖxEÖ3EÖìEÖ¤EÖ\EÖEÖÊEÖEÖ2EÖæEÖ—EÖHEÖöEÖ ¤EÖ PEÖ üEÖ ¦EÖ NEÖ ôEÖ ˜EÖ¤EÖ?ÀEÖ@ÞEÖAÿEÖC"EÖDJEÖErEÖFœEÖGÊEÖH÷EÖJ(EÖKZEÖLŽEÖMÄEÖNûEÖP4EÖQlEÖR§EÖSãEÖUEÖV]EÖW›EÖXÚEÖZEÖ[WEÖ\—EÖ]×EÖ_EÖ`WEÖa—EÖbÖEÖdEÖeSEÖf‘EÖgÏEÖi EÖjGEÖk‚EÖlºEÖmóEÖo*EÖp`EÖq”EÖrÆEÖs÷EÖu&EÖvREÖw}EÖx¤EÖyÊEÖzîEÖ|EÖ}.EÖ~JEÖdEÖ€zEÖŽEÖ‚žEÖƒ«EÕàjEÕáEÕá¶EÕâ`EÕã EÕã¹EÕägEÕåEÕåÉEÕæzEÕç.EÕçãEÕè™EÕéPEÕê EÕêÃEÕë}EÕì7EÕìóEÕí°EÕînEÕï,EÕïëEÕðªEÕñjEÕò*EÕòêEÕó«EÕôlEÕõ.EÕõîEÕö°EÕ÷rEÕø4EÕøôEÕù¶EÕúwEÕû8EÕûøEÕü¸EÕýxEÕþ7EÕþöEÕÿ´EÖrEÖ.EÖêEÖ¦EÖ`EÖEÖÒEÖ‰EÖ?EÖôEÖ¨EÖZEÖ EÖ »EÖ iEÖ EÖ ÂEÖ jEÖ EÖ ¹EÖ^EÖEÖ¡EÖ@EÖÜEÖvEÖEÖ¦EÖ9EÖËEÖZEÖèEÖrEÖúEÖEÖEÖ‚EÖEÖzEÖñEÖfEÖØEÖFEÖ±EÖEÖEÖâEÖ?EÖšEÖòEÖFEÖ—EÖÆEÖÒEÖÛEÖáEÖåEÖæEÖâEÖÞEÖÖEÖËEÖÀEÖ²EÖ£EÖ‘EÖEÖkEÖUEÖ?EÖ)EÖEÖúEÖâEÖÊEÖ²EÖšEÖ‚EÖkEÖUEÖ@EÖ+EÖEÖEÖõEÖæEÖÚEÖÎEÖÆEÖÀEÖ¼EÖºEÖ¼EÖÀEÖÈEÖÓEÖãEÖôEÖ EÖ$EÖBEÖeEÖŒEÖ·EÖçEÖEÖWEÖ–EÖÜEÖ&EÖvEÖÍEÖ*EÖEÖöEÖ eEÖ ÔEÖ!BEÖ!¸EÖ"3EÖ"´EÖ#ÞEÖ?üEÖAEÖB@EÖCfEÖDŽEÖE¹EÖFæEÖHEÖIEEÖJxEÖK¬EÖLâEÖNEÖOSEÖPEÖQÉEÖSEÖTDEÖU‚EÖVÁEÖXEÖYCEÖZƒEÖ[ÅEÖ]EÖ^IEÖ_‹EÖ`ÍEÖbEÖcQEÖd‘EÖeÒEÖgEÖhREÖiEÖjÏEÖl EÖmGEÖnEÖo»EÖpóEÖr'EÖs\EÖtEÖuÀEÖvïEÖxEÖyEEÖznEÖ{”EÖ|¸EÖ}ØEÖ~ôEÖ€EÖ(EÖ‚>EÖƒPEÖ„`EÕßEÕßÁEÕàlEÕáEÕáÆEÕâvEÕã(EÕãÚEÕäEÕåFEÕåûEÕæ´EÕçnEÕè'EÕèãEÕé EÕê^EÕëEÕëÜEÕì›EÕí\EÕîEÕîàEÕï¢EÕðeEÕñ)EÕñìEÕò±EÕóuEÕô9EÕôÿEÕõÃEÕö‰EÕ÷MEÕøEÕø×EÕù›EÕú`EÕû#EÕûçEÕüªEÕýlEÕþ/EÕþðEÕÿ±EÖpEÖ0EÖïEÖ¬EÖiEÖ$EÖÞEÖ˜EÖPEÖEÖ½EÖpEÖ $EÖ ÖEÖ …EÖ 4EÖ àEÖ ‹EÖ 4EÖ ÜEÖEÖ%EÖÇEÖfEÖEÖŸEÖ8EÖÏEÖdEÖöEÖ…EÖEÖEÖ$EÖªEÖ,EÖ¬EÖ(EÖ¤EÖEÖŽEÖÿEÖmEÖØEÖ?EÖ¢EÖEÖ`EÖºEÖEÖbEÖ“EÖ¡EÖ«EÖ³EÖ·EÖ¹EÖ¸EÖ´EÖ®EÖ¤EÖšEÖEÖ~EÖmEÖ\EÖIEÖ5EÖ EÖ EÖôEÖÜEÖÆEÖ®EÖ–EÖ~EÖhEÖREÖEÖÇEÖOEÖÔEÖVEÖÖEÖQEÖËEÖAEÖµEÖ$EÖEÖúEÖ`EÖÃEÖ"EÖ}EÖÕEÖ*EÖ\EÖkEÖxEÖEÖ‡EÖ‰EÖ‰EÖ†EÖEÖzEÖpEÖdEÖVEÖHEÖ6EÖ$EÖEÖýEÖéEÖÒEÖ¼EÖ¦EÖEÖxEÖbEÖLEÖ7EÖ"EÖEÖúEÖèEÖØEÖÉEÖ¼EÖ°EÖ¦EÖŸEÖšEÖ˜EÖ˜EÖšEÖ EÖªEÖµEÖÆEÖÙEÖðEÖ EÖ+EÖPEÖwEÖ¤EÖÖEÖEÖIEÖ‹EÖÑEÖEÖpEÖÈEÖ&EÖŒEÖ÷EÖ iEÖ ÚEÖ!JEÖ!ÁEÖ">EÖ"ÂEÖ#MEÖ#ÞEÖ$uEÖ%EÖ%µEÖ&^EÖ' EÖ'ÀEÖ(zEÖ);EÖ)ÿEÖ*ÉEÖ+˜EÖ,lEÖ-FEÖ."EÖ/EÖ/ìEÖ0ØEÖ1ÈEÖ2¼EÖ3´EÖ4²EÖ5²EÖ6¶EÖ7¾EÖ8ÉEÖ9ØEÖ:êEÖ<EÖ=EÖ>4EÖ?TEÖ@vEÖAšEÖBÂEÖCëEÖEEÖFEEÖGvEÖH©EÖIÞEÖKEÖLLEÖM†EÖNÂEÖPEÖQ>EÖR~EÖS¾EÖUEÖVCEÖW†EÖXËEÖZEÖ[UEÖ\›EÖ]àEÖ_&EÖ`nEÖa´EÖbùEÖd?EÖe„EÖfÉEÖhEÖiQEÖj”EÖkÖEÖmEÖnVEÖo•EÖpÑEÖrEÖsFEÖt€EÖu·EÖvëEÖxEÖyNEÖz}EÖ{ªEÖ|ÒEÖ}úEÖEÖ€@EÖ^EÖ‚{EÖƒ•EÖ„ªEÖ…¼EÕÜŒEÕÝ:EÕÝêEÕÞžEÕßREÕàEÕàÀEÕáxEÕâ2EÕâìEÕã«EÕäiEÕå(EÕåêEÕæ«EÕçmEÕè2EÕèöEÕé»EÕê‚EÕëHEÕìEÕìÙEÕí¡EÕîkEÕï4EÕïÿEÕðÉEÕñ”EÕò_EÕó*EÕóöEÕôÀEÕõŒEÕöWEÕ÷"EÕ÷íEÕø·EÕù‚EÕúKEÕûEÕûÝEÕü¦EÕýnEÕþ4EÕþûEÕÿÀEÖ…EÖIEÖ EÖÍEÖŽEÖMEÖ EÖÈEÖ„EÖ>EÖ÷EÖ®EÖ dEÖ EÖ ÊEÖ {EÖ *EÖ ØEÖ ‚EÖ,EÖÓEÖxEÖEÖ¼EÖZEÖöEÖEÖ&EÖ»EÖNEÖÝEÖjEÖôEÖ{EÖEÖEÖEÖ{EÖóEÖhEÖÛEÖJEÖµEÖEÖ‚EÖãEÖ@EÖšEÖðEÖ#EÖ5EÖBEÖMEÖUEÖXEÖYEÖXEÖTEÖMEÖDEÖ:EÖ.EÖ EÖEÖÿEÖíEÖÚEÖÆEÖ±EÖœEÖ†EÖqEÖZEÖEEÖ0EÖEÖEÖôEÖâEÖÐEÖÀEÖ²EÖ¥EÖšEÖ‘EÖŒEÖ†EÖ„EÖ…EÖˆEÖEÖ™EÖ¦EÖ¸EÖËEÖãEÖEÖ EÖEEÖnEÖ›EÖÎEÖEÖCEÖ†EÖÍEÖEÖnEÖÆEÖ&EÖEÖøEÖ jEÖ ÜEÖ!NEÖ!ÇEÖ"EEÖ"ÊEÖ#WEÖ#éEÖ$€EÖ%EÖ%ÃEÖ&mEÖ'EÖ'ÓEÖ(ŽEÖ)PEÖ*EÖ*áEÖ+±EÖ,‡EÖ-bEÖ.@EÖ/$EÖ0EÖ0úEÖ1ìEÖ2âEÖ3ÜEÖ4ÚEÖ5ÜEÖ6âEÖ7ìEÖ8ùEÖ: EÖ;EÖ<5EÖ=PEÖ>nEÖ?ŽEÖ@²EÖAØEÖCEÖD-EÖE[EÖFŠEÖG½EÖHòEÖJ(EÖKaEÖLœEÖMØEÖOEÖPTEÖQ”EÖRÖEÖTEÖU]EÖV¢EÖWæEÖY-EÖZtEÖ[»EÖ]EÖ^KEÖ_“EÖ`ÛEÖb#EÖckEÖd³EÖeúEÖgAEÖhˆEÖiÌEÖkEÖlUEÖm˜EÖnÚEÖpEÖqXEÖr—EÖsÒEÖuEÖvFEÖw{EÖx±EÖyâEÖ{EÖ|AEÖ}nEÖ~–EÖ»EÖ€àEÖ‚EÖƒEÖ„8EÖ…QEÖ†dEÕÛLEÕÛþEÕܲEÕÝfEÕÞEÕÞÖEÕßEÕàLEÕáEÕáÇEÕâ†EÕãHEÕä EÕäÍEÕå’EÕæXEÕç EÕçèEÕè°EÕéxEÕêCEÕëEÕëÙEÕì¤EÕíqEÕî=EÕï EÕïØEÕð§EÕñuEÕòCEÕóEÕóßEÕô­EÕõ{EÕöIEÕ÷EÕ÷åEÕø³EÕùEÕúLEÕûEÕûâEÕü­EÕýxEÕþAEÕÿ EÕÿÑEÖ˜EÖ]EÖ"EÖåEÖ¨EÖjEÖ)EÖèEÖ¤EÖ`EÖEÖÓEÖ ŠEÖ ?EÖ óEÖ ¤EÖ TEÖ EÖ ®EÖXEÖEÖ¤EÖIEÖéEÖˆEÖ$EÖ¾EÖTEÖêEÖ|EÖ EÖ—EÖ EÖ§EÖ+EÖ¬EÖ*EÖ¥EÖEÖEÖEÖmEÖØEÖ>EÖ¢EÖEÖ]EÖµEÖêEÖýEÖ EÖEÖ EÖ%EÖ'EÖ'EÖ%EÖ EÖEÖEÖEÖöEÖèEÖ×EÖÆEÖ´EÖ¢EÖŽEÖxEÖdEÖPEÖ;EÖ&EÖEÖýEÖêEÖØEÖÆEÖ¶EÖ§EÖšEÖEÖƒEÖ{EÖuEÖrEÖpEÖrEÖvEÖ}EÖˆEÖ–EÖ§EÖ½EÖÕEÖòEÖEÖ8EÖcEÖ’EÖÅEÖþEÖ;EÖ~EÖÇEÖEÖjEÖÃEÖ$EÖ‹EÖøEÖ lEÖ ßEÖ!REÖ!ËEÖ"KEÖ"ÐEÖ#_EÖ#ñEÖ$‹EÖ%*EÖ%ÐEÖ&|EÖ'-EÖ'äEÖ(¡EÖ)bEÖ*+EÖ*øEÖ+ÉEÖ, EÖ-|EÖ.^EÖ/CEÖ0,EÖ1EÖ2EÖ3EÖ4EÖ5EÖ6EÖ7 EÖ8EÖ9'EÖ::EÖ;PEÖ¤EÖ?ÆEÖ@ìEÖBEÖC?EÖDlEÖEœEÖFÎEÖHEÖI8EÖJrEÖK«EÖLèEÖN&EÖOeEÖP¦EÖQèEÖS,EÖTpEÖU·EÖVýEÖXEEÖYŒEÖZÖEÖ\EÖ]hEÖ^²EÖ_üEÖaFEÖbEÖcÚEÖe$EÖflEÖg¶EÖhýEÖjEEÖk‹EÖlÒEÖnEÖoZEÖpœEÖqÜEÖsEÖtZEÖu–EÖvÒEÖx EÖy@EÖztEÖ{§EÖ|ÖEÖ~EÖ-EÖ€WEÖ|EÖ‚žEÖƒ¼EÖ„ÚEÖ…óEÖ‡EÕÚEÕÚÇEÕÛ~EÕÜ6EÕÜðEÕݪEÕÞfEÕß&EÕßæEÕà¨EÕájEÕâ-EÕâòEÕã¹EÕäEÕåJEÕæEÕæÜEÕç¨EÕètEÕéAEÕêEÕêÞEÕë¬EÕì{EÕíJEÕîEÕîìEÕï¼EÕðEÕñ_EÕò/EÕóEÕóÑEÕô£EÕõtEÕöDEÕ÷EÕ÷æEÕøµEÕù„EÕúREÕû!EÕûïEÕü¼EÕýˆEÕþTEÕÿEÕÿçEÖ¯EÖwEÖ>EÖEÖÆEÖŠEÖJEÖ EÖÈEÖ†EÖAEÖûEÖ ²EÖ hEÖ EÖ ÐEÖ €EÖ .EÖ ÚEÖ…EÖ,EÖÒEÖvEÖEÖ¶EÖQEÖìEÖ‚EÖEÖ¨EÖ6EÖÃEÖLEÖÒEÖUEÖÔEÖQEÖÊEÖ@EÖ³EÖ"EÖEÖøEÖ\EÖ½EÖEÖtEÖ«EÖ¿EÖÐEÖÝEÖçEÖîEÖñEÖòEÖðEÖíEÖçEÖÞEÖÔEÖÉEÖ»EÖ¬EÖ›EÖ‹EÖyEÖfEÖSEÖ>EÖ*EÖEÖEÖðEÖÜEÖÊEÖ¸EÖ¨EÖ˜EÖŠEÖ}EÖrEÖiEÖbEÖ]EÖZEÖZEÖ\EÖ`EÖjEÖtEÖƒEÖ–EÖ«EÖÅEÖâEÖEÖ,EÖWEÖ†EÖºEÖôEÖ2EÖvEÖÀEÖEÖeEÖÀEÖ!EÖŠEÖ÷EÖ mEÖ áEÖ!TEÖ!ÏEÖ"PEÖ"ØEÖ#fEÖ#úEÖ$”EÖ%6EÖ%ÝEÖ&ŠEÖ'ÛEÖ@EÖA&EÖBPEÖC}EÖD¬EÖEÝEÖGEÖHHEÖI€EÖJºEÖKöEÖM4EÖNuEÖO¶EÖPøEÖREÕå EÕå×EÕæ¦EÕçtEÕèCEÕéEÕéåEÕê¶EÕëˆEÕì[EÕí.EÕîEÕîÔEÕï¨EÕð|EÕñPEÕò$EÕòøEÕóÌEÕô EÕõsEÕöFEÕ÷EÕ÷ìEÕø¾EÕùEÕú`EÕû1EÕüEÕüÏEÕýEÕþjEÕÿ6EÖEÖÌEÖ”EÖ\EÖ$EÖéEÖ­EÖpEÖ0EÖðEÖ®EÖjEÖ $EÖ ÞEÖ ”EÖ HEÖ üEÖ ¬EÖ \EÖEÖ³EÖZEÖEÖ¤EÖFEÖäEÖ€EÖEÖ°EÖCEÖÔEÖbEÖíEÖuEÖúEÖ|EÖúEÖwEÖïEÖcEÖÕEÖBEÖ­EÖEÖvEÖÖEÖ1EÖjEÖ€EÖ‘EÖ EÖ¬EÖ³EÖ¹EÖ»EÖ»EÖ¹EÖ³EÖ­EÖ¤EÖ™EÖŒEÖEÖpEÖ`EÖOEÖ=EÖ+EÖEÖEÖòEÖßEÖÌEÖ»EÖªEÖ˜EÖ‰EÖzEÖmEÖaEÖWEÖOEÖHEÖEEÖBEÖDEÖFEÖLEÖUEÖbEÖrEÖ„EÖœEÖ·EÖÔEÖøEÖEÖKEÖ|EÖ±EÖìEÖ+EÖpEÖ»EÖ EÖaEÖ½EÖ EÖŠEÖøEÖ oEÖ åEÖ!YEÖ!ÕEÖ"VEÖ"ßEÖ#oEÖ$EÖ$ EÖ%CEÖ%ëEÖ&šEÖ'MEÖ(EÖ(ÇEÖ)ŒEÖ*UEÖ+%EÖ+ûEÖ,ÕEÖ-´EÖ.—EÖ/€EÖ0lEÖ1^EÖ2VEÖ3PEÖ4NEÖ5REÖ6XEÖ7cEÖ8qEÖ9ƒEÖ:šEÖ;²EÖ<ÏEÖ=îEÖ?EÖ@7EÖA`EÖBŒEÖCºEÖDêEÖFEÖGTEÖHŒEÖIÅEÖKEÖL@EÖM€EÖNÀEÖPEÖQHEÖREÖSÕEÖUEÖVgEÖW²EÖXýEÖZHEÖ[•EÖ\âEÖ^/EÖ_|EÖ`ÊEÖbEÖcfEÖd³EÖfEÖgMEÖhšEÖiåEÖk0EÖl{EÖmÄEÖo EÖpSEÖqšEÖrÝEÖt EÖubEÖv¢EÖwàEÖyEÖzWEÖ{EÖ|ÃEÖ}öEÖ(EÖ€VEÖ‚EÖ‚«EÖƒÑEÖ„ôEÖ†EÖ‡/EÖˆHEÕ×´EÕØlEÕÙ*EÕÙæEÕÚ¤EÕÛdEÕÜ'EÕÜêEÕݯEÕÞuEÕß>EÕàEÕàÑEÕáœEÕâjEÕã8EÕäEÕäÕEÕå¨EÕæxEÕçJEÕèEÕèñEÕéÆEÕêšEÕëpEÕìEEÕíEÕíñEÕîÈEÕïžEÕðuEÕñKEÕò"EÕòøEÕóÏEÕô¥EÕõ{EÕöPEÕ÷&EÕ÷úEÕøÏEÕù¢EÕúvEÕûHEÕüEÕüêEÕýºEÕþˆEÕÿVEÖ#EÖïEÖ¹EÖƒEÖJEÖEÖÖEÖšEÖ\EÖEÖÚEÖ˜EÖ REÖ EÖ ÃEÖ yEÖ ,EÖ ÞEÖ ŒEÖ9EÖäEÖŒEÖ1EÖÕEÖuEÖEÖ¯EÖHEÖÞEÖqEÖEÖEÖEÖ EÖ#EÖ¥EÖ"EÖœEÖEÖ†EÖöEÖcEÖÊEÖ0EÖEÖîEÖ(EÖ?EÖSEÖbEÖpEÖyEÖEÖƒEÖ„EÖƒEÖEÖyEÖrEÖhEÖ]EÖPEÖBEÖ4EÖ$EÖEÖEÖðEÖÞEÖÌEÖºEÖªEÖ˜EÖˆEÖxEÖhEÖ\EÖOEÖDEÖ;EÖ4EÖ.EÖ,EÖ*EÖ,EÖ0EÖ6EÖ@EÖOEÖ^EÖrEÖ‹EÖ¦EÖÆEÖêEÖEÖ@EÖpEÖ§EÖâEÖ#EÖiEÖ´EÖEÖ]EÖºEÖEÖ‰EÖùEÖ pEÖ çEÖ!]EÖ!ÚEÖ"]EÖ"æEÖ#wEÖ$EÖ$«EÖ%OEÖ%ùEÖ&¨EÖ'^EÖ(EÖ(ÚEÖ) EÖ*lEÖ+"EÖ?HEÖ@oEÖAšEÖBÆEÖCöEÖE*EÖF^EÖG•EÖHÏEÖJ EÖKHEÖLˆEÖMÊEÖO EÖPREÖQ˜EÖRàEÖT(EÖUrEÖV¾EÖX EÖYVEÖZ¤EÖ[òEÖ]@EÖ^EÖ_ßEÖa.EÖb~EÖcÍEÖeEÖflEÖgºEÖiEÖjVEÖk£EÖlîEÖn:EÖo„EÖpÌEÖrEÖs\EÖtŸEÖuâEÖw%EÖxcEÖy¢EÖzÞEÖ|EÖ}NEÖ~„EÖµEÖ€æEÖ‚EÖƒVEÖ?|EÖ@¥EÖAÑEÖCEÖD1EÖEeEÖFœEÖGÕEÖIEÖJNEÖKEÖLÎEÖNEÖOVEÖPœEÖQäEÖS.EÖTxEÖUÄEÖWEÖX^EÖY­EÖZüEÖ\LEÖ]EÖ^íEÖ`?EÖaEÖbàEÖd1EÖeƒEÖfÓEÖh$EÖitEÖjÃEÖlEÖm_EÖn¬EÖoøEÖqBEÖrŠEÖsÔEÖuEÖv_EÖw¢EÖxäEÖz"EÖ{aEÖ|›EÖ}ÔEÖ EÖ€>EÖqEÖ‚ŸEÖƒÌEÖ„ôEÖ†EÖ‡>EÖˆ\EÖ‰zEÕÕqEÕÖ.EÕÖîEÕ×°EÕØsEÕÙ8EÕÙþEÕÚÈEÕÛ’EÕÜ\EÕÝ)EÕÝöEÕÞÆEÕß—EÕàhEÕá;EÕâEÕâãEÕã¸EÕäEÕåfEÕæ>EÕçEÕçðEÕèÉEÕé£EÕê}EÕëYEÕì4EÕíEÕíêEÕîÆEÕï¢EÕð~EÕñYEÕò4EÕóEÕóëEÕôÅEÕõŸEÕöxEÕ÷QEÕø*EÕùEÕùÙEÕú°EÕû…EÕüYEÕý.EÕþEÕþÒEÕÿ¢EÖqEÖ@EÖ EÖØEÖ EÖiEÖ0EÖôEÖ¸EÖzEÖ:EÖøEÖ ´EÖ nEÖ %EÖ ÚEÖ ŽEÖ @EÖ îEÖ›EÖEEÖìEÖ’EÖ4EÖÓEÖpEÖ EÖ¢EÖ6EÖÇEÖVEÖàEÖgEÖìEÖnEÖìEÖfEÖÝEÖPEÖÁEÖ-EÖ•EÖùEÖZEÖ˜EÖ±EÖÈEÖÛEÖëEÖ÷EÖEÖEÖ EÖ EÖ EÖEÖEÖüEÖóEÖéEÖÞEÖÑEÖÄEÖµEÖ¦EÖ˜EÖˆEÖxEÖhEÖXEÖJEÖŠEÖ?±EÖ@ÜEÖBEÖC:EÖDlEÖE¢EÖFÚEÖHEÖIREÖJEÖKÑEÖMEÖNYEÖO EÖPèEÖR1EÖS|EÖTÈEÖVEÖWdEÖX³EÖZEÖ[TEÖ\¥EÖ]÷EÖ_IEÖ`›EÖaïEÖcAEÖd•EÖeçEÖg9EÖh‹EÖiÜEÖk-EÖl}EÖmÌEÖoEÖphEÖq´EÖrÿEÖtHEÖuEÖvÖEÖxEÖy_EÖz EÖ{ÞEÖ}EÖ~VEÖŽEÖ€ÄEÖöEÖƒ&EÖ„TEÖ…€EÖ†§EÖ‡ËEÖˆìEÖŠ EÕÔVEÕÕEÕÕØEÕÖœEÕ×aEÕØ*EÕØòEÕÙ¼EÕÚˆEÕÛVEÕÜ%EÕÜôEÕÝÆEÕÞšEÕßmEÕàBEÕáEÕáîEÕâÇEÕãŸEÕäxEÕåSEÕæ-EÕç EÕçäEÕèÁEÕéžEÕê{EÕëXEÕì6EÕíEÕíòEÕîÐEÕï®EÕðŒEÕñjEÕòGEÕó$EÕôEÕôÞEÕõ¹EÕö•EÕ÷oEÕøJEÕù#EÕùüEÕúÓEÕû«EÕü€EÕýUEÕþ)EÕþûEÕÿÎEÖEÖlEÖ:EÖEÖÐEÖ™EÖ`EÖ&EÖêEÖ¬EÖlEÖ )EÖ åEÖ ŸEÖ XEÖ EÖ ÀEÖ pEÖEÖÌEÖuEÖEÖÁEÖbEÖEÖžEÖ6EÖÌEÖ`EÖðEÖ}EÖEÖŽEÖEÖEÖ EÖ†EÖúEÖlEÖÙEÖDEÖªEÖ EÖKEÖgEÖEÖ“EÖ¥EÖ²EÖ¾EÖÅEÖÊEÖÍEÖÎEÖÌEÖÈEÖÃEÖ»EÖ²EÖ¨EÖEÖ’EÖ„EÖvEÖhEÖZEÖLEÖ=EÖ/EÖ"EÖEÖ EÖüEÖòEÖéEÖâEÖÜEÖØEÖÖEÖÖEÖØEÖÝEÖåEÖîEÖüEÖ EÖ EÖ7EÖSEÖrEÖ”EÖ¼EÖçEÖEÖLEÖ†EÖÄEÖ EÖSEÖ EÖ÷EÖQEÖ²EÖEÖ†EÖûEÖ vEÖ ðEÖ!jEÖ!êEÖ"pEÖ"þEÖ#“EÖ$.EÖ$ÎEÖ%vEÖ&#EÖ&ÖEÖ'EÖ(OEÖ)EÖ)ÞEÖ*®EÖ+ƒEÖ,^EÖ->EÖ."EÖ/ EÖ/úEÖ0íEÖ1äEÖ2áEÖ3àEÖ4æEÖ5îEÖ6ûEÖ8 EÖ9 EÖ:8EÖ;TEÖ¼EÖ?åEÖAEÖB@EÖCrEÖD¦EÖEÞEÖGEÖHTEÖI‘EÖJÒEÖLEÖMYEÖNŸEÖOæEÖQ0EÖR{EÖSÈEÖUEÖVdEÖW³EÖYEÖZVEÖ[¨EÖ\üEÖ^OEÖ_¢EÖ`öEÖbKEÖcŸEÖdôEÖfHEÖg›EÖhîEÖjBEÖk”EÖlæEÖn7EÖo†EÖpÕEÖr"EÖsnEÖt¹EÖvEÖwKEÖx‘EÖyÖEÖ{EÖ|YEÖ}˜EÖ~ÔEÖ€EÖBEÖ‚wEÖƒ©EÖ„ØEÖ†EÖ‡.EÖˆTEÖ‰wEÖŠ–EÕÓDEÕÔEÕÔÌEÕÕ‘EÕÖWEÕ× EÕ×ìEÕØ¸EÕÙ‡EÕÚWEÕÛ(EÕÛøEÕÜÍEÕÝ¢EÕÞxEÕßPEÕà(EÕáEÕáÚEÕâ¶EÕãEÕämEÕåJEÕæ'EÕçEÕçäEÕèÄEÕé¢EÕê‚EÕëbEÕìAEÕí"EÕîEÕîãEÕïÂEÕð¢EÕñ‚EÕò`EÕó@EÕôEÕôýEÕõÚEÕö·EÕ÷”EÕønEÕùJEÕú$EÕúýEÕûÔEÕü¬EÕý‚EÕþWEÕÿ*EÕÿýEÖÎEÖEÖlEÖ8EÖEÖÌEÖ”EÖYEÖEÖàEÖ EÖ ^EÖ EÖ ÔEÖ ŠEÖ @EÖ óEÖ ¤EÖREÖþEÖ¦EÖMEÖðEÖ‘EÖ/EÖËEÖbEÖ÷EÖ‰EÖEÖ£EÖ+EÖ°EÖ2EÖ°EÖ+EÖ¢EÖEÖ„EÖðEÖWEÖ¼EÖýEÖEÖ3EÖIEÖÖkEÖxEÖEÖˆEÖŠEÖŒEÖEÖŠEÖ†EÖ€EÖyEÖqEÖfEÖ\EÖPEÖDEÖ6EÖ)EÖEÖEÖEÖöEÖêEÖßEÖÕEÖÌEÖÄEÖ¾EÖ¸EÖ¶EÖ¶EÖ¶EÖºEÖ¿EÖÈEÖÓEÖâEÖôEÖEÖ!EÖ=EÖ^EÖ‚EÖ©EÖ×EÖEÖ>EÖyEÖ¹EÖÿEÖIEÖ™EÖïEÖKEÖ­EÖEÖ„EÖúEÖ vEÖ òEÖ!lEÖ!íEÖ"vEÖ#EÖ#›EÖ$6EÖ$ØEÖ%‚EÖ&1EÖ&åEÖ' EÖ(`EÖ)'EÖ)òEÖ*ÂEÖ+šEÖ,vEÖ-VEÖ.îEÖ@EÖAFEÖBvEÖC©EÖDßEÖFEÖGTEÖHEÖIÐEÖKEÖLVEÖMœEÖNãEÖP-EÖQxEÖRÄEÖTEÖUbEÖV²EÖXEÖYVEÖZ¨EÖ[üEÖ]PEÖ^¦EÖ_ûEÖaPEÖb¦EÖcüEÖeREÖf§EÖgüEÖiREÖj¦EÖkúEÖmLEÖnŸEÖoðEÖq@EÖrEÖsÝEÖu*EÖvvEÖw¾EÖyEÖzMEÖ{EÖ|ÒEÖ~EÖNEÖ€‹EÖÂEÖ‚ùEÖ„,EÖ…\EÖ†ŠEÖ‡¶EÖˆÜEÖŠEÖ‹ EÕÒ:EÕÒÿEÕÓÄEÕÔŒEÕÕVEÕÖ"EÕÖîEÕ×¾EÕØŒEÕÙ]EÕÚ2EÕÛEÕÛÜEÕܱEÕÝŠEÕÞbEÕß>EÕàEÕàóEÕáÑEÕâ®EÕãEÕälEÕåKEÕæ+EÕç EÕçíEÕèÎEÕé°EÕê’EÕëtEÕìVEÕí8EÕîEÕîüEÕïÞEÕðÀEÕñ¡EÕò‚EÕócEÕôCEÕõ"EÕöEÕöàEÕ÷½EÕøšEÕùvEÕúREÕû,EÕüEÕüÜEÕý²EÕþˆEÕÿ\EÖ0EÖEÖÒEÖ EÖmEÖ8EÖEÖÊEÖEÖTEÖEÖÕEÖ “EÖ NEÖ EÖ ÀEÖ tEÖ &EÖ ×EÖ„EÖ/EÖÖEÖ|EÖ EÖ¾EÖ[EÖõEÖŒEÖ EÖ°EÖ>EÖÈEÖNEÖÑEÖQEÖÎEÖFEÖ»EÖ-EÖšEÖEÖiEÖ«EÖÉEÖåEÖýEÖEÖ!EÖ0EÖ:EÖBEÖHEÖKEÖLEÖJEÖHEÖDEÖ>EÖ6EÖ.EÖ%EÖEÖEÖEÖøEÖíEÖàEÖÕEÖÊEÖÀEÖ¶EÖ¬EÖ¤EÖžEÖšEÖ–EÖ”EÖ•EÖ—EÖœEÖ£EÖ®EÖºEÖÊEÖÜEÖòEÖ EÖ*EÖKEÖpEÖšEÖÈEÖûEÖ2EÖnEÖ°EÖöEÖBEÖ”EÖëEÖHEÖ¬EÖEÖ…EÖüEÖ zEÖ öEÖ!rEÖ!õEÖ"~EÖ#EÖ#¦EÖ$CEÖ$çEÖ%EÖ&@EÖ&÷EÖ'²EÖ(tEÖ)EÕÚEÕÚìEÕÛÄEÕÜžEÕÝyEÕÞUEÕß2EÕàEÕàîEÕáÎEÕâ¯EÕãEÕärEÕåTEÕæ6EÕçEÕçüEÕèßEÕéÃEÕê§EÕë‹EÕìoEÕíSEÕî7EÕïEÕïþEÕðáEÕñÄEÕò¦EÕóˆEÕôjEÕõKEÕö,EÕ÷ EÕ÷êEÕøÈEÕù¥EÕúEÕû\EÕü6EÕýEÕýæEÕþ¼EÕÿEÖdEÖ6EÖEÖÔEÖ¢EÖnEÖ8EÖþEÖÄEÖˆEÖJEÖ EÖ ÇEÖ ‚EÖ %EÖ?PEÖ@|EÖA­EÖBàEÖDEÖENEÖFŠEÖGÈEÖIEÖJJEÖKEÖLÖEÖNEÖOhEÖP´EÖREÖSREÖT¢EÖUôEÖWGEÖX›EÖYðEÖ[FEÖ\œEÖ]óEÖ_KEÖ`£EÖaûEÖcTEÖd¬EÖfEÖg]EÖhµEÖj EÖkdEÖlºEÖnEÖoeEÖp¹EÖr EÖs^EÖt®EÖuþEÖwLEÖx˜EÖyâEÖ{*EÖ|qEÖ}¶EÖ~øEÖ€8EÖvEÖ‚²EÖƒêEÖ… EÖ†SEÖ‡„EÖˆ°EÖ‰ÛEÖ‹EÖŒ%EÕÐ:EÕÑEÕÑÊEÕÒ”EÕÓcEÕÔ2EÕÕEÕÕÕEÕÖ§EÕ×~EÕØREÕÙ,EÕÚEÕÚßEÕÛ»EÕÜ—EÕÝvEÕÞSEÕß4EÕàEÕàõEÕá×EÕâºEÕãEÕäEÕåfEÕæJEÕç/EÕèEÕèúEÕéßEÕêÅEÕë«EÕì‘EÕívEÕî\EÕïAEÕð&EÕñ EÕñïEÕòÓEÕó¶EÕô™EÕõ{EÕö\EÕ÷EÖXEÖoEÖ„EÖ”EÖ¡EÖ®EÖ¶EÖ¼EÖÀEÖÂEÖÂEÖÀEÖ¾EÖ¹EÖ´EÖ­EÖ¦EÖžEÖ–EÖŒEÖ„EÖzEÖrEÖjEÖbEÖZEÖUEÖPEÖLEÖJEÖJEÖJEÖMEÖREÖZEÖdEÖpEÖ€EÖ’EÖ¨EÖÀEÖÞEÖýEÖ"EÖIEÖvEÖ¦EÖÛEÖEÖTEÖ˜EÖâEÖ0EÖ„EÖÞEÖ>EÖ¤EÖEÖ‚EÖüEÖ |EÖ üEÖ!zEÖ!ÿEÖ"ŒEÖ#EÖ#¸EÖ$XEÖ$þEÖ%«EÖ&^EÖ'EÖ'ÔEÖ(˜EÖ)cEÖ*2EÖ+EÖ+âEÖ,ÂEÖ-¦EÖ.‘EÖ/EÖ0tEÖ1lEÖ2hEÖ3jEÖ4oEÖ5yEÖ6ˆEÖ7šEÖ8°EÖ9ÊEÖ:èEÖ<EÖ=-EÖ>VEÖ?€EÖ@¯EÖAáEÖCEÖDLEÖE†EÖFÂEÖHEÖIDEÖJ†EÖKÌEÖMEÖN^EÖOªEÖPøEÖRFEÖS–EÖTéEÖV„EÖ?°EÖ@àEÖBEÖCHEÖD€EÖE¼EÖFúEÖH:EÖI|EÖJÁEÖLEÖMREÖNœEÖOéEÖQ7EÖRˆEÖSÚEÖU,EÖVEÖWÖEÖY,EÖZ„EÖ[ÜEÖ]5EÖ^ŽEÖ_éEÖaCEÖbžEÖcùEÖeSEÖf®EÖh EÖicEÖj¾EÖlEÖmpEÖnÈEÖp EÖqvEÖrËEÖt EÖurEÖvÅEÖxEÖycEÖz¯EÖ{ûEÖ}DEÖ~ŠEÖÐEÖEÖ‚REÖƒEÖ„ÌEÖ†EÖ‡8EÖˆlEÖ‰œEÖŠÈEÖ‹òEÖEÕÎTEÕÏ EÕÏëEÕкEÕÑŠEÕÒ\EÕÓ0EÕÔEÕÔÜEÕÕ´EÕÖŽEÕ×hEÕØEEÕÙ#EÕÚEÕÚáEÕÛÁEÕܤEÕ݇EÕÞjEÕßOEÕà4EÕáEÕâEÕâæEÕãÎEÕä¶EÕåžEÕæ†EÕçoEÕèWEÕé@EÕê*EÕëEÕëûEÕìäEÕíÌEÕî´EÕïœEÕð„EÕñjEÕòQEÕó6EÕôEÕõEÕõäEÕöÆEÕ÷¨EÕø‰EÕùiEÕúHEÕû%EÕüEÕüÜEÕý¶EÕþŽEÕÿeEÖ:EÖEÖàEÖ°EÖ~EÖJEÖEÖÞEÖ¥EÖjEÖ,EÖìEÖ ªEÖ eEÖ EÖ ÔEÖ ˆEÖ :EÖ éEÖ”EÖ=EÖäEÖ‡EÖ'EÖÄEÖ^EÖõEÖŠEÖEÖ§EÖ0EÖ¶EÖ8EÖ¸EÖ3EÖªEÖEÖŽEÖùEÖBEÖhEÖ‰EÖ¦EÖÁEÖØEÖìEÖýEÖ EÖEÖ EÖ(EÖ-EÖ0EÖ2EÖ2EÖ1EÖ.EÖ,EÖ'EÖ#EÖEÖEÖEÖ EÖEÖEÖüEÖøEÖöEÖóEÖóEÖôEÖöEÖúEÖEÖEÖEÖ EÖ/EÖBEÖXEÖpEÖ‹EÖ«EÖÎEÖôEÖ EÖOEÖ‚EÖ»EÖ÷EÖ9EÖ€EÖÌEÖEÖuEÖÐEÖ4EÖœEÖ EÖEÖþEÖ €EÖ!EÖ!„EÖ" EÖ"™EÖ#/EÖ#ÌEÖ$nEÖ%EÖ%ÆEÖ&{EÖ'7EÖ'øEÖ(¿EÖ)ŒEÖ*]EÖ+5EÖ,EÖ,ôEÖ-ÜEÖ.ÈEÖ/¹EÖ0°EÖ1«EÖ2ªEÖ3®EÖ4¶EÖ5ÂEÖ6ÒEÖ7çEÖ9EÖ:EÖ;±EÖ?ßEÖAEÖBCEÖCzEÖD´EÖEðEÖG.EÖHpEÖI´EÖJúEÖLBEÖMŒEÖNØEÖP&EÖQvEÖRÈEÖTEÖUnEÖVÃEÖXEÖYqEÖZÉEÖ\#EÖ]}EÖ^ØEÖ`3EÖaŽEÖbêEÖdFEÖe¢EÖfþEÖhZEÖiµEÖkEÖlkEÖmÅEÖoEÖpwEÖqÎEÖs%EÖtzEÖuÏEÖw"EÖxsEÖyÃEÖ{EÖ|\EÖ}¦EÖ~îEÖ€4EÖxEÖ‚ºEÖƒøEÖ…5EÖ†oEÖ‡¦EÖˆØEÖŠEÖ‹6EÖŒbEÖˆEÕÍpEÕÎ;EÕÏ EÕÏØEÕЪEÕÑ}EÕÒREÕÓ(EÕÔEÕÔÚEÕÕµEÕÖ‘EÕ×nEÕØMEÕÙ/EÕÚEÕÚòEÕÛÕEÕܹEÕÝžEÕÞ„EÕßjEÕàQEÕá8EÕâ EÕã EÕãòEÕäÜEÕåÆEÕæ°EÕçšEÕè„EÕénEÕêXEÕëBEÕì,EÕíEÕîEÕîéEÕïÒEÕðºEÕñ¡EÕòˆEÕónEÕôTEÕõ9EÕöEÕ÷EÕ÷ãEÕøÄEÕù¤EÕú‚EÕû`EÕüÞEÖ@EÖA?EÖBtEÖC¬EÖDçEÖF$EÖGdEÖH¦EÖIìEÖK2EÖL|EÖMÆEÖOEÖPbEÖQ´EÖSEÖTZEÖU®EÖWEÖX\EÖYµEÖ[EÖ\iEÖ]ÃEÖ_ EÖ`{EÖaØEÖc4EÖd’EÖeîEÖgLEÖh¨EÖjEÖk`EÖl½EÖnEÖorEÖpËEÖr$EÖs{EÖtÒEÖv&EÖw{EÖxÌEÖzEÖ{lEÖ|ºEÖ~EÖNEÖ€”EÖÚEÖƒEÖ„\EÖ…™EÖ†ÔEÖˆ EÖ‰BEÖŠrEÖ‹¢EÖŒÌEÖöEÕÌEÕÍ\EÕÎ,EÕÎüEÕÏÐEÕФEÕÑ|EÕÒREÕÓ,EÕÔEÕÔäEÕÕÀEÕÖ EÕ×EÕØaEÕÙBEÕÚ'EÕÛ EÕÛðEÕÜÖEÕݽEÕÞ¤EÕßEÕàuEÕá_EÕâHEÕã4EÕäEÕå EÕåóEÕæßEÕçÊEÕè¶EÕé¡EÕêEÕëwEÕìcEÕíLEÕî8EÕï!EÕð EÕðóEÕñÜEÕòÃEÕóªEÕôEÕõvEÕöYEÕ÷>EÕøEÕùEÕùàEÕúÀEÕûœEÕüzEÕýTEÕþ.EÕÿEÕÿÜEÖ°EÖƒEÖTEÖ#EÖðEÖ¼EÖ„EÖLEÖEÖÔEÖ”EÖ REÖ EÖ ÈEÖ ~EÖ 2EÖ äEÖ ’EÖ>EÖæEÖŒEÖ0EÖÐEÖlEÖEÖœEÖ0EÖÀEÖLEÖÖEÖZEÖÜEÖZEÖÖEÖLEÖ¾EÖ.EÖyEÖ¡EÖÆEÖèEÖEÖEÖ6EÖKEÖ]EÖlEÖxEÖƒEÖŒEÖ“EÖ˜EÖ›EÖEÖžEÖžEÖžEÖEÖšEÖ˜EÖ–EÖ’EÖEÖEÖŽEÖŽEÖŽEÖEÖ’EÖ–EÖœEÖ¤EÖ®EÖ¸EÖÆEÖÖEÖêEÖEÖEÖ4EÖSEÖuEÖœEÖÆEÖõEÖ'EÖ]EÖ˜EÖØEÖEÖgEÖ¶EÖ EÖdEÖÄEÖ*EÖ–EÖEÖ€EÖÿEÖ „EÖ! EÖ!EÖ"EÖ"«EÖ#CEÖ#áEÖ$†EÖ%1EÖ%ãEÖ&œEÖ'ZEÖ(EÖ(çEÖ)µEÖ*ŠEÖ+fEÖ,DEÖ-)EÖ.EÖ/EÖ/õEÖ0îEÖ1êEÖ2ìEÖ3óEÖ4ýEÖ6 EÖ7EÖ86EÖ9PEÖ:nEÖ;‘EÖ<¶EÖ=ßEÖ? EÖ@ EÖ?8EÖ@iEÖAœEÖBÔEÖD EÖEJEÖFŠEÖGËEÖIEÖJVEÖKŸEÖLêEÖN7EÖO†EÖP×EÖR)EÖS}EÖTÒEÖV*EÖW‚EÖXÛEÖZ5EÖ[‘EÖ\íEÖ^JEÖ_§EÖaEÖbcEÖcÂEÖe EÖf€EÖgÞEÖi=EÖj›EÖkùEÖmVEÖn³EÖpEÖqkEÖrÅEÖtEÖuvEÖvÍEÖx#EÖyxEÖzÉEÖ|EÖ}hEÖ~¶EÖ€EÖJEÖ‚‘EÖƒÖEÖ…EÖ†VEÖ‡’EÖˆÌEÖŠEÖ‹6EÖŒhEÖ–EÖŽÀEÕÊëEÕ˺EÕÌŒEÕÍ_EÕÎ3EÕÏ EÕÏâEÕмEÕÑ–EÕÒuEÕÓREÕÔ2EÕÕEÕÕõEÕÖØEÕ×»EÕØ¢EÕÙˆEÕÚnEÕÛWEÕÜ@EÕÝ*EÕÞEÕÞþEÕßéEÕàÕEÕáÂEÕâ®EÕã›EÕä‡EÕåuEÕæcEÕçOEÕè=EÕé+EÕêEÕëEÕëðEÕìÝEÕíÉEÕî´EÕïŸEÕðˆEÕñrEÕò[EÕóCEÕô*EÕõEÕõöEÕöÚEÕ÷½EÕø EÕù€EÕú`EÕû>EÕüEÕüöEÕýÐEÕþ¨EÕÿEÖTEÖ&EÖøEÖÇEÖ•EÖ`EÖ*EÖðEÖµEÖxEÖ8EÖöEÖ ²EÖ jEÖ !EÖ ÔEÖ †EÖ 4EÖ ßEÖ‡EÖ.EÖÐEÖoEÖ EÖ¤EÖ:EÖÌEÖ\EÖçEÖpEÖõEÖtEÖóEÖjEÖáEÖSEÖ¡EÖÍEÖôEÖEÖ:EÖYEÖtEÖ‹EÖ EÖ²EÖÄEÖÑEÖÞEÖèEÖñEÖøEÖüEÖEÖEÖ EÖ EÖ EÖEÖEÖEÖEÖEÖEÖEÖEÖ"EÖ)EÖ1EÖ:EÖFEÖREÖbEÖsEÖˆEÖžEÖ¸EÖÓEÖòEÖEÖ4EÖ?cEÖ@•EÖAÊEÖCEÖDEÖ’EÖëEÖKEÖ°EÖEÖŠEÖEÖ~EÖ EÖ ‹EÖ!EÖ!EÖ",EÖ"ÃEÖ#_EÖ$EÖ$¬EÖ%[EÖ&EÖ&ÍEÖ'ŽEÖ(VEÖ)$EÖ)öEÖ*ÎEÖ+­EÖ,EÖ-xEÖ.eEÖ/VEÖ0NEÖ1JEÖ2JEÖ3NEÖ4XEÖ5fEÖ6xEÖ7ŽEÖ8§EÖ9ÄEÖ:æEÖ< EÖ=4EÖ>`EÖ?EÖ@ÂEÖAøEÖC0EÖDlEÖEªEÖFêEÖH.EÖItEÖJ¼EÖLEÖMTEÖN¢EÖOóEÖQEEÖRšEÖSïEÖUFEÖVŸEÖWøEÖYSEÖZ¯EÖ\ EÖ]iEÖ^ÈEÖ`&EÖa†EÖbæEÖdFEÖe¦EÖgEÖhfEÖiÆEÖk&EÖl†EÖmäEÖoCEÖp EÖqýEÖsYEÖt´EÖv EÖweEÖx½EÖzEÖ{fEÖ|¹EÖ~ EÖWEÖ€¤EÖðEÖƒ7EÖ„~EÖ…ÂEÖ‡EÖˆ@EÖ‰|EÖŠ´EÖ‹êEÖEÖŽKEÖxEÕÉdEÕÊ6EÕËEÕËÞEÕÌ´EÕÍŒEÕÎfEÕÏAEÕÐEÕÐüEÕÑÜEÕÒ¼EÕÓŸEÕÔ‚EÕÕgEÕÖLEÕ×3EÕØEÕÙEÕÙíEÕÚ×EÕÛÂEÕÜ­EÕÝšEÕÞ†EÕßsEÕà`EÕáNEÕâEÖcEÖ„EÖ£EÖ½EÖ×EÖíEÖEÖEÖ#EÖ2EÖ>EÖHEÖREÖZEÖbEÖhEÖnEÖuEÖzEÖ€EÖ„EÖŠEÖEÖ–EÖEÖ¦EÖ®EÖºEÖÅEÖÒEÖáEÖòEÖEÖEÖ4EÖMEÖjEÖ‹EÖ®EÖÔEÖþEÖ-EÖ]EÖ’EÖÌEÖ EÖLEÖ“EÖßEÖ/EÖ…EÖàEÖ@EÖ§EÖEÖ…EÖþEÖ|EÖ EÖ ŒEÖ!EÖ!¡EÖ"3EÖ"ÊEÖ#gEÖ$ EÖ$·EÖ%gEÖ& EÖ&ÜEÖ'ŸEÖ(hEÖ)7EÖ* EÖ*äEÖ+ÃEÖ,§EÖ-EÖ.€EÖ/rEÖ0jEÖ1hEÖ2iEÖ3nEÖ4xEÖ5ˆEÖ6šEÖ7°EÖ8ÌEÖ9êEÖ; EÖ<2EÖ=\EÖ>ˆEÖ?¹EÖ@ìEÖB"EÖC\EÖD˜EÖE×EÖGEÖH^EÖI¤EÖJîEÖL8EÖM†EÖNÖEÖP&EÖQyEÖRÎEÖT$EÖU|EÖVÕEÖX0EÖY‹EÖZçEÖ\EEÖ]£EÖ_EÖ`bEÖaÂEÖc"EÖdƒEÖeäEÖgDEÖh¥EÖjEÖkfEÖlÆEÖn&EÖo…EÖpãEÖrAEÖsEÖtøEÖvSEÖw«EÖyEÖzZEÖ{¯EÖ}EÖ~REÖ¢EÖ€ðEÖ‚EÕÚ(EÕÛEÕÛýEÕÜéEÕÝÖEÕÞÃEÕß°EÕàEÕá‹EÕâyEÕãhEÕäVEÕåDEÕæ2EÕç!EÕèEÕèýEÕéêEÕê×EÕëÄEÕì±EÕíEÕîˆEÕïrEÕð\EÕñFEÕò/EÕóEÕóüEÕôâEÕõÇEÕöªEÕ÷ŒEÕømEÕùMEÕú,EÕûEÕûãEÕü½EÕý–EÕþlEÕÿAEÖEÖåEÖ´EÖ‚EÖNEÖEÖÞEÖ¢EÖdEÖ$EÖäEÖžEÖ WEÖ EÖ ÂEÖ qEÖ EÖ ÌEÖ tEÖEÖ¼EÖ\EÖøEÖ‘EÖ&EÖ¹EÖIEÖÕEÖ^EÖáEÖcEÖáEÖ[EÖÑEÖ$EÖVEÖ„EÖ®EÖÔEÖùEÖEÖ8EÖSEÖlEÖ‚EÖ˜EÖ«EÖ¼EÖËEÖØEÖæEÖðEÖúEÖEÖEÖEÖEÖ(EÖ0EÖ8EÖBEÖLEÖVEÖaEÖmEÖzEÖ‰EÖšEÖ¬EÖÀEÖÖEÖîEÖ EÖ(EÖHEÖjEÖ‘EÖ»EÖèEÖEÖKEÖ„EÖÀEÖEÖFEÖŽEÖÞEÖ0EÖ‰EÖæEÖHEÖ²EÖ EÖ”EÖEÖEÖ EÖ ¤EÖ!1EÖ!½EÖ"OEÖ"èEÖ#ˆEÖ$.EÖ$ÛEÖ%ŒEÖ&FEÖ'EÖ'ÈEÖ(“EÖ)bEÖ*8EÖ+EÖ+òEÖ,ØEÖ-ÁEÖ.±EÖ/¥EÖ0žEÖ1œEÖ2œEÖ3¤EÖ4¯EÖ5¾EÖ6ÐEÖ7èEÖ9EÖ:"EÖ;FEÖÂEÖ?òEÖA&EÖB\EÖC–EÖDÒEÖFEÖGSEÖH—EÖIÞEÖK(EÖLrEÖMÀEÖOEÖP`EÖQ²EÖSEÖT^EÖUµEÖWEÖXhEÖYÃEÖ[EÖ\|EÖ]ÛEÖ_9EÖ`˜EÖaøEÖcXEÖd¸EÖfEÖgzEÖhÚEÖj:EÖkšEÖlúEÖnYEÖo·EÖqEÖrsEÖsÏEÖu*EÖv„EÖwÝEÖy5EÖzŠEÖ{àEÖ}2EÖ~„EÖÔEÖ EÖ‚lEÖƒ³EÖ„ûEÖ†>EÖ‡€EÖˆÀEÖ‰üEÖ‹6EÖŒlEÖ EÖŽÐEÖýEÕÈ EÕÈÜEÕɰEÕʆEÕË[EÕÌ3EÕÍEÕÍêEÕÎÇEÕϤEÕЄEÕÑeEÕÒHEÕÓ)EÕÔEÕÔôEÕÕÚEÕÖÀEÕשEÕØ’EÕÙ|EÕÚfEÕÛQEÕÜ=EÕÝ*EÕÞEÕßEÕßðEÕàÞEÕáËEÕâ¹EÕã§EÕä•EÕåƒEÕæqEÕç^EÕèLEÕé9EÕê&EÕëEÕëÿEÕìëEÕíÖEÕîÀEÕïªEÕð“EÕñ{EÕòbEÕóHEÕô.EÕõEÕõöEÕö×EÕ÷¸EÕø˜EÕùvEÕúTEÕû.EÕüEÕüàEÕý·EÕþŒEÕÿ_EÖ0EÖEÖÎEÖ™EÖbEÖ*EÖðEÖ²EÖrEÖ1EÖìEÖ¦EÖ \EÖ EÖ ÃEÖ qEÖ EÖ ÆEÖ mEÖEÖ±EÖNEÖéEÖ€EÖEÖ¤EÖ1EÖ»EÖ@EÖÃEÖBEÖ¾EÖ5EÖ‹EÖ¿EÖïEÖEÖDEÖlEÖEÖ°EÖÎEÖêEÖEÖEÖ0EÖDEÖVEÖfEÖvEÖ…EÖ“EÖ EÖ¬EÖ¸EÖÃEÖÏEÖÚEÖæEÖòEÖÿEÖ EÖEÖ*EÖ:EÖLEÖ`EÖvEÖEÖ¦EÖÂEÖàEÖEÖ#EÖJEÖrEÖŸEÖÎEÖEÖ9EÖtEÖ²EÖöEÖ>EÖŠEÖÚEÖ0EÖ‹EÖëEÖPEÖºEÖ,EÖ¢EÖEÖ¡EÖ +EÖ ºEÖ!IEÖ!×EÖ"kEÖ#EÖ#¨EÖ$PEÖ$üEÖ%±EÖ&kEÖ'+EÖ'ñEÖ(¼EÖ)EÖ*dEÖ+?EÖ, EÖ-EÖ-ñEÖ.âEÖ/ÖEÖ0ÐEÖ1ÎEÖ2ÑEÖ3ØEÖ4äEÖ5òEÖ7EÖ8EÖ9:EÖ:YEÖ;|EÖ<¢EÖ=ÌEÖ>úEÖ@*EÖA^EÖB”EÖCÎEÖE EÖFIEÖG‹EÖHÏEÖJEÖK^EÖLªEÖM÷EÖOFEÖP—EÖQèEÖS=EÖT“EÖUêEÖWCEÖXEÖYøEÖ[TEÖ\°EÖ^EÖ_lEÖ`ÊEÖb*EÖcŠEÖdêEÖfJEÖgªEÖi EÖjjEÖkÊEÖm*EÖnˆEÖoæEÖqDEÖr EÖsüEÖuWEÖv±EÖx EÖy`EÖz¶EÖ| EÖ}]EÖ~®EÖýEÖJEÖ‚–EÖƒÞEÖ…%EÖ†iEÖ‡«EÖˆêEÖŠ&EÖ‹`EÖŒ—EÖÊEÖŽûEÖ(EÕÇjEÕÈEÖ?2EÖ@bEÖA–EÖBÍEÖDEÖEBEÖFEÖGÃEÖIEÖJMEÖK–EÖLáEÖN-EÖO|EÖPÌEÖREÖSsEÖTÈEÖVEÖWxEÖXÐEÖZ+EÖ[‡EÖ\âEÖ^@EÖ_EÖ`üEÖb[EÖcºEÖeEÖfyEÖgÙEÖi8EÖj˜EÖk÷EÖmVEÖnµEÖpEÖqpEÖrËEÖt'EÖu‚EÖvÚEÖx4EÖyŠEÖzßEÖ|2EÖ}†EÖ~ÖEÖ€$EÖrEÖ‚¼EÖ„EÖ…LEÖ†EÖ‡ÐEÖ‰EÖŠLEÖ‹„EÖŒ½EÖðEÖ EÖNEÕÆÏEÕÇŸEÕÈsEÕÉHEÕÊEÕÊöEÕËÐEÕ̪EÕ͆EÕÎdEÕÏBEÕÐ$EÕÑEÕÑèEÕÒËEÕÓ®EÕÔ•EÕÕ{EÕÖcEÕ×JEÕØ3EÕÙEÕÚEÕÚòEÕÛÝEÕÜÈEÕݳEÕÞ EÕߌEÕàyEÕáfEÕâSEÕã?EÕä,EÕåEÕæEÕæòEÕçßEÕèÊEÕéµEÕê EÕë‹EÕìuEÕí_EÕîHEÕï0EÕðEÕðýEÕñâEÕòÇEÕó«EÕôŽEÕõoEÕöNEÕ÷.EÕø EÕøèEÕùÃEÕúœEÕûtEÕüJEÕý EÕýòEÕþÃEÕÿ’EÖ`EÖ,EÖöEÖ½EÖ‚EÖFEÖEÖÆEÖ‚EÖ;EÖ?hEÖ@™EÖAÌEÖCEÖD=EÖEzEÖF¸EÖGøEÖI>EÖJƒEÖKËEÖMEÖNbEÖO°EÖQEÖRSEÖS§EÖTüEÖVREÖWªEÖYEÖZ\EÖ[¸EÖ]EÖ^pEÖ_ÎEÖa+EÖb‰EÖcéEÖeGEÖf¦EÖhEÖieEÖjÃEÖl#EÖmEÖnÞEÖpEÖEÖÊEÖŽEÖNEÖ EÖÊEÖ„EÖrEÖ? EÖ@ÐEÖBEÖC:EÖDtEÖE°EÖFîEÖH/EÖIsEÖJ¸EÖLEÖMKEÖN—EÖOåEÖQ4EÖR†EÖSÙEÖU.EÖV„EÖWÛEÖY3EÖZŒEÖ[çEÖ]BEÖ^žEÖ_ûEÖaXEÖb¶EÖdEÖerEÖfÑEÖh/EÖiŽEÖjìEÖlJEÖm¨EÖoEÖpbEÖq¾EÖsEÖttEÖuÍEÖw%EÖx~EÖyÒEÖ{(EÖ|yEÖ}ÌEÖEÖ€jEÖ´EÖƒEÖ„FEÖ…ŽEÖ†ÐEÖˆEÖ‰PEÖŠŽEÖ‹ÅEÖŒþEÖŽ.EÖbEÖEÕŵEÕÆ†EÕÇXEÕÈ,EÕÉEÕÉØEÕʰEÕË‹EÕÌfEÕÍBEÕÎ EÕÏEÕÏàEÕÐÁEÕÑ£EÕÒ†EÕÓjEÕÔOEÕÕ5EÕÖEÕ×EÕ×êEÕØÓEÕÙ¼EÕÚ¤EÕÛŽEÕÜxEÕÝcEÕÞMEÕß8EÕà#EÕáEÕáúEÕâåEÕãÐEÕä»EÕå¥EÕæEÕçzEÕèdEÕéLEÕê5EÕëEÕìEÕìíEÕíÓEÕî¹EÕïžEÕð‚EÕñeEÕòGEÕó(EÕôEÕôèEÕõÆEÕö¢EÕ÷|EÕøVEÕù/EÕúEÕúÛEÕû¯EÕü‚EÕýREÕþ!EÕþîEÕÿºEÖ‚EÖJEÖEÖÒEÖ”EÖREÖEÖÊEÖ‚EÖ7EÖêEÖ›EÖ IEÖ õEÖ EÖ DEÖ çEÖ ‡EÖ %EÖ ÀEÖVEÖìEÖ|EÖ EÖ•EÖEÖ¢EÖ#EÖ¡EÖþEÖ;EÖuEÖ¬EÖßEÖEÖ?EÖkEÖ”EÖ¼EÖàEÖEÖ&EÖFEÖcEÖ‚EÖEÖ¹EÖÒEÖìEÖEÖEÖ6EÖPEÖhEÖ‚EÖ›EÖ¶EÖÐEÖìEÖ EÖ(EÖFEÖhEÖŠEÖ¯EÖÕEÖþEÖ*EÖVEÖ‡EÖºEÖïEÖ(EÖdEÖ¤EÖçEÖ.EÖyEÖÇEÖEÖrEÖÎEÖ.EÖ“EÖýEÖlEÖáEÖ[EÖÚEÖ`EÖëEÖ |EÖ!EÖ!«EÖ"@EÖ"ÜEÖ#EÖ$(EÖ$ÖEÖ%‹EÖ&EEÖ'EÖ'ËEÖ(–EÖ)fEÖ*¨EÖ?ÖEÖAEÖB9EÖCpEÖD©EÖEäEÖG"EÖHdEÖI¦EÖJìEÖL4EÖM~EÖNÊEÖPEÖQfEÖR¸EÖT EÖU^EÖV²EÖX EÖYbEÖZºEÖ\EÖ]nEÖ^ÊEÖ`&EÖa‚EÖbßEÖdEÖqEÖ¢EÖÑEÖþEÖ(EÖOEÖvEÖ›EÖ¾EÖßEÖEÖEÖ>EÖ\EÖyEÖ•EÖ²EÖÎEÖêEÖEÖ"EÖ@EÖ^EÖ|EÖšEÖ»EÖÜEÖEÖ$EÖJEÖsEÖœEÖÉEÖøEÖ)EÖ\EÖ’EÖËEÖEÖFEÖŠEÖÐEÖEÖgEÖ¹EÖEÖiEÖÈEÖ,EÖ“EÖEÖrEÖêEÖeEÖçEÖpEÖýEÖ EÖ!*EÖ!ÃEÖ"[EÖ"ùEÖ#žEÖ$GEÖ$øEÖ%¯EÖ&jEÖ'+EÖ'òEÖ(¾EÖ)EÖ*gEÖ+CEÖ,#EÖ- EÖ-ôEÖ.äEÖ/ØEÖ0ÐEÖ1ÍEÖ2ÎEÖ3ÔEÖ4ÞEÖ5ìEÖ6ýEÖ8EÖ9*EÖ:HEÖ;hEÖ<ŒEÖ=³EÖ>ÜEÖ@ EÖA:EÖBnEÖC¤EÖDÝEÖFEÖGVEÖH–EÖIÚEÖKEÖLfEÖM¯EÖNúEÖPGEÖQ–EÖRæEÖT8EÖU‹EÖVàEÖX6EÖYEÖZåEÖ\>EÖ]˜EÖ^òEÖ`NEÖaªEÖcEÖdcEÖe¿EÖgEÖhzEÖi×EÖk3EÖlEÖmìEÖoHEÖp¤EÖqþEÖsXEÖt±EÖv EÖw`EÖxµEÖz EÖ{]EÖ|°EÖ~EÖNEÖ€œEÖæEÖƒ0EÖ„xEÖ…¼EÖ‡EÖˆ?EÖ‰~EÖŠºEÖ‹òEÖ)EÖŽ[EÖŒEÖ¸EÕĺEÕÅŠEÕÆZEÕÇ.EÕÈEÕÈÖEÕɯEÕʆEÕËaEÕÌ;EÕÍEÕÍôEÕÎÒEÕϳEÕÐ’EÕÑrEÕÒVEÕÓ8EÕÔEÕÕEÕÕæEÕÖËEÕ×±EÕØ˜EÕÙEÕÚfEÕÛNEÕÜ6EÕÝEÕÞEÕÞðEÕßÙEÕàÁEÕáªEÕâ“EÕã|EÕädEÕåLEÕæ4EÕçEÕèEÕèéEÕéÏEÕê´EÕëšEÕì~EÕíbEÕîDEÕï&EÕðEÕðèEÕñÈEÕò¦EÕó‚EÕô_EÕõ:EÕöEÕöëEÕ÷ÂEÕø˜EÕùlEÕú?EÕûEÕûàEÕü®EÕýyEÕþDEÕÿ EÕÿÓEÖ˜EÖZEÖEÖÚEÖ–EÖQEÖEÖ¾EÖrEÖ#EÖÒEÖ~EÖ (EÖ ÎEÖ sEÖ EÖ ´EÖ OEÖ éEÖ EÖEÖ¢EÖ/EÖ¹EÖ@EÖÄEÖEEÖ¦EÖçEÖ&EÖbEÖ›EÖÑEÖEÖ7EÖgEÖ“EÖ¾EÖçEÖEÖ5EÖZEÖ~EÖ EÖÂEÖãEÖEÖ$EÖDEÖbEÖƒEÖ£EÖÃEÖäEÖEÖ'EÖJEÖmEÖ’EÖ¹EÖáEÖ EÖ6EÖdEÖ”EÖÅEÖúEÖ1EÖjEÖ¦EÖæEÖ)EÖnEÖ¸EÖEÖWEÖ«EÖEÖbEÖÂEÖ*EÖ“EÖEÖxEÖòEÖpEÖõEÖEÖ EÖ ¤EÖ!?EÖ!ÚEÖ"uEÖ#EÖ#»EÖ$hEÖ%EÖ%ÑEÖ&EÖ'REÖ(EÖ(èEÖ)ºEÖ*’EÖ+oEÖ,QEÖ-9EÖ.#EÖ/EÖ0EÖ1EÖ1ÿEÖ3EÖ4EÖ5EÖ6EÖ71EÖ8FEÖ9`EÖ:|EÖ;œEÖ<ÀEÖ=èEÖ?EÖ@?EÖApEÖB¢EÖCØEÖEEÖFLEÖGŠEÖHÊEÖJ EÖKQEÖL˜EÖMàEÖO*EÖPwEÖQÆEÖSEÖTfEÖU¹EÖW EÖXbEÖY¸EÖ[EÖ\hEÖ]ÁEÖ_EÖ`vEÖaÐEÖc,EÖdˆEÖeãEÖg@EÖhœEÖiùEÖkTEÖl°EÖn EÖofEÖpÁEÖrEÖstEÖtÌEÖv$EÖwzEÖxÏEÖz#EÖ{vEÖ|ÈEÖ~EÖfEÖ€±EÖüEÖƒDEÖ„‹EÖ…ÐEÖ‡EÖˆSEÖ‰EÖŠÊEÖŒEÖ:EÖŽmEÖžEÖËEÕÄGEÕÅEÕÅæEÕÆ¸EÕÇŠEÕÈ`EÕÉ7EÕÊ EÕÊæEÕË¿EÕÌ›EÕÍvEÕÎTEÕÏ3EÕÐEÕÐòEÕÑÑEÕÒ´EÕÓ—EÕÔyEÕÕ^EÕÖBEÕ×&EÕØ EÕØñEÕÙ×EÕÚ¾EÕÛ¥EÕÜŒEÕÝsEÕÞZEÕßAEÕà)EÕáEÕá÷EÕâÞEÕãÅEÕä¬EÕå“EÕæyEÕç_EÕèDEÕé(EÕê EÕêñEÕëÔEÕì¶EÕí˜EÕîxEÕïYEÕð8EÕñEÕñóEÕòÏEÕóªEÕô„EÕõ]EÕö4EÕ÷ EÕ÷ÞEÕø²EÕù„EÕúTEÕû#EÕûðEÕü¼EÕý†EÕþNEÕÿEÕÿØEÖšEÖ\EÖEÖÖEÖEÖHEÖýEÖ±EÖbEÖEÖ¾EÖgEÖ EÖ ²EÖ VEÖ õEÖ ’EÖ +EÖ ÂEÖ VEÖ èEÖvEÖEÖ‰EÖEÖEÖòEÖ7EÖxEÖ·EÖòEÖ+EÖbEÖ–EÖÈEÖùEÖ&EÖSEÖ}EÖ§EÖÐEÖ÷EÖEÖAEÖfEÖŠEÖ®EÖÑEÖôEÖEÖ;EÖ^EÖ‚EÖ¨EÖÍEÖôEÖEÖDEÖnEÖšEÖÇEÖöEÖ'EÖZEÖEÖÈEÖEÖ@EÖEÖÂEÖ EÖREÖŸEÖîEÖDEÖ›EÖ÷EÖWEÖ¼EÖ&EÖ“EÖEÖ|EÖùEÖzEÖEÖŒEÖ EÖ ·EÖ!UEÖ!òEÖ"ŽEÖ#0EÖ#ØEÖ$†EÖ%:EÖ%ôEÖ&²EÖ'wEÖ(AEÖ)EÖ)ãEÖ*¼EÖ+›EÖ,~EÖ-fEÖ.QEÖ/DEÖ09EÖ13EÖ20EÖ32EÖ4:EÖ5DEÖ6REÖ7dEÖ8zEÖ9“EÖ:°EÖ;ÐEÖ<ôEÖ>EÖ?EEÖ@rEÖA¢EÖBÕEÖD EÖECEÖF~EÖG»EÖHúEÖJEÖòEÖ¢EÖREÖþEÖ¨EÖPEÖöEÖ ˜EÖ 8EÖ ÕEÖ pEÖ EÖ œEÖ .EÖ ½EÖJEÖÒEÖYEÖÜEÖAEÖ‡EÖËEÖ EÖKEÖ†EÖ¿EÖ÷EÖ,EÖ_EÖEÖÀEÖîEÖEÖEEÖpEÖšEÖÂEÖêEÖEÖ8EÖ_EÖ…EÖ¬EÖÔEÖûEÖ#EÖLEÖtEÖžEÖÊEÖ÷EÖ$EÖTEÖ…EÖ·EÖìEÖ#EÖ\EÖ˜EÖÖEÖEÖZEÖ EÖêEÖ6EÖ‡EÖÚEÖ2EÖEÖìEÖOEÖ¶EÖ"EÖ’EÖEÖ‚EÖEÖ„EÖ EÖEÖ 1EÖ ËEÖ!kEÖ" EÖ"¨EÖ#MEÖ#÷EÖ$¦EÖ%\EÖ&EÖ&ØEÖ'žEÖ(hEÖ)9EÖ*EÖ*èEÖ+ÈEÖ,¬EÖ-”EÖ.‚EÖ/tEÖ0iEÖ1dEÖ2bEÖ3eEÖ4lEÖ5vEÖ6…EÖ7˜EÖ8®EÖ9ÇEÖ:äEÖ<EÖ=(EÖ>NEÖ?yEÖ@¦EÖAÕEÖCEÖD=EÖEtEÖF¯EÖGìEÖI,EÖJlEÖK°EÖLöEÖNEÕæ!EÕçEÕçåEÕèÆEÕé¨EÕê‡EÕëgEÕìFEÕí%EÕîEÕîÞEÕïºEÕð•EÕñnEÕòFEÕóEÕóôEÕôÊEÕõžEÕöpEÕ÷BEÕøEÕøàEÕù­EÕúyEÕûCEÕü EÕüÒEÕý˜EÕþZEÕÿEÕÿÜEÖ™EÖTEÖEÖÆEÖ{EÖ/EÖàEÖŽEÖ;EÖæEÖŽEÖ2EÖÖEÖ vEÖ EÖ ®EÖ HEÖ ÝEÖ pEÖ EÖ EÖEÖžEÖ#EÖŠEÖÓEÖEÖ]EÖžEÖÝEÖEÖSEÖŠEÖÀEÖõEÖ(EÖXEÖ‰EÖ¸EÖåEÖEÖ>EÖjEÖ”EÖ¾EÖéEÖEÖ>EÖiEÖ”EÖ¿EÖìEÖEÖFEÖvEÖ¥EÖÖEÖ EÖ>EÖvEÖ®EÖèEÖ$EÖdEÖ¦EÖêEÖ1EÖzEÖÇEÖEÖkEÖÂEÖEÖ{EÖÝEÖDEÖ®EÖEÖ‘EÖEÖ…EÖEÖEÖEÖªEÖ @EÖ ÝEÖ!EÖ"!EÖ"ÁEÖ#gEÖ$EÖ$ÅEÖ%|EÖ&8EÖ&ûEÖ'ÂEÖ(EÖ)`EÖ*6EÖ+EÖ+òEÖ,ØEÖ-ÀEÖ.®EÖ/¢EÖ0˜EÖ1’EÖ2’EÖ3–EÖ4EÖ5¨EÖ6·EÖ7ÉEÖ8àEÖ9øEÖ;EÖ<6EÖ=ZEÖ>€EÖ?ªEÖ@×EÖBEÖC8EÖDnEÖE¤EÖFÞEÖHEÖIYEÖJšEÖKÝEÖM"EÖNhEÖO°EÖPûEÖRGEÖS•EÖTäEÖV4EÖW†EÖXØEÖZ,EÖ[€EÖ\ÖEÖ^,EÖ_ƒEÖ`ÛEÖb3EÖcŒEÖdäEÖf>EÖg—EÖhñEÖjJEÖk¤EÖlüEÖnUEÖo­EÖqEÖr\EÖs²EÖuEÖv\EÖw°EÖyEÖzTEÖ{¥EÖ|óEÖ~AEÖŒEÖ€ØEÖ‚EÖƒfEÖ„ªEÖ…îEÖ‡.EÖˆmEÖ‰ªEÖŠäEÖŒEÖPEÖŽ‚EÖ°EÖÞEÕÃEÕÃãEÕİEÕÅ€EÕÆPEÕÇ"EÕÇôEÕÈÈEÕÉžEÕÊtEÕËKEÕÌ#EÕÌüEÕÍÖEÕβEÕÏŽEÕÐhEÕÑFEÕÒ$EÕÓEÕÓâEÕÔÂEÕÕ£EÕÖƒEÕ×dEÕØEEÕÙ'EÕÚ EÕÚëEÕÛÎEÕܰEÕÝ“EÕÞuEÕßXEÕà:EÕáEÕáÿEÕâáEÕãÃEÕä¤EÕå…EÕæeEÕçFEÕè&EÕéEÕéäEÕêÂEÕëŸEÕì|EÕíXEÕî2EÕï EÕïæEÕð¾EÕñ–EÕòlEÕó@EÕôEÕôçEÕõ¸EÕöˆEÕ÷XEÕø%EÕøñEÕù¼EÕú…EÕûLEÕüEÕüÖEÕý˜EÕþZEÕÿEÕÿÖEÖEÖJEÖEÖ¶EÖiEÖEÖÉEÖvEÖ EÖÈEÖnEÖEÖ²EÖ PEÖ ìEÖ „EÖ EÖ ¯EÖ @EÖ ÎEÖ YEÖ âEÖgEÖÐEÖEÖdEÖ«EÖïEÖ0EÖoEÖ«EÖæEÖEÖWEÖEÖÂEÖôEÖ'EÖXEÖˆEÖ¸EÖæEÖEÖDEÖrEÖ EÖÎEÖüEÖ+EÖZEÖŠEÖ»EÖíEÖ EÖTEÖ‰EÖÀEÖøEÖ3EÖoEÖ­EÖîEÖ0EÖvEÖ¾EÖEÖUEÖ¦EÖúEÖPEÖ¬EÖ EÖjEÖÐEÖ:EÖ¨EÖEÖEÖ EÖŠEÖEÖ—EÖ&EÖ¹EÖ REÖ ñEÖ!•EÖ"9EÖ"ÛEÖ#„EÖ$1EÖ$æEÖ%žEÖ&\EÖ' EÖ'éEÖ(·EÖ)‰EÖ*bEÖ+>EÖ, EÖ-EÖ-ðEÖ.ßEÖ/ÒEÖ0ÉEÖ1ÄEÖ2ÄEÖ3ÈEÖ4ÐEÖ5ÛEÖ6êEÖ7ýEÖ9EÖ:-EÖ;JEÖ´EÖ?ÝEÖA EÖB8EÖCjEÖDŸEÖEÖEÖGEÖHJEÖI‰EÖJÈEÖL EÖMNEÖN•EÖOÜEÖQ&EÖRqEÖS½EÖU EÖVZEÖW¬EÖXýEÖZPEÖ[£EÖ\øEÖ^MEÖ_¤EÖ`úEÖbQEÖc©EÖeEÖfYEÖg±EÖi EÖjaEÖkºEÖmEÖniEÖoÀEÖqEÖrmEÖsÂEÖuEÖvjEÖw½EÖyEÖz^EÖ{®EÖ|ýEÖ~HEÖ”EÖ€ÞEÖ‚&EÖƒjEÖ„¯EÖ…òEÖ‡2EÖˆnEÖ‰«EÖŠåEÖŒEÖPEÖŽ‚EÖ±EÖÜEÕÂÁEÕÃŒEÕÄXEÕÅ&EÕÅôEÕÆÄEÕÇ–EÕÈhEÕÉäEÖ@EÖA:EÖBhEÖCšEÖDÎEÖFEÖG=EÖHxEÖI¶EÖJöEÖL6EÖMyEÖN¾EÖPEÖQNEÖR˜EÖSäEÖU1EÖV€EÖWÏEÖYEÖZqEÖ[ÄEÖ]EÖ^lEÖ_ÀEÖaEÖblEÖcÃEÖeEÖfpEÖgÇEÖiEÖjvEÖkÌEÖm#EÖnzEÖoÐEÖq&EÖrzEÖsÎEÖu"EÖvuEÖwÇEÖyEÖzhEÖ{¶EÖ}EÖ~MEÖ˜EÖ€àEÖ‚(EÖƒmEÖ„°EÖ…òEÖ‡2EÖˆoEÖ‰¨EÖŠâEÖŒEÖLEÖŽ~EÖ¬EÖÙEÕÂnEÕÃ8EÕÄEÕÄÐEÕÅEÕÆnEÕÇ>EÕÈEÕÈàEÕÉ´EÕʇEÕË\EÕÌ2EÕÍEÕÍàEÕθEÕÏ”EÕÐmEÕÑGEÕÒ"EÕÒþEÕÓÚEÕÔ¶EÕÕ“EÕÖqEÕ×NEÕØ,EÕÙ EÕÙèEÕÚÈEÕÛ¦EÕÜ…EÕÝcEÕÞBEÕß EÕàEÕàÞEÕá¼EÕâšEÕãwEÕäUEÕå2EÕæEÕæêEÕçÆEÕè¢EÕé|EÕêVEÕë.EÕìEÕìÞEÕí¶EÕîŒEÕïaEÕð4EÕñEÕñÚEÕò¬EÕó|EÕôJEÕõEÕõäEÕö°EÕ÷zEÕøBEÕùEÕùÎEÕú’EÕûTEÕüEÕüÔEÕý’EÕþNEÕÿEÕÿÀEÖvEÖ*EÖÞEÖŽEÖEÖŒEÖÞEÖ0EÖ†EÖÞEÖ8EÖ—EÖùEÖ^EÖÆEÖ1EÖ EÖEÖŠEÖEÖ…EÖEÖEÖEÖ®EÖDEÖßEÖ €EÖ!%EÖ!ÏEÖ"yEÖ##EÖ#ÒEÖ$…EÖ%?EÖ%ýEÖ&ÁEÖ'‰EÖ(VEÖ))EÖ)ÿEÖ*ÛEÖ+ºEÖ,žEÖ-ˆEÖ.uEÖ/gEÖ0\EÖ1TEÖ2REÖ3TEÖ4XEÖ5aEÖ6nEÖ7}EÖ8EÖ9¦EÖ:ÀEÖ;ÜEÖ<üEÖ>EÖ?FEÖ@nEÖA™EÖBÆEÖCøEÖE*EÖF_EÖG—EÖHÐEÖJ EÖKJEÖLŠEÖMÌEÖOEÖPTEÖQœEÖRäEÖT.EÖUxEÖVÆEÖXEÖY`EÖZ±EÖ\EÖ]SEÖ^¤EÖ_öEÖaJEÖbžEÖcòEÖeFEÖfšEÖgðEÖiDEÖjšEÖkîEÖmBEÖn–EÖoêEÖq>EÖrEÖsáEÖu3EÖvƒEÖwÔEÖy"EÖznEÖ{ºEÖ}EÖ~PEÖ˜EÖ€ÞEÖ‚$EÖƒhEÖ„ªEÖ…êEÖ‡'EÖˆbEÖ‰žEÖŠÕEÖŒ EÖOEÖ?tEÖ@EÖAÈEÖBõEÖD%EÖEWEÖFŒEÖGÃEÖHûEÖJ7EÖKtEÖL²EÖMôEÖO6EÖPzEÖQÀEÖSEÖTPEÖUšEÖVäEÖX1EÖYEÖZÍEÖ\EÖ]mEÖ^½EÖ`EÖa`EÖb³EÖdEÖeXEÖf¬EÖhEÖiREÖj¦EÖkúEÖmLEÖnŸEÖoòEÖqCEÖr•EÖsåEÖu6EÖv…EÖwÓEÖy!EÖzlEÖ{¹EÖ}EÖ~JEÖ“EÖ€ØEÖ‚EÖƒ`EÖ„ EÖ…ÞEÖ‡EÖˆWEÖ‰EÖŠÆEÖ‹üEÖ,EÖŽ\EÖ‹EÖµEÕÁ¡EÕÂfEÕÃ,EÕÃôEÕĽEÕʼnEÕÆTEÕÇ EÕÇìEÕȺEÕɉEÕÊXEÕË)EÕËúEÕÌÎEÕÍ EÕÎsEÕÏGEÕÐEÕÐðEÕÑÅEÕÒœEÕÓrEÕÔHEÕÕEÕÕ÷EÕÖÎEÕצEÕØ}EÕÙUEÕÚ.EÕÛEÕÛÞEÕܶEÕÝEÕÞgEÕß>EÕàEÕàíEÕáÅEÕâœEÕãrEÕäHEÕåEÕåôEÕæÉEÕçEÕèqEÕéEEÕêEÕêéEÕëºEÕìŠEÕí[EÕî*EÕîøEÕïÄEÕð‘EÕñ\EÕò&EÕòïEÕó·EÕô~EÕõCEÕöEÕöËEÕ÷EÕøNEÕù EÕùÊEÕú†EÕûBEÕûûEÕü²EÕýhEÕþEÕþÐEÕÿEÖ0EÖÞEÖˆEÖ3EÖÛEÖEÖ$EÖÇEÖfEÖEÖŸEÖ:EÖÐEÖeEÖøEÖ ‡EÖ EÖ ¡EÖ EÖ jEÖ ¿EÖ EÖ cEÖ ²EÖ EÖ KEÖ •EÖ ÝEÖ%EÖjEÖ°EÖôEÖ7EÖyEÖ»EÖüEÖ>EÖ~EÖ¾EÖEÖ@EÖ‚EÖÄEÖEÖHEÖ‹EÖÏEÖEÖZEÖ¢EÖêEÖ5EÖEÖÏEÖEÖpEÖÃEÖEÖrEÖÌEÖ)EÖŠEÖëEÖQEÖ¹EÖ%EÖ”EÖEÖ}EÖöEÖtEÖöEÖzEÖEÖ‘EÖ$EÖ»EÖVEÖ÷EÖ œEÖ!EEÖ!õEÖ"£EÖ#PEÖ$EÖ$¼EÖ%yEÖ&;EÖ'EÖ'ÌEÖ(žEÖ)rEÖ*LEÖ+*EÖ, EÖ,óEÖ-ÞEÖ.ÌEÖ/¾EÖ0µEÖ1°EÖ2®EÖ3±EÖ4¶EÖ5¾EÖ6ÌEÖ7ÜEÖ8îEÖ:EÖ;EÖ<;EÖ=ZEÖ>|EÖ?¢EÖ@ÊEÖAôEÖC"EÖDPEÖE‚EÖF¶EÖGíEÖI&EÖJ_EÖKœEÖLÚEÖNEÖO\EÖPŸEÖQäEÖS*EÖTqEÖUºEÖWEÖXOEÖYœEÖZéEÖ\7EÖ]†EÖ^ÕEÖ`%EÖavEÖbÇEÖdEÖekEÖf½EÖhEÖiaEÖj³EÖlEÖmWEÖn©EÖoúEÖqKEÖr›EÖsêEÖu9EÖv‡EÖwÔEÖy!EÖzkEÖ{¶EÖ|þEÖ~GEÖŒEÖ€ÒEÖ‚EÖƒVEÖ„–EÖ…ÔEÖ‡EÖˆJEÖ‰„EÖŠºEÖ‹îEÖ EÖŽNEÖ|EÖ¦EÕÁiEÕÂ,EÕÂòEÕøEÕÄEÕÅHEÕÆEÕÆÚEÕǨEÕÈtEÕÉ@EÕÊEÕÊÜEÕˬEÕÌ{EÕÍLEÕÎEÕÎîEÕÏÀEÕГEÕÑgEÕÒ:EÕÓEÕÓâEÕÔ·EÕÕŒEÕÖaEÕ×6EÕØ EÕØâEÕÙ·EÕÚEÕÛcEÕÜ9EÕÝEÕÝäEÕÞºEÕßEÕàdEÕá9EÕâEÕââEÕã¶EÕä‰EÕå]EÕæ0EÕçEÕçÔEÕè¤EÕéuEÕêDEÕëEÕëâEÕì°EÕí~EÕîJEÕïEÕïÞEÕð¨EÕñpEÕò8EÕòþEÕóÄEÕô‡EÕõJEÕö EÕöÌEÕ÷ŒEÕøJEÕùEÕùÁEÕú{EÕû3EÕûêEÕü EÕýTEÕþEÕþ¶EÕÿeEÖEÖ½EÖfEÖEÖ´EÖXEÖúEÖ™EÖ8EÖÔEÖmEÖEÖšEÖ/EÖÀEÖ NEÖ ÛEÖ NEÖ §EÖ EÖ UEÖ ¨EÖ úEÖ JEÖ ™EÖ æEÖ 1EÖ |EÖ ÅEÖEÖUEÖœEÖâEÖ&EÖlEÖ°EÖôEÖ:EÖ~EÖÃEÖEÖMEÖ’EÖÚEÖ!EÖjEÖ²EÖüEÖHEÖ”EÖäEÖ3EÖ…EÖÙEÖ.EÖ†EÖàEÖ¬EÖ?ÐEÖ@øEÖB"EÖCNEÖD|EÖE®EÖFáEÖHEÖINEÖJˆEÖKÃEÖMEÖN?EÖO€EÖPÂEÖREÖSJEÖT’EÖUÚEÖW"EÖXlEÖY·EÖ[EÖ\PEÖ]EÖ^ëEÖ`:EÖaŠEÖbÙEÖd)EÖezEÖfÊEÖhEÖimEÖj¾EÖlEÖm_EÖn¯EÖoþEÖqNEÖrEÖsëEÖu8EÖv…EÖwÑEÖyEÖzgEÖ{®EÖ|÷EÖ~ØEÖ?ýEÖA$EÖBNEÖCyEÖD¨EÖEØEÖG EÖH?EÖIvEÖJ®EÖKéEÖM&EÖNcEÖO¢EÖPãEÖR'EÖSjEÖT°EÖUöEÖW>EÖX‡EÖYÐEÖ[EÖ\fEÖ]³EÖ_EÖ`MEÖa›EÖbêEÖd9EÖeˆEÖf×EÖh&EÖivEÖjÅEÖlEÖmcEÖn²EÖpEÖqOEÖrœEÖséEÖu6EÖvEÖwÌEÖyEÖz_EÖ{¥EÖ|ìEÖ~2EÖuEÖ€¹EÖùEÖƒ9EÖ„xEÖ…³EÖ†îEÖˆ&EÖ‰]EÖŠ’EÖ‹ÄEÖŒõEÖŽ"EÖNEÖyEÕÁEÕÁÇEÕ‰EÕÃLEÕÄEÕÄÔEÕÅšEÕÆaEÕÇ(EÕÇðEÕȺEÕɃEÕÊMEÕËEÕËâEÕÌ®EÕÍzEÕÎHEÕÏEÕÏãEÕвEÕÑEÕÒOEÕÓEÕÓîEÕÔ¾EÕÕEÕÖ_EÕ×0EÕØEÕØÑEÕÙ¢EÕÚrEÕÛCEÕÜEÕÜäEÕݵEÕÞ…EÕßVEÕà&EÕàöEÕáÅEÕâ“EÕãbEÕä1EÕäÿEÕåÌEÕæšEÕçfEÕè1EÕèýEÕéÈEÕê’EÕë\EÕì$EÕììEÕí³EÕîzEÕï@EÕðEÕðÈEÕñŠEÕòLEÕó EÕóÌEÕôŒEÕõHEÕöEÕöÀEÕ÷zEÕø3EÕøêEÕù EÕúTEÕû EÕûºEÕükEÕýEÕýÈEÕþtEÕÿEÕÿÇEÖnEÖEÖ·EÖYEÖúEÖ—EÖ4EÖÏEÖgEÖþEÖ”EÖ%EÖ¶EÖFEÖ½EÖ EÖ vEÖ ÒEÖ *EÖ EÖ ØEÖ ,EÖ EÖ ÑEÖ "EÖ qEÖ ÀEÖ EÖ ]EÖ ªEÖ öEÖBEÖŽEÖÚEÖ&EÖtEÖ¾EÖ EÖYEÖ§EÖöEÖEEÖ–EÖæEÖ9EÖŒEÖâEÖ8EÖEÖêEÖFEÖ£EÖEÖdEÖÈEÖ.EÖ–EÖEÖoEÖàEÖSEÖÊEÖDEÖÂEÖAEÖÅEÖLEÖÖEÖfEÖøEÖEÖ*EÖÈEÖmEÖ EÖ ÀEÖ!qEÖ"&EÖ"ÜEÖ#‘EÖ$JEÖ% EÖ%ÌEÖ&’EÖ'`EÖ(0EÖ)EÖ)ÞEÖ*ºEÖ+œEÖ,‚EÖ-kEÖ.ZEÖ/JEÖ0?EÖ18EÖ24EÖ33EÖ46EÖ5=EÖ6GEÖ7TEÖ8eEÖ9xEÖ:ŽEÖ;¨EÖ<ÄEÖ=âEÖ?EÖ@(EÖANEÖBvEÖC¢EÖDÐEÖEÿEÖG1EÖHeEÖI›EÖJÒEÖL EÖMHEÖN„EÖOÄEÖQEÖRDEÖSˆEÖTÌEÖVEÖWXEÖXŸEÖYèEÖ[2EÖ\{EÖ]ÇEÖ_EÖ`^EÖa«EÖbøEÖdEEÖe“EÖfáEÖh/EÖi}EÖjËEÖlEÖmgEÖn´EÖpEÖqNEÖršEÖsåEÖu1EÖvzEÖwÄEÖy EÖzUEÖ{šEÖ|àEÖ~%EÖgEÖ€©EÖêEÖƒ'EÖ„dEÖ… EÖ†ÙEÖˆEÖ‰HEÖŠzEÖ‹­EÖŒÝEÖŽ EÖ6EÖ_EÕÀÞEÕÁžEÕÂ^EÕà EÕÃâEÕÄ¢EÕÅfEÕÆ+EÕÆðEÕÇ·EÕÈ~EÕÉCEÕÊ EÕÊÔEÕËžEÕÌhEÕÍ0EÕÍûEÕÎÆEÕÏ’EÕÐ]EÕÑ*EÕÑ÷EÕÒÃEÕÓ‘EÕÔ]EÕÕ+EÕÕùEÕÖÆEÕוEÕØcEÕÙ1EÕÙÿEÕÚÍEÕÛ›EÕÜjEÕÝ7EÕÞEÕÞÓEÕߟEÕàmEÕá9EÕâEÕâÓEÕãžEÕäjEÕå5EÕåÿEÕæÊEÕç’EÕè\EÕé%EÕéìEÕê´EÕëzEÕì@EÕíEÕíÈEÕîŒEÕïOEÕðEÕðÒEÕñ’EÕòPEÕóEÕóÌEÕôˆEÕõBEÕõüEÕö´EÕ÷lEÕø"EÕøØEÕùŠEÕú=EÕúîEÕûžEÕüMEÕüúEÕý¤EÕþOEÕþöEÕÿžEÖCEÖæEÖˆEÖ(EÖÇEÖdEÖþEÖ˜EÖ/EÖÄEÖXEÖëEÖyEÖñEÖSEÖ±EÖ EÖ jEÖ ÅEÖ EÖ uEÖ ËEÖ EÖ tEÖ ÇEÖ EÖ lEÖ ¼EÖ EÖ ]EÖ ­EÖ þEÖMEÖœEÖìEÖEÖœEÖüEÖ^EÖÀEÖ'EÖŽEÖøEÖdEÖÔEÖFEÖºEÖ0EÖ¬EÖ(EÖ©EÖ-EÖ´EÖ?EÖÌEÖ^EÖõEÖŽEÖ,EÖÎEÖtEÖ EÖ ÍEÖ!€EÖ"8EÖ"ðEÖ#¦EÖ$cEÖ%"EÖ%èEÖ&±EÖ'~EÖ(QEÖ)'EÖ*EÖ*ßEÖ+ÂEÖ,©EÖ-”EÖ.‚EÖ/sEÖ0jEÖ1bEÖ2`EÖ3`EÖ4dEÖ5jEÖ6tEÖ7EÖ8’EÖ9¤EÖ:»EÖ;ÔEÖ<ðEÖ>EÖ?0EÖ@SEÖAxEÖB EÖCÌEÖDøEÖF(EÖGXEÖHŒEÖIÁEÖJ÷EÖL0EÖMjEÖN§EÖOäEÖQ"EÖRcEÖS¥EÖTèEÖV,EÖWrEÖX·EÖYþEÖ[FEÖ\EÖ]ÙEÖ_#EÖ`nEÖa¹EÖcEÖdQEÖeœEÖféEÖh5EÖiƒEÖjÏEÖlEÖmgEÖn³EÖoÿEÖqJEÖr•EÖsßEÖu)EÖvrEÖwºEÖyEÖzFEÖ{ŒEÖ|ÑEÖ~EÖUEÖ€–EÖÕEÖƒEÖ„NEÖ…ˆEÖ†ÀEÖ‡÷EÖ‰,EÖŠ`EÖ‹EÖŒÀEÖíEÖEÖ?EÕÀ¾EÕÁ|EÕÂ;EÕÂøEÕøEÕÄzEÕÅ:EÕÅüEÕÆÀEÕÇ‚EÕÈGEÕÉ EÕÉÐEÕÊ—EÕË^EÕÌ$EÕÌìEÕ͵EÕÎ|EÕÏFEÕÐEÕÐÙEÕÑ¢EÕÒmEÕÓ7EÕÔEÕÔÍEÕÕ˜EÕÖbEÕ×.EÕ×ùEÕØÄEÕÙEÕÚ[EÕÛ&EÕÛòEÕܼEÕ݇EÕÞSEÕßEÕßçEÕà²EÕá{EÕâDEÕãEÕã×EÕäŸEÕåhEÕæ/EÕæöEÕç½EÕè‚EÕéHEÕê EÕêÑEÕë•EÕìXEÕíEÕíÚEÕîœEÕï\EÕðEÕðØEÕñ–EÕòREÕó EÕóÇEÕô€EÕõ8EÕõðEÕö¤EÕ÷ZEÕøEÕøÁEÕùqEÕú"EÕúÐEÕû~EÕü*EÕüÕEÕý~EÕþ&EÕþÍEÕÿpEÖEÖ¶EÖVEÖõEÖ’EÖ-EÖÇEÖ_EÖôEÖŠEÖEÖ¬EÖ&EÖŠEÖëEÖJEÖ©EÖ EÖ aEÖ »EÖ EÖ lEÖ ÄEÖ EÖ oEÖ ÆEÖ EÖ nEÖ ÂEÖ EÖ jEÖ ¼EÖEÖdEÖ¹EÖEÖbEÖ¸EÖEÖgEÖ¾EÖEÖtEÖÏEÖ,EÖ‹EÖëEÖMEÖ±EÖEÖ~EÖèEÖSEÖÂEÖ2EÖ¤EÖEÖ“EÖEÖ‹EÖ EÖEÖEÖ¢EÖ0EÖÁEÖVEÖðEÖŒEÖ-EÖÑEÖzEÖ 'EÖ ØEÖ!ŽEÖ"HEÖ#EÖ#»EÖ$yEÖ%;EÖ&EÖ&ÍEÖ'EÖ(pEÖ)IEÖ*#EÖ+EÖ+èEÖ,ÏEÖ-ºEÖ.ªEÖ/žEÖ0“EÖ1ŽEÖ2‹EÖ3ŒEÖ4EÖ5–EÖ6¡EÖ7®EÖ8¾EÖ9ÒEÖ:çEÖ<EÖ=EÖ>:EÖ?ZEÖ@|EÖA¢EÖBËEÖCõEÖE EÖFOEÖG€EÖH±EÖIæEÖKEÖLSEÖMŒEÖNÈEÖPEÖQBEÖR€EÖSÁEÖUEÖVFEÖWŠEÖXÎEÖZEÖ[[EÖ\¢EÖ]êEÖ_3EÖ`|EÖaÆEÖcEÖd[EÖe¥EÖfñEÖh;EÖi‡EÖjÑEÖlEÖmgEÖn²EÖoüEÖqFEÖrEÖsØEÖu EÖvgEÖw®EÖxóEÖz8EÖ{|EÖ|ÀEÖ~EÖAEÖ€€EÖ¿EÖ‚üEÖ„5EÖ…oEÖ†§EÖ‡ÞEÖ‰EÖŠBEÖ‹tEÖŒ¢EÖÌEÖŽ÷EÖ EÕÀ¦EÕÁ`EÕÂEÕÂÙEÕØEÕÄUEÕÅEÕÅÔEÕÆ•EÕÇVEÕÈEÕÈÚEÕÉžEÕÊ`EÕË%EÕËèEÕÌ®EÕÍrEÕÎ9EÕÎþEÕÏÅEÕЋEÕÑREÕÒEÕÒáEÕÓ©EÕÔqEÕÕ9EÕÖEÕÖÊEÕ×’EÕØZEÕÙ$EÕÙìEÕÚ´EÕÛ}EÕÜEEÕÝ EÕÝÕEÕÞEÕßdEÕà,EÕàóEÕá¹EÕâ€EÕãFEÕä EÕäÑEÕå–EÕæZEÕçEÕçâEÕè¤EÕégEÕê(EÕêêEÕëªEÕìjEÕí)EÕíèEÕî¥EÕïbEÕðEÕðÙEÕñ”EÕòMEÕóEÕó¼EÕôtEÕõ(EÕõÝEÕöEÕ÷CEÕ÷ôEÕø¤EÕùSEÕúEÕú­EÕûXEÕüEÕü«EÕýREÕýøEÕþEÕÿ@EÕÿáEÖEÖ EÖ½EÖYEÖóEÖ‹EÖ!EÖ¶EÖJEÖÜEÖXEÖ½EÖ EÖ‚EÖäEÖDEÖ¢EÖÿEÖ [EÖ ¶EÖ EÖ jEÖ ÄEÖ EÖ tEÖ ÌEÖ #EÖ zEÖ ÒEÖ *EÖ EÖ ØEÖ0EÖŠEÖâEÖbEÖ?‚EÖ@¥EÖAÊEÖBòEÖDEÖEFEÖFtEÖG£EÖHÔEÖJEÖK=EÖLtEÖM¬EÖNæEÖP"EÖQ^EÖRœEÖSÛEÖUEÖV\EÖW EÖXãEÖZ(EÖ[mEÖ\³EÖ]úEÖ_AEÖ`‰EÖaÑEÖcEÖdcEÖe¬EÖföEÖh?EÖi‰EÖjÒEÖlEÖmeEÖn®EÖo÷EÖq?EÖr‡EÖsÎEÖuEÖv[EÖw EÖxäEÖz(EÖ{lEÖ|®EÖ}ìEÖ,EÖ€jEÖ¨EÖ‚ãEÖ„EÖ…TEÖ†‹EÖ‡ÁEÖˆòEÖŠ$EÖ‹TEÖŒ‚EÖ®EÖŽÖEÖþEÕÀ‹EÕÁFEÕÁþEÕ¸EÕÃvEÕÄ1EÕÄíEÕŬEÕÆjEÕÇ(EÕÇèEÕȨEÕÉhEÕÊ*EÕÊêEÕˬEÕÌoEÕÍ1EÕÍôEÕθEÕÏ{EÕÐ@EÕÑEÕÑÈEÕÒEÕÓREÕÔEÕÔÜEÕÕ¢EÕÖgEÕ×-EÕ×óEÕØ·EÕÙ}EÕÚCEÕÛEÕÛÎEÕÜ“EÕÝXEÕÞEÕÞâEÕߦEÕàjEÕá/EÕáòEÕâ¶EÕãyEÕä;EÕäþEÕåÀEÕæ€EÕçBEÕèEÕèÂEÕéEÕê@EÕêþEÕë¼EÕìyEÕí5EÕíðEÕî¬EÕïeEÕðEÕð×EÕñŽEÕòEEÕòûEÕó°EÕôdEÕõEÕõÈEÕöyEÕ÷*EÕ÷ØEÕø†EÕù3EÕùÞEÕú‰EÕû3EÕûÚEÕü€EÕý&EÕýÊEÕþmEÕÿEÕÿ¯EÖNEÖëEÖ‡EÖ!EÖ¹EÖREÖæEÖ{EÖ EÖŠEÖòEÖXEÖ¾EÖ EÖƒEÖäEÖDEÖ¤EÖ EÖ ^EÖ ¼EÖ EÖ tEÖ ÏEÖ +EÖ ‡EÖ âEÖ EÖÀEÖFEÖÎEÖYEÖèEÖyEÖEÖ¦EÖAEÖàEÖƒEÖ*EÖÓEÖ‚EÖ 4EÖ êEÖ!¥EÖ"dEÖ##EÖ#àEÖ$¢EÖ%hEÖ&3EÖ'EÖ'ÕEÖ(¬EÖ)†EÖ*eEÖ+HEÖ,.EÖ-EÖ.EÖ.öEÖ/êEÖ0ãEÖ1ÞEÖ2ÜEÖ3ÞEÖ4âEÖ5êEÖ6ôEÖ8EÖ9EÖ:%EÖ;;EÖŒEÖ?¬EÖ@ÎEÖAòEÖCEÖDBEÖElEÖF˜EÖGÈEÖHøEÖJ*EÖK^EÖL”EÖMËEÖOEÖP>EÖQzEÖR¶EÖSôEÖU4EÖVsEÖWµEÖXöEÖZ:EÖ[}EÖ\ÂEÖ^EÖ_MEÖ`”EÖaÚEÖc"EÖdiEÖe±EÖfùEÖhAEÖi‰EÖjÑEÖlEÖmaEÖn¨EÖoðEÖq6EÖr}EÖsÂEÖuEÖvMEÖwEÖxÔEÖzEÖ{VEÖ|–EÖ}ÖEÖEÖ€REÖ‹EÖ‚ÆEÖƒÿEÖ…6EÖ†lEÖ‡ŸEÖˆÒEÖŠEÖ‹2EÖŒ]EÖˆEÖŽ²EÖØEÕÀxEÕÁ.EÕÁæEÕžEÕÃXEÕÄEÕÄÍEÕňEÕÆDEÕÇEÕǼEÕÈyEÕÉ9EÕÉ÷EÕʵEÕËtEÕÌ3EÕÌóEÕͳEÕÎtEÕÏ6EÕÏöEÕиEÕÑyEÕÒ;EÕÒýEÕÓ¿EÕÔ‚EÕÕDEÕÖEÕÖÊEÕ׌EÕØNEÕÙEÕÙÔEÕÚ–EÕÛXEÕÜEÕÜÝEÕÝŸEÕÞaEÕß"EÕßäEÕà¤EÕáfEÕâ&EÕâæEÕã§EÕäfEÕå%EÕåãEÕæ¢EÕç`EÕèEÕèÚEÕé–EÕêREÕëEÕëÈEÕì‚EÕí;EÕíôEÕî¬EÕïcEÕðEÕðÏEÕñ„EÕò8EÕòëEÕóžEÕôNEÕôþEÕõ¯EÕö^EÕ÷ EÕ÷¸EÕøcEÕùEÕù¸EÕú`EÕûEÕû­EÕüREÕüöEÕý˜EÕþ:EÕþÙEÕÿxEÖEÖ±EÖLEÖæEÖ}EÖEÖ©EÖEÖ¦EÖEÖzEÖçEÖVEÖÆEÖ7EÖ«EÖ!EÖ˜EÖEÖEÖEÖŽEÖEÖ™EÖ!EÖ­EÖ³EÖ?ÒEÖ@ôEÖBEÖC>EÖDfEÖEEÖF¼EÖGêEÖIEÖJLEÖK~EÖL³EÖMêEÖO EÖPZEÖQ•EÖRÐEÖT EÖUJEÖVŠEÖWÉEÖY EÖZLEÖ[ŽEÖ\ÒEÖ^EÖ_ZEÖ`ŸEÖaäEÖc*EÖdoEÖe¶EÖfýEÖhCEÖi‰EÖjÏEÖlEÖm]EÖn¢EÖoèEÖq-EÖrrEÖs·EÖtúEÖv>EÖw€EÖxÁEÖzEÖ{BEÖ|‚EÖ}ÀEÖ~ûEÖ€7EÖrEÖ‚¬EÖƒäEÖ…EÖ†NEÖ‡€EÖˆ²EÖ‰âEÖ‹EÖŒ;EÖfEÖŽŽEÖ´EÕÀjEÕÁ EÕÁÖEÕÂŒEÕÃCEÕÃûEÕıEÕÅjEÕÆ$EÕÆÞEÕǘEÕÈSEÕÉEÕÉÊEÕʆEÕËCEÕÌEÕ̽EÕÍzEÕÎ7EÕÎõEÕÏ´EÕÐqEÕÑ0EÕÑïEÕÒ®EÕÓmEÕÔ-EÕÔìEÕÕ«EÕÖjEÕ×*EÕ×êEÕØªEÕÙiEÕÚ(EÕÚçEÕÛ§EÕÜfEÕÝ%EÕÝäEÕÞ£EÕß`EÕàEÕàÝEÕá›EÕâXEÕãEÕãÑEÕäŽEÕåJEÕæEÕæÁEÕç|EÕè6EÕèðEÕé©EÕêbEÕëEÕëÒEÕìˆEÕí?EÕíôEÕîªEÕï^EÕðEÕðÄEÕñwEÕò(EÕòØEÕóˆEÕô8EÕôæEÕõ”EÕö@EÕöêEÕ÷•EÕø?EÕøçEÕùŽEÕú4EÕúÚEÕû~EÕü!EÕüÄEÕýeEÕþEÕþ£EÕÿ@EÕÿÝEÖxEÖEÖªEÖ@EÖÖEÖjEÖêEÖWEÖÂEÖ+EÖ”EÖüEÖcEÖÈEÖ.EÖ’EÖöEÖYEÖ¼EÖ EÖ ‚EÖ äEÖ GEÖ ©EÖ EÖ nEÖ ÒEÖ 6EÖ šEÖ þEÖ dEÖ ÈEÖ0EÖ˜EÖEÖjEÖÖEÖBEÖ°EÖEÖEÖEÖvEÖìEÖdEÖÞEÖZEÖÖEÖWEÖÚEÖ_EÖæEÖpEÖüEÖŒEÖEÖ´EÖLEÖèEÖ†EÖ(EÖÍEÖvEÖ#EÖÒEÖ†EÖ >EÖ ùEÖ!¸EÖ"|EÖ#?EÖ$EÖ$ÈEÖ%’EÖ&aEÖ'3EÖ( EÖ(äEÖ)ÁEÖ*£EÖ+ˆEÖ,qEÖ-\EÖ.LEÖ/?EÖ04EÖ1.EÖ2*EÖ3*EÖ4,EÖ52EÖ6:EÖ7DEÖ8REÖ9dEÖ:vEÖ;ŒEÖ<¤EÖ=¾EÖ>ÚEÖ?ùEÖAEÖB>EÖCdEÖDŠEÖE´EÖFßEÖH EÖI:EÖJlEÖKœEÖLÑEÖNEÖOEÖŽdEÖŠEÕÀbEÕÁEÕÁÈEÕÂ}EÕÃ0EÕÃæEÕÄœEÕÅQEÕÆEÕÆÀEÕÇvEÕÈ/EÕÈèEÕÉ EÕÊZEÕËEÕËÌEÕ̇EÕÍBEÕÍüEÕηEÕÏsEÕÐ.EÕÐéEÕѦEÕÒaEÕÓEÕÓÚEÕÔ–EÕÕREÕÖEÕÖÊEÕ׈EÕØDEÕÙEÕÙ¼EÕÚxEÕÛ4EÕÛñEÕܬEÕÝiEÕÞ$EÕÞßEÕß›EÕàVEÕáEÕáËEÕâ…EÕã>EÕãøEÕä±EÕåjEÕæ#EÕæÚEÕç’EÕèJEÕéEÕé¶EÕêlEÕë"EÕëÖEÕìŠEÕí>EÕíðEÕî¢EÕïTEÕðEÕð¶EÕñeEÕòEÕòÂEÕópEÕôEÕôÈEÕõsEÕöEÕöÆEÕ÷nEÕøEÕø¼EÕùbEÕúEÕú«EÕûMEÕûïEÕüEÕý/EÕýÎEÕþkEÕÿEÕÿ¢EÖEÖBbEÖC‡EÖD®EÖEÖEÖGEÖH,EÖIZEÖJŠEÖKºEÖLîEÖN!EÖOVEÖPŒEÖQÅEÖRþEÖT8EÖUtEÖV°EÖWîEÖY+EÖZjEÖ[©EÖ\êEÖ^*EÖ_lEÖ`®EÖaðEÖc2EÖdvEÖe¸EÖfüEÖh?EÖiƒEÖjÆEÖl EÖmLEÖnEÖoÒEÖqEÖrVEÖs˜EÖtØEÖvEÖwXEÖx–EÖyÔEÖ{EÖ|OEÖ}ŠEÖ~ÃEÖýEÖ6EÖ‚lEÖƒ EÖ„ÔEÖ†EÖ‡9EÖˆgEÖ‰–EÖŠÂEÖ‹íEÖEÖŽ;EÖ`EÕÀ]EÕÁEÕÁÀEÕÂrEÕÃ$EÕÃØEÕÄŠEÕÅ=EÕÅòEÕÆ¦EÕÇ\EÕÈEÕÈÅEÕÉ|EÕÊ2EÕÊéEÕËŸEÕÌVEÕÍEÕÍÆEÕÎ}EÕÏ6EÕÏîEÕЧEÕÑ`EÕÒEÕÒÐEÕÓŠEÕÔCEÕÔüEÕÕµEÕÖoEÕ×'EÕ×áEÕØšEÕÙSEÕÚ EÕÚÆEÕÛ~EÕÜ6EÕÜïEÕݨEÕÞ`EÕßEÕßÐEÕàˆEÕá?EÕá÷EÕâ®EÕãdEÕäEÕäÐEÕå†EÕæEÖ?$EÖ@CEÖAbEÖB„EÖC¨EÖDÎEÖEöEÖG EÖHLEÖIxEÖJ§EÖK×EÖMEÖN;EÖOpEÖP¥EÖQÛEÖSEÖTLEÖU†EÖVÁEÖWýEÖY9EÖZvEÖ[µEÖ\óEÖ^3EÖ_rEÖ`³EÖaôEÖc5EÖdvEÖe·EÖfùEÖh;EÖi}EÖj¿EÖlEÖmBEÖnƒEÖoÄEÖqEÖrFEÖs…EÖtÅEÖvEÖwBEÖx~EÖy»EÖz÷EÖ|2EÖ}kEÖ~¤EÖÝEÖEÖ‚HEÖƒ}EÖ„°EÖ…àEÖ‡EÖˆ@EÖ‰mEÖŠ˜EÖ‹ÂEÖŒêEÖŽEÖ3EÕÀ\EÕÁ EÕÁºEÕÂhEÕÃEÕÃÊEÕÄzEÕÅ+EÕÅÜEÕÆŽEÕÇ@EÕÇôEÕȦEÕÉYEÕÊ EÕÊÀEÕËsEÕÌ'EÕÌÝEÕÍEÕÎFEÕÎúEÕϰEÕÐfEÕÑEÕÑÐEÕÒ…EÕÓEÖªEÖEÖ…EÖòEÖ_EÖÌEÖ ;EÖ ¨EÖ EÖ †EÖ öEÖ fEÖ ØEÖ JEÖ ¾EÖ 2EÖ ¦EÖEÖ”EÖ EÖˆEÖEÖ€EÖÿEÖ€EÖEÖ…EÖ EÖ“EÖEÖ¨EÖ8EÖÈEÖ[EÖñEÖˆEÖ#EÖÀEÖ`EÖEÖ¨EÖPEÖüEÖªEÖ]EÖEÖËEÖ†EÖ FEÖ! EÖ!ÐEÖ"™EÖ#cEÖ$-EÖ$úEÖ%ËEÖ&ŸEÖ'xEÖ(SEÖ)2EÖ*EÖ*úEÖ+âEÖ,ÏEÖ-¾EÖ.°EÖ/¦EÖ0žEÖ1šEÖ2˜EÖ3˜EÖ4œEÖ5¢EÖ6ªEÖ7¶EÖ8ÄEÖ9ÔEÖ:æEÖ;üEÖ=EÖ>-EÖ?HEÖ@fEÖA†EÖB§EÖCËEÖDðEÖFEÖG@EÖHjEÖI–EÖJÄEÖKòEÖM#EÖNVEÖOˆEÖP¼EÖQòEÖS(EÖT`EÖU˜EÖVÒEÖX EÖYHEÖZƒEÖ[ÀEÖ\ýEÖ^;EÖ_zEÖ`¸EÖaøEÖc7EÖdvEÖe·EÖf÷EÖh7EÖiwEÖj·EÖk÷EÖm8EÖnwEÖo¶EÖpöEÖr4EÖssEÖt±EÖuîEÖw+EÖxfEÖy¡EÖzÜEÖ|EÖ}NEÖ~†EÖ½EÖ€òEÖ‚&EÖƒZEÖ„ŠEÖ…¼EÖ†ëEÖˆEÖ‰DEÖŠnEÖ‹–EÖŒ¾EÖäEÖEÕÀ`EÕÁ EÕÁºEÕÂeEÕÃEÕÃÀEÕÄnEÕÅEÕÅÌEÕÆ|EÕÇ*EÕÇÚEÕÈŠEÕÉ:EÕÉêEÕÊœEÕËKEÕËüEÕÌ®EÕÍ`EÕÎEÕÎÃEÕÏuEÕÐ'EÕÐÙEÕÑŒEÕÒ>EÕÒðEÕÓ£EÕÔVEÕÕEÕÕ»EÕÖmEÕ× EÕ×ÒEÕØ…EÕÙ8EÕÙêEÕÚœEÕÛOEÕÜEÕܳEÕÝeEÕÞEÕÞÈEÕßzEÕà+EÕàÜEÕáŽEÕâ>EÕâîEÕãžEÕäNEÕäþEÕå®EÕæ\EÕç EÕçºEÕègEÕéEÕéÂEÕêoEÕëEÕëÈEÕìtEÕíEÕíÉEÕîtEÕïEÕïÆEÕðoEÕñEÕñÀEÕòfEÕó EÕó²EÕôXEÕôýEÕõ¢EÕöDEÕöèEÕ÷ŠEÕø+EÕøÍEÕùlEÕú EÕúªEÕûIEÕûåEÕü‚EÕýEÕý¸EÕþSEÕþìEÕÿ„EÖEÖ¡EÖEÖ‹EÖÿEÖqEÖãEÖUEÖÆEÖ7EÖ§EÖEÖˆEÖúEÖiEÖÚEÖJEÖºEÖ,EÖžEÖ EÖ ‚EÖ õEÖ iEÖ ÞEÖ TEÖ ÉEÖ @EÖ ¸EÖ 2EÖ ¬EÖ(EÖ¥EÖ#EÖ£EÖ$EÖ¦EÖ,EÖ²EÖ:EÖÄEÖPEÖÞEÖnEÖEÖ”EÖ,EÖÆEÖ`EÖþEÖŸEÖBEÖèEÖ‘EÖ=EÖíEÖŸEÖSEÖ EÖÇEÖ…EÖ GEÖ! EÖ!ÖEÖ"¢EÖ#oEÖ$;EÖ% EÖ%ÜEÖ&³EÖ'EÖ(jEÖ)JEÖ*/EÖ+EÖ+ÿEÖ,ìEÖ-ÜEÖ.ÐEÖ/ÆEÖ0ÀEÖ1¼EÖ2»EÖ3¼EÖ4ÀEÖ5ÆEÖ6ÐEÖ7ÛEÖ8èEÖ9úEÖ; EÖ< EÖ=8EÖ>PEÖ?lEÖ@ˆEÖA¨EÖBÉEÖCìEÖEEÖF7EÖG^EÖHˆEÖI³EÖJàEÖLEÖM=EÖNmEÖOŸEÖPÓEÖREÖSEÖ ¼EÖ :EÖ ºEÖ:EÖ¾EÖBEÖÆEÖMEÖÖEÖ`EÖìEÖzEÖ EÖœEÖ1EÖÇEÖ_EÖúEÖ—EÖ6EÖ×EÖ|EÖ"EÖÌEÖyEÖ(EÖÚEÖEÖGEÖEÖÀEÖEÖ FEÖ!EÖ!ÙEÖ"¨EÖ#wEÖ$EEÖ%EÖ%ëEÖ&ÃEÖ'ŸEÖ(~EÖ)`EÖ*FEÖ+.EÖ,EÖ-EÖ-ùEÖ.îEÖ/æEÖ0ßEÖ1ÜEÖ2ÛEÖ3ÝEÖ4áEÖ5èEÖ6òEÖ7üEÖ9 EÖ:EÖ;.EÖrEÖ?EÖ@ªEÖAÈEÖBèEÖD EÖE/EÖFTEÖG|EÖH¤EÖIÎEÖJúEÖL&EÖMTEÖN„EÖO¶EÖPèEÖREÖSNEÖTƒEÖU¹EÖVðEÖX(EÖY`EÖZ™EÖ[ÒEÖ] EÖ^GEÖ_‚EÖ`¿EÖaûEÖc7EÖdtEÖe°EÖfíEÖh*EÖihEÖj¥EÖkâEÖmEÖn[EÖo—EÖpÓEÖrEÖsKEÖt…EÖuÀEÖvùEÖx2EÖykEÖz¢EÖ{ÙEÖ}EÖ~DEÖyEÖ€ªEÖÞEÖƒ EÖ„>EÖ…jEÖ†˜EÖ‡ÅEÖˆîEÖŠEÖ‹=EÖŒdEÖ†EÖŽªEÕÀuEÕÁEÕÁÃEÕÂjEÕÃEÕüEÕÄdEÕÅ EÕŶEÕÆ^EÕÇEÕÇ´EÕÈ\EÕÉEÕɰEÕÊZEÕËEÕ˱EÕÌ\EÕÍEÕͲEÕÎ]EÕÏEÕÏ´EÕÐ`EÕÑ EÕÑ·EÕÒbEÕÓEÕÓºEÕÔfEÕÕEÕÕ¾EÕÖjEÕ×EÕ×ÁEÕØnEÕÙEÕÙÄEÕÚpEÕÛEÕÛÈEÕÜsEÕÝEÕÝÊEÕÞtEÕßEÕßÊEÕàtEÕá EÕáÉEÕâtEÕãEÕãÇEÕäpEÕåEÕåÃEÕælEÕçEÕç½EÕèfEÕé EÕéµEÕê\EÕëEÕëªEÕìPEÕìöEÕíœEÕîAEÕîæEÕïŠEÕð.EÕðÒEÕñvEÕòEÕò¼EÕó^EÕôEÕô¡EÕõBEÕõâEÕö‚EÕ÷!EÕ÷ÀEÕø_EÕøþEÕùšEÕú7EÕúÔEÕûpEÕü EÕü¥EÕý?EÕýØEÕþqEÕþúEÕÿsEÕÿìEÖdEÖÝEÖTEÖÊEÖAEÖ¸EÖ/EÖ¦EÖEÖ’EÖ EÖ‚EÖùEÖpEÖéEÖbEÖÜEÖVEÖÐEÖ LEÖ ÈEÖ DEÖ ÃEÖ CEÖ ÃEÖ DEÖ ÆEÖ JEÖ ÐEÖVEÖßEÖhEÖôEÖ€EÖEÖžEÖ1EÖÄEÖZEÖòEÖŒEÖ*EÖÆEÖhEÖ EÖ°EÖXEÖEÖ°EÖ`EÖEÖÈEÖ€EÖ:EÖøEÖ¹EÖ~EÖ DEÖ!EÖ!ÝEÖ"®EÖ#~EÖ$PEÖ%"EÖ%úEÖ&ÔEÖ'²EÖ(’EÖ)vEÖ*^EÖ+HEÖ,4EÖ-$EÖ.EÖ/ EÖ0EÖ0þEÖ1üEÖ2úEÖ3üEÖ5EÖ6 EÖ7EÖ8EÖ9,EÖ:>EÖ;PEÖ“EÖ?®EÖ@ÊEÖAèEÖCEÖD)EÖELEÖFqEÖG˜EÖHÀEÖIéEÖKEÖL@EÖMlEÖNœEÖOÊEÖPüEÖR,EÖS`EÖT’EÖUÈEÖVüEÖX4EÖYjEÖZ¢EÖ[ÚEÖ]EÖ^LEÖ_†EÖ`¿EÖaûEÖc5EÖdqEÖe«EÖfçEÖh"EÖi^EÖj™EÖkÕEÖmEÖnKEÖo…EÖpÁEÖqúEÖs4EÖtmEÖu¦EÖvÞEÖxEÖyLEÖz„EÖ{¸EÖ|îEÖ~ EÖTEÖ€„EÖ¶EÖ‚äEÖ„EÖ…@EÖ†nEÖ‡—EÖˆÁEÖ‰èEÖ‹EÖŒ4EÖXEÖŽxEÕÀ†EÕÁ+EÕÁÐEÕÂvEÕÃEÕÃÀEÕÄfEÕÅ EÕųEÕÆZEÕÆþEÕǦEÕÈMEÕÈôEÕÉœEÕÊAEÕÊéEÕË‘EÕÌ9EÕÌàEÕ͈EÕÎ1EÕÎØEÕÏ€EÕÐ)EÕÐÐEÕÑyEÕÒ"EÕÒÊEÕÓrEÕÔEÕÔÃEÕÕkEÕÖEÕÖ¼EÕ×dEÕØ EÕØµEÕÙ^EÕÚEÕÚ®EÕÛVEÕÛýEÕܦEÕÝNEÕÝõEÕÞEÕßDEÕßìEÕà“EÕá:EÕááEÕâˆEÕã.EÕãÖEÕä|EÕå"EÕåÈEÕænEÕçEÕçºEÕè^EÕéEÕé¨EÕêLEÕêñEÕë”EÕì8EÕìÜEÕí€EÕî"EÕîÅEÕïhEÕð EÕð¬EÕñLEÕñîEÕòEÕó/EÕóÐEÕôpEÕõEÕõ®EÕöLEÕöëEÕ÷‰EÕø&EÕøÃEÕù`EÕùüEÕú˜EÕû4EÕûÎEÕüiEÕýEÕýœEÕþ&EÕþ¡EÕÿEÕÿ—EÖEÖ‹EÖEÖ~EÖøEÖrEÖëEÖeEÖßEÖZEÖÔEÖOEÖËEÖFEÖÂEÖ@EÖ¾EÖ=EÖ¼EÖ EÖ.1EÖ/'EÖ0 EÖ1EÖ2EÖ3EÖ4EÖ5"EÖ6)EÖ74EÖ8>EÖ9NEÖ:^EÖ;pEÖ<„EÖ=›EÖ>²EÖ?ÌEÖ@èEÖBEÖC%EÖDFEÖEhEÖFŒEÖG²EÖHØEÖJEÖK+EÖLVEÖMEÖN¯EÖOÞEÖQ EÖR>EÖSpEÖT¡EÖUÔEÖWEÖX>EÖYsEÖZ¨EÖ[ßEÖ]EÖ^NEÖ_‡EÖ`ÀEÖaøEÖc1EÖdkEÖe¥EÖfÞEÖhEÖiREÖjŒEÖkÅEÖlÿEÖn9EÖorEÖpªEÖqãEÖsEÖtSEÖu‹EÖvÂEÖw÷EÖy.EÖzbEÖ{•EÖ|ÉEÖ}úEÖ.EÖ€]EÖŒEÖ‚»EÖƒèEÖ…EÖ†?EÖ‡jEÖˆ’EÖ‰¸EÖŠÞEÖŒEÖ$EÖŽEEÕÀ—EÕÁ:EÕÁÜEÕ€EÕÃ"EÕÃÆEÕÄhEÕÅ EÕůEÕÆREÕÆöEÕÇ™EÕÈ>EÕÈáEÕɆEÕÊ*EÕÊÏEÕËrEÕÌEÕÌ»EÕÍ`EÕÎEÕΪEÕÏMEÕÏòEÕЗEÕÑEÖ! EÖ!áEÖ"¶EÖ#‹EÖ$aEÖ%8EÖ&EÖ&ñEÖ'ÒEÖ(¶EÖ)žEÖ*ˆEÖ+tEÖ,dEÖ-UEÖ.JEÖ/AEÖ0:EÖ17EÖ26EÖ36EÖ4:EÖ5@EÖ6GEÖ7QEÖ8^EÖ9kEÖ:|EÖ;ŽEÖ<¢EÖ=¸EÖ>ÐEÖ?êEÖAEÖB"EÖC@EÖDaEÖE‚EÖF¦EÖGÊEÖHðEÖJEÖK@EÖLjEÖM–EÖNÂEÖOïEÖQEÖRLEÖS}EÖT­EÖUßEÖWEÖXEEÖYzEÖZ¯EÖ[ãEÖ]EÖ^PEÖ_†EÖ`¾EÖaôEÖc,EÖdeEÖeœEÖfÕEÖh EÖiEEÖj}EÖk¶EÖlíEÖn&EÖo^EÖp”EÖqÌEÖsEÖt9EÖuoEÖv£EÖwØEÖy EÖzAEÖ{sEÖ|¤EÖ}ÖEÖEÖ€4EÖdEÖ‚EÖƒ¼EÖ„èEÖ†EÖ‡:EÖˆ`EÖ‰ˆEÖŠ¬EÖ‹ÎEÖŒòEÖŽEÕÀ¯EÕÁNEÕÁîEÕÂŽEÕÃ.EÕÃÐEÕÄpEÕÅEÕŰEÕÆQEÕÆòEÕÇ’EÕÈ2EÕÈÓEÕÉtEÕÊEÕʶEÕËVEÕËøEÕÌ™EÕÍ:EÕÍÜEÕÎ}EÕÏEÕÏ¿EÕÐ`EÕÑEÕÑ£EÕÒEEÕÒæEÕÓ‡EÕÔ(EÕÔÊEÕÕkEÕÖ EÕÖ­EÕ×OEÕ×ñEÕØ’EÕÙ3EÕÙÔEÕÚuEÕÛEÕÛ¸EÕÜYEÕÜúEÕÝœEÕÞîEÖ@EÖA"EÖB>EÖC\EÖD{EÖEœEÖF¿EÖGãEÖIEÖJ.EÖKVEÖL~EÖMªEÖNÔEÖPEÖQ-EÖR\EÖSŠEÖT»EÖUëEÖWEÖXNEÖY€EÖZ´EÖ[èEÖ]EÖ^QEÖ_†EÖ`¼EÖaòEÖc(EÖd]EÖe”EÖfËEÖhEÖi8EÖjoEÖk¦EÖlÝEÖnEÖoHEÖp~EÖq´EÖréEÖtEÖuREÖv†EÖwºEÖxìEÖzEÖ{PEÖ|€EÖ}°EÖ~ÞEÖ€ EÖ:EÖ‚fEÖƒEÖ„ºEÖ…äEÖ‡ EÖˆ2EÖ‰VEÖŠzEÖ‹žEÖŒ¿EÖÞEÕÀÊEÕÁhEÕÂEÕ¢EÕÃ@EÕÃÞEÕÄzEÕÅEÕÅ´EÕÆREÕÆðEÕÇŒEÕÈ+EÕÈÉEÕÉfEÕÊEÕÊ¢EÕË?EÕËÝEÕÌzEÕÍEÕͶEÕÎTEÕÎñEÕÏŽEÕÐ-EÕÐÊEÕÑhEÕÒEÕÒ¤EÕÓAEÕÓßEÕÔ}EÕÕEÕÕ¸EÕÖVEÕÖôEÕ×’EÕØ/EÕØÎEÕÙkEÕÚEÕÚ¦EÕÛDEÕÛâEÕÜEÕÝEÕÝ»EÕÞXEÕÞöEÕß”EÕà1EÕàÎEÕálEÕâ EÕâ§EÕãDEÕãâEÕäEÕåEÕåºEÕæWEÕæôEÕç’EÕè.EÕèÌEÕéhEÕêEÕê£EÕë@EÕëÜEÕìzEÕíEÕí³EÕîPEÕîìEÕï‰EÕð&EÕðÂEÕñ^EÕñûEÕò˜EÕó4EÕóÐEÕôlEÕõEÕõ¤EÕö@EÕöÛEÕ÷xEÕøEÕø¯EÕùLEÕùçEÕúEÕûEÕû¬EÕü,EÕü®EÕý/EÕý°EÕþ1EÕþ²EÕÿ4EÕÿ¶EÖ8EÖ¼EÖ>EÖÂEÖFEÖÊEÖPEÖÕEÖ]EÖäEÖlEÖõEÖ~EÖ EÖ•EÖ"EÖ°EÖ ?EÖ ÐEÖ aEÖ ôEÖ ˆEÖ EÖ ´EÖ LEÖ æEÖ‚EÖEÖ½EÖ^EÖEÖ¤EÖJEÖòEÖœEÖFEÖôEÖ¤EÖUEÖ EÖ¿EÖxEÖ3EÖïEÖ¯EÖrEÖ6EÖüEÖÆEÖ“EÖaEÖ 4EÖ!EÖ!àEÖ"ºEÖ#”EÖ$mEÖ%IEÖ&)EÖ' EÖ'ïEÖ(×EÖ)ÁEÖ*®EÖ+EÖ,ŽEÖ-ƒEÖ.zEÖ/tEÖ0nEÖ1lEÖ2lEÖ3nEÖ4rEÖ5yEÖ6‚EÖ7ŒEÖ8˜EÖ9§EÖ:·EÖ;ÊEÖ<ÜEÖ=òEÖ? EÖ@"EÖA=EÖBYEÖCvEÖD–EÖE¶EÖFØEÖGúEÖIEÖJEEÖKlEÖL“EÖM¼EÖNæEÖPEÖQEÕ÷ÚEÕøvEÕùEÕù­EÕúIEÕúØEÕû\EÕûÞEÕübEÕüæEÕýiEÕýìEÕþpEÕþõEÕÿzEÖEÖ†EÖ EÖ”EÖEÖ¦EÖ.EÖ¸EÖCEÖÎEÖ\EÖêEÖxEÖEÖ˜EÖ*EÖ½EÖ REÖ æEÖ ~EÖ EÖ ¯EÖ JEÖ æEÖ „EÖ$EÖÄEÖhEÖ EÖ²EÖZEÖEÖ¯EÖ\EÖ EÖ¼EÖpEÖ&EÖÜEÖ˜EÖSEÖEÖÑEÖ”EÖZEÖ!EÖëEÖ·EÖ†EÖYEÖ ,EÖ!EÖ!ÝEÖ"ºEÖ#–EÖ$qEÖ%PEÖ&1EÖ'EÖ'üEÖ(åEÖ)ÑEÖ*¿EÖ+°EÖ,£EÖ-˜EÖ.EÖ/ŠEÖ0ˆEÖ1„EÖ2†EÖ3ˆEÖ4ŒEÖ5”EÖ6œEÖ7¨EÖ8´EÖ9ÂEÖ:ÓEÖ;åEÖ<øEÖ>EÖ?$EÖ@=EÖAWEÖBrEÖCEÖD®EÖEÎEÖFîEÖHEÖI4EÖJYEÖK~EÖL¥EÖMÍEÖNöEÖP EÖQJEÖRvEÖS¢EÖTÐEÖUþEÖW-EÖX\EÖYŒEÖZ¼EÖ[íEÖ]EÖ^PEÖ_‚EÖ`µEÖaèEÖcEÖdNEÖeEÖfµEÖgèEÖiEÖjOEÖkƒEÖl¶EÖméEÖoEÖpOEÖq‚EÖr´EÖsæEÖuEÖvHEÖwyEÖx©EÖyØEÖ{EÖ|4EÖ}bEÖ~ŽEÖºEÖ€äEÖ‚EÖƒ7EÖ„_EÖ…†EÖ†«EÖ‡ÐEÖˆóEÖŠEÖ‹6EÖŒVEÖtEÕÁ EÕÁ EÕÂ9EÕÂÒEÕÃjEÕÄEÕĘEÕÅ0EÕÅÈEÕÆ^EÕÆõEÕÇŒEÕÈ$EÕȺEÕÉREÕÉéEÕÊ€EÕËEÕË­EÕÌDEÕÌÜEÕÍrEÕÎ EÕΟEÕÏ6EÕÏÌEÕÐcEÕÐùEÕÑEÕÒ&EÕÒ½EÕÓSEÕÓëEÕÔEÕÕEÕÕ®EÕÖEEÕÖÛEÕ×rEÕØEÕØŸEÕÙ5EÕÙÌEÕÚbEÕÚúEÕÛEÕÜ'EÕܾEÕÝUEÕÝìEÕÞƒEÕßEÕß²EÕàIEÕààEÕáxEÕâEÕâ¦EÕã>EÕãÔEÕälEÕåEÕåœEÕæ4EÕæÍEÕçeEÕçýEÕè•EÕé.EÕéÆEÕê^EÕêøEÕëEÕì*EÕìÄEÕí]EÕíöEÕîEÕï(EÕïÃEÕð\EÕð÷EÕñ’EÕò,EÕòÆEÕóaEÕóüEÕô—EÕõ2EÕõÎEÕöiEÕ÷EÕ÷¡EÕø=EÕøÚEÕùuEÕúEÕúŒEÕûEÕû•EÕüEÕü¡EÕý(EÕý®EÕþ6EÕþ½EÕÿFEÕÿÐEÖYEÖäEÖnEÖúEÖ‡EÖEÖ¢EÖ2EÖÃEÖTEÖæEÖyEÖEÖ£EÖ:EÖÒEÖ lEÖ EÖ ¢EÖ @EÖ ÞEÖ €EÖ "EÖ ÄEÖiEÖEÖ¸EÖbEÖEÖ¼EÖkEÖEÖÐEÖ„EÖ&EÖ?EÖkpEÖl¢EÖmÔEÖoEÖp7EÖqgEÖr˜EÖsÉEÖtùEÖv(EÖwXEÖx†EÖy´EÖzàEÖ| EÖ}9EÖ~dEÖEÖ€¹EÖâEÖƒ EÖ„1EÖ…WEÖ†zEÖ‡žEÖˆÁEÖ‰âEÖ‹EÖŒ"EÖ@EÕÁ/EÕÁÄEÕÂXEÕÂîEÕÂEÕÄEÕÄ­EÕÅAEÕÅÔEÕÆhEÕÆþEÕÇ‘EÕÈ$EÕȺEÕÉMEÕÉàEÕÊtEÕËEÕËšEÕÌ.EÕÌÀEÕÍTEÕÍèEÕÎzEÕÏEÕÏ EÕÐ3EÕÐÆEÕÑYEÕÑìEÕÒEÕÓEÕÓ¤EÕÔ7EÕÔÊEÕÕ]EÕÕðEÕÖƒEÕ×EÕרEÕØEÖ'%EÖ(EÖ(üEÖ)ëEÖ*ÜEÖ+ÐEÖ,ÆEÖ-½EÖ.¶EÖ/³EÖ0±EÖ1±EÖ2´EÖ3·EÖ4½EÖ5ÄEÖ6ÎEÖ7ÚEÖ8æEÖ9ôEÖ;EÖ<EÖ=*EÖ>?EÖ?UEÖ@mEÖA†EÖB EÖC½EÖDÚEÖEøEÖGEÖH8EÖIZEÖJ}EÖK¢EÖLÆEÖMìEÖOEÖP:EÖQdEÖRŒEÖS¶EÖTáEÖV EÖW8EÖXeEÖY’EÖZÀEÖ[îEÖ]EÖ^LEÖ_zEÖ`ªEÖaÚEÖc EÖd;EÖekEÖfœEÖgÌEÖhüEÖj,EÖk]EÖlEÖm¾EÖnîEÖpEÖqNEÖr|EÖs¬EÖtÚEÖvEÖw6EÖxdEÖyEÖz¼EÖ{çEÖ}EÖ~;EÖdEÖ€ŽEÖ¶EÖ‚ÝEÖ„EÖ…&EÖ†KEÖ‡nEÖˆŽEÖ‰°EÖŠÐEÖ‹îEÖ EÕÁVEÕÁèEÕÂzEÕà EÕßEÕÄ1EÕÄÁEÕÅSEÕÅåEÕÆvEÕÇEÕǘEÕÈ(EÕȸEÕÉIEÕÉÚEÕÊjEÕÊùEÕˉEÕÌEǪ̃EÕÍ8EÕÍÈEÕÎWEÕÎçEÕÏvEÕÐEÕЕEÕÑ$EÕѳEÕÒCEÕÒÑEÕÓaEÕÓïEÕÔEÕÕEÕÕEÕÖ-EÕÖ¼EÕ×KEÕ×ÛEÕØjEÕØúEÕÙŠEÕÚEÕÚ©EÕÛ8EÕÛÉEÕÜYEÕÜéEÕÝzEÕÞ EÕÞšEÕß,EÕß¼EÕàMEÕàÞEÕápEÕâEÕâ”EÕã%EÕã¸EÕäJEÕäÜEÕåpEÕæEÕæ–EÕç*EÕç¼EÕèREÕèæEÕézEÕêEÕê¤EÕë:EÕëÐEÕìfEÕìüEÕí“EÕî*EÕîÁEÕïZEÕïòEÕðŠEÕñ"EÕñ¼EÕòVEÕòïEÕó‹EÕô$EÕôÀEÕõ\EÕõøEÕö•EÕ÷2EÕ÷ÏEÕøbEÕøêEÕùtEÕùýEÕú‡EÕûEÕûœEÕü*EÕüµEÕýCEÕýÑEÕþ`EÕþðEÕÿEÖEÖ¤EÖ8EÖÌEÖaEÖ÷EÖEÖ(EÖÀEÖ\EÖøEÖ–EÖ4EÖÓEÖuEÖ EÖ ºEÖ `EÖ EÖ ®EÖ XEÖ EÖ ±EÖ`EÖEÖÁEÖtEÖ*EÖàEÖšEÖTEÖEÖÏEÖŽEÖQEÖEÖÛEÖ£EÖnEÖ:EÖ EÖÙEÖ«EÖ€EÖYEÖ2EÖ EÖ íEÖ!ÍEÖ"±EÖ#”EÖ$vEÖ%[EÖ&CEÖ',EÖ(EÖ)EÖ)öEÖ*éEÖ+ÞEÖ,ÕEÖ-ÎEÖ.ÈEÖ/ÆEÖ0ÄEÖ1ÅEÖ2ÈEÖ3ÍEÖ4ÓEÖ5ÚEÖ6åEÖ7ðEÖ8þEÖ: EÖ;EÖ<.EÖ=BEÖ>VEÖ?lEÖ@ƒEÖAœEÖB¶EÖCÒEÖDîEÖF EÖG+EÖHKEÖIlEÖJŽEÖK²EÖLÕEÖMúEÖO EÖPFEÖQmEÖR–EÖS¾EÖTèEÖVEÖW=EÖXhEÖY”EÖZÀEÖ[íEÖ]EÖ^HEÖ_vEÖ`£EÖaÒEÖcEÖd/EÖe_EÖfEÖg¼EÖhìEÖjEÖkIEÖlyEÖm§EÖnÖEÖpEÖq2EÖr`EÖsEÖt»EÖuèEÖwEÖx@EÖylEÖz–EÖ{ÀEÖ|èEÖ~EÖ;EÖ€aEÖˆEÖ‚®EÖƒÒEÖ„öEÖ†EÖ‡jEÖ?€EÖ@–EÖA¯EÖBÉEÖCäEÖEEÖFEÖG:EÖHZEÖIzEÖJœEÖK¾EÖLáEÖNEÖO*EÖPPEÖQvEÖRœEÖSÄEÖTìEÖVEÖW?EÖXiEÖY“EÖZ¾EÖ[êEÖ]EÖ^BEÖ_nEÖ`›EÖaÈEÖbõEÖd"EÖePEÖf}EÖg«EÖhÙEÖjEÖk4EÖlbEÖmEÖn¼EÖoéEÖqEÖrBEÖsoEÖtšEÖuÆEÖvðEÖxEÖyDEÖzoEÖ{˜EÖ|ÀEÖ}èEÖEÖ€6EÖZEÖ‚€EÖƒ£EÖ„ÇEÖ…èEÖ‡ EÖˆ*EÖ‰JEÖŠgEÖ‹…EÖŒ EÕÁ¬EÕÂ8EÕÂÆEÕÃREÕÃÞEÕÄkEÕÄõEÕÅEÕÆ EÕÆ˜EÕÇ"EÕÇ«EÕÈ6EÕÈÀEÕÉJEÕÉÒEÕÊ[EÕÊåEÕËnEÕËöEÕÌEÕÍEÕÍEÕÎEÕΠEÕÏ(EÕϰEÕÐ8EÕпEÕÑHEÕÑÐEÕÒWEÕÒßEÕÓfEÕÓîEÕÔwEÕÔþEÕÕ†EÕÖEÕÖ–EÕ×EÕצEÕØ/EÕØ·EÕÙ@EÕÙÈEÕÚQEÕÚÚEÕÛcEÕÛíEÕÜvEÕÝEÕÝŠEÕÞEÕÞ EÕß*EÕßµEÕà@EÕàÌEÕáXEÕáäEÕâpEÕâýEÕãŠEÕäEÕä¦EÕå4EÕåÃEÕæREÕæáEÕçqEÕèEÕè“EÕé$EÕé¶EÕêHEÕêÛEÕënEÕìEÕì–EÕí*EÕíÀEÕîWEÕîìEÕï„EÕðEÕð´EÕñMEÕñæEÕò€EÕóEÕó·EÕôREÕôðEÕõŽEÕö+EÕöÀEÕ÷MEÕ÷ÚEÕøfEÕøõEÕùƒEÕúEÕú¥EÕû7EÕûÊEÕü]EÕüòEÕý‡EÕþEÕþ¶EÕÿNEÕÿèEÖƒEÖEÖ½EÖZEÖûEÖ›EÖ>EÖàEÖ…EÖ+EÖÒEÖ|EÖ&EÖÒEÖ ~EÖ -EÖ ÜEÖ ŽEÖ @EÖ öEÖ ¬EÖdEÖEÖØEÖ”EÖREÖEÖÖEÖ˜EÖ^EÖ&EÖïEÖºEÖ‡EÖVEÖ&EÖùEÖÍEÖ¥EÖ|EÖXEÖ4EÖEÖôEÖ ØEÖ!½EÖ"¤EÖ#‹EÖ$sEÖ%\EÖ&GEÖ'5EÖ($EÖ)EÖ* EÖ+EÖ+öEÖ,ðEÖ-ëEÖ.èEÖ/çEÖ0èEÖ1êEÖ2ïEÖ3ôEÖ4úEÖ6EÖ7EÖ8EÖ9'EÖ:7EÖ;GEÖ€EÖ?•EÖ@¬EÖAÄEÖBÞEÖCøEÖEEÖF0EÖGMEÖHlEÖIŠEÖJ«EÖKÌEÖLîEÖNEÖO6EÖPZEÖQEÖR¥EÖSÌEÖTòEÖVEÖWBEÖXlEÖY”EÖZ¾EÖ[èEÖ]EÖ^=EÖ_hEÖ`”EÖa¿EÖbëEÖdEÖeCEÖfoEÖg›EÖhÇEÖióEÖkEÖlLEÖmwEÖn£EÖoÎEÖpúEÖr%EÖsOEÖtzEÖu¤EÖvÍEÖwøEÖy EÖzGEÖ{pEÖ|–EÖ}¾EÖ~ãEÖ€EÖ-EÖ‚PEÖƒrEÖ„–EÖ…¶EÖ†ØEÖ‡öEÖ‰EÖŠ2EÖ‹NEÖŒkEÕÁÜEÕÂfEÕÂîEÕÃzEÕÄEÕÄ‹EÕÅEÕÅœEÕÆ$EÕÆ«EÕÇ2EÕǺEÕÈ@EÕÈÆEÕÉLEÕÉÔEÕÊXEÕÊÞEÕËdEÕËéEÕÌnEÕÌóEÕÍwEÕÍüEÕ΀EÕÏEÕψEÕÐ EÕБEÕÑEÕÑ™EÕÒEÕÒ¡EÕÓ%EÕÓ©EÕÔ-EÕÔ±EÕÕ6EÕÕ¹EÕÖ>EÕÖÂEÕ×GEÕ×ËEÕØPEÕØÕEÕÙZEÕÙßEÕÚfEÕÚìEÕÛqEÕÛøEÕÜ~EÕÝEÕÝ‹EÕÞEÕÞšEÕß"EÕߪEÕà2EÕà»EÕáDEÕáÎEÕâXEÕââEÕãnEÕãúEÕä†EÕåEÕåžEÕæ,EÕæ¹EÕçHEÕçÖEÕèfEÕèõEÕé†EÕêEÕê¨EÕë:EÕëÌEÕì`EÕìôEÕíŠEÕîEÕîµEÕïLEÕïäEÕð|EÕñEÕñ¯EÕòIEÕòåEÕóEÕôEÕô¼EÕõ[EÕõñEÕöEÕ÷ EÕ÷œEÕø,EÕø¾EÕùPEÕùãEÕúwEÕû EÕû¢EÕü:EÕüÒEÕýmEÕþEÕþ¢EÕÿ?EÕÿÞEÖ~EÖEÖÀEÖcEÖEÖ®EÖTEÖüEÖ¦EÖQEÖþEÖ¬EÖ[EÖ EÖ ¾EÖ rEÖ 'EÖ ÞEÖ –EÖ PEÖ EÖÈEÖˆEÖHEÖ EÖÎEÖ”EÖZEÖ$EÖîEÖ¼EÖ‰EÖZEÖ,EÖEÖÕEÖ­EÖ†EÖbEÖ@EÖ EÖEÖäEÖ ËEÖ!±EÖ"œEÖ#…EÖ$nEÖ%ZEÖ&GEÖ'6EÖ((EÖ)EÖ*EÖ+EÖ,EÖ,úEÖ-öEÖ.õEÖ/ôEÖ0öEÖ1úEÖ2þEÖ4EÖ5 EÖ6EÖ7 EÖ8,EÖ9:EÖ:JEÖ;YEÖ’EÖ?¨EÖ@¾EÖAÖEÖBïEÖDEÖE#EÖF>EÖG\EÖHzEÖI˜EÖJ¸EÖKØEÖLúEÖNEÖO?EÖPbEÖQ†EÖR«EÖSÑEÖTöEÖVEÖWDEÖXkEÖY”EÖZ¼EÖ[äEÖ] EÖ^7EÖ_`EÖ`‹EÖa´EÖbßEÖd EÖe4EÖf_EÖgŠEÖh´EÖißEÖk EÖl5EÖm_EÖnŠEÖo³EÖpÞEÖrEÖs1EÖtZEÖu‚EÖv¬EÖwÓEÖxúEÖz EÖ{GEÖ|nEÖ}“EÖ~¸EÖÛEÖEÖ‚"EÖƒDEÖ„dEÖ…†EÖ†¦EÖ‡ÄEÖˆáEÖŠEÖ‹EÖŒ6EÕ EÕ”EÕÃEÕâEÕÄ(EÕįEÕÅ5EÕŸEÕÆ>EÕÆÃEÕÇFEÕÇÊEÕÈNEÕÈÐEÕÉSEÕÉÖEÕÊYEÕÊÚEÕË\EÕËÝEÕÌ_EÕÌàEÕÍbEÕÍâEÕÎbEÕÎäEÕÏdEÕÏåEÕÐeEÕÐåEÕÑfEÕÑæEÕÒfEÕÒæEÕÓgEÕÓçEÕÔgEÕÔèEÕÕhEÕÕêEÕÖjEÕÖêEÕ×lEÕ×íEÕØoEÕØðEÕÙrEÕÙôEÕÚvEÕÚùEÕÛ|EÕÛþEÕÜ‚EÕÝEÕÝŠEÕÞEÕÞ’EÕßEÕßžEÕà$EÕàªEÕá0EÕá¸EÕâ@EÕâÈEÕãPEÕãÚEÕädEÕäîEÕåxEÕæEÕæEÕçEÕçªEÕè8EÕèÆEÕéVEÕéæEÕêvEÕëEÕë™EÕì,EÕìÀEÕíVEÕíêEÕîEÕïEÕï®EÕðHEÕðáEÕñ{EÕòEÕò²EÕóNEÕóîEÕô‹EÕõ"EÕõ³EÕöBEÕöÔEÕ÷fEÕ÷úEÕøEÕù$EÕùºEÕúREÕúêEÕû…EÕü!EÕü¼EÕýZEÕýùEÕþ™EÕÿ:EÕÿÞEÖEÖ&EÖÌEÖtEÖEÖÈEÖtEÖ"EÖÐEÖ€EÖ2EÖäEÖšEÖ PEÖ EÖ ÀEÖ zEÖ 6EÖ ôEÖ ³EÖtEÖ7EÖûEÖÀEÖˆEÖREÖEÖèEÖ¶EÖ†EÖXEÖ+EÖEÖØEÖ°EÖŒEÖhEÖFEÖ&EÖ EÖíEÖÓEÖ ºEÖ!¤EÖ"EÖ#|EÖ$gEÖ%TEÖ&EEÖ'6EÖ()EÖ)EÖ*EÖ+ EÖ,EÖ-EÖ.EÖ/EÖ0EÖ1EÖ2EÖ3 EÖ4EÖ5EÖ6%EÖ70EÖ8¢EÖ?¸EÖ@ÎEÖAåEÖBþEÖDEÖE2EÖFLEÖGiEÖH†EÖI¤EÖJÄEÖKâEÖMEÖN$EÖOFEÖPiEÖQŒEÖR°EÖSÔEÖTùEÖVEÖWDEÖXjEÖY‘EÖZ¹EÖ[àEÖ]EÖ^0EÖ_XEÖ`‚EÖaªEÖbÓEÖcüEÖe%EÖfOEÖgxEÖh¢EÖiËEÖjõEÖlEÖmGEÖnpEÖo˜EÖpÂEÖqêEÖsEÖt:EÖuaEÖv‰EÖw°EÖxÖEÖyûEÖ{!EÖ|FEÖ}jEÖ~EÖ²EÖ€ÔEÖöEÖƒEÖ„8EÖ…VEÖ†vEÖ‡“EÖˆ°EÖ‰ÌEÖŠêEÖŒEÕÂAEÕÂÆEÕÃJEÕÃÍEÕÄPEÕÄÓEÕÅVEÕÅÙEÕÆZEÕÆÜEÕÇ\EÕÇÜEÕÈ\EÕÈÛEÕÉ\EÕÉÛEÕÊYEÕÊØEÕËVEÕËÓEÕÌREÕÌÏEÕÍLEÕÍÊEÕÎGEÕÎÄEÕÏ@EÕϾEÕÐ:EÕжEÕÑ4EÕѰEÕÒ,EÕÒ¨EÕÓ&EÕÓ¢EÕÔEÕÔœEÕÕEÕÕ•EÕÖEÕÖEÕ× EÕ׊EÕØ EÕØ†EÕÙEÕÙƒEÕÚEÕÚEÕÛEÕÛ€EÕÜEÕÜ€EÕÝEÕÝ‚EÕÞEÕÞ†EÕßEÕß‹EÕàEÕà’EÕáEÕáœEÕâ!EÕâ¨EÕã.EÕãµEÕä>EÕäÆEÕåOEÕåÙEÕædEÕæîEÕç{EÕèEÕè”EÕé$EÕé²EÕêBEÕêÔEÕëeEÕë÷EÕìŠEÕíEÕí´EÕîIEÕîáEÕïyEÕðEÕð¬EÕñGEÕñãEÕò€EÕóEÕó¾EÕôVEÕôçEÕõyEÕö EÕö EÕ÷6EÕ÷ÌEÕødEÕøýEÕù—EÕú3EÕúÐEÕûnEÕü EÕü®EÕýPEÕýòEÕþ–EÕÿ=EÕÿäEÖŒEÖ6EÖâEÖŽEÖ³EÖ?ÈEÖ@ÝEÖAôEÖC EÖD&EÖE@EÖFZEÖGvEÖH’EÖI°EÖJÎEÖKìEÖM EÖN,EÖONEÖPoEÖQ’EÖR´EÖSØEÖTüEÖVEÖWDEÖXiEÖYŽEÖZµEÖ[ÛEÖ]EÖ^)EÖ_PEÖ`wEÖaŸEÖbÆEÖcîEÖeEÖf>EÖgfEÖhŽEÖi¶EÖjÞEÖlEÖm.EÖnUEÖo}EÖp¤EÖqËEÖròEÖtEÖu?EÖvdEÖwŠEÖx¯EÖyÔEÖzøEÖ|EÖ}@EÖ~bEÖ…EÖ€¦EÖÈEÖ‚èEÖ„EÖ…&EÖ†DEÖ‡bEÖˆEÖ‰›EÖŠ¶EÖ‹ÐEÕÂwEÕÂúEÕÃzEÕÃüEÕÄ|EÕÄüEÕÅ{EÕÅúEÕÆxEÕÆ÷EÕÇuEÕÇñEÕÈnEÕÈêEÕÉgEÕÉáEÕÊ]EÕÊ×EÕËREÕËÍEÕÌGEÕÌÁEÕÍ;EÕ͵EÕÎ.EÕΧEÕÏ EÕÏ™EÕÐEÕЋEÕÑEÕÑ|EÕÑöEÕÒnEÕÒçEÕÓ`EÕÓÙEÕÔREÕÔËEÕÕDEÕÕ½EÕÖ7EÕÖ±EÕ×+EÕ×¥EÕØ EÕØšEÕÙEÕÙEÕÚ EÕÚˆEÕÛEÕÛEÕÛþEÕÜ{EÕÜùEÕÝxEÕÝöEÕÞvEÕÞöEÕßvEÕß÷EÕàyEÕàûEÕá~EÕâEÕâ†EÕã EÕãEÕäEÕäœEÕå$EÕå¬EÕæ6EÕæÀEÕçLEÕçÖEÕèbEÕèðEÕéEÕêEÕêžEÕë/EÕëÁEÕìUEÕìéEÕí~EÕîEÕî­EÕïEEÕïßEÕðzEÕñEÕñ²EÕòPEÕòñEÕóŠEÕôEÕô¯EÕõDEÕõÛEÕörEÕ÷ EÕ÷¥EÕøAEÕøÝEÕù{EÕúEÕú»EÕû]EÕüEÕü¥EÕýLEÕýôEÕþœEÕÿGEÕÿôEÖ EÖNEÖþEÖ°EÖdEÖEÖÎEÖ„EÖ>EÖøEÖ´EÖrEÖ 0EÖ ðEÖ ²EÖ vEÖ ;EÖ EÖ ÊEÖ“EÖ^EÖ+EÖúEÖÊEÖ›EÖoEÖDEÖEÖôEÖÎEÖ¨EÖ†EÖdEÖEEÖ(EÖ EÖòEÖÙEÖÃEÖ­EÖ ™EÖ!ˆEÖ"xEÖ#hEÖ$XEÖ%IEÖ&=EÖ'2EÖ((EÖ) EÖ*EÖ+EÖ,EÖ-EÖ.EÖ/EÖ0EÖ1EÖ2EÖ3$EÖ4-EÖ56EÖ6BEÖ7MEÖ8ZEÖ9hEÖ:xEÖ;ˆEÖ<šEÖ=­EÖ>ÁEÖ?ÖEÖ@ìEÖBEÖCEÖD3EÖELEÖFfEÖGEÖHEÖIºEÖJØEÖKöEÖMEÖN4EÖOSEÖPtEÖQ–EÖR·EÖSÚEÖTüEÖVEÖWCEÖXgEÖYŒEÖZ°EÖ[ÕEÖ\ûEÖ^ EÖ_FEÖ`mEÖa’EÖb¹EÖcßEÖeEÖf-EÖgSEÖh{EÖi¡EÖjÈEÖkïEÖmEÖnEÕÌ´EÕÍ*EÕÍ EÕÎEÕÎŒEÕÏEÕÏvEÕÏëEÕÐ`EÕÐÕEÕÑJEÕÑÀEÕÒ5EÕÒªEÕÓEÕÓ”EÕÔ EÕÔ~EÕÔôEÕÕjEÕÕàEÕÖVEÕÖÌEÕ×CEÕ׺EÕØ1EÕØ©EÕÙ!EÕÙ™EÕÚEÕÚŠEÕÛEÕÛ}EÕÛ÷EÕÜrEÕÜîEÕÝjEÕÝæEÕÞbEÕÞàEÕß^EÕßÝEÕà\EÕàÜEÕá]EÕáßEÕâaEÕâäEÕãhEÕãìEÕärEÕäùEÕåEÕæEÕæEÕçEÕç¦EÕè1EÕè¾EÕéLEÕéÛEÕêkEÕêýEÕëEÕì"EÕì·EÕíLEÕíãEÕîzEÕïEÕï¯EÕðKEÕðèEÕñ†EÕò&EÕòÀEÕóTEÕóêEÕô€EÕõEÕõ±EÕöLEÕöèEÕ÷†EÕø&EÕøÆEÕùhEÕú EÕú°EÕûVEÕûþEÕü§EÕýQEÕýýEÕþªEÕÿZEÖ EÖ¼EÖpEÖ$EÖÚEÖ’EÖLEÖEÖÃEÖ€EÖ@EÖEÖÄEÖ ˆEÖ NEÖ EÖ ÜEÖ ¦EÖ rEÖ?EÖEÖßEÖ±EÖ„EÖZEÖ0EÖEÖâEÖ½EÖ›EÖyEÖYEÖÌEÖ?áEÖ@öEÖB EÖC$EÖDEÕØ³EÕÙ'EÕÙœEÕÚEÕÚˆEÕÚþEÕÛvEÕÛîEÕÜeEÕÜÞEÕÝWEÕÝÒEÕÞLEÕÞÇEÕßCEÕß¿EÕà=EÕà»EÕá:EÕáºEÕâ:EÕâ¼EÕã>EÕãÂEÕäFEÕäËEÕåQEÕåØEÕæ`EÕæéEÕçtEÕèEÕè‹EÕéEÕé¨EÕê8EÕêÉEÕë\EÕëïEÕì…EÕíEÕí²EÕîLEÕîæEÕïEÕðEÕð½EÕñ^EÕñøEÕòEÕó$EÕó¼EÕôVEÕôòEÕõEÕö-EÕöÍEÕ÷nEÕøEÕøµEÕù\EÕúEÕú«EÕûVEÕüEÕü°EÕý^EÕþEÕþÂEÕÿuEÖ*EÖàEÖ™EÖREÖEÖËEÖŠEÖIEÖ EÖÍEÖ’EÖXEÖ EÖ èEÖ ´EÖ EÖ LEÖ EÖ ìEÖ¾EÖ”EÖiEÖ?EÖEÖòEÖÍEÖªEÖ‰EÖiEÖJEÖ.EÖEÖùEÖáEÖÊEÖµEÖ¢EÖEÖ€EÖ rEÖ!dEÖ"WEÖ#KEÖ$@EÖ%6EÖ&-EÖ'%EÖ(EÖ)EÖ*EÖ+EÖ,EÖ-EÖ.EÖ/EÖ0 EÖ1&EÖ2-EÖ35EÖ4?EÖ5IEÖ6UEÖ7bEÖ8pEÖ9~EÖ:ŽEÖ;ŸEÖ<°EÖ=ÄEÖ>ØEÖ?ìEÖAEÖBEÖC.EÖDFEÖE_EÖFxEÖG’EÖH­EÖIÈEÖJäEÖLEÖMEÖNàEÖ?õEÖA EÖB EÖC7EÖDOEÖEgEÖF€EÖGšEÖH´EÖIÎEÖJêEÖLEÖM"EÖN@EÖO^EÖP{EÖQšEÖR¹EÖSØEÖTøEÖVEÖW9EÖXZEÖY|EÖZœEÖ[¾EÖ\áEÖ^EÖ_%EÖ`HEÖajEÖbEÖc°EÖdÓEÖeöEÖgEÖhèEÖ?üEÖAEÖB'EÖC>EÖDTEÖElEÖF…EÖGžEÖH¸EÖIÒEÖJíEÖL EÖM%EÖNBEÖO^EÖP|EÖQšEÖR¸EÖSÖEÖTöEÖVEÖW5EÖXUEÖYuEÖZ–EÖ[¶EÖ\×EÖ]ùEÖ_EÖ`EÕá¼EÕâ:EÕâ¸EÕã9EÕãºEÕä=EÕäÁEÕåFEÕåÌEÕæTEÕæÞEÕçiEÕçöEÕè„EÕéEÕé¥EÕê8EÕêÌEÕëbEÕëùEÕì“EÕí.EÕíËEÕîjEÕï EÕï¨EÕðAEÕðÜEÕñyEÕòEÕò¸EÕó\EÕóÿEÕô¦EÕõNEÕõøEÕö£EÕ÷QEÕ÷ÿEÕø°EÕùbEÕúEÕúÍEÕû†EÕü?EÕüúEÕý¸EÕþuEÕÿ5EÕÿ÷EÖºEÖ€EÖFEÖEÖØEÖ¤EÖrEÖ@EÖEÖâEÖµEÖ ŠEÖ `EÖ 8EÖ EÖ ìEÖ ÉEÖ¨EÖ†EÖfEÖIEÖ,EÖEÖùEÖàEÖÉEÖ´EÖ EÖŽEÖ|EÖlEÖ^EÖPEÖEEÖ9EÖ1EÖ )EÖ!!EÖ"EÖ#EÖ$EÖ% EÖ& EÖ'EÖ(EÖ)EÖ*EÖ+ EÖ, EÖ-EÖ.EÖ/EÖ0%EÖ1.EÖ28EÖ3BEÖ4MEÖ5YEÖ6fEÖ7uEÖ8„EÖ9“EÖ:£EÖ;µEÖ<ÇEÖ=ÚEÖ>îEÖ@EÖAEÖB,EÖCBEÖDZEÖErEÖFŠEÖG¢EÖH¼EÖIÖEÖJðEÖL EÖM&EÖNBEÖO^EÖP{EÖQ˜EÖR¶EÖSÓEÖTñEÖVEÖW.EÖXMEÖYmEÖZŒEÖ[­EÖ\ÍEÖ]íEÖ_ EÖ`.EÖaNEÖboEÖcEÖd±EÖeÒEÖfóEÖhEÖi4EÖjUEÖkvEÖl—EÖm¸EÖnØEÖoùEÖqEÖr9EÖsYEÖtzEÖu˜EÖv¸EÖwÖEÖxöEÖzEÖ{2EÖ|PEÖ}mEÖ~ŠEÖ¨EÖ€ÅEÖáEÖ‚üEÖ„EÖ…1EÖ†KEÖ‡dEÖˆ}EÖ‰•EÖŠ¬EÕÃØEÕÄKEÕļEÕÅ*EÕÅšEÕÆEÕÆuEÕÆâEÕÇLEÕǸEÕÈ"EÕÈŒEÕÈôEÕÉ\EÕÉÄEÕÊ,EÕÊ“EÕÊ÷EÕË^EÕËÃEÕÌ'EÕÌŒEÕÌðEÕÍTEÕÍ·EÕÎEÕÎ~EÕÎáEÕÏDEÕϦEÕÐ EÕÐkEÕÐÏEÕÑ1EÕÑ”EÕÑöEÕÒYEÕÒ¼EÕÓEÕÓƒEÕÓæEÕÔJEÕÔ®EÕÕEÕÕwEÕÕÜEÕÖBEÕÖ¨EÕ×EÕ×vEÕ×ÞEÕØFEÕØ¯EÕÙEÕÙ‚EÕÙíEÕÚYEÕÚÅEÕÛ2EÕÛ EÕÜEÕÜ~EÕÜïEÕÝaEÕÝÔEÕÞHEÕÞ¼EÕß2EÕß©EÕà!EÕàšEÕáEÕáEÕâ EÕâŠEÕã EÕãŒEÕäEÕä’EÕåEÕåžEÕæ&EÕæ¯EÕç;EÕçÈEÕèVEÕèçEÕéyEÕê EÕê¢EÕë:EÕëÒEÕìnEÕí EÕíªEÕîJEÕîèEÕïƒEÕðEÕð½EÕñ]EÕòEÕò¤EÕóJEÕóóEÕôEÕõHEÕõöEÕö¦EÕ÷WEÕø EÕøÀEÕùwEÕú0EÕúêEÕû¦EÕüdEÕý#EÕýåEÕþ¨EÕÿlEÖ3EÖüEÖÆEÖ‘EÖ^EÖ-EÖþEÖÏEÖ¢EÖxEÖNEÖ &EÖ ÿEÖ ÛEÖ ¸EÖ –EÖ vEÖVEÖ9EÖEÖEÖéEÖÐEÖºEÖ¥EÖ’EÖEÖnEÖ^EÖOEÖBEÖ6EÖ+EÖ"EÖEÖEÖ EÖ!EÖ"EÖ#EÖ#ýEÖ$úEÖ%øEÖ&øEÖ'ùEÖ(úEÖ)ýEÖ+EÖ,EÖ- EÖ.EÖ/EÖ0"EÖ1,EÖ26EÖ3AEÖ4NEÖ5ZEÖ6hEÖ7wEÖ8†EÖ9–EÖ:§EÖ;¹EÖ<ÊEÖ=ÞEÖ>òEÖ@EÖAEÖB0EÖCFEÖD^EÖEtEÖFŒEÖG¥EÖH¾EÖIØEÖJñEÖL EÖM&EÖNBEÖO]EÖPzEÖQ–EÖR³EÖSÐEÖTíEÖV EÖW)EÖXGEÖYfEÖZ„EÖ[¤EÖ\ÂEÖ]âEÖ_EÖ`!EÖa@EÖb`EÖc€EÖd EÖeÀEÖfàEÖhEÖi EÖj@EÖk`EÖl€EÖm EÖn¿EÖoßEÖpþEÖrEÖsEÕÓŸEÕÓÿEÕÔ_EÕÔÀEÕÕ!EÕÕ„EÕÕæEÕÖHEÕÖ«EÕ×EÕ×rEÕרEÕØ>EÕØ¤EÕÙ EÕÙrEÕÙÜEÕÚEEÕÚ®EÕÛEÕÛ†EÕÛòEÕÜ`EÕÜÐEÕÝ@EÕݰEÕÞ"EÕÞ–EÕß EÕ߀EÕß÷EÕànEÕàèEÕádEÕáßEÕâ]EÕâÜEÕã\EÕãßEÕäcEÕäèEÕånEÕåöEÕæEÕç EÕç›EÕè*EÕè»EÕéOEÕéãEÕêzEÕëEÕë­EÕìJEÕìéEÕí‰EÕî'EÕîÄEÕïbEÕðEÕð£EÕñGEÕñíEÕò–EÕó@EÕóìEÕôšEÕõIEÕõûEÕö®EÕ÷dEÕøEÕøÖEÕù‘EÕúNEÕû EÕûÎEÕüEÕýVEÕþEÕþâEÕÿ¬EÖxEÖDEÖEÖãEÖµEÖ‰EÖ^EÖ4EÖ EÖæEÖÂEÖ žEÖ }EÖ \EÖ =EÖ !EÖEÖëEÖÒEÖºEÖ¤EÖŽEÖ{EÖiEÖXEÖHEÖ:EÖ,EÖ!EÖEÖ EÖEÖýEÖ÷EÖòEÖïEÖ ëEÖ!êEÖ"éEÖ#æEÖ$çEÖ%æEÖ&èEÖ'êEÖ(ìEÖ)ñEÖ*÷EÖ+ýEÖ-EÖ. EÖ/EÖ0EÖ1(EÖ23EÖ3?EÖ4LEÖ5ZEÖ6hEÖ7xEÖ8†EÖ9˜EÖ:¨EÖ;ºEÖ<ÌEÖ=àEÖ>ôEÖ@EÖAEÖB2EÖCHEÖD_EÖEvEÖFŽEÖG¦EÖH¾EÖIØEÖJðEÖL EÖM%EÖN@EÖO[EÖPwEÖQ’EÖR®EÖSËEÖTçEÖVEÖW!EÖX@EÖY]EÖZzEÖ[™EÖ\·EÖ]ÖEÖ^ôEÖ`EÖa1EÖbQEÖcoEÖdŽEÖe®EÖfÌEÖgìEÖi EÖj*EÖkIEÖlgEÖm‡EÖn¥EÖoÄEÖpâEÖrEÖsEÖt>EÖu[EÖvzEÖw–EÖx³EÖyÑEÖzîEÖ| EÖ}&EÖ~BEÖ\EÖ€xEÖ“EÖ‚®EÖƒÆEÖ„àEÖ…úEÖ‡EÖˆ*EÖ‰BEÖŠZEÕÄXEÕÄÆEÕÅ0EÕÅœEÕÆEÕÆlEÕÆÔEÕÇ9EÕÇ EÕÈEÕÈgEÕÈËEÕÉ,EÕÉEÕÉðEÕÊOEÕʰEÕËEÕËnEÕËÌEÕÌ*EṎEÕÌäEÕÍAEÕÍžEÕÍúEÕÎVEÕαEÕÏ EÕÏiEÕÏÄEÕÐ EÕÐzEÕÐÖEÕÑ1EÕÑEÕÑéEÕÒDEÕÒ EÕÒüEÕÓYEÕÓ¶EÕÔEÕÔpEÕÔÎEÕÕ,EÕÕŒEÕÕêEÕÖJEÕÖªEÕ× EÕ×nEÕ×ÏEÕØ2EÕØ–EÕØûEÕÙaEÕÙÆEÕÚ.EÕÚ–EÕÚþEÕÛiEÕÛÔEÕÜ@EÕÜ®EÕÝEÕÝŒEÕÝüEÕÞnEÕÞâEÕßVEÕßÌEÕàDEÕà½EÕá7EÕá²EÕâ0EÕâ®EÕã/EÕã²EÕä6EÕäºEÕåBEÕåËEÕæVEÕæâEÕçpEÕèEÕè“EÕé(EÕé¾EÕêVEÕêðEÕëEÕì,EÕìÍEÕíkEÕîEÕî§EÕïHEÕïìEÕð’EÕñ:EÕñãEÕòŽEÕó=EÕóíEÕô EÕõTEÕö EÕöÁEÕ÷|EÕø8EÕøõEÕù´EÕúvEÕû:EÕûÿEÕüÆEÕýŽEÕþZEÕÿ&EÕÿôEÖÄEÖ–EÖiEÖ>EÖEÖîEÖÆEÖ¢EÖEÖ^EÖ =EÖ EÖ EÖ æEÖ ÌEÖ ³EÖ›EÖ†EÖqEÖ^EÖLEÖôEÖ@ EÖAEÖB3EÖCJEÖD`EÖEvEÖFŽEÖG¦EÖH¾EÖIÖEÖJðEÖLEÖM$EÖN>EÖOXEÖPrEÖQŽEÖR©EÖSÅEÖTàEÖUþEÖWEÖX7EÖYTEÖZpEÖ[ŽEÖ\«EÖ]ÈEÖ^çEÖ`EÖa"EÖb@EÖc^EÖd|EÖešEÖf¸EÖgØEÖhöEÖjEÖk2EÖlPEÖmnEÖn‹EÖo©EÖpÈEÖqåEÖsEÖt EÖuòEÖ@EÖAEÖB2EÖCHEÖD^EÖEtEÖFŒEÖG¤EÖH¼EÖIÔEÖJìEÖLEÖMEÖN9EÖOTEÖPmEÖQˆEÖR£EÖS¾EÖTÚEÖUôEÖWEÖX-EÖYIEÖZfEÖ[‚EÖ\žEÖ]¼EÖ^ÙEÖ_öEÖaEÖb0EÖcMEÖdkEÖeˆEÖf¦EÖgÂEÖhàEÖiýEÖkEÖl8EÖmUEÖnrEÖoEÖp¬EÖqÊEÖræEÖtEÖuEÖv:EÖwWEÖxrEÖyEÖzªEÖ{ÆEÖ|àEÖ}úEÖEÖ€/EÖJEÖ‚bEÖƒ{EÖ„”EÖ…¬EÖ†ÆEÖ‡ÜEÖˆóEÖŠ EÕÄàEÕÅFEÕŬEÕÆEÕÆtEÕÆÖEÕÇ7EÕǘEÕÇ÷EÕÈVEÕȳEÕÉEÕÉlEÕÉÇEÕÊ"EÕÊ|EÕÊÓEÕË+EÕ˃EÕËÜEÕÌ2EÕ̉EÕÌßEÕÍ5EÕÍŠEÕÍßEÕÎ4EÕΈEÕÎÝEÕÏ1EÕφEÕÏÚEÕÐ.EÕЂEÕÐ×EÕÑ+EÕÑ€EÕÑÔEÕÒ)EÕÒ~EÕÒÓEÕÓ)EÕÓEÕÓÖEÕÔ,EÕÔ„EÕÔÜEÕÕ4EÕÕŽEÕÕèEÕÖBEÕÖEÕÖùEÕ×VEÕ×´EÕØEÕØpEÕØÑEÕÙ2EÕÙ”EÕÙøEÕÚ\EÕÚÂEÕÛ(EÕÛEÕÛúEÕÜdEÕÜÐEÕÝ=EÕݬEÕÞEÕÞŽEÕßEÕßvEÕßìEÕàdEÕàÝEÕáYEÕáÖEÕâUEÕâÕEÕãYEÕãÝEÕäcEÕäìEÕåwEÕæEÕæ’EÕç"EÕçµEÕèJEÕèâEÕé|EÕêEÕê·EÕëXEÕëøEÕì—EÕí7EÕíÜEÕî‚EÕï*EÕïÕEÕð‚EÕñ1EÕñâEÕò—EÕóLEÕôEÕô¿EÕõ|EÕö9EÕöûEÕ÷¾EÕø‚EÕùHEÕúEÕúÜEÕû¨EÕüvEÕýFEÕþEÕþíEÕÿÂEÖ™EÖrEÖNEÖ*EÖEÖèEÖÉEÖ¬EÖEÖwEÖ _EÖ HEÖ 2EÖ EÖ EÖ ùEÖéEÖÛEÖÎEÖÀEÖµEÖ¬EÖ£EÖœEÖ–EÖEÖŒEÖ‰EÖ†EÖ…EÖ…EÖ†EÖ‡EÖŠEÖ EÖ!’EÖ"–EÖ#šEÖ$žEÖ%¤EÖ&ªEÖ'²EÖ(¹EÖ)ÂEÖ*ËEÖ+ÕEÖ,àEÖ-ëEÖ.öEÖ0EÖ1EÖ2EÖ3,EÖ4îEÖ@EÖAEÖB.EÖCDEÖDZEÖErEÖFˆEÖG EÖH¸EÖIÐEÖJèEÖLEÖMEÖN3EÖOMEÖPfEÖQEÖR›EÖS¶EÖTÑEÖUìEÖWEÖX#EÖY?EÖZZEÖ[wEÖ\’EÖ]¯EÖ^ËEÖ_èEÖaEÖb EÖc=EÖdZEÖevEÖf“EÖg¯EÖhÌEÖièEÖkEÖl"EÖm>EÖnZEÖowEÖp“EÖq°EÖrËEÖsèEÖuEÖvEÖw:EÖxUEÖyqEÖzŒEÖ{¦EÖ|ÂEÖ}ÜEÖ~õEÖ€EÖ)EÖ‚BEÖƒZEÖ„rEÖ…ŒEÖ†£EÖ‡ºEÖˆÐEÖ‰èEÕÅ"EÕÅ…EÕÅèEÕÆKEÕÆ«EÕÇ EÕÇhEÕÇÆEÕÈ"EÕÈ}EÕÈ×EÕÉ2EÕÉŠEÕÉâEÕÊ8EÕÊ‘EÕÊæEÕË;EÕËEÕËäEÕÌ6EÕÌŠEÕÌÜEÕÍ/EÕÍEÕÍÓEÕÎ$EÕÎvEÕÎÆEÕÏEÕÏhEÕϹEÕÐ EÕÐZEÕЫEÕÐüEÕÑLEÕÑžEÕÑïEÕÒAEÕÒ“EÕÒæEÕÓ8EÕÓŒEÕÓÞEÕÔ3EÕÔ‡EÕÔÝEÕÕ2EÕÕˆEÕÕàEÕÖ8EÕÖ‘EÕÖêEÕ×EEÕ× EÕ×üEÕØZEÕØ¸EÕÙEÕÙxEÕÙÚEÕÚ=EÕÚ¡EÕÛEÕÛlEÕÛÔEÕÜ>EÕܪEÕÝEÕÝ„EÕÝóEÕÞdEÕÞ×EÕßJEÕßÁEÕà8EÕà²EÕá.EÕá«EÕâ*EÕâ¬EÕã.EÕã´EÕäêEÖ?ÿEÖAEÖB*EÖC@EÖDVEÖEmEÖF„EÖGœEÖH²EÖIÊEÖJâEÖKüEÖMEÖN.EÖOFEÖP`EÖQzEÖR”EÖS®EÖTÈEÖUäEÖVþEÖXEÖY4EÖZNEÖ[jEÖ\†EÖ]¡EÖ^¼EÖ_ÙEÖ`ôEÖbEÖc,EÖdHEÖedEÖf€EÖgœEÖh¸EÖiÔEÖjðEÖl EÖm(EÖnCEÖo`EÖp{EÖq–EÖr²EÖsÎEÖtèEÖvEÖwEÖx:EÖyTEÖznEÖ{ˆEÖ|¢EÖ}¼EÖ~ÕEÖîEÖEÖ‚!EÖƒ:EÖ„REÖ…jEÖ†€EÖ‡˜EÖˆ®EÖ‰ÅEÕÅdEÕÅÆEÕÆ&EÕÆ†EÕÆâEÕÇ@EÕÇšEÕÇöEÕÈNEÕȨEÕÈþEÕÉVEÕɪEÕÊEÕÊSEÕʧEÕÊùEÕËLEÕËœEÕËîEÕÌ=EÕÌŽEÕÌÜEÕÍ,EÕÍzEÕÍÉEÕÎEÕÎdEÕαEÕÎÿEÕÏLEÕÏšEÕÏæEÕÐ4EÕÐEÕÐÏEÕÑEÕÑjEÕÑ·EÕÒEÕÒTEÕÒ¤EÕÒòEÕÓCEÕÓ’EÕÓäEÕÔ4EÕÔ‡EÕÔÙEÕÕ-EÕÕ€EÕÕÖEÕÖ*EÕÖ‚EÕÖØEÕ×2EÕ׊EÕ׿EÕØ@EÕØEÕØûEÕÙZEÕÙºEÕÚEÕÚ~EÕÚâEÕÛHEÕÛ®EÕÜEÕÜ‚EÕÜìEÕÝZEÕÝÊEÕÞ:EÕÞ¬EÕß EÕß–EÕàEÕàˆEÕáEÕá‚EÕâEÕâ„EÕãEÕãŽEÕäEÕä¢EÕå.EÕå¼EÕæPEÕæäEÕçzEÕèEÕè®EÕéNEÕéîEÕêŽEÕë0EÕëÒEÕìxEÕí EÕíÌEÕîzEÕï)EÕïÜEÕð‘EÕñHEÕòEÕò¾EÕó|EÕôEÖ EEÖ!LEÖ"TEÖ#]EÖ$eEÖ%nEÖ&wEÖ'‚EÖ(ŒEÖ)˜EÖ*£EÖ+°EÖ,½EÖ-ËEÖ.ÙEÖ/çEÖ0öEÖ2EÖ3EÖ4'EÖ56EÖ6HEÖ7ZEÖ8nEÖ9EÖ:’EÖ;¦EÖ<ºEÖ=ÎEÖ>ãEÖ?øEÖA EÖB"EÖC9EÖDPEÖEfEÖF}EÖG”EÖH¬EÖIÄEÖJÜEÖKôEÖM EÖN&EÖO>EÖPXEÖQqEÖRŠEÖS¤EÖT¾EÖUØEÖVòEÖX EÖY(EÖZBEÖ[^EÖ\xEÖ]”EÖ^¯EÖ_ÊEÖ`äEÖaÿEÖcEÖd6EÖeREÖfmEÖg‰EÖh¤EÖiÀEÖjÛEÖk÷EÖmEÖn,EÖoGEÖpbEÖq~EÖr˜EÖs´EÖtÎEÖuéEÖwEÖxEÖy8EÖzREÖ{lEÖ|†EÖ} EÖ~¸EÖÒEÖ€êEÖ‚EÖƒEÖ„2EÖ…JEÖ†aEÖ‡xEÖˆEÖ‰¦EÕŧEÕÆEÕÆdEÕÆÁEÕÇEÕÇtEÕÇÎEÕÈ&EÕÈzEÕÈÐEÕÉ&EÕÉzEÕÉÊEÕÊEÕÊnEÕʾEÕË EÕË\EÕ˪EÕË÷EÕÌDEÕÌ‘EÕÌÝEÕÍ(EÕÍtEÕ;EÕÎ EÕÎSEÕΞEÕÎçEÕÏ2EÕÏ{EÕÏÅEÕÐEÕÐYEÕТEÕÐíEÕÑ7EÕÑ‚EÕÑÌEÕÒEÕÒcEÕÒ¯EÕÒüEÕÓIEÕÓ–EÕÓäEÕÔ2EÕÔ‚EÕÔÒEÕÕ$EÕÕtEÕÕÈEÕÖEÕÖpEÕÖÄEÕ×EÕ×rEÕ×ÌEÕØ%EÕØ€EÕØÜEÕÙ:EÕÙ˜EÕÙùEÕÚZEÕÚ¾EÕÛ"EÕÛˆEÕÛðEÕÜZEÕÜÅEÕÝ2EÕÝ EÕÞEÕÞƒEÕÞ÷EÕßmEÕßæEÕà_EÕàÜEÕáZEÕáÜEÕâ^EÕâãEÕãjEÕãôEÕä€EÕåEÕå EÕæ4EÕæÉEÕçbEÕçýEÕèœEÕéÚEÖ?ðEÖAEÖBEÖC0EÖDHEÖE^EÖFuEÖGŒEÖH¤EÖI»EÖJÔEÖKëEÖMEÖNEÖO5EÖPNEÖQgEÖR€EÖSšEÖT³EÖUÎEÖVçEÖXEÖYEÖZ5EÖ[PEÖ\kEÖ]„EÖ^ŸEÖ_¹EÖ`ÔEÖaðEÖc EÖd%EÖe@EÖfZEÖgvEÖhEÖi«EÖjÆEÖkàEÖlüEÖnEÖo1EÖpLEÖqeEÖr€EÖs›EÖt¶EÖuÎEÖvèEÖxEÖyEÖz7EÖ{PEÖ|hEÖ}‚EÖ~›EÖ´EÖ€ÎEÖäEÖ‚üEÖ„EÖ…-EÖ†DEÖ‡ZEÖˆqEÖ‰ˆEÕÅìEÕÆHEÕÆ¢EÕÆüEÕÇTEÕÇ«EÕÈEÕÈVEÕȪEÕÈüEÕÉNEÕÉžEÕÉîEÕÊÐEÖ?æEÖ@ûEÖBEÖC(EÖD>EÖEUEÖFlEÖG‚EÖHšEÖI²EÖJÊEÖKâEÖLúEÖNEÖO+EÖPDEÖQ]EÖRvEÖSŽEÖT¨EÖUÂEÖVÜEÖWõEÖYEÖZ)EÖ[BEÖ\\EÖ]wEÖ^‘EÖ_ªEÖ`ÅEÖaßEÖbùEÖdEÖe.EÖfHEÖgdEÖh~EÖi˜EÖj³EÖkÍEÖlçEÖnEÖoEÖp5EÖqPEÖrjEÖsƒEÖtžEÖu¸EÖvÐEÖwêEÖyEÖzEÖ{6EÖ|PEÖ}hEÖ~EÖšEÖ€²EÖÊEÖ‚ãEÖƒúEÖ…EÖ†*EÖ‡@EÖˆWEÖ‰nEÕÆ,EÕÆˆEÕÆàEÕÇ6EÕÇ‹EÕÇßEÕÈ4EÕÈ…EÕÈÖEÕÉ$EÕÉrEÕÉÂEÕÊEÕÊYEÕÊ£EÕÊïEÕË8EÕË€EÕËÇEÕÌEÕÌUEÕÌœEÕÌàEÕÍ%EÕÍjEÕÍ®EÕÍóEÕÎ6EÕÎzEÕνEÕÏEÕÏDEÕφEÕÏÊEÕÐ EÕÐPEÕДEÕÐ×EÕÑEÕÑ`EÕÑ¥EÕÑêEÕÒ.EÕÒuEÕÒ»EÕÓEÕÓJEÕÓ”EÕÓÜEÕÔ&EÕÔqEÕÔ¼EÕÕ EÕÕVEÕÕ¤EÕÕôEÕÖEEÕÖ—EÕÖêEÕ×>EÕ×”EÕ×ëEÕØDEÕØžEÕØøEÕÙVEÕÙ´EÕÚEÕÚvEÕÚØEÕÛ=EÕÛ¤EÕÜEÕÜxEÕÜåEÕÝTEÕÝÄEÕÞ7EÕÞ¬EÕß#EÕßœEÕàEÕà–EÕáEÕá™EÕâEÕâ§EÕã0EÕã¾EÕäMEÕäàEÕåuEÕæ EÕæ§EÕçEEÕçæEÕèˆEÕé*EÕéÐEÕêyEÕë%EÕëÓEÕì„EÕí8EÕíîEÕî¨EÕïdEÕð"EÕðäEÕñ§EÕòmEÕó6EÕôEÕôÍEÕõžEÕönEÕ÷CEÕøEÕøòEÕùÌEÕú¨EÕû†EÕühEÕýJEÕþ.EÕÿEÕÿýEÖæEÖÒEÖ¿EÖ®EÖžEÖEÖ„EÖxEÖpEÖ hEÖ `EÖ \EÖ XEÖ TEÖSEÖREÖSEÖVEÖWEÖ[EÖ`EÖfEÖlEÖtEÖ|EÖ…EÖEÖ™EÖ¤EÖ±EÖ¼EÖÉEÖ ÖEÖ!äEÖ"ñEÖ#þEÖ% EÖ&EÖ')EÖ(8EÖ)GEÖ*WEÖ+hEÖ,xEÖ-ŠEÖ.šEÖ/¬EÖ0¾EÖ1ÑEÖ2ãEÖ3õEÖ5 EÖ6EÖ70EÖ8DEÖ9XEÖ:nEÖ;‚EÖ<–EÖ=¬EÖ>ÂEÖ?ØEÖ@îEÖBEÖCEÖD2EÖEHEÖF_EÖGwEÖHEÖI¦EÖJ¾EÖKÖEÖLîEÖNEÖOEÖP8EÖQPEÖRjEÖS‚EÖTœEÖU´EÖVÎEÖWçEÖYEÖZEÖ[5EÖ\NEÖ]hEÖ^‚EÖ_œEÖ`¶EÖaÐEÖbêEÖdEÖeEÖf8EÖgREÖhlEÖi†EÖj EÖkºEÖlÔEÖmîEÖoEÖp"EÖq´EÖ?ÉEÖ@àEÖAöEÖC EÖD$EÖE;EÖFSEÖGjEÖH‚EÖIšEÖJ²EÖKÊEÖLâEÖMúEÖOEÖP+EÖQDEÖR]EÖSvEÖTEÖU¨EÖVÁEÖWÚEÖXôEÖZ EÖ[&EÖ\@EÖ]YEÖ^sEÖ_EÖ`§EÖaÀEÖbÚEÖcôEÖeEÖf(EÖg@EÖhZEÖitEÖjŽEÖk¨EÖlÁEÖmÛEÖnõEÖpEÖq(EÖrBEÖs[EÖtuEÖuŽEÖv¦EÖwÀEÖxÙEÖyóEÖ{ EÖ|#EÖ}=EÖ~UEÖnEÖ€†EÖžEÖ‚¶EÖƒÎEÖ„æEÖ…þEÖ‡EÖˆ-EÖ‰CEÕÆ´EÕÇEÕÇ\EÕÇ®EÕÇþEÕÈMEÕÈœEÕÈæEÕÉ2EÕÉ{EÕÉÄEÕÊ EÕÊREÕÊ™EÕÊÞEÕË!EÕËeEÕ˦EÕËèEÕÌ)EÕÌjEÕ̪EÕÌèEÕÍ'EÕÍfEÕͤEÕÍáEÕÎEÕÎ\EÕΘEÕÎÕEÕÏEÕÏOEÕÏ‹EÕÏÈEÕÐEÕÐBEÕÐEÕмEÕÐúEÕÑ9EÕÑxEÕѶEÕÑöEÕÒ7EÕÒxEÕÒ¹EÕÒûEÕÓ?EÕÓ‚EÕÓÇEÕÔ EÕÔTEÕÔœEÕÔäEÕÕ.EÕÕzEÕÕÆEÕÖEÕÖbEÕÖ²EÕ×EÕ×WEÕ׬EÕØEÕØZEÕØ´EÕÙEÕÙlEÕÙÌEÕÚ,EÕÚEÕÚôEÕÛ[EÕÛÄEÕÜ0EÕÜœEÕÝ EÕÝ}EÕÝòEÕÞhEÕÞáEÕß\EÕßÚEÕàZEÕàÞEÕádEÕáëEÕâwEÕãEÕã–EÕä*EÕäÂEÕå[EÕåøEÕæ˜EÕç:EÕçÞEÕè…EÕé0EÕéÝEÕêEÕë@EÕëöEÕì°EÕílEÕî+EÕîìEÕï¯EÕðvEÕñ@EÕò EÕòÚEÕóªEÕô~EÕõTEÕö,EÕ÷EÕ÷âEÕøÁEÕù¡EÕú„EÕûiEÕüPEÕý9EÕþ#EÕÿEÕÿþEÖîEÖàEÖÔEÖÊEÖÀEÖ¸EÖ²EÖ®EÖªEÖ ¨EÖ ¨EÖ ¨EÖ ªEÖ ­EÖ²EÖ·EÖ¾EÖÅEÖÎEÖ×EÖáEÖìEÖøEÖEÖEÖEÖ,EÖEÖ-REÖ.eEÖ/xEÖ0ŒEÖ1¡EÖ2´EÖ3ÊEÖ4ÞEÖ5óEÖ7EÖ8EÖ92EÖ:IEÖ;_EÖ¢EÖ?¸EÖ@ÏEÖAæEÖBþEÖDEÖE,EÖFDEÖG\EÖHsEÖI‹EÖJ¤EÖK»EÖLÔEÖMìEÖOEÖPEÖQ6EÖROEÖShEÖTEÖUšEÖV³EÖWÌEÖXåEÖYÿEÖ[EÖ\2EÖ]JEÖ^dEÖ_}EÖ`—EÖa°EÖbÊEÖcäEÖdýEÖfEÖg1EÖhKEÖidEÖj~EÖk˜EÖl±EÖmËEÖnäEÖoþEÖqEÖr0EÖsIEÖtcEÖu|EÖv–EÖw®EÖxÇEÖyàEÖzúEÖ|EÖ}*EÖ~DEÖ\EÖ€tEÖŒEÖ‚¦EÖƒ½EÖ„ÔEÖ…îEÖ‡EÖˆEÖ‰3EÕÆõEÕÇHEÕÇšEÕÇèEÕÈ5EÕÈ‚EÕÈÍEÕÉEÕÉ`EÕɨEÕÉìEÕÊ1EÕÊuEÕʸEÕÊûEÕË:EÕËzEÕ˺EÕËùEÕÌ6EÕÌtEÕ̱EÕÌíEÕÍ)EÕÍdEÕÍžEÕÍÙEÕÎEÕÎMEÕ·EÕÎÁEÕÎúEÕÏ4EÕÏmEÕϧEÕÏáEÕÐEÕÐUEÕÐEÕÐÊEÕÑEÕÑAEÕÑ}EÕѺEÕÑøEÕÒ5EÕÒtEÕÒ²EÕÒóEÕÓ4EÕÓvEÕÓ¹EÕÓýEÕÔBEÕÔˆEÕÔÏEÕÕEÕÕaEÕÕ¬EÕÕøEÕÖFEÕÖ•EÕÖæEÕ×8EÕ׌EÕ×âEÕØ:EÕØ’EÕØîEÕÙJEÕÙ©EÕÚ EÕÚnEÕÚÒEÕÛ8EÕÛ¢EÕÜEÕÜ{EÕÜëEÕÝ^EÕÝÔEÕÞKEÕÞÅEÕßBEÕßÀEÕàCEÕàÇEÕáPEÕáÚEÕâgEÕâøEÕã‹EÕä!EÕä»EÕåXEÕåøEÕæšEÕç>EÕçæEÕè‘EÕé?EÕéðEÕê¤EÕë[EÕìEÕìÒEÕí’EÕîTEÕïEÕïâEÕð®EÕñ{EÕòJEÕóEÕóñEÕôÊEÕõ¢EÕö~EÕ÷^EÕø>EÕù EÕúEÕúìEÕûÔEÕüÀEÕý¬EÕþœEÕÿŒEÖ~EÖrEÖhEÖ`EÖXEÖSEÖOEÖMEÖLEÖ LEÖ NEÖ QEÖ UEÖ ZEÖaEÖiEÖpEÖzEÖ…EÖEÖœEÖªEÖ·EÖÅEÖÔEÖåEÖõEÖEÖEÖ(EÖ:EÖ KEÖ!]EÖ"pEÖ#ƒEÖ$•EÖ%¨EÖ&¼EÖ'ÏEÖ(áEÖ)öEÖ+ EÖ,EÖ-2EÖ.GEÖ/[EÖ0pEÖ1…EÖ2›EÖ3°EÖ4ÆEÖ5ÛEÖ6òEÖ8EÖ9EÖ:4EÖ;JEÖEÖ?¦EÖ@¾EÖAÔEÖBìEÖDEÖEEÖF4EÖGLEÖHdEÖI|EÖJ”EÖK¬EÖLÅEÖMÞEÖNöEÖPEÖQ(EÖR@EÖSZEÖTrEÖU‹EÖV¤EÖW¾EÖXÖEÖYïEÖ[ EÖ\"EÖ];EÖ^UEÖ_nEÖ`ˆEÖa¢EÖb»EÖcÔEÖdîEÖfEÖg!EÖh:EÖiTEÖjmEÖk†EÖl EÖmºEÖnÓEÖoíEÖqEÖrEÖs9EÖtQEÖulEÖv„EÖwEÖx¶EÖyÎEÖzçEÖ|EÖ}EÖ~2EÖJEÖ€cEÖ{EÖ‚“EÖƒ­EÖ„ÅEÖ…ÜEÖ†ôEÖˆ EÖ‰#EÕÇ:EÕÇŠEÕÇØEÕÈ$EÕÈpEÕȹEÕÉEÕÉHEÕÉŽEÕÉÒEÕÊEÕÊXEÕʘEÕÊØEÕËEÕËUEÕË’EÕËÎEÕÌ EÕÌDEÕÌEÕ̹EÕÌòEÕÍ*EÕÍbEÕÍšEÕÍÑEÕÎEÕÎ?EÕÎuEÕάEÕÎâEÕÏEÕÏNEÕÏ…EÕÏ»EÕÏòEÕÐ)EÕÐ`EÕИEÕÐÐEÕÑEÕÑAEÕÑ{EÕѶEÕÑðEÕÒ,EÕÒhEÕÒ¥EÕÒãEÕÓ"EÕÓbEÕÓ¢EÕÓäEÕÔ(EÕÔlEÕÔ²EÕÔøEÕÕAEÕÕŠEÕÕÖEÕÖ"EÕÖpEÕÖÀEÕ×EÕ×fEÕ׺EÕØEÕØjEÕØÅEÕÙ"EÕÙ€EÕÙáEÕÚDEÕÚ©EÕÛEÕÛzEÕÛæEÕÜUEÕÜÆEÕÝ9EÕݯEÕÞ(EÕÞ¤EÕß"EÕߢEÕà(EÕà®EÕá8EÕáÄEÕâTEÕâçEÕã}EÕäEÕä²EÕåREÕåôEÕæ™EÕçBEÕçîEÕèœEÕéNEÕêEÕê¼EÕëwEÕì6EÕìöEÕí¹EÕî€EÕïJEÕðEÕðåEÕñ¸EÕòŒEÕóbEÕô~EÖ?–EÖ@®EÖAÆEÖBÝEÖCõEÖE EÖF%EÖG=EÖHVEÖInEÖJ†EÖKžEÖL¸EÖMÐEÖNéEÖPEÖQEÖR3EÖSLEÖTdEÖU}EÖV–EÖW°EÖXÈEÖYáEÖZúEÖ\EÖ]-EÖ^GEÖ_`EÖ`yEÖa’EÖb¬EÖcÅEÖdÞEÖe÷EÖgEÖh*EÖiCEÖj\EÖkvEÖlEÖm¨EÖnÁEÖoÛEÖpôEÖrEÖs'EÖt@EÖuXEÖvrEÖw‹EÖx¤EÖy¼EÖzÕEÖ{îEÖ}EÖ~EÖ8EÖ€PEÖhEÖ‚‚EÖƒšEÖ„²EÖ…ÊEÖ†âEÖ‡úEÖ‰EÕÇ{EÕÇÈEÕÈEÕÈ_EÕȨEÕÈîEÕÉ4EÕÉyEÕɼEÕÉýEÕÊEÕÑuEÕÑ®EÕÑæEÕÒEÕÒYEÕÒ•EÕÒÐEÕÓEÕÓLEÕÓŠEÕÓËEÕÔ EÕÔPEÕÔ”EÕÔÚEÕÕ EÕÕjEÕÕ´EÕÕÿEÕÖMEÕÖœEÕÖìEÕ×@EÕ×”EÕ×ëEÕØDEÕØžEÕØúEÕÙZEÕÙ»EÕÚEÕÚ„EÕÚìEÕÛWEÕÛÃEÕÜ3EÕÜ¥EÕÝEÕÝ‘EÕÞ EÕÞˆEÕßEÕß‹EÕàEÕàšEÕá&EÕáµEÕâGEÕâÜEÕãuEÕäEÕä±EÕåSEÕåùEÕæ¢EÕçNEÕçþEÕè°EÕégEÕê EÕêÛEÕë›EÕì^EÕí"EÕíëEÕî¶EÕï„EÕðUEÕñ'EÕñýEÕòÖEÕó°EÕôŽEÕõmEÕöPEÕ÷4EÕøEÕùEÕùïEÕúÜEÕûÌEÕü¼EÕý¯EÕþ¤EÕÿœEÖ”EÖŽEÖŠEÖˆEÖˆEÖˆEÖŠEÖŽEÖ’EÖ šEÖ  EÖ ©EÖ ´EÖ ¿EÖÊEÖÖEÖäEÖôEÖEÖEÖ&EÖ7EÖJEÖ\EÖoEÖ…EÖ˜EÖ­EÖÃEÖ×EÖíEÖ!EÖ"EÖ#.EÖ$CEÖ%YEÖ&pEÖ'…EÖ(œEÖ)²EÖ*ÈEÖ+ßEÖ,õEÖ. EÖ/"EÖ09EÖ1PEÖ2hEÖ3€EÖ4–EÖ5®EÖ6ÅEÖ7ÝEÖ8ôEÖ: EÖ;$EÖ<;EÖ=TEÖ>kEÖ?ƒEÖ@›EÖA´EÖBÌEÖCäEÖDüEÖFEÖG-EÖHEEÖI^EÖJvEÖKEÖL¨EÖMÀEÖNÙEÖOòEÖQ EÖR#EÖSEÖ IEÖ TEÖ `EÖ mEÖ|EÖŠEÖšEÖªEÖ¼EÖÐEÖâEÖöEÖ EÖ EÖ6EÖKEÖaEÖwEÖŽEÖ¥EÖ¼EÖ ÓEÖ!êEÖ#EÖ$EÖ%0EÖ&HEÖ'`EÖ(wEÖ)ŽEÖ*¦EÖ+¾EÖ,ÖEÖ-íEÖ/EÖ0EÖ14EÖ2MEÖ3dEÖ4}EÖ5•EÖ6®EÖ7ÅEÖ8ÞEÖ9öEÖ;EÖ<&EÖ=?EÖ>XEÖ?pEÖ@ˆEÖA¡EÖBºEÖCÒEÖDëEÖFEÖGEÖH5EÖINEÖJgEÖKEÖL˜EÖM°EÖNÊEÖOäEÖPüEÖREÖS.EÖTGEÖU`EÖVyEÖW’EÖX«EÖYÄEÖZÝEÖ[öEÖ]EÖ^(EÖ_BEÖ`ZEÖatEÖbŒEÖc¦EÖdÀEÖeØEÖfòEÖh EÖi$EÖj>EÖkVEÖlpEÖmˆEÖn¢EÖoºEÖpÔEÖqíEÖsEÖtEÖu8EÖvQEÖwjEÖx„EÖyœEÖzµEÖ{ÎEÖ|èEÖ}ÿEÖEÖ€2EÖKEÖ‚dEÖƒ{EÖ„”EÖ…®EÖ†ÇEÖ‡àEÖˆ÷EÕÇþEÕÈHEÕÈŽEÕÈÔEÕÉEÕÉYEÕÉšEÕÉØEÕÊEÕÊREÕÊŽEÕÊÆEÕËEÕË8EÕËmEÕË£EÕËÖEÕÌ EÕÌ>EÕÌoEÕÌ¡EÕÌÑEÕÍEÕÍ0EÕÍ_EÕÍEÕͼEÕÍêEÕÎEÕÎDEÕÎqEÕΞEÕÎÌEÕÎùEÕÏ&EÕÏSEÕÏ€EÕÏ®EÕÏÝEÕÐ EÕÐ:EÕÐiEÕЙEÕÐÉEÕÐûEÕÑ-EÕÑ`EÕÑ“EÕÑÇEÕÑýEÕÒ4EÕÒjEÕÒ£EÕÒÜEÕÓEÕÓTEÕÓ’EÕÓÑEÕÔEÕÔSEÕÔ–EÕÔÜEÕÕ#EÕÕlEÕÕ¶EÕÖEÕÖPEÕÖ¡EÕÖôEÕ×HEÕמEÕ×øEÕØREÕØ°EÕÙEÕÙqEÕÙÖEÕÚBEÖ?[EÖ@sEÖAŒEÖB¦EÖC¾EÖDØEÖEñEÖG EÖH"EÖIEÕÈ…EÕÈÊEÕÉEÕÉMEÕÉEÕÉÌEÕÊ EÕÊBEÕÊ|EÕʵEÕÊíEÕË"EÕËVEÕËŠEÕ˾EÕËîEÕÌEÕÌPEÕÌ~EÕÌ­EÕÌÚEÕÍEÕÍ4EÕÍ`EÕÍ‹EÕÍ·EÕÍáEÕÎ EÕÎ6EÕÎaEÕ΋EÕεEÕÎßEÕÏ EÕÏ4EÕÏ_EÕωEÕϵEÕÏàEÕÐ EÕÐ8EÕÐfEÕГEÕÐÂEÕÐðEÕÑ!EÕÑQEÕуEÕѶEÕÑêEÕÒEÕÒTEÕÒ‹EÕÒÄEÕÒüEÕÓ8EÕÓtEÕÓ³EÕÓòEÕÔ4EÕÔvEÕÔ»EÕÕEÕÕJEÕÕ“EÕÕàEÕÖ.EÕÖ~EÕÖÐEÕ×%EÕ×{EÕ×ÕEÕØ0EÕØŽEÕØîEÕÙREÕÙ·EÕÚ EÕÚŠEÕÚùEÕÛiEÕÛÝEÕÜSEÕÜÍEÕÝIEÕÝÊEÕÞLEÕÞÓEÕß\EÕßêEÕàzEÕáEÕá¥EÕâAEÕâßEÕã‚EÕä)EÕäÒEÕå€EÕæ2EÕæçEÕçŸEÕèZEÕéEÕéÜEÕê¡EÕëiEÕì5EÕíEÕíÖEÕîªEÕïEÕð\EÕñ8EÕòEÕòúEÕóÞEÕôÆEÕõ°EÕöœEÕ÷ŠEÕøzEÕùnEÕúbEÕûYEÕüREÕýMEÕþJEÕÿIEÖHEÖLEÖPEÖTEÖ[EÖcEÖnEÖzEÖ†EÖ “EÖ ¢EÖ ²EÖ ÄEÖ ÕEÖéEÖýEÖEÖ'EÖ>EÖUEÖlEÖ„EÖEÖ¶EÖÏEÖéEÖEÖEÖ7EÖPEÖ kEÖ!†EÖ" EÖ#ºEÖ$ÔEÖ%îEÖ'EÖ("EÖ)(EÖ?AEÖ@ZEÖAtEÖBŽEÖC§EÖDÁEÖEÚEÖFôEÖHEÖI'EÖJ@EÖKZEÖLtEÖMŽEÖN¦EÖOÀEÖPÙEÖQòEÖS EÖT%EÖU?EÖVXEÖWrEÖX‹EÖY¤EÖZ¾EÖ[×EÖ\ðEÖ^ EÖ_$EÖ`=EÖaVEÖboEÖcˆEÖd¢EÖe»EÖfÕEÖgîEÖiEÖj!EÖk:EÖlSEÖmlEÖn†EÖo EÖp¹EÖqÒEÖrìEÖtEÖuEÖv8EÖwREÖxjEÖy„EÖzœEÖ{·EÖ|ÑEÖ}êEÖEÖ€EÖ6EÖ‚OEÖƒiEÖ„‚EÖ…œEÖ†¶EÖ‡ÎEÖˆêEÕÈ~EÕÈÃEÕÉEÕÉFEÕÉ…EÕÉÂEÕÉþEÕÊ8EÕÊqEÕʨEÕÊÞEÕËEÕËDEÕËwEÕ˨EÕËØEÕÌEÕÌ5EÕÌbEÕÌŽEÕ̺EÕÌäEÕÍEÕÍ9EÕÍaEÕÍŠEÕͳEÕÍÛEÕÎEÕÎ)EÕÎQEÕÎxEÕΠEÕÎÇEÕÎïEÕÏEÕÏ=EÕÏeEÕÏŽEÕÏ·EÕÏßEÕÐ EÕÐ4EÕÐ^EÕЊEÕжEÕÐãEÕÑEÕÑ@EÕÑpEÕÑ¡EÕÑÓEÕÒEÕÒ:EÕÒpEÕÒ¨EÕÒàEÕÓEÕÓVEÕÓ“EÕÓÒEÕÔEÕÔTEÕÔ˜EÕÔÞEÕÕ&EÕÕpEÕÕ¼EÕÖ EÕÖZEÕÖ®EÕ×EÕ×ZEÕ׳EÕØEÕØoEÕØÐEÕÙ4EÕÙšEÕÚEÕÚpEÕÚàEÕÛREÕÛÇEÕÜ?EÕÜ»EÕÝ;EÕݽEÕÞBEÕÞËEÕßWEÕßçEÕà{EÕáEÕá«EÕâJEÕâíEÕã“EÕä>EÕäíEÕåžEÕæSEÕç EÕçÉEÕèˆEÕéLEÕêEÕêÚEÕë¨EÕìwEÕíJEÕîEÕîøEÕïÔEÕð²EÕñ’EÕòwEÕó]EÕôEEÕõ0EÕöEÕ÷EÕøEÕøôEÕùëEÕúäEÕûÞEÕüÛEÕýÚEÕþÚEÕÿÜEÖàEÖæEÖíEÖöEÖEÖ EÖEÖ(EÖ 7EÖ IEÖ ZEÖ mEÖ EÖ–EÖ¬EÖÃEÖÚEÖòEÖ EÖ$EÖ>EÖYEÖsEÖŽEÖ©EÖÅEÖáEÖüEÖEÖ 4EÖ!OEÖ"kEÖ#‡EÖ$¢EÖ%¾EÖ&ÙEÖ'õEÖ)EÖ*+EÖ+FEÖ,bEÖ-}EÖ.˜EÖ/²EÖ0ÎEÖ1èEÖ3EÖ4EÖ5:EÖ6SEÖ7nEÖ8‰EÖ9£EÖ:¾EÖ;ØEÖ<òEÖ> EÖ?'EÖ@BEÖA\EÖBvEÖCEÖDªEÖEÄEÖFÞEÖGøEÖIEÖJ,EÖKFEÖL`EÖMzEÖN”EÖO®EÖPÈEÖQâEÖRüEÖTEÖU.EÖVHEÖWbEÖX|EÖY•EÖZ¯EÖ[ÉEÖ\âEÖ]üEÖ_EÖ`/EÖaIEÖbcEÖc|EÖd–EÖe°EÖfÈEÖgâEÖhüEÖjEÖk/EÖlIEÖmbEÖn|EÖo–EÖp¯EÖqÉEÖrãEÖsüEÖuEÖv0EÖwIEÖxdEÖy|EÖz—EÖ{°EÖ|ËEÖ}äEÖ~ÿEÖ€EÖ1EÖ‚LEÖƒdEÖ„€EÖ…™EÖ†´EÖ‡ÎEÖˆèEÕȾEÕÉEÕÉ@EÕÉ~EÕɺEÕÉõEÕÊ.EÕÊfEÕÊœEÕÊÐEÕËEÕË5EÕËfEÕË•EÕËÃEÕËðEÕÌEÕÌJEÕÌtEÕÌœEÕÌÆEÕÌîEÕÍEÕÍEÖmYEÖnsEÖoŒEÖp¦EÖqÁEÖrÛEÖsõEÖuEÖv(EÖwCEÖx\EÖyxEÖz’EÖ{«EÖ|ÆEÖ}àEÖ~úEÖ€EÖ/EÖ‚JEÖƒdEÖ„~EÖ…šEÖ†´EÖ‡ÎEÖˆêEÕÈþEÕÉ>EÕÉ{EÕɶEÕÉòEÕÊ*EÕÊ`EÕÊ•EÕÊÈEÕÊüEÕË,EÕË\EÕˉEÕ˶EÕËãEÕÌEÕÌ7EÕÌ_EÕ̆EÕÌ®EÕÌÕEÕÌúEÕÍEÕÍCEÕÍfEÕ͉EÕͬEÕÍÎEÕÍñEÕÎEÕÎ4EÕÎVEÕÎxEÕΚEÕλEÕÎÝEÕÏEÕÏ"EÕÏEEÕÏhEÕÏ‹EÕϰEÕÏÔEÕÏùEÕÐ EÕÐFEÕÐoEÕЗEÕÐÀEÕÐìEÕÑEÕÑEEÕÑrEÕÑ¢EÕÑÓEÕÒEÕÒ9EÕÒnEÕÒ¤EÕÒÜEÕÓEÕÓREÕÓEÕÓÐEÕÔEÕÔVEÕÔœEÕÔäEÕÕ.EÕÕzEÕÕÉEÕÖEÕÖnEÕÖÄEÕ×EÕ×xEÕ×ÖEÕØ8EÕØ›EÕÙEÕÙlEÕÙØEÕÚHEÕÚ»EÕÛ0EÕÛ«EÕÜ'EÕܨEÕÝ+EÕݲEÕÞ>EÕÞËEÕß^EÕßôEÕàEÕá+EÕáÍEÕâtEÕã EÕãÎEÕä€EÕå7EÕåðEÕæ®EÕçoEÕè3EÕèûEÕéÅEÕê”EÕëfEÕì:EÕíEÕíìEÕîÊEÕï«EÕðŽEÕñtEÕò\EÕóHEÕô6EÕõ'EÕöEÕ÷EÕøEÕùEÕùûEÕúùEÕûùEÕüúEÕýþEÕÿEÖ EÖEÖEÖ,EÖ9EÖHEÖYEÖlEÖ~EÖ “EÖ ¨EÖ ¿EÖ ÖEÖ îEÖEÖ"EÖ=EÖXEÖtEÖ‘EÖ®EÖÌEÖêEÖEÖ'EÖEEÖcEÖ‚EÖ¡EÖ¿EÖ ÞEÖ!üEÖ#EÖ$:EÖ%WEÖ&vEÖ'“EÖ(±EÖ)ÎEÖ*ìEÖ, EÖ-'EÖ.DEÖ/aEÖ0~EÖ1›EÖ2¸EÖ3ÔEÖ4ñEÖ6EÖ7*EÖ8FEÖ9bEÖ:~EÖ;šEÖ<¶EÖ=ÒEÖ>íEÖ@ EÖA%EÖB@EÖC\EÖDwEÖE’EÖF®EÖGÈEÖHäEÖJEÖKEÖL5EÖMPEÖNjEÖO…EÖP EÖQ»EÖRÖEÖSðEÖU EÖV&EÖW@EÖXZEÖYuEÖZEÖ[ªEÖ\ÄEÖ]ßEÖ^øEÖ`EÖa-EÖbHEÖccEÖd|EÖe—EÖf±EÖgÌEÖhåEÖjEÖkEÖl5EÖmPEÖniEÖo„EÖpžEÖq¹EÖrÓEÖsïEÖuEÖv"EÖwEÕê EÕêàEÕëµEÕìEÕíhEÕîHEÕï)EÕðEÕðõEÕñÞEÕòËEÕóºEÕô¬EÕõ EÕö–EÕ÷EÕøŠEÕùˆEÕú†EÕûˆEÕü‹EÕýEÕþ—EÕÿ EÖ«EÖ¸EÖÆEÖÔEÖåEÖøEÖ EÖ EÖ 6EÖ MEÖ fEÖ ~EÖ ˜EÖ´EÖÐEÖìEÖ EÖ'EÖEEÖdEÖ„EÖ£EÖÂEÖâEÖEÖ"EÖAEÖbEÖ‚EÖ ¢EÖ!ÂEÖ"áEÖ$EÖ%!EÖ&@EÖ'`EÖ(~EÖ)EÖ*¼EÖ+ÚEÖ,ùEÖ.EÖ/6EÖ0SEÖ1pEÖ2EÖ3¬EÖ4ÊEÖ5çEÖ7EÖ8"EÖ9>EÖ:\EÖ;yEÖ<–EÖ=²EÖ>ÎEÖ?êEÖAEÖB$EÖC@EÖD[EÖExEÖF”EÖG°EÖHËEÖIæEÖKEÖLEÖM9EÖNUEÖOpEÖP‹EÖQ§EÖRÂEÖSÞEÖTøEÖVEÖW/EÖXIEÖYeEÖZ€EÖ[šEÖ\µEÖ]ÐEÖ^êEÖ`EÖa EÖb®EÖ?ÊEÖ@èEÖBEÖC"EÖD?EÖE\EÖFxEÖG”EÖH±EÖIÎEÖJêEÖLEÖM"EÖN>EÖOZEÖPvEÖQ’EÖR®EÖSÊEÖTåEÖVEÖWEÖX8EÖYTEÖZpEÖ[‹EÖ\¦EÖ]ÂEÖ^ÝEÖ_ùEÖaEÖb/EÖcJEÖdfEÖeEÖfEÖg¸EÖhÔEÖiïEÖk EÖl%EÖmAEÖn\EÖoxEÖp“EÖq®EÖrÊEÖsæEÖuEÖvEÖw8EÖxTEÖyqEÖzEÖ{¨EÖ|ÄEÖ}àEÖ~üEÖ€EÖ4EÖ‚PEÖƒnEÖ„ŠEÖ…¦EÖ†ÂEÖ‡ßEÖˆüEÕɶEÕÉðEÕÊ'EÕÊ]EÕÊEÕÊÂEÕÊñEÕË EÕËNEÕËxEÕË¢EÕËÊEÕËñEÕÌEÕÌ;EÕÌ_EÕÌ€EÕÌ¢EÕÌÀEÕÌáEÕÌÿEÕÍEÕÍ:EÕÍVEÕÍqEÕÍŽEÕͨEÕÍÃEÕÍÝEÕÍöEÕÎEÕÎ*EÕÎDEÕÎ^EÕÎxEÕΑEÕΫEÕÎÆEÕÎàEÕÎýEÕÏEÕÏ4EÕÏREÕÏoEÕÏEÕϬEÕÏÎEÕÏîEÕÐEÕÐ3EÕÐXEÕÐ}EÕФEÕÐÍEÕÐöEÕÑ"EÕÑNEÕÑ|EÕѬEÕÑÞEÕÒEÕÒFEÕÒ~EÕÒ¸EÕÒòEÕÓ0EÕÓpEÕÓ²EÕÓöEÕÔ>EÕÔ‡EÕÔÓEÕÕ!EÕÕrEÕÕÆEÕÖEÕÖvEÕÖÒEÕ×2EÕ×”EÕ×ùEÕØbEÕØÎEÕÙ>EÕÙ±EÕÚ'EÕÚ¡EÕÛEÕÛ EÕÜ$EÕܬEÕÝ9EÕÝÉEÕÞ]EÕÞöEÕß’EÕà4EÕàÛEÕá…EÕâ4EÕâçEÕãEÕäXEÕåEÕåÙEÕæŸEÕçhEÕè5EÕéEÕéÙEÕê°EÕë‰EÕìgEÕíGEÕî*EÕïEÕïúEÕðæEÕñÔEÕòÆEÕóºEÕô°EÕõ¨EÕö¤EÕ÷¢EÕø EÕù£EÕú¦EÕû¬EÕüµEÕý¾EÕþËEÕÿØEÖæEÖøEÖ EÖEÖ4EÖJEÖ`EÖzEÖ ”EÖ °EÖ ÌEÖ êEÖEÖ&EÖFEÖfEÖ†EÖ¨EÖÉEÖìEÖEÖ1EÖSEÖvEÖ˜EÖ¼EÖÞEÖEÖ $EÖ!FEÖ"iEÖ#‹EÖ$­EÖ%ÐEÖ&ñEÖ(EÖ)3EÖ*TEÖ+uEÖ,–EÖ-¶EÖ.ÖEÖ/öEÖ1EÖ26EÖ3VEÖ4tEÖ5”EÖ6´EÖ7ÓEÖ8òEÖ:EÖ;/EÖŠEÖ?¨EÖ@ÆEÖAäEÖCEÖDEÖEEÕüHEÕýSEÕþ`EÕÿnEÖEÖ’EÖ¥EÖºEÖÒEÖèEÖEÖEÖ 9EÖ UEÖ sEÖ EÖ ±EÖÐEÖòEÖEÖ6EÖYEÖ{EÖŸEÖÂEÖçEÖ EÖ/EÖTEÖxEÖœEÖÀEÖäEÖ!EÖ"+EÖ#NEÖ$rEÖ%”EÖ&¸EÖ'ÚEÖ(üEÖ*EÖ+?EÖ,bEÖ-ƒEÖ.¥EÖ/ÅEÖ0çEÖ2EÖ3)EÖ4IEÖ5hEÖ6ˆEÖ7ªEÖ8ÈEÖ9èEÖ;EÖ<(EÖ=GEÖ>fEÖ?…EÖ@¤EÖAÂEÖBáEÖDEÖEEÖF>EÖ?_EÖ@EÖAžEÖB¾EÖCÝEÖDüEÖFEÖG;EÖHZEÖIxEÖJ—EÖK¶EÖLÔEÖMòEÖOEÖP/EÖQNEÖRlEÖS‰EÖT¨EÖUÆEÖVäEÖXEÖYEÖZEÖx]EÖy{EÖz™EÖ{¸EÖ|ÔEÖ}òEÖEÖ€0EÖOEÖ‚nEÖƒŒEÖ„¬EÖ…ËEÖ†êEÖˆEÖ‰(EÕÊlEÕÊ EÕÊÏEÕÊþEÕË,EÕËXEÕË‚EÕ˪EÕËÐEÕËòEÕÌEÕÌ8EÕÌXEÕÌwEÕÌ”EÕ̱EÕÌÌEÕÌåEÕÌþEÕÍEÕÍ.EÕÍDEÕÍZEÕÍoEÕ̓EÕ͘EÕͪEÕ;EÕÍÑEÕÍäEÕÍõEÕÎEÕÎEÕÎ-EÕÎ>EÕÎQEÕÎdEÕÎxEÕΊEÕΟEÕγEÕÎÈEÕÎÞEÕÎôEÕÏ EÕÏ#EÕÏEÖ?8EÖ@YEÖAzEÖBšEÖCºEÖDÚEÖEúEÖGEÖH:EÖIZEÖJzEÖK™EÖL¹EÖMØEÖN÷EÖPEÖQ6EÖRTEÖStEÖT“EÖU²EÖVÐEÖWïEÖYEÖZ,EÖ[KEÖ\jEÖ]ˆEÖ^¦EÖ_ÅEÖ`ãEÖbEÖc EÖd>EÖe]EÖf{EÖgšEÖh¸EÖiÖEÖjõEÖlEÖm2EÖnPEÖonEÖpEÖq¬EÖrÊEÖséEÖuEÖv'EÖwFEÖxdEÖy‚EÖz¢EÖ{ÂEÖ|áEÖ~EÖEÖ€>EÖ^EÖ‚~EÖƒžEÖ„¾EÖ…ÞEÖ†ýEÖˆEÖ‰>EÕʧEÕÊØEÕËEÕË5EÕË`EÕËŠEÕ˲EÕËØEÕËüEÕÌEÕÌ?EÕÌ^EÕÌ|EÕ̘EÕ̲EÕÌÌEÕÌåEÕÌýEÕÍEÕÍ*EÕÍ>EÕÍSEÕÍfEÕÍyEÕÍ‹EÕÍEÕÍ®EÕ;EÕÍÏEÕÍßEÕÍïEÕÍÿEÕÎEÕÎEÕÎ/EÕÎ?EÕÎPEÕÎ`EÕÎqEÕ΃EÕΕEÕΨEÕλEÕÎÐEÕÎäEÕÎúEÕÏEÕÏ(EÕÏAEÕÏ[EÕÏvEÕÏ“EÕϱEÕÏÐEÕÏñEÕÐEÕÐ6EÕÐ\EÕЄEÕЮEÕÐÙEÕÑEÕÑ5EÕÑfEÕÑšEÕÑÐEÕÒEÕÒBEÕÒ€EÕÒÀEÕÓEÕÓHEÕÓŽEÕÓÚEÕÔ&EÕÔwEÕÔÊEÕÕ!EÕÕ{EÕÕØEÕÖ8EÕÖœEÕ×EÕ×mEÕ×ÛEÕØNEÕØÄEÕÙ=EÕÙ»EÕÚEÖ[EÖyEÖ˜EÖ¹EÖÚEÖ üEÖ !EÖ DEÖ jEÖEÖ·EÖÞEÖEÖ.EÖVEÖEÖ¨EÖÑEÖúEÖ$EÖMEÖvEÖŸEÖÈEÖñEÖ!EÖ"AEÖ#iEÖ$EÖ%¸EÖ&ßEÖ(EÖ)-EÖ*TEÖ+zEÖ, EÖ-ÅEÖ.ìEÖ0EÖ16EÖ2[EÖ3€EÖ4¤EÖ5ÈEÖ6ìEÖ8EÖ94EÖ:WEÖ;{EÖ<žEÖ=ÂEÖ>äEÖ@EÖA*EÖBLEÖCoEÖD‘EÖE´EÖFÖEÖGøEÖIEÖJ:EÖK\EÖL~EÖM EÖNÀEÖOâEÖQEÖR$EÖSEEÖTeEÖU†EÖV§EÖWÈEÖXèEÖZ EÖ[)EÖ\JEÖ]jEÖ^‹EÖ_«EÖ`ËEÖaìEÖc EÖd-EÖeMEÖfmEÖgEÖh®EÖiÎEÖjïEÖlEÖm/EÖnPEÖopEÖp‘EÖq±EÖrÒEÖsòEÖuEÖv4EÖwTEÖxuEÖy–EÖz¶EÖ{ØEÖ|úEÖ~EÖ¸EÖ?ÜEÖAEÖB$EÖCHEÖDkEÖEŽEÖF±EÖGÔEÖH÷EÖJEÖKEÖw`EÖxEÖy¤EÖzÆEÖ{çEÖ} EÖ~-EÖNEÖ€rEÖ”EÖ‚¶EÖƒÚEÖ„þEÖ†EÖ‡CEÖˆgEÖ‰‰EÕËYEÕË„EÕË®EÕËÕEÕËúEÕÌEÕÌ@EÕÌ`EÕÌ}EÕ̘EÕ̳EÕÌÌEÕÌäEÕÌûEÕÍEÕÍ"EÕÍ4EÕÍEEÕÍUEÕÍdEÕÍtEÕÍEÕÍEÕÍ™EÕÍ¥EÕͯEÕ͹EÕÍÄEÕÍÍEÕÍÖEÕÍàEÕÍéEÕÍñEÕÍúEÕÎEÕÎ EÕÎEÕÎ!EÕÎ+EÕÎ5EÕÎAEÕÎMEÕÎYEÕÎfEÕÎvEÕ΄EÕΔEÕΦEÕθEÕÎËEÕÎßEÕÎöEÕÏ EÕÏ&EÕÏBEÕÏ]EÕÏzEÕÏ›EÕϼEÕÏàEÕÐEÕÐ,EÕÐVEÕЂEÕаEÕÐàEÕÑEÕÑHEÕÑ€EÕѺEÕÑøEÕÒ8EÕÒ{EÕÒÂEÕÓ EÕÓVEÕÓ¤EÕÓøEÕÔMEÕÔ¥EÕÕEÕÕbEÕÕÅEÕÖ,EÕÖ˜EÕ×EÕ×yEÕ×ðEÕØjEÕØèEÕÙkEÕÙóEÕÚ}EÕÛ EÕÛ¡EÕÜ:EÕÜØEÕÝ|EÕÞ&EÕÞÓEÕß…EÕà;EÕàõEÕá´EÕâvEÕã=EÕäEÕäÕEÕå¦EÕæ|EÕçUEÕè1EÕéEÕéöEÕêÜEÕëÆEÕì´EÕí£EÕî—EÕïŒEÕð…EÕñ‚EÕòEÕó€EÕô„EÕõ‰EÕö’EÕ÷œEÕø¨EÕù¸EÕúÈEÕûÜEÕüðEÕþEÕÿEÖ:EÖUEÖrEÖ‘EÖ±EÖÒEÖôEÖEÖ =EÖ cEÖ ‰EÖ °EÖ ÚEÖEÖ+EÖUEÖEÖªEÖÕEÖEÖ+EÖXEÖƒEÖ®EÖÙEÖEÖ0EÖ[EÖ †EÖ!°EÖ"ÛEÖ$EÖ%.EÖ&XEÖ'EÖ(ªEÖ)ÔEÖ*üEÖ,#EÖ-KEÖ.tEÖ/›EÖ0ÂEÖ1êEÖ3EÖ48EÖ5^EÖ6„EÖ7ªEÖ8ÑEÖ9öEÖ;EÖŒEÖ?²EÖ@ÖEÖAûEÖC EÖDDEÖEiEÖFEÖG±EÖHÖEÖIùEÖKEÖLAEÖMdEÖNˆEÖOªEÖPÎEÖQòEÖSEÖT7EÖU[EÖV~EÖW EÖXÃEÖYæEÖ[ EÖ\+EÖ]NEÖ^qEÖ_“EÖ`µEÖaÙEÖbûEÖdEÖe?EÖfcEÖg…EÖh§EÖiÉEÖjíEÖlEÖm1EÖnTEÖowEÖp™EÖq¼EÖrßEÖtEÖu%EÖvGEÖwkEÖxEÖy°EÖzÔEÖ{öEÖ}EÖ~?EÖaEÖ€†EÖªEÖ‚ÌEÖƒòEÖ…EÖ†9EÖ‡^EÖˆ‚EÖ‰§EÕËEÕ˹EÕËàEÕÌEÕÌ+EÕÌLEÕÌlEṎEÕ̦EÕÌÀEÕÌØEÕÌîEÕÍEÕÍEÕÍ,EÕÍ=EÕÍMEÕÍ[EÕÍkEÕÍxEÕ̓EÕÍEÕÍ™EÕÍ£EÕͬEÕ͵EÕ;EÕÍÅEÕÍÍEÕÍÔEÕÍÚEÕÍâEÕÍèEÕÍðEÕÍöEÕÍýEÕÎEÕÎ EÕÎEÕÎEÕÎ'EÕÎ1EÕÎ;EÕÎGEÕÎREÕÎ`EÕÎnEÕÎ}EÕÎEÕΞEÕβEÕÎÅEÕÎÜEÕÎòEÕÏ EÕÏ%EÕÏ@EÕÏ^EÕÏ~EÕÏ EÕÏÃEÕÏéEÕÐEÕÐ:EÕÐfEÕЕEÕÐÆEÕÐúEÕÑ0EÕÑjEÕÑ¥EÕÑäEÕÒ%EÕÒjEÕÒ±EÕÒüEÕÓIEÕÓšEÕÓîEÕÔFEÕÔ¢EÕÕEÕÕbEÕÕÈEÕÖ1EÕÖ EÕ×EÕ׆EÕØEÕØ~EÕÙEÕÙ†EÕÚEÕÚ EÕÛ3EÕÛËEÕÜiEÕÝ EÕݶEÕÞbEÕßEÕßÉEÕàƒEÕáBEÕâEÕâÉEÕã“EÕä`EÕå2EÕæ EÕæâEÕç¾EÕèžEÕé‚EÕêiEÕëSEÕì@EÕí1EÕî$EÕïEÕðEÕñEÕòEÕóEÕôEÕõEÕö"EÕ÷.EÕø;EÕùKEÕú\EÕûpEÕü†EÕýEÕþ¶EÕÿÐEÖíEÖ EÖ*EÖLEÖmEÖEÖµEÖÛEÖ EÖ *EÖ QEÖ zEÖ¤EÖÏEÖúEÖ%EÖREÖ}EÖªEÖÖEÖEÖ/EÖ\EÖˆEÖµEÖáEÖ EÖ 8EÖ!dEÖ"EÖ#»EÖ$æEÖ&EÖ':EÖ(eEÖ)ŽEÖ*¸EÖ+áEÖ- EÖ.4EÖ/]EÖ0…EÖ1­EÖ2ÖEÖ3þEÖ5&EÖ6MEÖ7tEÖ8œEÖ9ÂEÖ:êEÖ<EÖ=8EÖ>^EÖ?„EÖ@ªEÖAÐEÖBöEÖDEÖEAEÖFfEÖGŒEÖH°EÖI×EÖJüEÖL EÖMEEÖNjEÖOEÖP³EÖQ×EÖRüEÖT EÖUEEÖViEÖWŒEÖX°EÖYÔEÖZùEÖ\EÖ]@EÖ^dEÖ_ˆEÖ`¬EÖaÐEÖbôEÖdEÖe;EÖf_EÖgƒEÖh¦EÖiÊEÖjîEÖlEÖm6EÖnZEÖo}EÖp¡EÖqÆEÖrêEÖtEÖu1EÖvVEÖwzEÖxžEÖyÄEÖzçEÖ| EÖ}0EÖ~UEÖzEÖ€žEÖÄEÖ‚èEÖ„EÖ…4EÖ†XEÖ‡EÖˆ¤EÖ‰ÊEÕËÈEÕËñEÕÌEÕÌ:EÕÌ\EÕÌ|EÕÌšEÕ̵EÕÌÎEÕÌèEÕÌþEÕÍEÕÍ&EÕÍ:EÕÍJEÕÍYEÕÍhEÕÍuEÕÍ€EÕÍŒEÕÍ–EÕÍŸEÕͧEÕͰEÕͶEÕͽEÕÍÃEÕÍÉEÕÍÎEÕÍÓEÕÍØEÕÍÝEÕÍáEÕÍæEÕÍëEÕÍðEÕÍõEÕÍûEÕÎEÕÎEÕÎEÕÎEÕÎEÕÎ(EÕÎ2EÕÎ>EÕÎIEÕÎWEÕÎeEÕÎtEÕΆEÕΗEÕΫEÕÎÀEÕÎÖEÕÎîEÕÏ EÕÏ$EÕÏBEÕÏbEÕÏ„EÕϧEÕÏÎEÕÏöEÕÐ EÕÐNEÕÐ|EÕЯEÕÐäEÕÑEÕÑUEÕÑ’EÕÑÒEÕÒEÕÒ[EÕÒ¤EÕÒðEÕÓ@EÕÓ“EÕÓèEÕÔBEÕÔ EÕÕEÕÕfEÕÕÏEÕÖ:EÕÖ¬EÕ×!EÕ×™EÕØEÕØ—EÕÙEÕÙ¦EÕÚ5EÕÚÆEÕÛ_EÕÛüEÕÜžEÕÝGEÕÝóEÕÞ¤EÕßYEÕàEÕàÐEÕá’EÕâXEÕã!EÕãðEÕäÂEÕå˜EÕæpEÕçLEÕè,EÕéEÕé÷EÕêâEÕëÏEÕìÀEÕí³EÕîªEÕï£EÕð EÕñžEÕò EÕó¤EÕô«EÕõµEÕöÀEÕ÷ÎEÕøÞEÕùðEÕûEÕüEÕý2EÕþLEÕÿhEÖ„EÖ¤EÖÄEÖæEÖ EÖ,EÖREÖxEÖ  EÖ ÉEÖ òEÖ EÖFEÖrEÖžEÖÊEÖ÷EÖ%EÖREÖEÖ­EÖÚEÖEÖ5EÖcEÖ‘EÖ½EÖëEÖ!EÖ"DEÖ#pEÖ$œEÖ%ÈEÖ&óEÖ(EÖ)IEÖ*tEÖ+žEÖ,ÉEÖ-òEÖ/EÖ0GEÖ1pEÖ2šEÖ3ÃEÖ4ìEÖ6EÖ7-EÖ?UEÖ@|EÖA¤EÖBÊEÖCòEÖEEÖF?EÖGeEÖHŒEÖI²EÖJÙEÖKÿEÖM%EÖNKEÖOpEÖP–EÖQ¼EÖRâEÖTEÖU-EÖVREÖWxEÖXEÖYÂEÖZçEÖ\ EÖ]2EÖ^WEÖ_|EÖ`¡EÖaÆEÖbëEÖdEÖe5EÖf[EÖg€EÖh¥EÖiÊEÖjïEÖlEÖm9EÖn^EÖo„EÖp©EÖqÎEÖróEÖtEÖu>EÖvdEÖwˆEÖx®EÖyÓEÖzúEÖ|EÖ}EEÖ~lEÖ‘EÖ€¸EÖÝEÖƒEÖ„*EÖ…QEÖ†yEÖ‡žEÖˆÆEÖ‰ìEÕÌEÕÌ&EÕÌLEÕÌnEÕÌŒEÕ̪EÕÌÇEÕÌàEÕÌøEÕÍEÕÍ$EÕÍ6EÕÍJEÕÍYEÕÍgEÕÍtEÕÍ‚EÕÍŒEÕÍ–EÕÍŸEÕͨEÕͯEÕ͵EÕÍ»EÕÍ¿EÕÍÄEÕÍÉEÕÍÌEÕÍÏEÕÍÒEÕÍÕEÕÍØEÕÍÚEÕÍÝEÕÍàEÕÍãEÕÍæEÕÍéEÕÍîEÕÍóEÕÍ÷EÕÍýEÕÎEÕÎ EÕÎEÕÎEÕÎ&EÕÎ0EÕÎ=EÕÎKEÕÎYEÕÎjEÕÎzEÕÎŽEÕΣEÕιEÕÎÒEÕÎìEÕÏEÕÏ&EÕÏEEÕÏhEÕÏ‹EÕϲEÕÏÛEÕÐEÕÐ4EÕÐdEÕЗEÕÐÍEÕÑEÕÑAEÕÑ~EÕÑÂEÕÒEÕÒLEÕÒ˜EÕÒæEÕÓ7EÕÓEÕÓæEÕÔAEÕÔ¢EÕÕEÕÕmEÕÕØEÕÖHEÕÖ¼EÕ×3EÕ×®EÕØ0EÕØ´EÕÙEÖ gEÖ ’EÖ ¼EÖ èEÖEÖAEÖoEÖEÖËEÖùEÖ'EÖVEÖ…EÖ³EÖâEÖEÖ?EÖnEÖ›EÖ ÉEÖ!÷EÖ#$EÖ$QEÖ%~EÖ&ªEÖ'ÖEÖ)EÖ*.EÖ+ZEÖ,…EÖ-±EÖ.ÜEÖ0EÖ11EÖ2\EÖ3†EÖ4°EÖ5ÚEÖ7EÖ8.EÖ9XEÖ:€EÖ;ªEÖ<ÔEÖ=üEÖ?%EÖ@MEÖAvEÖBžEÖCÆEÖDîEÖFEÖG>EÖHfEÖIŽEÖJ´EÖKÜEÖMEÖN,EÖOREÖPzEÖQ EÖRÈEÖSîEÖUEÖVòEÖ@EÖAFEÖBpEÖCšEÖDÃEÖEìEÖGEÖH@EÖIhEÖJ‘EÖK¹EÖLâEÖN EÖO4EÖP[EÖQ…EÖR¬EÖSÖEÖTýEÖV&EÖWMEÖXvEÖYEÖZÆEÖ[íEÖ]EÖ^=EÖ_fEÖ`ŒEÖaµEÖbÜEÖdEÖe,EÖfTEÖg{EÖh¤EÖiËEÖjôEÖlEÖmCEÖnjEÖo“EÖpºEÖqãEÖs EÖt3EÖuZEÖvƒEÖwªEÖxÔEÖyûEÖ{%EÖ|LEÖ}vEÖ~žEÖÇEÖ€ïEÖ‚EÖƒ@EÖ„kEÖ…“EÖ†¾EÖ‡æEÖ‰EÖŠ:EÕÌpEÕÌ”EÕ̵EÕÌÓEÕÌðEÕÍ EÕÍ$EÕÍ:EÕÍMEÕÍbEÕÍrEÕÍ€EÕÍEÕÍ›EÕͦEÕͰEÕ͸EÕÍ¿EÕÍÆEÕÍÊEÕÍÏEÕÍÒEÕÍÔEÕÍÖEÕÍØEÕÍØEÕÍØEÕÍØEÕÍØEÕÍÖEÕÍÕEÕÍÔEÕÍÒEÕÍÑEÕÍÐEÕÍÎEÕÍÎEÕÍÎEÕÍÎEÕÍÎEÕÍÐEÕÍÒEÕÍÔEÕÍ×EÕÍÜEÕÍàEÕÍæEÕÍîEÕÍöEÕÍÿEÕÎ EÕÎEÕÎ$EÕÎ4EÕÎFEÕÎYEÕÎlEÕ΃EÕΜEÕζEÕÎÒEÕÎðEÕÏEÕÏ4EÕÏZEÕÏ‚EÕÏ­EÕÏÚEÕÐ EÕоEÖ?êEÖAEÖB@EÖCkEÖD–EÖEÁEÖFëEÖHEÖIAEÖJkEÖK•EÖLÀEÖMéEÖOEÖP=EÖQgEÖREÖSºEÖTäEÖVEÖW8EÖXaEÖY‹EÖZ´EÖ[ÞEÖ]EÖ^0EÖ_ZEÖ`ƒEÖa­EÖbÖEÖdEÖe)EÖfQEÖgzEÖh¤EÖiÍEÖj÷EÖl EÖmJEÖnsEÖoœEÖpÆEÖqïEÖsEÖtBEÖukEÖv–EÖw¾EÖxêEÖzEÖ{=EÖ|fEÖ}‘EÖ~ºEÖæEÖEÖ‚:EÖƒdEÖ„EÖ…¹EÖ†åEÖˆEÖ‰:EÖŠeEÕ̧EÕÌÈEÕÌæEÕÍEÕÍEÕÍ8EÕÍNEÕÍbEÕÍvEÕ͆EÕÍ–EÕÍ£EÕÍ®EÕͺEÕÍÂEÕÍÌEÕÍÑEÕÍÖEÕÍÛEÕÍÞEÕÍàEÕÍâEÕÍâEÕÍâEÕÍáEÕÍàEÕÍÞEÕÍÛEÕÍÙEÕÍÖEÕÍÓEÕÍÐEÕÍÌEÕÍÉEÕÍÆEÕÍÃEÕÍÁEÕ;EÕͼEÕÍ»EÕͺEÕͺEÕͺEÕͼEÕ;EÕÍÂEÕÍÅEÕÍËEÕÍÒEÕÍÚEÕÍâEÕÍìEÕÍùEÕÎEÕÎEÕÎ&EÕÎ:EÕÎNEÕÎdEÕÎ~EÕΘEÕεEÕÎÔEÕÎöEÕÏEÕÏ@EÕÏjEÕÏ”EÕÏÄEÕÏôEÕÐ(EÕÐ_EÕИEÕÐÖEÕÑEÕÑZEÕÑ¡EÕÑêEÕÒ8EÕÒŠEÕÒßEÕÓ8EÕÓ”EÕÓôEÕÔXEÕÔÁEÕÕ-EÕÕEÕÖEÕÖ‹EÕ× EÕ׊EÕØEÕØœEÕÙ,EÕÙÁEÕÚ[EÕÚûEÕÛ EÕÜJEÕÜøEÕݬEÕÞcEÕßEÕßßEÕà£EÕálEÕâ8EÕãEÕãÜEÕäµEÕå‘EÕæpEÕçSEÕè:EÕé$EÕêEÕëEÕëöEÕììEÕíæEÕîäEÕïäEÕðæEÕñëEÕòôEÕóþEÕõ EÕöEÕ÷+EÕø?EÕùUEÕúmEÕû‡EÕü¢EÕýÀEÕþàEÖEÖ$EÖHEÖnEÖ”EÖ¼EÖæEÖEÖ ;EÖ iEÖ •EÖ ÄEÖ òEÖ"EÖREÖƒEÖ²EÖäEÖEÖGEÖxEÖªEÖÛEÖ EÖ>EÖoEÖ¡EÖÑEÖ!EÖ"2EÖ#dEÖ$”EÖ%ÄEÖ&òEÖ("EÖ)QEÖ*EÖ+¯EÖ,ßEÖ. EÖ/‹EÖ?¸EÖ@äEÖBEÖC>EÖDiEÖE–EÖFÂEÖGîEÖIEÖJFEÖKqEÖLEÖMÈEÖNóEÖPEÖQJEÖRvEÖS¡EÖTÌEÖU÷EÖW"EÖXNEÖYxEÖZ£EÖ[ÎEÖ\ùEÖ^$EÖ_OEÖ`zEÖa¤EÖbÏEÖcúEÖe%EÖfOEÖgzEÖh¥EÖiÐEÖjúEÖl%EÖmPEÖn{EÖo¦EÖpÑEÖqüEÖs&EÖtREÖu~EÖv¨EÖwÔEÖxþEÖz)EÖ{VEÖ|€EÖ}¬EÖ~×EÖ€EÖ.EÖ‚\EÖƒ†EÖ„´EÖ…ÞEÖ‡ EÖˆ7EÖ‰bEÖŠEÕÌßEÕÌþEÕÍEÕÍ7EÕÍREÕÍhEÕÍ|EÕÍEÕÍ EÕͰEÕͽEÕÍÈEÕÍÔEÕÍÛEÕÍäEÕÍéEÕÍíEÕÍòEÕÍóEÕÍõEÕÍõEÕÍõEÕÍóEÕÍñEÕÍîEÕÍëEÕÍèEÕÍãEÕÍÞEÕÍÚEÕÍÕEÕÍÐEÕÍÊEÕÍÅEÕÍÀEÕͼEÕÍ·EÕͲEÕͯEÕͬEÕÍ©EÕͧEÕÍ¥EÕÍ¥EÕÍ¥EÕͧEÕͪEÕͬEÕͱEÕÍ·EÕÍ¿EÕÍÈEÕÍÑEÕÍÝEÕÍêEÕÍúEÕÎ EÕÎEÕÎ2EÕÎJEÕÎbEÕÎ~EÕΜEÕλEÕÎÞEÕÏEÕÏ*EÕÏTEÕÏ€EÕϰEÕÏâEÕÐEÕÐPEÕÐŒEÕÐËEÕÑEÕÑREÕÑ›EÕÑèEÕÒ8EÕÒŒEÕÒäEÕÓ>EÕÓžEÕÔEÕÔhEÕÔÓEÕÕBEÕÕ¶EÕÖ/EÕÖ¬EÕ×,EÕ×±EÕØVEÖ?„EÖ@³EÖAáEÖCEÖD EÖ?PEÖ@€EÖA¯EÖBÞEÖD EÖEEÖSlEÖT›EÖUÈEÖVöEÖX%EÖYSEÖZ‚EÖ[°EÖ\ÞEÖ^ EÖ_:EÖ`hEÖa–EÖbÄEÖcòEÖe EÖfNEÖg|EÖhªEÖiØEÖkEÖl4EÖmcEÖnEÖo¾EÖpìEÖrEÖsIEÖtvEÖu¦EÖvÓEÖxEÖy0EÖz`EÖ{EÖ|»EÖ}êEÖEÖ€HEÖvEÖ‚¦EÖƒÔEÖ…EÖ†2EÖ‡`EÖˆEÖ‰¿EÖŠðEÕÍLEÕÍjEÕÍ„EÕÍšEÕͲEÕÍÄEÕÍ×EÕÍæEÕÍóEÕÎEÕÎ EÕÎEÕÎEÕÎEÕÎ"EÕÎ$EÕÎ&EÕÎ%EÕÎ%EÕÎ"EÕÎEÕÎEÕÎEÕÎEÕÎ EÕÎEÕÍûEÕÍòEÕÍêEÕÍâEÕÍÚEÕÍÑEÕÍÇEÕ;EÕͶEÕÍ®EÕͦEÕÍEÕÍ–EÕÍEÕ͉EÕ̓EÕÍ~EÕÍyEÕÍvEÕÍtEÕÍsEÕÍsEÕÍtEÕÍvEÕÍzEÕÍ€EÕ͆EÕÍŽEÕ͘EÕͤEÕͲEÕÍÂEÕÍÓEÕÍçEÕÍüEÕÎEÕÎ0EÕÎLEÕÎkEÕÎŒEÕΰEÕÎØEÕÏEÕÏ.EÕÏ^EÕÏEÕÏÆEÕÏþEÕÐ:EÕÐzEÕоEÕÑEÕÑNEÕÑœEÕÑìEÕÒAEÕÒšEÕÒ÷EÕÓXEÕÓ¾EÕÔ&EÕÔ“EÕÕEÕÕ|EÕÕöEÕÖuEÕÖùEÕׂEÕØEÕØ£EÕÙ;EÕÙØEÕÚzEÕÛ!EÕÛÍEÕÜ~EÕÝ3EÕÝíEÕÞªEÕßmEÕà4EÕàþEÕáÍEÕâ EÕãwEÕäREÕå1EÕæEÕæøEÕçâEÕèÎEÕé½EÕê°EÕë¨EÕì¡EÕížEÕîžEÕï EÕð¥EÕñ¬EÕò¸EÕóÄEÕôÔEÕõæEÕöúEÕøEÕù*EÕúDEÕûaEÕüEÕý EÕþÂEÕÿæEÖ EÖ2EÖ[EÖ…EÖ°EÖÜEÖ EÖ 7EÖ fEÖ –EÖ ÇEÖ ùEÖ,EÖ^EÖ‘EÖÅEÖøEÖ-EÖaEÖ–EÖÉEÖýEÖ2EÖfEÖšEÖÎEÖ EÖ!4EÖ"hEÖ#œEÖ$ÏEÖ&EÖ'4EÖ(gEÖ)šEÖ*ÍEÖ,EÖ-2EÖ.dEÖ/–EÖ0ÈEÖ1úEÖ3,EÖ4^EÖ5EÖ6ÀEÖ7òEÖ9$EÖ:UEÖ;†EÖ<·EÖ=èEÖ?EÖ@JEÖA{EÖB¬EÖCÜEÖE EÖF>EÖGnEÖHŸEÖIÐEÖJþEÖL/EÖM`EÖNEÖOÀEÖPðEÖR EÖSPEÖT€EÖU°EÖVàEÖXEÖY?EÖZoEÖ[ŸEÖ\ÏEÖ]ÿEÖ_.EÖ`^EÖaŽEÖb¾EÖcîEÖeEÖfLEÖg|EÖh¬EÖiÜEÖk EÖlEÕÎEÕì7EÕí3EÕî2EÕï4EÕð9EÕñBEÕòLEÕóYEÕôhEÕõzEÕöŽEÕ÷¦EÕø¾EÕùÙEÕúöEÕüEÕý6EÕþXEÕÿ}EÖ¢EÖÈEÖòEÖEÖHEÖtEÖ¢EÖÐEÖ EÖ 1EÖ cEÖ ”EÖÈEÖúEÖ/EÖbEÖ˜EÖÌEÖEÖ7EÖkEÖ EÖÖEÖ EÖ@EÖuEÖ¨EÖ ÞEÖ"EÖ#GEÖ${EÖ%°EÖ&äEÖ(EÖ)KEÖ*EÖ+³EÖ,çEÖ.EÖ/MEÖ0€EÖ1´EÖ2èEÖ4EÖ5NEÖ6€EÖ7³EÖ8æEÖ:EÖ;KEÖ<~EÖ=°EÖ>ãEÖ@EÖAHEÖBzEÖC¬EÖDÞEÖFEÖGCEÖHuEÖI¨EÖJØEÖL EÖMEÕÍEÕÍ@EÕÍEEÕÍLEÕÍUEÕÍ`EÕÍkEÕÍzEÕÍŠEÕÍœEÕͲEÕÍÊEÕÍâEÕÍÿEÕÎEÕÎ>EÕÎdEÕΊEÕδEÕÎàEÕÏEÕÏDEÕÏzEÕϳEÕÏðEÕÐ0EÕÐtEÕлEÕÑEÕÑUEÕѨEÕÑþEÕÒYEÕÒ¸EÕÓEÕÓEÕÓíEÕÔ]EÕÔÑEÕÕJEÕÕÇEÕÖIEÕÖÐEÕ×\EÕ×íEÕØƒEÕÙEÕÙ¿EÕÚdEÕÛEÕÛ½EÕÜqEÕÝ*EÕÝæEÕÞ¦EÕßlEÕà6EÕáEÕáÔEÕâªEÕãƒEÕä`EÕåBEÕæ'EÕçEÕçúEÕèêEÕéÝEÕêÒEÕëÌEÕìÈEÕíÆEÕîÈEÕïÎEÕðÔEÕñàEÕòìEÕóüEÕõEÕö"EÕ÷8EÕøREÕùlEÕú‰EÕû¨EÕüÉEÕýìEÕÿEÖ6EÖ^EÖ†EÖ²EÖÜEÖ EÖ8EÖgEÖ —EÖ ÉEÖ úEÖ .EÖaEÖ”EÖÊEÖÿEÖ4EÖiEÖŸEÖÕEÖ EÖAEÖwEÖ­EÖãEÖEÖNEÖ „EÖ!¹EÖ"ïEÖ$%EÖ%YEÖ&EÖ'ÃEÖ(ùEÖ*.EÖ+cEÖ,—EÖ-ÍEÖ/EÖ06EÖ1jEÖ2ŸEÖ3ÓEÖ5EÖ6©EÖ?ÞEÖAEÖBEEÖCyEÖD¬EÖEàEÖGEÖHHEÖI{EÖJ¯EÖKãEÖMEÖNJEÖO}EÖP±EÖQäEÖSEÖTKEÖU~EÖV²EÖWæEÖYEÖZKEÖ[EÖ\²EÖ]æEÖ_EÖ`LEÖaEÖb³EÖcæEÖeEÖfLEÖg€EÖh³EÖiçEÖkEÖlMEÖm€EÖn´EÖoçEÖqEÖrMEÖs€EÖt´EÖuçEÖwEÖxNEÖy‚EÖzµEÖ{èEÖ}EÖ~PEÖ„EÖ€·EÖêEÖƒEÖ„REÖ…†EÖ†ºEÖ‡ìEÖ‰"EÖŠTEÖ‹ŠEÕÍëEÕÎEÕÎEÕÎ.EÕÎ>EÕÎLEÕÎZEÕÎeEÕÎoEÕÎuEÕÎzEÕÎ~EÕ΀EÕÎEÕÎEÕÎ{EÕÎyEÕÎsEÕÎlEÕÎeEÕÎ\EÕÎTEÕÎJEÕÎ>EÕÎ3EÕÎ'EÕÎEÕÎEÕÍÿEÕÍòEÕÍäEÕÍÖEÕÍÈEÕͺEÕͬEÕÍŸEÕÍEÕÍ„EÕÍwEÕÍkEÕÍ`EÕÍTEÕÍJEÕÍBEÕÍ9EÕÍ1EÕÍ+EÕÍ&EÕÍ#EÕÍEÕÍEÕÍEÕÍ EÕÍ$EÕÍ)EÕÍ0EÕÍ9EÕÍDEÕÍQEÕÍ`EÕÍqEÕÍ„EÕÍšEÕͲEÕÍÌEÕÍêEÕÎ EÕÎ,EÕÎREÕÎzEÕΦEÕÎÔEÕÏEÕÏ;EÕÏrEÕÏ®EÕÏíEÕÐ0EÕÐvEÕÐÀEÕÑ EÕÑ_EÕѵEÕÒEÕÒkEÕÒÍEÕÓ4EÕÓžEÕÔ EÕÔEÕÔøEÕÕtEÕÕõEÕÖ|EÕ×EÕ×—EÕØ,EÕØÇEÕÙfEÕÚ EÕÚ²EÕÛaEÕÜEÕÜÊEÕ݆EÕÞGEÕß EÕßÓEÕà¡EÕáqEÕâFEÕãEÕãüEÕäÝEÕåÀEÕæ¨EÕç”EÕè‚EÕétEÕêjEÕëbEÕì^EÕí]EÕî^EÕïcEÕðjEÕñtEÕò€EÕó‘EÕô¢EÕõ·EÕöÍEÕ÷æEÕùEÕúEÕûpEÖ?¦EÖ@ÛEÖBEÖCFEÖD|EÖE²EÖFæEÖHEÖIREÖJ‡EÖK¼EÖLòEÖN&EÖO\EÖP’EÖQÇEÖRüEÖT1EÖUfEÖVœEÖWÑEÖYEÖZ;EÖ[pEÖ\¦EÖ]ÛEÖ_EÖ`DEÖazEÖb¯EÖcåEÖeEÖfNEÖgƒEÖh¹EÖiîEÖk$EÖlXEÖmEÖnÂEÖoøEÖq-EÖrbEÖs—EÖtÍEÖvEÖw6EÖxlEÖy¡EÖz×EÖ| EÖ}@EÖ~vEÖ¬EÖ€âEÖ‚EÖƒKEÖ„‚EÖ…¶EÖ†ìEÖˆ"EÖ‰VEÖŠEÖ‹ÂEÕÎ!EÕÎ7EÕÎLEÕÎ^EÕÎlEÕÎ{EÕΆEÕÎEÕΗEÕΜEÕΠEÕ΢EÕΡEÕΡEÕΞEÕΘEÕΔEÕÎEÕΆEÕÎ|EÕÎrEÕÎgEÕÎ\EÕÎOEÕÎAEÕÎ4EÕÎ&EÕÎEÕÎEÕÍøEÕÍéEÕÍÙEÕÍÉEÕ͹EÕͪEÕÍ›EÕÍ‹EÕÍ|EÕÍnEÕÍaEÕÍSEÕÍFEÕÍ;EÕÍ0EÕÍ&EÕÍEÕÍEÕÍEÕÍEÕÍEÕÍEÕÍEÕÍEÕÍEÕÍEÕÍ EÕÍEÕÍEÕÍ(EÕÍ4EÕÍDEÕÍVEÕÍjEÕÍEÕÍšEÕͶEÕÍÕEÕÍöEÕÎEÕÎAEÕÎlEÕΘEÕÎÈEÕÎüEÕÏ3EÕÏmEÕϪEÕÏìEÕÐ1EÕÐzEÕÐÆEÕÑEÕÑkEÕÑÃEÕÒ EÕÒEÕÒåEÕÓOEÕÓ¼EÕÔ/EÕÔ¦EÕÕ!EÕÕ¡EÕÖ&EÕÖ±EÕ×@EÕ×ÔEÕØnEÕÙ EÕÙ¯EÕÚWEÕÛEÕÛ·EÕÜlEÕÝ'EÕÝæEÕÞ©EÕßrEÕà>EÕáEÕáâEÕâºEÕã—EÕävEÕåYEÕæ@EÕç,EÕèEÕé EÕêEÕêøEÕëôEÕìòEÕíôEÕîøEÕðEÕñ EÕòEÕó%EÕô6EÕõJEÕöaEÕ÷zEÕø•EÕù²EÕúÑEÕûòEÕýEÕþ8EÕÿ`EÖˆEÖ±EÖÜEÖEÖ6EÖeEÖ•EÖÆEÖ øEÖ +EÖ ^EÖ ”EÖÉEÖþEÖ4EÖlEÖ£EÖÚEÖEÖIEÖ€EÖ¹EÖðEÖ(EÖ`EÖ–EÖÎEÖ!EÖ">EÖ#uEÖ$¬EÖ%äEÖ'EÖ(SEÖ)‹EÖ*ÂEÖ+úEÖ-0EÖ.hEÖ/ EÖ0ÖEÖ2EÖ3FEÖ4}EÖ5´EÖ6êEÖ8"EÖ9ZEÖ:EÖ;ÈEÖ=EÖ>6EÖ?nEÖ@¤EÖAÜEÖCEÖDJEÖE‚EÖF¸EÖGðEÖI'EÖJ^EÖK–EÖLÌEÖNEÖO:EÖPrEÖQ©EÖRßEÖTEÖUMEÖV„EÖW¼EÖXòEÖZ)EÖ[`EÖ\˜EÖ]ÏEÖ_EÖ`EÕÍSEÕÍkEÕÍ…EÕÍ¢EÕÍÂEÕÍåEÕÎ EÕÎ4EÕÎ_EÕÎŽEÕÎÀEÕÎõEÕÏ/EÕÏlEÕÏ«EÕÏïEÕÐ6EÕÐEÕÐÑEÕÑ%EÕÑ|EÕÑÖEÕÒ6EÕÒšEÕÓEÕÓpEÕÓàEÕÔVEÕÔÑEÕÕQEÕÕÔEÕÖ^EÕÖìEÕ×EÕØEÕØµEÕÙWEÕÙþEÕÚªEÕÛZEÕÜEÕÜÊEÕ݈EÕÞJEÕßEÕßÝEÕà­EÕá€EÕâWEÕã2EÕäEÕäôEÕåÜEÕæÅEÕç²EÕè¤EÕé˜EÕêEÕë‹EÕìˆEÕíŠEÕîŽEÕï”EÕðžEÕñªEÕò¹EÕóÊEÕôÞEÕõôEÕ÷ EÕø(EÕùDEÕúdEÕû…EÕü¨EÕýÌEÕþòEÖEÖDEÖoEÖEÖËEÖúEÖ*EÖ[EÖ ŽEÖ ÀEÖ öEÖ *EÖ`EÖ—EÖÎEÖEÖ=EÖuEÖ­EÖæEÖEÖVEÖEÖÈEÖEÖ9EÖrEÖ ©EÖ!âEÖ#EÖ$SEÖ%ŒEÖ&ÄEÖ'þEÖ)6EÖ*oEÖ+¨EÖ,àEÖ.EÖ/REÖ0ŠEÖ1ÃEÖ2üEÖ45EÖ5nEÖ6¦EÖ7ßEÖ9EÖ:PEÖ;‰EÖ<ÂEÖ=ûEÖ?4EÖ@mEÖA¦EÖBÞEÖDEÖEPEÖF‰EÖGÂEÖHûEÖJ4EÖKmEÖL¦EÖMàEÖOEÖPPEÖQŠEÖRÃEÖSüEÖU5EÖVmEÖW¦EÖXßEÖZEÖ[REÖ\‹EÖ]ÄEÖ^üEÖ`5EÖanEÖb¨EÖcáEÖeEÖfREÖg‹EÖhÄEÖiþEÖk7EÖlpEÖm¨EÖnáEÖpEÖqTEÖrEÖsÆEÖtÿEÖv7EÖwqEÖx©EÖyáEÖ{EÖ|TEÖ}ŽEÖ~ÆEÖ€EÖ8EÖ‚pEÖƒªEÖ„âEÖ†EÖ‡TEÖˆŽEÖ‰ÆEÖŠþEÖŒ8EÕΉEÕΜEÕίEÕνEÕÎÊEÕÎÕEÕÎÝEÕÎâEÕÎèEÕÎêEÕÎêEÕÎêEÕÎçEÕÎâEÕÎÝEÕÎÕEÕÎÌEÕÎÁEÕθEÕΫEÕΞEÕÎEÕÎEÕÎrEÕÎ`EÕÎPEÕÎ?EÕÎ,EÕÎEÕÎEÕÍôEÕÍâEÕÍÎEÕͼEÕÍ©EÕÍ–EÕÍ„EÕÍqEÕÍ`EÕÍPEÕÍ>EÕÍ/EÕÍ!EÕÍEÕÍEÕÌøEÕÌîEÕÌäEÕÌÛEÕÌÔEÕÌÎEÕÌÉEÕÌÇEÕÌÅEÕÌÆEÕÌÉEÕÌÌEÕÌÓEÕÌÜEÕÌæEÕÌóEÕÍEÕÍEÕÍ&EÕÍ>EÕÍVEÕÍrEÕÍEÕͲEÕÍÖEÕÍýEÕÎ(EÕÎVEÕΆEÕκEÕÎóEÕÏ.EÕÏlEÕϯEÕÏõEÕÐ?EÕÐŽEÕÐàEÕÑ6EÕÑEÕÑîEÕÒQEÕÒ¹EÕÓ$EÕÓ”EÕÔEÕÔƒEÕÕEÕÕ…EÕÖ EÕÖ›EÕ×-EÕ×ÄEÕØaEÕÙEÕÙ§EÕÚQEÕÛEÕÛ¶EÕÜoEÕÝ,EÕÝîEÕÞ´EÕßEÕàLEÕá EÕáöEÕâÐEÕã®EÕäEÕåvEÕæ`EÕçLEÕèùEÖ@4EÖAnEÖB¨EÖCäEÖEEÖFXEÖG“EÖHÎEÖJEÖKDEÖL~EÖMºEÖNôEÖP.EÖQjEÖR¤EÖSàEÖUEÖVUEÖWEÖXËEÖZEÖ[AEÖ\|EÖ]·EÖ^ñEÖ`,EÖahEÖb£EÖcÞEÖeEÖfSEÖgŽEÖhÉEÖjEÖk@EÖl{EÖmµEÖnðEÖp+EÖqfEÖr¡EÖsÜEÖuEÖvREÖwEÖxÈEÖzEÖ{>EÖ|xEÖ}´EÖ~îEÖ€*EÖdEÖ‚EÖƒÙEÖ…EÖ†OEÖ‡ˆEÖˆÄEÖ‰þEÖ‹8EÖŒtEÕνEÕÎÏEÕÎàEÕÎîEÕÎøEÕÏEÕÏ EÕÏEÕÏEÕÏEÕÏEÕÏ EÕÏ EÕÏEÕÎüEÕÎòEÕÎéEÕÎÝEÕÎÐEÕÎÃEÕεEÕΤEÕΔEÕ΂EÕÎqEÕÎ^EÕÎKEÕÎ7EÕÎ#EÕÎEÕÍûEÕÍçEÕÍÑEÕͽEÕͨEÕÍ•EÕÍEÕÍmEÕÍZEÕÍGEÕÍ6EÕÍ$EÕÍEÕÍEÕÌõEÕÌèEÕÌÛEÕÌÐEÕÌÅEÕ̼EÕÌ´EÕ̯EÕÌ«EǪ̃EǪ̃EǪ̃EÕ̪EÕ̯EÕ̶EÕÌ¿EÕÌÊEÕÌØEÕÌèEÕÌúEÕÍEÕÍ'EÕÍBEÕÍ^EÕÍ~EÕÍ¢EÕÍÈEÕÍñEÕÎEÕÎLEÕ΀EÕζEÕÎðEÕÏ.EÕÏoEÕÏ´EÕÏýEÕÐJEÕМEÕÐðEÕÑHEÕѦEÕÒEÕÒnEÕÒÚEÕÓHEÕÓ½EÕÔ6EÕÔ³EÕÕ5EÕÕ¼EÕÖIEÕÖÚEÕ×pEÕØ EÕØ¬EÕÙPEÕÙúEÕÚ¨EÕÛ\EÕÜEÕÜÏEÕÝEÕÞUEÕßEÕßíEÕà¾EÕá”EÕâmEÕãKEÕä,EÕåEÕåúEÕæçEÕçÖEÕèÊEÕéÁEÕêºEÕë¶EÕì¶EÕíºEÕîÀEÕïÈEÕðÔEÕñâEÕòóEÕôEÕõEÕö4EÕ÷PEÕølEÕùŠEÕú¬EÕûÎEÕüóEÕþEÕÿBEÖlEÖ˜EÖÄEÖóEÖ#EÖSEÖ…EÖ¸EÖ ìEÖ "EÖ XEÖ ŽEÖÅEÖþEÖ7EÖpEÖ©EÖãEÖEÖWEÖ‘EÖËEÖEÖ@EÖzEÖ´EÖîEÖ!*EÖ"dEÖ#ŸEÖ$ÚEÖ&EÖ'PEÖ(ŒEÖ)ÆEÖ+EÖ,=EÖ-xEÖ.´EÖ/ðEÖ1+EÖ2fEÖ3¢EÖ4ÞEÖ6EÖ7VEÖ8’EÖ9ÎEÖ; EÖ¾EÖ?ûEÖA7EÖBsEÖC°EÖDìEÖF)EÖGfEÖH¢EÖIÞEÖKEÖLXEÖM”EÖNÒEÖPEÖQKEÖR‡EÖSÄEÖUEÖV>EÖW{EÖX¸EÖYõEÖ[2EÖ\nEÖ]«EÖ^èEÖ`%EÖacEÖb EÖcÝEÖeEÖfVEÖg“EÖhÐEÖj EÖkKEÖlˆEÖmÅEÖoEÖp>EÖq{EÖr¸EÖsõEÖu2EÖvnEÖw¬EÖxèEÖz&EÖ{bEÖ| EÖ}ÜEÖEÖ€UEÖ‘EÖ‚ÎEÖ„ EÖ…HEÖ†„EÖ‡ÂEÖˆýEÖŠ8EÖ‹vEÖŒ±EÕÎòEÕÏEÕÏEÕÏEÕÏ'EÕÏ.EÕÏ3EÕÏ8EÕÏ8EÕÏ8EÕÏ4EÕÏ2EÕÏ,EÕÏ$EÕÏEÕÏEÕÏEÕÎøEÕÎêEÕÎÛEÕÎÊEÕκEÕΧEÕΕEÕÎEÕÎmEÕÎXEÕÎCEÕÎ.EÕÎEÕÎEÕÍìEÕÍÖEÕÍÀEÕͪEÕÍ”EÕÍEÕÍjEÕÍUEÕÍAEÕÍ-EÕÍEÕÍEÕÌøEÕÌçEÕÌØEÕÌÊEÕ̾EÕ̱EÕ̦EÕÌžEÕÌ–EÕÌEÕÌŒEÕÌŠEÕÌŠEÕÌŒEÕÌŽEÕÌ”EÕÌœEÕ̦EÕ̲EÕÌÀEÕÌÑEÕÌäEÕÌúEÕÍEÕÍ0EÕÍNEÕÍpEÕÍ”EÕͼEÕÍèEÕÎEÕÎHEÕÎ}EÕζEÕÎòEÕÏ2EÕÏvEÕϾEÕÐ EÕÐZEÕЭEÕÑEÕÑbEÕÑÂEÕÒ(EÕÒ‘EÕÓEÕÓrEÕÓêEÕÔfEÕÔèEÕÕnEÕÕûEÕÖ‹EÕ×EÕ׸EÕØWEÕØûEÕÙ¤EÕÚREÕÛEÕÛ»EÕÜvEÕÝ6EÕÝúEÕÞÂEÕߎEÕà`EÕá4EÕâ EÕâêEÕãÊEÕä®EÕå–EÕæ‚EÕçqEÕèdEÕéYEÕêREÕëNEÕìNEÕíPEÕîVEÕï^EÕðjEÕñwEÕòˆEÕóšEÕô°EÕõÈEÕöâEÕ÷ÿEÕùEÕú>EÕû`EÕü†EÕý¬EÕþÔEÕÿþEÖ)EÖVEÖ†EÖµEÖæEÖEÖLEÖ €EÖ ¶EÖ ìEÖ $EÖ[EÖ”EÖÎEÖEÖBEÖ|EÖ·EÖñEÖ,EÖgEÖ¢EÖÝEÖEÖSEÖEÖ ËEÖ"EÖ#BEÖ$~EÖ%ºEÖ&÷EÖ(3EÖ)pEÖ*¬EÖ+èEÖ-&EÖ.bEÖ/ EÖ0ÜEÖ2EÖ3VEÖ4”EÖ5ÒEÖ7EÖ8LEÖ9ŠEÖ:ÈEÖ<EÖ=DEÖ>‚EÖ?ÀEÖ@ýEÖBDEÖ?„EÖ@ÄEÖBEÖCDEÖD„EÖEÄEÖGEÖHFEÖI†EÖJÆEÖLEÖMHEÖNˆEÖOÉEÖQ EÖRJEÖS‹EÖTÌEÖV EÖWNEÖXEÖYÑEÖ[EÖ\SEÖ]”EÖ^ÖEÖ`EÖaXEÖb™EÖcÛEÖeEÖf\EÖgEÖhßEÖj EÖkaEÖl¢EÖmäEÖo%EÖpfEÖq§EÖrèEÖt*EÖujEÖv¬EÖwìEÖy.EÖznEÖ{°EÖ|ðEÖ~1EÖqEÖ€²EÖòEÖƒ4EÖ„tEÖ…²EÖ†ôEÖˆ4EÖ‰tEÖŠ´EÖ‹ôEÖ3EÕÏXEÕÏfEÕÏrEÕÏ|EÕÏ‚EÕψEÕÏ‹EÕÏ‹EÕÏŠEÕφEÕÏ€EÕÏyEÕÏrEÕÏgEÕÏ[EÕÏNEÕÏ?EÕÏ/EÕÏEÕÏ EÕÎùEÕÎåEÕÎÐEÕκEÕΤEÕÎŒEÕÎtEÕÎ]EÕÎDEÕÎ+EÕÎEÕÍúEÕÍàEÕÍÇEÕͯEÕÍ–EÕÍ}EÕÍfEÕÍNEÕÍ6EÕÍ EÕÍ EÕÌõEÕÌáEÕÌÎEÕ̼EÕ̪EÕÌ›EÕÌŒEÕÌEÕÌsEÕÌiEÕÌ`EÕÌYEÕÌTEÕÌPEÕÌOEÕÌPEÕÌREÕÌWEÕÌ^EÕÌhEÕÌtEÕÌ‚EÕÌ’EÕ̦EÕ̼EÕÌÖEÕÌòEÕÍEÕÍ4EÕÍXEÕÍEÕͬEÕÍÜEÕÎEÕÎEEÕ΀EÕνEÕÎþEÕÏDEÕÏEÕÏÛEÕÐ,EÕЂEÕÐÝEÕÑ:EÕÑžEÕÒEÕÒrEÕÒâEÕÓXEÕÓÔEÕÔREÕÔØEÕÕaEÕÕïEÕÖEÕ×EÕ×¶EÕØUEÕØüEÕÙ¨EÕÚWEÕÛ EÕÛÄEÕÜ‚EÕÝDEÕÞ EÕÞÕEÕߣEÕàvEÕáMEÕâ(EÕãEÕãêEÕäÐEÕåºEÕæ§EÕç˜EÕèEÕé„EÕêEÕë}EÕì~EÕí‚EÕîŠEÕï”EÕð¡EÕñ±EÕòÃEÕóØEÕôïEÕöEÕ÷$EÕøCEÕùbEÕú…EÕû©EÕüÐEÕý÷EÕÿ!EÖMEÖzEÖ¨EÖØEÖ EÖ=EÖqEÖ¦EÖ ÜEÖ EÖ LEÖ …EÖ¿EÖøEÖ4EÖoEÖ«EÖçEÖ#EÖ_EÖ›EÖØEÖEÖREÖEÖÍEÖ EÖ!HEÖ"†EÖ#ÄEÖ%EÖ&BEÖ'€EÖ(¿EÖ)ÿEÖ+>EÖ,}EÖ-½EÖ.þEÖ0=EÖ1~EÖ2¾EÖ3þEÖ5>EÖ6€EÖ7ÀEÖ9EÖ:BEÖ;„EÖ<ÅEÖ>EÖ?HEÖ@ŠEÖAÌEÖCEÖDPEÖE’EÖFÔEÖHEÖIYEÖJœEÖKÞEÖM EÖNcEÖO¦EÖPéEÖR,EÖSoEÖT²EÖUõEÖW8EÖX|EÖY¿EÖ[EÖ\EEÖ]ˆEÖ^ÌEÖ`EÖaSEÖb–EÖcÙEÖeEÖf_EÖg£EÖhæEÖj)EÖkmEÖl°EÖmôEÖo7EÖpzEÖq½EÖsEÖtDEÖuˆEÖvÊEÖxEÖyPEÖz’EÖ{ÖEÖ}EÖ~\EÖEÖ€àEÖ‚"EÖƒfEÖ„§EÖ…êEÖ‡,EÖˆnEÖ‰°EÖŠòEÖŒ3EÖvEÕÏŠEÕÏ–EÕÏ£EÕÏ«EÕϰEÕÏ´EÕÏ´EÕÏ´EÕϰEÕϬEÕϤEÕÏœEÕÏ”EÕψEÕÏzEÕÏlEÕÏ\EÕÏJEÕÏ8EÕÏ$EÕÏEÕÎúEÕÎãEÕÎÌEÕδEÕΜEÕ΃EÕÎiEÕÎOEÕÎ5EÕÎEÕÎEÕÍæEÕÍËEÕͱEÕÍ—EÕÍ}EÕÍcEÕÍJEÕÍ2EÕÍEÕÍEÕÌìEÕÌÖEÕÌÂEÕÌ®EÕÌœEÕÌŠEÕÌzEÕÌlEÕÌ_EÕÌSEÕÌIEÕÌ@EÕÌ:EÕÌ6EÕÌ2EÕÌ2EÕÌ3EÕÌ6EÕÌEÕÌ3EÕÌ)EÕÌ!EÕÌEÕÌEÕÌEÕÌEÕÌEÕÌEÕÌ"EÕÌ+EÕÌ6EÕÌDEÕÌVEÕÌiEÕÌ€EÕÌšEÕ̶EÕÌÖEÕÌøEÕÍEÕÍHEÕÍuEÕͦEÕÍÙEÕÎEÕÎLEÕÎŒEÕÎÎEÕÏEÕÏaEÕϱEÕÐEÕÐ\EÕиEÕÑEÕÑEÕÑéEÕÒXEÕÒÌEÕÓEEÕÓÃEÕÔEEÕÔÍEÕÕYEÕÕèEÕÖ}EÕ×EÕ×µEÕØYEÕÙEÕÙ®EÕÚ`EÕÛEÕÛÒEÕÜ’EÕÝVEÕÞEÕÞêEÕß»EÕàEÕáiEÕâFEÕã&EÕä EÕäòEÕåÞEÕæÎEÕçÀEÕè¸EÕé°EÕê­EÕë­EÕì¯EÕí¶EÕî¾EÕïÊEÕðØEÕñêEÕòýEÕôEÕõ,EÕöHEÕ÷dEÕø„EÕù¦EÕúÊEÕûðEÕýEÕþBEÕÿnEÖšEÖÉEÖúEÖ+EÖ^EÖ’EÖÈEÖÿEÖ 7EÖ oEÖ ¨EÖ äEÖEÖ[EÖ˜EÖÔEÖEÖPEÖEÖÌEÖ EÖHEÖ‡EÖÅEÖEÖEEÖ …EÖ!ÅEÖ#EÖ$FEÖ%ˆEÖ&ÊEÖ( EÖ)MEÖ*EÖ+ÑEÖ-EÖ.VEÖ/™EÖ0ÜEÖ2 EÖ3dEÖ4¨EÖ5ìEÖ70EÖ8tEÖ9ºEÖ:þEÖÎEÖ@EÖAZEÖBŸEÖCåEÖE,EÖFrEÖG¸EÖHþEÖJDEÖKŒEÖLÒEÖNEÖO`EÖP§EÖQîEÖS5EÖT|EÖUÅEÖW EÖXTEÖY›EÖZãEÖ\*EÖ]rEÖ^ºEÖ`EÖaIEÖb‘EÖcÙEÖe!EÖfiEÖg±EÖhùEÖjAEÖkˆEÖlÐEÖnEÖo`EÖp§EÖqïEÖs6EÖt~EÖuÆEÖw EÖxUEÖy›EÖzãEÖ|)EÖ}qEÖ~¹EÖþEÖFEÖ‚ŒEÖƒÔEÖ…EÖ†`EÖ‡¤EÖˆìEÖŠ0EÖ‹wEÖŒ¼EÖŽEÕÏîEÕÏùEÕÐEÕÐEÕÐ EÕÐ EÕÐ EÕÐEÕÐEÕÏøEÕÏðEÕÏäEÕÏØEÕÏÉEÕϺEÕϨEÕÏ•EÕÏEÕÏlEÕÏUEÕÏ=EÕÏ%EÕÏ EÕÎòEÕÎ×EÕμEÕΠEÕ΄EÕÎgEÕÎJEÕÎ-EÕÎEÕÍòEÕÍÕEÕ͸EÕÍ›EÕÍ~EÕÍbEÕÍFEÕÍ+EÕÍEÕÌöEÕÌÝEÕÌÅEÕÌ­EÕÌ—EÕÌ‚EÕÌnEÕÌ[EÕÌJEÕÌ:EÕÌ,EÕÌEÕÌEÕÌ EÕÌEÕËþEÕËúEÕËøEÕËùEÕËüEÕÌEÕÌ EÕÌEÕÌ!EÕÌ0EÕÌCEÕÌXEÕÌpEÕÌŒEÕ̪EÕÌÌEÕÌòEÕÍEÕÍFEÕÍtEÕͨEÕÍÝEÕÎEÕÎUEÕΘEÕÎÞEÕÏ(EÕÏvEÕÏÉEÕÐ EÕÐ{EÕÐÛEÕÑ@EÕÑ©EÕÒEÕÒ‰EÕÓEÕÓ~EÕÓÿEÕÔ‡EÕÕEÕÕžEÕÖ2EÕÖÊEÕ×hEÕØ EÕØ²EÕÙ^EÕÚEÕÚÃEÕÛ~EÕÜŽEÖ?×EÖAEÖBfEÖC®EÖDöEÖF>EÖG‡EÖHÐEÖJEÖKaEÖLªEÖMòEÖOEÖYˆEÖZÒEÖ\EÖ]gEÖ^°EÖ_úEÖaDEÖbŽEÖcØEÖe"EÖfnEÖg¸EÖiEÖjLEÖk–EÖlàEÖn)EÖosEÖp¾EÖrEÖsREÖt›EÖuæEÖw.EÖxyEÖyÁEÖ{ EÖ|TEÖ}žEÖ~æEÖ€/EÖyEÖ‚ÀEÖ„ EÖ…REÖ†šEÖ‡âEÖ‰*EÖŠsEÖ‹¹EÖEÖŽHEÕÐ#EÕÐ,EÕÐ3EÕÐ8EÕÐ:EÕÐ9EÕÐ6EÕÐ2EÕÐ+EÕÐ EÕÐEÕÐ EÕÏüEÕÏìEÕÏÛEÕÏÈEÕÏ´EÕÏŸEÕωEÕÏpEÕÏXEÕÏ>EÕÏ$EÕÏEÕÎìEÕÎÏEÕβEÕΔEÕÎvEÕÎWEÕÎ9EÕÎEÕÍüEÕÍÝEÕÍ¿EÕÍ EÕÍ‚EÕÍdEÕÍGEÕÍ*EÕÍEÕÌòEÕÌØEÕ̾EÕ̦EÕÌŽEÕÌxEÕÌbEÕÌNEÕÌ;EÕÌ*EÕÌEÕÌ EÕËÿEÕËôEÕËìEÕËåEÕËáEÕËÞEÕËÝEÕËÞEÕËãEÕËêEÕËòEÕËþEÕÌ EÕÌEÕÌ2EÕÌIEÕÌdEÕÌ€EÕÌ EÕÌÄEÕÌìEÕÍEÕÍDEÕÍvEÕÍ«EÕÍäEÕÎ!EÕÎbEÕΦEÕÎðEÕÏ=EÕÏŽEÕÏäEÕÐ>EÕОEÕÑEÕÑhEÕÑÖEÕÒGEÕÒ¾EÕÓ9EÕÓºEÕÔ@EÕÔÉEÕÕVEÕÕèEÕÖ~EÕ×EÕ×¼EÕØaEÕÙ EÕÙ¼EÕÚoEÕÛ(EÕÛåEÕܧEÕÝmEÕÞ6EÕßEÕߨEÕà®EÕá‰EÕâgEÕãIEÕä/EÕåEÕæEÕæöEÕçìEÕèäEÕéÞEÕêÝEÕëÞEÕìâEÕíêEÕîôEÕðEÕñEÕò$EÕó8EÕôPEÕõkEÕö‡EÕ÷¦EÕøÈEÕùëEÕûEÕü8EÕý`EÕþ‹EÕÿ¸EÖæEÖEÖIEÖ|EÖ²EÖæEÖEÖ VEÖ EÖ ÊEÖ EÖBEÖEÖ¼EÖúEÖ9EÖxEÖ·EÖöEÖ6EÖvEÖ¸EÖøEÖ9EÖzEÖ¼EÖ þEÖ"BEÖ#…EÖ$ÉEÖ& EÖ'PEÖ(•EÖ)ÚEÖ+EÖ,eEÖ-ªEÖ.ñEÖ08EÖ1~EÖ2ÄEÖ4 EÖ5TEÖ6›EÖ7äEÖ9,EÖ:tEÖ;½EÖ=EÖ>PEÖ?˜EÖ@âEÖB,EÖCvEÖDÀEÖF EÖGTEÖH EÖIêEÖK5EÖL€EÖMËEÖOEÖPbEÖQ®EÖRúEÖTEEÖU‘EÖVÞEÖX*EÖYvEÖZÂEÖ\EÖ]ZEÖ^§EÖ_óEÖa?EÖbŒEÖcØEÖe$EÖfrEÖg¾EÖi EÖjWEÖk£EÖlïEÖnEÖ?\EÖ@¨EÖAòEÖC?EÖDŒEÖEØEÖG$EÖHpEÖI½EÖK EÖLXEÖM¥EÖNòEÖPAEÖQŽEÖRÜEÖT*EÖUyEÖVÇEÖXEÖYcEÖZ²EÖ\EÖ]OEÖ^žEÖ_ìEÖaEÕÐ,EÕÐEÕÐEÕÏìEÕÏÔEÕÏ»EÕÏ EÕÏ…EÕÏhEÕÏKEÕÏ-EÕÏEÕÎðEÕÎÏEÕίEÕÎŽEÕÎmEÕÎLEÕÎ*EÕÎ EÕÍèEÕÍÇEÕͦEÕÍ…EÕÍeEÕÍDEÕÍ&EÕÍEÕÌéEÕÌÌEÕ̯EÕÌ”EÕÌzEÕÌ`EÕÌHEÕÌ2EÕÌEÕÌEÕËöEÕËæEÕËÖEÕËÊEÕ˾EÕË´EÕË®EÕ˨EÕË¥EÕˤEÕ˦EÕ˪EÕ˰EÕ˺EÕËÆEÕËÕEÕËæEÕËûEÕÌEÕÌ.EÕÌLEÕÌlEÕÌ’EÕ̺EÕÌæEÕÍEÕÍHEÕÍ~EÕ͹EÕÍøEÕÎ;EÕ΂EÕÎÍEÕÏEÕÏoEÕÏÇEÕÐ$EÕІEÕÐìEÕÑVEÕÑÆEÕÒ:EÕÒ´EÕÓ3EÕÓ¶EÕÔ=EÕÔÇEÕÕVEÕÕêEÕÖ„EÕ×"EÕ×ÅEÕØmEÕÙEÕÙÊEÕÚEÕÛEÕÌ'EÕÌEÕËûEÕËçEÕËÕEÕËÅEÕ˶EÕ˪EÕËŸEÕË—EÕËEÕËŒEÕËŠEÕËŠEÕËŽEÕË“EÕË›EÕ˦EÕ˳EÕËÄEÕËØEÕËîEÕÌEÕÌ%EÕÌDEÕÌhEÕÌEÕ̺EÕÌèEÕÍEÕÍOEÕ͉EÕÍÆEÕÎEÕÎLEÕΗEÕÎæEÕÏ8EÕÏŽEÕÏëEÕÐKEÕбEÕÑEÕшEÕÑüEÕÒuEÕÒóEÕÓuEÕÓûEÕÔ„EÕÕEÕÕ£EÕÖ;EÕÖØEÕ×zEÕØ EÕØËEÕÙzEÕÚ/EÕÚéEÕÛ¦EÕÜhEÕÝ.EÕÝúEÕÞÉEÕßœEÕàsEÕáNEÕâ-EÕãEÕãöEÕäàEÕåÎEÕæÀEÕç´EÕè¬EÕé¨EÕê¦EÕë©EÕì®EÕí¶EÕîÀEÕïÎEÕðßEÕñòEÕóEÕô!EÕõEÖ yEÖ µEÖ óEÖ1EÖqEÖ±EÖòEÖ3EÖsEÖ´EÖöEÖ8EÖzEÖ¿EÖEÖHEÖŒEÖÒEÖ!EÖ"_EÖ#¦EÖ$ïEÖ&7EÖ'€EÖ(ÈEÖ*EÖ+\EÖ,¦EÖ-ðEÖ/ÞEÖ@.EÖA~EÖBÎEÖDEÖEnEÖFÀEÖHEÖIbEÖJ´EÖLEÖMXEÖNªEÖOûEÖQNEÖR EÖSóEÖUFEÖV™EÖWìEÖY?EÖZ’EÖ[æEÖ]9EÖ^ŒEÖ_àEÖa3EÖb‡EÖcÛEÖe.EÖf‚EÖgÕEÖi)EÖj}EÖkÐEÖm$EÖnwEÖoÊEÖqEÖrqEÖsÄEÖuEÖvjEÖw½EÖyEÖzbEÖ{µEÖ}EÖ~XEÖªEÖ€ýEÖ‚MEÖƒŸEÖ„ñEÖ†@EÖ‡’EÖˆâEÖŠ2EÖ‹‚EÖŒÒEÖŽ EÖpEÕÐæEÕÐëEÕÐîEÕÐìEÕÐéEÕÐäEÕÐÛEÕÐÒEÕÐÅEÕиEÕЩEÕЖEÕЄEÕÐpEÕÐXEÕÐAEÕÐ(EÕÐ EÕÏñEÕÏÔEÕ϶EÕϘEÕÏxEÕÏWEÕÏ5EÕÏEÕÎñEÕÎÎEÕάEÕΈEÕÎdEÕÎ@EÕÎEÕÍøEÕÍÔEÕͰEÕÍŽEÕÍkEÕÍHEÕÍ'EÕÍEÕÌäEÕÌÄEÕ̦EṎEÕÌkEÕÌPEÕÌ5EÕÌEÕÌEÕËîEÕËØEÕËÅEÕË´EÕˤEÕË–EÕËŠEÕËEÕËyEÕËsEÕËpEÕËpEÕËqEÕËvEÕË|EÕˆEÕË’EÕË¢EÕË´EÕËÉEÕËâEÕËüEÕÌEÕÌ>EÕÌdEÕÌŽEÕÌ»EÕÌëEÕÍ EÕÍXEÕÍ•EÕÍÖEÕÎEÕÎbEÕίEÕÏEÕÏWEÕϲEÕÐEÕÐuEÕÐÝEÕÑKEÕѾEÕÒ5EÕÒ²EÕÓ4EÕÓ¹EÕÔ?EÕÔÊEÕÕ\EÕÕòEÕÖEÕ×-EÕ×ÓEÕØ}EÕÙ*EÕÙÞEÕÚ•EÕÛREÕÜEÕÜØEÕÝ¢EÕÞnEÕß@EÕàEÕàðEÕáÎEÕâ°EÕã”EÕä~EÕåjEÕæ[EÕçNEÕèFEÕé@EÕê>EÕë@EÕìDEÕíJEÕîTEÕïbEÕðrEÕñ„EÕòšEÕó±EÕôÌEÕõèEÕ÷EÕø*EÕùMEÕútEÕûœEÕüÆEÕýñEÕÿ EÖPEÖEÖ´EÖéEÖEÖWEÖEÖËEÖ EÖ DEÖ EÖ ¿EÖÿEÖ@EÖEÖÃEÖEÖFEÖˆEÖÌEÖEÖTEÖ™EÖÞEÖ%EÖkEÖ ³EÖ!úEÖ#BEÖ$ŒEÖ%ÖEÖ'EÖ(jEÖ)µEÖ+EÖ,LEÖ-™EÖ.æEÖ02EÖ1€EÖ2ÎEÖ4EÖ5lEÖ6¼EÖ8 EÖ9[EÖ:¬EÖ;üEÖ=MEÖ>žEÖ?ðEÖABEÖB”EÖCçEÖE:EÖFŒEÖGàEÖI4EÖJ‡EÖKÜEÖM0EÖN„EÖOØEÖQ,EÖR‚EÖS×EÖU,EÖVEÖWØEÖY,EÖZƒEÖ[ØEÖ].EÖ^„EÖ_ÙEÖa0EÖb…EÖcÜEÖe2EÖfˆEÖgÞEÖi5EÖjŠEÖkáEÖm6EÖnŒEÖoâEÖq7EÖrŽEÖsâEÖu9EÖvŽEÖwãEÖy9EÖzŒEÖ{âEÖ}7EÖ~ŠEÖÞEÖ3EÖ‚ˆEÖƒÚEÖ….EÖ†€EÖ‡ÔEÖ‰&EÖŠxEÖ‹ÊEÖEÖŽlEÖ¾EÕÑEÕÑEÕÑEÕÑEÕÑEÕÑEÕÑEÕÐúEÕÐîEÕÐàEÕÐÎEÕмEÕЦEÕБEÕÐxEÕÐ`EÕÐEEÕÐ*EÕÐEÕÏîEÕÏÐEÕϯEÕÏŽEÕÏmEÕÏJEÕÏ'EÕÏEÕÎßEÕκEÕΖEÕÎpEÕÎKEÕÎ'EÕÎEÕÍÜEÕ͸EÕÍ“EÕÍoEÕÍKEÕÍ(EÕÍEÕÌäEÕÌÃEÕÌ¢EÕÌ„EÕÌeEÕÌHEÕÌ,EÕÌEÕËøEÕËâEÕËÌEÕË·EÕˤEÕË“EÕË„EÕËwEÕËlEÕËdEÕË\EÕËXEÕËVEÕËVEÕËZEÕË_EÕËhEÕËtEÕËEÕË’EÕ˦EÕ˼EÕËØEÕËõEÕÌEÕÌ`EÖ?³EÖAEÖB\EÖC°EÖEEÖFZEÖG°EÖIEÖJ\EÖK²EÖMEÖN_EÖO¶EÖQ EÖReEÖS¼EÖUEÖVkEÖWÄEÖYEÖZsEÖ[ËEÖ]$EÖ^|EÖ_ÕEÖa.EÖb…EÖcÞEÖe6EÖfEÖgèEÖiAEÖj˜EÖkñEÖmJEÖn¢EÖoûEÖqSEÖr«EÖtEÖu[EÖv³EÖx EÖyaEÖz¹EÖ|EÖ}hEÖ~½EÖ€EÖjEÖ‚ÁEÖ„EÖ…lEÖ†ÁEÖˆEÖ‰jEÖŠ¾EÖŒEÖgEÖŽ»EÖ EÕÑJEÕÑKEÕÑLEÕÑGEÕÑBEÕÑ:EÕÑ1EÕÑ$EÕÑEÕÑEÕÐôEÕÐÞEÕÐÊEÕвEÕКEÕÐEÕÐdEÕÐFEÕÐ)EÕÐEÕÏèEÕÏÇEÕÏ¥EÕÏ‚EÕÏ^EÕÏ:EÕÏEÕÎïEÕÎÉEÕΣEÕÎ}EÕÎWEÕÎ/EÕÎ EÕÍãEÕͽEÕÍ—EÕÍrEÕÍLEÕÍ(EÕÍEÕÌáEÕÌ¿EÕÌžEÕÌ~EÕÌ^EÕÌ@EÕÌ#EÕÌEÕËíEÕËÔEÕ˽EÕ˨EÕË’EÕË€EÕËpEÕËbEÕËUEÕËLEÕËDEÕË>EÕË:EÕË:EÕËEÖ?tEÖ@ÊEÖB"EÖCxEÖDÐEÖF&EÖG~EÖHÖEÖJ/EÖKˆEÖLàEÖN9EÖO’EÖPìEÖRFEÖSŸEÖTùEÖVSEÖW®EÖYEÖZbEÖ[½EÖ]EÖ^rEÖ_ÎEÖa(EÖb„EÖcßEÖe9EÖf•EÖgïEÖiJEÖj¦EÖlEÖm\EÖn¶EÖpEÖqlEÖrÆEÖt EÖu{EÖvÕEÖx/EÖy‰EÖzáEÖ|;EÖ}•EÖ~îEÖ€GEÖžEÖ‚öEÖ„PEÖ…¨EÖ†ÿEÖˆWEÖ‰¬EÖ‹EÖŒZEÖ°EÖEÖYEÕÑxEÕÑzEÕÑxEÕÑtEÕÑmEÕÑdEÕÑYEÕÑKEÕÑEÕËNEÕË_EÕËtEÕËŒEÕ˨EÕËÆEÕËéEÕÌEÕÌ8EÕÌfEÕÌ—EÕÌÌEÕÍEÕÍBEÕÍ„EÕÍÉEÕÎEÕÎaEÕδEÕÏ EÕÏgEÕÏÈEÕÐ.EÕЗEÕÑEÕÑ|EÕÑöEÕÒuEÕÒõEÕÓwEÕÓþEÕÔ‹EÕÕEÕÕ³EÕÖNEÕÖïEÕוEÕØ?EÕØíEÕÙ¡EÕÚYEÕÛEÕÛ×EÕÜœEÕÝfEÕÞ4EÕßEÕßÛEÕàµEÕá“EÕâtEÕãZEÕäDEÕå0EÕæ!EÕçEÕè EÕéEÕêEÕëEÕì EÕíEÕîEÕï,EÕðEÖ,EÖ-áEÖ/4EÖ0†EÖ1ÚEÖ3.EÖ4‚EÖ5×EÖ7,EÖ8‚EÖ9ØEÖ;0EÖ<†EÖ=ÞEÖ?6EÖ@ŽEÖAæEÖC@EÖDšEÖEòEÖGLEÖH§EÖJEÖK\EÖL¸EÖNEÖOnEÖPËEÖR'EÖS‚EÖTßEÖVEÖˆ˜EÖ‰òEÖ‹JEÖŒ¤EÖúEÖREÖ¨EÕѪEÕѪEÕѧEÕÑ EÕÑšEÕÑEÕÑ‚EÕÑuEÕÑdEÕÑPEÕÑEÕË0EÕË"EÕËEÕËEÕË EÕËEÕËEÕË EÕËEÕËEÕË EÕË.EÕË?EÕËREÕËjEÕË„EÕË¢EÕËÄEÕËèEÕÌEÕÌ=EÕÌmEÕÌ¡EÕÌØEÕÍEÕÍVEÕÍšEÕÍâEÕÎ0EÕÎEÕÎØEÕÏ2EÕÏ’EÕÏ÷EÕÐ`EÕÐÎEÕÑBEÕѺEÕÒ9EÕÒ¸EÕÓ8EÕÓ½EÕÔHEÕÔÙEÕÕnEÕÖEÕÖ¦EÕ×JEÕ×óEÕØ EÕÙREÕÚEÕÚÄEÕÛƒEÕÜGEÕÝEÕÝÜEÕÞ¬EÕßEÕàZEÕá6EÕâEÕâûEÕããEÕäÎEÕå¾EÕæ±EÕç§EÕè¡EÕéžEÕêžEÕë¢EÕì¨EÕí²EÕî¿EÕïÎEÕðàEÕñöEÕóEÕô(EÕõFEÕödEÕ÷†EÕø¬EÕùÐEÕúúEÕü%EÕýREÕþEÕÿ²EÖåEÖEÖOEÖ‡EÖÁEÖüEÖ9EÖ vEÖ ¶EÖ õEÖ 8EÖzEÖ½EÖEÖEEÖŠEÖÎEÖEÖ\EÖ¥EÖìEÖ6EÖ€EÖËEÖEÖ dEÖ!±EÖ#EÖ$OEÖ%žEÖ&îEÖ(>EÖ)‘EÖ*ãEÖ,6EÖ-ŠEÖ.ÝEÖ02EÖ1‡EÖ2ÜEÖ43EÖ5ŠEÖ6áEÖ89EÖ9EÖ:êEÖ÷EÖ@QEÖA¬EÖCEÖDcEÖE¿EÖGEÖHxEÖIÕEÖK2EÖLEÖMîEÖOKEÖPªEÖREÖSgEÖTÆEÖV%EÖW„EÖXäEÖZDEÖ[¤EÖ]EÖ^bEÖ_ÃEÖa#EÖbƒEÖcâEÖeCEÖf£EÖhEÖicEÖjÃEÖl#EÖm„EÖnäEÖpBEÖq¢EÖsEÖtbEÖuÁEÖw EÖxEÖyÞEÖ{EÕË,EÕËEÕËEÕËEÕÊúEÕÊóEÕÊïEÕÊîEÕÊîEÕÊòEÕÊøEÕËEÕËEÕËEÕË1EÕËFEÕË`EÕË}EÕËœEÕËÀEÕËèEÕÌEÕÌAEÕÌuEÕÌ«EÕÌçEÕÍ%EÕÍhEÕͰEÕÍüEÕÎMEÕ΢EÕÎüEÕÏ[EÕÏ¿EÕÐ&EÕДEÕÑEÕÑ~EÕÑûEÕÒyEÕÒøEÕÓ|EÕÔEÕÔ’EÕÕ'EÕÕ¿EÕÖ\EÕÖþEÕ×¥EÕØQEÕÙEÕÙ¶EÕÚpEÕÛ/EÕÛðEÕܸEÕÝ‚EÕÞREÕß$EÕßüEÕàØEÕá·EÕâšEÕã€EÕäkEÕåYEÕæLEÕç@EÕè8EÕé4EÕê4EÕë7EÕì¶EÖ@EÖApEÖBÍEÖD+EÖEŠEÖFèEÖHHEÖI§EÖKEÖLfEÖMÆEÖO'EÖPˆEÖQéEÖSJEÖT¬EÖV EÖWnEÖXÐEÖZ2EÖ[•EÖ\÷EÖ^ZEÖ_¼EÖaEÖbEÖcäEÖeGEÖf©EÖh EÖioEÖjÒEÖl4EÖm–EÖnùEÖp[EÖq¾EÖs EÖt‚EÖuäEÖwDEÖx¦EÖzEÖ{hEÖ|ÉEÖ~*EÖŠEÖ€êEÖ‚JEÖƒªEÖ… EÖ†hEÖ‡ÄEÖ‰"EÖŠ€EÖ‹ÜEÖ:EÖŽ–EÖòEÖ‘NEÕÒ EÕÒEÕÒEÕÑúEÕÑðEÕÑâEÕÑÖEÕÑÄEÕѱEÕÑœEÕÑ„EÕÑlEÕÑQEÕÑ7EÕÑEÕÐúEÕÐÙEÕзEÕДEÕÐpEÕÐKEÕÐ$EÕÏýEÕÏÖEÕÏ­EÕÏ„EÕÏ[EÕÏ0EÕÏEÕÎÚEÕΰEÕÎ…EÕÎYEÕÎ.EÕÎEÕÍØEÕÍ®EÕ̓EÕÍZEÕÍ1EÕÍEÕÌáEÕ̺EÕÌ“EÕÌnEÕÌJEÕÌ'EÕÌEÕËäEÕËÆEÕ˨EÕËŒEÕËrEÕËZEÕËBEÕË-EÕËEÕË EÕÊúEÕÊîEÕÊäEÕÊÜEÕÊÖEÕÊÔEÕÊÔEÕÊÖEÕÊÜEÕÊäEÕÊðEÕÊþEÕËEÕË$EÕËvEÖ?ÕEÖA4EÖB”EÖCôEÖETEÖF¶EÖHEÖIxEÖJÚEÖL=EÖM EÖOEÖPfEÖQÉEÖS-EÖT‘EÖUõEÖWXEÖX½EÖZ"EÖ[†EÖ\ëEÖ^PEÖ_µEÖaEÖb€EÖcåEÖeJEÖf°EÖhEÖizEÖjàEÖlEEÖmªEÖoEÖptEÖqØEÖs=EÖt¢EÖvEÖwiEÖxÍEÖz1EÖ{”EÖ|øEÖ~ZEÖ½EÖ EÖ‚‚EÖƒãEÖ…DEÖ†¦EÖˆEÖ‰fEÖŠÆEÖŒ&EÖ„EÖŽâEÖ@EÖ‘žEÕÒ:EÕÒ6EÕÒ0EÕÒ'EÕÒEÕÒEÕÑþEÕÑìEÕÑØEÕÑÁEÕÑ©EÕÑEÕÑtEÕÑVEÕÑ8EÕÑEÕÐöEÕÐÓEÕЮEÕЊEÕÐdEÕÐ6EÖ?—EÖ@ùEÖB\EÖC¾EÖE EÖF„EÖGçEÖIKEÖJ°EÖLEÖMyEÖNÞEÖPDEÖQªEÖSEÖTvEÖUÝEÖWDEÖX«EÖZEÖ[zEÖ\áEÖ^HEÖ_°EÖaEÖb€EÖcçEÖeOEÖf·EÖhEÖi†EÖjîEÖlVEÖm¾EÖo%EÖpŒEÖqôEÖs[EÖtÂEÖv)EÖwEÖxöEÖz\EÖ{ÂEÖ}(EÖ~EÖòEÖVEÖ‚»EÖ„EÖ…‚EÖ†æEÖˆHEÖ‰ªEÖ‹ EÖŒnEÖÏEÖ0EÖEÖ‘ïEÕÒjEÕÒeEÕÒ^EÕÒTEÕÒHEÕÒ6EÕÒ&EÕÒEÕÑþEÕÑæEÕÑÎEÕѳEÕÑ–EÕÑxEÕÑXEÕÑ7EÕÑEÕÐðEÕÐËEÕФEÕÐ|EÕÐTEÕÐ+EÕÐEÕÏ×EÕÏ«EÕÏEÕÏREÕÏ%EÕÎøEÕÎËEÕΞEÕÎpEÕÎCEÕÎEÕÍéEÕͼEÕÍEÕÍcEÕÍ7EÕÍ EÕÌãEÕ̺EÕÌ’EÕÌjEÕÌDEÕÌEÕËúEÕË×EÕ˶EÕË–EÕËxEÕË[EÕË@EÕË(EÕËEÕÊúEÕÊçEÕÊÖEÕÊÈEÕʼEÕʲEÕʪEÕʤEÕÊ¢EÕÊ¢EÕʦEÕʬEÕʵEÕÊÂEÕÊÑEÕÊâEÕÊøEÕËEÕË0EÕËOEÕËtEÕË›EÕËÇEÕË÷EÕÌ+EÕÌbEÕÌžEÕÌÝEÕÍ"EÕÍkEÕ͸EÕÎ EÕÎaEÕμEÕÏEÕÏ‚EÕÏëEÕÐ[EÕÐÏEÕÑIEÕÑÃEÕÒ=EÕÒ¼EÕÓ@EÕÓËEÕÔXEÕÔìEÕÕ…EÕÖ"EÕÖÄEÕ×lEÕØEÕØÈEÕÙ}EÕÚ7EÕÚöEÕÛ¸EÕÜ~EÕÝHEÕÞEÕÞëEÕßÃEÕàžEÕá|EÕâ`EÕãGEÕä2EÕå EÕæEÕçEÕçþEÕèûEÕéúEÕêýEÕìEÕí EÕîEÕï'EÕð9EÕñNEÕòfEÕó€EÕôžEÕõ½EÕößEÕøEÕù+EÕúTEÕû€EÕü®EÕýÞEÕÿEÖDEÖzEÖ²EÖìEÖ&EÖeEÖ¤EÖãEÖ %EÖ iEÖ ¬EÖ òEÖ8EÖ}EÖÅEÖ EÖVEÖ¡EÖìEÖ7EÖ…EÖÓEÖ"EÖtEÖÅEÖ EÖ!jEÖ"¾EÖ$EÖ%jEÖ&ÀEÖ(EÖ)qEÖ*ÊEÖ,#EÖ-~EÖ.ÚEÖ06EÖ1“EÖ2òEÖ4PEÖ5¯EÖ7EÖ8oEÖ9ÐEÖ;1EÖ<”EÖ=öEÖ?ZEÖ@¾EÖB!EÖC†EÖDìEÖFQEÖG·EÖIEÖJ„EÖKêEÖMSEÖNºEÖP"EÖQ‹EÖRóEÖT\EÖUÅEÖW/EÖX˜EÖZEÖ[lEÖ\ÖEÖ^@EÖ_ªEÖaEÖbEÖcêEÖeTEÖf¾EÖh(EÖi“EÖjýEÖlhEÖmÒEÖoEÕáEÕáþEÕâäEÕãÌEÕäºEÕåªEÕæžEÕç–EÕè‘EÕéEÕêEÕë–EÕìžEÕí©EÕî·EÕïÈEÕðÝEÕñòEÕó EÕô(EÕõHEÕöjEÕ÷ŽEÕøµEÕùÝEÕû EÕü6EÕýfEÕþ˜EÕÿÌEÖEÖ:EÖtEÖ¯EÖìEÖ+EÖmEÖ ®EÖ ñEÖ 6EÖ ~EÖÄEÖ EÖQEÖšEÖäEÖ.EÖ{EÖÈEÖEÖeEÖ¶EÖEÖZEÖ®EÖ!EÖ"XEÖ#®EÖ%EÖ&^EÖ'¸EÖ)EÖ*lEÖ+ÈEÖ-%EÖ.ƒEÖ/àEÖ1@EÖ2 EÖ4EÖ5aEÖ6ÂEÖ8&EÖ9ˆEÖ:ìEÖÜEÖ@DEÖA¬EÖCEÖD€EÖEêEÖGVEÖHÀEÖJ,EÖK˜EÖMEÖNqEÖOÞEÖQLEÖR¹EÖT(EÖU–EÖWEÖXsEÖYâEÖ[QEÖ\ÁEÖ^0EÖ_ŸEÖaEÖb~EÖcîEÖe^EÖfÎEÖh>EÖi®EÖkEÖlEÖmüEÖokEÖpÛEÖrJEÖs¹EÖu(EÖv–EÖxEÖyrEÖzàEÖ|NEÖ}»EÖ(EÖ€”EÖ‚EÖƒmEÖ„ØEÖ†BEÖ‡¬EÖ‰EÖŠ~EÖ‹éEÖQEÖŽ¸EÖEÖ‘…EÖ’êEÕÒúEÕÒòEÕÒæEÕÒÙEÕÒÊEÕÒ¶EÕÒ¢EÕÒEÕÒsEÕÒZEÕÒ>EÕÒEÕÑþEÕÑÞEÕѹEÕÑ•EÕÑnEÕÑGEÕÑEÕÐõEÕÐÊEÕОEÕÐrEÕÐDEÕÐEÕÏçEÕϸEÕψEÕÏWEÕÏ'EÕÎöEÕÎÅEÕΕEÕÎdEÕÎ3EÕÎEÕÍÒEÕÍ¢EÕÍsEÕÍDEÕÍEÕÌèEÕ̼EÕÌEÕÌeEÕÌEÕâ!EÕãEÕãòEÕäàEÕåÒEÕæÇEÕçÀEÕè¼EÕé»EÕê¾EÕëÄEÕìÍEÕíÚEÕîêEÕïûEÕñEÕò(EÕóDEÕôbEÕõ‚EÕö¦EÕ÷ËEÕøôEÕúEÕûKEÕüzEÕý«EÕþßEÖEÖLEÖ†EÖÂEÖEÖ?EÖ€EÖÃEÖ EÖ NEÖ •EÖ ÜEÖ$EÖlEÖ¶EÖEÖNEÖ›EÖêEÖ:EÖŒEÖßEÖ2EÖ‡EÖÝEÖ 5EÖ!EÖ"çEÖ$@EÖ%œEÖ&øEÖ(VEÖ)´EÖ+EÖ,sEÖ-ÔEÖ/6EÖ0™EÖ1üEÖ3aEÖ4ÆEÖ6,EÖ7’EÖ8ùEÖ:bEÖ;ÊEÖ=3EÖ>EÖ@EÖAsEÖBßEÖDKEÖE·EÖG%EÖH’EÖJEÖKoEÖLÞEÖNMEÖO½EÖQ-EÖRžEÖTEÖU€EÖVðEÖXbEÖYÓEÖ[DEÖ\·EÖ^(EÖ_›EÖa EÖb€EÖcòEÖeeEÖf×EÖhJEÖi¼EÖk/EÖl¡EÖnEÖo…EÖpøEÖriEÖsÚEÖuLEÖv¼EÖx.EÖyžEÖ{EÖ|€EÖ}ïEÖ^EÖ€ÌEÖ‚EÕÊ>EÕÊ?EÕÊDEÕÊLEÕÊVEÕÊeEÕÊvEÕÊ‹EÕʤEÕÊÀEÕÊàEÕËEÕË*EÕËVEÕË„EÕ˸EÕËïEÕÌ+EÕÌjEÕ̯EÕÌøEÕÍFEÕÍ™EÕÍïEÕÎKEÕάEÕÏEÕÏ}EÕÏìEÕÐbEÕÐ×EÕÑIEÕÑÃEÕÒ@EÕÒÃEÕÓJEÕÓ×EÕÔjEÕÕEÕÕEÕÖ=EÕÖâEÕ×EÕØ^EÖ?ÊEÖA8EÖB¦EÖDEÖE„EÖFòEÖHcEÖIÓEÖKDEÖL¶EÖN(EÖOšEÖQ EÖR€EÖSòEÖUfEÖVÙEÖXNEÖYÁEÖ[6EÖ\ªEÖ^EÖ_•EÖa EÖbEÖcóEÖeiEÖfÝEÖhSEÖiÇEÖk=EÖl±EÖn'EÖoœEÖqEÖr…EÖsøEÖumEÖvàEÖxTEÖyÆEÖ{9EÖ|­EÖ~EÖEÖEÖ‚sEÖƒãEÖ…REÖ†ÄEÖˆ2EÖ‰ EÖ‹EÖŒ|EÖèEÖTEÖÁEÖ’,EÖ“•EÕÓXEÕÓNEÕÓ@EÕÓ2EÕÓ EÕÓ EÕÒôEÕÒÝEÕÒÁEÕÒ¤EÕÒ†EÕÒdEÕÒDEÕÒEÕÑúEÕÑÒEÕѬEÕÑEÕÑUEÕÑ*EÕÐþEÕÐÐEÕСEÕÐpEÕÐ@EÕÐEÕÏÞEÕϬEÕÏyEÕÏGEÕÏEÕÎáEÕέEÕÎzEÕÎGEÕÎEÕÍâEÕͰEÕÍEÕÍNEÕÍEÕÌíEÕ̾EÕÌEÕÌdEÕÌ8EÕÌ EÕËäEÕ˼EÕË”EÕËnEÕËJEÕË(EÕËEÕÊêEÕÊÍEÕʲEÕÊšEÕÊ‚EÕÊnEÕÊ\EÕÊMEÕÊ@EÕÊ5EÕÊ-EÕÊ(EÕÊ&EÕÊ&EÕÊ*EÕÊ0EÕÊ:EÕÊGEÕÊXEÕÊlEÕʃEÕÊžEÕʼEÕÊÞEÕËEÕË.EÕË]EÕËEÕËÆEÕÌEÕÌ?EÕ̃EÕÌÊEÕÍEÕÍhEÕ;EÕÎEÕÎyEÕÎÞEÕÏHEÕÏ·EÕÐ,EÕОEÕÑEÕцEÕÒEÕÒƒEÕÓ EÕÓ”EÕÔ%EÕÔºEÕÕTEÕÕôEÕÖ—EÕ×@EÕ×íEÕØžEÕÙUEÕÚEÕÚÏEÕÛ’EÕÜZEÕÝ&EÕÝöEÕÞÊEÕߢEÕà~EÕá^EÕâBEÕã*EÕäEÕåEÕåøEÕæîEÕçèEÕèæEÕéæEÕêêEÕëòEÕìüEÕî EÕïEÕð/EÕñFEÕò_EÕó|EÕôšEÕõ¼EÕöàEÕøEÕù2EÕú^EÕûEÕü¾EÕýðEÕÿ&EÖ^EÖ˜EÖÓEÖEÖPEÖ’EÖÖEÖ EÖ aEÖ «EÖ óEÖ:EÖ…EÖÏEÖEÖjEÖ¹EÖ EÖ]EÖ°EÖEÖZEÖ²EÖ EÖdEÖ ¿EÖ"EÖ#xEÖ$×EÖ&7EÖ'˜EÖ(ùEÖ*\EÖ+ÀEÖ-$EÖ.ˆEÖ/ðEÖ1XEÖ2¿EÖ4(EÖ5’EÖ6ýEÖ8iEÖ9ÕEÖ;BEÖ<°EÖ>EÖ?EÖ@üEÖBmEÖCÞEÖEPEÖFÂEÖH4EÖI§EÖKEÖLEÖNEÖOxEÖPìEÖRbEÖSØEÖUNEÖVÄEÖX;EÖY²EÖ[)EÖ\ EÖ^EÖ_EÖaEÖb~EÖcöEÖenEÖfæEÖh^EÖiÖEÖkMEÖlÅEÖn=EÖo´EÖq+EÖr¢EÖtEÖuEÖwEÖx|EÖyñEÖ{hEÖ|ÜEÖ~PEÖÆEÖ9EÖ‚¬EÖ„ EÖ…’EÖ‡EÖˆvEÖ‰çEÖ‹VEÖŒÈEÖŽ6EÖ¤EÖ‘EÖ’EÖ“êEÕÓˆEÕÓ~EÕÓnEÕÓ]EÕÓLEÕÓ5EÕÓEÕÓEÕÒèEÕÒÊEÕÒªEÕÒˆEÕÒdEÕÒAEÕÒEÕÑñEÕÑÉEÕÑžEÕÑqEÕÑDEÕÑEÕÐèEÕзEÕЇEÕÐVEÕÐ$EÕÏðEÕϾEÕÏŠEÕÏVEÕÏ"EÕÎîEÕκEÕΆEÕÎREÕÎEÕÍêEÕ͸EÕÍ„EÕÍREÕÍ!EÕÌñEÕÌÀEÕÌ’EÕÌdEÕÌ6EÕÌ EÕËàEÕ˶EÕËŽEÕËhEÕËBEÕË EÕÊþEÕÊÞEÕÊÀEÕʤEÕÊ‹EÕÊsEÕÊ^EÕÊJEÕÊ:EÕÊ,EÕÊ EÕÊEÕÊEÕÊ EÕÊ EÕÊEÕÊEÕÊEÕÊ*EÕÊ9EÕÊLEÕÊbEÕÊ|EÕÊšEÕʺEÕÊàEÕË EÕË6EÕËgEÕËEÕËÖEÕÌEÕÌVEÕÌœEÕÌèEÕÍ9EÕÍŒEÕÍçEÕÎFEÕΪEÕÏEÕÏ€EÕÏôEÕÐeEÕÐÔEÕÑJEÕÑÄEÕÒDEÕÒÈEÕÓQEÕÓàEÕÔtEÕÕ EÕÕªEÕÖKEÕÖóEÕמEÕØNEÕÙEÕÙ¼EÕÚzEÕÛ;EÕÜEÕÜÌEÕÝšEÕÞmEÕßDEÕà EÕàþEÕáàEÕâÇEÕã²EÕä EÕå’EÕæ†EÕç€EÕè{EÕé{EÕê~EÕë„EÕìŽEÕíšEÕîªEÕï¾EÕðÒEÕñìEÕóEÕô&EÕõHEÕökEÕ÷“EÕø¼EÕùèEÕûEÕüFEÕýzEÕþ¯EÕÿæEÖ EÖ\EÖ™EÖÚEÖEÖ_EÖ¥EÖ ìEÖ 5EÖ }EÖ ÆEÖEÖ\EÖ©EÖøEÖHEÖ›EÖîEÖAEÖ˜EÖïEÖHEÖ¡EÖýEÖ YEÖ!·EÖ#EÖ$uEÖ%ÖEÖ'8EÖ(œEÖ)ÿEÖ+eEÖ,ÌEÖ.2EÖ/œEÖ1EÖ2oEÖ3ÚEÖ5FEÖ6³EÖ8 EÖ9EÖ:þEÖEÖM¸EÖO2EÖP­EÖR&EÖS¢EÖUEÖV™EÖXEÖY‘EÖ[EÖ\ŠEÖ^EÖ_„EÖaEÖb~EÖcûEÖeyEÖfõEÖhsEÖiðEÖkmEÖlêEÖnhEÖoäEÖq`EÖrÝEÖtYEÖuÕEÖwQEÖxÌEÖzFEÖ{ÂEÖ}ÔEÖ@JEÖAÂEÖC:EÖD³EÖF,EÖG¦EÖI EÖJœEÖLEÖM”EÖOEÖPEÖR EÖSˆEÖUEÖV„EÖXEÖYEÖ[EÖ\€EÖ]ÿEÖ_EÖ`ÿEÖbEÖcÿEÖeEÖfýEÖh}EÖiýEÖk}EÖlýEÖn}EÖoüEÖq{EÖrûEÖtyEÖuøEÖwvEÖxôEÖzsEÖ{ïEÖ}mEÖ~èEÖ€dEÖàEÖƒZEÖ„ÖEÖ†OEÖ‡ÉEÖ‰@EÖŠºEÖŒ0EÖ¨EÖEÖ“EÖ’EÖ“|EÖ”îEÕÔEÕÔEÕÓöEÕÓâEÕÓÌEÕÓ³EÕÓ˜EÕÓ{EÕÓ\EÕÓ;EÕÓEÕÒòEÕÒÌEÕÒ¤EÕÒzEÕÒNEÕÒ$EÕÑöEÕÑÇEÕÑ•EÕÑdEÕÑ2EÕÐþEÕÐÊEÕЖEÕÐaEÕÐ+EÕÏôEÕϾEÕφEÕÏOEÕÏEÕÎàEÕΩEÕÎrEÕÎ:EÕÎEÕÍÍEÕÍ—EÕÍbEÕÍ.EÕÌúEÕÌÆEÕÌ”EÕÌcEÕÌ2EÕÌEÕËÕEÕ˨EÕË}EÕËSEÕË+EÕËEÕÊàEÕʼEÕÊ›EÕÊ}EÕÊ`EÕÊDEÕÊ,EÕÊEÕÊEÕÉðEÕÉâEÕÉÔEÕÉÌEÕÉÄEÕÉÁEÕÉÀEÕÉÂEÕÉÈEÕÉÐEÕÉÜEÕÉìEÕÉþEÕÊEÕÊ0EÕÊNEÕÊpEÕÊ•EÕÊÀEÕÊíEÕËEÕËVEÕËEÕËÏEÕÌEÕÌ\EǪ̃EÕÌúEÕÍQEÕͬEÕÎ EÕÎrEÕÎÜEÕÏLEÕϹEÕÐ$EÕДEÕÑ EÕуEÕÒEÕÒ‡EÕÓEÕÓ EÕÔ2EÕÔËEÕÕhEÕÖ EÕÖ°EÕ×\EÕØ EÕØ¿EÕÙyEÕÚ6EÕÚøEÕÛ¾EÕ܈EÕÝVEÕÞ(EÕßEÕßÚEÕà¹EÕáœEÕâ‚EÕãlEÕäZEÕåLEÕæAEÕç:EÕè6EÕé6EÕê:EÕë@EÕìKEÕíXEÕîhEÕï{EÕð’EÕñ¬EÕòÈEÕóèEÕõ EÕö0EÕ÷XEÕø‚EÕù°EÕúàEÕüEÕýHEÕþEÕÿ¸EÖôEÖ2EÖrEÖ´EÖùEÖ@EÖ‰EÖ ÓEÖ EÖ hEÖ ´EÖEÖPEÖ¡EÖôEÖHEÖžEÖöEÖOEÖªEÖEÖdEÖÂEÖ#EÖ „EÖ!èEÖ#LEÖ$±EÖ&EÖ'EÖ(êEÖ*VEÖ+ÂEÖ-.EÖ.œEÖ0 EÖ1{EÖ2ìEÖ4^EÖ5ÒEÖ7FEÖ8ºEÖ:0EÖ;¨EÖ=EÖ>˜EÖ@EÖAŠEÖCEÖD€EÖEüEÖGxEÖHôEÖJrEÖKðEÖMnEÖNíEÖPlEÖQìEÖSnEÖTîEÖVoEÖWðEÖYrEÖZóEÖ\uEÖ]÷EÖ_yEÖ`üEÖb~EÖdEÖeƒEÖgEÖh‰EÖj EÖkŽEÖmEÖn“EÖpEÖq—EÖsEÖtšEÖvEÖwœEÖyEÖzžEÖ|EÖ}EÖEÖ€šEÖ‚EÖƒ–EÖ…EÖ†ŽEÖˆ EÖ‰†EÖ‹EÖŒzEÖóEÖjEÖãEÖ’XEÖ“ÐEÖ•CEÕÔFEÕÔ6EÕÔ#EÕÔEÕÓøEÕÓÞEÕÓÂEÕÓ¤EÕÓ„EÕÓbEÕÓ>EÕÓEÕÒðEÕÒÆEÕÒ›EÕÒoEÕÒAEÕÒEÕÑâEÕѱEÕÑEÕÑKEÕÑEÕÐáEÕЬEÕÐvEÕÐ?EÕÐEÕÏÐEÕÏ—EÕÏ^EÕÏ&EÕÎîEÕζEÕÎ}EÕÎDEÕÎ EÕÍÕEÕÍžEÕÍhEÕÍ3EÕÌþEÕÌÉEÕÌ•EÕÌcEÕÌ2EÕÌEÕËÓEÕˤEÕËxEÕËNEÕË$EÕÊýEÕÊ×EÕʲEÕÊEÕÊpEÕÊREÕÊ6EÕÊEÕÊEÕÉðEÕÉÞEÕÉÍEÕÉÀEÕɶEÕÉ®EÕÉ©EÕɧEÕɨEÕÉ­EÕÉ´EÕɾEÕÉÎEÕÉàEÕÉõEÕÊEÕÊ+EÕÊLEÕÊpEÕÊšEÕÊÆEÕÊ÷EÕË,EÕËfEÕˤEÕËæEÕÌ-EÕÌyEÕÌÉEÕÍEÕÍzEÕÍÙEÕÎ=EÕΦEÕÏEÕÏ‚EÕÏêEÕÐYEÕÐÌEÕÑEEÕÑÂEÕÒDEÕÒÍEÕÓYEÕÓëEÕÔ‚EÕÕEÕÕ½EÕÖbEÕ× EÕ׺EÕØmEÕÙ$EÕÙàEÕÚ EÕÛdEÕÜ-EÕÜúEÕÝÊEÕÞ EÕßzEÕàXEÕá8EÕâEÕãEÕãóEÕäãEÕåØEÕæÐEÕçËEÕèÊEÕéÌEÕêÑEÕëÚEÕìèEÕíöEÕï EÕðEÕñ8EÕòTEÕórEÕô•EÕõ¹EÕöáEÕø EÕù9EÕúhEÕûšEÕüÏEÕþEÕÿ@EÖ{EÖºEÖúEÖ=EÖEÖÉEÖEÖ ]EÖ ¨EÖ òEÖ ?EÖŒEÖÜEÖ.EÖ‚EÖ×EÖ.EÖ†EÖàEÖ=EÖšEÖùEÖXEÖºEÖ EÖ!ƒEÖ"èEÖ$PEÖ%¸EÖ'"EÖ(ŽEÖ)úEÖ+hEÖ,ÖEÖ.FEÖ/¸EÖ1*EÖ2EÖ4EÖ5‡EÖ6üEÖ8tEÖ9ìEÖ;dEÖ<ßEÖ>ZEÖ?ÕEÖAQEÖBÎEÖDKEÖEÉEÖGHEÖHÈEÖJHEÖKÈEÖMIEÖNËEÖPMEÖQÐEÖSREÖTÕEÖVZEÖWÝEÖYaEÖZæEÖ\jEÖ]ïEÖ_uEÖ`úEÖbEÖdEÖe‰EÖgEÖh”EÖjEÖkžEÖm#EÖn©EÖp.EÖq²EÖs7EÖt»EÖv>EÖwÃEÖyEEÖzÈEÖ|LEÖ}ÍEÖOEÖ€ÏEÖ‚PEÖƒÑEÖ…PEÖ†ÏEÖˆLEÖ‰ÊEÖ‹HEÖŒÃEÖŽ?EÖ¸EÖ‘4EÖ’­EÖ”$EÖ•œEÕÔvEÕÔdEÕÔQEÕÔEÖ?šEÖAEÖB˜EÖDEÖE˜EÖGEÖH›EÖJEÖK EÖM%EÖN¨EÖP-EÖQ²EÖS8EÖT¾EÖVDEÖWËEÖYQEÖZØEÖ\`EÖ]çEÖ_oEÖ`öEÖbEÖdEÖeEÖgEÖhŸEÖj'EÖk°EÖm7EÖn¿EÖpFEÖqÎEÖsUEÖtÛEÖvbEÖwèEÖyoEÖzóEÖ|yEÖ}þEÖEÖEÖ‚‡EÖ„ EÖ…ŽEÖ‡EÖˆŽEÖŠEÖ‹ŽEÖ EÖŽ‹EÖEÖ‘„EÖ’ÿEÖ”xEÖ•òEÕÔ¥EÕÔ“EÕÔ}EÕÔfEÕÔNEÕÔ0EÕÔEÕÓòEÕÓÑEÕÓ«EÕÓ†EÕÓ^EÕÓ2EÕÓEÕÒÜEÕÒ®EÕÒ|EÕÒLEÕÒEÕÑæEÕѱEÕÑ|EÕÑEEÕÑEÕÐÖEÕОEÕÐdEÕÐ+EÕÏñEÕ϶EÕÏ|EÕÏAEÕÏEÕÎÌEÕÎ’EÕÎWEÕÎEÕÍäEÕͪEÕÍrEÕÍ:EÕÍEÕÌÌEÕÌ—EÕÌbEÕÌ.EÕËüEÕËËEÕËœEÕËlEÕË@EÕËEÕÊêEÕÊÂEÕÊœEÕÊxEÕÊVEÕÊ6EÕÊEÕÉûEÕÉâEÕÉÊEÕɶEÕɤEÕÉ”EÕɇEÕÉ~EÕÉvEÕÉrEÕÉrEÕÉtEÕÉyEÕÉ‚EÕÉŽEÕÉžEÕɲEÕÉÈEÕÉâEÕÊEÕÊ$EÕÊKEÕÊuEÕʤEÕÊ×EÕËEÕËKEÕËŠEÕËÐEÕÌEÕÌhEÕÌ»EÕÍEÕÍpEÕÍÒEÕÎ:EÕΧEÕÏEÕÏuEÕÏàEÕÐOEÕÐÄEÕÑ?EÕѾEÕÒBEÕÒÌEÕÓZEÕÓîEÕÔ†EÕÕ"EÕÕÄEÕÖkEÕ×EÕׯEÕØzEÕÙ2EÕÙïEÕÚ°EÕÛvEÕÜAEÕÝEÕÝàEÕÞ·EÕß’EÕàqEÕáSEÕâ:EÕã$EÕäEÕåEÕåúEÕæòEÕçïEÕèðEÕéôEÕêúEÕìEÕíEÕî$EÕï8EÕðPEÕñjEÕò‰EÕóªEÕôÌEÕõôEÕ÷EÕøIEÕùxEÕúªEÕûÞEÕýEÕþOEÕÿŠEÖÉEÖ EÖNEÖ“EÖÚEÖ$EÖpEÖ ¼EÖ EÖ TEÖ ¥EÖöEÖJEÖžEÖôEÖNEÖ¨EÖEÖcEÖÂEÖ$EÖˆEÖìEÖQEÖ ºEÖ"#EÖ#ŒEÖ$ùEÖ&fEÖ'ÔEÖ)EEÖ*¶EÖ,)EÖ-EÖ/EÖ0ˆEÖ1ÿEÖ3xEÖ4ñEÖ6kEÖ7æEÖ9cEÖ:áEÖ<`EÖ=ÞEÖ?^EÖ@àEÖB`EÖCãEÖEfEÖFêEÖHoEÖIôEÖKxEÖMEÖN†EÖPEÖQ•EÖSEÖT¦EÖV.EÖW¸EÖYAEÖZÊEÖ\UEÖ]ßEÖ_jEÖ`ôEÖb~EÖd EÖe”EÖg EÖhªEÖj6EÖkÀEÖmJEÖnÕEÖp_EÖqêEÖssEÖtüEÖv†EÖxEÖy˜EÖ{EÖ|¦EÖ~.EÖ¶EÖ:EÖ‚ÀEÖ„FEÖ…ÊEÖ‡NEÖˆÑEÖŠTEÖ‹ÔEÖVEÖŽÖEÖTEÖ‘ÓEÖ“REÖ”ÌEÖ–HEÕÔÔEÕÔÁEÕÔ¬EÕÔ’EÕÔyEÕÔZEÕÔEÕÐEÕÏÇEÕÏ‹EÕÏOEÕÏEÕÎÙEÕÎEÕÎaEÕÎ&EÕÍìEÕͲEÕÍxEÕÍ>EÕÍEÕÌÏEÕ̘EÕÌbEÕÌ.EÕËûEÕËÈEÕ˘EÕËhEÕË:EÕËEÕÊâEÕʺEÕÊ’EÕÊmEÕÊJEÕÊ(EÕÊ EÕÉìEÕÉÑEÕɹEÕÉ£EÕÉEÕÉEÕÉrEÕÉfEÕÉ^EÕÉZEÕÉWEÕÉYEÕÉ]EÕÉdEÕÉpEÕÉEÕÉEÕɧEÕÉÀEÕÉÞEÕÉÿEÕÊ$EÕÊMEÕÊ|EÕÊ®EÕÊäEÕËEÕË]EÕË¢EÕËëEÕÌ8EÕÌŠEÕÌàEÕÍ=EÕÍžEÕÎEÕÎpEÕÎØEÕÏ;EÕϤEÕÐEÕÐ…EÕÐÿEÕÑ|EÕÑÿEÕÒ†EÕÓEÕÓ¥EÕÔ;EÕÔÖEÕÕvEÕÖEÕÖÄEÕ×rEÕØ%EÕØÜEÕÙ˜EÕÚWEÕÛEÕÛåEÕܰEÕÝ‚EÕÞXEÕß0EÕàEÕàîEÕáÔEÕâ¼EÕãªEÕäšEÕåŽEÕæ‡EÕç‚EÕè‚EÕé„EÕê‹EÕë”EÕì¡EÕí²EÕîÆEÕïÜEÕðöEÕòEÕó4EÕôXEÕõ|EÕö¦EÕ÷ÒEÕùEÕú2EÕûfEÕüEÕýÖEÕÿEÖREÖ“EÖÕEÖEÖcEÖ®EÖûEÖ GEÖ ’EÖ àEÖ 0EÖ‚EÖ×EÖ-EÖ„EÖÞEÖ9EÖ—EÖöEÖWEÖºEÖEÖ„EÖìEÖ TEÖ!¿EÖ#*EÖ$˜EÖ&EÖ'xEÖ(êEÖ*]EÖ+ÒEÖ-GEÖ.¾EÖ06EÖ1°EÖ3*EÖ4¦EÖ6"EÖ7 EÖ9EÖ:žEÖ<EÖ= EÖ?"EÖ@¦EÖB*EÖC¯EÖE4EÖF»EÖHAEÖIÉEÖKQEÖLÚEÖNdEÖOíEÖQxEÖSEÖTŽEÖVEÖW¥EÖY1EÖZ¾EÖ\JEÖ]ØEÖ_dEÖ`òEÖbEÖd EÖešEÖg(EÖhµEÖjCEÖkÐEÖm^EÖnêEÖpxEÖrEÖs‘EÖuEÖv©EÖx4EÖyÀEÖ{KEÖ|ÔEÖ~^EÖèEÖqEÖ‚úEÖ„€EÖ†EÖ‡ŽEÖ‰EÖŠ˜EÖŒEÖ EÖ"EÖ¢EÖ’$EÖ“¤EÖ•#EÖ–ŸEÕÕEÕÔðEÕÔØEÕÔÀEÕÔ¢EÕÔ†EÕÔdEÕÔCEÕÔEÕÓøEÕÓÎEÕÓ¦EÕÓxEÕÓLEÕÓEÕÒìEÕÒ¹EÕÒ‡EÕÒQEÕÒEÕÑåEÕÑ­EÕÑtEÕÑ;EÕÑEÕÐÆEÕЋEÕÐOEÕÐEÕÏÖEÕÏšEÕÏ]EÕÏ!EÕÎäEÕΨEÕÎkEÕÎ/EÕÍóEÕ͸EÕÍ}EÕÍCEÕÍ EÕÌÑEÕÌ™EÕÌcEÕÌ-EÕËøEÕËÅEÕË“EÕËbEÕË3EÕËEÕÊÚEÕʰEÕʇEÕÊ`EÕÊèEÖ@mEÖAôEÖCzEÖEEÖFŒEÖHEÖIŸEÖK*EÖLµEÖNBEÖOÍEÖQZEÖRèEÖTvEÖVEÖW“EÖY!EÖZ±EÖ\@EÖ]ÏEÖ_`EÖ`ïEÖb€EÖdEÖe EÖg0EÖhÀEÖjPEÖkáEÖmpEÖoEÖpEÖrEÖs¯EÖu=EÖvÌEÖxZEÖyèEÖ{vEÖ}EÖ~EÖ€EÖ¦EÖƒ1EÖ„»EÖ†EEÖ‡ÌEÖ‰TEÖŠÜEÖŒcEÖéEÖnEÖðEÖ’tEÖ“öEÖ•wEÖ–÷EÕÕ4EÕÕEÕÕEÕÔíEÕÔÐEÕÔ°EÕÔEÕÔkEÕÔFEÕÔEÕÓôEÕÓÊEÕÓœEÕÓnEÕÓ>EÕÓ EÕÒÙEÕÒ¤EÕÒoEÕÒ8EÕÒEÕÑÇEÕÑEÕÑREÕÑEÕÐÜEÕРEÕÐbEÕÐ%EÕÏèEÕϪEÕÏlEÕÏ.EÕÎðEÕβEÕÎuEÕÎ8EÕÍúEÕ;EÕÍ‚EÕÍHEÕÍ EÕÌÓEÕÌšEÕÌbEÕÌ,EÕËöEÕËÁEÕËŽEÕË\EÕË-EÕÊþEÕÊÐEÕʦEÕÊ|EÕÊTEÕÊ/EÕÊ EÕÉêEÕÉÊEÕÉ®EÕÉ“EÕÉ|EÕÉfEÕÉSEÕÉBEÕÉ6EÕÉ,EÕÉ$EÕÉ EÕÉEÕÉ"EÕÉ&EÕÉ0EÕÉ=EÕÉLEÕÉ`EÕÉwEÕÉ“EÕɲEÕÉÖEÕÉüEÕÊ(EÕÊXEÕÊEÕÊÅEÕËEÕËCEÕËŠEÕËÕEÕÌ%EÕÌyEÕÌÓEÕÍ3EÕÍ—EÕÎEÕÎeEÕÎÅEÕÏ+EÕÏ•EÕÐEÕÐzEÕÐõEÕÑtEÕÑøEÕÒ‚EÕÓEÕÓ¤EÕÔ;EÕÔØEÕÕyEÕÖ EÕÖÊEÕ×zEÕØ.EÕØæEÕÙ¤EÕÚeEÕÛ*EÕÛôEÕÜÂEÕÝ”EÕÞlEÕßFEÕà%EÕáEÕáîEÕâØEÕãÆEÕä¹EÕå¯EÕæ¨EÕç¦EÕè§EÕé¬EÕê³EÕë¾EÕìÎEÕíàEÕîöEÕðEÕñ*EÕòJEÕókEÕô‘EÕõºEÕöäEÕøEÕùDEÕúxEÕû®EÕüèEÕþ$EÕÿcEÖ¤EÖèEÖ.EÖvEÖÂEÖEÖ]EÖ ªEÖ øEÖ JEÖ žEÖôEÖKEÖ¤EÖEÖ^EÖ½EÖEÖ‚EÖæEÖNEÖ·EÖ EÖEÖ úEÖ"jEÖ#ÚEÖ%NEÖ&ÁEÖ(6EÖ)¬EÖ+%EÖ,žEÖ.EÖ/•EÖ1EÖ2‘EÖ4EÖ5’EÖ7EÖ8—EÖ:EÖ; EÖ=&EÖ>®EÖ@6EÖA¾EÖCHEÖDÒEÖF\EÖGéEÖIvEÖKEÖLEÖNEÖO®EÖQ>EÖRÍEÖT^EÖUïEÖW€EÖYEÖZ£EÖ\6EÖ]ÇEÖ_ZEÖ`íEÖb€EÖdEÖe¥EÖg9EÖhÌEÖj^EÖkñEÖm„EÖoEÖp¨EÖr;EÖsÍEÖu^EÖvïEÖx€EÖzEÖ{ EÖ}0EÖ~¿EÖ€NEÖÜEÖƒiEÖ„ôEÖ†€EÖˆ EÖ‰–EÖ‹ EÖŒªEÖŽ2EÖ·EÖ‘=EÖ’ÂEÖ”GEÖ•ÊEÖ—MEÕÕbEÕÕLEÕÕ4EÕÕEÕÔùEÕÔÚEÕÔ¸EÕÔ’EÕÔmEÕÔDEÕÔEÕÓìEÕÓ¿EÕÓŽEÕÓ\EÕÓ+EÕÒöEÕÒÀEÕÒ‰EÕÒREÕÒEÕÑàEÕѤEÕÑiEÕÑ-EÕÐðEÕвEÕÐtEÕÐ6EÕÏøEÕϸEÕÏzEÕÏ:EÕÎüEÕμEÕÎ~EÕÎ@EÕÎEÕÍÄEÕ͇EÕÍKEÕÍEÕÌÔEÕÌ›EÕÌbEÕÌ*EÕËôEÕ˾EÕËŠEÕËVEÕË&EÕÊöEÕÊÈEÕÊœEÕÊpEÕÊHEÕÊ"EÕÉüEÕÉÚEÕɺEÕÉœEÕÉ€EÕÉhEÕÉQEÕÉ=EÕÉ,EÕÉEÕÉEÕÉ EÕÉEÕÉEÕÉEÕÉEÕÉEÕÉEÕÉ+EÕÉ>EÕÉTEÕÉnEÕÉŒEÕÉ®EÕÉÔEÕÉÿEÕÊ.EÕÊaEÕʘEÕÊÔEÕËEÕËZEÕˤEÕËóEÕÌFEÕÌŸEÕÌþEÕÍ`EÕÍÉEÕÎ,EÕΊEÕÎîEÕÏWEÕÏÅEÕÐ9EÕвEÕÑ/EÕѲEÕÒ:EÕÒÆEÕÓXEÕÓîEÕÔ‰EÕÕ(EÕÕÍEÕÖwEÕ×$EÕ××EÕØŽEÕÙJEÕÚEÕÚÎEÕÛ•EÕÜbEÕÝ4EÕÞEÕÞâEÕß¿EÕà EÕá†EÕâoEÕã]EÕäNEÕåBEÕæ;EÕç8EÕè6EÕé:EÕêBEÕëLEÕìZEÕílEÕî€EÕï˜EÕð´EÕñÒEÕòõEÕôEÕõAEÕölEÕ÷šEÕøËEÕùþEÕû5EÕüoEÕý«EÕþêEÖ*EÖoEÖ¶EÖþEÖJEÖ˜EÖæEÖ 3EÖ ƒEÖ ÕEÖ )EÖEÖØEÖ3EÖEÖíEÖNEÖ±EÖEÖ|EÖäEÖMEÖºEÖ'EÖ –EÖ"EÖ#zEÖ$îEÖ&cEÖ'ÚEÖ)SEÖ*ÌEÖ,HEÖ-ÅEÖ/CEÖ0ÂEÖ2CEÖ3ÅEÖ5HEÖ6ÌEÖ8QEÖ9ØEÖ;^EÖ<èEÖ>pEÖ?úEÖA†EÖCEÖD EÖF.EÖG»EÖIJEÖJÚEÖLkEÖMüEÖOŒEÖQEÖR²EÖTEEÖUØEÖWlEÖYEÖZ•EÖ\*EÖ]¿EÖ_TEÖ`êEÖb~EÖdEÖeªEÖg@EÖhÖEÖjlEÖlEÖm–EÖo+EÖpÀEÖrUEÖsêEÖu~EÖwEÖx¥EÖz8EÖ{ËEÖ}^EÖ~ïEÖ€€EÖ‚EÖƒŸEÖ….EÖ†¼EÖˆJEÖ‰ØEÖ‹dEÖŒðEÖŽzEÖEÖ‘ŒEÖ“EÖ”˜EÖ–EÖ—¢EÕÕ’EÕÕzEÕÕ`EÕÕCEÕÕ&EÕÕEÕÔàEÕÔºEÕÔ’EÕÔiEÕÔ>EÕÔEÕÓàEÕÓ¯EÕÓ~EÕÓJEÕÓEÕÒÝEÕÒ¥EÕÒlEÕÒ3EÕÑøEÕÑ»EÕÑEÕÑBEÕÑEÕÐÅEÕІEÕÐGEÕÐEÕÏÇEÕχEÕÏGEÕÏEÕÎÇEÕ·EÕÎHEÕÎ EÕÍËEÕÍŒEÕÍOEÕÍEÕÌÖEÕÌ›EÕÌbEÕÌ(EÕËñEÕ˺EÕË„EÕËQEÕËEÕÊîEÕʾEÕÊEÕÊfEÕÊ6EÖ?ÃEÖAPEÖBÞEÖDnEÖEþEÖGŽEÖI EÖJ³EÖLFEÖMÙEÖOnEÖQEÖR˜EÖT-EÖUÄEÖWZEÖXñEÖZ‡EÖ\EÖ]¶EÖ_NEÖ`çEÖbEÖdEÖe°EÖgHEÖháEÖjyEÖlEÖmªEÖoBEÖpÙEÖrqEÖtEÖužEÖw4EÖxËEÖz`EÖ{öEÖ}ŠEÖEÖ€²EÖ‚EEÖƒØEÖ…jEÖ†úEÖˆŠEÖŠEÖ‹¨EÖ6EÖŽÂEÖNEÖ‘ÚEÖ“cEÖ”ìEÖ–sEÖ—úEÕÕÂEÕÕ©EÕÕŽEÕÕrEÕÕREÕÕ/EÕÕ EÕÔãEÕÔºEÕÔEÕÔbEÕÔ4EÕÔEÕÓÑEÕÓEÕÓjEÕÓ4EÕÒüEÕÒÂEÕÒˆEÕÒMEÕÒEÕÑÔEÕÑ—EÕÑXEÕÑEÕÐÙEÕЙEÕÐXEÕÐEÕÏ×EÕÏ–EÕÏTEÕÏEÕÎÒEÕÎ’EÕÎQEÕÎEÕÍÑEÕÍ’EÕÍSEÕÍEÕÌÙEÕÌEÕÌbEÕÌ(EÕËîEÕ˸EÕËEÕËLEÕËEÕÊæEÕʶEÕʈEÕÊZEÕÊ0EÕÊEÕÉàEÕɼEÕɘEÕÉyEÕÉ\EÕÉ@EÕÉ(EÕÉEÕÈþEÕÈîEÕÈàEÕÈÖEÕÈÎEÕÈÊEÕÈÉEÕÈÌEÕÈÑEÕÈÚEÕÈæEÕÈøEÕÉ EÕÉ$EÕÉ@EÕÉ_EÕÉ„EÕɬEÕÉÙEÕÊ EÕÊ?EÕÊxEÕʶEÕÊûEÕËBEÕËEÕËàEÕÌ7EÕÌ“EÕÌôEÕÍZEÕͺEÕÎEÕÎvEÕÎÜEÕÏFEÕ϶EÕÐ+EÕЦEÕÑ$EÕÑ©EÕÒ2EÕÒÁEÕÓTEÕÓëEÕÔˆEÕÕ)EÕÕÐEÕÖzEÕ×*EÕ×ÞEÕØ–EÕÙREÕÚEÕÚÚEÕÛ¤EÕÜrEÕÝDEÕÞEÕÞöEÕßÕEÕà¸EÕáŸEÕâŠEÕãxEÕäkEÕåbEÕæ\EÕçZEÕè\EÕéaEÕêjEÕëvEÕì†EÕíšEÕî°EÕïËEÕðèEÕò EÕó,EÕôTEÕõ~EÕö¬EÕ÷ÝEÕùEÕúFEÕûEÕü½EÕýûEÕÿEÕËEÕÊÔEÕÊ¢EÕÊpEÕÊBEÕÊEÕÉêEÕÉÀEÕÉšEÕÉvEÕÉSEÕÉ4EÕÉEÕÈúEÕÈãEÕÈÍEÕÈ»EÕÈ«EÕÈžEÕÈ•EÕÈŽEÕÈŒEÕÈ‹EÕÈŽEÕÈ–EÕÈ EÕȰEÕÈÁEÕÈÖEÕÈðEÕÉEÕÉ0EÕÉWEÕÉEÕɰEÕÉãEÕÊEÕÊWEÕʘEÕÊÜEÕË(EÕËwEÕËÌEÕÌ&EÕ̃EÕÌèEÕÍFEÕÍEÕÍûEÕÎ]EÕÎÄEÕÏ1EÕÏ¢EÕÐEÕЖEÕÑEÕÑEÕÒ(EÕÒ·EÕÓLEÕÓåEÕÔ„EÕÕ'EÕÕÎEÕÖ{EÕ×,EÕ×áEÕØ›EÕÙYEÕÚEÕÚäEÕÛ®EÕÜEÕÝSEÕÞ,EÕßEÕßèEÕàÍEÕá¶EÕâ¢EÕã”EÕäˆEÕå€EÕæ|EÕç|EÕè€EÕé‡EÕê’EÕë EÕì´EÕíÈEÕîáEÕïþEÕñEÕòBEÕóhEÕô’EÕõ¿EÕöïEÕø"EÕùYEÕú’EÕûÍEÕý EÕþPEÕÿ”EÖÜEÖ&EÖsEÖÃEÖEÖbEÖµEÖ EÖ `EÖ ºEÖEÖsEÖÔEÖ7EÖœEÖEÖlEÖØEÖDEÖ´EÖ%EÖ˜EÖEÖ …EÖ!þEÖ#xEÖ$ôEÖ&sEÖ'óEÖ)tEÖ*÷EÖ,|EÖ.EÖ/ŠEÖ1EÖ2œEÖ4'EÖ5´EÖ7BEÖ8ÒEÖ:bEÖ;ôEÖ=†EÖ?EÖ@®EÖBDEÖCÛEÖErEÖG EÖH£EÖJ>EÖKØEÖMsEÖOEÖP¬EÖRHEÖSæEÖUƒEÖW"EÖXÁEÖZ`EÖ[ÿEÖ]ŸEÖ_?EÖ`ßEÖbEÖd EÖeÀEÖg`EÖiEÖj¡EÖlAEÖmáEÖoEÖq!EÖrÀEÖt_EÖuþEÖwEÖy:EÖzØEÖ|tEÖ~EÖ¬EÖIEÖ‚ãEÖ„}EÖ†EÖ‡®EÖ‰EEÖŠÛEÖŒpEÖŽEÖšEÖ‘-EÖ’¾EÖ”NEÖ•ÞEÖ—kEÖ˜øEÕÖREÕÖ4EÕÖEÕÕöEÕÕÓEÕÕ®EÕÕ„EÕÕZEÕÕ.EÕÕEÕÔÒEÕÔžEÕÔjEÕÔ6EÕÓÿEÕÓÆEÕÓŒEÕÓQEÕÓEÕÒØEÕÒšEÕÒZEÕÒEÕÑÙEÕÑ—EÕÑUEÕÑEÕÐÎEÕЊEÕÐFEÕÐEÕϽEÕÏyEÕÏ4EÕÎðEÕάEÕÎhEÕÎ%EÕÍáEÕÍŸEÕÍ]EÕÍEÕÌÜEÕÌœEÕÌ^EÕÌ EÕËåEÕË©EÕËpEÕË8EÕËEÕÊÌEÕʘEÕÊfEÕÊ6EÕÊEÕÉÜEÕɱEÕÉŠEÕÉdEÕÉ@EÕÉEÕÉEÕÈäEÕÈÌEÕȵEÕÈ¡EÕÈEÕÈ‚EÕÈxEÕÈpEÕÈlEÕÈkEÕÈnEÕÈsEÕÈ|EÕÈŠEÕÈ›EÕȰEÕÈÉEÕÈæEÕÉEÕÉ+EÕÉTEÕÉ‚EÕÉ´EÕÉêEÕÊ&EÕÊeEÕʪEÕÊóEÕËBEÕË–EÕËîEÕÌLEÕ̯EÕÍ EÕÍaEÕͼEÕÎEÕ΂EÕÎíEÕÏ]EÕÏÒEÕÐMEÕÐÌEÕÑPEÕÑÚEÕÒiEÕÒüEÕÓ”EÕÔ1EÕÔÒEÕÕxEÕÖ#EÕÖÓEÕ׆EÕØ?EÕØüEÕÙ¾EÕÚƒEÕÛNEÕÜEÕÜðEÕÝÆEÕÞ¢EÕß‚EÕàeEÕáLEÕâ8EÕã(EÕäEÕåEÕæEÕç EÕèEÕéEÕê EÕë.EÕì@EÕíTEÕîmEÕïŠEÕðªEÕñÌEÕòòEÕôEÕõHEÕöxEÕ÷¬EÕøâEÕúEÕûWEÕü—EÕýÙEÕÿEÖfEÖ²EÖÿEÖPEÖ EÖðEÖCEÖ —EÖ ðEÖ IEÖ ¦EÖEÖfEÖÊEÖ0EÖ˜EÖEÖoEÖÝEÖNEÖÂEÖ6EÖ¬EÖ $EÖ! EÖ#EÖ$šEÖ&EÖ'œEÖ)EÖ*¤EÖ,*EÖ-²EÖ/;EÖ0ÆEÖ2REÖ3àEÖ5oEÖ6ÿEÖ8EÖ:#EÖ;·EÖ=LEÖ>âEÖ@yEÖBEÖCªEÖEDEÖFÞEÖHzEÖJEÖK²EÖMQEÖNïEÖPŽEÖR.EÖSÍEÖUnEÖWEÖX°EÖZREÖ[ôEÖ]–EÖ_8EÖ`ÜEÖb~EÖd!EÖeÅEÖggEÖi EÖj®EÖlPEÖmôEÖo–EÖq8EÖrÚEÖt|EÖvEÖw¾EÖy_EÖzÿEÖ|žEÖ~=EÖÛEÖxEÖƒEÖ„³EÖ†NEÖ‡èEÖ‰‚EÖ‹EÖŒ´EÖŽKEÖàEÖ‘uEÖ“EÖ”›EÖ–.EÖ—¾EÖ™LEÕÖ‚EÕÖdEÕÖEEÕÖ$EÕÕýEÕÕ×EÕÕ®EÕÕ‚EÕÕUEÕÕ&EÕÔöEÕÔÂEÕÔEÕÔWEÕÔEÕÓåEÕÓ«EÕÓmEÕÓ1EÕÒóEÕÒ³EÕÒrEÕÒ1EÕÑîEÕѬEÕÑhEÕÑ$EÕÐßEÕКEÕÐUEÕÐEÕÏÊEÕÏ„EÕÏ>EÕÎùEÕδEÕÎoEÕÎ*EÕÍæEÕÍ¢EÕÍ`EÕÍEÕÌÜEÕÌ›EÕÌ[EÕÌEÕËàEÕˤEÕËiEÕË/EÕÊøEÕÊÁEÕÊŒEÕÊYEÕÊ(EÕÉùEÕÉËEÕÉ EÕÉwEÕÉPEÕÉ+EÕÉ EÕÈêEÕÈÌEÕȲEÕÈšEÕÈ…EÕÈtEÕÈdEÕÈXEÕÈPEÕÈKEÕÈHEÕÈJEÕÈNEÕÈXEÕÈcEÕÈsEÕȇEÕÈžEÕȺEÕÈÙEÕÈþEÕÉ&EÕÉREÕÉ„EÕɹEÕÉòEÕÊ2EÕÊuEÕʽEÕË EÕË\EÕË´EÕÌEÕÌsEÕÌÎEÕÍ"EÕÍ|EÕÍÚEÕÎ?EÕΨEÕÏEÕÏŠEÕÐEÕÐEÕÑEÕÑ‹EÕÒEÕÒªEÕÓ?EÕÓÛEÕÔ{EÕÕ EÕÕÊEÕÖwEÕ×*EÕ×àEÕØœEÕÙ]EÕÚ"EÕÚêEÕÛ¸EÕ܉EÕÝ`EÕÞ9EÕßEÕßúEÕààEÕáËEÕâºEÕã¬EÕä¤EÕåžEÕæœEÕçžEÕè¤EÕé¬EÕêºEÕëÌEÕìàEÕíøEÕïEÕð3EÕñUEÕò{EÕó¤EÕôÑEÕöEÕ÷3EÕøjEÕù£EÕúàEÕüEÕýbEÕþ¨EÕÿðEÖ;EÖ‰EÖÚEÖ+EÖ|EÖÎEÖ %EÖ }EÖ ØEÖ 5EÖ•EÖ÷EÖ\EÖÃEÖ-EÖ™EÖEÖvEÖèEÖ\EÖÒEÖJEÖÅEÖ!BEÖ"¾EÖ$>EÖ%ÀEÖ'DEÖ(ÈEÖ*PEÖ+ØEÖ-bEÖ.íEÖ0zEÖ2EÖ3˜EÖ5)EÖ6¼EÖ8OEÖ9äEÖ;zEÖ=EÖ>ªEÖ@CEÖAÞEÖCxEÖEEÖF²EÖHQEÖIïEÖKEÖM/EÖNÏEÖPqEÖREÖS¶EÖUYEÖVýEÖX EÖZEEÖ[êEÖ]EÖ_4EÖ`ÙEÖbEÖd$EÖeÊEÖgpEÖiEÖj»EÖlaEÖnEÖo«EÖqPEÖrõEÖtšEÖv=EÖwáEÖy„EÖ{'EÖ|ÉEÖ~jEÖ€ EÖ¬EÖƒKEÖ„éEÖ†‡EÖˆ&EÖ‰ÂEÖ‹\EÖŒöEÖŽ‘EÖ)EÖ‘ÀEÖ“VEÖ”êEÖ–EÖ˜EÖ™¢EÕÖ²EÕÖ’EÕÖrEÕÖNEÕÖ*EÕÖEÕÕÖEÕÕ«EÕÕ|EÕÕLEÕÕEÕÔåEÕÔ°EÕÔwEÕÔ>EÕÔEÕÓÈEÕÓ‹EÕÓLEÕÓ EÕÒÌEÕÒŠEÕÒHEÕÒEÕÑÀEÕÑ{EÕÑ6EÕÐñEÕЪEÕÐdEÕÐEÕÏÖEÕÏEÕÏIEÕÏEÕμEÕÎuEÕÎ0EÕÍëEÕͦEÕÍbEÕÍEÕÌÜEÕÌšEÕÌYEÕÌEÕËÛEÕËžEÕËbEÕË(EÕÊîEÕʶEÕÊEÕÊMEÕÊEÕÉêEÕÉ»EÕÉEÕÉeEÕÉEÕÑÉEÕÒYEÕÒîEÕÓˆEÕÔ&EÕÔÉEÕÕqEÕÖEÕÖÐEÕׄEÕØ?EÕØþEÕÙÂEÕÚˆEÕÛVEÕÜ&EÕÜúEÕÝÓEÕÞ°EÕß’EÕàxEÕáaEÕâOEÕã@EÕä6EÕå0EÕæ.EÕç.EÕè2EÕéEÖ<ØEÖ>sEÖ@EÖA«EÖCHEÖDèEÖF†EÖH'EÖIÈEÖKjEÖM EÖN°EÖPUEÖQùEÖSžEÖUDEÖVêEÖXEÖZ8EÖ[ÞEÖ]†EÖ_/EÖ`ÖEÖbEÖd&EÖeÏEÖgwEÖi EÖjÇEÖlpEÖnEÖoÀEÖqhEÖsEÖt¶EÖv\EÖxEÖy¨EÖ{LEÖ|òEÖ~–EÖ€9EÖÝEÖƒ~EÖ…EÖ†¿EÖˆ`EÖ‰þEÖ‹›EÖ7EÖŽÔEÖnEÖ’EÖ“¡EÖ•8EÖ–ÍEÖ˜`EÖ™õEÕÖâEÕÖÂEÕÖ EÕÖ{EÕÖVEÕÖ+EÕÖEÕÕÒEÕÕ¤EÕÕqEÕÕ>EÕÕEÕÔÒEÕÔ˜EÕÔ_EÕÔ"EÕÓæEÕÓ§EÕÓhEÕÓ&EÕÒäEÕÒ¢EÕÒ^EÕÒEÕÑÔEÕÑŽEÕÑHEÕÑEÕкEÕÐrEÕÐ*EÕÏâEÕÏœEÕÏTEÕÏ EÕÎÄEÕÎ}EÕÎ6EÕÍðEÕͪEÕÍdEÕÍ EÕÌÜEÕÌšEÕÌXEÕÌEÕË×EÕ˘EÕË\EÕË EÕÊæEÕʬEÕÊvEÕÊ@EÕÊ EÕÉÜEÕɬEÕÉ~EÕÉSEÕÉ*EÕÉEÕÈÞEÕȼEÕÈEÕÈ€EÕÈgEÕÈPEÕÈEÖ?¥EÖAGEÖBêEÖDEÖF0EÖGÖEÖI|EÖK$EÖLÊEÖNsEÖPEÖQÆEÖSpEÖUEÖVÆEÖXrEÖZEÖ[ÊEÖ]wEÖ_$EÖ`ÑEÖb~EÖd,EÖeÚEÖg†EÖi4EÖjâEÖlEÖnEÕÓûEÕÓ¹EÕÓtEÕÓ.EÕÒèEÕÒ¡EÕÒYEÕÒEÕÑÇEÕÑ}EÕÑ3EÕÐçEÕÐEÕÐQEÕÐEÕϺEÕÏoEÕÏ#EÕÎÙEÕÎEÕÎCEÕÍùEÕͰEÕÍgEÕÍEÕÌØEÕÌ’EÕÌLEÕÌEÕËÄEÕË‚EÕËBEÕËEÕÊÄEÕʉEÕÊNEÕÊEÕÉÞEÕÉ©EÕÉvEÕÉFEÕÉEÕÈêEÕÈ¿EÕȘEÕÈrEÕÈPEÕÈ/EÕÈEÕÇ÷EÕÇàEÕÇËEÕǺEÕÇ«EÕÇ¡EÕǘEÕÇ•EÕÇ“EÕÇ—EÕÇEÕǨEÕǵEÕÇÈEÕÇÞEÕÇøEÕÈEÕÈ:EÕÈ`EÕÈŒEÕÈ»EÕÈñEÕÉ*EÕÉhEÕÉ«EÕÉôEÕÊ@EÕÊ’EÕÊéEÕËGEÕË›EÕËæEÕÌ8EÕÌEÕÌìEÕÍMEÕͳEÕÎEÕÎEÕÏEÕÏEÕÐEÕЇEÕÑEÕÑŸEÕÒ4EÕÒÌEÕÓiEÕÔ EÕÔ´EÕÕ`EÕÖEÕÖÅEÕ×~EÕØ=EÕÙEÕÙÆEÕÚ“EÕÛcEÕÜ8EÕÝEÕÝîEÕÞÐEÕß¶EÕàŸEÕáEÕâEÕãvEÕäpEÕåoEÕæqEÕçwEÕè‚EÕéEÕê¡EÕë¶EÕìÑEÕíîEÕïEÕð3EÕñ[EÕò†EÕó¶EÕôèEÕöEÕ÷YEÕø–EÕùÖEÕûEÕüaEÕý«EÕþøEÖJEÖEÖðEÖDEÖ™EÖòEÖOEÖ ®EÖ EÖ tEÖ ÛEÖEEÖ°EÖ EÖ‘EÖEÖ|EÖõEÖpEÖîEÖmEÖîEÖtEÖ úEÖ"‚EÖ$ EÖ%˜EÖ'%EÖ(¶EÖ*GEÖ+ÛEÖ-pEÖ/EÖ0 EÖ2:EÖ3ÕEÖ5rEÖ7EÖ8°EÖ:QEÖ;ôEÖ=—EÖ?EÕÖEÕÕÒEÕÕ˜EÕÕ\EÕÕEÕÔÞEÕÔžEÕÔ^EÕÔEÕÓÕEÕÓEÕÓHEÕÓEÕÒ¹EÕÒoEÕÒ&EÕÑÛEÕÑEÕÑDEÕÐøEÕЫEÕÐ`EÕÐEÕÏÅEÕÏxEÕÏ-EÕÎàEÕΔEÕÎIEÕÍýEÕͲEÕÍiEÕÍEÕÌÖEÕÌEÕÌIEÕÌEÕË¿EÕË|EÕË:EÕÊùEÕʺEÕÊ|EÕÊ@EÕÊEÕÉÏEÕɘEÕÉdEÕÉ2EÕÉEÕÈÔEÕÈ©EÕÈ€EÕÈZEÕÈ6EÕÈEÕÇöEÕÇÚEÕÇÂEÕǬEÕǘEÕljEÕÇ~EÕÇtEÕÇoEÕÇnEÕÇnEÕÇtEÕÇ}EÕÇŠEÕÇœEÕǰEÕÇÊEÕÇçEÕÈEÕÈ.EÕÈYEÕȈEÕÈ»EÕÈôEÕÉ1EÕÉsEÕɺEÕÊEÕÊWEÕÊ®EÕË EÕË\EÕ˧EÕË÷EÕÌLEÕ̦EÕÍEÕÍkEÕÍÕEÕÎDEÕιEÕÏ2EÕϱEÕÐ4EÕоEÕÑKEÕÑÝEÕÒvEÕÓEÕÓ²EÕÔXEÕÕEÕÕ²EÕÖfEÕ×EÕ×ÜEÕØœEÕÙdEÕÚ.EÕÚþEÕÛÐEÕÜ©EÕÝ…EÕÞeEÕßJEÕà4EÕá EÕâEÕãEÕäEÕäþEÕæEÕçEÕèEÕéEÕê.EÕëDEÕì]EÕízEÕîšEÕï¿EÕðèEÕòEÕóCEÕôtEÕõ«EÕöäEÕø!EÕùbEÕú§EÕûîEÕý9EÕþ†EÕÿØEÖ,EÖ€EÖÔEÖ*EÖ„EÖàEÖ @EÖ ¢EÖ EÖ pEÖÜEÖHEÖºEÖ,EÖ¢EÖEÖ’EÖEÖŽEÖEÖ’EÖEÖ  EÖ"*EÖ#¶EÖ%DEÖ&ÔEÖ(fEÖ)øEÖ+ŽEÖ-%EÖ.¾EÖ0XEÖ1ôEÖ3’EÖ51EÖ6ÒEÖ8tEÖ:EÖ;¼EÖ=`EÖ?EÖ@°EÖBZEÖDEÖE°EÖG[EÖI EÖJ¶EÖLfEÖNEÖOÆEÖQvEÖS)EÖTÚEÖVŽEÖX@EÖYõEÖ[¨EÖ]]EÖ_EÖ`ÇEÖb{EÖd1EÖeåEÖg›EÖiOEÖkEÖl¹EÖnoEÖp#EÖqØEÖs‹EÖu@EÖvòEÖx¦EÖzWEÖ| EÖ}ºEÖkEÖEÖ‚ÊEÖ„vEÖ†%EÖ‡ÐEÖ‰|EÖ‹&EÖŒÐEÖŽxEÖ EÖ‘ÄEÖ“jEÖ• EÖ–¯EÖ˜NEÖ™îEÖ›‹EÕ×ÔEÕ×®EÕ׆EÕ×\EÕ×1EÕ×EÕÖÐEÕÖEÕÖhEÕÖ0EÕÕöEÕÕ»EÕÕ~EÕÕ?EÕÔÿEÕÔ½EÕÔzEÕÔ5EÕÓòEÕÓªEÕÓbEÕÓEÕÒÐEÕÒ…EÕÒ:EÕÑîEÕÑ¡EÕÑTEÕÑEÕкEÕÐlEÕÐEÕÏÐEÕÏ‚EÕÏ4EÕÎæEÕΚEÕÎMEÕÎEÕÍ´EÕÍiEÕÍEÕÌÔEÕÌŒEÕÌDEÕËþEÕ˸EÕËsEÕË0EÕÊîEÕʯEÕÊpEÕÊ3EÕÉøEÕɾEÕɆEÕÉQEÕÉEÕÈìEÕȾEÕÈ‘EÕÈfEÕÈ@EÕÈEÕÇøEÕÇØEÕÇ»EÕÇ¡EÕÇŠEÕÇvEÕÇfEÕÇXEÕÇNEÕÇHEÕÇDEÕÇEEÕÇJEÕÇREÕÇ^EÕÇnEÕÇEÕÇ™EÕǵEÕÇÖEÕÇúEÕÈ$EÕÈREÕÈ…EÕȼEÕÈ÷EÕÉ9EÕÉ~EÕÉÊEÕÊEÕÊoEÕÊÊEÕËEÕËdEÕ˳EÕÌEÕÌ_EÕ̾EÕÍ EÕÍŠEÕÍøEÕÎjEÕÎãEÕÏ`EÕÏâEÕÐiEÕÐõEÕцEÕÒEÕÒ¸EÕÓWEÕÓüEÕÔ¥EÕÕREÕÖEÕÖ¾EÕ×xEÕØ:EÕØþEÕÙÈEÕÚ–EÕÛiEÕÜ@EÕÝEÕÝûEÕÞßEÕßÇEÕà´EÕá¤EÕâ™EÕã’EÕäEÕåEÕæ•EÕçžEÕè¬EÕé½EÕêÒEÕëêEÕíEÕî'EÕïKEÕðrEÕñžEÕòÎEÕôEÕõ6EÕöqEÕ÷®EÕøîEÕú3EÕû{EÕüÅEÕþEÕÿfEÖºEÖEÖdEÖ»EÖEÖsEÖÓEÖ 6EÖ EÖ EÖqEÖàEÖQEÖÅEÖ;EÖ´EÖ0EÖ­EÖ.EÖ±EÖ6EÖ¾EÖ FEÖ!ÒEÖ#`EÖ$îEÖ&€EÖ(EÖ)©EÖ+@EÖ,ÚEÖ.tEÖ0EÖ1®EÖ3NEÖ4ïEÖ6’EÖ86EÖ9ÛEÖ;‚EÖ=*EÖ>ÒEÖ@}EÖB(EÖCÖEÖE„EÖG2EÖHâEÖJ’EÖLCEÖMõEÖO¨EÖQ\EÖSEÖTÄEÖVyEÖX/EÖYåEÖ[›EÖ]REÖ_ EÖ`ÀEÖbxEÖd/EÖeçEÖgŸEÖiWEÖkEÖlÆEÖn}EÖp4EÖqëEÖs¡EÖuWEÖw EÖxÂEÖzvEÖ|,EÖ}ÞEÖ’EÖCEÖ‚õEÖ„¤EÖ†UEÖˆEÖ‰±EÖ‹\EÖ EÖŽ²EÖ\EÖ’EÖ“¬EÖ•PEÖ–ôEÖ˜–EÖš8EÖ›×EÕØEÕ×ÞEÕ×¶EÕ׊EÕ×\EÕ×,EÕÖùEÕÖÄEÕÖŽEÕÖUEÕÖEÕÕÞEÕÕ EÕÕ`EÕÕEÕÔÜEÕÔ—EÕÔREÕÔ EÕÓÃEÕÓzEÕÓ0EÕÒäEÕÒ™EÕÒLEÕÑÿEÕѱEÕÑcEÕÑEÕÐÆEÕÐwEÕÐ(EÕÏØEÕωEÕÏ:EÕÎëEÕÎEÕÎOEÕÎEÕÍ´EÕÍgEÕÍEÕÌÐEÕ̆EÕÌ=EÕËõEÕË®EÕËiEÕË$EÕÊâEÕÊ EÕÊ`EÕÊ"EÕÉæEÕÉ«EÕÉrEÕÉ¡EÖ@MEÖAûEÖC«EÖEZEÖG EÖH½EÖJpEÖL#EÖM×EÖOŽEÖQCEÖRúEÖT°EÖVhEÖX EÖYØEÖ[’EÖ]KEÖ_EÖ`¾EÖbxEÖd2EÖeìEÖg¦EÖi`EÖkEÖlÔEÖnŽEÖpGEÖrEÖsºEÖurEÖw*EÖxâEÖz˜EÖ|OEÖ~EÖºEÖoEÖƒ!EÖ„ÕEÖ†ˆEÖˆ8EÖ‰èEÖ‹–EÖEEÖŽðEÖœEÖ’HEÖ“ðEÖ•˜EÖ—EÕÔúEÕÔ´EÕÔnEÕÔ&EÕÓÝEÕÓ’EÕÓGEÕÒúEÕÒ­EÕÒ`EÕÒEÕÑÃEÕÑsEÕÑ$EÕÐÓEÕЂEÕÐ2EÕÏâEÕÏ’EÕÏAEÕÎðEÕΡEÕÎQEÕÎEÕÍ´EÕÍgEÕÍEÕÌÍEÕÌ‚EÕÌ7EÕËîEÕ˦EÕË`EÕËEÕÊÕEÕÊ’EÕÊREÕÊEÕÉÔEÕɘEÕÉ^EÕÉ&EÕÈðEÕȽEÕÈ‹EÕÈ\EÕÈ0EÕÈEÕÇÞEÕǹEÕÇ—EÕÇxEÕÇ\EÕÇBEÕÇ,EÕÇEÕÇ EÕÆüEÕÆôEÕÆîEÕÆìEÕÆïEÕÆõEÕÆÿEÕÇ EÕÇEÕÇ3EÕÇNEÕÇlEÕÇEÕǶEÕÇâEÕÈEÕÈGEÕÈEÕÈÀEÕÉEÕÉMEÕÉ›EÕÉíEÕÊGEÕÊ–EÕÊÛEÕË(EÕËxEÕËÎEÕÌ)EÕÌŠEÕÌðEÕÍ[EÕÍËEÕÎ@EÕλEÕÏ:EÕÏÀEÕÐHEÕÐØEÕÑjEÕÒEÕÒ EÕÓBEÕÓèEÕÔ”EÕÕFEÕÕúEÕÖµEÕ×sEÕØ6EÕØýEÕÙÊEÕÚšEÕÛpEÕÜIEÕÝ'EÕÞ EÕÞðEÕßÜEÕàÊEÕá¾EÕâ¶EÕã±EÕä²EÕå¶EÕæ¾EÕçÊEÕèÚEÕéïEÕëEÕì#EÕíDEÕîgEÕïEÕðºEÕñêEÕóEÕôSEÕõEÕöËEÕø EÕùPEÕúšEÕûåEÕý4EÕþˆEÕÿÞEÖ4EÖ‰EÖáEÖ=EÖœEÖþEÖ cEÖ ÌEÖ 6EÖ ¤EÖEÖ‰EÖÿEÖxEÖôEÖrEÖòEÖuEÖûEÖ‚EÖ EÖšEÖ!(EÖ"ºEÖ$LEÖ%àEÖ'xEÖ)EÖ*¬EÖ,HEÖ-æEÖ/ˆEÖ1)EÖ2ÍEÖ4rEÖ6EÖ7ÀEÖ9jEÖ;EÖ<ÂEÖ>oEÖ@EÖAÎEÖC~EÖE2EÖFäEÖH˜EÖJMEÖLEÖMºEÖOrEÖQ*EÖRâEÖT›EÖVVEÖXEÖYËEÖ[†EÖ]AEÖ^þEÖ`ºEÖbvEÖd2EÖeîEÖg¬EÖihEÖk$EÖlàEÖnœEÖpYEÖrEÖsÏEÖuŠEÖwDEÖxÿEÖz¸EÖ|rEÖ~(EÖáEÖ–EÖƒMEÖ…EÖ†¶EÖˆjEÖŠEÖ‹ÌEÖ}EÖ+EÖÙEÖ’„EÖ”0EÖ•ÚEÖ—EÖ™(EÖšÌEÖœqEÕØdEÕØ>EÖ?îEÖA EÖCTEÖEEÖF¾EÖHtEÖJ,EÖKäEÖMœEÖOVEÖQEÖRÌEÖTˆEÖVDEÖXEÖY¾EÖ[|EÖ]:EÖ^øEÖ`¶EÖbvEÖd4EÖeóEÖg³EÖirEÖk0EÖlðEÖn®EÖplEÖr*EÖsèEÖu¥EÖwbEÖyEÖzÚEÖ|•EÖ~PEÖ€ EÖÂEÖƒ|EÖ…2EÖ†èEÖˆžEÖŠREÖŒEÖ¹EÖhEÖ‘EÖ’ÈEÖ”tEÖ– EÖ—ÉEÖ™rEÖ›EÖœ¿EÕØ—EÕØnEÕØBEÕØEÕ×àEÕ׬EÕ×vEÕ×>EÕ×EÕÖÆEÕÖˆEÕÖHEÕÖEÕÕÂEÕÕ}EÕÕ6EÕÔîEÕÔ¦EÕÔYEÕÔEÕÓÁEÕÓsEÕÓ$EÕÒÕEÕÒ„EÕÒ4EÕÑâEÕÑEÕÑ=EÕÐêEÕИEÕÐDEÕÏòEÕÏžEÕÏLEÕÎùEÕΦEÕÎTEÕÎEÕͲEÕÍaEÕÍEÕÌÃEÕÌuEÕÌ(EÕËÜEÕË‘EÕËHEÕËEÕʹEÕÊtEÕÊ0EÕÉîEÕÉ®EÕÉpEÕÉ2EÕÈøEÕÈÀEÕÈŠEÕÈVEÕÈ$EÕÇõEÕÇÈEÕÇžEÕÇwEÕÇREÕÇ1EÕÇEÕÆöEÕÆÞEÕÆÉEÕÆ¶EÕÆ¨EÕÆœEÕÆ•EÕÆEÕÆEÕÆ•EÕÆœEÕÆ§EÕÆ¶EÕÆÊEÕÆâEÕÆþEÕÇEÕÇDEÕÇmEÕÇœEÕÇÎEÕÈEÕÈBEÕÈ…EÕÈÌEÕÉEÕÉiEÕÉÀEÕÊ EÕÊOEÕʘEÕÊåEÕË9EÕËEÕËîEÕÌREÕ̺EÕÍ'EÕÍšEÕÎEÕÎEÕÏEÕϘEÕÐ$EÕеEÕÑJEÕÑæEÕÒ…EÕÓ*EÕÓÔEÕÔ‚EÕÕ4EÕÕìEÕÖ©EÕ×jEÕØ0EÕØúEÕÙÉEÕÚœEÕÛtEÕÜQEÕÝ1EÕÞEÕßEÕßîEÕààEÕáØEÕâÒEÕãÒEÕäÔEÕåÜEÕæèEÕç÷EÕé EÕê"EÕë>EÕì^EÕí‚EÕîªEÕïÔEÕñEÕò7EÕónEÕô¨EÕõçEÕ÷(EÕønEÕù·EÕûEÕüTEÕý¨EÕÿEÖWEÖ­EÖEÖeEÖÅEÖ(EÖEÖ úEÖ fEÖ ×EÖJEÖÀEÖ8EÖ´EÖ3EÖ³EÖ6EÖ¼EÖEEÖÐEÖ]EÖìEÖ ~EÖ"EÖ#ªEÖ%BEÖ&ÜEÖ(xEÖ*EÖ+¸EÖ-ZEÖ.þEÖ0¤EÖ2KEÖ3ôEÖ5 EÖ7KEÖ8ùEÖ:¨EÖ EÖ?¾EÖArEÖC(EÖDÞEÖF–EÖHNEÖJ EÖKÃEÖM~EÖO;EÖP÷EÖR´EÖTsEÖV1EÖWðEÖY±EÖ[pEÖ]1EÖ^òEÖ`²EÖbtEÖd5EÖeöEÖg¸EÖiyEÖk:EÖlüEÖn¼EÖp}EÖr>EÖsýEÖu¾EÖw}EÖy;EÖzúEÖ|¶EÖ~sEÖ€0EÖìEÖƒ¥EÖ…`EÖ‡EÖˆÏEÖŠ†EÖŒEÕÊôEÕʬEÕÊeEÕÊ!EÕÉÝEÕÉœEÕÉ\EÕÉEÕÈâEÕȨEÕÈqEÕÈEÕÆLEÕÆ]EÕÆrEÕÆEÕÆ«EÕÆÎEÕÆöEÕÇ"EÕÇSEÕljEÕÇÄEÕÈEÕÈGEÕÈ‘EÕÈáEÕÉ6EÕÉEÕÉÀEÕÊEÕÊPEÕÊ¡EÕÊ÷EÕËREÕ˲EÕÌEÕÌ‚EÕÌòEÕÍgEÕÍâEÕÎaEÕÎæEÕÏoEÕÏþEÕÐ’EÕÑ*EÕÑÈEÕÒjEÕÓEÕÓ¾EÕÔoEÕÕ$EÕÕàEÕÖžEÕ×bEÕØ+EÕØùEÕÙÊEÕÚ EÕÛ|EÕÜ[EÕÝ?EÕÞ(EÕßEÕàEÕàûEÕáõEÕâôEÕãöEÕäüEÕæEÕçEÕè*EÕéAEÕê\EÕë|EÕì EÕíÇEÕîóEÕð"EÕñUEÕòEÕóÇEÕõEÕöIEÕ÷EÕøÙEÕú(EÕûxEÕüÎEÕþ&EÕÿEÖ×EÖ2EÖ‘EÖóEÖXEÖÀEÖ -EÖ œEÖ EÖ ‚EÖûEÖvEÖôEÖtEÖøEÖ}EÖEÖ’EÖ EÖ°EÖBEÖØEÖ!pEÖ# EÖ$¤EÖ&CEÖ'ãEÖ)†EÖ+)EÖ,ÏEÖ.wEÖ0 EÖ1ÌEÖ3yEÖ5(EÖ6ØEÖ8ŠEÖ:>EÖ;òEÖ=§EÖ?_EÖAEÖBÒEÖDŒEÖFIEÖHEÖIÄEÖK‚EÖMCEÖOEÖPÅEÖR†EÖTJEÖV EÖWÑEÖY”EÖ[YEÖ]EÖ^ãEÖ`©EÖboEÖd5EÖeûEÖgÁEÖi‡EÖkMEÖmEÖnÙEÖpžEÖrcEÖt(EÖuëEÖw°EÖyrEÖ{6EÖ|øEÖ~¸EÖ€yEÖ‚:EÖƒùEÖ…¶EÖ‡sEÖ‰0EÖŠìEÖŒ¤EÖŽ]EÖEÖ‘ÊEÖ“~EÖ•2EÖ–åEÖ˜”EÖšBEÖ›ðEÖœEÕÙ.EÕØÿEÕØÐEÕØžEÕØfEÕØ0EÕ×ôEÕ×¹EÕ×|EÕ×:EÕÖøEÕÖ³EÕÖnEÕÖ'EÕÕÝEÕÕ“EÕÕEEÕÔùEÕÔ¨EÕÔZEÕÔEÕÓ·EÕÓdEÕÓEÕÒ¼EÕÒfEÕÒEÕÑ»EÕÑeEÕÑEÕжEÕÐ_EÕÐ EÕϲEÕÏZEÕÏEÕέEÕÎWEÕÎEÕͬEÕÍXEÕÍEÕ̱EÕÌ`EÕÌEÕ˾EÕËoEÕË"EÕÊÖEÕÊ‹EÕÊBEÕÉúEÕÉ´EÕÉpEÕÉ.EÕÈîEÕȯEÕÈrEÕÈ8EÕÈEÕÇÌEÕǘEÕÇhEÕÇ:EÕÇEÕÆçEÕÆÂEÕÆŸEÕÆ€EÕÆdEÕÆJEÕÆ5EÕÆ"EÕÆEÕÆEÕÆEÕÅýEÕÅýEÕÆEÕÆ EÕÆEÕÆ%EÕÆ:EÕÆSEÕÆoEÕÆ’EÕÆ¸EÕÆãEÕÇEÕÇGEÕÇ‚EÕÇÀEÕÈEÕÈMEÕÈ›EÕÈîEÕÉ8EÕÉwEÕÉ»EÕÊEÕÊSEÕʨEÕËEÕËaEÕËÅEÕÌ.EÕÌEÕÍEÕÍ‹EÕÎ EÕÎŒEÕÏEÕÏ¢EÕÐ5EÕÐÌEÕÑhEÕÒ EÕÒ°EÕÓ[EÕÔ EÕÔÁEÕÕzEÕÖ9EÕÖüEÕ×ÄEÕØEÕÙaEÕÚ7EÕÛEÕÛðEÕÜÔEÕݼEÕÞ¨EÕߘEÕàŽEÕá‡EÕâ„EÕã‡EÕäŽEÕå˜EÕæ§EÕçºEÕèÑEÕéìEÕë EÕì/EÕíXEÕî‚EÕï²EÕðæEÕòEÕóXEÕô—EÕõÚEÕ÷!EÕølEÕùºEÕû EÕübEÕý»EÕÿEÖlEÖÈEÖ(EÖ‹EÖñEÖ[EÖÈEÖ 7EÖ ªEÖ !EÖšEÖEÖ–EÖEÖœEÖ#EÖ®EÖ:EÖÊEÖ\EÖðEÖ†EÖ!EÖ"ºEÖ$XEÖ%øEÖ'šEÖ)>EÖ*ãEÖ,‹EÖ.4EÖ/àEÖ1ŽEÖ3EÕÈúEÕȶEÕÈvEÕÈ6EÕÇúEÕÇÀEÕLjEÕÇREÕÇEÕÆîEÕÆÀEÕÆ–EÕÆnEÕÆIEÕÆ'EÕÆEÕÅìEÕÅÔEÕÅÀEÕÅ®EÕÅ EÕŘEÕÅEÕÅŽEÕÅEÕÅ–EÕÅ EÕŬEÕÅÀEÕÅÖEÕÅòEÕÆEÕÆ6EÕÆ^EÕÆŒEÕÆ¾EÕÆöEÕÇ2EÕÇtEÕǼEÕÈEÕÈZEÕÈ EÕÈÝEÕÉEÕÉeEÕɲEÕÊEÕÊ[EÕÊ·EÕËEÕËEÕËìEÕÌ_EÕÌÖEÕÍREÕÍÒEÕÎYEÕÎäEÕÏtEÕÐ EÕÐ¥EÕÑFEÕÑéEÕÒ“EÕÓAEÕÓôEÕÔ¬EÕÕjEÕÖ+EÕÖòEÕ×½EÕØŒEÕÙaEÕÚ:EÕÛEÕÛúEÕÜáEÕÝÌEÕÞ¼EÕß²EÕàªEÕá¦EÕâ¨EÕã®EÕä¸EÕåÇEÕæÛEÕçòEÕé EÕê,EÕëPEÕìwEÕí£EÕîÓEÕðEÕñ?EÕò{EÕó»EÕôþEÕöFEÕ÷“EÕøâEÕú5EÕû‹EÕüæEÕþAEÕÿšEÖøEÖZEÖ¾EÖ&EÖEÖEÖ rEÖ èEÖ `EÖ ÛEÖYEÖÛEÖ`EÖçEÖqEÖþEÖŽEÖ EÖ´EÖLEÖæEÖ EÖ" EÖ#ÂEÖ%dEÖ' EÖ(°EÖ*ZEÖ,EÖ-²EÖ/bEÖ1EÖ2ÆEÖ4zEÖ60EÖ7èEÖ9¢EÖ;\EÖ=EÖ>ÕEÖ@”EÖBTEÖDEÖEØEÖGœEÖI`EÖK%EÖLëEÖN²EÖP{EÖRCEÖT EÖU×EÖW¡EÖYlEÖ[7EÖ]EÖ^ÐEÖ`›EÖbhEÖd5EÖfEÖgÏEÖi›EÖkhEÖm5EÖoEÖpÍEÖr™EÖtdEÖv/EÖwùEÖyÄEÖ{EÖ}VEÖEÖ€äEÖ‚«EÖ„pEÖ†6EÖ‡ùEÖ‰ºEÖ‹|EÖ¨EÖ@iEÖB,EÖCîEÖE³EÖGyEÖI?EÖKEÖLÏEÖN˜EÖPbEÖR-EÖSøEÖUÄEÖW’EÖY^EÖ[,EÖ\úEÖ^ÈEÖ`—EÖbfEÖd4EÖfEÖgÓEÖi¢EÖkpEÖm?EÖoEÖpÜEÖrªEÖtxEÖvDEÖxEÖyÞEÖ{©EÖ}sEÖ=EÖEÖ‚ÐEÖ„—EÖ†^EÖˆ"EÖ‰æEÖ‹ªEÖmEÖ.EÖîEÖ’ªEÖ”gEÖ–#EÖ—ÜEÖ™•EÖ›LEÖœþEÖž²EÕÙúEÕÙÈEÕÙ’EÕÙYEÕÙEÕØáEÕØ£EÕØ`EÕØEÕ×ÖEÕ׎EÕ×CEÕÖùEÕÖ«EÕÖ]EÕÖ EÕÕ¹EÕÕgEÕÕEÕÔ¼EÕÔfEÕÔEÕÓ¶EÕÓ\EÕÓEÕÒ§EÕÒLEÕÑïEÕÑ“EÕÑ6EÕÐÚEÕÐ}EÕÐEÕÏÂEÕÏfEÕÏ EÕέEÕÎPEÕÍõEÕÍšEÕÍ@EÕÌæEÕÌŽEÕÌ6EÕËàEÕËŠEÕË5EÕÊâEÕÊEÕÊ@EÕÉðEÕÉ£EÕÉXEÕÉEÕÈÆEÕÈ€EÕÈEÖ±EÖ (EÖ ¤EÖ "EÖ¢EÖ&EÖ¬EÖ6EÖÃEÖTEÖåEÖzEÖEÖ¬EÖIEÖèEÖ!ŠEÖ#.EÖ$ÔEÖ&|EÖ(&EÖ)ÔEÖ+‚EÖ-3EÖ.æEÖ0›EÖ2QEÖ4 EÖ5ÃEÖ7~EÖ9|EÖ@>EÖBEÖCÈEÖEŽEÖGUEÖIEÖJèEÖL²EÖN}EÖPIEÖREÖSäEÖU²EÖWEÖYPEÖ[EÖ\ðEÖ^¿EÖ`EÖbbEÖd2EÖfEÖgÕEÖi¦EÖkvEÖmHEÖoEÖpèEÖr¹EÖtˆEÖvWEÖx&EÖyôEÖ{ÂEÖ}EÖ[EÖ&EÖ‚ñEÖ„¹EÖ†‚EÖˆJEÖŠEÖ‹ÖEÖšEÖ\EÖ‘EÖ’ÞEÖ”œEÖ–ZEÖ˜EÖ™ÐEÖ›†EÖEÕÐàEÕЂEÕÐ"EÕÏÄEÕÏfEÕÏEÕΩEÕÎLEÕÍïEÕÍ’EÕÍ7EÕÌÜEÕÌ‚EÕÌ(EÕËÐEÕËyEÕË"EÕÊÎEÕÊ{EÕÊ)EÕÉØEÕÉŠEÕÉPEÖ@EÖAÛEÖC¢EÖEjEÖG4EÖHÿEÖJÊEÖL–EÖNdEÖP2EÖREÖSÐEÖU¡EÖWqEÖYBEÖ[EÖ\çEÖ^¸EÖ`‹EÖb^EÖd1EÖfEÖgØEÖi«EÖk~EÖmQEÖo$EÖpõEÖrÈEÖtšEÖvkEÖx;EÖz EÖ{ÜEÖ}ªEÖxEÖFEÖƒEÖ„ÞEÖ†©EÖˆqEÖŠ:EÖŒEÖÇEÖŒEÖ‘PEÖ“EÖ”ÐEÖ–EÖ˜NEÖš EÖ›ÄEÖ|EÖŸ2EÕÚbEÕÚ+EÕÙôEÕÙ¸EÕÙzEÕÙ;EÕØøEÕØ²EÕØlEÕØ#EÕרEÕ׌EÕ×&EÖ?ìEÖA´EÖC~EÖEHEÖGEÖHàEÖJ­EÖL|EÖNJEÖPEÖQìEÖS¾EÖUEÖWbEÖY5EÖ[ EÖ\ÝEÖ^±EÖ`†EÖb\EÖd0EÖfEÖgÛEÖi°EÖk„EÖmZEÖo/EÖqEÖr×EÖt«EÖv~EÖxQEÖz"EÖ{ôEÖ}ÄEÖ•EÖdEÖƒ3EÖ…EÖ†ÍEÖˆ™EÖŠdEÖŒ*EÖóEÖºEÖ‘EÖ“CEÖ•EÖ–ÆEÖ˜†EÖšBEÖ›þEÖ¸EÖŸpsep-1.4.1/data/default.conv000066400000000000000000000001301475511417100155300ustar00rootroot00000000000000CONV NORM # 3x3 ``all-ground'' convolution mask with FWHM = 2 pixels. 1 2 1 2 4 2 1 2 1 sep-1.4.1/data/default.nnw000066400000000000000000000042131475511417100153730ustar00rootroot00000000000000NNW # Neural Network Weights for the SExtractor star/galaxy classifier (V1.3) # inputs: 9 for profile parameters + 1 for seeing. # outputs: ``Stellarity index'' (0.0 to 1.0) # Seeing FWHM range: from 0.025 to 5.5'' (images must have 1.5 < FWHM < 5 pixels) # Optimized for Moffat profiles with 2<= beta <= 4. 3 10 10 1 -1.56604e+00 -2.48265e+00 -1.44564e+00 -1.24675e+00 -9.44913e-01 -5.22453e-01 4.61342e-02 8.31957e-01 2.15505e+00 2.64769e-01 3.03477e+00 2.69561e+00 3.16188e+00 3.34497e+00 3.51885e+00 3.65570e+00 3.74856e+00 3.84541e+00 4.22811e+00 3.27734e+00 -3.22480e-01 -2.12804e+00 6.50750e-01 -1.11242e+00 -1.40683e+00 -1.55944e+00 -1.84558e+00 -1.18946e-01 5.52395e-01 -4.36564e-01 -5.30052e+00 4.62594e-01 -3.29127e+00 1.10950e+00 -6.01857e-01 1.29492e-01 1.42290e+00 2.90741e+00 2.44058e+00 -9.19118e-01 8.42851e-01 -4.69824e+00 -2.57424e+00 8.96469e-01 8.34775e-01 2.18845e+00 2.46526e+00 8.60878e-02 -6.88080e-01 -1.33623e-02 9.30403e-02 1.64942e+00 -1.01231e+00 4.81041e+00 1.53747e+00 -1.12216e+00 -3.16008e+00 -1.67404e+00 -1.75767e+00 -1.29310e+00 5.59549e-01 8.08468e-01 -1.01592e-02 -7.54052e+00 1.01933e+01 -2.09484e+01 -1.07426e+00 9.87912e-01 6.05210e-01 -6.04535e-02 -5.87826e-01 -7.94117e-01 -4.89190e-01 -8.12710e-02 -2.07067e+01 -5.31793e+00 7.94240e+00 -4.64165e+00 -4.37436e+00 -1.55417e+00 7.54368e-01 1.09608e+00 1.45967e+00 1.62946e+00 -1.01301e+00 1.13514e-01 2.20336e-01 1.70056e+00 -5.20105e-01 -4.28330e-01 1.57258e-03 -3.36502e-01 -8.18568e-02 -7.16163e+00 8.23195e+00 -1.71561e-02 -1.13749e+01 3.75075e+00 7.25399e+00 -1.75325e+00 -2.68814e+00 -3.71128e+00 -4.62933e+00 -2.13747e+00 -1.89186e-01 1.29122e+00 -7.49380e-01 6.71712e-01 -8.41923e-01 4.64997e+00 5.65808e-01 -3.08277e-01 -1.01687e+00 1.73127e-01 -8.92130e-01 1.89044e+00 -2.75543e-01 -7.72828e-01 5.36745e-01 -3.65598e+00 7.56997e+00 -3.76373e+00 -1.74542e+00 -1.37540e-01 -5.55400e-01 -1.59195e-01 1.27910e-01 1.91906e+00 1.42119e+00 -4.35502e+00 -1.70059e+00 -3.65695e+00 1.22367e+00 -5.74367e-01 -3.29571e+00 2.46316e+00 5.22353e+00 2.42038e+00 1.22919e+00 -9.22250e-01 -2.32028e+00 0.00000e+00 1.00000e+00 sep-1.4.1/data/default.param000066400000000000000000000003111475511417100156640ustar00rootroot00000000000000NUMBER X_IMAGE Y_IMAGE XWIN_IMAGE YWIN_IMAGE X2_IMAGE Y2_IMAGE XY_IMAGE ERRX2_IMAGE ERRY2_IMAGE ERRXY_IMAGE A_IMAGE FLUX_APER(1) FLUXERR_APER(1) KRON_RADIUS FLUX_AUTO FLUXERR_AUTO FLUX_RADIUS(3) FLAGS sep-1.4.1/data/default.sex000066400000000000000000000074001475511417100153710ustar00rootroot00000000000000# Default configuration file for SExtractor 2.5.0 # EB 2006-07-14 # #-------------------------------- Catalog ------------------------------------ CATALOG_NAME test.cat # name of the output catalog CATALOG_TYPE ASCII_HEAD # NONE,ASCII,ASCII_HEAD, ASCII_SKYCAT, # ASCII_VOTABLE, FITS_1.0 or FITS_LDAC PARAMETERS_NAME default.param # name of the file containing catalog contents #------------------------------- Extraction ---------------------------------- DETECT_TYPE CCD # CCD (linear) or PHOTO (with gamma correction) DETECT_MINAREA 5 # minimum number of pixels above threshold DETECT_THRESH 1.5 # or , in mag.arcsec-2 ANALYSIS_THRESH 1.5 # or , in mag.arcsec-2 FILTER Y # apply filter for detection (Y or N)? FILTER_NAME default.conv # name of the file containing the filter DEBLEND_NTHRESH 32 # Number of deblending sub-thresholds DEBLEND_MINCONT 1.0 # Minimum contrast parameter for deblending CLEAN Y # Clean spurious detections? (Y or N)? CLEAN_PARAM 1.0 # Cleaning efficiency MASK_TYPE NONE # type of detection MASKing: can be one of # NONE, BLANK or CORRECT #------------------------------ Photometry ----------------------------------- PHOT_APERTURES 10.0 # MAG_APER aperture diameter(s) in pixels PHOT_AUTOPARAMS 2.5, 0.0 # MAG_AUTO parameters: , PHOT_PETROPARAMS 2.0, 3.5 # MAG_PETRO parameters: , # PHOT_AUTOAPERS 0.0,0.0 # , minimum apertures # for MAG_AUTO and MAG_PETRO PHOT_FLUXFRAC 0.1,0.5,0.6 # flux fraction[s] used for FLUX_RADIUS SATUR_LEVEL 50000.0 # level (in ADUs) at which arises saturation MAG_ZEROPOINT 0.0 # magnitude zero-point MAG_GAMMA 4.0 # gamma of emulsion (for photographic scans) GAIN 0.0 # detector gain in e-/ADU PIXEL_SCALE 1.0 # size of pixel in arcsec (0=use FITS WCS info) #------------------------- Star/Galaxy Separation ---------------------------- SEEING_FWHM 1.2 # stellar FWHM in arcsec STARNNW_NAME default.nnw # Neural-Network_Weight table filename #------------------------------ Background ----------------------------------- BACK_SIZE 64 # Background mesh: or , BACK_FILTERSIZE 3 # Background filter: or , BACKPHOTO_TYPE GLOBAL # can be GLOBAL or LOCAL #------------------------------ Check Image ---------------------------------- CHECKIMAGE_TYPE BACKGROUND,BACKGROUND_RMS # can be NONE, BACKGROUND, BACKGROUND_RMS, # MINIBACKGROUND, MINIBACK_RMS, -BACKGROUND, # FILTERED, OBJECTS, -OBJECTS, SEGMENTATION, # or APERTURES CHECKIMAGE_NAME back.fits,rms.fits # Filename for the check-image #--------------------- Memory (change with caution!) ------------------------- MEMORY_OBJSTACK 3000 # number of objects in stack MEMORY_PIXSTACK 300000 # number of pixels in stack MEMORY_BUFSIZE 1024 # number of lines in buffer #----------------------------- Miscellaneous --------------------------------- VERBOSE_TYPE NORMAL # can be QUIET, NORMAL or FULL WRITE_XML N # Write XML file (Y/N)? XML_NAME sex.xml # Filename for XML output sep-1.4.1/data/image.cat000066400000000000000000000466601475511417100150120ustar00rootroot00000000000000# 1 NUMBER Running object number # 2 X_IMAGE Object position along x [pixel] # 3 Y_IMAGE Object position along y [pixel] # 4 XWIN_IMAGE Windowed position estimate along x [pixel] # 5 YWIN_IMAGE Windowed position estimate along y [pixel] # 6 X2_IMAGE Variance along x [pixel**2] # 7 Y2_IMAGE Variance along y [pixel**2] # 8 XY_IMAGE Covariance between x and y [pixel**2] # 9 ERRX2_IMAGE Variance of position along x [pixel**2] # 10 ERRY2_IMAGE Variance of position along y [pixel**2] # 11 ERRXY_IMAGE Covariance of position between x and y [pixel**2] # 12 A_IMAGE Profile RMS along major axis [pixel] # 13 FLUX_APER Flux vector within fixed circular aperture(s) [count] # 14 FLUXERR_APER RMS error vector for aperture flux(es) [count] # 15 KRON_RADIUS Kron apertures in units of A or B # 16 FLUX_AUTO Flux within a Kron-like elliptical aperture [count] # 17 FLUXERR_AUTO RMS error for AUTO flux [count] # 18 FLUX_RADIUS Fraction-of-light radii [pixel] # 21 FLAGS Extraction flags 1 165.1449 24.0084 165.0857 24.2189 2.4117662184e+00 5.1111829531e+00 -2.9781834691e+00 3.2237837858e-02 7.0561272861e-02 -4.0335820676e-02 2.652 4709.64 580.0665 6.79 7544.724 1077.636 1.397 3.507 4.704 0 2 81.4250 12.3010 81.4266 12.2372 1.7979278944e+00 1.5856033331e+00 -2.7684534399e-02 1.7951855662e-04 1.8787411640e-04 -2.2413198032e-05 1.342 78021.47 579.623 2.95 75826.24 448.7831 0.486 1.211 1.441 0 3 1.4540 10.0726 1.3311 10.2653 2.4788523667e-01 5.9632656000e-01 3.8536281706e-03 6.7016358905e-03 1.7861245422e-02 -8.8750891817e-05 0.772 3036.964 457.2961 6.27 2422.463 370.3076 0.473 1.365 1.703 24 4 56.9256 3.7007 56.0734 4.5638 3.1260762632e+00 3.0958685371e+00 -1.9024062184e+00 9.5447692222e-03 9.5072527517e-03 -5.3677773815e-03 2.239 8434.928 544.0812 0.83 1955.393 146.3769 0.394 0.966 1.070 24 5 72.1789 1.3798 72.2420 1.1556 1.3696335560e+00 2.3555181249e-01 9.7951755535e-02 3.1362187195e-02 4.5511964013e-03 2.2885012662e-03 1.174 2020.332 453.1542 3.13 2143.885 236.0257 0.421 1.122 1.278 24 6 22.7142 244.3529 22.8570 244.3272 9.1893776577e-01 8.3794196752e-01 -1.4270150242e-01 1.3915903687e-02 1.3795759035e-02 -2.2318076518e-03 1.013 3485.881 579.7709 3.93 2869.198 419.1597 0.525 1.447 1.659 0 7 212.9744 239.4159 212.8007 238.7787 6.7864568155e-01 3.6641493373e+00 2.8162026428e-01 5.7771711903e-03 3.1329635742e-02 2.2186015283e-03 1.921 6211.966 580.2142 4.68 5228.282 667.5814 0.784 2.226 2.537 0 8 33.5458 224.5266 33.1938 224.5793 8.9323061747e-01 6.5998523817e-01 -4.8052227732e-01 3.4045596124e-02 2.5799444980e-02 -1.9403836274e-02 1.127 2624.908 579.9187 2.77 1761.229 253.5323 0.574 1.341 1.537 0 9 115.3960 240.4926 115.3567 240.5046 1.5097465362e+00 1.4156012315e+00 1.2556133767e-01 2.6252888502e-03 2.3371204166e-03 2.6047653189e-04 1.264 12136.01 579.1793 4.00 12109.51 570.6823 0.558 1.366 1.626 0 10 234.6673 216.6405 234.9733 216.9610 9.0781870100e-01 8.6570331106e-01 1.7184768190e-01 1.6547326879e-02 1.6513473943e-02 2.6424896208e-03 1.030 2026.462 579.7709 0.00 0 0 0.000 0.000 0.000 0 11 1.4244 210.1944 1.5846 210.8649 2.4428935934e-01 1.4986581068e+00 1.1161394201e-01 6.4146691915e-03 4.4849969733e-02 3.2165567731e-03 1.228 2906.556 455.7943 7.78 4233.695 566.9153 0.813 3.127 4.125 24 12 126.3193 207.9244 126.4065 207.8384 4.4138060722e-01 5.4136281442e-01 -1.2506805858e-02 1.4050698022e-02 1.6518540620e-02 -7.2711627498e-05 0.737 2847.838 580.9523 7.53 2615.73 610.5865 0.608 1.515 1.836 0 13 176.8328 205.2646 176.9555 205.0126 1.2430840404e+00 9.6709083134e-01 -4.4283292007e-02 1.0837750829e-02 7.6174978439e-03 -5.4053560779e-04 1.118 4001.79 580.0665 0.37 452.7749 65.46175 0.183 0.409 0.446 0 14 81.5943 197.2497 81.7258 197.3103 8.8395022323e-01 4.9334948413e-01 4.5089791911e-03 1.3488115882e-02 7.1648024744e-03 5.9706989770e-05 0.940 4147.688 579.9187 5.89 3723.357 547.6923 0.563 1.565 1.884 0 15 22.8032 191.6743 22.8918 191.1192 1.3003014402e+00 4.2147360613e+00 -1.5908296933e-01 6.5243195907e-03 1.9617403228e-02 -1.3393181362e-04 2.055 8182.402 579.3272 4.08 8237.939 714.1033 0.931 2.595 2.981 0 16 233.0300 183.0266 233.0359 182.9746 3.2121599631e+00 2.9102986441e+00 3.0935602815e-03 1.5291224919e-05 1.5270049771e-05 -1.2967724297e-06 1.792 1004553 580.0665 2.75 998347.2 543.7661 0.612 1.640 1.843 4 17 124.8712 189.9921 124.8031 189.9999 1.9026738805e+00 1.9457039936e+00 5.3130651033e-02 3.4202131509e-03 3.4949183558e-03 -9.7341542004e-05 1.408 13212.11 579.9187 3.75 13295.8 610.5865 0.632 1.750 2.027 0 18 77.2926 186.9532 82.5216 184.5483 2.3459953858e+00 1.7389754354e+00 2.0690917437e-01 2.8257480493e-03 2.1636539737e-03 2.8359715067e-04 1.552 18407.47 580.2142 7.91 53166.81 1299.379 1.155 7.508 8.066 0 19 84.8175 183.2709 84.9144 183.3622 1.9151695812e+00 1.7684776165e+00 2.3078230029e-01 8.7816358526e-04 8.1155977924e-04 7.4556704219e-05 1.444 31243.29 580.2142 4.52 32367.72 711.0966 0.540 1.490 1.758 0 20 210.5223 182.8607 210.5312 182.9656 2.2205229812e+00 2.2175936767e+00 5.6598746252e-01 3.4695699422e-03 3.4456898369e-03 1.0645239773e-03 1.669 15746.95 580.5095 4.80 18501.22 814.9922 0.694 2.123 2.620 0 21 122.4357 172.8911 122.3732 173.0247 7.8032857673e-01 7.7996229380e-01 2.6155691729e-01 1.3987586464e-02 1.2636714697e-02 5.0756379778e-03 1.021 3432.119 579.7709 5.66 3285.699 566.9153 0.559 1.514 1.762 0 22 206.5580 168.1489 206.5395 168.2441 1.2755426427e+00 1.6647677698e+00 2.4685295277e-01 1.5532259891e-02 1.9608954908e-02 2.8701604426e-03 1.336 4988.586 580.0665 5.82 5378.024 812.3589 0.969 2.297 2.649 0 23 176.1984 165.8539 176.1821 165.9459 4.0880717061e-01 4.3695100873e-01 -1.2462935529e-01 1.8536748184e-02 1.8513884500e-02 -5.4149039160e-03 0.740 1656.963 579.623 5.38 1709.566 398.1883 0.280 1.172 1.438 0 24 218.9129 162.9750 218.9429 162.9600 1.5646901592e+00 1.9805201012e+00 -1.3006395294e-01 2.7129379089e-03 4.0902085942e-03 -3.3032119626e-04 1.421 13164.45 579.623 3.88 13212.33 592.7813 0.563 1.687 2.040 0 25 6.8210 161.4874 6.6741 161.4759 7.4051616485e-01 8.4505753283e-01 2.7952330817e-01 1.2745838912e-02 1.4204365347e-02 5.1717611973e-03 1.038 3896.863 579.4752 6.43 4353.308 648.0382 0.660 2.093 2.576 16 26 140.8053 156.7552 140.6863 156.6514 1.3160578293e+00 1.2799210328e+00 -1.9101699285e-01 1.3896838871e-02 1.3954113580e-02 -2.1478801009e-03 1.221 4630.906 580.0665 4.25 4457.219 563.1232 0.771 1.830 2.113 0 27 5.0226 153.3513 5.0850 153.3677 1.3812093478e+00 1.2819452292e+00 -2.2326673013e-03 8.9035663925e-04 8.4140382481e-04 -2.1665867313e-05 1.175 21015.76 575.319 3.49 21071.05 481.0436 0.454 1.223 1.425 16 28 103.2910 152.5820 103.2535 152.6135 6.4848157511e-01 7.6408434055e-01 5.0379488014e-02 8.6562006108e-03 1.0807836265e-02 7.9379326869e-04 0.885 3362.644 579.4752 5.89 3279.901 578.1425 0.523 1.223 1.440 0 29 76.6010 151.1864 76.6541 151.2111 1.3999388931e+00 1.1112912740e+00 1.5930004630e-03 2.3345822065e-03 1.6702193987e-03 1.8207497770e-05 1.183 11755.46 578.7352 3.15 11876.7 419.1597 0.458 1.236 1.459 0 30 129.5452 146.2858 129.5487 146.1160 3.1133800305e+00 5.3239438571e+00 1.8301126982e-01 7.4243575058e-04 1.2735389866e-03 3.7016321270e-05 2.311 51816.11 580.5095 3.45 56351.17 812.3589 0.918 2.491 2.892 0 31 89.0675 143.7518 84.4797 142.1559 5.5994070433e+00 1.0052363481e+01 6.5643207439e+00 2.6912706507e-02 4.7340619417e-02 3.1284416162e-02 3.842 6566.429 580.0665 7.00 17896.88 1547.724 1.952 6.832 8.261 0 32 34.7971 148.4138 34.8603 148.5050 8.3906106653e-01 1.1307593979e+00 -4.5818928705e-02 7.0951137946e-03 1.0140561266e-02 -2.7906536578e-04 1.067 4014.413 578.7352 3.24 4044.449 370.3076 0.575 1.436 1.621 0 33 17.9253 148.7255 17.4456 148.1665 9.3806024958e-01 5.5751045660e-01 2.5907018727e-01 2.9432261709e-02 1.8451949905e-02 9.1285654894e-03 1.034 3489.805 580.8047 6.90 3874.485 654.6175 0.843 2.618 3.120 0 34 81.0779 139.0028 81.0958 139.0168 1.2678291601e+00 1.0082149482e+00 -3.3797846878e-03 9.5137392418e-03 7.7776704753e-03 -4.2823041258e-07 1.126 6200.853 579.3272 5.60 6685.173 689.6823 0.611 1.876 2.493 0 35 218.5678 130.0323 218.9711 130.0449 1.1689442136e+01 9.5585724021e+00 -3.6777932942e+00 3.5098971765e-03 2.3493017249e-03 -9.5219415775e-04 3.802 57362.85 580.3619 3.77 89893.6 1379.365 1.225 3.921 4.660 0 36 89.4507 126.8091 89.4414 126.8328 1.6596069607e+00 2.4932080519e+00 1.0754182190e-01 2.6304785127e-03 4.2651740438e-03 5.7314782745e-05 1.583 13217.83 580.0665 3.88 12943.47 644.7234 0.714 1.809 2.068 0 37 104.4412 122.8610 104.3818 122.7879 3.4087896329e+00 3.9765890605e+00 6.4469355515e-01 3.6978043271e-03 4.1752324219e-03 7.6977483418e-04 2.097 21058.86 579.9187 3.58 23111.04 788.2638 0.957 2.600 3.018 0 38 30.3909 124.9055 30.3670 124.9288 8.9279646237e-01 1.1431711101e+00 1.1754521397e-01 4.4565946732e-03 6.8290280311e-03 6.9222772832e-04 1.091 6198.514 579.3272 4.54 5781.133 519.5865 0.495 1.411 1.660 0 39 204.1013 110.0606 203.8184 110.3018 1.8920460791e+00 2.1392097162e+00 -1.2630947095e+00 1.2481055481e-02 1.4558216099e-02 -8.8432249947e-03 1.812 6019.898 580.6572 4.70 6333.816 677.1415 0.709 2.029 2.313 0 40 173.0723 106.6498 173.1069 106.6595 1.9147865609e+00 9.6876633356e-01 1.2532614375e-01 9.5476547091e-03 4.2704604504e-03 5.3201158259e-04 1.390 6677.315 580.0665 6.44 9942.471 861.0148 0.765 2.402 3.055 0 41 179.6409 104.8785 180.1434 105.1714 1.5979411321e+00 1.3388743338e+00 1.0337985111e+00 2.1498056547e-02 1.7153731768e-02 1.3426474409e-02 1.584 4101.509 579.9187 4.62 3156.618 551.5905 0.627 1.582 1.793 0 42 220.0769 98.6018 220.1460 98.6770 1.8652596082e+00 1.8098822241e+00 5.6603409876e-01 3.2996009007e-03 3.0056113916e-03 8.3250914666e-04 1.551 12269.54 579.3272 3.16 11999.49 485.4773 0.667 1.684 1.940 0 43 155.6567 92.2263 155.7182 92.1221 2.2240728437e+00 3.7869086181e+00 3.1132739644e-03 4.3877993545e-03 7.8076305794e-03 2.9309692871e-05 1.946 14439.71 580.0665 4.83 17693.61 955.3828 0.860 2.703 3.277 0 44 240.5087 86.1174 240.5720 86.1796 9.3597469159e-01 2.9418100962e+00 6.9620376421e-01 7.5811265204e-03 2.4480372552e-02 5.7744491982e-03 1.778 5774.488 581.0998 3.60 5538.605 502.8212 0.834 2.088 2.610 0 45 230.7654 85.3477 230.8361 85.4820 1.2973130755e+00 1.4837870179e+00 3.1494803758e-01 4.9420304813e-03 5.8454580762e-03 1.2056974130e-03 1.311 6945.923 580.2142 2.24 6240.462 307.0428 0.568 1.387 1.601 0 46 58.7937 73.5430 58.7834 73.5915 5.2046036398e-01 8.4353408526e-01 3.3024782946e-02 9.9674683407e-03 1.8720557385e-02 -4.8393331367e-06 0.920 3150.871 579.7709 5.36 2948.146 511.2726 0.572 1.444 1.715 0 47 115.0668 70.0057 115.1836 70.0246 5.9532796353e-01 5.8441327141e-01 1.3453996846e-02 1.4550274566e-02 1.4454348241e-02 8.1937525713e-06 0.777 2428.331 580.0665 5.22 2336.701 443.9832 0.481 1.300 1.467 0 48 8.3200 65.4199 8.4308 65.7110 2.2437375977e+00 3.6969794533e+00 7.8300118255e-01 5.2299650471e-05 1.1450962335e-04 3.0429991994e-05 2.010 301448.1 580.0665 2.65 298204.8 515.4463 0.491 1.208 1.445 20 49 74.1752 56.2435 73.6002 55.3558 8.5110337438e+00 9.5334769484e+00 2.7423242592e+00 5.0203406879e-03 5.4446192228e-03 1.4907741748e-03 3.437 32668.39 580.3619 5.29 64335.7 1799.9 1.380 4.895 6.402 0 50 227.4326 57.9254 227.3583 57.9677 9.0008416930e-01 1.0143656234e+00 -5.3189302773e-02 1.0697704302e-02 1.3437765262e-02 -7.4485789904e-04 1.017 4253.892 580.0665 4.16 4020.984 481.0436 0.550 1.628 1.923 0 51 191.2009 47.3116 190.8888 47.3830 3.0209678137e+00 1.4309441931e+00 -2.9294030865e-01 7.2424954139e-03 3.4033807431e-03 -8.0600837980e-04 1.753 10755.48 579.3272 3.87 10882.35 641.3915 0.770 1.991 2.264 0 52 234.8221 50.8470 234.7247 50.8443 1.6659612006e+00 1.0743709875e+00 1.8609858413e-01 8.4618800261e-03 6.2223410079e-03 9.8597771034e-04 1.311 5852.675 580.2142 3.28 5875.994 443.9832 0.627 1.562 1.802 0 53 126.1240 38.8197 126.1587 38.6569 5.4712658088e-01 5.4213374189e-01 8.5731024322e-02 1.3412217559e-02 1.3479582919e-02 3.0963329606e-03 0.794 2509.426 580.0665 5.50 2514.805 458.2322 0.533 1.355 1.547 0 54 223.3892 36.8137 223.5089 36.9238 1.5861108700e+00 9.8442197937e-01 2.5359666066e-01 1.4149273726e-02 9.2991810579e-03 2.2220180956e-03 1.296 4748.268 579.3272 4.88 5010.603 627.887 0.664 1.834 2.115 0 55 149.1998 33.5166 149.2026 33.4995 1.9481386131e+00 1.7962936078e+00 2.8849770240e-02 3.5930564413e-05 3.7216509195e-05 1.4501803237e-06 1.398 281187.6 579.0312 2.71 273153.8 424.2406 0.466 1.234 1.425 0 56 100.0399 37.3241 100.2593 37.3501 5.4951163878e-01 4.4588565844e-01 -1.8847383992e-03 2.0621974653e-02 1.7679803099e-02 5.5066410308e-05 0.741 2605.135 579.7709 6.57 2597.229 527.7695 0.659 1.710 2.050 0 57 117.8179 29.7630 117.9331 29.8244 1.3617932597e+00 9.0294029598e-01 -1.7778972637e-01 2.5443232658e-02 1.6973480948e-02 -3.1706869485e-03 1.193 3156.844 580.0665 2.43 2867.688 292.7538 0.799 1.718 1.891 0 58 85.0164 27.2919 85.0074 27.2640 1.9957447545e+00 1.5333607547e+00 5.7839605402e-02 1.2254294395e-03 1.0209460746e-03 -7.0090464224e-07 1.415 22270.05 579.4752 1.76 18535.74 269.9057 0.488 1.299 1.474 0 59 151.0540 251.3526 150.9982 251.2326 9.0666213960e-01 8.7927920623e-01 5.9000850986e-02 5.2379761124e-03 4.2078632690e-03 3.1762976908e-04 0.976 4793.116 580.3619 2.98 4838.666 327.3087 0.451 1.187 1.353 16 60 228.4717 24.0091 228.2915 24.0102 2.4920137816e-01 5.4089113948e-01 -9.7059953604e-03 3.9695029745e-03 1.0552934094e-02 -4.0534935192e-06 0.736 2267.056 579.9187 5.66 2263.151 408.8085 0.302 0.826 0.927 0 61 9.6445 20.6511 9.5523 20.6481 3.0098865868e+00 1.4137211767e+00 -3.2064125301e-01 1.1256640678e-02 5.6512013744e-03 -1.1821178083e-03 1.753 9886.979 580.3619 5.63 11633.62 932.6863 0.862 2.711 3.272 16 62 90.0475 18.1971 90.0148 18.0331 5.0545950632e-01 6.5261515390e-01 1.3823695511e-02 2.2165746126e-03 3.5332784776e-03 -5.1504438684e-07 0.809 3311.871 580.0665 1.23 2885.72 92.57689 0.219 0.508 0.570 0 63 40.2200 251.1488 40.1873 251.2558 8.8297161564e-01 1.1502325823e+00 -3.6108091866e-01 1.2452153535e-02 1.5870275511e-02 -5.3062994095e-03 1.184 3688.502 579.9187 4.30 4119.301 494.2253 0.670 1.762 2.073 16 64 115.0092 248.9607 115.0083 248.8869 1.1583158277e+00 1.1896244112e+00 3.8801686038e-01 1.1675533368e-02 1.1687597406e-02 3.8886318952e-03 1.250 3975.841 580.0665 3.32 4212.904 398.1883 0.608 1.616 1.834 16 65 221.2122 247.6578 221.1886 247.7202 8.9993287005e-01 1.0942720990e+00 2.3378786982e-01 1.0889861551e-02 1.2555911505e-02 2.4890708172e-03 1.118 4177.043 579.7709 5.33 4270.58 603.5275 0.682 1.758 2.058 0 sep-1.4.1/data/image.fits000066400000000000000000004730001475511417100152000ustar00rootroot00000000000000SIMPLE = T / file does conform to FITS standard BITPIX = 16 / number of bits per data pixel NAXIS = 2 / number of data axes NAXIS1 = 256 / length of data axis 1 NAXIS2 = 256 / length of data axis 2 EXTEND = T / FITS dataset may contain extensions COMMENT FITS (Flexible Image Transport System) format is defined in 'AstronomyCOMMENT and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H CRPIX1 = -7.670000000000000E+02 / Reference pixel CRVAL1 = 1.000000000000E+00 / Coordinate at reference pixel CDELT1 = 1.000000000000E+00 / Coordinate increment per pixel CTYPE1 = ' ' / Units of coordinate CRPIX2 = -5.110000000000000E+02 / Reference pixel CRVAL2 = 1.000000000000E+00 / Coordinate at reference pixel CDELT2 = 1.000000000000E+00 / Coordinate increment per pixel CTYPE2 = ' ' / Units of coordinate BUNIT = ' ' / Units of data values BSCALE = 2.92273835509 / Scaling factor: r = f*i + z BZERO = 3713.66692596 / Zero offset: r = f*i + z DATAMAX = 9.852823437500E+04 / Maximum data value DATAMIN = 3.713666992188E+03 / Minimum data value ORIGIN = 'ESO-MIDAS' / Written by MIDAS DATE = '31/08/93' / Date of writting: DD/MM/YY FILENAME= 'NA36Rm50.bdf' / Original file name MIDASFTP= 'IMAGE ' / MIDAS File Type OBJECT = 'NA36Rc50 sum of 3 frames' / MIDAS desc.: IDENT(1) DATE-OBS= '26/10/92' / MIDAS desc.: O_TIME(1) MJD-OBS = 4.892162787000E+04 / MIDAS desc.: O_TIME(4) TM-START= 1.104800000000E+04 / MIDAS desc.: O_TIME(5) EXPTIME = 1.200000000000E+03 / MIDAS desc.: O_TIME(7) INSTRUME= 'EMMI ' / MIDAS desc.: INSTRUME(1) COMMENT IP_JIDNT 7 / IHAP: identifier system \COMMENT COMMENT IP_JSEQ 24887 / IHAP: sequence number \COMMENT COMMENT IP_AHGC 2857.489 / IHAP: high cut \COMMENT COMMENT IP_ALWC 2112.953 / IHAP: low cut \COMMENT COMMENT IP_ASCX 1. / IHAP: scaling in x \COMMENT COMMENT IP_ASCY 1. / IHAP: scaling in y \COMMENT COMMENT IP_FILE 'IHAP/FITS/EM9210260304099.FITS::USER ' / IHAP: Begin of keywor\COMMENT d COMMENT IP_FEND / IHAP: End of keyword file \COMMENT COMMENT EXPTIME 400.000 \COMMENT COMMENT IP_CBEND / IHAP: comment block end \COMMENT TELESCOP= 'ESONTTB ' / MIDAS desc.: TELESCOP(1) OBSERVER= 'LAPPARENT' / MIDAS desc.: OBSERVER(1) RA = 5.648170000000E+00 / MIDAS desc.: RA(1) DEC = -3.018297000000E+01 / MIDAS desc.: DEC(1) AIRMASS = 1.068349957466E+00 / MIDAS desc.: AIRMASS(1) ESO-LOG 00:00:00> DATE = '1992-10-26' / Mon Oct 26, 1992 ESO-LOG 03:04:08>-START EXPO EMMI RED / Start exp. on EMMI Red CC ESO-LOG 03:04:09> EXPO EMMI RED NO = 24887 / Exp. num. on EMMI Red CCD ESO-LOG 03:10:52>-STOP EXPO EMMI RED / Stop exp. on EMMI Red CCD HISTORY COMPUTE/IMAG imAR0051.bdf = #0001-bias50 \HISTORY COMPUTE/IMAG imAR0051.bdf = #0001 - 1.51001E-01 \HISTORY COMPUTE/IMAG NA36Rc501 = #0001 * 1.00000E+03 / fRc50 \HISTORY COMPUTE/IMAG NA36Rc50 = NA36Rc501 \HISTORY COMPUTE/IMAG NA36Rc50 = NA36Rc50 + NA36Rc503 \HISTORY COMPUTE/IMAG NA36Rc50 = NA36Rc50 + NA36Rc502 \HISTORY EXTRACT/IMAG intex = NA36Rc50[@0019,@0003:@1042,@1026] \HISTORY Renamed from intex.bdf to NA36Rc50.bdf \HISTORY SELE/TABL cursor MA36Rc50 2 0. 3 Y MA36Rc50 \HISTORY READ/TABL cursor interclean 0 6.85000E+03 3 Y \HISTORY interclean Renamed from interclean.bdf to MA36Rm\HISTORY 50.bdf READ/TABL cursor MA36Rm50 0 \HISTORY 6850 3 Y MA36Rm50 READ/TABL cursor MA\HISTORY 36Rm50 0 6850 3 Y MA36Rm50 READ/TABL \HISTORY cursor MA36Rm50 0 6850 3 Y MA36Rm50 RA = 5.648169994354E+00 / MIDAS desc.: O_POS(1) DEC = -3.018300056458E+01 / MIDAS desc.: O_POS(2) AIRMASS = 1.068349957466E+00 / MIDAS desc.: O_AIRM(1) HIERARCH ESO GEN ID = 'ARC-0001/1.2' HIERARCH ESO GEN PROJ ID = '000.00.000' HIERARCH ESO GEN EXPO NO = 24887 HIERARCH ESO GEN EXPO TYPE = 'SCI ' HIERARCH ESO GEN EXPO LST = 2.420000000000E+03 HIERARCH ESO TEL ID = 'ESONTTB ' HIERARCH ESO TEL LON = 7.073450000000E+01 HIERARCH ESO TEL LAT = -2.925840000000E+01 HIERARCH ESO TEL ALTITUDE = 2440 HIERARCH ESO TEL FOCU LEN = 3.848200000000E+01 HIERARCH ESO TEL FOCU SCALE = 1.489000000000E+00 HIERARCH ESO TEL TRAK RATEA = 4.200000000000E-03 HIERARCH ESO TEL TRAK RATED = 0.000000000000E+00 HIERARCH ESO ADA ID = 'ADAPTB ' HIERARCH ESO ADA MODE = 'STD ' HIERARCH ESO ADA ROT = 0.000000000000E+00 HIERARCH ESO ADA GUID-1 X = 1.294000000000E-02 HIERARCH ESO ADA GUID-1 Y = 1.717000000000E-01 HIERARCH ESO ADA GUID-2 X = 5.070000000000E-04 HIERARCH ESO ADA GUID-2 Y = 1.110000000000E-03 HIERARCH ESO INS ID = 'EMMI #1 ' HIERARCH ESO INS COMP ID = 'HP RTE-A V5' HIERARCH ESO INS MODE = 'RILD ' HIERARCH ESO INS OPTI-2 NO = 1 HIERARCH ESO INS OPTI-2 TYPE = 'MIRROR ' HIERARCH ESO INS OPTI-2 ID = 'RILD MIR' HIERARCH ESO INS OPTI-2 NAME = 'RILD ' HIERARCH ESO INS OPTI-3 NO = 1 HIERARCH ESO INS OPTI-3 TYPE = 'FREE ' HIERARCH ESO INS MIRR-3 NAME = 'UPPER RED' HIERARCH ESO INS MIRR-3 ST = 0 HIERARCH ESO INS OPTI-7 NO = 3 HIERARCH ESO INS OPTI-7 TYPE = 'FILTER ' HIERARCH ESO INS OPTI-7 ID = '#608 ' HIERARCH ESO INS OPTI-7 NAME = 'R ' HIERARCH ESO INS OPTI-9 NO = 9 HIERARCH ESO INS OPTI-9 TYPE = 'FREE ' HIERARCH ESO DET NAME = 'THX31156' HIERARCH ESO DET ID = 'ccd$18 ' HIERARCH ESO DET TYPE = 'CCD Four_Phase' HIERARCH ESO DET PIXSIZE = 1.900000000000E-05 HIERARCH ESO DET BITS = 16 HIERARCH ESO DET FRAM NAXIS1 = 1060 HIERARCH ESO DET FRAM CRVAL1 = 1 HIERARCH ESO DET FRAM CRPIX1 = 1 HIERARCH ESO DET FRAM CDELT1 = 1 HIERARCH ESO DET FRAM NAXIS2 = 1040 HIERARCH ESO DET FRAM CRVAL2 = 1 HIERARCH ESO DET FRAM CRPIX2 = 1 HIERARCH ESO DET FRAM CDELT2 = 1 HIERARCH ESO DET DKTIME = 4.000000000000E+02 HIERARCH ESO DET TEMP_VAR = 1.000000000000E-01 HIERARCH ESO DET TEMPMEAN = 1.376000000000E+02 HIERARCH ESO DET COMP ID = 'ccdr-V1.0' HIERARCH ESO DET PARM1 = 'CLOCK=tho1k' HIERARCH ESO DET PARM2 = 'HLO1 : 2.02 VLO1 : 1.01 VDD1 : 23.03' HIERARCH ESO DET PARM3 = 'HHI1 : 15.00 VHI1 : 12.01 VDR1 : 13.98' HIERARCH ESO DET PARM4 = 'HLO2 : 2.02 RLO1 : 1.01 VGS1 : 4.99' HIERARCH ESO DET PARM5 = 'HHI2 : 15.03 RHI1 : 10.07 ICCD1 : 0.00' HIERARCH ESO DET PARM6 = 'TL 1, 5 telem. data' HIERARCH ESO DET DATE = 1.989794555664E+03 HIERARCH ESO DET MODE = 'SLOW ' HIERARCH ESO DET GAIN = 1 HIERARCH ESO DET AD_VALUE = 2.100000000000E+00 HIERARCH ESO DET DIT = 4.000000000000E+02 HIERARCH ESO DET SHUT TMOPEN = 5.000000000000E-01 HIERARCH ESO DET SHUT TMCLOS = 5.000000000000E-01 HISTORY ESO-DESCRIPTORS START ................ HISTORY 'WIND_RAW' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 1.9000000E+01 3.0000000E+00 1.0420000E+03 1.0260000E+03 HISTORY HISTORY 'STAT_RAW' ,'R*4 ' , 1, 13,'5E14.7',' ',' ' HISTORY 6.5800000E+02 3.2767000E+04 2.3813201E+03 5.6562799E+02 2.4699001E+10 HISTORY 3.8941301E+14 2.4969999E+09 2.3490701E+03 2.3460000E+03 2.0070000E+03 HISTORY 1.6000000E+01 6.5800000E+02 3.2767000E+04 HISTORY HISTORY 'WIND_OVER' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 1.0000000E+01 1.0290000E+03 1.0550000E+03 1.0390000E+03 HISTORY HISTORY 'STAT_OVER' ,'R*4 ' , 1, 13,'5E14.7',' ',' ' HISTORY 2.1200000E+02 2.4400000E+02 2.2111700E+02 2.5815699E+00 1.0815500E+07 HISTORY 2.3924700E+09 2.5441800E+06 2.2058000E+02 2.2050000E+02 3.3000000E+01 HISTORY 1.0000000E+00 2.1200000E+02 2.4400000E+02 HISTORY HISTORY 'BIAS_FRAME' ,'C*1 ' , 1, 7,'7A1',' ',' ' HISTORY bias50 HISTORY HISTORY 'BIAS_OVER_DIFF' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 1.5100101E-01 HISTORY HISTORY 'FLAT_WIND' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 4.5000000E+02 3.8000000E+02 7.4000000E+02 6.2000000E+02 HISTORY HISTORY 'FLAT_BKG' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 2.1311699E+03 HISTORY HISTORY 'SKIM_FRAC' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 3.5154400E-04 HISTORY HISTORY 'AV_WIND_NAME' ,'C*1 ' , 1, 5,'5A1',' ',' ' HISTORY fRc50 HISTORY HISTORY 'FLAT_FRAME' ,'C*1 ' , 1, 5,'5A1',' ',' ' HISTORY fRc50 HISTORY HISTORY 'WIND_FIN' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 1.9000000E+01 3.0000000E+00 1.0420000E+03 1.0260000E+03 HISTORY HISTORY 'STAT_FIN' ,'R*4 ' , 1, 13,'5E14.7',' ',' ' HISTORY 6.0423798E+02 3.2842602E+04 2.1606499E+03 5.5936798E+02 2.0734501E+10 HISTORY 3.5516501E+14 2.2656100E+09 2.1273799E+03 2.1162400E+03 2.0150000E+03 HISTORY 1.6000000E+01 6.0423798E+02 3.2842602E+04 HISTORY HISTORY 'WIND_SUM' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 1.0000000E+00 1.0000000E+00 1.0240000E+03 1.0240000E+03 HISTORY HISTORY 'STAT_SUM' ,'R*4 ' , 1, 13,'5E14.7',' ',' ' HISTORY 3.7136699E+03 9.8528203E+04 6.9033799E+03 1.6677500E+03 6.1352398E+11 HISTORY 2.8897399E+16 7.2387098E+09 6.8047002E+03 6.7938701E+03 2.0480000E+03 HISTORY 4.6318802E+01 3.7136699E+03 9.8528203E+04 HISTORY HISTORY 'LHCUTS' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 5.5000000E+03 9.0000000E+03 3.7136670E+03 9.8528234E+04 HISTORY HISTORY 'DISPLAY_DATA' ,'I*4 ' , 1, 9,'7I10',' ',' ' HISTORY 2 2 513 513 0 -1 -1 HISTORY -1 -1 HISTORY HISTORY 'BOX_MIN' ,'R*4 ' , 1, 6,'5E14.7',' ',' ' HISTORY 3.2100000E+02 2.1500000E+02 6.9644336E+03 6.3300000E+02 4.2300000E+02 HISTORY 6.8900532E+03 HISTORY HISTORY 'IJBORDER' ,'I*4 ' , 1, 4,'7I10',' ',' ' HISTORY 1 1 1024 1024 HISTORY HISTORY 'LHCUT' ,'R*4 ' , 1, 2,'5E14.7',' ',' ' HISTORY 3.6236699E+03 8.0148297E+04 HISTORY HISTORY 'ZEROMAGN' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 2.4671000E+01 HISTORY HISTORY 'SEEING' ,'R*4 ' , 1, 2,'5E14.7',' ',' ' HISTORY 1.8308023E+00 9.6358800E-01 HISTORY HISTORY 'PAIRSPRT' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 3.1899800E+00 HISTORY HISTORY 'MULTDTCT' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 4.1900001E+00 HISTORY HISTORY 'PRFLCTRL' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY -5 HISTORY HISTORY 'OUPROFIL' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY 5 HISTORY HISTORY 'STMETRIC' ,'R*4 ' , 1, 2,'5E14.7',' ',' ' HISTORY 9.3000001E-01 5.5799999E+00 HISTORY HISTORY 'BRGHTLMT' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 1.8387699E+01 HISTORY HISTORY 'NBSTARS' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY 17 HISTORY HISTORY 'PSFTAB' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY 1 HISTORY HISTORY 'THRESHOLD' ,'R*4 ' , 1, 5,'5E14.7',' ',' ' HISTORY 6.8047002E+03 1.1384800E+02 1.6730800E+00 2.0000000E+00 2.5446301E+01 HISTORY HISTORY 'N_SEARCH_ANA' ,'I*4 ' , 1, 2,'7I10',' ',' ' HISTORY 822 806 HISTORY HISTORY 'N_STAR_GAL_DEF' ,'I*4 ' , 1, 3,'7I10',' ',' ' HISTORY 46 744 16 HISTORY HISTORY 'HIST_BINS' ,'R*4 ' , 1, 5,'5E14.7',' ',' ' HISTORY 2.5600000E+02 2.8824686E+02 3.7136670E+03 7.7216609E+04 0.0000000E+00 HISTORY HISTORY 'HISTOGRAM' ,'I*4 ' , 1, 256,'7I10',' ',' ' HISTORY 1 0 0 0 0 0 0 HISTORY 0 0 0 10 64 23 12 HISTORY 3 3 4 4 3 1 2 HISTORY 0 0 1 1 0 1 0 HISTORY 0 0 0 3 0 1 0 HISTORY 0 1 0 1 0 1 0 HISTORY 0 0 1 1 0 1 0 HISTORY 1 0 0 0 0 0 0 HISTORY 0 0 1 1 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 1 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 1 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 1 0 1 0 0 1 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 1 0 0 0 0 0 HISTORY 1 0 0 0 0 0 0 HISTORY 0 0 0 0 0 1 0 HISTORY 0 0 0 0 0 1 0 HISTORY 0 0 0 0 1 0 0 HISTORY 0 1 0 0 0 0 0 HISTORY 0 0 0 0 1 0 0 HISTORY 0 1 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 1 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 1 0 0 0 0 HISTORY 0 0 1 0 HISTORY HISTORY 'STATISTIC' ,'R*4 ' , 1, 11,'5E14.7',' ',' ' HISTORY 3.7136670E+03 9.8528234E+04 6.9033760E+03 1.6677493E+03 6.1352378E+11 HISTORY 2.8897433E+16 7.2387144E+09 6.5048496E+03 3.8995779E+03 2.5600000E+02 HISTORY 3.7182184E+02 HISTORY HISTORY 'WINDOW_FROM' ,'I*4 ' , 1, 2,'7I10',' ',' ' HISTORY 1 1 HISTORY HISTORY 'WINDOW_TO' ,'I*4 ' , 1, 2,'7I10',' ',' ' HISTORY 1024 1024 HISTORY HISTORY 'NBMODIF' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY 1 HISTORY HISTORY 'STARS' ,'R*4 ' , 1, 51,'5E14.7',' ',' ' HISTORY 2.6300000E+02 8.8700000E+02 4.6759199E+04 7.5000000E+01 5.6300000E+02 HISTORY 1.5854400E+04 1.3000000E+01 3.1300000E+02 4.9727699E+04 3.3900000E+02 HISTORY 4.3300000E+02 9.6787102E+04 7.0100000E+02 1.6300000E+02 1.2378200E+04 HISTORY 8.5500000E+02 2.5500000E+02 3.5242898E+04 7.6100000E+02 3.3300000E+02 HISTORY 1.4904300E+04 1.0110000E+03 3.5700000E+02 2.5686801E+04 9.0700000E+02 HISTORY 4.0100000E+02 1.6969100E+04 8.4900000E+02 5.2500000E+02 1.4543700E+04 HISTORY 9.1700000E+02 5.4500000E+02 4.4644398E+04 7.7700000E+02 5.7700000E+02 HISTORY 3.6737199E+04 1.0010000E+03 6.9500000E+02 9.8214500E+04 8.2500000E+02 HISTORY 8.0100000E+02 2.0127900E+04 6.3100000E+02 6.3500000E+02 1.6520199E+04 HISTORY 5.8500000E+02 6.7500000E+02 1.5727300E+04 6.5900000E+02 6.6500000E+02 HISTORY 2.1833900E+04 HISTORY HISTORY 'DPROFILE' ,'R*4 ' , 1, 25,'5E14.7',' ',' ' HISTORY 3.2567519E-01 6.4562768E-01 6.5725815E-01 5.2960014E-01 4.1916752E-01 HISTORY 3.0000001E-01 2.8000000E-01 2.5999999E-01 2.3999999E-01 2.0000000E-01 HISTORY 1.8000001E-01 1.6000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 HISTORY 1.4000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 HISTORY 1.4000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 HISTORY HISTORY ESO-DESCRIPTORS END ................ END h;X4+-AOD(W/BKS/T6<%)93$m '(@+6* 9E:aMgh4H -8@y®Þûv9 HC1PK~ÌÍÖh0& )Q=HUc/5&:;7%6&<W?1M?2 =3Kþ/5.8#49862 8/)/2,N4/&;(;S2@7$Z')BNF!'14î2\,I5R6M6uyM:<8@O2.,3-4.o# /B:=G*N*G$XA42S%AS1%3R&( \K@>'G&KK<Q5D:a3D[3(-<,5,LZF(O5:))2B&4%53$$ (4$9"T*58&H+:"QaO~`‡y_E1*785&NeNT$@L;77TH8(&" 3.4?;3;'+5/KF+.ED "&- ñ)÷B*>,>]"'+ 95""<0 &2* 8>;OB4+'=Q/25a4B/=$*3#+*&J0*F>1? @fKR?25E5"*MMO$_2UK':&@M.3G65KWGJ3@6KX=).+]û'#:*:P<Q.MG(. I36#N541:#/d-@-$@5#OK.5 %> #D) J0@ '5(&D0"<l£HM:&$W2J`U@%I,O+/@1N%e756^%42$(,4 :<=%4VN,KEA)&E0= 040LFC4&4ý?R74+L$. ;9ø! 5%35A1J.Q-'6-5ARO*4e 9M28JXK5JB5ý8"P,'Oï.F)8U=938#9ý%w5;d8R5=*9?,C -Ió9 9?52S(0,4D+07,c <ö./o#GL8"11:>H! ,;5/6(þa>÷ 4Z%ú&2!4)325 'Z…¦îÄR;P+?&?4!8-7%.'ó::SIBO= $ø<J?>8P!óL6+- : ;*?).@?A1)IS/?"?IJ S.. E,",90-9,(4&6%0/J0+T5J,5CB%VC,2J3&(1  )J-=AS/2B4&H1FS;,e*(0:(m=`KMY",6X^RA5; 9-@.*@>#*[JH3(+Q,[(?$'<$U7E#OM+N(O8_f.Tþ8",C1>4  /: c0/9##F$9;),Q"4SŽ•!¡z9F=5-/<$B,S.P^922#,6(I8=VOR44H-6M`<35"W'=)?>'*4Y.(9 )Q6)B#4?<4'$ 2(?!54&3P!"HE:7GB 8bú>9R(LbK #+C%- 8/FH#E6EF@:76&JLc,%P5BB+$q6 %6MK-QE7?BO:X<XSI *'B3F(KX/,23H+B3R#$RF8[1S9##+3*,!G4JJ-(Z>ö-V4:L5?%#A:8Se›WL$79?84%,^9Y B4&/H11470ON4C(APCL-9 !DS)/;$/+@8ôC54P<%-AT8 &'Y4-$,,<S7, $2@"E$2$[J/ .#%2?))"L&M240CXK*-22D)6X@7<9()M+&G3'Fì-&O&<KE/E9 ?)-V0K=3,X9<b./</"RD2@*-.=KîN3(2'/I$8&O6/9c=>**: >-$DAA-% ;!(&'/<+3H(9/(8)*O@(`x<5&e* ,"Hu@3F^<::=4C;<l2,@KR+5-84yG3>]#=HB;$+2)6W-<6>2O3$?,4+(=@)G=ô8U4ú7GLF/ûCD0YJ)(M5-(1 <<W054ð"3K";D "E*+GT+JVN4:)6<'"B!7I*úPM=6;3%AD*c0W+9=9U8.S4:COW/û>4&I']B#9:@K 5I<?=Q%B#7YqD0HC];I4"0sZ60);GB\8@0TH1?N/'(V%%RDDü8<& ;4#'812BV#*C/9N8`2<E!/H8(9>):-.( OC(70[".(#1"04D'<U8P%Y!&9/D;,6"!TJ @^@8]2ù- -52<*;>J#=4-Q^/M;(þ?.F #2R/?hi3#)6>IE;[LF+6G0CR#:%%5#(*7"90)2K'=:%&TE 45-:VI 6D/:K=pZK=Q(N$>d%4:7)[/IH;,72$.94C\DHB4, C<>246<d#!+X/O0IE /,/B!\G@G OIGk6K;oNII7 H@&6?'&Ba05+)3:6DZ##=''$@-"0*05,"4 'P!?47"F9.H!GI<2#3,:]3 D(4 :QL%+lH$( H9)2<3A:!2+CJ:E29M#E8?3%E/%207VV:JA$-\5(?1/9T$5JA/?,H175Sv¦K+4çb= 5n@35%2&%)+L6ýF1$G+Y.,%925C/QIBL÷>=,T5'9-8FAD>)0*+K6,=5>NSY787?bÓ1™CC3<  #<PC;G<#HóJ ?$,a ,1D,66'"E% ;;H10&*? :) / -36:3@.4A<6N79G)0*1U9*5=<(<C^' 3:ø7 ,EQ; .?=2SY285L;!5C%!-kHZ*<?3G0+9)'#09!$P.UEw8 7*R=&#Nj0K4]Q`3B/hOw)4\PE82/%<5(.:&?'./A:ADR8ýAN"LH÷>H"'91%2<&3--G8H))5!%;!OR,@5J>Ø û / ¶`LF>E)A,%  7-"4*BH4K:ÿ^3 (.3(*a  I0/+K .O2P!*P(>-3PH?;7>'35y*#1A^:+Q$+0F;,:3'-q/8+U'K&<ý,(M.*PL7:%(+f1P":/>A.,Y 9O0K#3;49;1&90UK)H2 T0%)"M,8MXVVM>QUSOJD??/NR4F8(+,0=<5,30&Q_4Q/B?3!-<4%F B%$D:V:+A*/.; F8@_ 8*@3Cqk ñ+¶FŒT #"''4#QH9B6#%F#ÿ3."6S$9#9)1;7@(+ ?;+3XPAO?5)2&*8P%,8@,:*HU)o')?P,E:V"k?&[- %;?&?>=3<51'[#7@F!# // kF!;,+D?<î=@ôV9+4?5QH^7) ((H=*2&$& )3I,+@I:a6A)%KIO%'!1E;80&30Q(E8N"+L029CKNN<4+6)1M%(::\+"6:56G;J/%9A*UH5sZy 㛀+,7<.&J," ,ZDT=G=44Am.;D (<$$1&6F$?5X'P7M(+:$+   "aF :,;X= NIc.T:3V(F]=/#:^,J5^L>D&"C?2-(8A$"HMT=V>;KM(=LQ"/"#G$)%5# !C%R(NB@!7!(KF .-A:<VK+F74:—JC8ARD# * +4C):"+#B '@*8C4F71!3GG8iP?/L8;Fì-4/ 10"$,)8((0* 7 D3B&N'PRwZŸVoam¿X0;Y" 3,E? ;[!,"8&)2(QA=![2C2@-4K*5;8P'02D&Tù7B>SVJ9/>P! *E>308%6#:[<:2,] 1;=45AB2<(I@2PEYA8'=1SC?#7S>*D41F!36IJfG5 ?2H'1.T!"'"A$(1ME0,@ET%T4!$=Mh9&"™[>?U%eOZfJ<;$M'<OE=7-2E:*-G>(M2!/-AQFSU\ï=2/$=FPR%A $7-/6DI>#.+)BH'`]Iq¢S8H/1A;!J@NF;#*[6;/'*8*=76 *6$7 )%ÿ9A#3X)+:8% =<#=A$"!CU67C0 (3QF@\,51).8].DM$%>"M4<-)Q!(4M% .!"O#YM-(@-;>>!I9"SDGH*'T$%=t'D4O%"OH58;6HB f@:"4FM;M/7S7 NFL?G@]A11P_R881676,0J,5_&4 B(-3;C[Y*GH:G33OH:01P'<A%BVF=A-,'3#J+(L@›bZ"/<CBO"D6-1.32A0, /9J3?9\ %<F20+Vfa+-6>+;I:3%M J-6 6<%)4*L'FL13 FFL6=Q(DC'5\1""F"UE\,[!<7,*):58( 5-% C-@518[<6Y##C*7?&&D6N 5%F<#TO_NJ7"(4S+"/FI $6,E^C!.2P6mCQe(iU4%&%h#,41;18Y>!.H 7 *J/!S4#&C7=10;@$HJ514B+û]K[0;û>.b2`TW()-,/;MQ^2O#B<%1R7 ! 12J'80D5,)<*-\'F#;,(1'8+IáK2Eì>&-. 8DJ4I159;&1IK"048+55G0A (>FJ>":(B;G',0/,/H2=9V7YFY$1R%#4%M>1$/8(19$KT2"Q+(jI.F-CTS6/$ IUDB61O-F[SPd)R(-2%OO=.-S=ú0.@ 55ASCK7'%@`. ý4@N1=8@8 '„aZ#1+C2:O?9^S@I;X4D)[HÑÆ7&< R Y$/#÷J:9%1F?+17F@2+?0JN&9,*0[ME!/k#Q:/N2=%R%.*09*-0ù-5%+V'%I]8P*GGM-S@/ûC#.û9\#=14I M4*$+F4@2":<)'< 3V4e(;"<<N8D59+9:3"V"^-/*rB'O?=NXP¡k…]N&S=,>Q8V H;,JM33 .L/57@[6V\Q^B)%3A?,0/$=6I0RJ--+:/!0<FZ@56K>nT6!QI?2N&*D%?/>[.Q  c@8+?:>EH/þ0*.6';".,='L10=&XK'3372+K''"$Z65MEQ,C4 ð:52.E5E4?=>A891(3@<9DDP-E1%AP<&1*G]S<7CTKeW^PH0KM<,ƒXN/OMs†ËǦ]mD\>\D >()!23WHM1G5G2"D2E-5B4>1%C6.B-;'$L#;JB.:>D];T9*'=15:ø#.A!k-,88'JY %6CU0@)L9)L*MN78` =-2*] 9!^2',6-DC)8:+5ö5$*:I;X5^<I'382U-?AW9&ù8?>;A.$0<B0?0*$%(D6&@7?J#LN=&6P(*6<%'^.)[;=A 87@`;B.=(568:>R:]a[TC,%/4Xm;'=N—Í ß†mI=(=KJ-]@c,!?D)'?>GJNF - s)C<*,JLL7,'n3CI7F ,"?UNAHHb, >'/Bû-2(9 BU08!"$R?7CT?4BCD @N:<2'0.?B\ Y(H0<A$A> @7.RIVBIZh33E&?NY9VJSQ/>,R%(#!?UH@77.)'ED_9"(*1&L?14/þ#;C62:ITþO*IO>,H/U/þ<'86*$ 25'ZM€,<5CCAJ&PB*†d`£zsVW0&F7M50?;=:(ü8[! ,D2B8`!22%l*!('PQABmN%5-DG!0\%2=4,C1CLT:@<*:4WL,:$#6;H$e ^L+:3A3@!&/[ù)9@=.EX+B6W1'9 #%(A1(6J9<6!E.KN-,4U"4C& 3P#Cor©c&]?8$;K5;?96=PIóO T0=4F; >{:G624$W/>?&$'KF5KLL<CQR@DD$V7-0ò$7,9:=6/<G?G 09CV-:<CA8KS6u7p5K O$Q7!-N&&#M?'](6DD9E46'52-S:46<<')d>3ÿ:6#?T ;##BK*B/%Cû!42;4.M0A$BC56@96.M-J9'G)9#B)1:$B8 8U H&,D;(2)A%7%"A+[Q0;0:'A+ %#&#^>06os>2[+fQ.<A"\A7.7(-$H%B#%+H.NI >017='Að?#LM7OK#H(1"2"cr,h0 3]V<B;? 21.f5Y% JS&'MS"'Q3>:RWN(=7[3<9#0GDK]PHEI,$!65;3ZV )5="þ C=/L/)60=3J9=4:)!)>+YA3 %J67!JG5>C,1-KjlY4.N;M%88/C:2J4@"4;.(C*P(39?"<qJ%;&Y<2"1"4òXT$G%+,A4&,J>DjS5767R.>/3F+0ZZ0KEC $?($DF!W#7N(7 Q436*H-$26,5O8]Ì+\<&74+36G-<(!ÿ.E!7J.2G9+41%QW<Q\0HMI>3b*;:R3X??=;b%DG!D".8,A5/B&<"E?tfB*:IK<6.6C$=E,>*Q"8/,+Y‹»‡`S32 ,@_J.Z>':3H/(,&K".#,:%>7--7J6+#D?02),,J&:LL"'<E5JlED0Q92aFn?TA' B3-((";7G6XÞJ1E)"T>F \0R(0:"$16++5HV@"=5G>Q2"øJ/<zR1G1-,(D+!!72eCCD):'2j.2MDAG2?I+(R(*(123@G=F-S>2%04- ?1U6F&7=H3EG @K7CMoF[G /Z(N0N8<$*ZOH$úX]à­4¯3 &$X?9&?+2 g %956D6 BnG÷(AC 4$5_3A>4HßG62@D;)H5++"&  73:UF_P|>?GJ;#2 %6Y."1-&*-;)B/?C!ÿL04%N.$ *W 1?< =$M?`.)C$*@5(/gD?-2@3AB*4$M2@]X26=4 !O.&Z-TE5L:JM.;W)";$/19"@^:)(K'D2LWM8;/*&055P"(g8f+rm;?.54M;6!C= 6)_4%#%z˜pd?Q5.6LY.H:!17Z"@9üF0?C/%*3A:G>C)E]Q>9<i#:[-B13:-,EB<:D[LK/ B(ÿ5–BVT@L &@:;(- -];*-0 Dn 4IY2*AB)7?.B1#0>4(8g5bA\C8P!2"5$F1UEF5&,B,ø*J5R;*-C(CV2@0 &,5?303):2<'C;P1-R4;,232@L+<B1`2")D1NH:3!C*#^FO&2h77RO,1+8=:<0(B 8ió!Ê?E~Y#0; z"- $.$>*&:%5<E-L3UOrNC*=F'_#4J0,-4?+  C;3=U0EQBO02L+/a?OJeI:0 $< .,%2(4]&: AD$E%F82þ$!2ÿH@9F)CH9L&#L95$DP1- ? 4H,X'/GR#H4OV.$F65+O..DC6Q26>(5?V75;-8B>J<5Q"*=$T"K3`HWO3HKE&0>3/J;=(?)õ7H.>J(?<B>.353"3#71DcS(;<M<ÃÙÚr)F+!#7Pì2%=9G1-AF:*:8*,k|^cQ90üFY*@@=5ý6#6GC‚oV.>E_x$OCW:/EGUa{JN.7$4"  2.5{ B'CAI':>4(<*B5SH0B>÷;*&.#<]=%6 f25Z%9@& =C?#1-!(*8/.3B3Gt$<2)B4$9?FH;A9!2:6 6::,"?+GB4@")'G0DD49@C)G.M91A9<97V/&wH,* 5*A *BL*GM8/G\D/-6D=FKZjm9O363+=.+]H=1L?#HD@, ,H*G+\\fˆqB5 $N97Ka5-&,A"B"4*@X”¼½«UL{HEB^X.@6V9".9M2T>L6M^0&'B$ FCEH6p?-1"F7&7S6':>-5*$'.8-5RK5/GZ<?64B60)>(==0T<:1:j-(F W.5J<!?3?6=L#7Qiø; @S-FV5.S)'G,5Y3-)0+3!;ESF`."B##]Y(D9  (,>U(T!H+6D-.DL&_@&+ khM&%>;2O86P"•Sj[EJ(-(ü1(ZG(K!X 95V*9=>FM·Ñ¯;n™w6*/>S?(E3'*9/")!9'*-9V.H@648(>EëG-,O.);$>@,Q6,<4AM>@ =I-X>.@?5Z2'194!48$"ELC=6?-M*+9S-<58/.AM4@D3V6ú"A$7D3"3?%3#TLB6:\Q;G76_3C0#(+1(.$5!2F7U%:;(X-.@[.B+9(NP-1;í4>+-);*36J5T%>6""ACid'9RB&C/V(gQ#C:?&4+!6.&`>2(T-\&4!GLUl¾¥ ˆRvÇMº\"?6U;Q3+/(.2I;!MAW=&"<*# 7D:'W>V%<TBS%"50-D<2@,1)3:U%?&B(e1$,:19)!+6 KKD-F>PaAK*8)_8< 5;@15SC8&">jP=O8OK!3?"(P:L='`9#C498$5.%6 5:SX&1!5*81a;2 )%O#>\Y?APe["(T[Er<3#!F..#>+4n+!'J7U,"9%UaI=)(Vþ/*4"2B@-S0:>MR)t‚U Áo6´)‚´²k"FNG];?>24/0N3#:(B 2.8S7L>C'@DB'6GF174@E+O(!LIHD#" +5, 6&9V-"@C%"V2=DDG*]I(D'.Ya"2@P40"-Q LE1P;8S6D*/?99M+2'!VK@&D74/%:.$6XUM4EY03DH80@B-[H*0#/(P,.H26R1@'-.,?~.5H0C*]OR5())L 7*VB%0<)Af(;=-0B-I0pcFL&-+7@92k †$6@*lñ¬?0U"12.&>&%R* ,t 3CF9<C.G# 9)ê(R*AZ[6A50.^1O/ <G532üGD( HP?6P-2E<9U2KT,L%F3%C#;SuH?eQ]p|;s:6+d3'$"?CM4FX@=g5J R9B$DR@LGXF3/9@Q;4,M&*))jK*.e) %Y3VCC+N&?4 8D,CC>0+*IO('/7PD*":JP>*:/-%3M.B',-@<E*)'.7"2(35L H:+!.X öA™-›TSpP#ú!1)F0?K)H'(5AB*S8 >I#NJ=!#=45293J- 68 ;%C8,/E2@'$<CP[5WQ&84%0],!6+#9DUGU71MN=?G$%YsCUK3 P;7^279cQHf,K&4%JKv,D:BH<*W.9(677M KY(K35-DR)C 20CI[)6E$+@342?J3L2e$^?I# s83#/HA=Y6]Y>/3%B2.S/2<9=&@,08,C1Rb1>>ø :VU*57+@;\S› ³jeÄMWF?;q-I>'$CK? +EDDIM('F9@N.Y)b2Ð#ÿ:JI,&:E;-'VbC#A%>C<7)--/@g…¬‚iRG/8%2;<9>9S%3=cAJ I9A7`.0<+R__aNUD& ,,:,U,,#84-$V*>#$5,U])úF ':E/'-=$/OKK<JK0SW .:8B:&1*,%45SK.?62A0V|jUI[ 8$F7%=3%:YP@(L=cYI(L0+?LN%ZB"U, Z’ÓÚÉÃU4C=JS +AA+* B=S@5G985WPC7E #*(86J 54+Ac3H::i&=/9>G94>=.;CUq­Á‰U5D;R?L5(8D.!&@UBM-F LJ0G:1@9 N9[\/'";D2;<!F>Qï74D\IQ35 &&$*056,]’ic@)C<%M"%'=70c?6 <L24O*?AV(W,E."+8&N45K‚jdRV6S+)*!H2)-)%9.O.hzS7I/\#;-;E1PR6=/iSVmzŸgSA@YWL)"d)5,O;%<*/-5)J&: (BF)6+3+G;5>m90B8][5/AB A UC 5(UTHdi[šuXEB*TI&ù#E +<K/(c\9=$J]#T@A2)MH55R)2'0M0I%C*D.?C=8PPEJ$"R G 8$+,Q1K5-?R0HA0<)LCI8E8"FR.A,-9G$' 1\6&6<b**8 C7=%ZMAE6!F$F5 >D+?7Q&E8"HGp™hDH0416SZ5IPQ-*+AW49TM9_V'55*:(: 5B5b<#M4)c298l>A,<;E*2=.@'EM@OMX0188%0K67/M;fU4V,q>8+522X9/'B3_b'$;?%<+4!E!TT9<;3"87-+9I;53HO] 26#a*(?EQN@4H:%+?'7GQIG%q:;SP.;Q)NG5:4:hDOF2$.8  >SKMTM@*8J%8=4H,)((,3'-l.(%:A$;*61G&34”V68F ^ !-1L?:?JAD(@*=B&r%ý(aD/=35e0Q(&%8#>*2I2HC3>mrGxBó;ö :'P7->/9,H64F-ø*=:)û"/I0E+=;A:(!<>H'8S-56H!/!>-**H6?=Q_KD:Mú-IJT/$7?[!!8':8&JC 9ID$M))96<&Q!'636394;'#`N27+T&/61;D4.-#N/04<,=$@4'.c(#24B%L*A"3+935(>" #6T($/"Y.-3"K0&6-3GHG[H>IFS_,3(T0 H3!0).V -?6-(,R "?2ph9NHOK=V12/%@'#9E3(Q84TV(>Q;;/&K=YA"T;`*5.XOBÿ+!4,bû.VO=8+[9qbQ:S52*P*3(fHY(48; 3'2@=M9bb=%(%B/'b.C+60:)*9"@.K0>BWH<D311)'0CV5RüBA3ICG)M33*>8ZV4T."'3-=&E>+%*@("+s.H GH%9 H ‚„;D'#MKJQ[@1Y0%7` u)49' LXWF 68.(0IV>>R4K8J2@*6#1`1%).>/CILF) 65OGC:?<5:12|4<*<.(@L@H7"L<+'T%2,+3CM,;3NK8B)3_9d:C"(7OD7##/9ü5a==)0,6F O.3!9!N,: '<(JdC$($C@-2,AN%$,:*>#?(< WF52F*1Y.>K`59B;Q, ;BB,:?*?)D#=/-8J2J++P51C?E$+":GI<;50.2J3,+EC/ÿ,H:$E2!Q ,O0'-;]<%^*/&:RRB=A3;ê"8'F,#9!T;&;Z79N,.!Y.@)3O>`!4>4@Y>=,:+5-(+=BBF K7,3T-/4A;2]5-D>()$>EE!:V:FDS# _a<J>#F/Q,I4(!.%;!'/P'Ja328>'BJ8b?/:57IT4/GR$+:<(!++@+SJJ2/)*T=)=D"7;,I2"5'D,2F4+4F3B/]I:#d7+j7=016%-=>305.*1EA-6 FKAO?/ #C5/F6#6E3: ;.H55+7x# /3;5"2@'@bSD(968:7%N÷V+'D<2 K?50I?>0ZA2.1N7SB=.C*+="+(#U4V#L1" 7?CD/52# 1/8(#I5*,7-D-/ 0*5%9H5X8DR>)5LW44kUU!`3.)8r<_aJ(2F-! )B47:A4 6>%: F$>:ER;$ ULzB6#J2N44\-+MA0& \&TD@"5I3?;û7<=87!?/$Q:!>=8#)0/EWA8OchƒNiP,9,JdB49/!&60?+6=;3DN0H4!1EJB?ZT-4/;>G?#>W=MeJ #+ù''-b0!73 ECE61;3:9:I@&$816L8Q3@M@*B/:*1-/=(<7Q3:„XWh<.TU:>iH*<8e2÷N$+'%<F$94;219.'E5N5II! E.,:E< ,0Ó>$MA>!1@R5B@3^KNV7E&@1:=8IA/C(N#&@:6C2c@0Y;6J :+55:.%7‡°¤ˆ™Sc.,H->.D3:9A-þ5?H/ÿ!%V;8!Q -,H:&0(:0-<O=;I/6<&E9#/HB+,.%E-R'3*?7<6&%+O?+4=5H/H3++^<,J4FB7&&*6,c80&KJE6K@]I/<=f~j9>B()A‚DD.B#J3N/&%]6 <3C"U$"770C@O&&A'8,@üBG6#G,A$F+);6F%:YP!47C<'B0#%O.S5@/RU=CF:8>4A$N-!#+<,*%(+HeÃÿýÁͤ'4D@?>(, *)+<5 H!Y;8!%=.ücd%5& 78A;A782 B3F/I;1+/MF?+D"D%3G',F<G+2&*1<%4ú,KANN>DDHLJ(\;'5+E)#D2U+*iQH:);G9@-0ca01?^E-9!6VedF"E$e>EQ</74/)+P8S"58^>B<S84-GCOD.=:)Pÿ[ + e1>5O7>-KO@.&.+.R)(AïY;V0-<78G<3F+ N O)PAJ1VK(fÑ3 ¾©¨gH=G+=OLL 9> 21G:S+N\Qr&8Eg.cF)JRA?*E8-WA&6'9+;B&AEk>F"BQ\ g^O@0@64;1#-><]%5@)pþ5"GA1O<'%.AQW""2=>BcN//+G;M(D<;/==1jV\G)[~l<g@2(1>4\VY>9(C=+V!<(- SGWA46'*%  c9#7+?< e:7(L>36SXA;#!;7g2'R>D %Y :3@LGP(:( 2B: -8K0JL†³•gsf"16'(I5Y=(C$C)9%øABR*D=L;2Z XD6-@ZNkT?,h!a>35a8>6#":UJ 25I!O \)"$  1%$%1 HT%QK;1,24?N$F579B$5G:)7;&J#0KOY3<X;Bn@HLAHK0c†;A6FM4,**<IGqRKEN)=ö8DC'10(E%E&W^v.4N+"]#:2C ==308/6*RJ89A>MQ3 E%U@? N@!=,,.1)FG,*%B)L Q-QB.K4DAJ$-J @69"26?b+*GL:Q1'<‘&AF)Y}϶zm1G84>9H,7"3O(N K8.-<!?7G&='F32@=<$*  :=G%ö-$ 17D2/D1+0,AS88J*S;/PSA k4I?aWcˆohNJ_[I3;ZVB(% F<çC\ R&5,@K$7BF]+E"(6/ #!)C TD3$4%J9 &M-@E%BCA@<?1%&914\qV2)'(<'E787F4<<9  A6@!,gFW66B*Em?<#@$]K(C/*?? D #TA80AIO:@G?)7KbB‘ÖÄ—LT63?&?* 36>qIRN@(#94;5.6#4<<'G?26(+BO%4:2L4>2 J"7M51/<;;;M /.)4> 72J)wB.21ŒFql“®ƒtoh`HP?J# K)O'%'B?NZ*7$M'X$B,O>/é.&=E>9<!'J@4T@a ()AD?,**X-;$K-65FD%'4M"26=2D&&72LIJ973?"J41!G*$+:%(ERB3?WE')W&7+B6F!/(=2K^š~„476<J,=$þ)?'19_SP8 ^H5<(X;$1>>/:R/W. %91!TE"Z6f1A. !"1WLSp:'XJ[7/B),9E VCQO ðÉjmZ;+E'$7A=P9'/D=<m6K>RmH+GD2@-;@l,XAC7,@2#++U1G0&9+(0$[0#;S-+*?C_)0 =?$1.CI$(273FJR>"708CIGø6=3&#IF%2=3@[3GL,1"(=7K20'G>B0N6`?ZR"%8E:5b\@H;02H9BRK,jjlh4^+-V@C2<0(C5A43A)1M@ QO>P50@-K.-%F>M''*(3:$/0H)@23  L97'0He0YLYj¡ºa$I:­zMf&.1F3(:'"O0*&<(O"70$G3).*;%+95N=>/2 !)j\F6@-5:*?A3.8*=I1/ *8 7>-QEø$%03>%,6U% ,+H&+82C1,::77G*P9VRL4<T+:'%!O% D#E<X#%B*O7:#08N6*R;)3:,'OA+91.2<1>\A9@*!T<50N*"+I6+#5"R711;O<3?E2=MFL,2)`9;-:#=:4QS:&s—Ì’2†Îua?<4-8.:,3<e2/+-5 7;m(&+KBPú1=4!DAGYü.;-$I.$2 /õ#h*R8<0(E\jf=6>;g8O,.C)JIB//1W0>0#Z$-SH. >÷f6&j2:BK-F3 ;L!B4R!3*D'9'J0'7='oTL'#+787,3U0B,]a>29R<C=QS`˜A)dZGE%3B#?;#S#2+A4O=D5&9H`:.K+/E)#W>44F1#?&=D+D&5D#MXVš )½aVG7W@C!C 9+IU;?WL;j< U1#/+/AQ0D?>875'<Fü(52 ?I%J/Y*#(?-36B;FA)::DL??+72U;,1j>.21ND/T,G.-%ÿ3P'`L.?2A6D2&##280B;'(>24IFt`hAM-()D:FL*[2NGQ@C+!4XV>7$+_o¸ÖvebRB3/I1N8(1B>")/=F..*X+9""OT=AA-:5IJC1":_M=O0PZw 2ë¾[d…BJFfA;/'$2=>( 99"0N?'IA//J@8'5f'L;,6M3=+7)1%Q1@.-6:(G%öW70JV`A45+& C%"3+%@1 :M%"5 1",2DM#(;-LG$3EM:20#&\P74$b(0Z@&PEQ;@YW'4(QJ_|€OH>(4=52*='*%'LL''(,4T4#cW¡l0•RZ@O"*9>02'K2$=CS7M ?,B88/<(K<GG*jK6$J.4FD!"OEK;!„pª¬½c[T?R4/996b2X.53(! 9(4HG&YL]# 0< 2: C-FP T>3bCG05WIDlJ7*734H$:)0!4M]2[.öL9"H#2;!K>&@c#Bt46'(* C<)M4VD-387!G EJ>JA4G-4('ESI.;G_>=+#O*peÇÈkVh/'4#9?<=#/(Q*;g.GM,YF6Mkê:eídrCTJ;106MS0C,A*7G(>+c16"!&H,:HD8+&7F;8($242L8M89g=F‹SV`y”r‡nmIt}haLC=0V6+6+76[*?95G;+N) 5AK'%5'3@-3FB>1"#<00$FXšO0þ41B6G ./&)9&9)D!,A :/2 9A4K1;%.DDM#*La'0J'4&$CO&?7<(6<G6H;c-@IJK K i>K¦X^GC>70=>&4>6%'$N$BX.)>/(^:c„ÍÍÇoz>DX18"26I!<7,&*0LA(c:. (V.UmR@6GC(CPFI2;5/TRSbo2UbQ[M]cjS?Mw9T_¯Šu03$A$ (G155-B> 4;63üI((R,D43 VO7*!9*K=S+I+][7- 0219W;#E">"O5 9p33O'#:&5;)?I2>!5;-U8:"FF;H/ ý/9/0;XK,A,-.272O6h?D-,1;71UHEkO7X.PP"?5?I47;(,73,/5#;3úIF2kX¶ªœžhPK8:!#=<;Z&,@99.+A))=@A<61emOD9ãA6#(</$*F=,A+:'4Azy•gVbNoUž€†4|1<.7;EF1I2+/-#S-\9D="4,SK=85N03=!86D%"#c!2K%>>0C//8Nü&F(%J": !&G#.?-=6"9#CE5.&&J6=K8V=;4?36ANA7FtG;(@1."8D.2/;`VG)41>#5Iú6T" 7IB<C;16Ga1xCW@%;G)9O\Dhhž±ÍijYRI ->:üBû.)>+%<F'):<:,;PGI037=-L7Z&^> E)F>+%57&+IG/b|Ÿ^prR6T’T?ZZJK=70?G.:P' 8=.:CNI,4e #BJþKBL.9<.%T",3þ"*5(/û7--IP*7OL:8^90+($4$&37@H<)3O13Y)JH:?6hH+):@_9BD$Y1"=<K+F;"0#'G0K9C925Zí_I ='H@,I@3U?Gþ$. )0V#=aDH'>?fŒæ]Û1®…\]E1>+Z+4<0:B7*E343T7 AN,QB0;&?=UaXù7]7j7@ZFK;*Y{bY]W(.MgW\RKPH"?4-%LL"#$D!7A=0(=',^R5P/7T-$'I$.5P5 F'8!<5%<\%L<$'$ALQ,]>167+:3B$B-!C/FI>#=^45,A-/\vb8 '&8C2+6IB:O%7M,@.97$0% CEVONHC?9LAD* )$<1>45ý5H3=  6KKDz­¨ 5 Ç×RŽ_S92!:+*MF7E6Z'ECDD36FI& ='M* 1'QAg)/?`IS>T.X:wx:j=Ae3VR6^A9qV$#BD-D1;A5("#B[ "6;".I8<?4'5.)7O%(2P%39A8B7R,JW4,J"N,:Z2',(H2/$3*-8*=VEFb j053)<;2FT42$4ROM6;<B+: -"480/.!1;#H"*8P&-);"R/ +%*@8#1(GP"0=&(:KVN7e&E>*<O/RL3AE>U»]d1N,#:o¿…^7I5sG0X*@+.<2.P/64*30rX=)&6P&94DO)1,.%15;C<l32<S9G7LIJ<-+06SQ!5/5I!;,Q$)+m$9-:'3(+J>7E87Vi=1$N/0<0/2  10GD8@4).-1*~C(?a;'H5VE;M74=<%8?$4A44>9)35CD5 B+! *I8.E@/Mf@?,-+]>=,B:I'24:0#[UET+?Q&3)H5@M??2+$<%16;8 Lp'É=@–=ZÄüÈ{RA&@5@9%)5LL!(+,bUH%B24$Q&#B/7$-6a>K#m43)HwM3œH;9V>;?H*B3!894<Q!7'L/#6b9HE1R %K1EB5$5!U4 4C)0E8&#;GC-%-4L7û4&0*!O/F(=<AI30+@.=C1+17*G%f;\J*)úAD(9/,1NU(';C.9608R0MEIoAP (:C+B%EHFC(G>"$?"GY ..,c<<;&2G5'!F8A5F?" Lc§N 7 • W÷ JJ@I^E3&2=+9ZWB+TN,/EI : 700`#=G=12R0)-L $:.0$,?lTDJ]f='UO(=G5>@DIK,Jc?DA1/<"i+@))'(FOS@H(26J:87>O79!;>HH;#531%0F'!K7%B2)# ,50B:?:1@zW-/> W:M5-!".GQ2%- KK:'*`7 5d0"2E$2K!3M+ ,n;m46BK2.3/6=?). Z6QMK.= 'M6Ht^¢1B¬´K}?,'DPJD,9!2C%().<0=R"492b?X8.>o€DJ@(:7)î1 &0(IVR@*-V'_QHL:&@QC?(HNSNN3$ýOIG2YP/õE-]2 @/$-3.U=(B59_4I.B-8)/CH9YJ H1H8>?:9\<<#,<6!2)$E&B32AP"?,4E-X!R7'8-(?-u!2U19*88,"-=1#/ 10*(;/C1%/H9%D;/a8÷!7,.!M?9YV3%NE:18ùA.:278;|FEY˜ÊÁ•hb>Q9BF.\K+I):I+9'67a6>65&ó'2"8YZI?>4SN+I>S&MDrD/8<ûRB3I40%Rs%(R08$OLX>@K5?-4G"<(?S1ýLA†]0//ý'1I .j#. 1 N'$!S6!X?*$0E$ >?Y1 "EI58'--A06C166'4=1-YI^@_bT$&o:<.+;(11m&9 <"7*þ1@_ AV=!c**KAA=#1$+@94T%73,J?14DP2$2Dr‡ˆ[h&Qd)H)')42 D23*6! &4!,1LU  1&&7GC.8&Q+f8";LC -89M\5/Q%I;];)8/1A3]4%.<)$5AC3-CP;53)?^1)>A‚›…^7  (> ÿ#(F.?7%2;;/%-#C.n3[>/I;%18B!7NnD''(5531 (/';7;6'78N7*. *[AP>+=</G3 C>N?_21?8D7Mí%C=84974;L1I:.%0EQ+4>5C/A'0F-88INV 2rJRGT\:DDTMSE2J07LG:+;& .L(0M=1X3$K"-2BD0)3[E=@CT7i5LT<C+,D<<EWM:=5K@.?5$383#:-f/eP,B](@A%29b-CHvx!D,4 ?CB)D5ú&J+1H46S1 KS&17228D[ GG<0DWW0<-# "24.KPI>-")35(<456ù79þ59,J?03(JL +<$&2#0 16J+A;-G.^780'Dd G!L173)M&4'6EJ1H,CA#8<L#N-KN.UVUA2:P)@@2'!8!#e*F+ 4/5)I.*,+?a:1 AD4B:PF`$F=MDfY LV4)D#B(S>9CA(F2769)%K/.=X=C7>%"*&4(@;E>!$=!+<S&m23?*+?MA3%2=X%=-,$ :%-17:.D?52= 8/5+-D+B&!øG*%A?OJ/-Y ]1,R0&k:F/&D%,!+5" /LJ4'O)D23P:PDN18 *67I?)ä94-A7KG(< GA'6I80E$M/0L101L,@G2<)=?2.*09,2@>+:MЉ>FI$'G2`2=EBX*C$ _0*:].AAB-P,3/I:4B/()?H&//K 1CP4L>LY@'%Uî`ZC21K2/3? E0G3+j-2,AC<J P:E7?I?D#) 0%F:/S'8: 5F).)! $-,*40..+#'6/KT'S4*4 :ECDALX( N$=70ACL=0<1÷,).G@!.8'B2ISûO@f M^MMN(96V'H* XMCO 2+5,ô 'N\;*#++%69;N,*0N*PB‘ ¡+,'FX39,'c73)A=**fH=NK5*&$Q.C=64-%}$75;üM9:0:IJ"F2,FCRø202 6/TJ/:3)%6J &@@.,2"H03,(B6;FY 5/:87A'9!q2=3 '&8=G8.#00.+<.7??#0*@+M0C:["R CU,3V.8@;i=-6GAT2'6F.3'@."!*3%Z'77"3óJE#L.$/LGG$P H$q5LLJ•@'.ôUB+OdB*V8(Q,_=,6;*,#BcPJ\;858C*9/E5}@6C*%\)>5 UM,57+C'0$ù-S//V_A!8AU%SN;KF433,A'XB2(_*2T.78*d22I J( O%,G A(4!?G417S&-9$!&U*"E T!0%jHP-<A #4 1(8SC">$.H)C1;G5ZC!E\2!(V3!7>((0C>09'c-VC2/.I3]>*1EO Y8DL"=78 ,:"#sB&T0@S)/>:"IQ/4$A8)?'>;2 9>Q7T.ú8'Q L40 F^*E:,>b-EAG%g*&3B,3 -G<+V+? L#G(@IU"6ü,(2,%G/>C*@I JE6E!"5<5#$0&0U^&":iHLB?=0:N<UJ^#) 9%H08 )=9.MM=?-"8/#8"52c4WP(n$#-O73@ ,'2)9, (8@;+8E+,3F3'+U+.9 &+8f(v!0 3113!*2I/*U>#+?6;:>=98%/ÿ87=\_V31)WI!~,66L2:(BA &C* N P6!.5$K>:_VB$>"A)7Jf6E4&M(>@@>-A,6'6%ü*934!J7CC?/.#)B/+/$;!'e"]2D*;<"@1'0jUtE$8\!4Mn:M5QO * 8PG**AR H13D;MP#/XA=Ba!"/:*7b7JL/ K';P!(<2ýS2"11'32FG?&TR9*F9/,<D)'*-ç!&F4-0 ?4T"*<.G7)A(4=#a*'Pø:@8#AN..8P.3,8/A$(*.!2"e*Q.==!19>IWG96 E.EL 922='E?;)B#-2%T?A)?$W$GI%Q!M.185 6/@MS>1@=N@;0LB8L<G@IWXkF'E' M-û:&0;ec*) /:DH96'-I'>?9)@P4/2I;%*G"LB,_&HS#'*>#<@,8,C,RK8=<%.5+Yd44'74(5Q>BF./%G0ë&F,4:D&KoG@?@1@^*>/D,".W"P9@'(4(187(@dN";ô> %$"98>N\70/:,Cþ(5V<F1/.Eý>(9K 8J4;2+*EK&.R.:(R5K-a@PE,"5'JC.(@6N0.77=7F&@FAARb^:CCG(RC55C,6!!!1/B*0F4395F0AI&$-!6 D93 AM4*+@(A=þ!W55M.'%03VBO">6>:(L%K15QG/&' K( LC68,`JF( 1<3!^3505)G<NB6ML+@;^W (6b*K>\øL26(8&5>3i B)181FK=(5&AA0=å??, K7I!4, # C* LE*/)2H'bG18HS%Cn</N<I7N>29=GO=><T00-q.p?*%40+'W*E=;")A&O7QGX&i=%0 $359%>+18A$ 'HT@8?7`A6#(N9%LT8M+W ">*N?C%H(T>*9(+û3W& 8*!9A&0*:,O6,E)C";:71"IO#9;?9I@*;6o11O82@B-W&B&+I4=@V2;A,H:I<))>: +ù?(`9^]A<:D^F;+2"=YO'"?"2$ƒG;M*!L9$;I3'F@#2:1+H)G6=÷ I?'K4W25?'36 1f V?DG/8%/=NK<%/B %NGN7( :8:BE@D $RD:=G+)1394U /PHA/>=U0H:+$"ù%'18LVQ%<>=>0-9//E>X77Bê-  OZ$+82*q?GG( 4&@:LEN7?5])6` /+/2Q"%+8?T%l?+)%>@/:H,X41hr$3/T:9900EL6 *44!B-7+\+R1)EewMC(I:U"@QB-?<A4<&,_819!876;#7#1P3M9L1<k7%0_L,#2a 9N;@BI%+1"9,FFK36: 085IP8mG60;!;#C6`<:]1EB!5&P 0F7(2:AO<?6dG#-*!$A#6/#!V J1>DWDB.8'9*\;D)$1ET?'O3,J11/BW85%%. &0,@OF74:@@93J549&.O+#A1,D Oò7*),ûI-3N2 5%87&5'`!/*DcCS@B &Iq$#E:h-!B&3#$9BE1?N1(>@.;Q*$&0B+hV6÷'5(a.7=N363#ý9."-<P-=z“SEN&* <„wF*EM.,'=;KMˆ= $+#3=NC>&::-P71;(ý-?3=8O):LQ3F[) )A8/'<6NO#f:Rý-%H W*;(B(N.-9#9GW6F$KR6'6&J8"B5\&CIRb/:1,I@6)5:G5&0h5O%-B&9$L!"PA)/F /T3Oe,-2>& @7H 4/+F0=B9= 9%/2+)0(C+DEU6ROB2 L-GAGH22B4?B46Gbc©eU8"1]Sb]Ae0%"1A6c Q,D=Rå)7"/<ýQ+ =\!4+.->0A44V)= P@5V9.X/,e,ÿ+F8P+Hø1:'PA10JI08{TU:';M-'D 2CQ+/$?1:2X>J)3<%@1@>F?2I't(<!:;AE"";)% ;I2M92/FO".:<2./?Ba÷/5+;)/6<@/)û/C:,J#(.+.2)0k0÷)9E:Y .Ee3/4 VN!R;9@D78b26L'(@9-_'3(0L|þ¥Q4IM,–šS.<-IHE$)#,D3V$%,4.?&-k8C@E.6N9Q69"2&E"#J*0D$1@6&3*)E#h";_*!B4JG%*7+U;$58)? E&1E!MU.7;%@O',*8bUIV%+>5#&;2é&8(4"3.KEV&+ULLJ0:W 2GH.<)6F;USZ;?@F,WHQ0-M#%Td4R+>@GD:=3Q+?JV^DO,QRK4M=!0O;HI>77G9E;Q>D+/0>7:@A/P|Ë6YLVOoy¤C5>8D D35 R)!2J1/T.$3%/ (-2 TOB?:CMN?4: b''JM%3"%I0,!W++*FO1K(',0C'j19;V =W9 4O,S1 9O!/Aa=:#1+9(Z,*7&7J.1Q#4'1#c %5937)ö+8 1& =1$ú7+.D8J6A<>C9W-Aa7%>%1<B22;EnB6#S55K@{H5…L!#=3(<gBGy>((=!1YVT'?,T )_??6;ACGIw”Š<^[QJ 8š€FT7J="aA(B 58#4I59!:&$H,?*MOMQI0`1'2L$8 <SH 93: B0+71:?2[A6@ F 8$-G,!014I*P&6;@>>2K2L7X=$G%<û!B@&<#K3@::HD*BVS>@/#-O63#F>+ýJ< K0Q#?#D-J!=D6@YXf?L?A^-132O'JG8+>$Z<D9"6H<G<=U/%;RI1<:;$+9BTD(c='0HEU,M:=$;Z'^,E'oWF/*=-DžZ;_2)80"0L.$42;1V(!2.(7>%L2F=.<:=9=*N(-æ=>.I.þE,,EPG?,?C::I58:;G)ô798*]:IV.8,IX*2RGC<A()80X(1*9:Q]8*9&A4: ù'0KS<@)<++>B.>(825D/#A'&$.`&'6ds`jt}KjB50 66Ja#JB-[ MAK 1#.!;HM>N> *@I20,F>)?5% E;$ !7"%4+,0#> .960?>#6F=ctc˜I79-1$8&$>*Wó)WC@+K5TB@1QDK'0,(8*N.>.)-8*%8"+:.(:4%Cc_);O;@þCH?2T.E+?+7'õ=* 9^)#2QE>(5'8þdC<IJ,I2HO7($@&d()74A%(B9(,.&G?*Z@V), L,:FWPZ‚š|s3< ,+F"1D )1)(167F.!0EB^68S#6FU5=<,#=&D^8Y/GE(2L^VM*%3P;m+VFU' <P!;H9?D?I0RJ-<#2$TG!KGACOK0#7D>,25R+&;/+j6=>!$&@"-S)Ý +351*A5H8$BN(@75!<E5%jH6?HH4:aDL0$;8,4El>C<?<2=4zIHWBKAA&<=2D.><$IHB==;5 $%5,)260Q/N-HU'^6‹…·uN=Q94<=%)#J%,'("/(N=/7T./SO6!6$APFB^[J3?J]'DF*G@Va>*#48<@'6HX :75F46AN#==G.3B%FK1,<0/!DL(Z5B''(8GCAR*=<3-O]A";(1=$5P-(9 ,*!?-1.<,VE";)H!+8>#$M=!BC0 7+H8= %,756/6)#,&@6J2 (2E4\P:/1G6/i-=E8cL'?P=!?S^$55A$% %AS;L6<Ga¢GWîb=S*S>&EN$).5%=.%0<H1/A"NGZ%D0&=(6J(-'+9N`EB?6:a/M&)%4$BJ;-.@%/@M@W+!^!=nHE%3C +'">(&U5;D/\ ,;5D%2K9G*g[JC"!:2432FU3%3*-C @ A80A;,91,1'0]ÿ;&?RD77D35F;3Q#&CL;)$1I<9(\+C>VK3ø/1L/: FZLE3&4CkO1I0M%Y":%$:>CG@K°ÉÎkaa'0@#Bp",)#56I3'"F=%K5(-.! ,H8D %Q7@5<2a2/PIY@AA/'B(9$4ôø'; #M&0+<>,'4=:+FD'%`L@#77D$E#ö*>#&F?'3P&KV(6A 2")8'?:&(í77-5Y-=25!K;T7BM4P652("827\=&04^ú$44LS1.0":;<,%9- 2/-! aE5726T*9= %7,[BB<: I;S*#H,;J3/!V S&GCAy«’t<@%-KE<+0AER,/B]50!)JS8-&= *< </+H+4,TD<$A7+:;+:D;3,BZ÷(,V93/6!+)FN+7*1:@Bk%[!D>F 5(H U:M;&6\71K5'E&W!1B,Lÿ&5f Ec9)^L4:@(OBDHH#":3'+ 5;'N,D"6-.P@- ;& êü97((27;5K[2)]%5$F);UX&.@(6BU2B< S0-#AB653F02PK #*;K(+F‚X³Xhw:>÷)*jD<-+ý4(MN6( JPb':=4G" :r<I4, %)3.>6='&<4&U/?+M\8ES7@/J5Wz0L?_6HJ -A(I5=K!F2SMH(NEH-377>AO-T'#7>R&7 **71R*"B,% `EP A),$9?C 44: :7]X31ÿ)5A&4+O72-3J9;'G8/$F) 5%&)-,:.H/8?/*%H.A% R3''A!6C/- f H4@70/:%N5')N8G%?5MJ`XgUZKVa4A(=44;,W3*+:BL # h4. , H0%V):\05;6I+XB DB AhfE.P=2#WE9 U5<,EG%74#)-%0&!$1N55I=@*42b-G*: (5?EQ%=0$1'83\õ)3:$IS "B5-"(.,3:*L(#-4/?FJ,#0K<S )562%6/AB)@>@ #*5(,:?0>4+)>W5,4<P8.+A"6I*+2-'B CBWF/QQ1:M3J$,;)%!@_:l5.Akd'M)/3#+*2D=2qø$7-@Jag "2/!*$%I2$!@25C%J'I,HA?N-D7Tba§Æòwx9I776800iI 8J#N]Ge26'B)Y: >>J- +W05'?)&%4< &R+??209:b,<bRE&.OB&$-2'6s+:*!.,.E"ÿ;?\ð'5333D- M07E;I6C)B %)@/.*5,<fJ ,I6./&.+a$B,:(-@&73#5-D &ý),,'5A,'R&:ALJ[+-R"6]17(A-/^1D]R168 3ú&8H3",@AD667D(!J/@f%H($NL-:`ª@Zx1*I/05.Q$>94"!DB#M/;6b-6W*l"J<&&7M@07:OM'%=&B;OGMP,B)B3?L#1:Dó=hL?@@>EYO6./8;J,@Y$Y6/:*.S-9C-6A2-.;.'<.?@2)&37B: ((@.8<H&UCBC*D9)#?+B:.#6'2V4)+=0%P4H[:U<IJ$=:,5JF;41@y&@M*c&8M23=#+*Nþ54!D#-<[L @^/BRl `V°Q0#.C@31+57;(P4<8-7"W.7QJIf2O=-C.)'T"'6UT@TP820">7 >Z"=#!-*'DG*H*1*&0'D%#50;>1WWOB!M)  :J>0:A*R9;3 ÿ(!7==G0(:"DF&IM;Q(;=T7;71!;797&<:1?1,>"4C4/,3C01845'8!;3F;.1=$ù79U 5N!V54^7.'+A)û'.9<&/P@,I8J( C !/h/8:/F@`"OI0O>UO&_'ï^.&*;3VE-?2€D%H*,7Q3(@D'*1P 2(8 10C6C[::+'($",)3h4-/.^P25?5G616"N,[#".H5A.7/ /"7-1/?6/EFK"+ E3HM7L!H0.03J  :9#;N+ õX,f0"81>üZTcmCý()1#CD8!^-,'5. 8SO*%H,9B>TR?2H/0&FF,:=10;FK!@C.A?&@Z,%YO4; .1ý=8>'294&$\U+(6K@,ARQag jG)=+V;+&K(Ub)?k ">7@ONA7F0?d8*?B6 ?MGAäE-,/*%*M92-  N!;LM?,23V79D0&%Fú&$N1. ,*41%A35>: &-.6)GùA1M?EJ>6Q*;RD3JõC 94'11$<!4#KGLJI)?õ?>1E$$-EI-g,IW->AD?)é wF,$!C5&K#22_G-!(-JGr!V:LL=9 J5TMWK]>@@7$%0"(*!M4a+O8?C6,R5 ZF#!"(R/kL?8[3úO)B(?92$ VCR?e8C *)1;48D*0> XN)0&3?2;4#$1"=4/)7/G*M32F03 HC&B%-/ðDg$Xý4Y% '93+<27@$=6pN@;2-6/ ô@#< 3+/?'.8 "M000+?+h:"4B@<aCHIA$R:NK'C0$9>  7j$ZN!B,-?…ZB#QND&Fû0Œ{f@@F?;IEc6 -!'XDL@"6.(82;ME!?R'D/7:31Q'$-bYL,F5(0:4K42*6@M--QPG16( ,D63@<M;F',4K?)8"?:.h/5?K7S#'õLÿ##!6 '/6;)F3#3.<*:H1F-S7ùG/1. #Lp@(>1(7F17 <B0D\';* %-KVAJ ò;4IL e8QK'P`+$û66K.&é8-2;W+/7<= 6M> 2^@O3+(%&8/B"? SK4/l5<3L”Q-1C+#%J7.CW = 0.2[E W'^R3,JJ63.P9*CO!=X^!)K47_,fWE4U=WH<3+IAMRE1,O#=001M6>C.=7HL."D6=7úM&R9'9668&W788î"4C B1+((:)1+8*2BS81?>&AL,8A:-<6.O#-A& $.+B4AT] P1O(8C;3N))@2A 6D-%2.7&Y%,,DS+84"(LR#P`?5'B1:U^ Q#1?41cC@SWdwvCPdW®V #1/0HI.72J f8)$,(R-%Y4MU+-/L[G$!Z#:"?F<?OaO3=;>64#&43K4A/B":MA4?!9"=Z'H(J#+BH5'/1B;IF*:&R!7=(7>4/>.67$;J$,405;E $ L*8B"0U8Y?"b#)"64CF0=@ 6CF%X15ô7C3;&<IJBC$%9DB0%)0=ô$N0!:BB"*B@'!3P'S9,_`;1C0@J,Q8.MO=%`ž¿ƒh5(LT™ºA`< ú?EN4/C7#A29?!"X5G&5M72B.<>?%/@*&L1AI17 TJW1<HNL+)<O.QD0<=.%QQ$J"FLC<Y1A/4)/ 2=  .=5E7") "Hh)(VOC7A1C<KJT31$6''/?5+4<.I7/=0XC4)(/6:%+64_1"ú!2Ae*@ ,BV<?4.1K>f)LDFI? 9!E=?IkD:PF(/<&;EZ%=1ü,*1 1:AB(5DmXðÌ¢[5)'~C3WR/55=5j6IITE6={eX3!8%'LS)>8X]:#JpK3<DT5GP53M&(L4 K3/C($"_R0<>F2*=F5 N FHA49m7*2&A%')9<T$.('/OF@:Z8I453G0.! (+#69A)1<259%I* ,K05<K54U&:@D5J"÷ù9;8.&2<0,7$N<'9R74TM-$K(8"B<y'$8!Qe40;N72*U/?&JG^f%QRQþ,948C>O.-ž²—Q)=0B-#J*@E)JB#VEJV%AGnKgJCX"..3H*L8ZK<<)S(1B6&&8*%G*FJO4-"…(T8;DX3B=;]&G2QO0?$>-91? <=60F*a&#6F8-,$O2/'!0+3<*92BC(#)L.o0%/3,3;LF/5+B;&57>E1;ZJ($/<;5@*: (<)7RBP?/#.:?XD4,%91D,N8NFJ"6BI;6a-##= ?CA$R>11$"&*.I0Q^N[ F<//%cWCF;7:7 *7E4/+(6., K*T[J‰©ŽJ1#=X*76*G0V"2<@>+?->)%I&#=,/5&4gWBXFOCb+c(8!,5ADA5<%I*V%2.8;+-T '*1P$(@:!:*6û/.(,1/J$!:8*B#3@ 81.aWF+(A/,;F*ú.=)2#<%;1- A&?:M /MHeCQ4<%464 $N$!*7QD;@$+2[68<6 A(J2Z,9^4-+,K"0;#?"(M3))'*2.7+&3òO 1KCMEDD E)D"= %qyØ™>AY$5L'A]=[5#6@G5i =78a0)K'C'89;I@UFM#L>'<04- 1( -%þ<E2C!(X5-:'#LB/B63U:@_AJB8:8 Q$19@'@9UC6B/:46@L&8'M\C+S(#4aR&0G9 O*42Lû98789C:)FF8@21:,A6)I5/%+ #:72+a(.90J))IKC&O3 "IL2L/C*&05e4Y.CB!>FG34O#&, R=-:`%5ùO7<903£¹£uAM-5$HB(57V52E='5TJ8,M*M3"*G>3J3!62A8 -1#`0",4(5 $(%#+-2H3%2^$MCB@ 7,0*)!/O)ú"?;+B6N81!0./%,>7B-O8-1LJ?=%C D),ý8@)PD7>%9.'#(D.+"6?C'?0G&721N;@Q&1SE:U?445H 6ChLC>& aGT4-2$AD#",.E90(<#4(3\-/8#7)$R0 A%70,-@jqŒ™h)58+6A@BG'$h .7#B> .M@!)PC-D/:<-)HX #:\9#XL <%C0%+ GN3Q3 R8+?D%m@&/$,&S4(4A(2#681(=7ü(/O7%I>ú)>-D>U'((F,9XaMcFL63).PH2&4 #.>G*76/1F -)3G0*+2A<J,Q=.7Db0A.(>)%D! 9õ[4yG&6J,B:*'5))T5H%>9):H2S?` 75-fL/8/-BUO; BM+4>9LQQ873$( @9<U_J7"#&)>3eB)2@I> R$5H7"@SR533)(6$--NS'?0*=NV!E8= 2<JH@3S+ 50G86[P-9?'*/YB#E.#J#9 ?)K996 dQ†EJA+\;M$16U2W1".0 <@E5/)4+`K86þ=PC*NU/L1+.4M6*;(#'3$55*/MR;FSD5N#C.87A1HXq'!5/l_ÿ<HIb2+ 6Kq6C14UGW* *G)EN(P4Ba!Y\09>Y0.BG*;%*F5a7@:2N7-4E-)P062C,A0%F%L3 5P"1;,=<('&+.9*.!<2,.UD4O+5:,)15C,2Høb5EO@D5;.- E(%6HV'<2G<-<9Y): "L6PS`%35>U./*C)98O,T>#S>*ý4B*6"I.;2S'V&="A5-2$[2A)4I:"-L7C 6[%/*3ó13#NüO ôJ-d=a>a#:L7_@(C94?189f!I,4C,MS:<:;%%7OD:7I<>û<G:7*+23;Z<:K#BTENC37\**)B:2DD3J&&;1=PX65RB9.=÷.9!&I,A*"DG6 6!,<'B1Y#VE(@)76-<8K8B72$4,59"%.,.&+&339S"6(1 1C?6<+VAD*B@3 K,(0B7AR4h*+!I.C>H7Epx6A ?+31)1 ]<&>X5LW E(*.[A2G+);D 5OQI_J+<;=I?S:M!710 7+G $IlT>(N.Me?&. B 7'/*$0"<,N9*B7+I$&C78'3-7;-C"@/"',]E!8I)pJU$Kc1)/Gz5Gü.S/!)+2f6;a5-ç0@/-+=+`M?=Eú$-DB.ñMJSFS/0/<#÷F%!<fN!G*VD35_C" %5:D&GECN;BeHD+11! <EA1ö@B5ý3"<(úJOÿ >*/ñ_$5U 1Q95EA A(Rlm89=+0:<,,84X4C6]>)1G;DfBE(1MIM;-`3:<102H19F%,'S96*;V?$<$ 08#E`A*",4=8;305+C1'!:7E6"^$:JV(s1!*3  MD.%7VV2@KPQ><'/%">I.**3A3B B0;8ø?Y.PGkr^;?U5#Bo#>',UC'#F85=*48>.LO(61BOC;b?+:)-;,H.j6H"8;+:HDH2 1+"*-)7!%+E8MF=L*oOHW0(5A.!ED02>* 382h2l4R3-@Z;SRLPJ"G:?16.1M'P+69^"M)&MI'/ I.10/(JB30"8702#EO9IY(?!ÿ6+3"/,063/<O3+2K_Y!;EP/+?@0*L4+H=3F2<E9!/264L$;;ý78%R,<:JF/5Y~=$()J>, M6,N:01+ ",8CIXM8õK+F9?UAB/4GW-!'PK'@#$ 4H2+3ô42mÄ<35>RN*'ZSE87@+%p)<D?Y'._A#jICYF<0E;-5=N'2]bC?X?) 7]TMb2.=1F.B<&4^&20,B<:AL1B +6,=J&?",)G)&>35'2W11$U-/9(^<DC%;##G08,?#68/:M&/2"1iõZ>K;6F&&9']9bs°‡³xmP(7>J/ ?<BEE3 6$%C<( =8V4*EPIKDO< LM&l:11&DC(!%:=/0m1('-Eiˆ!Bg%F%3b0#6 $='A(D (=OûJ?/'9%A@WV}IB@B#8IZ>/B3)A(+H?6/k 2N+55@D'.,!4M(?=*); +,+5>3`4*&253AF@/22KXü&&õ1F<.",IS0A+7VMF@&-!HF;<:I2E1fN;8G/*4:21&:9?O.6YIMj­²ïîÄjl8B,3YF(%%[5'@A "O,!.4g%[057! (?6ôKIBþKB-.6ü<?>M*&>#4?*M7$"2LpJM>,@6RP0HI792:2::Y>2 %B5QPKFCI8A_.L[}8JLFl!3:a"=AS#3=IKCe6 n=%0Q52'&=<94.* 2?I).6:2W7>?,&22Q)39B"M==A@BE 52L@%+Y/K"69WM-SG-1,A3I 6I2-<7> DK)1 4?gF,?)s½ÒB^Þ‚fEG"O*#1& I5(KB-/19+=K%7(6^/>*#3-eX#<.A)2(Rï-96c%E0R; 0-1EH"C#(b '"++4.I8"(647>$1>61 DU3G=.28RVHAZ\]~;_MPP@:-HH6U<)./8;<0(-8!2 L+#.6&4> 5,6#5:ER6Oaa[QK."2'!2ù,?4b#.F%L_@ .7'&B/(,276,S!8ÿ;8@DPV Q0e>;Y 3 ÿj;a¯K=ø{HV:D&L8+>, T9;7@/U0S/C CF:E;(%&S'!K,!)2J14L J9'`O! >5)/93*G @4)A*Q) ,$9;K"  =&HM74…AV+HŠt\ZR`ZXZ=T;(-9,D$EG768 Hr/BI 9.&4;7BK0*[ "<[1( 8^)9T$:gå˜E(37 =3D+4@@J7-5$/AJ>4))"/"/.:4!W(4ù7A48CW,@ .\97‰˜BB;4JYKDI%Ub¦ÔóÚwip0(D"6N"+<=/(<-E3?+$>G>+*?(:C CGO+.&$ 0:<* UAEK1751K"6>2%b5LN"3Q$,0,3+NA73#7?2J0-,B%#T-,G.SkQV‰sz¦‰TM/kTH7R0-t* @7G;9F 4<SE.C13-F$N<9CI 5##I-<3C!BL0JBŽ7øD;#KR+G/;UP^/1'J/B'!;B4H<&9<1A\G3!.$["8S@DEr’Ò±œ.->ÿ$P/]`ªÃë̯mIN$AK88(99]CA/G#8@8/6%KO!,6(B$)06;="P(7="#6/&@V2 ?1ö;>D:[P+?7+"<*QF+*FVGL(I6(@6A?ü'.1,L<V\qbB_Tz•˜}.E6Ei(?6=ZW*7<GS8^Q6$([h0:'=T1E>I&/- 5"@D/8!>"<BN <.,G 8eŸ»T)BTI÷3 C$=6 +.eH>+ü /,2;3 #)CDEKM-S!,4 'W4jö?ºTB.Y$6]))I.‚|g„}701$H/8H%T? >4+'#F5pHS5(HY8L<*.4*B277#8995PA6$K"%*@Gù2<88F?6.,?$D:31(3.S19*$($52 ..?\`_f[|¬×Ba3É~gAB=Dd4+<9&(%2"C:5&3<G0.:$Cm>,`4=4S1@4>4G2O71R6ANLT5b'E ##F=ÿ-51S4=0&-%,(C!U+P=(!)(F T4K7)&,;7cg×][Ûn&I7#G"5>pTˆ=m,;'Fo4/2C(H:û,3BY> %"&C.%?_8(,'D)BO<5< %ô IG,#B$"V;!1C)U&C7$6 @ 2-$5@>1=(:0D+A,/@kpK`I]I\NŠŸ­’9©íô’9E89x=&^Y'#AG'.$6''\Y$WK)\N:>3,6/D #!80."ú496$%;((U&8^U:K.2;6].è/;@*I*2%289.+e7W$6K0255SQ5*@P(&OL<3VI=-Vš*¬\<J/9*@*H-@DLPEE$2'!#0("# C.KB1.828-,(./CI)559G:d*5(L2"0$Q<=[0.G8C0CI-$#K&8'.J!7CF1/+6 I0=^rQ(SZd;NGDhE}µv¨ /÷h¶Ø{IY.doiN72F$ !;&O.'5/ E."2_S5/#7E<-0,PK"0!0>K2/J0C=$91D!\!MP-;-;<?)T[. >%=9@0$*='./CM+5#44!()=S-/H›²¼‰,*"$:6!H"M 2@5308['8A>O( %+7,%5.IûZ,VH/-2HEP!"4W!Wqn#=E*-)!9fW)3+ $&0111\F07.T@W@*@223G`6÷+FEˆzSK@_e€­Ä4‘Å\zù™ƒV:51>+7`+ /d%4P9G'PG&-*.D3 0,/4J>B(#j6> )(ôÿC@HAC@8:0 6'"9)<<11P(-AG&9<E''!#+ü@)._JSP'5 Q S:C1)=[%*8IP$Bmgf<$V>I,K3I*/CF;;U)1"5!:3:@1H.$G-9(+>,?U6UJ,<ý5<Aow&8/I0&*$%HU 3$6'+"--&B%9ù-1@)71^;(M '20*01S{ƒi)IP_‹’߬·âïØ•lb]IN0O.@T350MA2J*L3;;VL,::,23!T-);D79;&^é #G %Z0UA:$?ND?$5(&öA/>7 B0`&.0$I3;!(B(-D:1CSO&,),.4=7.9#7>O**<R -/ 6.+3-K57:0M%;B7+*<6-:H8",3\2Mó$YG/=%;X+!Fg0-)1a<6IO0 -#K6B8h(I:$+.+B)D3c+6KT)-%;V@L?)0P$8].U%GGeWVjhY§¥¶'#³ÝE±c\eP1, D@,1R-*R%*Q<8< I9hQ,296U(7<%O2J>"^H1 " )("?,B+9?6.M0G?>D()455 , ;k21- -65;<*& 1+=JC 4;0$3C\E"@-E80%=&%4W,H1<M1:533 E2E05C- =/(2.R-VB'R*4&I*+)<-D/RFD"@%>9-OZ3+7E#+'H>*.<<<$A"<oB&9,)P3.>B]40N!X’9HfU‰«"¦YZ‹Ô¯e\0/6A?I*H.3#<B.A[9E29MT5?/&&2< &@$/V!U5õtGS= :mNJ6H6K6D:7- :*".0$@ TW+*3B;.R;6.06X.-Q9 1d!O-EJO)/Q7);$')5(LC.(HFU#!ÿ;1I5%,1 F*11U.I$=)-X:[%11/*.3"-^_[4//2; ,c=wT/HR>T 1E /1nZK3_KE>Q.K*AN1J30@r7x]§ÇçmCÈy›f}SX<1;2B%:T>+6 4Y&B(#E EX$'6*A3D@*^<(PDS%/",AM0D'B-+#3E4<@2/$B5Z$5 ü@+*b*68T @,.T5!?M4*,A592I9--5%:3!AG(OeD-=)/42@>-/ ?) =?2"EBA#8 OA9,>5%6P0=>03ùY('/86"?E7L2;fTN1O*=\5O8)79CWH:H:  $I-8&G3D3&W;E=@<>-"/8?0.:7RY-^¬y½ËÈ·Œ‡Yˆ]S=H2.ASTC]/23&"L> gCbD5W_?,A.&(.,$> ?2;+<g"7ëB"L8B"-"".+J#8.!3I3h5"%%>5EE)96A ú?,,N)?B+$9 0A*()?)731V$4W&T<E@*SIü;+L,g:+#)<4=M <65 F.<<P<D2-J4>:$ G%;8:,1!:#BR/+'5I+zBLF1A\$*$ =J9,&9>6TCZ) 4D<&OCKŠ@7…m‡£p¹£utzRQ=68)>%PZA%#ÿ8D,G;rZ7D(%;KF.:IODC: *XR84#X4E1&HA)$C;*-=+!:$#g=. %03N:0G6.H+Z.B3?(91b3#2G&K1L,/=$?;6 +&(9P@[c9?4-<%O/>$G="M+:#/&8?)4.:>?M8õ[%(ü;-:FD !(39KW"JP@Q5N)(-A(=6?N \+1XD0-&@,$=6D35*?1Y\.=?74[YBX]c]¤„@Šv\R(cTn)KQ==)"K#*"(<QfLMGMF&6P%"'8;//+(2366*1;9G&I$,Y*%D+OJ5(ñF52">;9lKO2+.S)3,!0/0)1B-) ,GCA[KGU<JXF*+?f &Bf/)6:5+B6,>=V9=MK-1* 17'h!5&Z M("Z)9$.Jø@'9N3^"?ð<NüDF+B=9.$% ;'$2/CF?87V(CJA9]*LJ,.#7S_6JF8=E2)a.`^`QFŒ]‹qk/LI<<c2J!Z08J.;.9=>DG8+`W3-E1(:?)7,35$#/!)#A!B'.38307dD\O+;U0W=3(/A@8?eFh?')+.$    H8#: -!03G"K+&B0?n·¡ORME<%2B2`X DAgDA/6j&BL CVH4 1B 387,@6Qô-, *997(4'J.=1B8(F%TE29$Ad5.,-'7=V;+$I]iO%HF5C!-)A,BVR5TnI9G!2.FOXRiF8pXC0SZI.:G6^N=&>(/,e/'71<Q=1e:ü5JM75!*@*&?3NQA_=I9,X>D,#?>9D\ G5OC(6NY+33'(4,C?4SQ7:L-LA:-/-M C*0B9%[ÉùÅr:H*9123$,SB_7Sù)'!(&G=2)=:#)(X %FK;:ET.?]?>/,;-X1$ 7U-J='F"DH).Eó<A*2!9i @9-*-%;MbdH''&51,TG'I*1&<:P?44$w8%3T]O@MdT,CG .$7I9?$534'PHS4.-K8AöAS6.+;0 .L W!2;Y9B!=0;4=''F')H;'9(6 9V:6)GNCE+) .6$N 8%6C%,5%D #'<0C/3= U%%=7 ShG“œtFWIkk@GQ+U/R0='F2BN>.3?  -AC<6;;>< 6C1M%&X. JG/$^("H8"K?99-c!L3M 9-SB,#C9$#6L "?f:*6E,L. "j O(lH8:?"F;'O0&R1M@?ROMG,UZ.,SJ(%5d&LbD"(48H>JG%%6G3%%;.S7)'?ý!<Z'-P302%.&@D,/#P,746C;)R0MdVG8D7($K) < 9-+dSG:=15HE V9>MU`RV{ÆÆ†i0A:9F?&;D)'I% ,=N"VE)T<.=?np+99/ :320!NM&&hA02\,09)9M.7"5%850#."F/ :3WU;B"*<!$A?B]& TZ.BL+7/2a2K3/SGS=)0EK5WS">'R/SEATR'qKH!ù.%#i..-&P>&6$EWDAC=# >;-4+ R25/W?:C8 E.1E:*(5,^+6?F818 &J)-9S*.4\!;*A>=Q'**1U040,F3QW¤ð¤T8 :!3BKAJ0F%JP3/=,/'@J C'3+ <4uƒ¼Ø`>),B  </+RA99!C '(E1!:NB%;C -'7.ß@??+7Ca8@4SA$/FDø6H%& B:@F4PT175=3 WK-H<8V)W$bUB S3=V,N+,3;626 0AAK%@86A260<<P07 6Vt?*I5)+"B5&-0?-<+__þ-=4:L<C\SH D. .37FN(/)/,Q*:)8*+ED1E<?,/_¦‹W$@_=A02 (];@'6A ?:27K 6];73:6/dÁ6mô†t71%3M^06f>FG#7?,<52+J?FD</3$'ÿAG22.)RW3<*(D^%CA2b71'L>R*<7")]SkI#2;>T3+] 7!MAKCHm++*C*&/V K+(CA(C&P?H? 7"2,)E>DT;õ1!;&92'1(R%?+@7,FMR5$*K5iUD.H7(  1/gK!)KD 76=A6=AQ<L &1L5F YfB8LDE&(:KM@Fi!(-#B(0BC.(A/-$0S+\Zî³èÈ‘òVSME!+,ý'?57$N!94O'*.;.(;LTU %..-2: '[2 E]81?L1:"2"#S$A\Z4^M=9I4,:&D-L._?CMu6=UN ?0)7% /7.6RBM=V @÷AA@@=HT*H<(6M9HOSD19N2DF1G-0H@!e+#(<5VAEY,D/6;L8/þ/ :9:3"+PO.BCI/N')6 L)/DQg("6N7.84Y:93LJK<00.":2l.H7)ff,÷W‘ï&¤K:R(<,6) > 6&;(M-/&20%aN)"&/Qô#8D9ö "E#7#,J)5?(2.(G.&&B;Z#7'9'QS*7(Q= '(=B>(0F:@8cD'JA8E3(C(,(O5N(<x8#F#<úA*+$\6:85\ ,@YlNm("),@Q"Q !/GZ LAC&:66.@>J6K,78&/c.R@?V.!0$:$Q?%B:B>!BF0!X1Lwˆ5%J`FJD2;*,=+$  X(T#2$%?+ ,*;Az2cY>½hX"#UH68f8AT=A-< ;>D; :44(P- &T ("#+K,37U->')DBG&'3/G5,.c9ñ> "'PJ;YT;-/1F8LABDQ"!@'+  HQ.1%$55735H9".J <PHEQ;D+P^B&)+5=D@,,:C2D: ;79K&l_>3(9PC=I,M ";Z+)<.Wk !Ae1'A2-a,'-÷<;$SC&ûH=sHa!40:R(*"B/6"K(2b%BK(*0'$?Aa6G07D:yýûÀ×ñ1Q<*U)R'4E[;2K +.GF'2@7YE.S,1G`3*F0D9+4+ .J 3@H5N/BQR0F+2F>(%/,'G"Ea( ,E &e-":%-4ýL>@-0A3;0@?.>*6SK"9)V5&"/F40;E%nsD€s6**<89'6VNQ„ºK.!5+<D0-BJ%G K ,I3+%m@MR:3 -5#<&7+B/\H2(B/J2K0„B}qD4c9"V5-?QX/;yH9)!2$E/"+`7~ìmññ†){=+.D3)?=-#B<$P%&/!RT=V4FþGR5TJ]-+(4(CJ(83 4>09LA07R'\.?L42<+Y,, %BAPK%D>O:+++T$L["?18.#696U+S-û! 1"0_:9!Q"801'%NIq\|<SD4 #"P6?r¢É‹(!E*&4B:WMH[5$F94MD,T59M%'O33W;PM>AU<-F91Ds9x†VQ,>:J35GF19>>?.Hf55E) @28?#fÂŒSéäs$6I<Y-- 0+)+T)+)*:24. -!-*67*3]÷?@.@'6?91N!G#K+< 24C76 A@QV6/6M= I>=R+OJ-V.+>I=($ >8#VD>L*\D/c@7_<(!4DZ.%;L"HO7)?>6A-&L=SRI;Y: ?)C .-1"n…g0313/$$S@4(*7THi4X<`;CE< . W]2}I21Nû!$0=CbNt;OTX7(2B+8)[ E7M,-O8QaG 7BDHs»Ü湃e:F8+"-&8<H3B13P:$H95@E:/+77ý*";F&4/#,E!9&@-1CE(4G YRB9RJjROu;/4E,CK50!1G&PN0 /'8<H'*C?( KIGI<>B+*,**(*I%$Okc\rO#*>Ef3.EE61F; %*P.M.0L350.3ED1N 8$VE5I^0?$&<a1;hb6XL9&$\èA¦%`HA2$#6)('3?M:&B>RHES5ZZ4%.!59i2EV;B+2$E1[nd´®z|.h2$"<+,H ,=3;55M0>*I2*.7O8)4&,6K60KE$0,7OSV3'$*.^rSVLJ*B;0 )#\96? P!5F;&J9;+3=J;Q2H8)K44M/+3&:mxâV< 92?#DS)":G9EH,9K/%b$!5%F Rf):%?.6+64=JKBeHF'K6I;b@,hXcÕÙ]=P_P,4/G06,34*RcFB*p¤´03%aG9B17I:6FþU/3K-a?•oBs..H>4VE@X7C-%2<:6OPG0+BQ<<@ -%; ( 7P--+=&$>3 2#`CV(!54J4 ?@7>&!FUPB[?C6JU<LM/: >'0U331G=7.3,2&,.I@&&]@ÍqÅÈTAa*-IýJ/R;ÿRR_,9N%8(0("#&0^91-AE-5 = 2(63@+4.!76DhOZ5%S'CgŸ®W7.4I0 2*//#! 'AID! _1;—¾¹2?9%]>U:P(/4CVA6BPEN j?6T.6S0S*BEFù%;%q/D#B*[%52S0)Q6@H-51&R; 7K/0 * %>*@458=3<D-E=N_4_)Q>: #92MuM2Kc.HP7BGB5U3=H#Z0O'+W+")J95\6(JEíñ€­9 ,2?%'U&+$O'91$MWY&-$2"42B1E-9R'=>O4;'T!.3022#`N/;K) N^611H/"(G-N0!&ýY B06>9+/_/qZT8%4B-I>N G:$hC(/F#L2,G9- 3(5_R%N9I*8.O+%~;E.:2G% D*/<H9'1=:5'*6M1N+&G<%*!1CN0%4HL!#?NUD4]J1=L,5L?#=åO,,K1<&FM&)S66JQD13EB' 53Z`úîC'@ 29;'A%8TYZ? ).JC744%<+F0U#>DD!<,Mþ/P,@:'D1L#;0@5NE!a$" 6)#  T7J&F88O37+": .ñI)6D':$3/; ,d2/*QUC*+"Y&.=>AnN"/ NH;_857?JLü5NJM=+B7/ý>1OF!<49? +"G@LVa'E;B'K>17íJ.>6Y'&$/ ]4!/MJ:.DR36B&,=/,PZZ, <&6KI0KG*6!bPY:IK#^7+<< 2J@9)gjFC(0%ï65L:*)/.=9/) R)&0B&Fk'üS:<IZ*3N1RS(  $AN8EFYP5'A3KW,?1:F.507H:>57<'O@;)N 'J0;=2 $]IŒ‰µ•Š\,6])@-49,,))Q/G_4?H$E5IC"$!PO(((!2?.0)H2AEC`@-4F(;;317b F*DM3W>EHSG( O:TLI'#L/'F2S> /+6L6S4N%G.)028(?3/<4$û>9'+ %*8Hs_LC1E-Z$,Dë#.=0(C@û;59;+9:.F!'5B V<=18>Q>O-CL0KK"'&H1$5>$7=F%%+5%)b45(F7 ?&R3VE(<34B:0A%Oo[|ZG2J13"*=L<8@(H%XR+/.M, "(@.h2@/J<(2C8 BG4'7E U5FR>31&&<,S"L*!`=.FB539>CJý.;Q-KG%7I^.3J69>8#,3)14FI8*@):L$;*)IE%0'%&,*%L@7V77AQ,>TE%E75,! <*7'#L/(L+%û-ÿ+NW<21I8+#=923P2102MFE1I"@,KO+/G.-+=DAN&;RK'd6 + !&;'R7#A,&1JGG>"XE8H>Ž“6YA!<LB"L56\TˆD,*226 à )C8;-4}B3%L$%C/&$-6*$TUFB8/HD8+2A24OK5%C@ 3X*ZAO&1#I9IET5NH.P,@:F HB%(1?+(/8$4242UZ(K>V:X<$I:-*]!J9-, - A?J=,S#2A!;6EF&649>95M;E7!=7-T+AG*),Q!512*HMF.8]>;5P1N4<'R=)E)83==:037+CA(Ra*?[=%&)9'g<U[';G''GR5/BT>M137M0J>'"WX"a17)J0,4;L40#"=^-WA*@n/64=h\B>S1"-)!4c?JYZPx??5M74J#;<>9'>S0?*-K2$94+(&0W=Y?Px=,!=N8\<15"B+J5 3:A/:+BT'$( QQ VMA2D"J;I&8+-S*$7#*6N):9f31J1,72*;ó; 2þ.-<$, 3=C02G/PB6*?)*'5M>2I**`hW-vGJG_R7DAL8+M:?/'6:!:'E7*!<Y'QU%R/*6?(/HGZ.DC,Z=<4?:B<;@.G:H/EIDM,=&C$]1%94pTKHR07FLFVK '39%G+C+02N3B;9oN'84I%A)LcA†M-(OC027E<+&!2&,Ci;E4K' G"&BIM? C0MN04< ,G\-&N'"AHN>N'72I@$I;[);*>JE3-'+L#2O2VA3F3MG.P6e %&?M5"X)C=7V)9l\fAA,#aM46&?$PW(CZ #hB0=H5F60R-/(50N-79M.G!'9$O)$3/J[ :5+,_+(5,Y>?S³©u„C/55#9?-VLF&;F-6?;)<A1<[*^>W!'0ÿO7!M–¼jo+$AM.ý=/271'75#%>g> 8,4EE/743D ?))A 2B=e>HA+GH= +2 1/C"ID%81&)C-&%Uø$<5AV(J94/&>(*/#?+Q(8B6@Z9^&Y+A0<)WU,`;V;R*,(!A..S ,B[1.5o%'8I58=J) IR&%ÿ:JE(O>0QB%û6>4=k&:A, 96HW&†SR#BA#/;"8OIF;=jÑ€ÔpV<O0 "VJ$OJdG)22Q:VG@Y!4H#AY09(6.3UK=8Z4:0:**<&3 06686.A>DZ3+0&K) 9.)/%ÿ(?GA"#+Bx (%&6 A 0(GI6"%IH%,==A7(@2M1B&*W.ekK A\<. +*-1Sb1QAB6B(U)W]y,I;<4m7!9*B8>PBR--9-L4 9&AM.59=/50P(CE!C?'Y÷BFE6'2õ<009G-'/GHD*L3NJBa¥ûPŠHR]EaH7g34#.G77Þ*W1?&L4.80L+A)$ÿP3dDJ=B%'.00N%!(2#(AE6=<G#6L*-8I5 û$C!8E-DF+0(Q"7[O87P@"X=><?3<?('%+)'4g>*0F8>ÿ4$;@/7#(GS'1!ü6 9K"Pa9dY?P<!a7#6OH>%C 5R'-%>;UAVDBKJ1MS0ZB>!;E.D.;(!8&8F8(./:2G3,=\$9#.'W&?(1PwªÈ*útE&E63=38R"A6H=N7#L2D-C:CBN7?28<0)@BELE+/8/.AGB>&H CQ;#1A0?6f(3-&ü/?B9=FW"!F:6T"E0RG"N#L?24"(3.?)51A@;<J=.0:6S2C1?9$C7<CC0K:/H9=F4C)K$.BH=F5%GD-O %  I(# B'3_-!'".)T5F$-0+4^‰>D1 H+FF`31+ýC5M(7-')=AVX4+J;E7-^0'5=mm¤”DR\4&)Y-c:3%ûC;;GTAQ1 4!I>-6;U& F)KE"V:40D#K1>E<,9I7 9>&#7D8'E,F8%W("421=*:%:FM;.%BK/17C;!{"R.:P7F;;"j G8F)D2T:[4'N>$/Y-BN+6*D>P)'37Di(TF1L+6/0[QND-#C5-651F3I4/9;, H&!HS4\I343RR: :2/5<4=S4(9.3Q4W/)#"olgc)j.6V7%*T/^zZ1C901>1SOmO<C%545$8!#%?"5("g&L8W37I-/C=72B%"-ý04(>$1!8a*=/0)! S"92&*<W2AQ@9 8b/C+%B"J2:36EH';S"0"F1Eþ$$AD1Lo5:0N%24/7-T1"r-&HZ@17! #&=,;4ûT,:9AeqTLP/X-J3JO3$5>5=2$8KD!2Dd1WK<8"^)?/?9L/<583@-$;FH1ZQoˆp;9E><Q4;3LLE7L+%G,QQ&/UER&/H(>\#%CH!<2X$ N?)(81I,9384'.óG++!# W] H6: <) Y./ I >O/B9/+K C, <9@F6JHI:'R7GS:7DH*)Q)#,÷52!!75O<9#=]i/&((/F3aaJ*+96,3CGB(&*f7< I,@##.@5@@ @J*WA3A *!71H!4FM/*285@n4LL: ^&;,%JJ K<:+=7_B<\U’m_LJ093E63_,IF[P773aLQ4D);.ZA6> 2N;76,-3j/Cr)T1!#90V!>8(,H027aP<1;8B\(6J<C:WFP$R$8E$B;?,:?Xù%((52æ(%KfP<763&8BD%;R<^.[<*6!TI~II0NM-A)8@B# 9/"/A?1OHJ4.9/')41LXI28)B$f(%-Z),;LE6)T33A+4.?XC'<,$\3~4-8*$+2A7Kzpb¢=<1/=CU;L!JF2=7CWG> q!Y?)>SE$*/+&=X_= 4D6O.#9= A9/2W&&+i>=!"%/SE)06@?398C/)/33 JD3B,%')4-(#=' 7'<?F+.F&F*3'9O$JO8#')LE:LQIM)-T95V641o8A%@< 7?oD*<'PSL0W<-K8P3K!?4VM~F)D@JPK))7--GC†A-FT4;Q9AL/b%"(;HCKJ[%]33,D?:H0Q_T{IVH)bS426.RJ)8%;9NHú,>+0%82E(4>2C-,;'K5'3(L0C'9:<%:2'@$=  !!06/G2"E&>FZI24>M+W$9+*95)J"<B'(1-:+ Q%c-8P01A =3@a:A$;52==H2:L:8I@\2!/$G0.Fk\'-=T 9.L*\9CN*L`E' (: W-84H'C$'<%39#PI68%ÿ+Z@K%rNF<#:1&I!&8HM9*FNYD8!)\7T@Y.ZVBIC-98N6)D'"C5U] /O#2;Y+'($4?A "-/*R/8`7-X@o#4':'&5;K.;A!'(=</!1!+<4%V/E$'`)>R9^þH#37*'0-*9W3)=S]@J."T,!#<-!B215OB0H/O'S*4$%FNþ* &.L2/Sh)*:I( 89RZ`T>=Sx?#%/P %AHB<.a754?0@(46=4<T#I">F5C>9N6CéB$85A40>,ø8+]\&!54MA$C5JC5</?>DA;A,?8+ F5Q=+4M+0,:-F-c.'EQ2%8,OHc97>/"T>(NB!.888- .5!<)o/K$/ F' 6"N*5-=ü<*4.ED)V+I-l c#\)9-÷%  D%L>/ <D,2H<,þP0Q74WF-p4g%:IF<3*>9M:(Lª•Y$Pi89+)9$/7PKQ9!Q")&F7OF4*/G/.[3JA5YS$I$G:)-^ ôE&=ò (0:$U+,N8KQDFC:G/*Iú9A5?.0EAKA]?CE8A?!R)L(Q1:&UNM=K5D19>:8ÿ2-U5?(XJ?GF*,ME).K27 ^:%8H /0K3A,8.?>*,4A[d?A<M,34=D+E6%3LLE*)',1Q 6)L8N4:'G'?cüG3M7U6U&J -6 1RRP~i:1;@-3@'.^2MA099OW/'@O(&6KK+D0W>[AM0+200?2:.0M8g6(O %+L71D<?VHJ?;30?9/J9$)&:RAb]DZJOB-P4<=RP<1gWMV&8MPKO%1/,A:7U20F7?4ö454;J2@6D'1H363.DL#E5"/2CW#U7P76/'!4?CCQ+/=9M/*;4&)D(HN.B'SCK?8;+:'G%::L5H)'%7;1);R@N2G73)4 '-:,(<)>.N#,Y(]48(K/-`2MM%E895@:3J05;9LC/#*.5I"L?5(. 3&.,S#.?23$640J&;>A$K2LV9GmQHJBmMpdAJ:MJJTA B'0)(22CGA7,/$ !<8!>5+8;N"R$# 3  R*U%.C0^*(þ/N4L6/)A\+BKBS<6`#] >*KN0 H ?2?5() B4'C?+."->4$97!;#%M9;8(>,''5);924)&$*UB#H;L@>="S+@=3+?)5J!)M16H'.>JW:+\/5 .þ%H"+XYb'J7P:Z';]GAG83!M>OgE'<_\;5_FMEob6Hd‡AJR=TN÷K)TC?0(7!2!5/'SH-0`7)$þS,".ú%/Y5 #,.,)"%+  "8ú)#.;X2 6I&/CG)5* EA137 ;"?S4:;^/D%!<8,3HB=#2'X#8!VHRG9:1/g@8>D&5-.0/%H*H H4N:>/A*)L#,"!)&A07(-*4XDG%>7"?47D/>802J6$8[,3<9\E$='`UI.2+H<45T^3D"$O6pXœIŒq¬`bf<Yx€WE,#<2H-VCI@ R&;(Z*4N-?17K'<FL:1Z%:þ*E,._=12UFS)G-E4#/M..>XC11KG-9D-4\< ]O1@> 4/ð,L0# 2.@4_<[9=9G*'E&;G.0J=W>4@$%/;;7N".6-48P/I*RT+d_+,!# ü-7<Q,,3',P@5"PA!B,'`"(*<(=<8F7O2+ D8<2Q_=O:A(D5S+:8[TB0qU@x¬¯¯æÛš²€ek|MA&A+3JN4%>:*=I/.>O=',9JL+þC(TG6(!C2E? 3)S'4*E,29=K>B33GL* )MGA7ESK@,HB-$AL%7<BII$ *A@';+#'1I<"1%@0O. 95K`!9 5.B0"4M*Q;6C;/NMH"%.>'28<00K/>+71&<9þ)A/&:?.13"FR H5i /E>@S#H4:S-):= <6N[R:sFLfFU9F(=/ d1H-:%K.p¨Ïn¥ëÞåa%à°ªmfP 8I3.%2"@78G"[+5<CL12$9"!H#=...L'2%5*264->1-O'"8V,=U*2B$-o=#.+1-9V%#")%4h4>:;TJVD9&4=*f?å[*t 0@6,C?/=1-!D:(O<,4*>U.AC3%1n;JT-I<Pý$:"C7-$07G1<8%,-/0<B)3-<* ~=971$<þLS)3*Y=^E8T?'#3#<9Wid]iX"D?"C/%$M, 5Hds¢EÖ Ë › 7e÷!Ðb`l05DW26 )6&0*5=A9*-E/F8%C363N7,";6SH4P/+D.4K/"#(PD/ ÿ?ÿ000>8H81&`C 5)):lA (Nt´ÜÀk4=7(ID-5\4Yb. @+EGT;7DB18%a)_9VE]': -:*0)B!G2.J?..;@/>4=4I4EV F<:S&JPXGBõTA)4/3=(=:nqFKKA%EFL:NYaQ »«£˜O^=m73R5<APhw‹è¡å¼+$ç´ 0¼Àì‚K*0g9HAE<l$JD#& F'<P8UO8*30O)>,J+û&Z/#3.3:A3 C* j"W-- (# +0C"$WE + 94X.<%T/AKg–!Ä(I†D0 Y#@1'-%';.990&,=@GC"(0;6(&>3%R`!)H[K6 ø'-1*28þ77>H9N594SR 296SBýG+&%F5-@<.$T S3C&:/<LXE@.>'1@7i=6þ?DyÂ/#µWVHP Z=%R(38XÈ !Ûs+Tj0! Ú5üVZ31; >;K2.#&gQI49 W_K51V)OL88"  <A/S'Id<"1*.RO*;;*!.+ EF07M%1,'û@!%22Tt)ejINUE2YrýÎîe<F K0HI? = :&7B2'QL)A=52:*FL /b@6SD"6?$4,;,6I %9?1F N[_"4@@4O#0!+(L 23SALO\>5%6-R3@c\%'/:ERP K"KtöíõtDD[7>?./(3Poy!ˆ 50êE~M_t8ÿ !¸¥‚^NU+P2?4)8*".: ü'M&E,2K4=HGÿB5 3?.LL(0F6I !#6H&Gõ,A=M8%B=2c553)S0L7H@%4R^A]9G8PLðÔú#Ð&7<GSI14.3D5>.!B3=A#&1þ!!83*FR!W4,8B,8!L-2KOX?(O,IE(:"?#7B@0C>3d2A7EE:8 =V@C:[=,FA*%1($:!WGF/$'?_b–n5ÿ„‚/U@%5M1,%} 9 â i.–S=&® ØYðƒmŽKT*Z@60C@@* 2%& .))$+8'>$7Q?F 678M)O-3:<"I J)%6*3 7O,(GQT<d*<3,#B]%F.UPE–¤tGd&Iˆß~ racCK$/D&*R>,H245?1%Tþ:-/))245&$3 -F3 84CO"TB$5&)n<5U9^8%0<5)JO2%$JI<'Q<1F:,>0M+"3B>* %,1)30$650gBIz¤¡rb48>>QTVEFK{©×Ç/dd'|ÌÛvÐó{VT';\M?c@MF 4;A!3MD6! >+8'=/ + CO :"!) <"B49V!41G<&. 1-0]"$<!û K" 0 UR6E³%¥{ËP?QPƒ}IVN%B8A\ZF=D&:7+/(:8Bw&/FZ0"(9>N-(<PQ;? "*16bZ%>pJA$ <A<OVY0)H)'I+"2'--BSACJ?/)e\9a^58/1.+CD;.*%<&G'I5>&FMdYb9:t>.= ,C?5ƒŒÓ +é O ¶ ­™Hí‘d>k>+G&-.hL8 @3=-K[(2<*;93T<+5'-1@'I2DG0ü<>#3_3)÷6:S/TQ%$GC9$*41$FD"QA.RN.;8´jY?RsSJ<l:P/:Cø8985B"8|E1.&&21.=^I1E2SQ'[I`?IR%7? 1@.$K25 /HE5P%1.M?(6N!%2:51+&L2*< $/)^FRXF?H7/I)15Z&-3G Q()Q\4Q.;7DGš2eIQ23A*\@s•‰¾Ð7s¾HÅÌ{PI:i$g$88-KUE21&6/T%G4 *6  B5X5H53VXL8)12,2M03D# ! "'4;&!I"7'?.FIHJ"+6;"$ "2K2W›éldê¢YO5-0X&P>E/;AA1bM8.DO+2A;05'06,SR¡´†t\>-!:C> #& ):A+ V85M?4m(E,2&*S&E5X%+<]R"5VJ^Kü>I:1 :S-.N! #<3!5(95NG8J~SI/"?f=G9A*+;PNUgm˜Ð$ð¸¡|Xg6Ef4@3TKDu)6(G'8I+0=,0'@'A)7G<W‰_jCVJi9O&L+%*5J 9%0@('<# ü #K, 6H&Z#!)?Y@*/%$$*:BZZƒ~UUL@/Y)UGD# +STI:*<U/F< W?4"-@#8UZÑ1à8[:(/AC<;&4 1%*%( 5& Y@?QP#MXM-6];5 "WG-FO;P<LD;7DdB98]6ÿ:23" 19:]:6NJ:F"E5"[H;3  51K_a7Zh|ˆw©®—¨n™ˆW?GZYQ462N N92C:\&%E,4>!==T.9J>]Ξ\46>:,+& ( 0 4 )4O3F5:5($6#:$;< 26 X$Q#:#A53C^T@FC0;4*('>"G*1`[WFI=2+JW; /C0('G7;=?P7J\Ìe´ ¨< Q=/1-`%!<JI7 &4E+4)1Q(8A12.?\752M-Fe+V5P*M3R*7HP)"3'2a5D 4DILa$&ZFJ@[bC[&LaVb^IQnN6dE`Š\x_ƒ`/3"eEHHC*495)15:!8:(,/5%(2%$<s‰¸²^A$2*/;M>>.-12*E=q4'`6;F'%) #:F5#QNH;11T5/Z7AOI ;8 7I060?6@$ 2dC3B.A)]1>=Arò/ö¡f!4.57I.188  >IL!7+2; %*'$*9I7#)1)7;_6>(H=?T%U9 JE'B1!+&((O+7)$#.54VV'zFc?;F@XDG3;s;;A~^WWU?*4Œ/H0<!?1&#o%- !&8&8 ;K+8H5SZm—k@E\:'K#8:3!R-A/4"]T "48A&D4$<ÿ 3D0J. $ &$>D4;+.,"C<D-([3*E2g9K4<2'>@,RK<B;%U(V!JH,j\°Ö˜>/+V)a;LK1110?.010L9443,))9 @4A>7A?2.L]8$D/729+-#1L?/48N(RpEˆL-\]')96UK0,6J1DY1m;B?*fOGsW-B/+MCO5;>63)]45#/C2=53U;#)1@*1F?;:G1>SD/E$>96>3@=R"<kE'DEN 1Y&@3I'2.(<,.QB4)$BL`IN?600+8$=%h% ;.#:6 +í/C+kGGLA("(@.TNY5%#0 6&=RSP>9'+B=,LE4<M85.PD)?'816<>*?<,/4HC#=Y2-&7FL8IkE+]J4C81CQ`b1=C*6>H7h8t46FM`3SqM3e,q%,<E"Q;9#m/5($'5#B)4K(9<_…dE9;$D=o >$E:ñ#A.&>'.dCP<'79IJ1#K, 2'6'I:)=:!_<V=?3E1/2/"+ ')*?JB"2KH&,=F'f+"700>+".$3+E]1'BL;B;9"$A=*.9?)h D:VdL593%( 5'JI -M. #0C8,þ!=/-K0-(7&U;84/+J#.45XjC:8YR%gXGeWKJ.9I-1 59FnW%FI[3?ac6<&&6NE:&N5>=A)31!CCM &DX¨ªVDH/6 '#ö%"/;O@ù#-&#d@6-:1A5<C F";"%d(%>"87J:9;5577>KA)P!9?0ñ+-/-Uk!>8úJ( "53EP!*,O@1$YTVQk49@Y]9.3 WI#$*>-33,\fL#&O286-+(-$7H J.@ Y):&3M#+p#92'^)N338$@?-&'F528C:+/? KH'&.@H: > T;7NC:6)50<37DY*<8C<+p:#<SYDFbBH1>ú.RB.ü ";E'1ÒEf ;D<>î.0c)75$*5$Q,=9Q@()'=:L)3H€L*)/.1%,::0!'-HTE0@2:%<)9-,'M84(]<XN #5'8LHJO%47V0r"E7,2N' 33]hC3->;L 8.C;3J9301$.0+J3=H5.62& %#2>A7+!H*475 D@E+F>@<9 1;H "Gv*W-M/U;Š3@.fH*L)G56E @'%2].D&3`5]%7]85S+ð=?H1G.EV,K"L>./%SB#36B/(.( 0K- B"á7(1$>7<1 M]ž»Ra2U%<.  D"%AH!A(òE'<5<C\:1J/.G .$ (M?3[,6]-6UJe<8W4"SK9N..4+7*)<r3><C(3.!9I /R!55/-00J4J2!" GB5 a".!+(18F>+DAYwEg1#%$OC0U1)9GO>?@AF9E)G&:=($0@S5P 5?#&,#,+@<+@=5$%$ H70%\NF!/>2/"Q 3-$@,!73'#,/%#$L#^7-U BEDC&D^‚±sQ)"283+Q1I))+ 412>*;K)7NL#+S!*(9=6B;8(G_:7,/-9=!4*0 2<)"2>?D@6D&þ3 - *><2AOW#G6H2N ,A>QM3\$"5%CCoAHC>10øS8(CG6í3GLE4=-<Y%M3W$CC7/&KNCI9@21F(4O;98CA,7)g%(;*8$(8-N8.3*6-<^5,6L>,0& #3LE*FI':2E618 %/K"(R"$<  /')<-M95@LO®/<3@(þW/:D1"ODD9Q'6* 5^ ,5þ%*+Q6ð:!Jgsm9.0.).D<=1=,#/$O%2Aþ\?>8þD &B99!9,/G=<("0N7*Y+[E>? =>e_&-4@&?JFf6K02-04I#MHI)-(@8?U70P4!QJ::18:/'XZ/^<=/2=*./$DSN-HFFS% D2I"A)ECM$-A/4,(D-A2D-5 $%-053 O/'H=>[B.% 42+-P&;QþD;:B4Y("6, 2"/8E93: 38óB<?20::8,vüBc=! R)]L<E+@C5 CC<PH4? #: 4( 4Q/O@4=<(G>0('=9%3 C:@!"+D/H-D11>L'7YTdHj$O5',?5AA+gE=1*\8FJ>-@9F7%,>PX8$;? >5BLQGC-+!ü7.K4:.*W $H?!%8@1 20T>)K%;?I!(?S`<<D.K%</N.. /-),.449/0D2ÉcO0 '3l2.8 /4K6'-ôR@.'=*F0!%Q!*þ( $2P(0$R359D1 Q7(@YO9@#-7'" :5H!8=þ64 %!449LN+Cl`D#=#0aJ75K21EF6&P 5><'+/=S0@JHJPLP/]-II,.D9<=OJ@lL+$=M&a1+>9[+7@Y~Q%94:=F*E<>6L>7A=28<W7'5"52[3 BJ;19J4Fg0  ü )!"%KB&UG*7Y,<*QD IH *8:,4"!)D NMú#SlG9EIGB2:;<=L=G>")A;8'-D÷4B>((&-#G [&0$ B@/1>'+T(-F;IL"+7_’p@*]BJ "!L97526S-ý /!$6';8[GO:2OY"0*#i.;8UK"HEF=>a@+M]I@H@09[2'NaHQ-Ea02G2MP CV.*('>b8J.=$84D2.>KQ<BF :9 3B);GE+:-)(1J *HS;J&KNFT1%3(29!?)9L#H2+*"/A ,&<6X'#!0%+U1<-'(9(47AF2+A2N9*]HA5U*5C.'."2HD(78])>14/?;B8BQG+,P`GI1A1(20T"Ý:2H6DAKD.;@>2R9)R1-I#M01F <‡"5B$P33!5/5_MA4<H&aK:Us095'<11 G73 ,J86>:R7J83$?@;/62C)*X)@=\49P)):!D5.$ 3d@!#.3[GGA;F4/*0‘K/   ò4-?<))3<.1U#&;þ &#*D +E*[4 -CF/!7JD$"@A2.,*!R$7H?66[KR'65K&E09Gxn‡Yj9*JOXIV9@0=@^"- 0LA;þQ6 ó%3"J6,R5/= G72F2>'&I,VS!Mw6C1c*&I8Y?N$øC;"CP?58&?I%1$1:c<'=I0 & FG55XNF.#1ö?"<#. NG'- #) @=)/3+C2 E95Z (FG1%8xƒZ2<6MHGY<&6:/H2"%9@ )!s,%=00*'$R.R/:< 4K6#E) =/-Ig!.7,-= %WJ):0G!4/XÚͦq?=?#; "#3CI'GAv'E4@RN]P%A<+2 -=8N'?50P:,2P>:"I]J6<B;bX/Jl&;;E=N\C!@?3 8&)" 8'= N !"275 :8H7B+=8.÷5C0;3(.2(B. 32 "$)I"'1%(ZE 5(-:÷'*0!;$,D4$,g6D;>CT+.:H 6K.I ðG(JE*JL\B&4ñ/0I-:%7?3DB*#J2@4 ;%2HKW;NE33EO+J-+1bœšl-C:8$#F*,((;)':FH* Q!AE127')"úø U36""KW>6,:+<5H$;: 5PHY&RL*uCC%#C+ BLH63H!%'%$L)5;4 (#L)4EG4A^:E!,+h.)%;43ED$);4LH/\ (/F:P45P"\"(&T$1Mw&E @K72$]0>#5 V850$8.&%0:*.D83+FB„…@K/&C-18H,DEDDL.*>"8/ 3d$C.@^+,;.V<",r”]T//')+-D" 3#O"B<.K6)*N%>#8?(7/'1M8L<HP6K=WW*S>(1($_*F>#]7?F.0K9HOH$o70Q+$1=CYX'2$AS>A+Z)JE*D1>H13(71(I0)Cf^<(K*7(3%19* :.]-8:(TJ?3?K:F,!#++??08â)Ue<! V=&0:!PHWP,= 1/,VFXwwF3M83.$0(I-ZA4$Qÿ;50H4)>C28BR/&&-;56C%/$.<@M@&)/ü:+<)2h. )"!-y:) .K90.9Y;<!2b8VC!1%:2P 801&PTCG1<|w0-*28<"M()C//HX2R],0 ,T1B9B"06"c=4!01OR0 #DôR,<;#%=64)x,X/'/ L8+$$-DJ(-<'&JUP;3A0$-Q&*:F :=.+ :#EP;|]2f:;ü+=;+"FY=.EF&$F)!),*b$77>;&+V'PYL1 *0" ;5(-&;5//:)< .*3-IE_@(M$;3#$F0/#B/IGG@B*"6îC1C -%<A31CD;b@75¥5H/&Q."*HL,<%%*0A$C")3Np'5W,8?<; 70õ.[ D5;%'-"7"CøC ø(E @4-76:AE+K-LQÿ A *,,5<#5DE&#:7B'(?0;;6P38?'#*DRV<K3=$UN>3$/C8/</22 W`=*$&@30,SC<>'! V1E1=*?BB0+8/($L"+6N&SE8IV @?10/"+5+(.59!N22S0'ZA&Q+=:/'X=7+_(6>0#cH]LA‘jAB>J08=. )(R2<0%09K <#<%;2 -*+);á4AX*?+@(F 6M)"))-(O30 5 :Jû&8@>=," /\)H'1<39E+>ý= ST 2G45/N%0=[,JC>O! =23= !AK=:4F,1&<;)G 'Kj2(-ó=!A" >K{.;8û:"9)"'GG,v8PEL1F,$0WSC)C8'*A'96ÿF<* m/<> 6:6SJ+/?S9.(1B;U$7\+S3 .*@=0a>V,/6$2$?=7VT&<8 3*])[CI./MR,EEA6QD(= H-005E"'@R/%G$2#)!!L0-6SD;/)"(66+.7.(14>K",4:Z&4N4;==/8 *JD=,+.#*5!# H'Ú"8?9SP@ :>.E9?N$ "9:# XMN-34/C(=3#:3)*(JS<$&W=6"#%G65‚9 97$1-aQ%7STZ<9AE2>E65]FD%8N,,._@FP^ER<4 )7K&:5G';K>)7N>J->6$E?=%0+]+"+7F00QNòC[G1,=!(C.þ5HDõ3/" , 0í5>-30@.*.,"-:4;*-7Dq'B%8P70E"<:+88!$LJIU.'LG  ðT09` ON[3:h1@")1,M4C"C4f<;0E*<0!8<V4ø'"-.A/S4/=FN,, 4H51Q0=A/L"C9;N:@&>/OBG&l%UJ41*=D!.7+ 'R"!E>A6H9O303ÜK-!209+K C5-(9*h63$=2VB'J2&.FF.7/Aþ+@OB'î('%69W,+)I2& þAQ!16<1<9<"r4H.@=K:87H N)$ 1@=&Q2:,$W4+22H&"$'K7-9 PMEC(Q(H>F9183)9:B2(:/ENS>*6$E?*;+øE8?P#5BLL%E,#Y@G$8N; ;; 2L%<;=8AC&;>)XWNK443I2[/V#3/;3BIX<&3,E1$:5&@568e4M-<18G#Q0:4956**9!*!17154!''03*S<)^û[)?)((#70+0\!6/H@  &=û]ñ! C"/.),!JE59*>VD8 ?X?7:O*(+ìC-181C.9% =P/1"=`/0Aí('+<@;FS,4.7(']5ïFi ?5"5:) 6ùQ2IX2-`2>-þ3@FC/#.:8-2 L$2'$/1WTzHC$+$,#J!'88k(=4=T)BFIKZ^ 4%<BK@K=QE*1!]$1CE3#L)9H'0! ' <17 E9EH‚M)<. 4í=+1!8:$I&-2?Oþ5*8DAMP758) (#6?ÿ=+:4L./)OI?/<".'0%7-1#@.7<úl.6.L3;%B'6$2SN/5a-"'A=6026c8]':5Q,*@3)A+#XM E (#E ]&D;&O9CnH=V#-6)B-H fvƒˆ+Df.N"C94,CDT88AIR+ [6g'0;+$3C;.6œP+.G(-M47* >^0(H(4ûL6B+%.$>&@+>S);8f>E! '<ñG,%9$=%',3"#7( $!.7H@-=2VM. :<8é82>)HBU_@>E,%4.H/H)2ÿ:ì:451GG+?Z9@B-#FG<!CJ<' 3*C9†…O2*('5G F$54+E4a'373T43/9;H4 93KO$,[&O/?b†•iD (7P%7W:Y9;+$H&Fz84 *4<?=K%*E(5&G\1DG*%K-<WRTZ:E$ H3'H0DYA!)E)Fj@HV1P + "2W"+2EB8 ìä()&K1S<5H?0&ÿW[28=')"*+02=2`A!<=%GEM  CC:N;##"H/,A$8A4!E *(QUO!Dò68O/4N-17 -2jPxlh >4)%+BøI;6 !&-*(C06K;ESûQLã$&A13=K,&2ZF^€V(:+4)NI.1_'?2 & $C@@91B947$9)0/*<,+ ,"/O5:9<J3:&=/*=/ D8 J)E0,E!òJ")F%AA'ø  )0 b,71.<%"$,&XIL+D+0B0<AZC z)IGo"/-`@6-'&8,!B4=1@847=@:+@*%+2)7Jý.'?Tv  =P04.21,F&?.///38>#>!4/0N*NWX<R6$a*9R"DCH-6T$:JFCO.<-TA ',6DG@"D/Q.MO2,/3.D;^H6#/2?9.=* .31040÷FF70'ù1&< *5øE=Q9C$AE&*)*!H"7E4=++õD Y88?;4H4=86L,+&"+)"9D=1@DC648Ka121-;\)0 N'SI)> .- +(4?:DeJ.N??):31E.+@[1?.-10û=!-DE0B40F.::+CED]<(D>C87=@30ý. &9$6A070B'8V1A6H?Z%+.<:N(/7=ü#68$/43'7-#&.V1:-4:,/3:$&$2-62è7A@+Y @ôK=5$V$[IE"A ûP R XA#+/>=20V&GG3&%L**85$&:÷ ]I"Q.&E16?G3NF/!)ZK=% +<?#jD=<(O790'L#I&;!,-(:(K+R04G5'0S26; .2/, 1&\#@B/51B24Jþ 5Wg%>ûM"";8%a,I6BH;>*ýK+,=<(#9C/4*$:4Q;Y!1N6B"2/*=I SXl*2"EIJLN*A%Na? )>1/X:K9T<,,0-3D=BGDI3857òL"öO.4-+   7-ó -,!-7*  .!W5+'0D(=<M#5E35 65C87@#3H$9 ;F,3 3<+D" 1;>,F=O8@A73//5 9)HE3!A98A)H5jH@N09+;<1^DCL)5P4:*IC6'536*-4BD6<4P&GLJCP$@#.F* ?@B)&G*:a5U2+ I=XKCI.4DQ#>:KN=t2%77"LH.),*@: L / $L9û7)$)"$#9;&ûF@/4+>.99.B4!:0 'cQ43 %%$0B9/I19# \1IJB >4/,+.E, ;1#(CC)+ *^ 3' 3FK!ôB(:B$Q9E%.850)59;A>>rƒ†G63&K*H507UQQPE<6K<$#GCd;0$c$:?%:1CY$>>F61C0@G25< H@(!<=;b,2G.; 9D$A&8)1JiIr'"US:NY;+IKI?#-Y=/,*=@<%ù/U4,85+BM8C%*0 G<=4ç<=HI9 5@(,%.*,:?'$8@B%?G(@6D"A?2K8I=+ZD) 41b/2655A$%$K*U9a#I;=QBY;a#+!+)6'E=%HGLo!1.,J93C8;@# B,<+265,W +2?!874M2%W,)+8M5'2-"BAZ3.#3A,,8;&AFY1Yú!8"9;JC21):xŽl?'NV#<3+F27'/<99S& '/-,$2!40AB#'0<C/'<7A*/4û 75&# 0B*H63**>!#P#1  ?<)Q#3?*9"F BA.75M'O$ö1:>"Q+hROX4ï;G <H*ADG@[3!9=:,X+">?2:(!(7 ;FH;A1B:C068UY!:ES:,-[,=4+$9,;%0Z:(Lk6" 2EG39-:! L7185=Q5(? '+G=T7+7_c$7/<16*"G( )46.8U)<71A67"!F?D10-'?%>F*b.9=1+* $&#%H4/H/HU+7IO52&9=5=!66%*8D*]:-->4Y3-7."7 _&K,8'**:>;&!$H0,QJ&*-*C-;#4HV4Kj7NQ3H_,=Y'8(@:)>B9=%-AI0/#<aCM)a(C2Q/-;,!F /3Q'2.2"3*@C:/5L P)&KG'E$/! ("E1)1"40=(o5L'&FKéQLCaH5% C'2:8 D+6A#80=#(2.7 #=%aFð,E*UX,*9 D=F()!)-ñ*AL.&DE.!*W3H7<0#1K:&)>GAMF/DC"H91I3BL3(EA6%W47E?'$,95@4*K9=1`/"!F!h-D$*R8GCX+ *;-("Y=f5)U)*D?#?D/*?k,= A<2://.:B 3?%4+,Z>H-+>GCÿ%W%E($!-'@7IB8K?*;OY8_?)%1Lu(F,4 K.Q7;+378",%!/*@ë#C',.ù ,":*$ù3(G8$.;+<# &ÿHJ6RA=*D000@c08?""Q62CE584;284W(95 Q17=72'S'7N$'KD$E-%E;171>-2=9+O)?9`+ICL-/=:B,9!F'44HG6*]>.GT0J <B-27d/-.\ (D3E*Z,8"*( H%%8/_>EU2FL/.@3 D-4<V (?4c8/;B[)tI+%üe;OG:8J9+C2$/ý&71(8 I)B88,*.ß2GA3$3E8^=J7[2&=-)M>[-'ö#<FÇpQ 9#5!C?9%A 1/8`]@26?%JR"X*ü$;T8X/'#'24E6?L'J=  #I7FR+L;<AN:0U!$+:.7!26;&+, A,$B8'C&1"44QB/KE<E/&R?=+>eJ@EDþB*=(DC%rDL( ,üL-P:<*D<+6/5??5+(09&G[/ø?4+%43;+:#!)%T;þ 0*#=!6b,)%=07*.N /6:4…(A P%LP&#2:%< PC-2%H7<_»656 L(B3W:B&9&)'A*%%<I!L'.-Z""Z&323WB;''öC&GbK2CF67!?/b'E H'K0?-m:++û,5.+0H-[K%)%L2&3?$@&%/2:70ANAI?<G$#DW!E8(p’8*' ="OI:5?<81%:!4 4,C) ;B7= ÿ#KI)8:#C,3.(& 9:;!'"F;05+8AfEG"(ìA@( :=9[0*7.'0GI#8 O9?:4S+:=P8JA0+/B"7-/7;B8,>#9#.15C*=C6:'VUS4AJ5T/I5@5;&)UK</8@7@75E-3AHJ!&6.(NB$-'5@S*TD)Z!mG2p5 6g37;/-A0M-A2R&9B;Q$A;Fo?=,G L&<CW3&7>7Q!%$HE#"U5E>OK(+53' $?5G&M*(=J.?30%66-%.6  -!5_77@,91& .PJ4 3&#05.N6/8_4.91'5I Zì*2/2Q.9-A.40FT:(;2cB?=.< B-;4)U./9;F6F$C5G4 '8H^78C)?F3b BW0<M)Q0DE,?-08H@`F36=E*C5J@T%3L)h&!&@/ b*E!\E9:PX;1:20;@+N5-/@NN-,>(-D3#Z(.90P<,=*3.)%75&E7,S5A22<@A 8F'5 D E<HB:PE$% $.S$, 8‡RL!'H3"31,;@LK//‘0?@UB7:$ W12lB9*"D!=&M?ö2D32HU63$'(;;G)6F.AU?6>!5&O1?"<(=;::6C%870".I,L.#.,*1'‚w-F=8!BKL9?HO+-*-Z$8  "E6_8?:'2=-U1,:(4/9"F"'a H#(+( ''?:[O+0@.)%B8&9=G5'1A;ø&!J')}%R1&*5-+/59:<10@1>ò-#98#C-':$n]c 8(\Gdƒ–5)¯C.($K,+#1756(**TCB QD,E$$#2H$;?VE4)!_J;jBTl^912N04L43F4))8/6-1O EJCJHEDMRb%:R PH32G`]VH1_;:]%/'N9=QI?;;$G;N2E,)!3??A%A#)5(-'CJ ((.H?+'3EAF1;<46 -C0-;C%B#/*R>`AR4A0):J<)0M)!4%9% B#0";I$+B !-, " O;2N2 *1B6(H3(>@50MNc$;+÷-*8):!%, X@M $%> 1?)0.!B?2%þCF <$-G8{7X74$8+O=6Q&'2J 18%4CQZL.)1(LS;BI;BeoJ!^_>?V7C8^\4'-&/%ID'[c-FE#'*'9%5ý3&%%F5 IHå5V&GD:e C&&xH+7P?2@V,(&ü2 (@'2AI&%@ k- @ ,8ñ?)=H5!>%.#,>/:7$4  0;I^-486N$,> &/%02@ "3E%1'KCW3F$IýEF3,G9!HX$>&.448GMÿI'*56 LD>! :11)8m/==:4@%,2*_ Y9ID7FE)5IXgDICK?N;)&E8 3P8&_P-6DK.1ZDC?O:*Gí\<L09N9-8]R%!=-984-"9C3gK F19!5!B >ÿ G'\8"Lë? Q;4C;:P2R1DF!$#$'$'9+?,.(%+e;.0 '81/ ##1'*4?#,*<. G\+"8L;$!O-W?6".rBJjC#\+-Q?ZD&: "F'N'O-L@<U*4[+-:7@,><7K-p16.":3.7'fB0$'46E%=@-K=XJh‹`^F8>=6?J^'$/.)jM. %?-(.6&*8IC-G"(,T0-E:I-?1!1LL0%B,4.8-C I'=(!P80$(,'e#5;*4(1*6(;@9K%1, >8)9ë"7""8,' 5="(B8ýO# %M,H@&5&' ^,)%NSWJJ16I"37ÿ5t†_@5J#">'1-+0#j.9(3""1G-8"9/H;K!B62G) *N '6C:IB *:*J?-*;A,C=0>]41lPN7elÐlE=32 M0>$6;7'6e:CH,2;2&*)!A269`8>$,%M*@ò >3\Q&'9Y0/C0 H=*N09#,G5CL1@B# $)-=OITJú(! =$dA85H##!RS6 3Z)(?3<<$<D99)E a.:;0Z“ð¹uc495YB*('6T/1;V+5*"'8&'9#(9%5#4,4 )I%>ALZ0_S'ð:E1',4R;%.-XB0`6J']& 323C67>AWP.üV7A@DIGEˆ½gFX0-7-; DO_U@-0668>$,P&X1b_8W&T3N?F%T.8'3<597A .0<*-$(1#' ;/9O#.>SD:0ÿ%'- ,j96HA%  $G B8#+0=4L#F/-5..I31;#).Q6 -B(-2ö/)í)@9[v ©¾.b#E?- @#/DGGjV6+B3.:-0; (7'@P=0$KUA');(O37515Q:@P9D$2Vb$&N,4'E,NIUbN$*X>5Qa:^o_<305*=/j?LG6IP4!B:$BHn8&D<5'@?1%E#=.1BA:.:2%%=/R6,1>èNI?7CA3)$< 826:9*F.,:;!! 3#,%>,- ?89*%-h2G/0,5]Q D,(-U#/*67@*-C)&?F0+3F"SWÙß‘o/-G99@'"VN3Z941+&;AýCHKKFDR07&=)3=*; $:6N->+"'8>!2L95$;J!6Br9!#4G;0!7Eñ3>M(G4j7R]^d:Qa,QB()T\<S7`&9.,)-<!<.Q'']/KW>38!R(A^@k?D7*@!')2JDJ(&3-Q7~>;%8#+" =866?!a%  "8#-ô4 5R:< 6 A.=9;3>&-'25+ 8#,Mþ6DAA8HDC8$ ($%7-$`€°ž.`)P7< =B3+#)?+>,3?+AI&-F2',2a'#;>)%+;:F4<#C*#D0EB#?&A-m:--PL@9704F%B,:R0)*F_}“\(I@//5>$6J0)$(7ZE,-9A=*5$B7)?M@CO?!Jÿ!0(8*K8A@%"5;7AA5m7Xl=#,(E>= :('90*\ý"jA);?/ K#6( !X+@+#73-ç>:E%8L6(' _-ñN-1 &8FG9,fYT##..0{ ]%S3+( =Hù+GJ.7'Y!LP1/G17Pú55H 8A7;+&&6O3,-ú?2J)*F3ê51))-7n)%2)R9QDUI- )E`FX')@D27B8*CH/0A$9"\9-F9AW)?*T="@,28U5+@)5/';:0'A#@6J@*(RH‡Â{: );&+:%9"E5õ79,>!")ÝD/&9& J I&'J$59!@1&<;àLI)7:" -)õ+5#8!GC ,15:A/N,?(3C&/E5=3//DRF4%=) FR863>Y(Iå#M5L#372:T06'O:F"B/@5að>2LE1DD E(.7'1=.5)*&H+>*!D(*J>*D8cr2)=F-úLM5N892O7TA[A7A>u2Ae}:A/:6,5Y)9H:7H:E !2)33F,BE0T1iXjk‚7C 1K"?ú @+6?'='ì4&)A4!67 l;K!%C&-% O@iLQ2'-$)7A$3ô=>(>Mÿ2(;7:CX  C2( !F?*@S2-H7&3<.=/8^.@&/=3(;;=A::M35/+*,==J+Pf!GU-4:%7.%:8W8 &7.?R1 5@PN_6A#,+B+A 6HJKK<M13I3 0L6+ $*c0!X&(C05V35/AEe /47)#k#:+!=1,I1_b;%#C##)/4C(O2/GS+@50#<j!+N20'+T.)M 0sB,;O:9 2.1"G."M .@:;êN$%  86 4G22@";:[d(?,1@/ý/HF6: 2$2$%FE8+HL?ýXF9)IDE8<Y&KB'E"8 H,(-2"0;R@C6&8#=<tP#û5H521L8).1l[msRTQ-8e,0:-%2D5=8>2D,0--.JLR*"P!92.;9W7K*{G@ 2!,.S1C]FQ4:7&63CE%8IML'20%1)D.øE?(K"6K9Z'B#Z7Kh×8J$-5'F?;@N0?ÿB!NO->;4 *9H5(.9T6Og_-LP.Y42I@+&>$@50(8I/!MEL,(76+S+c(# 2!Q-7O3*B$1.%33Mj=>I<^#9D'+*B81a,-:8 33<4:EK)CJ&O••ƒ/EJ< 8296B@x!9/2$5WN5:>N,>LI(! / +J (H+J9G#,0&ü%?.+9\ ?[I*,AGK.(*å,<AH:#RC)''2,-)3=#(6EL!Ni)&D"6*)))39+?G7H)#/9-;=/Ea*+]<J@cRÎwbX*I&A$46$ C-90\&@1Ag$a20/R/7!,!2A?-3706&5RB/=?2/F\ _$9FS3O|;,E=J11I90TG$Z;> C2-%#Jbš£W >)"(F2/,%$K@0?C?+X&T+MQ 7jR0h,&26>64nW;þ,#7( |0037LP+41.1M)QAHbF/10j6&IZ1i\B1B'>F4+4k;2:0 4 91!3 ;A9A%R)+3-"8a!S(@[e½˜EQA0+%IS:S/A1$,.&0?Sn0K>399>I!H ð.5"C"1 1O(K4LV? .8"W a_9=.êV.;S+`#P6BG<? õ< \"0+>; T/p1O#|…tWw'fB802&6<."0"K:1I#AB>=CEHE&?8<]IJ- ú+.3A3/AB5RúI?i*xuE?O5,PwlX>hR6&F65:<R)3vkq0:D2Cë6+7 C3#6#*%óB3 C$ 7+$J)N>*+O4xB)32#A;7*4H9{gHQBù.4 08G1BE%%jr0.SH4)=6´¸QD9;6!) C@6<F9S/ a 0=(%42 # 31LG"o0*2 JID T!FK?YC\d:<(-> 4:*0;/5F7Q33?..6(7=?S.4E+;H@]3"AG(B3<A>A)2R;`?D4BUXdf&NRB6:l],-!G+#I5R>#Q/IE=I5K45=.C!>(`AA?+DK<(,?+;6!01\1 /+) )A:Y~@=F6,%<FCC?"L>R-ES46:>C#X'(QÐ>åW[(2-+@)2;.D>62PCF3@/;O& 3p *2'B'"!>!(2</?C1CK#=1=; 244?J>TUN"`$0DD>-0\*Q9,@`O7'8( /<V14@MK0;9%F#05fOD' ]5D9B 8>F–‡b*@% GI4$6?9/^$0K:9@2GE!5!?.1-Yü\#&A$424AA6=/&5!*G.:6<R8$)%÷-2Q$-?27BCE$GD5/(:H'ú/E@P+2*?8/Dšú¬< ^>F]?$10&3/+-<$5@0=#=D84$ B9>)=4;<5d-;%-a=1?'TD3)4:a9*<d-/X7,8"*&4*0&&5L" 0#H.4L*8WV/ù6/ K?'>#4;,A(J%D?H  5(.7;+28F*.>MˆJ6M&4C!Z:9G&@$GI*-'2*'@@,($ 7S2)S#56./4X 4)3%ý* 2=. "1.(7V7OS,û-oO4?G&82 IX)Y>,H3"ept4$-D"G?G188^=4*C2K6,G< F6$!K)VH,m55372$?A@83921(A,0?r;22b+?:1H"!>!</)W=<MKBB-J^1L8T 6+88:4$B''E2F( 40-%4 2" +PA &R4 ö8I4A,,3!70(A'&3.*5+9 J=(*BL<D#!C56M'J&IAE?>.>#X)2.%Z. I9$0+C4%H.<30 <7 N74I;2JNH79R8K@89DT!MP+7/L5 0(9N-6 V+7@Y#@M!4.-9,B36M60f, 2=MC@/p,X"*%:B_ C59DE$<ü6(<'Byc0*_-B1::DP=W071F&BCH./)3&)=1#K$. J=>1 L28I,&)gJ)Z+/4L,16 j)%KH-5;,. *(ý"62G> 6C.1+S;. '25Q/)="9%3#ò%f47&K4%F7G(8G*X!.K=,. .Nq[ò.3?>H<!'_0FC/.247.2&<J3OD+F96<UJ<K$#g807( Z0gI0."3A+ 0L09+-2,@'H%/=&"A:r4-0"[*H25A;MV5B$YD6@UQ36(0L9E&.JH.% <L :F19;B%;!*45,P<C'4]>I?/$419,,F <D 6ïIb$ '9#,L/>9 û% &ñ"8m%O1-= 0C)010Bb?I?=(7-,&7@C1<D&<:CE-<" @@#\€=>;*D@63A3NYH5/$BG4 %D'%.+=9<:2L57YMQ]5EB$  g5=O\@&,0'W 3L8 NeS)?RIS3M1!$1* 6.:H"OWX1?&+6;1sep-1.4.1/data/rms.fits000066400000000000000000010756001475511417100147240ustar00rootroot00000000000000SIMPLE = T / file does conform to FITS standard BITPIX = -32 / number of bits per data pixel NAXIS = 2 / number of data axes NAXIS1 = 256 / length of data axis 1 NAXIS2 = 256 / length of data axis 2 EXTEND = T / FITS dataset may contain extensions COMMENT FITS (Flexible Image Transport System) format is defined in 'AstronomyCOMMENT and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H CRPIX1 = -7.670000000000000E+02 / Reference pixel CRVAL1 = 1.000000000000E+00 / Coordinate at reference pixel CDELT1 = 1.000000000000E+00 / Coordinate increment per pixel CTYPE1 = ' ' / Units of coordinate CRPIX2 = -5.110000000000000E+02 / Reference pixel CRVAL2 = 1.000000000000E+00 / Coordinate at reference pixel CDELT2 = 1.000000000000E+00 / Coordinate increment per pixel CTYPE2 = ' ' / Units of coordinate BUNIT = ' ' / Units of data values BSCALE = 1.00000000 / Scaling factor: r = f*i + z BZERO = 0.00000000 / Zero offset: r = f*i + z DATAMAX = 9.852823437500E+04 / Maximum data value DATAMIN = 3.713666992188E+03 / Minimum data value ORIGIN = 'SExtractor' / Written by MIDAS DATE = '31/08/93' / Date of writting: DD/MM/YY FILENAME= 'NA36Rm50.bdf' / Original file name MIDASFTP= 'IMAGE ' / MIDAS File Type OBJECT = 'NA36Rc50 sum of 3 frames' / MIDAS desc.: IDENT(1) DATE-OBS= '26/10/92' / MIDAS desc.: O_TIME(1) MJD-OBS = 4.892162787000E+04 / MIDAS desc.: O_TIME(4) TM-START= 1.104800000000E+04 / MIDAS desc.: O_TIME(5) EXPTIME = 1.200000000000E+03 / MIDAS desc.: O_TIME(7) INSTRUME= 'EMMI ' / MIDAS desc.: INSTRUME(1) COMMENT IP_JIDNT 7 / IHAP: identifier system \COMMENT COMMENT IP_JSEQ 24887 / IHAP: sequence number \COMMENT COMMENT IP_AHGC 2857.489 / IHAP: high cut \COMMENT COMMENT IP_ALWC 2112.953 / IHAP: low cut \COMMENT COMMENT IP_ASCX 1. / IHAP: scaling in x \COMMENT COMMENT IP_ASCY 1. / IHAP: scaling in y \COMMENT COMMENT IP_FILE 'IHAP/FITS/EM9210260304099.FITS::USER ' / IHAP: Begin of keywor\COMMENT d COMMENT IP_FEND / IHAP: End of keyword file \COMMENT COMMENT EXPTIME 400.000 \COMMENT COMMENT IP_CBEND / IHAP: comment block end \COMMENT TELESCOP= 'ESONTTB ' / MIDAS desc.: TELESCOP(1) OBSERVER= 'LAPPARENT' / MIDAS desc.: OBSERVER(1) RA = 5.648170000000E+00 / MIDAS desc.: RA(1) DEC = -3.018297000000E+01 / MIDAS desc.: DEC(1) AIRMASS = 1.068349957466E+00 / MIDAS desc.: AIRMASS(1) ESO-LOG 00:00:00> DATE = '1992-10-26' / Mon Oct 26, 1992 ESO-LOG 03:04:08>-START EXPO EMMI RED / Start exp. on EMMI Red CC ESO-LOG 03:04:09> EXPO EMMI RED NO = 24887 / Exp. num. on EMMI Red CCD ESO-LOG 03:10:52>-STOP EXPO EMMI RED / Stop exp. on EMMI Red CCD HISTORY COMPUTE/IMAG imAR0051.bdf = #0001-bias50 \HISTORY COMPUTE/IMAG imAR0051.bdf = #0001 - 1.51001E-01 \HISTORY COMPUTE/IMAG NA36Rc501 = #0001 * 1.00000E+03 / fRc50 \HISTORY COMPUTE/IMAG NA36Rc50 = NA36Rc501 \HISTORY COMPUTE/IMAG NA36Rc50 = NA36Rc50 + NA36Rc503 \HISTORY COMPUTE/IMAG NA36Rc50 = NA36Rc50 + NA36Rc502 \HISTORY EXTRACT/IMAG intex = NA36Rc50[@0019,@0003:@1042,@1026] \HISTORY Renamed from intex.bdf to NA36Rc50.bdf \HISTORY SELE/TABL cursor MA36Rc50 2 0. 3 Y MA36Rc50 \HISTORY READ/TABL cursor interclean 0 6.85000E+03 3 Y \HISTORY interclean Renamed from interclean.bdf to MA36Rm\HISTORY 50.bdf READ/TABL cursor MA36Rm50 0 \HISTORY 6850 3 Y MA36Rm50 READ/TABL cursor MA\HISTORY 36Rm50 0 6850 3 Y MA36Rm50 READ/TABL \HISTORY cursor MA36Rm50 0 6850 3 Y MA36Rm50 RA = 5.648169994354E+00 / MIDAS desc.: O_POS(1) DEC = -3.018300056458E+01 / MIDAS desc.: O_POS(2) AIRMASS = 1.068349957466E+00 / MIDAS desc.: O_AIRM(1) HIERARCH ESO GEN ID = 'ARC-0001/1.2' HIERARCH ESO GEN PROJ ID = '000.00.000' HIERARCH ESO GEN EXPO NO = 24887 HIERARCH ESO GEN EXPO TYPE = 'SCI ' HIERARCH ESO GEN EXPO LST = 2.420000000000E+03 HIERARCH ESO TEL ID = 'ESONTTB ' HIERARCH ESO TEL LON = 7.073450000000E+01 HIERARCH ESO TEL LAT = -2.925840000000E+01 HIERARCH ESO TEL ALTITUDE = 2440 HIERARCH ESO TEL FOCU LEN = 3.848200000000E+01 HIERARCH ESO TEL FOCU SCALE = 1.489000000000E+00 HIERARCH ESO TEL TRAK RATEA = 4.200000000000E-03 HIERARCH ESO TEL TRAK RATED = 0.000000000000E+00 HIERARCH ESO ADA ID = 'ADAPTB ' HIERARCH ESO ADA MODE = 'STD ' HIERARCH ESO ADA ROT = 0.000000000000E+00 HIERARCH ESO ADA GUID-1 X = 1.294000000000E-02 HIERARCH ESO ADA GUID-1 Y = 1.717000000000E-01 HIERARCH ESO ADA GUID-2 X = 5.070000000000E-04 HIERARCH ESO ADA GUID-2 Y = 1.110000000000E-03 HIERARCH ESO INS ID = 'EMMI #1 ' HIERARCH ESO INS COMP ID = 'HP RTE-A V5' HIERARCH ESO INS MODE = 'RILD ' HIERARCH ESO INS OPTI-2 NO = 1 HIERARCH ESO INS OPTI-2 TYPE = 'MIRROR ' HIERARCH ESO INS OPTI-2 ID = 'RILD MIR' HIERARCH ESO INS OPTI-2 NAME = 'RILD ' HIERARCH ESO INS OPTI-3 NO = 1 HIERARCH ESO INS OPTI-3 TYPE = 'FREE ' HIERARCH ESO INS MIRR-3 NAME = 'UPPER RED' HIERARCH ESO INS MIRR-3 ST = 0 HIERARCH ESO INS OPTI-7 NO = 3 HIERARCH ESO INS OPTI-7 TYPE = 'FILTER ' HIERARCH ESO INS OPTI-7 ID = '#608 ' HIERARCH ESO INS OPTI-7 NAME = 'R ' HIERARCH ESO INS OPTI-9 NO = 9 HIERARCH ESO INS OPTI-9 TYPE = 'FREE ' HIERARCH ESO DET NAME = 'THX31156' HIERARCH ESO DET ID = 'ccd$18 ' HIERARCH ESO DET TYPE = 'CCD Four_Phase' HIERARCH ESO DET PIXSIZE = 1.900000000000E-05 HIERARCH ESO DET BITS = 16 HIERARCH ESO DET FRAM NAXIS1 = 1060 HIERARCH ESO DET FRAM CRVAL1 = 1 HIERARCH ESO DET FRAM CRPIX1 = 1 HIERARCH ESO DET FRAM CDELT1 = 1 HIERARCH ESO DET FRAM NAXIS2 = 1040 HIERARCH ESO DET FRAM CRVAL2 = 1 HIERARCH ESO DET FRAM CRPIX2 = 1 HIERARCH ESO DET FRAM CDELT2 = 1 HIERARCH ESO DET DKTIME = 4.000000000000E+02 HIERARCH ESO DET TEMP_VAR = 1.000000000000E-01 HIERARCH ESO DET TEMPMEAN = 1.376000000000E+02 HIERARCH ESO DET COMP ID = 'ccdr-V1.0' HIERARCH ESO DET PARM1 = 'CLOCK=tho1k' HIERARCH ESO DET PARM2 = 'HLO1 : 2.02 VLO1 : 1.01 VDD1 : 23.03' HIERARCH ESO DET PARM3 = 'HHI1 : 15.00 VHI1 : 12.01 VDR1 : 13.98' HIERARCH ESO DET PARM4 = 'HLO2 : 2.02 RLO1 : 1.01 VGS1 : 4.99' HIERARCH ESO DET PARM5 = 'HHI2 : 15.03 RHI1 : 10.07 ICCD1 : 0.00' HIERARCH ESO DET PARM6 = 'TL 1, 5 telem. data' HIERARCH ESO DET DATE = 1.989794555664E+03 HIERARCH ESO DET MODE = 'SLOW ' HIERARCH ESO DET GAIN = 1 HIERARCH ESO DET AD_VALUE = 2.100000000000E+00 HIERARCH ESO DET DIT = 4.000000000000E+02 HIERARCH ESO DET SHUT TMOPEN = 5.000000000000E-01 HIERARCH ESO DET SHUT TMCLOS = 5.000000000000E-01 HISTORY ESO-DESCRIPTORS START ................ HISTORY 'WIND_RAW' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 1.9000000E+01 3.0000000E+00 1.0420000E+03 1.0260000E+03 HISTORY HISTORY 'STAT_RAW' ,'R*4 ' , 1, 13,'5E14.7',' ',' ' HISTORY 6.5800000E+02 3.2767000E+04 2.3813201E+03 5.6562799E+02 2.4699001E+10 HISTORY 3.8941301E+14 2.4969999E+09 2.3490701E+03 2.3460000E+03 2.0070000E+03 HISTORY 1.6000000E+01 6.5800000E+02 3.2767000E+04 HISTORY HISTORY 'WIND_OVER' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 1.0000000E+01 1.0290000E+03 1.0550000E+03 1.0390000E+03 HISTORY HISTORY 'STAT_OVER' ,'R*4 ' , 1, 13,'5E14.7',' ',' ' HISTORY 2.1200000E+02 2.4400000E+02 2.2111700E+02 2.5815699E+00 1.0815500E+07 HISTORY 2.3924700E+09 2.5441800E+06 2.2058000E+02 2.2050000E+02 3.3000000E+01 HISTORY 1.0000000E+00 2.1200000E+02 2.4400000E+02 HISTORY HISTORY 'BIAS_FRAME' ,'C*1 ' , 1, 7,'7A1',' ',' ' HISTORY bias50 HISTORY HISTORY 'BIAS_OVER_DIFF' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 1.5100101E-01 HISTORY HISTORY 'FLAT_WIND' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 4.5000000E+02 3.8000000E+02 7.4000000E+02 6.2000000E+02 HISTORY HISTORY 'FLAT_BKG' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 2.1311699E+03 HISTORY HISTORY 'SKIM_FRAC' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 3.5154400E-04 HISTORY HISTORY 'AV_WIND_NAME' ,'C*1 ' , 1, 5,'5A1',' ',' ' HISTORY fRc50 HISTORY HISTORY 'FLAT_FRAME' ,'C*1 ' , 1, 5,'5A1',' ',' ' HISTORY fRc50 HISTORY HISTORY 'WIND_FIN' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 1.9000000E+01 3.0000000E+00 1.0420000E+03 1.0260000E+03 HISTORY HISTORY 'STAT_FIN' ,'R*4 ' , 1, 13,'5E14.7',' ',' ' HISTORY 6.0423798E+02 3.2842602E+04 2.1606499E+03 5.5936798E+02 2.0734501E+10 HISTORY 3.5516501E+14 2.2656100E+09 2.1273799E+03 2.1162400E+03 2.0150000E+03 HISTORY 1.6000000E+01 6.0423798E+02 3.2842602E+04 HISTORY HISTORY 'WIND_SUM' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 1.0000000E+00 1.0000000E+00 1.0240000E+03 1.0240000E+03 HISTORY HISTORY 'STAT_SUM' ,'R*4 ' , 1, 13,'5E14.7',' ',' ' HISTORY 3.7136699E+03 9.8528203E+04 6.9033799E+03 1.6677500E+03 6.1352398E+11 HISTORY 2.8897399E+16 7.2387098E+09 6.8047002E+03 6.7938701E+03 2.0480000E+03 HISTORY 4.6318802E+01 3.7136699E+03 9.8528203E+04 HISTORY HISTORY 'LHCUTS' ,'R*4 ' , 1, 4,'5E14.7',' ',' ' HISTORY 5.5000000E+03 9.0000000E+03 3.7136670E+03 9.8528234E+04 HISTORY HISTORY 'DISPLAY_DATA' ,'I*4 ' , 1, 9,'7I10',' ',' ' HISTORY 2 2 513 513 0 -1 -1 HISTORY -1 -1 HISTORY HISTORY 'BOX_MIN' ,'R*4 ' , 1, 6,'5E14.7',' ',' ' HISTORY 3.2100000E+02 2.1500000E+02 6.9644336E+03 6.3300000E+02 4.2300000E+02 HISTORY 6.8900532E+03 HISTORY HISTORY 'IJBORDER' ,'I*4 ' , 1, 4,'7I10',' ',' ' HISTORY 1 1 1024 1024 HISTORY HISTORY 'LHCUT' ,'R*4 ' , 1, 2,'5E14.7',' ',' ' HISTORY 3.6236699E+03 8.0148297E+04 HISTORY HISTORY 'ZEROMAGN' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 2.4671000E+01 HISTORY HISTORY 'SEEING' ,'R*4 ' , 1, 2,'5E14.7',' ',' ' HISTORY 1.8308023E+00 9.6358800E-01 HISTORY HISTORY 'PAIRSPRT' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 3.1899800E+00 HISTORY HISTORY 'MULTDTCT' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 4.1900001E+00 HISTORY HISTORY 'PRFLCTRL' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY -5 HISTORY HISTORY 'OUPROFIL' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY 5 HISTORY HISTORY 'STMETRIC' ,'R*4 ' , 1, 2,'5E14.7',' ',' ' HISTORY 9.3000001E-01 5.5799999E+00 HISTORY HISTORY 'BRGHTLMT' ,'R*4 ' , 1, 1,'5E14.7',' ',' ' HISTORY 1.8387699E+01 HISTORY HISTORY 'NBSTARS' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY 17 HISTORY HISTORY 'PSFTAB' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY 1 HISTORY HISTORY 'THRESHOLD' ,'R*4 ' , 1, 5,'5E14.7',' ',' ' HISTORY 6.8047002E+03 1.1384800E+02 1.6730800E+00 2.0000000E+00 2.5446301E+01 HISTORY HISTORY 'N_SEARCH_ANA' ,'I*4 ' , 1, 2,'7I10',' ',' ' HISTORY 822 806 HISTORY HISTORY 'N_STAR_GAL_DEF' ,'I*4 ' , 1, 3,'7I10',' ',' ' HISTORY 46 744 16 HISTORY HISTORY 'HIST_BINS' ,'R*4 ' , 1, 5,'5E14.7',' ',' ' HISTORY 2.5600000E+02 2.8824686E+02 3.7136670E+03 7.7216609E+04 0.0000000E+00 HISTORY HISTORY 'HISTOGRAM' ,'I*4 ' , 1, 256,'7I10',' ',' ' HISTORY 1 0 0 0 0 0 0 HISTORY 0 0 0 10 64 23 12 HISTORY 3 3 4 4 3 1 2 HISTORY 0 0 1 1 0 1 0 HISTORY 0 0 0 3 0 1 0 HISTORY 0 1 0 1 0 1 0 HISTORY 0 0 1 1 0 1 0 HISTORY 1 0 0 0 0 0 0 HISTORY 0 0 1 1 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 1 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 1 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 1 0 1 0 0 1 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 1 0 0 0 0 0 HISTORY 1 0 0 0 0 0 0 HISTORY 0 0 0 0 0 1 0 HISTORY 0 0 0 0 0 1 0 HISTORY 0 0 0 0 1 0 0 HISTORY 0 1 0 0 0 0 0 HISTORY 0 0 0 0 1 0 0 HISTORY 0 1 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 1 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 0 0 0 0 0 HISTORY 0 0 1 0 0 0 0 HISTORY 0 0 1 0 HISTORY HISTORY 'STATISTIC' ,'R*4 ' , 1, 11,'5E14.7',' ',' ' HISTORY 3.7136670E+03 9.8528234E+04 6.9033760E+03 1.6677493E+03 6.1352378E+11 HISTORY 2.8897433E+16 7.2387144E+09 6.5048496E+03 3.8995779E+03 2.5600000E+02 HISTORY 3.7182184E+02 HISTORY HISTORY 'WINDOW_FROM' ,'I*4 ' , 1, 2,'7I10',' ',' ' HISTORY 1 1 HISTORY HISTORY 'WINDOW_TO' ,'I*4 ' , 1, 2,'7I10',' ',' ' HISTORY 1024 1024 HISTORY HISTORY 'NBMODIF' ,'I*4 ' , 1, 1,'7I10',' ',' ' HISTORY 1 HISTORY HISTORY 'STARS' ,'R*4 ' , 1, 51,'5E14.7',' ',' ' HISTORY 2.6300000E+02 8.8700000E+02 4.6759199E+04 7.5000000E+01 5.6300000E+02 HISTORY 1.5854400E+04 1.3000000E+01 3.1300000E+02 4.9727699E+04 3.3900000E+02 HISTORY 4.3300000E+02 9.6787102E+04 7.0100000E+02 1.6300000E+02 1.2378200E+04 HISTORY 8.5500000E+02 2.5500000E+02 3.5242898E+04 7.6100000E+02 3.3300000E+02 HISTORY 1.4904300E+04 1.0110000E+03 3.5700000E+02 2.5686801E+04 9.0700000E+02 HISTORY 4.0100000E+02 1.6969100E+04 8.4900000E+02 5.2500000E+02 1.4543700E+04 HISTORY 9.1700000E+02 5.4500000E+02 4.4644398E+04 7.7700000E+02 5.7700000E+02 HISTORY 3.6737199E+04 1.0010000E+03 6.9500000E+02 9.8214500E+04 8.2500000E+02 HISTORY 8.0100000E+02 2.0127900E+04 6.3100000E+02 6.3500000E+02 1.6520199E+04 HISTORY 5.8500000E+02 6.7500000E+02 1.5727300E+04 6.5900000E+02 6.6500000E+02 HISTORY 2.1833900E+04 HISTORY HISTORY 'DPROFILE' ,'R*4 ' , 1, 25,'5E14.7',' ',' ' HISTORY 3.2567519E-01 6.4562768E-01 6.5725815E-01 5.2960014E-01 4.1916752E-01 HISTORY 3.0000001E-01 2.8000000E-01 2.5999999E-01 2.3999999E-01 2.0000000E-01 HISTORY 1.8000001E-01 1.6000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 HISTORY 1.4000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 HISTORY 1.4000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 1.4000000E-01 HISTORY HISTORY ESO-DESCRIPTORS END ................ END B‡ôTB‡ð°B‡í'B‡éºB‡æjB‡ã2B‡àB‡Ý B‡ÚB‡×EB‡ÔB‡ÑÒB‡Ï5B‡Ì¬B‡Ê4B‡ÇÌB‡ÅtB‡Ã*B‡ÀîB‡¾¿B‡¼œB‡º„B‡¸uB‡¶pB‡´rB‡²|B‡°‹B‡® B‡¬¹B‡ªÕB‡¨õB‡§B‡¥6B‡£UB‡¡uB‡Ÿ‘B‡ªB‡›¿B‡™ÎB‡—ØB‡•ÚB‡“ÕB‡‘ÆB‡®B‡‹B‡‹\B‡‰ B‡†ÖB‡„~B‡‚B‡žB‡}B‡zxB‡wÈB‡uB‡r,B‡o=B‡l6B‡iB‡eàB‡bB‡_#B‡[›B‡WöB‡T3B‡PRB‡LPB‡H0B‡CìB‡?†B‡:þB‡6QB‡1~B‡,…B‡'fB‡"B‡¬B‡B‡KB‡ XB‡:B†þíB†ørB†ñÇB†êìB†ãÞB†ÜŸB†Õ+B†Í„B†Å§B†½”B†µIB†¬ÇB†¤ B†›B†‘åB†ˆ¢B†MB†u»B†kñB†aìB†W¯B†M:B†BB†7ªB†,’B†!DB†ÃB† B…þ'B…òB…åÄB…ÙJB…Ì¡B…¿ÉB…²ÄB…¥’B…˜4B…ŠªB…|÷B…oB…aB…RäB…DB…6B…'pB…©B… ¿B„ú°B„ë€B„Ü-B„̺B„½&B„­sB„¢B„³B„}§B„mB„]ƒB}±B|òÞB|Í B|§6B|bB|[ŽB|5¹B|çB{êB{ÄDB{žvB{x¨B{RÞB{-B{PBzáŽBz»ÎBz–Bzp]BzJ¨Bz$úByÿPByÙ¬By´ ByŽrByhàByCQByÌBxøLBxÒÒBx­bBx‡÷Bxb—Bx=?BxîBwò¦B‡ß²B‡Ü,B‡ØÂB‡ÕsB‡ÒAB‡Ï(B‡Ì(B‡É@B‡ÆoB‡Ã´B‡ÁB‡¾}B‡»þB‡¹’B‡·8B‡´îB‡²´B‡°ˆB‡®jB‡¬XB‡ªRB‡¨XB‡¦gB‡¤~B‡¢žB‡ ÆB‡žóB‡%B‡›\B‡™•B‡—ÑB‡–B‡”MB‡’‹B‡ÇB‡B‡7B‡‹iB‡‰—B‡‡½B‡…ÞB‡ƒõB‡‚B‡€ B‡~B‡{òB‡yÔB‡w¨B‡unB‡s$B‡pÉB‡n^B‡kàB‡iNB‡f¨B‡cíB‡aB‡^4B‡[4B‡XB‡TèB‡QšB‡N0B‡JªB‡GB‡CDB‡?bB‡;`B‡7B…0èB…"lB…ÌB…B„ö B„çB„×ìB„È B„¹4B„©©B„™ÿB„Š9B„zUB„jUB„Z;B„JB„9·B„)PB„ÐB„:Bƒ÷ŽBƒæÊBƒÕôBƒÅBƒ´ Bƒ¢ùBƒ‘×Bƒ€¥BƒoaBƒ^BƒL®Bƒ;@Bƒ)ÅBƒ>Bƒ¬B‚õB‚ãsB‚ÑØB‚À4B‚®ˆB‚œÒB‚‹B‚yMB‚gB‚U¨B‚CÈB‚1âB‚ôB‚ þBüBéüB×ðBÅÞB³ÄB¡¤B}B}PBkBXãBF¤B4^B"BÃB€ýmB€ëB€Ø²B€ÆLB€³âB€¡sB€B€|ˆB€j B€WŒB€EB€2€B€õB€ fBõ¨BÐ|B«KB†B`ØB;”BNB~ñB~˰B~¦\B~B~[¨B~6HB~æB}ë€B}ÆB} ¯B}{DB}UÖB}0hB} øB|åˆB|ÀB|š§B|u7B|OÅB|*VB|èB{ß{B{ºB{”¥B{o>B{IÙB{$uBzÿBzÙ»Bz´cBz Bzi½BzDrBz(ByùæByÔ«By¯tByŠ@ByeBy?òByÔBxõ¼BxЮBx«¦Bx†¦Bxa¬Bx<¾BxØB‡ÊÖB‡ÇoB‡Ä%B‡ÀõB‡½áB‡ºçB‡¸B‡µB‡9¹B‡6B‡2SB‡.pB‡*kB‡&EB‡!ûB‡B‡úB‡@B‡`B‡ YB‡(B†ÿÎB†úHB†ô—B†îºB†è¯B†âvB†Ü B†ÕsB†Î©B†Ç¬B†À|B†¹B†±€B†©°B†¡«B†™nB†öB†ˆGB†[B†v]B†mLB†cÿB†ZyB†P¸B†F¿B†B‡©JB‡¦nB‡£¬B‡¡B‡žnB‡›ðB‡™ˆB‡—3B‡”òB‡’ÃB‡¥B‡Ž˜B‡Œ›B‡Š«B‡ˆÉB‡†ôB‡…*B‡ƒlB‡·B‡€ B‡~gB‡|ÊB‡{3B‡y¡B‡xB‡v‰B‡uB‡s{B‡qõB‡poB‡nçB‡m\B‡kÏB‡j=B‡h¦B‡g B‡eeB‡c¹B‡bB‡`FB‡^|B‡\§B‡ZÅB‡XÖB‡VØB‡TËB‡R­B‡P~B‡N=B‡KèB‡I€B‡GB‡DoB‡AÄB‡?B‡<&B‡92B‡6"B‡2÷B‡/¯B‡,JB‡(ÆB‡%#B‡!`B‡{B‡tB‡KB‡ýB‡ ŠB‡òB‡2B†þKB†ù:B†ôB†îB†éB†ãQB†ÝgB†×OB†ÑB†Ê‘B†ÃèB†½B†¶B†®¿B†§HB†ŸœB†—¹B†ŸB†‡KB†~¾B†uöB†mB†d,B†[B†QžB†HB†>*B†4B†)ÚB†`B†±B† ÎB…þ¸B…ónB…çòB…ÜFB…ÐiB…Ä]B…¸"B…«¹B…Ÿ"B…’`B……rB…xZB…kB…]«B…PB…BZB…4xB…&pB…BB… ðB„ûzB„ìâB„Þ(B„ÏLB„ÀPB„±4B„¡úB„’¢B„ƒ-B„s›B„cîB„T%B„DCB„4HB„$4B„B„ÆBƒónBƒãBƒÒ~BƒÁêBƒ±ABƒ †Bƒ»Bƒ~àBƒmôBƒ\ùBƒKðBƒ:ÛBƒ)¹Bƒ‹BƒSB‚öB‚äÍB‚ÓB‚ÂCB‚°ñB‚Ÿ–B‚Ž3B‚|ÈB‚kVB‚YÜB‚HYB‚6ÏB‚%>B‚¦B‚Bð`BÞ²BÌþB»BB©‚B—»B…ìBtBb@BP`B>|B,’B¢B­B€ö³B€äµB€Ò²B€À©B€®B€œŒB€ŠvB€x]B€f@B€TB€AúB€/ÒB€¦B€ xBòŒBÎ"B©²B…>B`ÄBB}`™B};ôB}NB|ò§B|ÎB|©ZB|„µB|`B|;jB|ÇB{ò$B{Í…B{¨èB{„JB{_²B{;B{‰BzñúBzÍoBz¨æBz„dBz_äBz;jBzöByò†ByÎBy©¹By…ZByaBy<´ByjBxô(BxÏîBx«»Bx‡‘BxcoB‡ xB‡PB‡šDB‡—TB‡”B‡‘ÃB‡ B‡Œ”B‡Š B‡‡ÂB‡…xB‡ƒCB‡ B‡B‡}B‡{#B‡yEB‡wtB‡u±B‡sûB‡rPB‡p°B‡oB‡mŒB‡lB‡jˆB‡iB‡gœB‡f-B‡dÁB‡cWB‡aïB‡`‰B‡_!B‡]·B‡\KB‡ZÜB‡YiB‡WðB‡VrB‡TìB‡S_B‡QÈB‡P(B‡N~B‡LÇB‡KB‡I4B‡GTB‡EfB‡CgB‡AWB‡?5B‡=B‡:¶B‡8XB‡5äB‡3XB‡0µB‡-ùB‡+$B‡(4B‡%(B‡"B‡»B‡WB‡ÔB‡1B‡lB‡ †B‡}B‡PB†ÿþB†û…B†öçB†ò B†í1B†èB†âÖB†ÝhB†×ÍB†ÒB†ÌB†ÅêB†¿•B†¹B†²VB†«lB†¤LB†œùB†•pB†°B†…¸B†}ˆB†uB†l|B†cÄB†Z÷B†QïB†H­B†?4B†5‚B†+—B†!xB†"B† —B†ØB…öåB…ëÀB…àiB…ÔâB…É*B…½CB…±-B…¤êB…˜yB…‹ÜB…B…r"B…eB…WÁB…JSB…<¾B…/B…!"B…B…ñB„ö¤B„è3B„Ù B„ÊîB„¼B„­(B„žB„ŽæB„›B„p2B„`®B„QB„AXB„1†B„!B„œB„…BƒñWBƒáBƒÐ¾BƒÀTBƒ¯ØBƒŸIBƒŽªBƒ}úBƒm:Bƒ\lBƒK‘Bƒ:¨Bƒ)³Bƒ²Bƒ§B‚ö’B‚å}B‚ÔjB‚ÃNB‚²*B‚ þB‚ÉB‚~ŒB‚mHB‚[üB‚J©B‚9OB‚'ìB‚ƒB‚BóœBâBЛB¿B­B›èBŠKBx¨BgBUQBCB1äB %BbB€üšB€êÌB€ØúB€Ç$B€µJB€£jB€‘‡B€ B€mµB€[ÆB€IÔB€7ÞB€%äB€èB€éBßÎB»ÄB—´Bs BO†B+iBGB~ã"B~¾øB~šÌB~vœB~RhB~.3B~ üB}åÂB}Á‡B}JB}y B}TÍB}0B} MB|è B|ÃÍB|ŸŒB|{OB|WB|2ÒB|˜B{ê^B{Æ&B{¡òB{}¾B{YB{5bB{8BzíBzÈñBz¤ÒBz€¼Bz\¦Bz8–BzByðˆBÿBy¨’By„žBy`²By<ÎByðBxõBxÑLBx­†Bx‰ÈB‡ŠøB‡‡ðB‡…B‡‚4B‡B‡|ãB‡z_B‡wôB‡u B‡s`B‡q6B‡o!B‡mB‡k-B‡iNB‡g~B‡e¾B‡d B‡bhB‡`ÑB‡_FB‡]ÄB‡\MB‡ZßB‡YxB‡XB‡V¿B‡UjB‡TB‡RÍB‡Q‚B‡P9B‡NñB‡M¨B‡L]B‡KB‡IÀB‡HkB‡GB‡E²B‡DKB‡BÝB‡AfB‡?äB‡>YB‡<ÁB‡;B‡9lB‡7¬B‡5ÝB‡3ýB‡2 B‡0 B‡-ôB‡+ÊB‡)‹B‡'6B‡$ÊB‡"GB‡«B‡õB‡&B‡:B‡2B‡B‡ ÊB‡ gB‡äB‡@B†ÿ{B†û’B†÷†B†óTB†îþB†ê€B†åÛB†áB†ÜB†ÖõB†ÑªB†Ì0B†Æ‹B†À·B†º´B†´B†®B†§ˆB† ÀB†™ÄB†’”B†‹.B†ƒ’B†{¾B†s²B†klB†bîB†ZYB†Q®B†HÊB†?¬B†6VB†,ÇB†#B†B†ÓB†lB…ùÒB…ïB…äB…ØÒB…ÍpB…ÁÝB…¶B…ª+B…žB…‘ÄB……NB…x¬B…kàB…^êB…QÌB…D†B…7B…)„B…ËB… ìB„ÿêB„ñÄB„ã|B„ÕB„ƉB„·ÞB„©B„š,B„‹&B„|B„lÆB„]lB„M÷B„>jB„.ÂB„B„.BƒÿBBƒï?Bƒß(BƒÎþBƒ¾¿Bƒ®nBƒž Bƒ™Bƒ}BƒlƒBƒ[âBƒK3Bƒ:xBƒ)°BƒÝBƒB‚÷B‚æ2B‚ÕMB‚Ä_B‚³iB‚¢kB‚‘eB‚€WB‚oBB‚^&B‚MB‚;×B‚*¤B‚kB‚+BöäBå–BÔCBÂéB±ˆB "B޶B}DBkÌBZPBHÍB7EB%¸B&BB€ðõB€ßUB€Í±B€¼B€ª[B€˜ªB€†öB€u=B€cB€QÂB€?þB€.8B€nB€ ¢Bñ¦BÎBªXB†ªBbøB?BB‡B~÷ÈB~ÔB~°@B~ŒvB~h«B~DÝB~! B}ý:B}ÙfB}µB}‘¹B}máB}J B}&0B}XB|ÞB|º¦B|–ÏB|r÷B|O"B|+MB||B{ã¬B{¿ÝB{œB{xHB{T„B{0ÀB{ BzéFBzÅBz¡ÜBz~0BzZ†Bz6âBzBByï«ByÌBy¨ŒBy…Bya†By>ByœBx÷4BxÓÒBx°yB‡uJB‡rdB‡o˜B‡lèB‡jRB‡gÖB‡etB‡c(B‡`óB‡^ÔB‡\ÊB‡ZÓB‡XðB‡WB‡U_B‡S¯B‡RB‡P}B‡NøB‡M€B‡LB‡J²B‡IZB‡H B‡FÃB‡E‚B‡DHB‡CB‡AáB‡@´B‡?ˆB‡>^B‡=4B‡< B‡:ÞB‡9±B‡8€B‡7JB‡6B‡4ÏB‡3ˆB‡28B‡0àB‡/B‡.B‡,šB‡+B‡)„B‡'ãB‡&3B‡$sB‡"¢B‡ ¾B‡ÈB‡¾B‡ŸB‡jB‡B‡¼B‡?B‡ªB‡ úB‡ .B‡HB‡BB‡ B†üÞB†ù|B†õùB†òTB†îB†ê¢B†æ‘B†â\B†ÞB†Ù|B†ÔÑB†ÏüB†ÊüB†ÅÒB†À|B†ºøB†µGB†¯fB†©WB†£B†œ£B†•ÿB†'B†ˆB†€×B†y_B†q¯B†iÇB†a§B†YLB†PÛB†HTB†?’B†6˜B†-eB†#úB†XB†B†sB…ü0B…ñ»B…çB…Ü7B…Ñ+B…ÅîB…ºB…®åB…£B…—$B…‹B…~°B…r5B…eB…XÁB…KÊB…>¬B…1fB…#ùB…hB…±B„úØB„ìÚB„Þ¼B„ÐzB„ÂB„³˜B„¤÷B„–9B„‡]B„xdB„iPB„Z B„JÖB„;sB„+øB„dB„ ¹BƒüøBƒí"BƒÝ6BƒÍ8Bƒ½%Bƒ­BƒœËBƒŒ…Bƒ|.BƒkÉBƒ[UBƒJÔBƒ:FBƒ)¬BƒBƒXB‚÷ B‚æèB‚Ö0B‚ÅrB‚´ªB‚£ÛB‚“B‚‚%B‚q@B‚`SB‚O_B‚>dB‚-aB‚XB‚ HBú2BéB×òBÆÉBµšB¤eB“*BéBp¤B_YBNB<²B+XBøB”B€÷*B€å½B€ÔLB€ÂÖB€±\B€ŸÞB€Ž\B€|ÖB€kNB€YÁB€H1B€6žB€%B€oB€ÔBàkB½(B™ãBv˜BSIB/õB žB~éDB~ÅæB~¢…B~"B~[¼B~8TB~éB}ñ~B}ÎB}ª¢B}‡3B}cÂB}@RB}âB|ùrB|ÖB|²’B|#B|k·B|HKB|$àB|xB{ÞB{º°B{—NB{sðB{P–B{->B{ ìBzæœBzÃQBz  Bz|ÈBzYŒBz6VBz#Byï÷ByÌÐBy©²By†™Byc‡By@|ByxBxú}Bx׉B‡_kB‡\¥B‡YúB‡WjB‡TöB‡RšB‡PWB‡N,B‡LB‡JB‡H.B‡FWB‡D”B‡BäB‡ACB‡?³B‡>2B‡<ÀB‡;[B‡:B‡8µB‡7sB‡6;B‡5 B‡3ãB‡2ÂB‡1§B‡0‘B‡/€B‡.qB‡-eB‡,ZB‡+PB‡*EB‡)9B‡(+B‡'B‡&B‡$èB‡#ÇB‡"ŸB‡!pB‡ 7B‡ôB‡¨B‡OB‡êB‡xB‡÷B‡gB‡ÇB‡B‡SB‡|B‡ ’B‡ “B‡ ~B‡SB‡B‡´B‡@B†ý°B†ûB†ø?B†õ[B†òYB†ï8B†ë÷B†è–B†åB†álB†Ý¢B†Ù´B†Õ B†ÑfB†ÍB†ÈzB†ÃÈB†¾êB†¹ãB†´¯B†¯NB†©¿B†¤B†žB†—øB†‘©B†‹'B†„rB†}‰B†vkB†oB†gŒB†_ÈB†WÌB†O–B†GIB†>æB†6HB†-rB†$cB†B†žB†êB…þB…óåB…é”B…ßB…Ô[B…ÉtB…¾]B…³B…§ B…›üB…,B…„.B…xB…k±B…_4B…RŒB…E½B…8ÆB…+¨B…dB…úB…mB„õ»B„çæB„ÙñB„ËÙB„½¡B„¯IB„ ÒB„’>B„ƒŒB„t¾B„eÔB„VÏB„G°B„8xB„)'B„¿B„ @Bƒú«BƒëBƒÛBBƒËoBƒ»‰Bƒ«‘Bƒ›‰Bƒ‹oBƒ{EBƒkBƒZÈBƒJuBƒ:Bƒ)©Bƒ3Bƒ²B‚ø)B‚çŸB‚×B‚ƆB‚µîB‚¥NB‚”§B‚ƒøB‚sBB‚b…B‚QÁB‚@öB‚0$B‚LB‚mBýˆBìœBÛªBʲB¹´B¨±B—¨B†šBu†BdlBSNBB+B1BÕB¤B€ýnB€ì4B€ÚõB€É²B€¸kB€§!B€•ÒB€„€B€s+B€aÒB€PvB€?B€-µB€PB€ èBòüBÐ"B­DBŠaBg{BDB!¢B~þ°B~Û¼B~¸ÃB~•ÉB~rÌB~OÍB~,ÌB~ ÉB}æÅB}ÃÀB} ºB}}´B}Z­B}7¥B}žB|ñ—B|Î’B|«B|ˆˆB|e‡B|B…B|†B{üŠB{ÙB{¶–B{“£B{p°B{MÂB{*ÖB{ñBzåBzÂ.BzŸWBz|‚BzY²Bz6éBz$ByñfByήBy«üBy‰PByf®ByDBy!{BxþïB‡I]B‡F·B‡D-B‡A¿B‡?kB‡=0B‡;B‡9B‡7B‡50B‡3fB‡1°B‡0 B‡.|B‡,üB‡+ŒB‡*,B‡(ÚB‡'•B‡&\B‡%/B‡$ B‡"ôB‡!äB‡ ÜB‡ÛB‡ßB‡éB‡÷B‡B‡B‡1B‡GB‡\B‡pB‡€B‡B‡™B‡B‡œB‡”B‡„B‡kB‡IB‡ B‡ äB‡ ŸB‡ LB‡ìB‡|B‡üB‡jB‡ÈB‡B†þHB†üjB†úvB†øjB†öHB†ô B†ñºB†ïLB†ìÂB†êB†çYB†äxB†áxB†ÞYB†ÛB†×·B†Ô2B†ÐŠB†Ì¾B†ÈÌB†Ä´B†ÀuB†¼B†·}B†²ÃB†­ÞB†¨ÌB†£B†ž#B†˜‰B†’¿B†ŒÆB††šB†€=B†y¬B†rçB†kíB†d½B†]WB†U¸B†MáB†EÐB†=¨B†5iB†,ïB†$=B†QB†/B†ÖB…ÿGB…õ„B…ëŒB…áaB…×B…ÌrB…Á±B…¶ÁB…« B… PB…”ÓB…‰)B…}RB…qPB…e$B…XÎB…LNB…?¦B…2ØB…%âB…ÆB… …B„þ B„ð˜B„âìB„ÕB„Ç2B„¹#B„ªõB„œ©B„Ž>B„¶B„qB„bTB„SzB„D†B„5zB„&TB„B„ÄBƒø[BƒèÜBƒÙJBƒÉ¤Bƒ¹ëBƒª!BƒšEBƒŠZBƒz^BƒjSBƒZ;BƒJBƒ9äBƒ)§Bƒ`Bƒ B‚ø³B‚èYB‚ØB‚ÇŸB‚·6B‚¦ÆB‚–OB‚…ÐB‚uJB‚d¾B‚T*B‚CB‚2îB‚"GB‚˜B‚åBð*BßjBΤB½ÙB­Bœ0B‹TBzsBiŒBX BG¯B6ºB%ÀBÂB¾B€ò¸B€á¬B€ÐB€¿ŠB€®sB€XB€Œ:B€{B€iôB€XÌB€G¡B€6sB€%BB€B€ÚBãBBÀÎBžTB{×BYUB6ÐBIB~ñ¼B~Ï.B~¬žB~Š B~gvB~DßB~"GB}ÿ¬B}ÝB}ºuB}—ØB}u;B}RŸB}0B} eB|êÉB|È.B|¥”B|‚üB|`cB|=ÎB|B†nÒB†h2B†a\B†ZQB†SB†K—B†CäB†;øB†3ôB†+ÙB†#…B†öB†/B† 2B…ÿþB…ö•B…ìöB…ã#B…ÙB…ÎæB…Ä{B…¹àB…¯B…¤B…˜óB…œB…‚B…vjB…jB…^ŠB…R\B…FB…9…B…,ÞB… B…B…B„øÊB„ëjB„ÝéB„ÐFB„ÂB„´œB„¦˜B„˜wB„Š7B„{ÚB„maB„^ÍB„PB„AVB„2uB„#|B„kB„DBƒöBƒæ¶Bƒ×PBƒÇÖBƒ¸KBƒ¨­Bƒ™Bƒ‰ABƒytBƒi˜BƒY®BƒI·Bƒ9´Bƒ)¦BƒBƒ kB‚ù@B‚éB‚ØëB‚ȹB‚¸€B‚¨@B‚—ùB‚‡«B‚wVB‚fúB‚V—B‚F.B‚5½B‚%HB‚ËB‚IBóÀBã2BÒžBÂB±fB ÁBBhBnµB]üBM>B<}B+¶BëB B€ùHB€èqB€×–B€Æ·B€µÔB€¤íB€”B€ƒB€r&B€a3B€PB„†(B„w÷B„iªB„[@B„L¾B„> B„/lB„ žB„ºB„¿Bƒó°BƒäŠBƒÕRBƒÆBƒ¶¨Bƒ§8Bƒ—¸Bƒˆ(BƒxˆBƒhÛBƒYBƒIXBƒ9„Bƒ)¥Bƒ¼Bƒ ÉB‚ùÎB‚éÓB‚ÙÙB‚É×B‚¹ÏB‚©¾B‚™¨B‚‰ŠB‚yfB‚i:B‚Y B‚HÑB‚8’B‚(NB‚B‚´B÷]BçBÖŸBÆ9BµÌB¥[B”äB„iBsèBcdBRÙBBKB1¸B!!B…B€ÿæB€ïCB€ÞœB€ÍñB€½CB€¬‘B€›ÜB€‹#B€zhB€i©B€XèB€H$B€7]B€&”B€ÈB€úBèTBưB¥Bƒ[Ba¬B?ùBCB~üŒB~ÚÐB~¹B~—UB~u”B~SÒB~2B~JB}î„B}Ì¿B}ªøB}‰2B}glB}E¦B}#àB}B|àWB|¾—B|œÖB|{B|YZB|7žB|æB{ô2B{ÒB{°ÏB{#B{mzB{KÖB{*7B{šBzçBzÅpBz£âBz‚ZBz`ØBz?ZBzäByürByÛBy¹¤By˜HByvóB‡,B‡êB‡ÆB†ÿ»B†ýÌB†ûôB†ú6B†øŽB†öþB†õ‚B†ôB†òÇB†ñ‡B†ðXB†ï:B†î,B†í.B†ì=B†ëZB†êƒB†é¸B†èöB†è?B†çB†æéB†æIB†å¯B†åB†ä‰B†ãúB†ãoB†âåB†â[B†áÑB†áFB†à·B†à'B†ß‘B†Þ÷B†ÞWB†Ý°B†ÝB†ÜJB†ÛˆB†Ú½B†ÙæB†ÙB†ØB†×B†ÖB†ÔèB†Ó¹B†ÒyB†Ñ%B†Ï¾B†ÎBB†Ì²B†Ë B†ÉLB†ÇtB†Å…B†ÃzB†ÁVB†¿B†¼·B†º:B†·¡B†´èB†² B†¯B†«ôB†¨³B†¥NB†¡ÄB†žB†š=B†–>B†’B†ÆB†‰KB†„¤B†ÑB†zÐB†u¢B†pEB†j·B†døB†_B†XäB†RŽB†LB†EBB†>KB†7B†/¶B†(B† ]B†ŠB†}B†9B…ÿ¼B…÷ B…î B…åB…Û­B…Ò&B…ÈmB…¾B…´dB…ªB…Ÿ˜B…”ìB…ŠB… B…sÕB…huB…\êB…Q6B…EWB…9PB…-!B… ÌB…PB…°B„úëB„îB„àõB„ÓÈB„ÆxB„¹B„«xB„ÊB„ýB„‚B„t B„eêB„W­B„IVB„:æB„,\B„¼B„B„6BƒñSBƒâ\BƒÓPBƒÄ2BƒµBƒ¥ÀBƒ–nBƒ‡ Bƒw›BƒhBƒXBƒHøBƒ9SBƒ)£BƒêBƒ 'B‚ú[B‚êB‚ÚÆB‚ÊöB‚»B‚«>B‚›XB‚‹kB‚{xB‚kB‚[B‚KxB‚;lB‚+YB‚AB‚ #BûBêÖBÚ¨BÊtBº;B©üB™¹B‰pBy$BhÓBX|BH"B7ÄB'aBúBB€ö B€å®B€Õ8B€Ä¾B€´AB€£ÁB€“>B€‚¸B€r.B€a¢B€QB€@ƒB€/ïB€YB€ÀBüLBÛB¹×B˜—BwTBV B4ÃBxB~ò)B~ÐÙB~¯†B~Ž1B~lÜB~K…B~*-B~ÔB}çzB}Æ!B}¤ÇB}ƒmB}bB}@»B}cB|þ B|Ü·B|»bB|šB|xÀB|WrB|6$B|ÚB{ó”B{ÒQB{±B{ÕB{nœB{MhB{,7B{ BzéâBzÈÀBz§¢Bz†‹BzexBzDlBz#fBzfByálByÀzByŸB†ïxB†íXB†ëVB†énB†çŸB†åêB†äMB†âÈB†áXB†ßþB†Þ¸B†Ý‡B†ÜhB†ÛZB†Ú^B†ÙqB†Ø“B†×ÄB†×B†ÖLB†Õ¡B†ÕB†ÔjB†ÓÜB†ÓVB†ÒÖB†Ò]B†ÑéB†ÑyB†Ñ B†Ð¡B†Ð7B†ÏÏB†ÏeB†ÎúB†ÎB†ÎB†Í¨B†Í/B†Ì°B†Ì*B†ËœB†ËB†ÊeB†É»B†ÉB†ÈCB†ÇsB†Æ•B†Å¨B†Ä¬B†ÃžB†ÂB†ÁNB†ÀB†¾®B†½>B†»¹B†ºB†¸fB†¶˜B†´°B†²­B†°ŽB†®RB†«úB†©‚B†¦êB†¤3B†¡ZB†ž_B†›AB†—þB†”˜B†‘ B†XB†‰|B†…xB†KB†|óB†xqB†sÁB†nåB†iÜB†d¢B†_9B†YŸB†SÔB†MÖB†G¤B†A>B†:£B†3ÑB†,ÉB†%ˆB†B†{B†ÌB†æB…þÆB…öoB…íáB…åB…Ü$B…Ò÷B…É–B…ÀB…¶=B…¬HB…¢ B…—ÊB…EB…‚’B…w±B…l¤B…amB…V B…J~B…>ÈB…2êB…&äB…¸B…fB…îB„õSB„è”B„Û²B„ήB„ÁˆB„´DB„¦ÞB„™ZB„‹ºB„}úB„p B„b*B„TB„EíB„7©B„)LB„ØB„ MBƒý­Bƒî÷Bƒà-BƒÑOBƒÂ^Bƒ³\Bƒ¤IBƒ•%Bƒ…òBƒv°Bƒg`BƒXBƒHšBƒ9%Bƒ)¥BƒBƒ ‰B‚úïB‚ëTB‚ÛºB‚ÌB‚¼rB‚¬ÃB‚B‚TB‚}’B‚mÊB‚]ûB‚N'B‚>MB‚.mB‚‡B‚œBþ«Bî´BÞ¹BθB¾²B®¨Bž˜BŽ„B~kBnNB^,BNB=ÛB-­B{B EB€ý B€ìÍB€ÜŒB€ÌHB€¼B€«¶B€›hB€‹B€zÃB€jmB€ZB€I¸B€9[B€(úB€˜B€4Bï›BÎÊB­÷B BlFBKiB*ŠB ¨B~èÄB~ÇßB~¦øB~†B~e%B~D:B~#NB~bB}áuB}À‰B}Ÿ›B}~¯B}]ÃB}<ØB}îB|ûB|ÚB|¹8B|˜UB|wsB|V”B|5·B|ÝB{ôB{Ó2B{²bB{‘–B{pÍB{PB{/HB{ŒBzíÕBzÍ$Bz¬wBz‹ÐBzk.BzJ’Bz)üBz mByèäByÈcB†ØžB†Ö¢B†ÔÁB†ÒûB†ÑOB†Ï»B†Î@B†ÌÜB†ËB†ÊVB†É2B†È"B†Ç%B†Æ9B†Å]B†Ä’B†ÃÖB†Ã(B†Â‡B†ÁòB†ÁiB†ÀêB†ÀuB†ÀB†¿¢B†¿DB†¾ìB†¾˜B†¾IB†½ýB†½´B†½kB†½#B†¼ÚB†¼‘B†¼EB†»öB†»¢B†»JB†ºìB†º‡B†ºB†¹¥B†¹%B†¸œB†¸B†·fB†¶¸B†µüB†µ1B†´VB†³jB†²lB†±\B†°8B†®ÿB†­²B†¬NB†ªÒB†©@B†§”B†¥ÎB†£ìB†¡ðB†ŸÖB† B†›KB†˜ÖB†–BB†“ŒB†³B†¸B†ŠšB†‡VB†ƒìB†€]B†|¥B†xÅB†t¼B†pˆB†l)B†gŸB†bçB†^B†XìB†S©B†N4B†HB†B´B†<©B†6hB†/ôB†)GB†"eB†KB†øB† ‰B†B…ý>B…õCB…íB…äªB…Ü B…Ó9B…Ê2B…ÀøB…·‹B…­ìB…¤B…šB…îB……B…{B…pMB…ehB…ZXB…OB…CºB…8-B…,xB… ›B…˜B…pB„ü"B„ï°B„ãB„ÖdB„ÉŠB„¼B„¯uB„¢;B„”âB„‡lB„yÚB„l*B„^`B„PzB„B|B„4dB„&5B„îB„ BƒûBƒì”BƒÝ÷BƒÏHBƒÀ†Bƒ±²Bƒ¢ÍBƒ“ØBƒ„ÓBƒuÀBƒf BƒWsBƒH8Bƒ8ôBƒ)¤BƒKBƒ éB‚ûB‚ìB‚ܬB‚ÍB†‘GB†3B†B†Š¯B†ˆ=B†…ªB†‚õB†€B†}#B†zB†v¼B†sPB†o½B†lB†hB†d B†_ÒB†[kB†VØB†RB†M(B†H B†B¹B†=8B†7…B†1ŸB†+…B†%4B†°B†óB†B† ÓB†‹B…û'B…óŠB…ëµB…ã©B…ÛhB…ÒðB…ÊCB…ÁbB…¸NB…¯B…¥‘B…›èB…’B…ˆB…}ÒB…soB…hßB…^#B…SB‚“B‚ƒìB‚t¼B‚e„B‚VHB‚GB‚7¿B‚(rB‚!B‚ ÊBúoBëBÛ©BÌ@B¼ÒB­_BèBŽlB~îBojB_ãBPXB@ÉB17B!¡BBlB€òËB€ã)B€ÓƒB€ÃÚB€´/B€¤€B€”ÐB€…B€ufB€e¯B€UôB€F8B€6zB€&ºB€øB€4BîÞBÏQB¯ÂB.BpšBQB1jBÐB~ò3B~Ò–B~²÷B~“XB~s¸B~TB~4vB~ÔB}õ2B}Õ“B}µòB}–RB}vµB}WB}7zB}ßB|øHB|ذB|¹B|™ŠB|yùB|ZlB|:àB|{ûÖB{ÜVB{¼ÚB{aB{}ìB{^~B{?B{ªB{IBzàîBzÁ–Bz¢DBz‚úBzc´BzDsB†“BB†‘®B†6B†ŽØB†“B†ŒgB†‹TB†ŠVB†‰oB†ˆB†‡àB†‡6B††žB††B†…£B†…=B†„æB†„B†„bB†„2B†„ B†ƒóB†ƒãB†ƒÛB†ƒÚB†ƒàB†ƒíB†ƒþB†„B†„+B†„FB†„bB†„~B†„šB†„µB†„ÍB†„âB†„ôB†…B†…B†…B†„þB†„íB†„ÓB†„®B†„B†„CB†ƒúB†ƒ£B†ƒ>B†‚ÈB†‚BB†ªB†B†€BB†qB†~ŠB†}B†|xB†{MB†zB†xªB†w1B†užB†sìB†rB†p2B†n(B†küB†i°B†gBB†d²B†aþB†_&B†\(B†YB†U¸B†RFB†N©B†JãB†FòB†BÕB†>B†:B†5qB†0B†+™B†&bB† ûB†`B†’B†B† WB†èB…üBB…õcB…îgB…çNB…ßþB…ØuB…еB…È¿B…À”B…¸4B…¯¢B…¦ÜB…äB…”»B…‹bB…ØB…x B…n:B…d'B…YèB…O}B…DçB…:'B…/>B…$-B…ôB… ”B…B„öcB„ê”B„Þ¡B„ÒŒB„ÆTB„¹üB„­‚B„ êB„”2B„‡]B„zjB„m[B„`1B„RìB„EŒB„8B„*„B„ÜB„B„GBƒó^Bƒå`Bƒ×MBƒÉ)BƒºóBƒ¬«BƒžTBƒëBƒuBƒrñBƒd`BƒUÃBƒGBƒ8fBƒ)¨BƒáBƒ B‚ýºB|¥B|’B{á…B{Â|B{£tB{„sB{evB{F|B{'‰B{œBzé°BzÊÌBz«îBzBznBB†{æB†zvB†y B†wåB†vÄB†u¹B†tÈB†sîB†s*B†r{B†qàB†qXB†pãB†pB†p,B†oéB†o´B†oB†osB†ofB†odB†okB†o|B†o–B†o¸B†oáB†pB†pAB†pxB†p³B†pïB†q-B†qkB†q©B†qåB†r B†rVB†rŠB†r¸B†ràB†sB†sB†s-B†s5B†s2B†s%B†s B†räB†r°B†rlB†rB†qµB†q@B†p¸B†pB†onB†nªB†mÏB†lÞB†kÕB†j³B†ixB†h"B†f²B†e$B†czB†a±B†_ÉB†]ÂB†[šB†YPB†VãB†TTB†QŸB†NÆB†KÆB†HŸB†EPB†AÙB†>8B†:lB†6uB†2PB†-ÿB†)€B†$ÒB†óB†ãB†¢B†.B† †B†ªB…þ˜B…øPB…ñÑB…ëB…äDB…ÝQB…Ö&B…ÎÃB…Ç+B…¿ZB…·VB…¯B…¦²B…žB…•CB…ŒBB…ƒB…y®B…pB…faB…\vB…R`B…HB…=±B…3B…(ZB…sB…dB….B„ûÓB„ðRB„ä­B„ØäB„ÌúB„ÀîB„´ÀB„¨sB„œB„zB„‚ÑB„v B„i)B„\*B„OB„AàB„4•B„'2B„¸B„ &Bƒþ€BƒðÄBƒâôBƒÕBƒÇBƒ¹BƒªüBƒœÒBƒŽ›Bƒ€UBƒrBƒc BƒU2BƒFºBƒ88Bƒ)«BƒBƒ wB‚ýÔB‚ï/B‚àŠB‚ÑàB‚Ã1B‚´|B‚¥ÀB‚—B‚ˆ:B‚ynB‚jžB‚[ÈB‚LìB‚> B‚/(B‚ >B‚PB‚\BóeBäiBÕiBÆeB·\B¨OB™>BŠ*B{BköB\ÖBM³B>B/cB 6BBÔB€òžB€ãfB€Ô*B€ÄìB€µ¬B€¦iB€—$B€‡ÜB€x’B€iGB€YùB€JªB€;YB€,B€²B€ \Bü BÝXB¾¤BŸïB7Bb~BCÂB%BIB~ç‰B~ÈÊB~ª B~‹IB~lˆB~MÇB~/B~DB}ñ…B}ÒÅB}´B}•GB}vŒB}WÐB}9B}`B|ûªB|ÜöB|¾FB|Ÿ—B|€êB|bCB|CœB|$úB|ZB{çÀB{É)B{ª”B{ŒB{m|B{NöB{0vB{úBzóƒBzÕBz¶¦Bz˜@B†dqB†c$B†aðB†`ØB†_ÚB†^ôB†^&B†]nB†\ÌB†\@B†[ÈB†[bB†[B†ZÏB†ZžB†Z}B†ZkB†ZgB†ZoB†Z„B†Z¤B†ZÍB†[B†[>B†[€B†[ËB†\B†\pB†\ÉB†]&B†]„B†]äB†^DB†^¤B†_B†__B†_¸B†` B†`]B†`§B†`ëB†a'B†aZB†a„B†a¤B†a¹B†aÂB†a½B†a«B†aŠB†aYB†aB†`ÅB†``B†_èB†_[B†^ºB†^B†]4B†\NB†[PB†Z8B†YB†W·B†VNB†TÆB†S!B†Q]B†OzB†MuB†KPB†IB†F›B†D B†AVB†>{B†;yB†8OB†4ýB†1€B†-ÚB†*B†& B†!ÝB†„B†üB†CB†YB† >B†ðB…ÿpB…ùºB…óÐB…í¯B…çVB…àÇB…ÚB…ÓKB…ÌFB…Å B…½–B…µîB…®B…¥ÿB…ºB…•CB…ŒšB…ƒÀB…z¶B…q~B…hB…^B…T¾B…JÑB…@¸B…6tB…,B…!qB…³B… ÎB…ÂB„õB„ê:B„ÞÁB„Ó#B„ÇdB„»ƒB„¯€B„£^B„—B„оB„~AB„q§B„dñB„X!B„K5B„>0B„1B„#ÜB„B„ -BƒûµBƒî(Bƒà†BƒÒÒBƒÅ Bƒ·3Bƒ©JBƒ›QBƒIBƒ2BƒqBƒbßBƒT¢BƒFZBƒ8 Bƒ)®BƒIBƒ ÞB‚þjB‚ïøB‚á†B‚ÓB‚Ä‘B‚¶B‚§†B‚˜÷B‚ŠeB‚{ÍB‚m/B‚^B‚OæB‚A:B‚2‰B‚#ÔB‚B‚\B÷™BèÒBÚBË6B¼cB­ŒBž±BÒB€ðBr Bc!BT4BEDB6QB'[BbB fB€úgB€ëfB€ÜaB€ÍZB€¾QB€¯EB€ 8B€‘(B€‚B€sB€cìB€TÕB€E»B€6 B€'„B€fB€ GBôNBÖ B·ÄB™~B{4B\êB>žB RBB~ã´B~ÅeB~§B~ˆÄB~juB~L$B~-ÓB~„B}ñ4B}ÒèB}´šB}–NB}xB}Y¼B};tB}.B|þêB|à©B|ÂlB|¤0B|…÷B|gÁB|IB|+`B| 4B{ï B{ÐèB{²ÉB{”®B{v–B{XƒB{:vB{nBzþjBzàlBzÂtB†LÞB†K´B†J¦B†I±B†HÖB†HB†GgB†FÓB†FTB†EëB†E•B†ESB†E#B†EB†D÷B†DøB†E B†E'B†ERB†EˆB†EÊB†FB†FmB†FËB†G1B†GžB†HB†HˆB†IB†IB†JB†J„B†KB†KˆB†L B†L‡B†MB†MzB†MìB†NYB†N¿B†OB†OsB†O¿B†PB†P9B†PdB†P‚B†P’B†P“B†P†B†PgB†P7B†OõB†OŸB†O5B†N·B†N#B†MxB†LµB†KÚB†JäB†IÖB†H¬B†GeB†FB†D€B†BàB†A!B†?@B†=?B†;B†8ÓB†6hB†3×B†1!B†.DB†+?B†(B†$»B†!9B†ŒB†´B†®B†zB† B†…B†ÂB…þÎB…ù¦B…ôLB…î¾B…èúB…ãB…ÜÑB…ÖiB…ÏáB…É:B…Â[B…»EB…³øB…¬wB…¤ÀB…œÖB…”¸B…ŒiB…ƒçB…{5B…rTB…iCB…`B…V˜B…LÿB…C:B…9JB…//B…$ìB…B…ìB…0B„úNB„ïHB„äB„ØÎB„Í[B„ÁÇB„¶B„ª;B„žEB„’0B„…üB„y¬B„m?B„`¶B„TB„GTB„:|B„-ŒB„ …B„eB„1BƒøçBƒëˆBƒÞBƒÐBƒÂùBƒµPBƒ§—Bƒ™ÎBƒ‹öBƒ~BƒpBƒbBƒTBƒEûBƒ7ÛBƒ)°Bƒ~Bƒ DB‚ÿB‚ðÃB‚âƒB‚Ô=B‚ÅòB‚·£B‚©MB‚šóB‚Œ’B‚~.B‚oÄB‚aVB‚RãB‚DkB‚5îB‚'nB‚èB‚ ^BûÐBí>BÞ¨BÐBÁqB²ÐB¤*B•‚B†ÕBx&BisBZ¼BLB=FB.‡BÅBB8B€ónB€ä¡B€ÕÒB€ÇB€¸,B€©VB€š~B€‹¤B€|ÈB€mêB€_ B€P*B€AGB€2bB€#|B€–B€®Bí‰BÏ´B±ÞB”Bv-BXRB:vBšB~þ»B~àÝB~ÂÿB~¥ B~‡@B~ibB~KƒB~-¤B~ÇB}ñêB}Ô B}¶3B}˜ZB}zƒB}\¬B}>ÖB}!B}4B|åfB|ÇœB|©ÒB|ŒB|nKB|P‹B|2ÑB|B{÷cB{Ù´B{¼B{ž`B{€¼B{cB{E„B{'ðB{ ^BzìÖB†56B†4/B†3CB†2rB†1ºB†1B†0’B†0"B†/ÆB†/€B†/MB†/.B†/ B†/%B†/:B†/^B†/B†/ÑB†0B†0xB†0ÞB†1LB†1ÅB†2EB†2ÎB†3\B†3òB†4‹B†5(B†5ÉB†6lB†7B†7µB†8ZB†8ýB†9B†:;B†:ÕB†;jB†;øB†MB†>§B†>ôB†?6B†?hB†?ŒB†?¡B†?¦B†?˜B†?xB†?FB†?B†>¤B†>3B†=«B†= B†B„7B„uB„hÒB„\vB„OÿB„CoB„6ÆB„*B„)B„9B„2BƒöBƒèæBƒÛ¤BƒÎNBƒÀæBƒ³lBƒ¥ãBƒ˜JBƒŠ¢Bƒ|ìBƒo*BƒaZBƒS€BƒE›Bƒ7¬Bƒ)´Bƒ´Bƒ ¬B‚ÿB‚ñB‚ãB‚ÕnB‚ÇVB‚¹9B‚«B‚œïB‚ŽÃB‚€’B‚r\B‚d!B‚UâB‚GŸB‚9WB‚+ B‚ºB‚fB‚ Bñ°BãPBÔìBÆ„B¸B©©B›6BŒÀB~GBoËBaKBRÉBDDB5ºB'0B¢B B€ûB€ìéB€ÞRB€Ï¸B€ÁB€²~B€£ÝB€•;B€†—B€wòB€iJB€Z¡B€K÷B€=KB€.žB€ðB€@B€Bç»BÊVB¬ðBˆBrBT´B7IBÝB~üpB~ßB~Á•B~¤(B~†»B~iNB~KâB~.tB~ B}ó B}Ö7B}¸ÍB}›hB}~B}` B}C>B}%ßB}ƒB|ë)B|ÍÐB|°|B|“*B|uÚB|XB|;HB|B|ÂB{ã†B{ÆOB{©B{‹êB{nÀB{QšB{4{B{]B†tB†‘B†ÉB†B†‡B† B†¦B†XB†!B†þB†îB†òB†B†/B†fB†®B†B†gB†×B†TB†ÜB†mB†B†¬B†VB†B†ÀB† |B†!B€9ÉB€+TB€ÝB€eBÿÙBâæBÅñB¨ûBŒBo BRB5BB~û#B~Þ(B~Á-B~¤1B~‡6B~jµB…5—B…,NB…"ÚB…=B…wB…‰B„ûtB„ñ8B„æÖB„ÜPB„Ñ¥B„ÆØB„»èB„°ÖB„¥¤B„šPB„ŽàB„ƒOB„w¢B„k×B„_ñB„SïB„GÔB„;žB„/PB„"éB„lB„ ØBƒý.BƒðqBƒãŸBƒÖºBƒÉÃBƒ¼ºBƒ¯ Bƒ¢wBƒ•?Bƒ‡øBƒz£BƒmBBƒ_ÖBƒR^BƒDÛBƒ7OBƒ)¼Bƒ Bƒ|BƒÓB‚ó*B‚åB‚×ÔB‚Ê!B‚¼jB‚®®B‚ îB‚“)B‚…_B‚w’B‚iÀB‚[êB‚NB‚@1B‚2OB‚$iB‚~B‚‘Bú BìªBÞ²BжB·B´´B¦¯B˜¦BŠšB|ŒBnzB`fBRNBD6B6B'úBÙB ¶B€ýB€ïhB€á>B€ÓB€ÄåB€¶µB€¨„B€šQB€ŒB€}æB€o®B€auB€S;B€DÿB€6ÂB€(„B€FB€ Bû‹BßBÂ…B¦B‰zBlóBPlB3ãB[B~úÓB~ÞJB~ÁÂB~¥9B~ˆ°B~l)B~O¢B~3B~–B}úB}Ý’B}ÁB}¤‘B}ˆB}k˜B}OB}2¦B}2B|ù¿B|ÝRB|ÀäB|¤|B|ˆB|k²B|ORB|2÷B|žB{úJB{ÝüB{Á±B{¥jB{‰(B{lëB…í¸B…íB…ìB…ì8B…ëêB…ë¶B…ë˜B…ë’B…ë¡B…ëÄB…ëüB…ìGB…ì¢B…íB…íŽB…îB…î¸B…ï`B…ðB…ðÙB…ñ¦B…ò~B…ó^B…ôHB…õ7B…ö/B…÷,B…ø-B…ù3B…ú;B…ûFB…üSB…ý_B…þlB…ÿwB†B†„B††B†ƒB†zB†jB†TB†4B† B†ØB† ›B† RB† ûB† –B† $B† ¢B† B† lB† ¶B† íB†B† B†B† üB† ÈB† {B† B† •B† úB† DB† pB† €B†qB†BB†ôB†„B†òB†>B…ÿfB…ýjB…ûHB…øÿB…öB…ó÷B…ñ8B…îMB…ë7B…çöB…ä‰B…àîB…Ý&B…Ù.B…ÕB…ЬB…Ì!B…ÇdB…ÂsB…½MB…·òB…²aB…¬™B…¦®B… ¡B…š]B…“âB…2B…†LB…3B…wæB…phB…h¸B…`×B…XÆB…P†B…HB…?{B…6´B…-¿B…$žB…UB…âB…FB„þ‚B„ô—B„ê†B„àOB„ÕôB„ËuB„ÀÒB„¶B„«(B„ "B„”ûB„‰¶B„~SB„rÒB„g5B„[{B„O§B„C¹B„7±B„+‘B„YB„ B„¤Bƒú*Bƒí›BƒàøBƒÔCBƒÇ{Bƒº¢Bƒ­¸Bƒ ÀBƒ“·Bƒ†¡Bƒy~BƒlNBƒ_BƒQÌBƒD{Bƒ7!Bƒ)¿BƒUBƒåBƒnB‚óøB‚æ‚B‚ÙB‚ˈB‚¾B‚°|B‚¢ïB‚•^B‚‡ÊB‚z0B‚l’B‚^ñB‚QLB‚C¢B‚5õB‚(DB‚B‚ ØBÿBñ]Bã›BÕÕBÈ BºAB¬rBž BÌB‚ôBuBg=BY]BK{B=–B/°B!ÆBÛBîB€÷þB€ê B€ÜB€Î$B€À,B€²4B€¤9B€–>B€ˆ@B€zAB€lAB€^@B€P=B€B9B€44B€&/B€)B€ "Bø3BÜ"BÀB£üB‡èBkÔBO¿B3©B“B~û~B~ßhB~ÃRB~§=B~‹(B~oB~SB~6îB~ÝB}þÍB}â¾B}ƲB}ª¦B}ŽB}r•B}VB}:B}B}‘B|æ–B|ÊžB|®©B|’¸B|vÉB|ZÞB|>øB|#B|5B{ëYB{Ï‚B{³°B{—ãB…ÕÂB…ÕKB…ÔðB…Ô®B…Ô„B…ÔtB…ÔzB…Ô—B…ÔÉB…ÕB…ÕkB…ÕÚB…ÖZB…ÖêB…׌B…ØB…Ô¡B…ÑØB…ÎäB…ËÃB…ÈvB…ÄúB…ÁPB…½vB…¹kB…µ/B…°ÀB…¬B…§HB…¢>B…œüB…—…B…‘êB…Œ*B…†4B…€B…y¥B…sB…lFB…eIB…^B…VºB…O*B…GjB…?|B…7_B…/B…& B…þB…2B… B„7BƒôBƒçêBƒÛ¦BƒÏPBƒÂçBƒ¶oBƒ©åBƒMBƒ¦BƒƒòBƒw1BƒjcBƒ]‹BƒP§BƒC»Bƒ6ÅBƒ)ÈBƒÃBƒ·Bƒ¦B‚õ–B‚è†B‚ÛrB‚ÎZB‚Á=B‚´B‚¦øB‚™ÏB‚Œ¢B‚rB‚r>B‚eB‚WÊB‚JŒB‚=JB‚0B‚"»B‚oB‚BúÌBíwBàBÒÃBÅeB¸Bª B:BÑB‚eBtøBgˆBZBL B?)B1°B$6B¸B :B€û¹B€î6B€à²B€Ó-B€Å¦B€¸B€ª“B€B€{B€íB€t^B€fÎB€Y=B€K«B€>B€0…B€"ñB€[B€ÆBô`BÙ3B¾B¢×B‡¨BlyBQJB6BëB~ÿ»B~äB~É^B~®2B~“B~w×B~\­B~A‚B~&[B~ 3B}ð B}ÔêB}¹ÈB}ž¨B}ƒŠB}hnB}MVB}2>B}+B|üB|á B|ÆB|ª÷B|ñB|tñB|YôB|>úB|$B| B{î%B…¥¦B…¥yB…¥fB…¥lB…¥ŒB…¥ÂB…¦B…¦vB…¦ïB…§~B…¨!B…¨ÕB…©œB…ªtB…«\B…¬TB…­YB…®lB…¯B…°¸B…±ïB…³/B…´yB…µËB…·$B…¸„B…¹ëB…»TB…¼ÃB…¾4B…¿¨B…ÁB…Â’B…ÄB…Å|B…ÆíB…È\B…ÉÆB…Ë,B…Ì‹B…ÍåB…Ï7B…ÐB…ÑÁB…ÒøB…Ô$B…ÕDB…ÖWB…×]B…ØTB…Ù¸B…6òB….ÿB…&ßB…’B…B… xB…¬B„û·B„òšB„éVB„ßêB„ÖZB„Ì¥B„ÂËB„¸ÎB„®¯B„¤nB„š B„ŠB„„éB„z*B„oLB„dSB„Y=B„N B„BÁB„7\B„+ÞB„ HB„›B„ØBƒýBƒñBƒåBƒØüBƒÌÕBƒÀBƒ´TBƒ§ûBƒ›”BƒBƒ‚™Bƒv BƒimBƒ\ÇBƒPBƒC[Bƒ6˜Bƒ)ÍBƒúBƒ"BƒDB‚ögB‚éŠB‚ܨB‚ÏÄB‚ÂÛB‚µîB‚¨ýB‚œ B‚B‚‚B‚uB‚hB‚[B‚NB‚@÷B‚3çB‚&ÔB‚¾B‚ ¤BÿˆBòjBåHBØ#BÊûB½ÒB°¥B£vB–EB‰B{ÛBn¢BahBT+BFíB9¬B,jB%BßB—B€÷NB€êB€Ü¶B€ÏgB€ÂB€´ÆB€§tB€š!B€ŒÍB€xB€r!B€dÉB€WqB€JB€<¾B€/cB€"B€¬B€PBóæBÙ,B¾rB£¶BˆûBn?BS‚B8ÇB BRB~è•B~ÍÜB~³#B~˜kB~}²B~büB~HGB~-“B~àB}ø/B}Ý€B}ÂÔB}¨*B}B}rÙB}X5B}=”B}"óB}WB|í¾B|Ó(B|¸”B|žB|ƒxB|hðB|NiB|3èB|lB…ˆB…B…B…ºB…þB…ŽYB…ŽÌB…UB…òB…¥B…‘jB…’CB…“.B…”)B…•5B…–OB…—xB…˜¯B…™òB…›BB…œ›B…ÿB…ŸlB… áB…¢^B…£âB…¥jB…¦øB…¨‰B…ªB…«µB…­MB…®åB…°}B…²B…³©B…µ:B…¶ÈB…¸QB…¹ÔB…»PB…¼ÆB…¾3B…¿—B…ÀðB…Â@B…ÃB…ĺB…ÅâB…ÆýB…È B…ÉB…ÉïB…ÊÈB…ËB…Ì@B…ÌÞB…ÍfB…ÍØB…Î4B…ÎxB…΢B…γB…ΩB…΄B…ÎDB…ÍåB…ÍhB…ÌÌB…ÌB…Ë6B…Ê8B…ÉB…ÇÖB…ÆpB…ÄãB…Ã2B…ÁYB…¿XB…½0B…ºÞB…¸bB…µ»B…²çB…¯èB…¬ºB…©]B…¥ÒB…¢B…ž)B…š B…•¸B…‘2B…ŒwB…‡‡B…‚aB…}B…w¢B…qúB…lB…f B…_ÃB…YIB…RœB…K¾B…D®B…=pB…6B….eB…&›B…£B…€B…2B…ºB„ýB„ôNB„ëZB„âAB„ÙB„Ï›B„ÆB„¼bB„²‘B„¨B„žˆB„”TB„‰þB„‰B„töB„jFB„_zB„T‘B„IŽB„>pB„39B„'êB„‚B„B„pBƒùÆBƒîBƒâ6BƒÖQBƒÊZBƒ¾RBƒ²9Bƒ¦Bƒ™ÙBƒ”BƒBBƒtãBƒhxBƒ\BƒOƒBƒBûBƒ6kBƒ)ÒBƒ3BƒBƒãB‚÷9B‚êŽB‚ÝáB‚Ñ/B‚Ä{B‚·ÁB‚«B‚žEB‚‘B‚„»B‚wðB‚k#B‚^QB‚Q~B‚D§B‚7ÍB‚*ïB‚B‚-B‚GB÷_BêtB݆BЖBãB¶®B©¶Bœ¼BÀB‚ÂBuÂBh¿B[ºBN´BA¬B4¢B'–B‰B yBiB€óVB€æCB€Ù.B€ÌB€¿B€±çB€¤ÍB€—²B€Š–B€}yB€p[B€cB„ZžB„OäB„E B„:B„/B„#ôB„»B„ lB„Bƒö‹BƒêüBƒßYBƒÓ¤BƒÇÝBƒ¼Bƒ°Bƒ¤%Bƒ˜BƒŒ BƒèBƒs¼Bƒg‚Bƒ[?BƒNñBƒB›Bƒ6æB~%B~ VB}ñ’B}×ÏB}¾B}¤PB}Š‘B}p×B}W B}=lB}#¸B} B|ð\B|Ö´B|½ B|£hB|‰ÉB|p.B…]0B…]pB…]ÊB…^=B…^ÉB…_lB…`&B…`÷B…aÞB…bØB…cåB…eB…f8B…g{B…hÎB…j0B…kŸB…mB…n§B…p=B…qÞB…sˆB…uB…?âB…9TB…2–B…+¨B…$ŒB…AB…ÉB…%B…VB„þ[B„ö6B„íèB„årB„ÜÕB„ÔB„Ë&B„ÂB„¸ãB„¯ŒB„¦B„œvB„’¹B„ˆÜB„~ßB„tÄB„jŒB„`5B„UÃB„K5B„@B„5ÌB„*ñB„ýB„òB„ ÒBƒþœBƒóPBƒçðBƒÜ}BƒÐ÷BƒÅ`Bƒ¹¸Bƒ®Bƒ¢9Bƒ–dBƒŠ€Bƒ~Bƒr“BƒfŒBƒZzBƒN^BƒB;Bƒ6Bƒ)ÜBƒ¢BƒdBƒB‚øÜB‚ì™B‚àQB‚ÔB‚ǺB‚»iB‚¯B‚¢¾B‚–dB‚ŠB‚}¦B‚qDB‚dÞB‚XuB‚L B‚?šB‚3*B‚&¶B‚AB‚ ÈB‚MBôÐBèPBÛÎBÏJBÂÄB¶;B©±B$B–B„BwtBjàB^JBQ³BEB8€B+ãBFB¨BB€ùfB€ìÃB€à B€Ó{B€ÆÕB€º.B€­†B€ ÝB€”3B€‡ˆB€zÝB€n2B€a…B€TØB€H*B€;|B€.ÎB€"B€oB€ÀBø!BÞÂBÅbB¬B’¢ByBB_äBF„B-'BÉB~úkB~áB~Ç´B~®[B~•B~{¨B~bTB~HþB~/«B~XB}ýB}ã¼B}ÊnB}±&B}—ÞB}~—B}eVB}LB}2ÖB}žB}dB|ç1B|ÍþB|´ÐB|›¥B…DþB…EbB…EàB…FxB…G(B…GïB…HÏB…IÄB…JÍB…KëB…MB…N`B…O¶B…QB…R“B…TB…U¬B…WMB…XûB…ZµB…\xB…^FB…`B…aüB…câB…eÏB…gÃB…iºB…kµB…m³B…o³B…qµB…s·B…u¹B…w¹B…y·B…{²B…}ªB…œB…‰B…ƒpB……OB…‡&B…ˆôB…ЏB…ŒqB…ŽB…ÀB…‘TB…’ÙB…”PB…•¶B…— B…˜PB…™B…šŸB…›©B…œžB…|B…žDB…žôB…ŸŒB…  B… nB… ·B… äB… ôB… æB… ¹B… mB… B…ŸtB…žÅB…òB…œüB…›áB…š¡B…™:B…—¬B…•öB…”B…’B…ÛB…}B…ŠñB…ˆ9B……RB…‚=B…~÷B…{‚B…wÙB…sÿB…oòB…k±B…g:B…bB…]¹B…X½B…SŠB…N"B…H†B…B¶B…<´B…6€B…0B…)…B…"ÀB…ÌB…«B… \B…âB„þ­B…9B…3+B…-B…&âB… uB…ÙB…B… B…ðB„ýŸB„ö"B„î|B„æ¬B„Þ²B„Ö‘B„ÎHB„ÅÙB„½EB„´ŒB„«¯B„¢¯B„™ŒB„HB„†äB„}`B„s¼B„iûB„`B„V B„LB„AÕB„7‰B„-"B„"¤B„B„ `B„Bƒ÷ÄBƒìÖBƒáÖBƒÖÂBƒËœBƒÀeBƒµBƒ©ÆBƒž`Bƒ’ìBƒ‡jBƒ{ÝBƒpCBƒdŸBƒXñBƒM;BƒAzBƒ5´Bƒ)æBƒBƒ:Bƒ\B‚úB‚î£B‚âÃB‚ÖáB‚ÊûB‚¿B‚³(B‚§:B‚›IB‚VB‚ƒ`B‚whB‚kmB‚_pB‚SpB‚GnB‚;iB‚/bB‚#ZB‚NB‚ ABÿ2Bó Bç BÚøBÎàBÂÇB¶¬BªBžqB’RB†0Bz BmèBaÂBU›BIrB=HB1B$ðBÂB “BcB€ô3B€èB€ÛÎB€ÏšB€ÃeB€·0B€ªúB€žÃB€’‹B€†SB€zB€máB€a¨B€UnB€I3B€<øB€0¾B€$‚B€GB€ Bÿ Bç*BγB¶;BÄB…NBlÙBTdB;îB#zB B~ò–B~Ú%B~Á³B~©DB~×B~xlB~`B~G–B~//B~ÊB}þfB}æB}Í¢B}µFB}œêB}„’B}l9B}SæB};”B}#FB} úB|ò¯B…ŠB…7B…þB…ßB…ØB…èB…B…LB…ŸB…B…}B…! B…"§B…$UB…&B…'ßB…)ºB…+£B…-˜B…/˜B…1¢B…3·B…5ÕB…7üB…:)B…<\B…>•B…@ÓB…CB…EZB…G B…IéB…L1B…NzB…PÀB…SB…UGB…W…B…Y¾B…[òB…^B…`EB…bcB…dwB…f‚B…hƒB…jwB…l`B…n:B…pB…qÅB…ssB…uB…vœB…xB…y{B…zÎB…| B…}2B…~BB…;B…€B…€ãB…B…‚"B…‚˜B…‚òB…ƒ.B…ƒLB…ƒJB…ƒ)B…‚æB…‚B…úB…OB…€€B…ŒB…~qB…}0B…{ÆB…z4B…xyB…v“B…t‚B…rEB…oÚB…mBB…j|B…g†B…d^B…aB…]}B…YÀB…UÐB…Q©B…MNB…HÉB…DB…?8B…:B…4ÒB…/RB…) B…#¼B…¨B…cB…ðB… NB…B„üƒB„õ[B„îB„æ‹B„ÞäB„×B„ÏB„ÇB„¾½B„¶SB„­ÅB„¥B„œ@B„“IB„Š1B„€ùB„w B„n*B„d”B„ZâB„QB„G*B„=%B„3B„(ÎB„}B„B„ –BƒÿBƒôXBƒéšBƒÞÈBƒÓäBƒÈîBƒ½çBƒ²ÏBƒ§¨BƒœrBƒ‘/Bƒ…ßBƒzƒBƒoBƒc¨BƒX-BƒL¨BƒABƒ5†Bƒ)êBƒJBƒ¥BƒúB‚ûQB‚ï¨B‚ãüB‚ØMB‚ÌœB‚ÀèB‚µ1B‚©xB‚¼B‚‘þB‚†=B‚zzB‚n´B‚bìB‚W#B‚KVB‚?‰B‚3¸B‚'æB‚B‚;B‚bBøˆBì¬BàÎBÔïBÉ B½*B±FB¥_B™xBŽB¤Bu¸BiÊB]ÜBQìBEúB:B.B" B*B 4B€þeB€2eB€&cB€bB€`B€`Bì»BÔºB¼·B¤¶BŒ³Bt³B\±BD²B,²BµB~ü¶B~ä¼B~Ì¿B~´ÆB~œÌB~„ÖB~lßB~TìB~<øB~%B~ B}õ,B}Ý@B}ÅXB}­pB}•ŒB}}¨B}eÉB}MëB}6B}8B„üPB„ý"B„þB„ÿB…/B…dB…¯B…B…‡B…B…®B… ^B… B… ðB…ÒB…ÂB…ÂB…ÍB…åB… B…7B…pB… ±B…"úB…%KB…'¢B…)þB…,_B….ÄB…1,B…3–B…6B…8nB…:ÚB…=DB…?¬B…BB…DrB…FÎB…I%B…KvB…M¿B…PB…R9B…TgB…V‹B…X£B…Z¯B…\­B…^žB…`€B…bRB…dB…eÂB…g`B…héB…j_B…kÀB…m B…nAB…o^B…pbB…qNB…r B…rÖB…srB…sðB…tRB…t”B…t¸B…t»B…tžB…t^B…sýB…sxB…rÏB…rB…q B…oðB…n®B…mBB…k­B…iîB…hB…eíB…cªB…a9B…^šB…[ËB…XÌB…UœB…R;B…N¦B…JÝB…FàB…B­B…>QB…9ÊB…5 B…0B…*øB…%ŸB… B…YB…mB…QB…B…ŽB„úçB„ôB„íB„åíB„ÞšB„×B„ÏyB„ǬB„¿ºB„· B„¯bB„¦ÿB„žyB„•ÐB„B„„B„{ B„qáB„h–B„_.B„U©B„LB„BKB„8sB„.ƒB„$yB„VB„B„ÌBƒûfBƒðëBƒæ\BƒÛºBƒÑBƒÆ?Bƒ»hBƒ°€Bƒ¥ŠBƒš†BƒsBƒ„TBƒy(BƒmòBƒb±BƒWgBƒLBƒ@¹Bƒ5XBƒ)ïBƒ‚BƒBƒ™B‚ü#B‚ð­B‚å5B‚Ù¹B‚Î=B‚¼B‚·:B‚«µB‚ .B‚”¥B‚‰B‚}ŒB‚qüB‚fjB‚ZÖB‚O@B‚C¨B‚8B‚,rB‚ ÔB‚5B‚ “BýðBòLBæ¥BÚþBÏTBèB·ûB¬NB žB”íB‰:B}ˆBqÓBfBZfBN®BBôB7:B+~BÂBBFB€üˆB€ðÈB€åB€ÙFB€Í„B€ÁÂB€µÿB€ª;B€žwB€’²B€†íB€{(B€obB€cœB€WÕB€LB€@HB€4B€(ºB€óB€+B€dBó;BÛ­BÄB¬‘B•B}yBeíBNbB6×BOBÆB~ð>B~Ø·B~Á4B~©°B~’,B~z¬B~c.B~K¯B~42B~¸B~@B}íÉB}ÖTB}¾àB}§pB}B}x–B}a-B}IÆB„äB„å B„æB„çGB„èˆB„éàB„ëPB„ìÕB„îpB„ðB„ñàB„ó²B„õ—B„÷B„ù’B„û§B„ýÈB„ÿùB…4B…|B…ÍB… (B… ŽB… úB…nB…èB…hB…íB…tB…B…B…"B…$«B…';B…)ÈB…,SB….ÛB…1`B…3àB…6ZB…8ÎB…;:B…=ŸB…?ûB…BMB…D”B…FÐB…IB…K!B…M6B…O;B…Q0B…SB…TéB…VªB…XXB…YòB…[xB…\çB…^@B…_‚B…`«B…a»B…b²B…cB…dMB…dðB…evB…eÞB…f&B…fOB…fWB…f>B…fB…e¢B…eB…dvB…c¨B…b³B…a–B…`QB…^ãB…]KB…[‡B…Y˜B…W|B…U2B…RºB…PB…MB}uIB„ËãB„ÌþB„Î2B„Ï€B„ÐæB„ÒcB„Ó÷B„Õ¡B„×^B„Ù0B„ÛB„Ý B„ßB„á/B„ãXB„åB„çÖB„ê)B„ì‡B„îòB„ñhB„óæB„öoB„øÿB„û•B„þ3B…×B…~B…*B…ØB… ˆB…;B…íB… B…PB…þB…ªB…RB… õB…#’B…&*B…(¹B…+AB…-ÀB…06B…2¡B…5B…7RB…9˜B…;ÐB…=ùB…@B…BB…DB…EøB…GÉB…IˆB…K1B…LÄB…NBB…O¨B…PöB…R*B…SEB…TEB…U*B…UòB…VœB…W)B…W—B…WåB…XB…XB…XB…WÎB…WpB…VîB…VEB…UvB…T€B…SaB…RB…P¨B…O B…MBB…KMB…I+B…FÛB…D[B…A¬B…>ÌB…;ºB…8vB…4þB…1RB…-rB…)eB…%,B… ½B…B…FB…=B… B…—B…üB„ü1B„ö8B„ðB„é¼B„ã=B„Ü’B„Õ¼B„μB„Ç”B„ÀCB„¸ÌB„±.B„©jB„¡‚B„™vB„‘FB„ˆôB„€B„wíB„o9B„ffB„]uB„TfB„K:B„AóB„8’B„/B„%B„ÑB„ B„-Bƒþ:Bƒô2BƒêBƒßäBƒÕ¡BƒËKBƒÀäBƒ¶mBƒ«çBƒ¡PBƒ–®Bƒ‹ýBƒ@BƒvvBƒk£Bƒ`ÆBƒUßBƒJñBƒ?úBƒ4ýBƒ)úBƒóBƒçBƒ×B‚ýÈB‚ò¹B‚ç¨B‚Ü”B‚Ñ~B‚ÆgB‚»MB‚°2B‚¥B‚™õB‚ŽÓB‚ƒ±B‚xŒB‚mfB‚b=B‚WB‚KçB‚@ºB‚5‹B‚*[B‚)B‚öB‚ÀBýŠBòRBçBÛàBФBÅgBº*B®êB£©B˜hB&BâBvžBkXB`BTÊBI‚B>8B2ïB'¤BYB BÀB€úsB€ï%B€ãÖB€Ø‡B€Í8B€ÁèB€¶˜B€«FB€ŸõB€”¤B€‰RB€~B€r®B€g\B€\ B€P¶B€EcB€:B€.¾B€#jB€B€ ÆB€rBì@BÕ›B¾÷B¨UB‘°B{BdnBMÌB7-B ŒB ïB~óSB~ܶB~ÆB~¯B~˜êB~‚TB~k¾B~U+B~>—B~(B~zB}úìB}äaB}ÍÖB}·PB} ÌB„³´B„´óB„¶LB„·¾B„¹IB„ºêB„¼¢B„¾pB„ÀQB„ÂGB„ÄPB„ÆkB„ȘB„ÊÕB„Í"B„Ï}B„ÑæB„Ô\B„ÖßB„ÙmB„ÜB„Þ¨B„áTB„äB„æÁB„é‚B„ìHB„ïB„ñãB„ô´B„÷ˆB„ú^B„ý2B…B…ÜB…­B…|B… HB…B…ÎB…‰B…GB…?ÒB…ADB…BœB…CÜB…EB…F B…F÷B…GÆB…HxB…I B…IB…IÑB…JB…JB…IþB…IÅB…IiB…HæB…H>B…GmB…FtB…ETB…DB…B’B…@ñB…?#B…=(B…;B…8§B…6 B…3gB…0}B…-`B…*B…&B…"×B…òB…ßB…˜B…B… nB…B…}B„þ9B„øÆB„ó#B„íSB„çUB„á*B„ÚÓB„ÔQB„ͤB„ÆÏB„¿ÑB„¸ªB„±^B„©éB„¢QB„š“B„’²B„Š®B„‚ˆB„z@B„qØB„iPB„`ªB„WäB„OB„FB„<êB„3µB„*fB„ þB„}B„ æB„6BƒúrBƒð˜BƒæªBƒÜ¨BƒÒ”BƒÈnBƒ¾7Bƒ³ðBƒ©™BƒŸ3Bƒ”ÀBƒŠ@Bƒ´BƒuBƒjzBƒ_ÎBƒUBƒJ]Bƒ?™Bƒ4ÏBƒ)þBƒ*BƒQBƒ uB‚þ™B‚ó½B‚èßB‚ÝÿB‚ÓB‚È:B‚½TB‚²mB‚§…B‚œ›B‚‘®B‚†ÁB‚{ÑB‚pàB‚eíB‚ZúB‚PB‚EB‚:B‚/B‚$ B‚$B‚&B‚'Bø&Bí&Bâ"B×BÌBÁB¶ B«BŸüB”òB‰æB~ÚBsÎBhÀB]²BR£BG’B<‚B1qB&^BLB8B%B€úB€îüB€ãæB€ØÑB€ÍºB€Â¤B€·B€¬vB€¡^B€–FB€‹/B€€B€tþB€iåB€^ÍB€S´B€HœB€=‚B€2jB€'RB€9B€ B€BõàBß°BÉ€B³PB!B†ôBpÇBZšBDnB.EBBòB~ëÊB~Õ¤B~¿€B~©ZB~“8B~}B~f÷B~PØB~:¼B~$ B~ˆB}øoB}âYB}ÌDB„›ŠB„œïB„žlB„ B„¡±B„£wB„¥RB„§DB„©JB„«dB„­‘B„¯ÐB„² B„´€B„¶ñB„¹pB„»üB„¾–B„ÁB„ÏB„ÑóB„Ô×B„×ÀB„Ú®B„Ý B„à•B„ãŒB„æ…B„é}B„ìvB„ïmB„òbB„õTB„øBB„û+B„þB…íB…ÄB…’B… XB… B…ÆB…lB…B…’B…B…B…âB… 2B…"qB…$žB…&¸B…(¾B…*¯B…,‹B….PB…/ÿB…1•B…3B…4wB…5ÀB…6îB…8B…8ôB…9ËB…:ƒB…;B…;’B…;éB…<B…žB‚3ÛB‚)B‚PB‚ŠB‚ÂBýùBó0BèdBݘBÒËBÇüB½-B²^B§Bœ»B‘èB‡B|ABqlBf—B[ÀBPéBFB;:B0aB%‡B®BÓBùB€úB€ïBB€äeB€Ù‰B€Î¬B€ÃÏB€¸ñB€®B€£6B€˜XB€zB€‚›B€w½B€lÞB€aÿB€W B€LAB€AcB€6„B€+¦B€ ÆB€èB€ B€,BêBÔàB¿&B©lB“³B}øBhABRŠB<ÔB'BhB~û¶B~æB~ÐPB~º B~¤òB~DB~y˜B~cëB~NBB~8šB~"ôB~ MB}÷ªB„ƒlB„„ôB„†–B„ˆQB„Š$B„ŒB„ŽB„#B„’MB„”ŠB„–ÛB„™=B„›±B„ž5B„ ÉB„£lB„¦B„¨ÙB„«£B„®xB„±WB„´@B„·2B„º,B„½-B„À4B„ÃAB„ÆRB„ÉgB„ÌB„Ï™B„ÒµB„ÕÏB„ØëB„ÜB„ßB„â3B„åDB„èQB„ëXB„îXB„ñRB„ôDB„÷-B„ú B„üáB„ÿ«B…hB…B…»B… OB… ÓB…GB…©B…úB…7B…aB…vB…vB…`B… 2B…!íB…#B…%B…&…B…'ØB…)B…*(B…+#B…,B…,½B…-ZB…-ÖB….0B….gB….{B….hB….2B…-ÖB…-RB…,¦B…+ÒB…*ÓB…)«B…(WB…&ØB…%+B…#PB…!GB…B…¦B… B…@B…AB…B… ¨B… B…NB…VB„þ)B„ùÊB„õ9B„ðvB„ëƒB„æaB„áB„ÛB„ÕãB„Ð B„ÊB„Ã×B„½~B„¶üB„°QB„©B„¢†B„›hB„”$B„Œ½B„…1B„}„B„u´B„mÄB„e´B„]„B„U6B„LÉB„D@B„;›B„2ÜB„*B„! B„B„ÛB„žBƒüMBƒòäBƒéhBƒß×BƒÖ4BƒÌ~BƒÂ·Bƒ¸ßBƒ®øBƒ¥BƒšüBƒêBƒ†ËBƒ| BƒrkBƒh,Bƒ]ãBƒS’BƒI9Bƒ>ÙBƒ4tBƒ* BƒšBƒ'Bƒ ±BƒBO BEB:aB/ÁB% BBÞBâB„6jB„-ÖB„%*B„bB„„B„ ŒB„~BƒøZBƒï BƒåÒBƒÜpBƒÒûBƒÉuBƒ¿ÝBƒ¶4Bƒ¬}Bƒ¢¶Bƒ˜áBƒBƒ…Bƒ{BƒqBƒgBƒ\îBƒRÎBƒH¨Bƒ>yBƒ4FBƒ*BƒÑBƒ‘Bƒ PBƒ B‚öÉB‚ì†B‚âAB‚×ûB‚ͲB‚ÃjB‚¹ B‚®ÕB‚¤‰B‚š;B‚íB‚…žB‚{MB‚püB‚fªB‚\VB‚RB‚G¬B‚=VB‚2þB‚(¦B‚MB‚óB‚ ˜Bÿ=BôáBê„Bà%BÕÇBËhBÁB¶¨B¬FB¡äB—‚BB‚¼BxWBmóBcBY(BNÂBD[B9ôB/B%&B½BUBìB€û„B€ñB€æ°B€ÜFB€ÑÜB€ÇrB€½B€²žB€¨3B€ÈB€“]B€ˆòB€~‡B€tB€i²B€_FB€TÜB€JqB€@B€5›B€+0B€ ÆB€\B€ ñB€ˆBîB„å&B„èB„êÌB„í‡B„ð1B„òÉB„õNB„÷ÀB„úB„üdB„þ–B…°B…³B…žB…nB…$B… ÀB… @B… ¢B… çB…B…B…ýB…ÂB…gB…éB…GB…‚B…–B……B…NB…îB…fB…µB…ÚB…ÓB…¡B… BB… ¶B… ûB…B…øB…­B…1B„þ‚B„û¡B„ø‹B„õEB„ñÏB„î#B„êFB„æ6B„áóB„ÝB„ØÞB„Ô B„Ï B„ÉÜB„ÄB„¾úB„¹GB„³jB„­dB„§5B„ ÞB„š`B„“¼B„ŒñB„†B„~ñB„w¼B„pdB„hëB„aRB„Y™B„QÀB„IËB„A·B„9ˆB„1Bƒ4Bƒ*Bƒ BƒûBƒ íBƒÝB‚÷ÍB‚í½B‚ãªB‚Ù˜B‚Ï„B‚ÅpB‚»ZB‚±CB‚§,B‚B‚’úB‚ˆàB‚~ÄB‚t¨B‚j‹B‚`nB‚VOB‚L/B‚BB‚7ïB‚-ÍB‚#ªB‚‡B‚dB‚@BûBðõBæÎBܨBÒ€BÈXB¾0B´B©ÜBŸ²B•ˆB‹\B1BwBlØBb¬BX~BNPBD#B9õB/ÆB%—BhB9B B€üÙB€ò©B€èxB€ÞHB€ÔB€ÉæB€¿¶B€µ…B€«TB€¡"B€–ñB€ŒÀB€‚B€x]B€n,B€cûB€YÉB€O˜B€EgB€;6B€1B€&ÕB€¤B€sB€CBü&BçÆBÓgB¿ Bª©B–LBîBm’BY8BDÜB0€B&BÎB~óvB~ß B~ÊÊB~¶uB~¢B~ÌB~yyB„;\B„=QB„?`B„A†B„CÅB„FB„H†B„KB„MœB„PDB„SB„UÍB„X«B„[šB„^˜B„a¤B„d¾B„gåB„kB„nVB„qŸB„tñB„xLB„{¯B„B„‚ŠB„…ÿB„‰yB„Œ÷B„xB„“ûB„—B„›B„ž‡B„¢ B„¥‹B„© B„¬ƒB„¯ùB„³iB„¶ÓB„º6B„½‘B„ÀãB„Ä,B„ÇjB„ÊžB„ÍÄB„ÐÞB„ÓêB„ÖèB„Ù×B„ܵB„ß‚B„â>B„äæB„ç{B„éüB„ìhB„î½B„ðüB„ó"B„õ1B„÷&B„ùB„úÀB„üdB„ýìB„ÿVB…¡B…ÌB…ØB…ÄB…B…5B…¸B…B…SB…gB…VB…B…»B…0B…{B…šB…B…WB„ÿòB„þ_B„üB„ú«B„øˆB„ö3B„ó¬B„ðóB„îB„êæB„ç–B„äB„à\B„ÜsB„ØYB„Ô B„Ï’B„ÊçB„ÆB„ÁB„»ÕB„¶wB„°îB„«:B„¥]B„ŸXB„™*B„’ÖB„Œ[B„…»B„~øB„xB„qB„iØB„b‹B„[B„SB„KãB„DB„<1B„4.B„,B„#ÔB„B„B„ B„ôBƒùABƒðyBƒç›BƒÞªBƒÕ¥BƒÌBƒÃfBƒº,Bƒ°âBƒ§ŠBƒž"Bƒ”®Bƒ‹,BƒŸBƒxBƒndBƒd¸Bƒ[BƒQFBƒG„Bƒ=¹Bƒ3êBƒ*Bƒ >BƒeBƒ ˆBƒ«B‚øÏB‚îðB‚åB‚Û3B‚ÑSB‚ÇsB‚½B‚³®B‚©ÊB‚ŸçB‚–B‚ŒB‚‚7B‚xPB‚niB‚dB‚Z˜B‚P¯B‚FÅB‚<ÚB‚2ïB‚)B‚B‚*B‚ =B‚OB÷aBírBã‚BÙ’BÏ¢BŲB»ÀB±ÏB§ÜBêB“÷BŠB€BvBl)Bb4BX@BNKBDVB:`B0jB&tB~BˆB‘B€þšB€ô£B€ê¬B€àµB€Ö¾B€ÌÇB€ÂÏB€¸×B€®àB€¤èB€šðB€ùB€‡B€} B€sB€iB€_#B€U+B€K4B€AB„óŽB„ô¿B„õÏB„ö¾B„÷ŠB„ø3B„ø¸B„ùB„ùSB„ùfB„ùSB„ùB„ø²B„ø$B„÷jB„ö†B„õtB„ô6B„òÊB„ñ.B„ïdB„íiB„ëkB„6°B„.ØB„&æB„ØB„²B„rB„Bƒý¬Bƒõ'BƒìŒBƒãÝBƒÛBƒÒDBƒÉZBƒÀaBƒ·VBƒ®B„ëÕB„ëCB„ê„B„é™B„è‚B„ç=B„åÈB„ä%B„âPB„àLB„ÞB„Û«B„Ù B„Ö=B„Ó;B„ÐB„ÌœB„ÉB„Å5B„Á8B„½ B„¸²B„´)B„¯tB„ª’B„¥„B„ LB„šêB„•_B„¬B„‰ÒB„ƒÑB„}ªB„w^B„pïB„j\B„c§B„\ÐB„UØB„NÀB„GŠB„@4B„8ÁB„12B„)†B„!ÀB„ßB„æB„ ÓB„¨BƒùfBƒñBƒè¢Bƒà!Bƒ×ŒBƒÎäBƒÆ*Bƒ½^Bƒ´ƒBƒ«˜Bƒ¢Bƒ™–Bƒ€Bƒ‡^Bƒ~2BƒtúBƒk¸BƒbnBƒYBƒOÁBƒF`Bƒ<ùBƒ3ŽBƒ*Bƒ «Bƒ6Bƒ ¿BƒHB‚úÐB‚ñXB‚çàB‚ÞhB‚ÔîB‚ËuB‚ÁûB‚¸€B‚¯B‚¥ŠB‚œB‚’“B‚‰B‚›B‚vB‚l¡B‚c$B‚Y¦B‚P(B‚F©B‚=*B‚3¬B‚*,B‚ ¬B‚-B‚ ¬B‚,Bú¬Bñ+BçªBÞ)BÔ§BË%BÁ£B¸!B®žB¥B›šB’Bˆ“BBuŒBlBb…BYBO}BEúBB4ÐB+…B"9BíB¡BVB€ý B€ó¾B€êrB€á&B€×ÚB€ÎŽB€ÅBB€»öB€²ªB€©^B€ B€–ÆB€zB€„.B€zâB€q–B€hKB€^ÿB€U³B€LfB€CB€9ÐB€0„B€'8B€íB€¢B€ VB€ BñBÞèBÌRB¹ºB§&B”BúBodB\ÐBJ:B7¥B%BƒÜ6BƒÞ¼BƒáYBƒäBƒæÜBƒéÀBƒì¹BƒïÇBƒòêBƒöBƒùhBƒüÂB„,B„§B„1B„ ÈB„nB„ B„ßB„©B„|B„!YB„%?B„),B„-!B„1B„5B„9 B„=(B„A3B„E@B„IOB„M]B„QlB„UyB„Y„B„]ŒB„aB„e‘B„i‹B„m€B„qmB„uSB„y0B„}B„€ÍB„„ŒB„ˆ>B„‹äB„|B„“B„–€B„™ëB„DB„ B„£ÂB„¦åB„©óB„¬ìB„¯ÐB„²B„µSB„·ðB„ºuB„¼àB„¿0B„ÁdB„Ã|B„ÅwB„ÇTB„ÉB„ʱB„Ì0B„ÍŒB„ÎÈB„ÏàB„ÐÔB„ѤB„ÒNB„ÒÓB„Ó/B„ÓfB„ÓrB„ÓVB„ÓB„ÒB„ÒB„Ñ5B„Ð>B„ÏB„ÍÁB„Ì=B„Ê…B„ÈB„ƃB„Ä6B„Á´B„¾þB„¼B„¸ùB„µ¬B„²-B„®€B„ª£B„¦—B„¢^B„øB„™fB„”©B„ÂB„вB„…xB„€B„zB„tâB„oB„iB„búB„\¼B„V[B„OÙB„I6B„BuB„;”B„4–B„-zB„&BB„îB„€B„÷B„WB„BƒøÍBƒðåBƒèèBƒàÖBƒØ°BƒÐvBƒÈ*Bƒ¿ÎBƒ·^Bƒ®àBƒ¦RBƒ·Bƒ• BƒŒVBƒƒ”BƒzÇBƒqðBƒiBƒ`%BƒW4BƒN@B‚5-B‚,B‚#B‚ôB‚âB‚ÎBþ¼Bõ¨Bì•Bã‚BÚpBÑ\BÈIB¿6B¶#B­B£üBšêB‘×BˆÄB°BvžBmŠBdwB[dBRQBI>B@*B7B.B$ñBÞBËB ¸B¥B€÷‘B€î~B€åkB€ÜXB€ÓEB€Ê1B€ÁB€¸ B€®ùB€¥åB€œÒB€“¾B€Š«B€™B€x…B€orB€f`B€]LB€T9B€K%B€BB€9B€/ìB€&ÙB€ÆB€²B€  B€ŒBòòBàÎBΦB¼Bª[B˜4B†BsçBaÁBOœBƒÄ¤BƒÇLBƒÊ BƒÌåBƒÏÖBƒÒÜBƒÕøBƒÙ*BƒÜpBƒßÈBƒã3Bƒæ°Bƒê>BƒíÛBƒñˆBƒõBBƒù BƒüßB„ÀB„¬B„¢B„ ¡B„ªB„ºB„ÐB„íB„!B„%6B„)`B„-B„1½B„5íB„:B„>OB„BB„F«B„JÖB„NýB„SB„WB‚LaB‚C„B‚:§B‚1ÊB‚(íB‚ B‚4B‚WB‚zBüžBóÂBêæBâ BÙ.BÐRBÇvB¾›Bµ¿B¬äB¤B›-B’QB‰vB€›BwÀBnåBf B]/BTTBKzBBžB9ÄB0éB(B4BYB B¤B€ûÉB€òïB€êB€á:B€Ø_B€Ï…B€Æ«B€½ÏB€´õB€¬B€£@B€šfB€‘‹B€ˆ°B€ÖB€vûB€n B€eEB€\jB€SB€J¶B€AÚB€8ÿB€0$B€'IB€nB€’B€ ·B€ÜBöBäJBÒ’BÀÜB¯%BnB‹´ByýBƒ­-Bƒ¯ùBƒ²ÝBƒµÚBƒ¸íBƒ¼Bƒ¿VBƒÂªBƒÆBƒÉBƒÍBƒÐºBƒÔkBƒØ+BƒÛùBƒßÖBƒãÁBƒç¹Bƒë»BƒïÊBƒóâBƒøBƒü.B„`B„™B„ØB„ B„dB„±B„B„RB„"¥B„&÷B„+JB„/›B„3êB„87B„<€B„@ÄB„EB„IB€šB€õBú£BéXBØBÆÇBµ|B¤2Bƒ•ÒBƒ˜¿Bƒ›ÇBƒžæBƒ¢Bƒ¥iBƒ¨ÌBƒ¬BBƒ¯ÍBƒ³kBƒ·BƒºÜBƒ¾°BƒÂ‘BƒÆ‚BƒÊ‚BƒÎBƒÒ©BƒÖÎBƒÚþBƒß8Bƒã|BƒçÈBƒìBƒðwBƒô×Bƒù>Bƒý©B„B„ˆB„ ûB„oB„åB„YB„ÌB„!=B„%«B„*B„.|B„2ÝB„78B„;ŒB„?ØB„DB„HVB„L†B„P¬B„TÅB„XÒB„\ÑB„`ÃB„d¤B„hwB„l9B„oéB„s‡B„wB„z‰B„}ëB„8B„„nB„‡B„Š•B„ƒB„XB„“B„•²B„˜5B„š›B„œäB„ŸB„¡B„£B„¤ÎB„¦vB„§üB„©_B„ªB„«¶B„¬©B„­wB„®B„®šB„®îB„¯B„¯B„®ìB„®•B„®B„­]B„¬{B„«jB„ª)B„¨¶B„§B„¥9B„£,B„ èB„žrB„›ÉB„˜ïB„•åB„’¬B„CB„‹®B„‡êB„ƒüB„àB„{œB„w-B„r•B„mÕB„hîB„cáB„^®B„YVB„SÚB„NBƒú!BƒòíBƒë¢Bƒä@BƒÜÊBƒÕ>BƒÍ BƒÅïBƒ¾+Bƒ¶XBƒ®sBƒ¦€Bƒž}Bƒ–nBƒŽQBƒ†'Bƒ}óBƒu´BƒmkBƒeBƒ\ÀBƒT`BƒKùBƒCŒBƒ;Bƒ2¦Bƒ*-Bƒ!³Bƒ6BƒºBƒ=B‚ÿÀB‚÷DB‚îÇB‚æMB‚ÝÒB‚ÕWB‚ÌÞB‚ÄeB‚»ìB‚³tB‚ªüB‚¢…B‚šB‚‘˜B‚‰#B‚€®B‚x9B‚oÅB‚gQB‚^ÞB‚VjB‚MøB‚E†B‚=B‚4£B‚,2B‚#ÂB‚QB‚áB‚ rB‚Bù”Bñ%Bè¶BàHB×ÚBÏmBÇB¾“B¶&B­ºB¥MBœáB”vBŒ BƒžB{3BrÇBj\BañBY†BQBH±B@FB7ÜB/rB'BB3B ÉB_B€üõB€ô‹B€ì!B€ã·B€ÛMB€ÒãB€ÊyB€ÂB€¹¥B€±:B€¨ÐB€ fB€—ûB€B€‡&B€~»B€vPB€måB€eyB€]B€T£B€L6B€CËB€;_B€2òB€*†B€"B€¬B€?B€ÒB€cBïìBßBÎ0Bƒ~”Bƒ¦Bƒ„ÏBƒˆBƒ‹jBƒŽÚBƒ’^Bƒ•øBƒ™¥BƒfBƒ¡8Bƒ¥Bƒ©Bƒ­Bƒ±(BƒµJBƒ¹yBƒ½´BƒÁüBƒÆMBƒÊªBƒÏBƒÓ}Bƒ×òBƒÜpBƒàòBƒåzBƒêBƒî–Bƒó)Bƒ÷¾BƒüTB„êB„€B„ B„¨B„8B„ÄB„LB„ ÏB„%LB„)ÁB„./B„2•B„6ñB„;CB„?ŠB„CÅB„GôB„LB„P)B„T-B„X"B„\B„_ØB„c˜B„gFB„jßB„ndB„qÓB„u,B„xnB„{˜B„~ªB„¢B„„€B„‡BB„‰èB„ŒrB„ŽÞB„‘-B„“[B„•jB„—XB„™$B„šÎB„œUB„¸B„žöB„ B„¡B„¡ÊB„¢lB„¢æB„£6B„£[B„£UB„£#B„¢ÄB„¢7B„¡|B„ ’B„ŸvB„ž+B„œ­B„šýB„™B„–÷B„”¦B„’#B„pB„ŒŒB„‰xB„†7B„‚ÈB„,B„{dB„wpB„sTB„o B„jœB„fB„aFB„\aB„WWB„R'B„LÕB„G_B„AÇB„<B„64B„0Bƒ¡ÝBƒ¦†Bƒ«6Bƒ¯ïBƒ´¯Bƒ¹tBƒ¾>BƒÃBƒÇáBƒÌ¶BƒÑŽBƒÖgBƒÛ?BƒàBƒäðBƒéÆBƒî˜BƒóhBƒø2BƒüøB„·B„pB„ !B„ÉB„hB„þB„ˆB„"B„&yB„*ÞB„/5B„3}B„7µB„;ÝB„?ôB„CøB„GêB„KÈB„O‘B„SEB„VãB„ZjB„]ÙB„a0B„dnB„gB„j™B„m†B„pVB„sB„uB„xB„zhB„|žB„~²B„€£B„‚rB„„B„…£B„‡B„ˆ@B„‰SB„Š?B„‹B„‹œB„Œ B„ŒPB„ŒjB„ŒVB„ŒB„‹¥B„‹B„Š9B„‰9B„ˆ B„†§B„… B„ƒ8B„1B„~úB„|’B„yúB„w4B„t?B„qB„mÎB„jTB„f¯B„bàB„^èB„ZÈB„V€B„RB„M|B„HÂB„CäB„>ãB„9ÀB„4zB„/B„)ŒB„#æB„"B„@B„AB„ &B„ðBƒÿ Bƒù5Bƒò³BƒìBƒåfBƒÞŸBƒ×ÁBƒÐÐBƒÉÊBƒÂ±Bƒ»‡Bƒ´JBƒ¬þBƒ¥¢Bƒž7Bƒ–¿Bƒ8Bƒ‡¦Bƒ€Bƒx`Bƒp­BƒhñBƒa-BƒYbBƒQBƒI¹BƒAÜBƒ9ûBƒ2Bƒ*1Bƒ"IBƒ`BƒwBƒ ŽBƒ¤B‚ú»B‚òÔB‚êïB‚ã B‚Û%B‚ÓCB‚ËbB‚ÃB‚»¡B‚³ÃB‚«æB‚¤ B‚œ.B‚”SB‚ŒzB‚„¡B‚|ÊB‚tòB‚mB‚eGB‚]sB‚UŸB‚MÍB‚EûB‚>*B‚6YB‚.‰B‚&ºB‚ìB‚B‚QB‚„Bÿ¸B÷íBð"BèWBàBØÄBÐüBÉ3BÁkB¹¤B±ÜBªB¢OBšˆB’ÃBŠþBƒ9B{tBs¯BkêBd&B\bBTžBLÚBEB=SB5B-ÌB& BEBƒB¿BüB€ÿ8B€÷uB€ï²B€çîB€à*B€ØfB€Ð¢B€ÈÝB€ÁB€¹UB€±B€©ËB€¢B€š@B€’yB€Š²B€‚ëB€{$B€s]B€k•B€cÍB€\B€T;B€LpB€D¦B€<ÜB€5B€-DB€%wBƒ9œBƒ=Bƒ@§BƒDPBƒHBƒKæBƒOÑBƒSÑBƒWäBƒ\ Bƒ`CBƒdŒBƒhæBƒmPBƒqÈBƒvNBƒzâBƒ‚Bƒ„.BƒˆäBƒ¥Bƒ’oBƒ—@BƒœBƒ ûBƒ¥áBƒªÍBƒ¯¾Bƒ´±Bƒ¹¨Bƒ¾¡BƒÃšBƒÈ”BƒÍBƒÒ†Bƒ×}BƒÜqBƒáaBƒæMBƒë4BƒðBƒôíBƒù¿Bƒþ‰B„JB„B„ ¬B„LB„àB„fB„ÞB„#HB„'¢B„+ëB„0$B„4JB„8]B„<]B„@HB„DB„GÞB„KˆB„OB„R’B„UòB„Y8B„\bB„_rB„beB„e:B„gòB„j‹B„mB„o\B„q”B„s©B„uœB„wjB„yB„z™B„{ùB„}0B„~AB„(B„çB„€|B„€æB„$B„5B„B„€ÐB„€WB„®B„~ÕB„}ÌB„|B„{B„ykB„wŠB„uxB„s6B„pÄB„n#B„kTB„hXB„e0B„aÜB„^^B„Z¶B„VåB„RìB„NÌB„J„B„FB„A†B„<ÑB„7øB„2üB„-ßB„(¢B„#DB„ÈB„,B„tB„ ŸB„®B„¢Bƒú}Bƒô=BƒíæBƒçvBƒàïBƒÚRBƒÓ¡BƒÌÛBƒÆBƒ¿Bƒ¸Bƒ±Bƒ©çBƒ¢¹Bƒ›zBƒ”/BƒŒÖBƒ…rBƒ~Bƒv‡BƒoBƒgvBƒ_àBƒXDBƒP¡BƒHùBƒAMBƒ9›Bƒ1çBƒ*1Bƒ"yBƒÀBƒ Bƒ QBƒ—B‚ûàB‚ô)B‚ìuB‚äÁB‚ÝB‚Õ^B‚Í®B‚ÆB‚¾SB‚¶§B‚®ýB‚§SB‚ŸªB‚˜B‚]B‚ˆ·B‚B‚yqB‚qÎB‚j-B‚bB‚ZîB‚SPB‚K²B‚DB‚ BƒB>BƒF†BƒJàBƒOKBƒSÆBƒXQBƒ\êBƒa’BƒfFBƒkBƒoÕBƒt¬BƒyŽBƒ~xBƒƒkBƒˆeBƒgBƒ’nBƒ—zBƒœŒBƒ¡¡Bƒ¦¸Bƒ«ÑBƒ°ìBƒ¶Bƒ»!BƒÀ;BƒÅRBƒÊfBƒÏwBƒÔ„BƒÙ‹BƒÞBƒã‡BƒèzBƒíeBƒòFBƒ÷BƒûêB„«B„`B„ B„¡B„,B„§B„B„ lB„$´B„(èB„- B„1B„5B„8ðB„<¼B„@pB„D B„GŒB„JôB„NBB„QtB„T‰B„W‚B„Z[B„]B„_³B„b/B„d‰B„fÂB„hØB„jÊB„l˜B„n@B„oÄB„q B„rTB„saB„tDB„týB„uŒB„uîB„v%B„v.B„v B„u·B„u4B„tB„sžB„r‡B„q7B„o®B„mñB„lB„içB„g›B„eB„bvB„_¡B„\ B„YrB„VB„R™B„NïB„KB„G$B„CB„>¾B„:UB„5ÇB„1B„,DB„'PB„":B„B„²B„AB„ ²B„B„?Bƒû]BƒõbBƒïLBƒé BƒâÚBƒÜ€BƒÖBƒÏ‡BƒÈíBƒÂ?Bƒ»~Bƒ´¬Bƒ­ÊBƒ¦ÖBƒŸÔBƒ˜ÃBƒ‘¤BƒŠzBƒƒBBƒ|Bƒt³Bƒm]BƒeþBƒ^—BƒW*BƒO¶BƒHÈBƒCtBƒH/BƒL÷BƒQÎBƒV°Bƒ[Bƒ`•Bƒe—Bƒj¢Bƒo¶BƒtÑBƒyóBƒBƒ„HBƒ‰{BƒŽ°Bƒ“çBƒ™!Bƒž\Bƒ£˜Bƒ¨ÓBƒ® Bƒ³EBƒ¸zBƒ½«BƒÂØBƒÈBƒÍ#BƒÒ>Bƒ×RBƒÜ]Bƒá_BƒæXBƒëEBƒð'BƒôüBƒùÅBƒþB„,B„ÈB„ TB„ÎB„7B„ŽB„ÐB„!ÿB„&B„*B„. B„1ÞB„5›B„9>B„<ÉB„@9B„CŒB„FÄB„IßB„LÜB„OºB„RxB„UB„W”B„YðB„\)B„^?B„`0B„aüB„c£B„e#B„f|B„g¬B„h³B„i‘B„jDB„jËB„k'B„kUB„kVB„k(B„jËB„j>B„iB„hB„gdB„eÿB„dhB„b B„`§B„^€B„\*B„Y§B„V÷B„TB„QB„MãB„JˆB„GB„CZB„?‡B„;ŽB„7pB„3.B„.ÈB„*?B„%•B„ ÉB„ÜB„ÐB„¦B„ ^B„÷B„uBƒûØBƒö BƒðNBƒêcBƒä`BƒÞFBƒØBƒÑÏBƒËtBƒÅBƒ¾‚Bƒ·íBƒ±GBƒªBƒ£ÈBƒœòBƒ–BƒBƒˆBƒBƒyÿBƒràBƒk¸Bƒd‡Bƒ]NBƒVBƒNÉBƒG~Bƒ@0Bƒ8ÞBƒ1ˆBƒ*2Bƒ"ÚBƒBƒ)Bƒ ÐBƒyB‚þ"B‚öÍB‚ïzB‚è)B‚àØB‚ÙŠB‚Ò>B‚ÊòB‚éB‚¼bB‚µB‚­ÖB‚¦’B‚ŸQB‚˜B‚ÑB‚‰“B‚‚VB‚{B‚sáB‚l¨B‚epB‚^9B‚WB‚OÐB‚HB‚AkB‚::B‚3 B‚+ÚB‚$¬B‚~B‚RB‚&B‚üB‚ÒBù©Bò€BëXBä2BÝ BÕåBÎÀBÇšBÀvB¹SB²0B« B£ëBœÈB•§BކB‡eB€DBy$BrBjãBcÄB\£BU„BNeBGEB@%B9B1æB*ÇB#§B‡BfBFB&BB€øåB€ñÄB€ê¡B€ãB€Ü]B€Õ:B€ÎB€ÆóB€¿ÏB€¸ªB€±…B€ª`B€£9B€œB€”êB€ÁB€†˜B€nB€xDB€qB€iëB€b¾B‚õõB‚ùÓB‚ýÊBƒØBƒýBƒ 8Bƒ‡BƒìBƒbBƒíBƒ ˆBƒ%5Bƒ)òBƒ.¿Bƒ3šBƒ8ƒBƒ=zBƒB|BƒGŠBƒL¢BƒQÅBƒVòBƒ\%BƒaaBƒf£BƒkìBƒq9Bƒv‹Bƒ{áBƒ8Bƒ†“Bƒ‹îBƒ‘JBƒ–¥BƒœBƒ¡XBƒ¦­Bƒ«ÿBƒ±LBƒ¶”Bƒ»×BƒÁBƒÆGBƒËsBƒÐ•BƒÕ®BƒÚ¼Bƒß¾BƒäµBƒéžBƒîyBƒóFBƒøBƒü°B„KB„ÕB„ MB„±B„B„;B„`B„nB„#dB„'CB„+ B„.µB„2FB„5¼B„9B„BƒCbBƒH·BƒNBƒSuBƒXÞBƒ^KBƒc½Bƒi2Bƒn«Bƒt%Bƒy BƒBƒ„—BƒŠBƒŠBƒ”ÿBƒšqBƒŸßBƒ¥GBƒªªBƒ°BƒµZBƒº¥Bƒ¿èBƒÅ!BƒÊPBƒÏrBƒÔŠBƒÙ“BƒÞBƒã|BƒèZBƒí'BƒñãBƒöŽBƒû&BƒÿªB„B„wB„ ¼B„ìB„B„B„ìB„ ¸B„$kB„(B„+B„.ÞB„2B„5AB„8DB„;(B„=êB„@ŒB„C B„EeB„GB„I¯B„KœB„McB„OB„PzB„QÉB„RîB„SêB„TºB„U^B„UÖB„V B„V†Bƒ7ÀBƒ0÷Bƒ*-Bƒ#bBƒ—BƒÍBƒBƒ:BƒrB‚ú¬B‚óêB‚í(B‚æiB‚ß­B‚ØòB‚Ò:B‚Ë„B‚ÄÏB‚¾B‚·mB‚°¾B‚ªB‚£fB‚œ¾B‚–B‚rB‚ˆÍB‚‚+B‚{ŠB‚tìB‚nNB‚g²B‚aB‚ZB‚SçB‚MQB‚F¼B‚@(B‚9–B‚3B‚,tB‚%åB‚WB‚ÊB‚>B‚ ³B‚*Bþ BøBñBë Bä„BÝþB×zBÐöBÊrBÃðB½nB¶ëB°jB©éB£hBœèB–hBèB‰iB‚éB|jBuëBolBhìBbmB[îBUnBNïBHpBAðB;pB4ðB.pB'îB!mBëBhB æBbBÞB€úZB€óÔB€íNB€æÈB€à@B€Ù¸B€Ó.B€Ì¥B€ÆB€¿ŽB€¹B€²sB€«äB€¥TB€žÂB‚³ÊB‚¸ B‚¼eB‚ÀÖB‚Å^B‚ÉûB‚ΫB‚ÓrB‚ØJB‚Ý5B‚â2B‚ç@B‚ì^B‚ñ‹B‚öÇB‚üBƒgBƒÉBƒ 7Bƒ°Bƒ3Bƒ½Bƒ"QBƒ'íBƒ-ŽBƒ36Bƒ8ãBƒ>”BƒDHBƒJBƒO¹BƒUtBƒ[.Bƒ`éBƒf¢BƒlZBƒrBƒw¿Bƒ}lBƒƒBƒˆµBƒŽQBƒ“äBƒ™pBƒžòBƒ¤kBƒ©ØBƒ¯;Bƒ´’Bƒ¹ÛBƒ¿BƒÄDBƒÉbBƒÎpBƒÓmBƒØXBƒÝ0BƒáöBƒæ¨BƒëDBƒïÌBƒôøB„?äB„@£B„A5B„AšB„AÐB„AÖB„A¬B„ARB„@¹B„?âB„>ÛB„=¥B„<>B„:©B„8æB„6÷B„4ÜB„2”B„0#B„-‰B„*ÅB„'ÚB„$ÇB„!ŽB„0B„­B„B„Bƒ‰êBƒ‹Bƒ•!Bƒš©Bƒ $Bƒ¥BƒªìBƒ°9BƒµuBƒº Bƒ¿¸BƒÄ½BƒÉ®BƒÎ‹BƒÓRBƒØBƒÜBƒá BƒåŠBƒéÚBƒîBƒò+Bƒö+BƒúBƒýÔB„|B„B„nB„ ¸B„àB„æB„ÉB„‰B„%B„›B„ìB„!B„#B„$õB„&¦B„(.B„)ŒB„*¾B„+ÅB„,žB„-JB„-ÈB„.B„.4B„."B„-ÑB„-AB„,€B„+B„*qB„)#B„'©B„&B„$.B„"0B„ B„·B„=B„œB„ÔB„æB„ÔB„ œB„ @B„ÄB„%BƒþeBƒú„Bƒö…BƒòhBƒî,BƒéÔBƒå`BƒàÐBƒÜ&Bƒ×bBƒÒ†BƒÍ’BƒÈ‡BƒÃfBƒ¾/Bƒ¸äBƒ³…Bƒ®Bƒ¨Bƒ¢úBƒTBƒ—ŸBƒ‘ÛBƒŒ Bƒ†*Bƒ€>BƒzHBƒtGBƒn;Bƒh'Bƒb Bƒ[çBƒU¼BƒOŒBƒIWBƒCBƒ<âBƒ6¤Bƒ0cBƒ*#Bƒ#âBƒ£BƒdBƒ%Bƒ çBƒªB‚þpB‚ø9B‚òB‚ëÕB‚å¦B‚ßzB‚ÙRB‚Ó+B‚ÍB‚ÆåB‚ÀÆB‚º©B‚´ŽB‚®vB‚¨_B‚¢LB‚œ:B‚–*B‚B‚ŠB‚„B‚}ÿB‚wùB‚qôB‚kòB‚eñB‚_òB‚YôB‚SøB‚MþB‚HB‚B B‚<B‚6"B‚0/B‚*;B8TB2lB,‚B&˜B ¬BÁBÔBæB÷BB€ýB€÷#B€ñ0B€ë;B€åEB€ßNB€ÙTB‚sRB‚wöB‚|®B‚€B‚†fB‚‹bB‚sB‚•˜B‚šÏB‚ B‚¥tB‚ªßB‚°\B‚µæB‚»€B‚Á'B‚ÆÛB‚Ì›B‚ÒfB‚Ø;B‚ÞB‚äB‚éôB‚ïëB‚õéB‚ûîBƒ÷BƒBƒBƒ*Bƒ?Bƒ WBƒ&mBƒ,…Bƒ2šBƒ8®Bƒ>¿BƒDÍBƒJÖBƒPÚBƒVÙBƒ\ÐBƒbÁBƒh©Bƒn‰Bƒt^Bƒz)BƒêBƒ…œBƒ‹DBƒÝBƒ–hBƒ›äBƒ¡PBƒ¦«Bƒ«õBƒ±-Bƒ¶QBƒ»bBƒÀ^BƒÅEBƒÊBƒÎÏBƒÓrBƒ×úBƒÜkBƒàÁBƒäýBƒéBƒí BƒñBƒôÎBƒøxBƒüBƒÿlB„¶B„ÝB„áB„ ÃB„€B„B„‹B„×B„üB„øB„ÌB„vB„÷B„ LB„!uB„"rB„#AB„#áB„$SB„$•B„$§B„$yB„$ B„#nB„" B„!¤B„ zB„#B„ŸB„ïB„B„B„äB„B„B„pB„ §B„¹B„§B„rBƒÿBƒû¢BƒøBƒôNBƒðtBƒì}BƒèhBƒä7BƒßêBƒÛ‚BƒÖÿBƒÒcBƒÍ®BƒÈãBƒÄBƒ¿Bƒ¹ùBƒ´ÖBƒ¯ BƒªXBƒ¤ýBƒŸ‘BƒšBƒ”ŠBƒŽïBƒ‰HBƒƒ”Bƒ}ÒBƒxBƒr0BƒlOBƒffBƒ`uBƒZ}BƒT~BƒNzBƒHqBƒBeBƒB‚ZtB‚T«B‚NäB‚IB‚C[B‚=˜B‚7ÖB‚2B‚,WB‚&šB‚ ÞB‚"B‚hB‚¯B‚ öB‚?BþˆBøÓBóBíjBç¶BâBÜQBÖŸBÐîBË=BÅB¿ÝBº-B´}B®ÍB©B£oB¿B˜B’aBŒ±B‡BQB{¡BuñBp@BjŽBdÝB_*BYwBSÄBNBH[BB¦B<ïB78B1B+ÆB& B PB”B×BB XB–B€ýÓB€øB€òJB€ì‚B‚^>B‚cB‚gØB‚lÈB‚qÎB‚vêB‚|B‚\B‚†³B‚ŒB‚‘•B‚— B‚œ»B‚¢eB‚¨B‚­âB‚³´B‚¹“B‚¿|B‚ÅpB‚ËnB‚ÑuB‚ׂB‚Ý™B‚ã¶B‚éØB‚ïÿB‚ö+B‚ü[BƒBƒÀBƒõBƒ+Bƒ`Bƒ!”Bƒ'ÅBƒ-õBƒ4 Bƒ:HBƒ@jBƒF‡BƒLBƒR¬BƒX²Bƒ^°Bƒd¤BƒjŽBƒplBƒv>Bƒ|Bƒ¼Bƒ‡eBƒBƒ’ŠBƒ˜BƒmBƒ¢ÄBƒ¨Bƒ­7Bƒ²RBƒ·XBƒ¼HBƒÁ!BƒÅâBƒÊ‹BƒÏBƒÓ’Bƒ×ìBƒÜ,BƒàPBƒäVBƒè>Bƒì Bƒï³Bƒó>Bƒö§BƒùðBƒýB„B„õB„¯B„CB„ °B„ ÷B„B„ B„ØB„zB„òB„>B„]B„OB„B„¨B„ B„AB„6B„ìB„pB„ÆB„ìB„åB„°B„PB„ÄB„B„.B„$B„ ôB„ ›B„B„yB„°BƒþÃBƒû³BƒøBƒõ-Bƒñ¹Bƒî%BƒêrBƒæ¡Bƒâ²BƒÞ¨BƒÚBƒÖ@BƒÑåBƒÍpBƒÈãBƒÄ?Bƒ¿„Bƒº³BƒµÎBƒ°ÔBƒ«ÆBƒ¦¦Bƒ¡tBƒœ2Bƒ–ÞBƒ‘|BƒŒ Bƒ†BƒBƒ{lBƒuËBƒpBƒjiBƒd«Bƒ^åBƒYBƒSEBƒMlBƒGBƒA®Bƒ;ËBƒ5æBƒ/ÿBƒ*Bƒ$1BƒLBƒhBƒ„Bƒ  Bƒ¿BƒáB‚ûB‚õ/B‚ïZB‚éˆB‚ãºB‚ÝíB‚Ø%B‚Ò_B‚ÌœB‚ÆÛB‚ÁB‚»aB‚µ©B‚¯òB‚ª>B‚¤B‚žÝB‚™0B‚“†B‚ÝB‚ˆ6B‚‚’B‚|ðB‚wPB‚q±B‚lB‚fyB‚`àB‚[IB‚U³B‚PB‚JŒB‚DûB‚?lB‚9ÝB‚4PB‚.ÅB‚):B‚#±B‚)B‚¢B‚B‚ —B‚B‚Bý B÷‹Bò BìŠBç Bá‹BÜ BÖŽBÑBË“BÆBÀ˜B»BµŸB°"Bª¦B¥)BŸ­Bš/B”³B6B‰¸B„:B~¼By=Bs¾Bn>Bh¾Bc=B]¼BX8BR¶BM1BG¬BB&B<ŸB7B1ŽB,B&wB ëB\BÍBBƒÁíBƒÆ‚BƒÊüBƒÏ\BƒÓŸBƒ×ÅBƒÛÍBƒß·Bƒã‚Bƒç-Bƒê¶BƒîBƒñeBƒôˆBƒ÷†BƒúaBƒýBƒÿ¥B„ B„MB„dB„RB„ B„ °B„ B„`B„tB„ZB„B„›B„óB„ B„áB„‡B„þB„HB„cB„QB„ B„ ªB„ B„[B„vB„hB„4BƒÿÚBƒýYBƒúµBƒ÷íBƒõBƒñõBƒîÇBƒëxBƒè Bƒä|BƒàÑBƒÝBƒÙ$BƒÕ$BƒÑ BƒÌÔBƒÈ‡BƒÄ"Bƒ¿¤Bƒ»Bƒ¶hBƒ±ªBƒ¬×Bƒ§òBƒ¢úBƒòBƒ˜ØBƒ“­BƒŽtBƒ‰-BƒƒÙBƒ~xBƒy Bƒs’BƒnBƒh…BƒbòBƒ]VBƒW´BƒR BƒL_BƒF­Bƒ@÷Bƒ;@Bƒ5†Bƒ/ËBƒ*Bƒ$VBƒBƒçBƒ0Bƒ wBƒÃBƒB‚üeB‚ö»B‚ñB‚ëpB‚åÐB‚à2B‚Ú—B‚ÔÿB‚ÏkB‚ÉØB‚ÄIB‚¾¼B‚¹2B‚³¬B‚®'B‚¨¥B‚£%B‚¨B‚˜,B‚’´B‚>B‚‡ÊB‚‚WB‚|çB‚wyB‚rB‚l£B‚g:B‚aÔB‚\oB‚W B‚Q«B‚LKB‚FìB‚AB‚<4B‚6ÚB‚1B‚,)B‚&ÓB‚!}B‚)B‚ÖB‚„B‚ 2B‚âB‚’BüCBöôBñ§BìZBç BáÁBÜvB×*BÑßBÌ”BÇJBÁÿB¼µB·kB² B¬ÖB§ŒB¢ABœõB—«B’_BB‡ÆB‚yB},BwÝBrŽBm?BgîBbœB]JBWøBR£BMMBGöBB B=FB7ìB2B-4B'ÕB"uBB±BLB‚4ÀB‚9¿B‚>ÖB‚DB‚IFB‚NžB‚T B‚YŒB‚_B‚dÄB‚jzB‚p@B‚vB‚{þB‚òB‚‡óB‚ŽB‚”B‚šAB‚ pB‚¦©B‚¬ëB‚³5B‚¹‡B‚¿ßB‚Æ=B‚ÌŸB‚ÓB‚ÙpB‚ßÞB‚æMB‚ì½B‚ó-B‚ùžBƒ BƒyBƒ äBƒKBƒ­Bƒ Bƒ&cBƒ,´Bƒ2ÿBƒ9ABƒ?zBƒEªBƒKÏBƒQéBƒW÷Bƒ]øBƒcìBƒiÒBƒo©BƒupBƒ{&Bƒ€ÌBƒ†^Bƒ‹ßBƒ‘LBƒ–¤Bƒ›çBƒ¡Bƒ¦+Bƒ«*Bƒ°Bƒ´ßBƒ¹“Bƒ¾,BƒÂ«BƒÇBƒËRBƒÏ{BƒÓ„Bƒ×oBƒÛ9BƒÞãBƒâlBƒåÑBƒéBƒì4Bƒï/BƒòBƒô´Bƒ÷=BƒùžBƒû×BƒýæBƒÿÌB„‡B„B„zB„±B„¸B„“B„>B„¹B„óB„ëB„³B„LB„¸B„õB„B„ëB„¥B„5B„›BƒþÙBƒüðBƒúÞBƒø¨BƒöLBƒóÌBƒñ(BƒîaBƒëzBƒèoBƒåEBƒáüBƒÞ”BƒÛBƒ×lBƒÓ­BƒÏÔBƒËÞBƒÇÐBƒÃªBƒ¿jBƒ»Bƒ¶©Bƒ²&Bƒ­Bƒ¨åBƒ¤(BƒŸXBƒšwBƒ•…Bƒ„Bƒ‹tBƒ†VBƒ*Bƒ{òBƒv®Bƒq`BƒlBƒf¦Bƒa=Bƒ[ËBƒVSBƒPÖBƒKTBƒEÍBƒ@BBƒ:¶Bƒ5(Bƒ/™Bƒ* Bƒ$|BƒïBƒeBƒÚBƒOBƒÆBƒBB‚ýÂB‚øDB‚òËB‚íTB‚çàB‚âpB‚ÝB‚×™B‚Ò3B‚ÌÏB‚ÇmB‚ÂB‚¼´B‚·\B‚²B‚¬³B‚§bB‚¢B‚œÉB‚—B‚’8B‚ŒôB‚‡±B‚‚qB‚}3B‚w÷B‚r¾B‚m…B‚hNB‚cB‚]èB‚X¶B‚SˆB‚NYB‚I-B‚DB‚>ÚB‚9²B‚4‹B‚/eB‚*BB‚%B‚üB‚ÜB‚»B‚œB‚ ~B‚`B‚DBü'B÷ BññBì×Bç½Bâ£B݉BØpBÓXBÎ?BÉ'BÄ B¾õB¹ÜB´ÃB¯«Bª‘B¥xB ]B›BB–(B‘ B‹ñB†ÔB¶B|˜BwxBrYBm8BhBbòB]ÎBXªBS‚BN[BI2BDB>ÛB9¬B4~B/LB*B$æB‚ WB‚%tB‚*ªB‚/õB‚5VB‚:ÌB‚@WB‚EõB‚K§B‚QjB‚W=B‚]"B‚cB‚iB‚o+B‚uJB‚{vB‚­B‚‡ïB‚ŽBƒþBƒýÐBƒüÖBƒû´BƒúfBƒøïBƒ÷PBƒõ‰BƒóœBƒñ‰BƒïPBƒìôBƒêsBƒçÑBƒåBƒâ(Bƒß#BƒÛþBƒØ»BƒÕ[BƒÑÞBƒÎDBƒÊBƒÆÂBƒÂÚBƒ¾ØBƒºÀBƒ¶Bƒ²JBƒ­ðBƒ©€Bƒ¤üBƒ gBƒ›¾Bƒ—Bƒ’;BƒbBƒˆzBƒƒ„Bƒ~BƒyqBƒtWBƒo2BƒjBƒdËBƒ_‹BƒZCBƒTöBƒO¢BƒJJBƒDîBƒ?ŽBƒ:,Bƒ4ÊBƒ/eBƒ*Bƒ$ŸBƒ>BƒàBƒBƒ!Bƒ ÅBƒnB‚ÿB‚ùÈB‚ô{B‚ï1B‚éëB‚ä¨B‚ßhB‚Ú,B‚ÔòB‚ϼB‚ʉB‚ÅYB‚À,B‚»B‚µÙB‚°µB‚«’B‚¦sB‚¡WB‚œIB‚D:B‚JB‚‚²B‚‰.B‚²B‚–=B‚œÏB‚£fB‚ªB‚°¤B‚·GB‚½îB‚ĘB‚ËAB‚ÑëB‚Ø•B‚ß>B‚ååB‚ì‰B‚ó)B‚ùÆBƒ]BƒïBƒ zBƒþBƒzBƒ íBƒ'WBƒ-¶Bƒ4 Bƒ:TBƒ@BƒF¾BƒLÞBƒRðBƒXòBƒ^ãBƒdÃBƒj’BƒpMBƒuöBƒ{ŠBƒBƒ†rBƒ‹ÄBƒ‘Bƒ–#Bƒ›.Bƒ Bƒ¤õBƒ©±Bƒ®PBƒ²ÓBƒ·9Bƒ»€Bƒ¿©BƒÃ²BƒÇšBƒËbBƒÏBƒÒŠBƒÕèBƒÙ#BƒÜ9Bƒß(BƒáòBƒä”BƒçBƒé_Bƒë†Bƒí„BƒïVBƒðûBƒòvBƒóÁBƒôßBƒõÏBƒöBƒ÷ Bƒ÷EBƒ÷OBƒ÷+BƒöÚBƒöZBƒõ®Bƒô×BƒóÖBƒò«BƒñVBƒïÚBƒî6BƒìjBƒê{BƒèfBƒæ,BƒãÑBƒáRBƒÞ²BƒÛðBƒÙBƒÖBƒÒñBƒÏµBƒÌ]BƒÈèBƒÅZBƒÁ°Bƒ½îBƒºBƒ¶ Bƒ²Bƒ­÷Bƒ©ÃBƒ¥zBƒ¡Bƒœ¯Bƒ˜-Bƒ“›BƒŽøBƒŠGBƒ…‡Bƒ€¹Bƒ{ÞBƒv÷BƒrBƒm BƒhBƒbôBƒ]ÝBƒX¿BƒS›BƒNqBƒIBBƒDBƒ>ÜBƒ9¤Bƒ4lBƒ/2Bƒ)ùBƒ$ÁBƒ‹BƒYBƒ&BƒñBƒ ÀBƒ”BƒlB‚ûGB‚ö&B‚ñ B‚ëîB‚æØB‚áÅB‚ܶB‚תB‚Ò B‚ÍšB‚È—B‚ØB‚¾›B‚¹¡B‚´«B‚¯¶B‚ªÆB‚¥×B‚ êB‚œB‚—B‚’7B‚TB‚ˆtB‚ƒ—B‚~¼B‚yâB‚u B‚p6B‚kbB‚f‘B‚aÁB‚\ôB‚X(B‚S]B‚N”B‚IÌB‚EB‚@BB‚;~B‚6¼B‚1ûB‚-:B‚(|B‚#¾B‚B‚EB‚ŠB‚ÏB‚ B‚[B‚¢BýêBù2Bô{BïÄBë BæUBážBÜèBØ1BÓzBÎÃBÊ BÅTBÀœB»äB·+B²qB­·B¨üB¤ABŸ…BšÈB– B‘KBŒ‹B‡ÊBƒB~DBy€BtºBoòBk*Bf_Ba’B\ÅBWõBS$BNPBI{BøBBý›B‚ B‚‘B‚-B‚ßB‚¤B‚|B‚%gB‚+fB‚1tB‚7’B‚=ÀB‚CýB‚JIB‚P¡B‚WB‚]wB‚cóB‚jyB‚q B‚w¡B‚~AB‚„êB‚‹—B‚’KB‚™B‚ŸÁB‚¦B‚­DB‚´ B‚ºÎB‚Á–B‚È[B‚Ï B‚ÕãB‚Ü£B‚ã`B‚êB‚ðÍB‚÷{B‚þ"BƒÃBƒ [BƒëBƒqBƒíBƒ%^Bƒ+ÃBƒ2Bƒ8fBƒ>¤BƒDÒBƒJðBƒPÿBƒVüBƒ\èBƒbÀBƒh†Bƒn6BƒsÒBƒyYBƒ~ÉBƒ„"Bƒ‰cBƒŽ‹Bƒ“šBƒ˜BƒhBƒ¢&Bƒ¦ÇBƒ«KBƒ¯±Bƒ³øBƒ¸Bƒ¼&BƒÀ BƒÃÐBƒÇrBƒÊðBƒÎKBƒÑBƒÔBƒ×xBƒÚ:BƒÜÔBƒßEBƒáBƒãªBƒåBƒçdBƒèÿBƒêlBƒë«Bƒì»Bƒí›Bƒî9Bƒî”BƒîÀBƒî½BƒîŒBƒî-Bƒí£BƒìíBƒì BƒëBƒéÑBƒèwBƒæõBƒåNBƒã€BƒáŽBƒßxBƒÝ>BƒÚãBƒØfBƒÕÉBƒÓ BƒÐ0BƒÍ6BƒÊBƒÆëBƒÃ›BƒÀ1Bƒ¼­Bƒ¹BƒµZBƒ±Bƒ­ªBƒ©°Bƒ¥¡Bƒ¡~BƒHBƒ™Bƒ”¦Bƒ:Bƒ‹ÀBƒ‡5Bƒ‚œBƒ}öBƒyBBƒt„BƒoºBƒjåBƒfBƒa!Bƒ\3BƒW>BƒRCBƒMCBƒH=BƒC5Bƒ>*Bƒ9Bƒ4Bƒ.ÿBƒ)ðBƒ$äBƒØBƒÑBƒÈBƒ¾Bƒ ¹Bƒ¸Bƒ»B‚üÁB‚÷ÌB‚òÚB‚íìB‚éB‚äB‚ß8B‚ÚXB‚Õ|B‚УB‚ËÍB‚ÆúB‚Â+B‚½^B‚¸•B‚³ÏB‚¯ B‚ªJB‚¥ŒB‚ ÑB‚œB‚—aB‚’®B‚üB‚‰MB‚„ B‚öB‚{NB‚v¦B‚rB‚m`B‚h¿B‚d B‚_„B‚ZèB‚VNB‚Q¶B‚M B‚HŠB‚CöB‚?cB‚:ÒB‚6BB‚1²B‚-$B‚(—B‚$ B‚B‚ôB‚jB‚àB‚ XB‚ÏB‚HBÿ¿Bû9Bö±Bò*Bí£BéBä–BàBÛ‡B×BÒxBÍñBÉhBÄàBÀVB»ÌB·AB²¶B®)B©œB¥B ~B›îB—]B’ÊBŽ6B‰ B… B€rB{ØBw£B‚E$B‚K±B‚RIB‚XëB‚_—B‚fKB‚mB‚sËB‚z•B‚eB‚ˆ:B‚B‚•îB‚œÍB‚£®B‚ªB‚±rB‚¸TB‚¿5B‚ÆB‚ÌðB‚ÓÈB‚ÚB‚ámB‚è7B‚îúB‚õ·B‚ükBƒBƒ ¹BƒQBƒÞBƒ^Bƒ#ÓBƒ*:Bƒ0”Bƒ6ÞBƒ=BƒCDBƒI^BƒOfBƒU\Bƒ[>Bƒa BƒfÅBƒlhBƒqöBƒwkBƒ|ÊBƒ‚Bƒ‡:BƒŒLBƒ‘DBƒ– BƒšÞBƒŸ€Bƒ¤Bƒ¨iBƒ¬®Bƒ°ÔBƒ´ØBƒ¸»Bƒ¼{BƒÀBƒÃ‘BƒÆåBƒÊBƒÍBƒÏþBƒÒ·BƒÕIBƒ×°BƒÙîBƒÜBƒÝèBƒß£Bƒá0BƒâBƒãÁBƒäÃBƒåBƒåüBƒæHBƒæeBƒæUBƒæBƒå®BƒåBƒä[BƒãsBƒâbBƒá)BƒßÊBƒÞDBƒÜ˜BƒÚÉBƒØÕBƒÖ¿BƒÔ†BƒÒ-BƒÏ²BƒÍBƒÊaBƒÇŠBƒÄ—BƒÁ‡Bƒ¾\Bƒ»Bƒ·¶Bƒ´>Bƒ°®Bƒ­Bƒ©HBƒ¥tBƒ¡ŠBƒŽBƒ™~Bƒ•[Bƒ‘'BƒŒãBƒˆŽBƒ„*Bƒ¸Bƒ{9Bƒv®BƒrBƒmtBƒhÇBƒdBƒ_SBƒZBƒUÁBƒPîBƒLBƒG;BƒB[Bƒ=yBƒ8•Bƒ3°Bƒ.ËBƒ)æBƒ%Bƒ #BƒFBƒhBƒˆBƒ ­BƒÖBƒB‚þ6B‚ùkB‚ô¥B‚ïãB‚ë$B‚æiB‚á²B‚ÜþB‚ØMB‚Ó¡B‚Î÷B‚ÊQB‚Å®B‚ÁB‚¼rB‚·ØB‚³BB‚®®B‚ªB‚¥B‚¡B‚œ{B‚—õB‚“qB‚ŽðB‚ŠrB‚…õB‚zB‚}B‚xŒB‚tB‚o¦B‚k5B‚fÆB‚bZB‚]ïB‚Y…B‚UB‚P·B‚LRB‚GîB‚CŒB‚?*B‚:ÊB‚6kB‚2 B‚-°B‚)SB‚$øB‚ B‚CB‚éB‚B‚7B‚ ßB‚ˆB‚0BýØBù€Bõ*BðÒBìzBè#BãËBßrBÛBÖÁBÒgBÎ BɲBÅVBÀúB¼B¸?B³àB¯€B«B¦¼B¢XBóB™B•%B»BŒQB‡äBƒuBBz’BvBq¨Bm0BÑ-BÖÀBÜjBâ*BèBíêBóèBùúB‚B‚TB‚ ›B‚òB‚XB‚ÍB‚&PB‚,áB‚3~B‚:'B‚@ÚB‚G˜B‚N_B‚U0B‚\B‚bæB‚iÌB‚p·B‚w¦B‚~›B‚…’B‚ŒB‚“‰B‚š†B‚¡„B‚¨B‚¯}B‚¶wB‚½oB‚ÄcB‚ËSB‚Ò>B‚Ù$B‚àB‚æÚB‚í«B‚ôrB‚û0BƒãBƒŒBƒ)Bƒ¹Bƒ=Bƒ"²Bƒ)Bƒ/pBƒ5¶Bƒ;ìBƒBBƒH"BƒN BƒT BƒYàBƒ_ BƒeJBƒjÜBƒpXBƒuºBƒ{Bƒ€2Bƒ…FBƒŠ>BƒBƒ“ÚBƒ˜{BƒœþBƒ¡aBƒ¥¤Bƒ©ÇBƒ­ÈBƒ±¦BƒµaBƒ¸ùBƒ¼lBƒ¿¹BƒÂáBƒÅáBƒÈºBƒËjBƒÍñBƒÐOBƒÒ€BƒÔˆBƒÖcBƒØBƒÙ‘BƒÚãBƒÜBƒÜåBƒÝBƒÝêBƒÞ'BƒÞ7BƒÞBƒÝÑBƒÝ^BƒÜ¿BƒÛøBƒÛ BƒÙòBƒØ³Bƒ×NBƒÕÅBƒÔBƒÒFBƒÐRBƒÎB‚è®B‚ä"B‚ß™B‚ÛB‚Ö”B‚ÒB‚ÍœB‚É%B‚IJB‚ÀAB‚»ÔB‚·jB‚³B‚®žB‚ª=B‚¥ÞB‚¡ƒB‚*B‚˜ÔB‚”€B‚.B‚‹ßB‚‡’B‚ƒGB‚~ÿB‚z¸B‚vtB‚r2B‚mñB‚i²B‚evB‚a:B‚]B‚XÈB‚T‘B‚P\B‚L(B‚GõB‚CÄB‚?“B‚;cB‚75B‚3B‚.ÚB‚*®B‚&‚B‚"XB‚-B‚B‚ÚB‚°B‚ ˆB‚ _B‚7B‚ BüåBø¼Bô”BðjBìABèBãìBßÂBÛ–B×jBÓ=BÏBÊáBƲB€B¾OBºBµèB±²B­|B©CB¥ B ÎBœ’B˜SB”BÐB‹ŒB‡FB‚ýB~²B¾ BûBÉ€BÏ\BÕNBÛTBánBçœBíÜBô-BúB‚B‚„B‚B‚´B‚_B‚"B‚(ÛB‚/ªB‚6ƒB‚=fB‚DPB‚KDB‚R>B‚Y>B‚`DB‚gOB‚n^B‚uqB‚|†B‚ƒB‚еB‚‘ÍB‚˜åB‚ŸýB‚§B‚®$B‚µ3B‚¼>B‚ÃDB‚ÊEB‚Ñ?B‚Ø2B‚ßB‚åÿB‚ìØB‚ó§B‚úkBƒ#BƒÎBƒmBƒþBƒ€Bƒ!òBƒ(UBƒ.¦Bƒ4æBƒ;BƒA.BƒG4BƒM&BƒSBƒXÇBƒ^vBƒdBƒiŒBƒnòBƒt=BƒynBƒ~„Bƒƒ}BƒˆXBƒBƒ‘·Bƒ–7Bƒš˜BƒžØBƒ¢÷Bƒ¦óBƒªÌBƒ®‚Bƒ²Bƒµ~Bƒ¸ÄBƒ»ãBƒ¾ÚBƒÁ©BƒÄPBƒÆÌBƒÉBƒËDBƒÍ?BƒÏ BƒÐ­BƒÒBƒÓbBƒÔ`BƒÕBƒÕ¤BƒÖBƒÖ0BƒÖ3BƒÖ BƒÕ·BƒÕ:BƒÔ’BƒÓÄBƒÒÍBƒÑ°BƒÐmBƒÏBƒÍyBƒËÉBƒÉ÷BƒÈBƒÅîBƒÃºBƒÁeBƒ¾óBƒ¼cBƒ¹¶Bƒ¶îBƒ´ Bƒ± Bƒ­ôBƒªÄBƒ§|Bƒ¤Bƒ ¨BƒBƒ™~Bƒ•ÌBƒ’BƒŽ/BƒŠFBƒ†LBƒ‚DBƒ~,BƒzBƒuÕBƒq—BƒmMBƒhøBƒd™Bƒ`2Bƒ[ÃBƒWLBƒRÏBƒNLBƒIÄBƒE8Bƒ@ªBƒ<Bƒ7†Bƒ2óBƒ.`Bƒ)ÎBƒ%>Bƒ °Bƒ&Bƒ›BƒBƒ‡Bƒ Bƒ†Bƒ B‚ü—B‚ø%B‚ó¸B‚ïNB‚êêB‚æˆB‚â+B‚ÝÑB‚Ù{B‚Õ)B‚ÐÚB‚ÌB‚ÈGB‚ÄB‚¿ÁB‚»ƒB‚·HB‚³B‚®ÚB‚ª¨B‚¦zB‚¢LB‚ž"B‚™ûB‚•×B‚‘´B‚”B‚‰wB‚…\B‚BB‚}+B‚yB‚uB‚pòB‚lâB‚hÔB‚dÈB‚`¾B‚\´B‚X­B‚T¦B‚P¢B‚LžB‚H›B‚D™B‚@™B‚<™B‚8šB‚4œB‚0ŸB‚,¢B‚(¦B‚$ªB‚ ¯B‚´B‚¹B‚¿B‚ÄB‚ ÊB‚ÐB‚ÕB‚ÚBüßBøäBôèBðìBìîBèòBäôBàõBÜõBØõBÔóBÐðBÌìBÈçBÄâBÀÚB¼ÑB¸ÆB´ºB°¬B¬œB¨‹B¤xB dBœLB˜3B”BúB«,B°öB¶ØB¼ÐBÂÝBÈþBÏ4BÕ}BÛØBâDBèÂBïPBõîBü™B‚RB‚ B‚ìB‚ËB‚µB‚%¨B‚,¥B‚3ªB‚:¹B‚AÍB‚HèB‚P B‚W.B‚^YB‚e†B‚lµB‚sçB‚{B‚‚MB‚‰B‚±B‚—àB‚ŸB‚¦7B‚­]B‚´~B‚»™B‚®B‚É»B‚ÐÁB‚×¾B‚Þ±B‚å›B‚ìzB‚óMB‚úBƒÎBƒyBƒBƒ¤Bƒ"Bƒ!ŽBƒ'éBƒ.2Bƒ4hBƒ:‰Bƒ@—BƒFŽBƒLpBƒR:BƒWîBƒ]ˆBƒc BƒhqBƒm¾BƒrðBƒxBƒ|þBƒÙBƒ†–Bƒ‹4Bƒ±Bƒ”Bƒ˜JBƒœdBƒ ZBƒ¤-Bƒ§ÜBƒ«fBƒ®ÊBƒ²BƒµBƒ¸ BƒºÎBƒ½jBƒ¿ÚBƒÂ BƒÄ:BƒÆ&BƒÇæBƒÉxBƒÊÚBƒËøBƒÌÑBƒÍzBƒÍöBƒÎEBƒÎgBƒÎ^BƒÎ*BƒÍÌBƒÍFBƒÌ—BƒËÁBƒÊÅBƒÉ£BƒÈ\BƒÆñBƒÅbBƒÃ²BƒÁßBƒ¿ìBƒ½ÚBƒ»¨Bƒ¹XBƒ¶êBƒ´`Bƒ±ºBƒ®ùBƒ¬Bƒ©*Bƒ¦Bƒ¢ùBƒŸ¾BƒœlBƒ™Bƒ•ŒBƒ‘þBƒŽ\BƒŠ©Bƒ†æBƒƒBƒ.Bƒ{hB‚:˜B‚6ÉB‚2úB‚/,B‚+^B‚'‘B‚#ÄB‚öB‚)B‚]B‚B‚ÃB‚ öB‚ (B‚ZB‚ŒBý½BùîBöBòMBî|Bê©BæÖBãBß,BÛVB×~BÓ¥BÏÊBËîBÈBÄ2BÀRB¼oB¸ŠB´¤B°»B¬ÐB¨äB¤õB¡B˜šBž€B¤|BªB°¸B¶ôB½EBéBÊBÐ¥B×>BÝæBäžBëdBò8BùB‚B‚ÿB‚B‚B‚)B‚#HB‚*pB‚1ŸB‚8ÔB‚@B‚GNB‚N’B‚UÙB‚]#B‚dnB‚k¼B‚sB‚zUB‚¡B‚ˆêB‚2B‚—uB‚žµB‚¥ðB‚­%B‚´TB‚»|B‚œB‚ɳB‚ÐÁB‚×ÅB‚Þ¾B‚å«B‚ìŒB‚ó`B‚ú&BƒÞBƒ†BƒBƒ¦BƒBƒ!Bƒ'ÐBƒ. Bƒ45Bƒ:HBƒ@DBƒF*BƒKøBƒQ¯BƒWLBƒ\ÐBƒb8Bƒg†Bƒl·BƒqÌBƒvÃBƒ{œBƒ€VBƒ„ðBƒ‰jBƒÃBƒ‘ùBƒ– Bƒ™ýBƒÈBƒ¡oBƒ¤ñBƒ¨KBƒ«Bƒ®ŠBƒ±lBƒ´&Bƒ¶µBƒ¹Bƒ»QBƒ½^Bƒ¿Bƒ”ûBƒ‘¤BƒŽ:BƒŠ½Bƒ‡/BƒƒBƒàBƒ|!BƒxTBƒtyBƒp’BƒlžBƒh Bƒd˜Bƒ`†Bƒ\jBƒXGBƒTBƒOîBƒKºBƒG€BƒCBBƒ?Bƒ:ÀBƒ6}Bƒ29Bƒ-öBƒ)´Bƒ%tBƒ!7BƒþBƒÄBƒˆBƒSBƒ #BƒöBƒÎB‚ÿªB‚ûŒB‚÷rB‚ó\B‚ïJB‚ë=B‚ç3B‚ã.B‚ß,B‚Û/B‚×5B‚Ó?B‚ÏLB‚Ë]B‚ÇrB‚ÉB‚¿¥B‚»ÃB‚·åB‚´ B‚°1B‚¬\B‚¨‰B‚¤¹B‚ ìB‚"B‚™ZB‚•”B‚‘ÑB‚ŽB‚ŠRB‚†•B‚‚ÛB‚"B‚{lB‚w¸B‚tB‚pTB‚l¤B‚höB‚eIB‚ažB‚]ôB‚ZKB‚V£B‚RýB‚OWB‚K²B‚HB‚DkB‚@ÉB‚='B‚9…B‚5äB‚2DB‚.£B‚+B‚'cB‚#ÃB‚ "B‚ƒB‚âB‚AB‚¡B‚ ÿB‚ ]B‚»B‚BÿtBûÏBø*BôƒBðÛBí3BéˆBåÝBâ0BÞ‚BÚÒB×!BÓoBϺBÌBÈLBÄ‘BÀÔB½B¹UBµ’B±ÌB†NBŒOB’fB˜”Bž×B¥/B«˜B²B¸§B¿IBÅüB̾BÓBÚpBá^BèYBï`BösBý‘B‚¸B‚ êB‚#B‚eB‚!­B‚(üB‚0QB‚7ªB‚?B‚FhB‚MËB‚U1B‚\—B‚cýB‚kdB‚rÉB‚z,B‚B‚ˆêB‚CB‚—˜B‚žçB‚¦/B‚­qB‚´ªB‚»ÛB‚ÃB‚Ê!B‚Ñ4B‚Ø;B‚ß6B‚æ$B‚íB‚óÖB‚ú˜BƒKBƒíBƒ}BƒûBƒfBƒ!½Bƒ(Bƒ..Bƒ4DBƒ:FBƒ@0BƒFBƒK¸BƒQWBƒVÛBƒ\DBƒa’BƒfÁBƒkÕBƒpÉBƒuŸBƒzUBƒ~ëBƒƒ`Bƒ‡²Bƒ‹ãBƒïBƒ“ØBƒ—œBƒ›:Bƒž²Bƒ¢Bƒ¥,Bƒ¨,Bƒ«Bƒ­°Bƒ°2Bƒ²ˆBƒ´³Bƒ¶°Bƒ¸Bƒº Bƒ»zBƒ¼Bƒ½vBƒ¾.Bƒ¾ºBƒ¿Bƒ¿OBƒ¿ZBƒ¿;Bƒ¾ôBƒ¾„Bƒ½îBƒ½1Bƒ¼OBƒ»IBƒºBƒ¸ÓBƒ·cBƒµÒBƒ´"Bƒ²RBƒ°cBƒ®VBƒ¬,Bƒ©æBƒ§„Bƒ¥Bƒ¢qBƒŸÂBƒœûBƒšBƒ—(Bƒ”BƒýBƒÊBƒŠƒBƒ‡*Bƒƒ¾Bƒ€DBƒ|¸BƒyBƒuuBƒq¿BƒmüBƒj.BƒfTBƒbqBƒ^„BƒZŽBƒV‘BƒRŽBƒN„BƒJtBƒFaBƒBJBƒ>1Bƒ:Bƒ5ùBƒ1ÜBƒ-ÀBƒ)¥Bƒ%Bƒ!xBƒfBƒSBƒABƒ2Bƒ )Bƒ %Bƒ%Bƒ+B‚ý4B‚ùBB‚õUB‚ñlB‚íˆB‚é¨B‚åÌB‚áóB‚ÞB‚ÚOB‚Ö‚B‚ÒºB‚ÎõB‚Ë2B‚ÇuB‚úB‚ÀB‚¼NB‚¸žB‚´ðB‚±FB‚­žB‚©øB‚¦VB‚¢·B‚ŸB‚›€B‚—çB‚”RB‚¿B‚.B‚‰žB‚†B‚‚‡B‚~þB‚{vB‚wñB‚tmB‚pêB‚mjB‚iëB‚flB‚bïB‚_tB‚[ùB‚XB‚UB‚QB‚NB‚J¡B‚G,B‚C¶B‚@AB‚<ÍB‚9YB‚5åB‚2qB‚.ýB‚+‰B‚(B‚$¡B‚!-B‚¸B‚CB‚ÌB‚VB‚ßB‚ gB‚ïB‚uB‚ûBþ~BûB÷ƒBôBð„BíBé~Bå÷BâpBÞçBÛ\B×ÐBÔ@BаBÍBɆBÅîBÂTBtPBzkB€B†äBBB“²Bš7B ÏB§zB®5BµB»ÞBÂÈBÉÂBÐÊB×ßBÞÿBæ+BíbBô¤BûîB‚@B‚ ›B‚ýB‚eB‚ ÒB‚(EB‚/¼B‚75B‚>±B‚F0B‚M¯B‚U/B‚\®B‚d,B‚k©B‚s"B‚z™B‚‚ B‚‰yB‚áB‚˜CB‚ŸžB‚¦ðB‚®;B‚µ|B‚¼³B‚ÃßB‚ËB‚ÒB‚ÙB‚àB‚çB‚íÜB‚ô©B‚ûdBƒBƒ§Bƒ,BƒBƒùBƒ"ABƒ(sBƒ.ŽBƒ4’Bƒ:~Bƒ@QBƒF BƒK©BƒQ-BƒV”Bƒ[àBƒaBƒfBƒkBƒoáBƒt“Bƒy#Bƒ}’BƒÞBƒ†BƒŠ BƒìBƒ‘§Bƒ•B‚K!B‚HB‚DåB‚AÈB‚>ªB‚;‹B‚8mB‚5OB‚20B‚/B‚+ïB‚(ÎB‚%­B‚"ŠB‚gB‚AB‚B‚ôB‚ÌB‚£B‚ xB‚ JB‚B‚ëBÿ¹Bü†BùOBöBòÝBï¡BìbBé BåÝBâ–BQ?BWŽB]òBdnBjýBq BxXB"B…þBŒëB“êBšøB¢B©@B°yB·¾B¿BÆoBÍ×BÕIBÜÄBäHBëÔBófBúÿB‚B‚ @B‚çB‚‘B‚!?B‚(îB‚0žB‚8NB‚?þB‚G­B‚OZB‚WB‚^¬B‚fOB‚míB‚u†B‚}B‚„¤B‚Œ(B‚“£B‚›B‚¢~B‚©ÛB‚±-B‚¸rB‚¿¬B‚Æ×B‚ÍôB‚ÕB‚ÜB‚âîB‚éÊB‚ð”B‚÷LB‚ýïBƒBƒ ùBƒ^Bƒ­BƒäBƒ$Bƒ* Bƒ/öBƒ5ÊBƒ;BƒABƒFžBƒLBƒQFBƒVmBƒ[tBƒ`\Bƒe"BƒiÇBƒnJBƒrªBƒvæBƒzýBƒ~ïBƒ‚»Bƒ†aBƒ‰ßBƒ5BƒcBƒ“fBƒ–?Bƒ˜íBƒ›oBƒÅBƒŸîBƒ¡èBƒ£›Bƒ¥Bƒ¦DBƒ§UBƒ¨9Bƒ¨òBƒ©€Bƒ©åBƒª Bƒª4Bƒª Bƒ©åBƒ©…Bƒ©Bƒ¨XBƒ§‹Bƒ¦œBƒ¥ŒBƒ¤[Bƒ£ Bƒ¡šBƒ  Bƒž`Bƒœ˜Bƒš´Bƒ˜´Bƒ–œBƒ”iBƒ’Bƒ»BƒABƒŠ²BƒˆBƒ…TBƒ‚‡Bƒ¨Bƒ|¶Bƒy´Bƒv Bƒs~BƒpNBƒmBƒiÃBƒfkBƒc Bƒ_›Bƒ\#BƒX¤BƒUBƒQŒBƒMöBƒJZBƒFºBƒCBƒ?pBƒ;ÅBƒ8Bƒ4oBƒ0ÄBƒ-Bƒ)qBƒ%ÌBƒ")Bƒ‹BƒìBƒLBƒ²BƒBƒ ŽBƒ Bƒ}BƒýB‚þB‚û B‚÷™B‚ô,B‚ðÂB‚í^B‚éÿB‚æ¢B‚ãKB‚ß÷B‚ܨB‚Ù]B‚ÖB‚ÒÒB‚Ï‘B‚ÌUB‚ÉB‚ÅæB‚´B‚¿…B‚¼ZB‚¹1B‚¶ B‚²èB‚¯ÈB‚¬«B‚©‘B‚¦xB‚£cB‚ PB‚>B‚š0B‚—$B‚”B‚‘B‚Ž B‚‹B‚ˆB‚…B‚‚B‚B‚|B‚yB‚v B‚sB‚pB‚m"B‚j+B‚g5B‚d?B‚aJB‚^UB‚[aB‚XmB‚UyB‚R†B‚O’B‚LžB‚IªB‚F·B‚CÃB‚@ÎB‚=ÙB‚:ãB‚7íB‚4öB‚1þB‚/B‚, B‚)B‚&B‚#B‚ B‚B‚B‚B‚B‚B‚ ÿB‚ ôB‚èB‚ÚB‚ÈBþµBûŸBøˆBõmBòPB@.BF”BMBS¦BZMBa BgÚBn¼Bu²B|·BƒÍBŠôB’(B™lB ½B¨B¯…B¶úB¾zBÆBÍ—BÕ3BÜÖBä€Bì0BóçBû¢B‚`B‚ "B‚æB‚­B‚"uB‚*=B‚2B‚9ËB‚AB‚IRB‚QB‚XËB‚`B‚h2B‚oÜB‚wB‚B‚†®B‚Ž8B‚•¸B‚-B‚¤—B‚«õB‚³FB‚ºŠB‚Á¿B‚ÈåB‚ÏûB‚×B‚ÝöB‚äØB‚ë¨B‚òeB‚ù B‚ÿ BƒBƒ „BƒÕBƒ Bƒ,Bƒ%3Bƒ+Bƒ0ñBƒ6¦Bƒ<@BƒA½BƒGBƒL\BƒQ~BƒV€Bƒ[`Bƒ`Bƒd¼Bƒi7BƒmBƒq¿BƒuÍBƒy´Bƒ}uBƒBƒ„€Bƒ‡ÉBƒŠêBƒßBƒ©Bƒ“GBƒ•ºBƒ—ÿBƒšBƒ›åBƒmBƒžÇBƒŸôBƒ õBƒ¡ÊBƒ¢uBƒ¢öBƒ£NBƒ£€Bƒ£‰Bƒ£lBƒ£*Bƒ¢ÂBƒ¢8Bƒ¡ŠBƒ ¹BƒŸÈBƒž¶Bƒ„Bƒœ3BƒšÄBƒ™8Bƒ—Bƒ•ÊBƒ“ëBƒ‘òBƒßBƒ´Bƒ‹rBƒ‰Bƒ†ªBƒ„'BƒŽBƒ~ãBƒ|$BƒyUBƒvtBƒs‚Bƒp‚BƒmtBƒjWBƒg.BƒcøBƒ`¸Bƒ]mBƒZBƒV¼BƒSWBƒOëBƒLxBƒIBƒE„BƒBBƒ>Bƒ:üBƒ7uBƒ3îBƒ0gBƒ,âBƒ)^Bƒ%ÞBƒ"`BƒèBƒnBƒóBƒBƒBƒ ¥Bƒ @BƒàBƒ†Bƒ0B‚üàB‚ù”B‚öMB‚ó B‚ïÍB‚ì”B‚é_B‚æ.B‚ãB‚ßÚB‚ܶB‚Ù•B‚ÖyB‚Ó`B‚ÐLB‚Í:B‚Ê,B‚Ç"B‚ÄB‚ÁB‚¾B‚»B‚¸B‚µ&B‚²1B‚¯@B‚¬PB‚©cB‚¦xB‚£B‚ ªB‚ÆB‚šäB‚˜B‚•&B‚’JB‚pB‚Œ˜B‚‰ÀB‚†ëB‚„B‚CB‚~rB‚{¡B‚xÑB‚vB‚s4B‚phB‚m›B‚jÏB‚hB‚e8B‚bnB‚_¤B‚\ÙB‚ZB‚WEB‚T{B‚Q¯B‚NäB‚LB‚IMB‚FB‚C³B‚@åB‚>B‚;GB‚8wB‚5¤B‚2ÑB‚/ýB‚-(B‚*QB‚'xB‚$B‚!ÂB‚äB‚B‚#B‚>B‚XB‚pB‚ …B‚ ˜B‚¨B‚¶B‚ÂB/rB5òB<‡BC2BIóBPÇBW¯B^©Be¶BlÓBtB{?B‚ŒB‰æB‘OB˜ÄB FB§ÒB¯jB· B¾µBÆhBÎ"BÕãBÝ«BåxBíJBõ BüùB‚ÔB‚ ²B‚‘B‚oB‚$NB‚,,B‚4B‚;àB‚C¶B‚KˆB‚SUB‚[B‚bÞB‚j˜B‚rKB‚yõB‚–B‚‰.B‚ºB‚˜Bd„BkØBs„B‚FhB‚NFB‚VB‚]ïB‚e¸B‚mzB‚u1B‚|ßB‚„ƒB‚ŒB‚“§B‚›&B‚¢˜B‚©üB‚±QB‚¸–B‚¿ÊB‚ÆîB‚ÎB‚ÔþB‚ÛêB‚âÂB‚é…B‚ð3B‚öÊB‚ýJBƒ²Bƒ Bƒ:BƒXBƒZBƒ"ABƒ( Bƒ-ºBƒ3LBƒ8¾Bƒ>BƒCFBƒHZBƒMLBƒRBƒVÊBƒ[UBƒ_»BƒcýBƒhBƒlBƒoÝBƒs…BƒwBƒzYBƒ}…Bƒ€…Bƒƒ[Bƒ†BƒˆBƒŠÑBƒŒ×BƒŽ•Bƒ&Bƒ‘‰Bƒ’ÂBƒ“ÐBƒ”²Bƒ•lBƒ•þBƒ–gBƒ–ªBƒ–ÇBƒ–¿Bƒ–’Bƒ–BBƒ•ÎBƒ•:Bƒ”„Bƒ“®Bƒ’¸Bƒ‘¤BƒrBƒ#Bƒ·BƒŒ1BƒŠBƒˆÔBƒ‡Bƒ…BƒƒBƒ€ùBƒ~ÊBƒ|†Bƒz.BƒwÄBƒuGBƒr¸BƒpBƒmjBƒj«BƒgßBƒeBƒbBƒ_-Bƒ\0BƒY*BƒVBƒSBƒOàBƒL¹BƒIŒBƒFZBƒC#Bƒ?éBƒ<­Bƒ9mBƒ6.Bƒ2îBƒ/®Bƒ,pBƒ)4Bƒ%üBƒ"ÆBƒ—BƒeBƒ3BƒBƒáBƒÁBƒ ¥Bƒ BƒBƒsBƒnB‚ýlB‚úpB‚÷xB‚ô†B‚ñ˜B‚î¯B‚ëÊB‚èêB‚æB‚ã6B‚àbB‚Ý’B‚ÚÆB‚×þB‚Õ:B‚ÒzB‚ϽB‚ÍB‚ÊNB‚Ç›B‚ÄêB‚Â>B‚¿•B‚¼îB‚ºJB‚·ªB‚µ B‚²oB‚¯ÖB‚­?B‚ªªB‚¨B‚¥‡B‚¢øB‚ lB‚áB‚›XB‚˜ÐB‚–JB‚“ÆB‚‘CB‚ŽÁB‚Œ@B‚‰ÀB‚‡BB‚„ÄB‚‚GB‚ËB‚}OB‚zÔB‚xYB‚uÞB‚sdB‚pêB‚npB‚köB‚i|B‚gB‚d†B‚b B‚_B‚]B‚Z–B‚XB‚U™B‚SB‚P™B‚NB‚K”B‚IB‚FŠB‚DB‚AyB‚>îB‚BkÆBs\BzþB‚¬BŠfB’*B™øB¡ÐB©®B±–B¹ƒBÁxBÉrBÑoBÙrBáwBéBñŠBù”B‚ B‚ «B‚µB‚½B‚!ÂB‚)ÅB‚1ÃB‚9¼B‚A°B‚IžB‚Q…B‚YeB‚aàBƒ;ÅBƒ8¨Bƒ5‹Bƒ2nBƒ/QBƒ,6Bƒ)Bƒ&Bƒ"öBƒêBƒÜBƒÍBƒÄBƒÁBƒÄBƒ ÌBƒ ÚBƒîBƒBƒ$B‚ÿHB‚üpB‚ùB‚öÏB‚ôB‚ñAB‚îB‚ëÆB‚éB‚æ\B‚ã­B‚áB‚Þ\B‚Û¹B‚ÙB‚Ö€B‚ÓèB‚ÑUB‚ÎÄB‚Ì7B‚É­B‚Ç'B‚Ä£B‚Â#B‚¿¥B‚½*B‚º²B‚¸BƒŠ’BƒŠÂBƒŠÍBƒŠ¶BƒŠ{BƒŠ Bƒ‰¢Bƒ‰BƒˆKBƒ‡pBƒ†zBƒ…eBƒ„5Bƒ‚êBƒ„Bƒ€Bƒ~nBƒ|ÀBƒzúBƒyBƒw,Bƒu&Bƒs BƒpàBƒn¢BƒlSBƒiòBƒgƒBƒeBƒbyBƒ_àBƒ]:BƒZˆBƒWÍBƒUBƒR:BƒObBƒL„BƒI BƒFµBƒCÆBƒ@ÒBƒ=ÛBƒ:âBƒ7èBƒ4ìBƒ1ñBƒ.öBƒ+ýBƒ)Bƒ&Bƒ#$Bƒ :BƒOBƒbBƒ}BƒBƒÂBƒíBƒ Bƒ UBƒ‘BƒÒBƒB‚þdB‚û¶B‚ù B‚öfB‚óÆB‚ñ)B‚î’B‚ëþB‚épB‚ææB‚ä`B‚áÞB‚ß`B‚ÜæB‚ÚoB‚×ýB‚ÕŽB‚Ó"B‚кB‚ÎVB‚ËôB‚É–B‚Ç;B‚ÄâB‚ÂŒB‚À:B‚½êB‚»œB‚¹QB‚·B‚´ÂB‚²~B‚°B‚B‚ŒáB‚Š´B‚ˆ†B‚†YB‚„,B‚þB‚ÑB‚}¤B‚{vB‚yHB‚wB‚tìB‚r¼B‚pŒB‚n[B‚l)B‚i÷B‚gÂB‚eB‚cWB‚aB‚^åB‚\ªB‚ZnB‚X/B‚UïB‚S¬B‚QhB‚O"B‚LÙB‚JŽB‚H@B‚EðB‚CB‚AHB‚>ïB‚<”B€ïèB€öÃB€ý´B»B ÕBBFB!šB)B0wB7þB?”BG:BNíBV­B^{BfTBn9Bv'B~ B†"BŽ+B–=BžUB¦tB®—B¶ÀB¾ìBÇBÏNBׂB߸BçìBð"BøVB‚ˆB‚¸B‚äB‚ B‚!1B‚)OB‚1gB‚9yB‚AƒB‚I„B‚Q|B‚YlB‚aPB‚i)B‚pöB‚x·B‚€jB‚ˆB‚¦B‚—-B‚ž¤B‚¦ B‚­^B‚´ B‚»ÏB‚ÂéB‚ÉðB‚ÐáB‚×¼B‚Þ€B‚å-B‚ëÂB‚ò>B‚ø B‚þèBƒBƒ &BƒBƒóBƒ¬Bƒ"GBƒ'ÃBƒ-Bƒ2ZBƒ7rBƒ B‚FB‚NB‚VB‚^B‚eäB‚mºB‚uB‚};B‚„çB‚ŒƒB‚”B‚›‰B‚¢òB‚ªIB‚±B‚¸¼B‚¿ØB‚ÆÞB‚ÍÏB‚Ô©B‚ÛkB‚âB‚è¨B‚ï B‚õ~B‚ûÁBƒèBƒôBƒ áBƒ±BƒcBƒõBƒ$hBƒ)¹Bƒ.êBƒ3øBƒ8ãBƒ=ªBƒBNBƒFÍBƒK%BƒOWBƒSbBƒWFBƒ[Bƒ^’BƒaúBƒe7BƒhHBƒk-BƒmåBƒpSBƒrxBƒtoBƒv‘Bƒ;ÚBƒ9#Bƒ6iBƒ3°Bƒ0öBƒ.=Bƒ+‡Bƒ(ÒBƒ&"Bƒ#uBƒ ÏBƒ&Bƒ}BƒÚBƒ>Bƒ§BƒBƒ‹Bƒ Bƒ †Bƒ Bƒ˜Bƒ)B‚ÿ¾B‚ýZB‚úúB‚ø B‚öIB‚óøB‚ñ«B‚ïbB‚íB‚êàB‚è¤B‚æmB‚ä:B‚â B‚ßàB‚ݸB‚Û”B‚ÙtB‚×WB‚Õ>B‚Ó(B‚ÑB‚ÏB‚ÌöB‚ÊìB‚ÈäB‚ÆßB‚ÄÜB‚ÂÜB‚ÀÞB‚¾ãB‚¼êB‚ºóB‚¸ýB‚· B‚µB‚³(B‚±:B‚¯LB‚­`B‚«vB‚©B‚§¤B‚¥½B‚£ÖB‚¡ðB‚  B‚ž'B‚œCB‚š_B‚˜{B‚–˜B‚”´B‚’ÑB‚íB‚ B‚&B‚‹@B‚‰\B‚‡uB‚…B‚ƒ¨B‚¿B‚ÖB‚}ëB‚|B‚zB‚x$B‚v4B‚tBB‚rOB‚pZB‚nbB‚liB‚jmB‚hpB‚fpB‚dmB‚bhB‚``B‚^VB‚\IB‚Z8B‚X%B€ÒJB€ÙNB€àjB€çšB€îÞB€ö8B€ý¢B B ¯BPBÿB#¾B+ŒB3hB;RBCHBKIBSUB[mBcŽBk·BséB|"B„cBŒ©B”õBEB¥šB­ñB¶KB¾¦BÇBÏaB×¾BàBèsBðËBùB‚oB‚ »B‚B‚AB‚"{B‚*­B‚2ÖB‚:÷B‚CB‚KB‚SB‚[B‚büB‚jØB‚r¦B‚zeB‚‚B‚‰µB‚‘DB‚˜ÂB‚ -B‚§…B‚®ÊB‚µúB‚½B‚ÄB‚Ë B‚ÑáB‚Ø B‚ßGB‚åÕB‚ìHB‚ò¡B‚øÞB‚þþBƒBƒ èBƒ°BƒXBƒàBƒ!HBƒ&Bƒ+´Bƒ0¶Bƒ5”Bƒ:OBƒ>äBƒCUBƒGžBƒKÁBƒO»BƒSBƒW7BƒZ¸Bƒ^ Bƒa6Bƒd4BƒgBƒi‹BƒkÈBƒmØBƒo½BƒqvBƒsBƒtkBƒu§Bƒv½Bƒw¬BƒxvBƒyBƒy˜BƒyóBƒz,BƒzCBƒz9BƒzBƒyÄBƒy[BƒxÔBƒx1BƒwpBƒv•BƒuŸBƒtBƒsfBƒr&BƒpÍBƒo^BƒmÚBƒl@Bƒj’BƒhÒBƒfþBƒeBƒc$BƒaBƒ_ Bƒ\çBƒZ¶BƒXxBƒV/BƒSÛBƒQ|BƒOBƒL£BƒJ+BƒG«BƒE%BƒBšBƒ@ Bƒ=wBƒ:áBƒ8HBƒ5®Bƒ3Bƒ0zBƒ-âBƒ+KBƒ(·Bƒ&&Bƒ#›Bƒ!BƒŒBƒBƒBƒBƒBƒ Bƒ¶Bƒ RBƒ óBƒšBƒGBƒùBƒ°B‚ÿmB‚ý/B‚úõB‚øÂB‚ö’B‚ôgB‚òAB‚ðB‚îB‚ëèB‚éÔB‚çÃB‚å¶B‚ã­B‚á¨B‚ߦB‚ݨB‚Û®B‚Ù¸B‚×ÄB‚ÕÔB‚ÓæB‚ÑüB‚ÐB‚Î0B‚ÌNB‚ÊnB‚È‘B‚Æ·B‚ÄßB‚ÃB‚Á4B‚¿bB‚½’B‚»ÄB‚¹÷B‚¸,B‚¶bB‚´šB‚²ÒB‚± B‚¯HB‚­„B‚«ÁB‚©ÿB‚¨=B‚¦|B‚¤»B‚¢ûB‚¡;B‚Ÿ{B‚»B‚›üB‚š;B‚˜zB‚–ºB‚”ùB‚“8B‚‘uB‚³B‚îB‚Œ)B‚ŠdB‚ˆœB‚†ÔB‚… B‚ƒ@B‚rB‚¤B‚}ÔB‚|B‚z.B‚xWB‚vB‚t¥B‚rÇB‚pèB‚oB‚m"B‚k:B‚iOB‚gbB‚erB€ÄB€Ë!B€ÒPB€Ù”B€àíB€èYB€ïØB€÷jB€ÿ BÀB„BWB8B&(B.$B6-B>BBFbBNBVÀB^þBgCBoBwâB€ØBƒB‚F6B‚NFB‚VHB‚^/BFBNúBWjB_âBh`BpãByiBôBŠƒB“B›§B¤;B¬ÏBµcB½öBƆBÏB× Bà(Bè«Bñ(Bù B‚B‚ zB‚ÛB‚4B‚#‚B‚+ÇB‚4B‚<.B‚DPB‚LdB‚TkB‚\cB‚dKB‚l$B‚sìB‚{¤B‚ƒIB‚ŠÛB‚’ZB‚™ÄB‚¡B‚¨ZB‚¯„B‚¶–B‚½‘B‚ÄtB‚Ë=B‚ÑíB‚Ø‚B‚ÞüB‚åZB‚ë›B‚ñ¿B‚÷ÄB‚ý«BƒsBƒ Bƒ BƒBƒHBƒgBƒ#bBƒ(9Bƒ,ìBƒ1wBƒ5ÝBƒ:Bƒ>1BƒBBƒEãBƒI}BƒLìBƒP0BƒSGBƒVBƒX–BƒZëBƒ]Bƒ_Bƒ`ëBƒb˜BƒdBƒe|Bƒf´BƒgÆBƒh³Bƒi|Bƒj#Bƒj§Bƒk BƒkKBƒkmBƒkpBƒkTBƒkBƒjÆBƒjUBƒiÈBƒi"BƒhbBƒgŠBƒf™Bƒe’BƒduBƒcBBƒaûBƒ` Bƒ_2Bƒ]²Bƒ\"BƒZ€BƒXÏBƒWBƒUABƒSfBƒQ~BƒOŒBƒMŽBƒK†BƒIvBƒG\BƒE¶Bƒ<Bƒ:EBƒ8 Bƒ5ËBƒ3‹Bƒ1LBƒ/ Bƒ,ÐBƒ*•Bƒ(]Bƒ&)Bƒ#ûBƒ!ÐBƒ¥Bƒ{BƒTBƒ6BƒBƒ BƒÿBƒúBƒúBƒ Bƒ Bƒ Bƒ4BƒPBƒrBƒ˜B‚ÿÄB‚ýöB‚ü,B‚úfB‚ø¥B‚öêB‚õ2B‚ó~B‚ñÐB‚ð%B‚î~B‚ìÛB‚ëB‚ÖÊB‚ÝBƒ&'Bƒ$Bƒ" BƒüBƒíBƒåBƒäBƒéBƒõBƒBƒBƒ=BƒaBƒ ‹Bƒ ºBƒïBƒ*BƒiBƒ¯BƒùBƒIB‚þB‚üöB‚ûTB‚ù·B‚øB‚ö‰B‚ôùB‚ónB‚ñæB‚ðbB‚îâB‚ífB‚ëîB‚êyB‚éB‚çšB‚æ.B‚äÈB‚ãbB‚âB‚à¢B‚ßFB‚ÝìB‚Ü–B‚Û@B‚ÙïB‚ØžB‚×PB‚ÖB‚ÔºB‚ÓqB‚Ò+B‚ÐåB‚Ï¢B‚Î_B‚ÍB‚ËÞB‚ÊŸB‚É`B‚È#B‚ÆæB‚ŪB‚ÄnB‚Ã4B‚ÁøB‚À¾B‚¿‚B‚¾HB‚½ B‚»ÒB‚º–B‚¹ZB‚¸B‚¶àB‚µ¡B‚´bB‚³"B‚±áB‚°žB‚¯[B‚®B‚¬ÏB‚«†B‚ªB‚ô,B‚ùúB‚ÿ¨Bƒ4Bƒ žBƒäBƒ BƒBƒãBƒ#—Bƒ(&Bƒ,ŽBƒ0ÏBƒ4æBƒ8ÕBƒ<™Bƒ@3BƒC¢BƒFåBƒIÝBƒL‰BƒO BƒQ`BƒSŒBƒUŽBƒWiBƒYBƒZ¦Bƒ\ Bƒ]KBƒ^fBƒ__Bƒ`3Bƒ`æBƒayBƒaêBƒb7Bƒ<=Bƒ:>Bƒ8=Bƒ69Bƒ43Bƒ2,Bƒ0&Bƒ. Bƒ,Bƒ*Bƒ(Bƒ&"Bƒ$,Bƒ"=Bƒ LBƒYBƒoBƒŠBƒ¬BƒÕBƒBƒ9BƒtBƒµBƒ üBƒ IBƒ ›BƒóBƒPBƒ³BƒBƒˆBƒúB‚ÿqB‚ýíB‚ümB‚úóB‚ù|B‚ø B‚öœB‚õ2B‚óÌB‚òkB‚ñ B‚ï³B‚î\B‚í B‚ëºB‚êmB‚é$B‚çÞB‚æ›B‚å[B‚äB‚ââB‚áªB‚àtB‚ß@B‚ÞB‚ÜàB‚Û²B‚Ú†B‚Ù]B‚Ø5B‚×B‚ÕêB‚ÔÆB‚Ó£B‚Ò‚B‚ÑbB‚ÐBB‚Ï$B‚ÎB‚ÌéB‚ËÌB‚ʰB‚É”B‚ÈxB‚Ç\B‚Æ@B‚Å$B‚ÄB‚ÂêB‚ÁÎB‚À°B‚¿‘B‚¾rB‚½RB‚¼0B‚»B‚¹ëB‚¸ÅB‚·ŸB‚¶wB‚µMB‚´"B‚²õB‚±ÅB‚°”B‚¯aB‚®*B‚¬òB‚«·B‚ªyB‚©9B‚§öB‚¦°B‚¥gB‚¤B‚¢ÊB€‚¬B€Š B€‘ªB€™JB€ ýB€¨ÃB€°œB€¸†B€ÀB€ÈŽB€ÐªB€ØÔB€áB€éTB€ñ¨B€ú BuB ëBlBöB$‰B-$B5ÆB>oBGBOÒBX‹BaHBjBrÉB{B„RBB•ÝBž¡B§cB°#B¸ßBÁ˜BÊLBÒûBÛ¤BäFBìáBõtBýþB‚B‚õB‚aB‚ÂB‚(B‚0\B‚8–B‚@ÀB‚HÜB‚PèB‚XäB‚`ÎB‚h§B‚pmB‚x B‚¿B‚‡IB‚޾B‚–B‚eB‚¤–B‚«®B‚²®B‚¹”B‚À`B‚ÇB‚ͦB‚ÔB‚Ú{B‚à¹B‚æØB‚ìØB‚ò¹B‚øyB‚þBƒ”BƒîBƒ&Bƒ8Bƒ&BƒïBƒ!‘Bƒ& Bƒ*`Bƒ.ŒBƒ2Bƒ6gBƒ:Bƒ=™Bƒ@ñBƒCþBƒF¿BƒIUBƒK¿BƒNBƒPBƒRBƒSÏBƒUpBƒVëBƒX@BƒYrBƒZ€Bƒ[kBƒ\5Bƒ\ÞBƒ]fBƒ]ÎBƒ^Bƒ^DBƒ^TBƒ^FBƒ^Bƒ]ÚBƒ]~Bƒ]Bƒ\zBƒ[ÔBƒ[BƒZFBƒY`BƒXdBƒWVBƒV6BƒUBƒSÀBƒRmBƒQ BƒO˜BƒNBƒLBƒJ÷BƒISBƒG¦BƒEðBƒD0BƒBhBƒ@™Bƒ>ÄBƒ<èBƒ; Bƒ9%Bƒ7?Bƒ5UBƒ3jBƒ1Bƒ/”Bƒ-ªBƒ+ÁBƒ)ÛBƒ'øBƒ&Bƒ$@Bƒ"lBƒ —BƒÁBƒòBƒ)BƒgBƒ«BƒöBƒGBƒžBƒüBƒ`Bƒ ÉBƒ 8Bƒ ¬Bƒ &Bƒ¦Bƒ*Bƒ´BƒBBƒ×BƒoB‚ÿ B‚ý¯B‚üVB‚ûB‚ù¯B‚øcB‚÷B‚õÖB‚ô–B‚óXB‚òB‚ðêB‚ï·B‚îˆB‚í]B‚ì4B‚ëB‚éìB‚èÌB‚ç®B‚æ”B‚å{B‚äfB‚ãRB‚â@B‚á1B‚à#B‚ßB‚Þ B‚ÝB‚ÛþB‚ÚøB‚ÙóB‚ØðB‚×íB‚ÖìB‚ÕëB‚ÔìB‚ÓìB‚ÒíB‚ÑïB‚ÐñB‚ÏóB‚ÎõB‚Í÷B‚ÌùB‚ËúB‚ÊüB‚ÉüB‚ÈýB‚ÇüB‚ÆúB‚ÅøB‚ÄõB‚ÃðB‚ÂëB‚ÁãB‚ÀÛB‚¿ÐB‚¾ÅB‚½¸B‚¼¨B‚»–B‚º‚B‚¹mB‚¸TB‚·:B‚¶B‚´üB‚³ÚB‚²´B‚±ŒB‚°_B‚¯0B‚­þB€vÔB€~YB€…ôB€¢B€•fB€HBƒABƒCÇBƒFEBƒHšBƒJÆBƒLËBƒN§BƒP\BƒQíBƒSXBƒTŸBƒUÂBƒVÃBƒW£BƒXaBƒYBƒY~BƒYßBƒZ!BƒZGBƒZQBƒZ?BƒZBƒYÍBƒYnBƒXøBƒXjBƒWÆBƒW BƒV=BƒUZBƒTdBƒS\BƒRBBƒQBƒOÜBƒN’BƒM:BƒKÔBƒJaBƒHãBƒGYBƒEÄBƒD'BƒBBƒ@ÓBƒ?Bƒ=cBƒ;¡Bƒ9ÜBƒ8Bƒ6EBƒ4vBƒ2¦Bƒ0ÕBƒ/Bƒ-4Bƒ+fBƒ)šBƒ'ÒBƒ&Bƒ$QBƒ"—Bƒ ÜBƒ"BƒmBƒÀBƒBƒyBƒßBƒKBƒ¾Bƒ7Bƒ¶Bƒ;Bƒ ÅBƒ VBƒ êBƒ †Bƒ&BƒÌBƒwBƒ&BƒÛBƒ”BƒSB‚ÿB‚ýÝB‚ü¨B‚ûwB‚úLB‚ù#B‚÷ÿB‚öÞB‚õÂB‚ô¨B‚ó’B‚ò€B‚ñqB‚ðeB‚ï\B‚îVB‚íSB‚ìRB‚ëTB‚êXB‚é_B‚èhB‚çtB‚æB‚åB‚ä¡B‚ã´B‚âÈB‚áÞB‚àõB‚à B‚ß'B‚ÞBB‚Ý]B‚ÜyB‚Û–B‚Ú´B‚ÙÒB‚ØñB‚ØB‚×/B‚ÖMB‚ÕlB‚Ô‹B‚ÓªB‚ÒÈB‚ÑåB‚ÑB‚ÐB‚Ï:B‚ÎUB‚ÍoB‚̇B‚ËžB‚Ê´B‚ÉÈB‚ÈÛB‚ÇìB‚ÆûB‚ÆB‚ÅB‚ÄB‚Ã$B‚Â(B‚Á*B‚À*B‚¿&B‚¾ B‚½B‚¼ B‚ºüB‚¹êB‚¸ÔB€kjB€rÿB€z¨B€‚hB€Š9B€’B€šB€¢ B€ª:B€²fB€º B€ÂèB€ËAB€Ó¦B€ÜB€ä–B€í B€õµB€þSBûB¬BdB!$B)ëB2·B;ˆBD_BM9BVB^õBgÖBp¸ByœB‚~B‹_B”>BB¥öB®ËB·BÀjBÉ0BÑðBÚ©BãYBìBô Bý4B‚¾B‚B‚X5B‚`B‚gíB‚o«B‚wUB‚~êB‚†iB‚ÐB‚•!B‚œZB‚£zB‚ª‚B‚±nB‚¸@B‚¾øB‚Å’B‚ÌB‚ÒpB‚رB‚ÞÔB‚äØB‚êºB‚ð}B‚öB‚û›BƒõBƒ,Bƒ ?Bƒ,BƒóBƒ”BƒBƒ"`Bƒ&ˆBƒ*ˆBƒ.^Bƒ2 Bƒ5ˆBƒ8¼Bƒ;¤Bƒ>aBƒ@óBƒC\BƒEœBƒG´BƒI¤BƒKnBƒMBƒN“BƒOîBƒQ&BƒR=BƒS1BƒTBƒT¸BƒUMBƒUÃBƒVBƒVXBƒVwBƒV|BƒVgBƒV7BƒUïBƒUBƒUBƒTŠBƒSèBƒS0BƒRfBƒQ†BƒP–BƒO”BƒN€BƒM^BƒL+BƒJìBƒIBƒHCBƒFÝBƒEkBƒCðBƒBlBƒ@ÞBƒ?HBƒ=¬Bƒ< Bƒ:aBƒ8¶Bƒ7Bƒ5QBƒ3›Bƒ1åBƒ0.Bƒ.wBƒ,ÀBƒ+ Bƒ)ZBƒ'­Bƒ&Bƒ$_Bƒ"ÀBƒ! BƒBƒäBƒQBƒÄBƒ>Bƒ¿BƒFBƒÓBƒfBƒÿBƒŸBƒDBƒ ðBƒ ŸBƒ VBƒ BƒÒBƒ—BƒbBƒ2BƒBƒàBƒ½BƒŸB‚ÿ†B‚þqB‚ý`B‚üTB‚ûKB‚úEB‚ùDB‚øFB‚÷LB‚öVB‚õbB‚ôqB‚ó„B‚ò™B‚ñ²B‚ðÍB‚ïêB‚ï B‚î-B‚íRB‚ìxB‚ë¢B‚êÌB‚éúB‚é(B‚èXB‚çŠB‚æ¼B‚åñB‚å&B‚ä]B‚ã”B‚âÍB‚âB‚á?B‚àyB‚ß´B‚ÞïB‚Þ)B‚ÝeB‚Ü B‚ÛÚB‚ÛB‚ÚOB‚ÙˆB‚ØÁB‚×ùB‚×1B‚ÖhB‚ÕB‚ÔÒB‚ÔB‚Ó6B‚ÒfB‚Ñ”B‚ÐÁB‚ÏìB‚ÏB‚Î=B‚ÍaB‚Ì„B‚ˤB‚ÊÁB‚ÉÜB‚ÈõB‚È B‚ÇB‚Æ-B‚Å9B‚ÄBB‚ÃHB€`pB€hB€oÌB€w™B€zB€‡nB€tB€—ŒB€ŸµB€§îB€°7B€¸ŽB€ÀôB€ÉhB€ÑçB€ÚsB€ã B€ë®B€ôZB€ýBÎB”BbB 6B)B1ðB:ÓBC»BL¦BU“B^BgrBpbByRB‚AB‹.B”BB¥äB®ÄB·žBÀrBÉ@BÒBÚÄBãzBì&BôÉBý`B‚íB‚mB‚àB‚FB‚'žB‚/æB‚8B‚@HB‚H`B‚PfB‚XZB‚`;B‚hB‚oÀB‚wdB‚~òB‚†iB‚ÉB‚•B‚œAB‚£WB‚ªTB‚±4B‚·üB‚¾¦B‚Å2B‚Ë£B‚ÑõB‚Ø(B‚ÞGBƒ@šBƒBÆBƒDÊBƒF§BƒH_BƒIóBƒKcBƒL¯BƒMÚBƒNâBƒOËBƒP“BƒQ=BƒQÈBƒR6BƒR†BƒR¼BƒRÖBƒRÖBƒR¼BƒR‹BƒR@BƒQàBƒQhBƒPÜBƒP;BƒO†BƒN¾BƒMäBƒLøBƒKýBƒJñBƒIÖBƒH­BƒGwBƒF4BƒDæBƒCŒBƒB(Bƒ@¼Bƒ?FBƒ=ÈBƒB€dB€•šB€àB€¦7B€®œB€·B€¿B€ÈB€Ð¶B€Ù[B€â B€êÅB€ó‡B€üSB%BBáBÈB(µB1¥B:šBC’BLŒBUˆB^„Bg‚Bp~ByzB‚tB‹lB”`BQB¦=B¯$B¸BÀàBÉ´BÒBÛBBãüBì«BõPBýéB‚vB‚÷B‚jB‚ÏB‚(&B‚0lB‚8¢B‚@ÈB‚HÜB‚PÞB‚XÌB‚`§B‚hnB‚p B‚w¼B‚BB‚†°B‚ŽB‚•DB‚œiB‚£tB‚ªdB‚±:B‚·òB‚¾B‚ÅB‚ËpB‚ѲB‚×ÖB‚ÝÙB‚ã»B‚é|B‚ïB‚ô—B‚ùðB‚ÿ$Bƒ2Bƒ Bƒ ßBƒ|BƒðBƒ=Bƒ`Bƒ#ZBƒ'(Bƒ*ÌBƒ.$Bƒ11Bƒ4Bƒ6ÊBƒ9XBƒ;½Bƒ=üBƒ@BƒBBƒCÎBƒEuBƒFùBƒHXBƒI—BƒJ³BƒK¯BƒLŒBƒMJBƒMéBƒNkBƒNÐBƒOBƒOIBƒO^BƒOZBƒO=BƒO BƒN½BƒN[BƒMäBƒMZBƒLºBƒLBƒKDBƒJoBƒIŠBƒH”BƒGBƒF}BƒE^BƒD2BƒBúBƒA¸Bƒ@kBƒ?Bƒ=¶BƒB€œ¡B€¥B€­”B€¶!B€¾»B€Ç`B€ÐB€ØÎB€á“B€êcB€ó;B€üBB ïBâBÛB(×B1ØB:ÝBCãBLëBUóB^ýBhBqBzBƒBŒB•BžB§B¯îB¸ÖBÁµBÊBÓ\BÜ"BäÞBíBö5BþÐB‚]B‚ÜB‚NB‚ ²B‚)B‚1HB‚9zB‚AœB‚IªB‚Q¦B‚YŽB‚abB‚i!B‚pÊB‚x^B‚ÚB‚‡>B‚ŽŠB‚•½B‚œÖB‚£ÔB‚ª¸B‚±B‚¸*B‚¾¸B‚Å(B‚ËyB‚ѬB‚×¾B‚ݯB‚ãB‚é-B‚î¸B‚ô B‚ùdB‚þƒBƒ}BƒQBƒ ýBƒ‚BƒßBƒBƒBƒ!ýBƒ%²Bƒ)Bƒ,9Bƒ/,Bƒ1öBƒ4•Bƒ7 Bƒ9\Bƒ;†Bƒ=ˆBƒ?eBƒABƒB´BƒD(BƒEyBƒF©BƒG¸BƒH¨BƒIyBƒJ,BƒJÂBƒK;BƒK™BƒKÜBƒLBƒLBƒL BƒKìBƒK¶BƒKiBƒKBƒJBƒJBƒIjBƒH»BƒGûBƒG+BƒFLBƒE]BƒD`BƒCVBƒB@BƒABƒ?òBƒ>¼Bƒ=|Bƒ<4Bƒ:åBƒ9ŽBƒ82Bƒ6ÐBƒ5kBƒ4Bƒ2•Bƒ1'Bƒ/¸Bƒ.HBƒ,ÚBƒ+kBƒ)ÿBƒ(–Bƒ'1Bƒ%ÏBƒ$tBƒ#Bƒ!ÈBƒ pBƒBƒÕBƒ’BƒUBƒ BƒòBƒÈBƒ¦Bƒ‰BƒsBƒcBƒYBƒSBƒUBƒ[BƒgBƒ xBƒ ŽBƒ ©Bƒ ÉBƒ îBƒ BƒEBƒxBƒ°BƒêBƒ*BƒmBƒ´BƒBƒNBƒ BƒöBƒOB‚ÿ«B‚ÿ B‚þmB‚ýÒB‚ý;B‚ü¥B‚üB‚û‚B‚úôB‚úhB‚ùßB‚ùWB‚øÑB‚øMB‚÷ËB‚÷JB‚öÊB‚öLB‚õÏB‚õSB‚ôØB‚ô^B‚óäB‚ólB‚òôB‚ò|B‚òB‚ñŒB‚ñB‚ðžB‚ð&B‚ï®B‚ï6B‚î¾B‚îDB‚íÉB‚íOB‚ìÓB‚ìVB‚ëØB‚ëXB‚ê×B‚êTB‚éÑB‚éKB‚èÃB‚è9B‚ç®B‚ç B‚æB‚åüB‚åhB‚äÐB‚ä5B‚ã˜B‚â÷B‚âSB‚á¬B‚áB‚àTB€B.B€IúB€QÚB€YÎB€aÖB€iòB€rB€z^B€‚®B€‹ B€“|B€›ùB€¤…B€­B€µÄB€¾uB€Ç2B€ÏúB€ØÌB€á§B€êŠB€óuB€ühBaB`BdB lB)xB2‡B;™BD­BMÁBVÕB_éBhýBrB{B„*B2B–6BŸ5B¨.B± Bº BÂðBËÊBÔœBÝdBæ BîÒB÷xB‚B‚B‚B‚‰B‚!éB‚*8B‚2wB‚:¤B‚BÀB‚JÇB‚R¼B‚ZB‚bhB‚jB‚q¾B‚yGB‚€¸B‚ˆB‚QB‚–xB‚ƒB‚¤tB‚«IB‚²B‚¸žB‚¿B‚ÅzB‚˺B‚ÑÛB‚×ÚB‚ݹB‚ãvB‚éB‚î†B‚óÚB‚ùB‚þBƒóBƒ¯Bƒ DBƒ±BƒõBƒBƒBƒ ÆBƒ$?Bƒ'mBƒ*qBƒ-JBƒ/ûBƒ2ƒBƒ4äBƒ7Bƒ92Bƒ;"Bƒ<íBƒ>”Bƒ@BƒA}BƒB¿BƒCàBƒDäBƒEÇBƒFŒBƒG6BƒGÂBƒH3BƒHŠBƒHÇBƒHêBƒHõBƒHéBƒHÆBƒHŽBƒH@BƒGÞBƒGhBƒFàBƒFFBƒEšBƒDÞBƒDBƒC:BƒBRBƒA^Bƒ@]Bƒ?PBƒ>:Bƒ=Bƒ;îBƒ:¼Bƒ9‚Bƒ8BBƒ6ûBƒ5°Bƒ4`Bƒ3 Bƒ1¶Bƒ0^Bƒ/Bƒ-¬Bƒ,SBƒ*ûBƒ)¦Bƒ(SBƒ'Bƒ%ºBƒ$tBƒ#5Bƒ!õBƒ ´BƒzBƒFBƒBƒôBƒÕBƒ½Bƒ«Bƒ BƒšBƒ›Bƒ¢Bƒ®BƒÀBƒØBƒöBƒBƒ@BƒnBƒ  Bƒ ØBƒ Bƒ TBƒ šBƒ äBƒ 2Bƒ„BƒÛBƒ6Bƒ•BƒøBƒ]BƒÇBƒ4Bƒ¥BƒBƒBƒ Bƒ†BƒBƒˆBƒ B‚ÿ”B‚ÿB‚þªB‚þ8B‚ýÈB‚ýZB‚üíB‚ü‚B‚üB‚û²B‚ûKB‚úæB‚ú‚B‚úB‚ù¼B‚ùZB‚øùB‚ø˜B‚ø8B‚÷ÙB‚÷xB‚÷B‚öºB‚öZB‚õúB‚õ™B‚õ8B‚ôÖB‚ôtB‚ôB‚ó¬B‚óGB‚òàB‚òxB‚òB‚ñ¥B‚ñ9B‚ðÊB‚ðZB‚ïèB‚ïtB‚îýB‚î†B‚î B‚íŒB‚í B‚ìˆB‚ìB‚ëyB‚êîB‚ê^B‚éËB‚é5B€8B€?óB€GâB€OæB€WýB€`'B€hcB€p°B€yB€|B€‰ùB€’†B€› B€£ÇB€¬{B€µ;B€¾B€ÆÝB€Ï½B€Ø¦B€á—B€êB€ó‘B€ü˜B¥B·BÍB èB*B3%BçBƒ=ïBƒ<ìBƒ;ßBƒ:ÊBƒ9¬Bƒ8‡Bƒ7ZBƒ6(Bƒ4ñBƒ3¶Bƒ2wBƒ16Bƒ/òBƒ.­Bƒ-hBƒ,$Bƒ*àBƒ) Bƒ(aBƒ'&Bƒ%ðBƒ$ÀBƒ#•Bƒ"iBƒ!cB€FuB€N™B€VÑB€_B€gvB€oâB€x]B€€èB€‰‚B€’)B€šÞB€£ B€¬nB€µGB€¾*B€ÇB€ÐB€Ù B€âB€ë!B€ô5B€ýPBoB“B»B!äB+B4@B=pBF BOÐBXþBb+BkVBt}B}¡B†ÀBÛB˜ïB¡üB«B´B¼ùBÅæBÎÉB×¢BàpBé1BñæBúŽB‚(B‚ ³B‚.B‚šB‚$öB‚-?B‚5wB‚=œB‚E­B‚MªB‚U“B‚]fB‚e#B‚lÉB‚tXB‚{ÎB‚ƒ,B‚ŠoB‚‘™B‚˜¨B‚Ÿ›B‚¦rB‚­,B‚³ÈB‚ºFB‚À¥B‚ÆåB‚ÍB‚ÓB‚ØÝB‚Þ—B‚ä.B‚é B‚îïB‚ôB‚ùB‚ýùBƒ¯Bƒ=Bƒ ¢BƒÞBƒïBƒ×BƒsBƒÄBƒ!ëBƒ$èBƒ'¼Bƒ*hBƒ,íBƒ/KBƒ1„Bƒ3—Bƒ5‡Bƒ7TBƒ8þBƒ:†Bƒ;íBƒ=4Bƒ>]Bƒ?fBƒ@RBƒA!BƒAÔBƒBkBƒBçBƒCKBƒC”BƒCÇBƒCâBƒCåBƒCÔBƒC­BƒCrBƒC$BƒBÃBƒBQBƒAÍBƒA9Bƒ@–Bƒ?äBƒ?$Bƒ>XBƒ=~Bƒ<šBƒ;ªBƒ:²Bƒ9°Bƒ8¦Bƒ7”Bƒ6{Bƒ5]Bƒ4:Bƒ3Bƒ1çBƒ0¹Bƒ/ˆBƒ.XBƒ-'Bƒ+öBƒ*ÆBƒ)™Bƒ(nBƒ'HBƒ&$Bƒ%Bƒ#ðBƒ"ØBƒ!¿Bƒ «Bƒ¡BƒœBƒžBƒ¦Bƒ¶BƒÌBƒèBƒ Bƒ2Bƒ`Bƒ”BƒÍBƒ BƒQBƒ›BƒêBƒ>Bƒ˜BƒöBƒYBƒÁBƒ-BƒžBƒBƒ Bƒ Bƒ ŒBƒ Bƒ šBƒ &Bƒ ·Bƒ KBƒ âBƒ |Bƒ BƒºBƒ]BƒBƒ¬BƒWBƒBƒµBƒgBƒBƒÒBƒŠBƒDBƒBƒ¼Bƒ{Bƒ;BƒüBƒ¾BƒBƒDBƒ BƒÎBƒ”BƒZBƒ BƒæBƒ®BƒtBƒ:BƒBƒÆBƒ‹BƒPBƒB‚ÿÖB‚ÿ˜B‚ÿYB‚ÿB‚þ×B‚þ•B‚þPB‚þ B‚ýÂB‚ýxB‚ý,B‚üßB‚üB‚ü=B‚ûèB‚ûB‚û6B‚úÙB‚ú{B‚úB‚ù²B‚ùIB‚øÜB‚ømB€%TB€-JB€5UB€=sB€E¥B€MéB€V@B€^©B€g"B€oªB€xBB€€éB€‰B€’_B€›-B€¤B€¬îB€µÞB€¾×B€ÇÚB€ÐåB€ÙúB€ãB€ì5B€õ[B€þˆB¸BìB#B#\B,˜B5ÔB?BHMBQˆBZÁBcøBm,Bv]BˆBˆ¯B‘ÐBšëB£þB­ B¶ B¿BÇ÷BÐÜBÙ·Bâ…BëGBóûBü¢B‚:B‚ ÂB‚DBƒ? Bƒ?³Bƒ@BBƒ@·BƒABƒAWBƒA…BƒA›BƒAœBƒAˆBƒA`BƒA$Bƒ@ÖBƒ@uBƒ@Bƒ?ƒBƒ>òBƒ>TBƒ=§Bƒ<ìBƒ<&Bƒ;TBƒ:xBƒ9’Bƒ8£Bƒ7¬Bƒ6¬Bƒ5§Bƒ4œBƒ3ŠBƒ2vBƒ1^Bƒ0BBƒ/%Bƒ.Bƒ,éBƒ+ËBƒ*®Bƒ)“Bƒ({Bƒ'gBƒ&WBƒ%MBƒ$HBƒ#BBƒ"BƒBƒìBƒÃBƒ™BƒnBƒDBƒBƒéBƒºBƒŠBƒXBƒ&BƒñBƒ»Bƒ‚BƒIBƒ BƒÎBƒBƒJBƒBƒ¼BƒrBƒ#BƒÓBƒ~Bƒ(B‚ÿÌB‚ÿoB€œB€$žB€,µB€4àB€=B€EpB€MÓB€VHB€^ÍB€gaB€pB€x¸B€xB€ŠGB€“"B€œB€¤ùB€­õB€¶ûB€À B€É"B€ÒAB€ÛhB€ä”B€íÇB€öþB;B {B¾BB%JB.‘B7ÛBA"BJiBS®B\ñBf1BomBx¥BØB‹B”+BJB¦bB¯qB¸wBÁsBÊdBÓJBÜ%BäóBí´BöfBÿ B‚ŸB‚%B‚™B‚ üB‚)NB‚1ŒB‚9·B‚AÎB‚IÑB‚Q¾B‚Y•B‚aUB‚hþB‚pB‚xB‚fB‚†«B‚ÔB‚”âB‚›ÕB‚¢ªB‚©bB‚¯üB‚¶wB‚¼ÒB‚à B‚É'B‚Ï B‚ÔöB‚ÚªB‚à:B‚å¥B‚êìB‚ð B‚õB‚ùÜB‚þ‡Bƒ BƒfBƒ –BƒœBƒXBƒÊBƒBƒ.Bƒ "Bƒ"ðBƒ%•Bƒ(Bƒ*oBƒ,¤Bƒ.¶Bƒ0¤Bƒ2pBƒ4Bƒ5¤Bƒ7Bƒ8YBƒ9…Bƒ:”Bƒ;†Bƒ<\Bƒ=Bƒ=¶Bƒ>=Bƒ>«Bƒ?Bƒ?@Bƒ?gBƒ?zBƒ?wBƒ?`Bƒ?6Bƒ>úBƒ>¬Bƒ>LBƒ=ÞBƒ=_Bƒ<ÑBƒ<7Bƒ;ŽBƒ:ÚBƒ:Bƒ9PBƒ8|Bƒ7ŸBƒ6¹Bƒ5ÍBƒ4ÙBƒ3àBƒ2áBƒ1ÞBƒ0ØBƒ/ÎBƒ.ÄBƒ-¸Bƒ,«Bƒ+ŸBƒ*”Bƒ)ŒBƒ(…Bƒ'ƒBƒ&…Bƒ%‹Bƒ$™Bƒ#¤Bƒ"¯Bƒ!ÂBƒ ÛBƒúBƒ!BƒMBƒBƒºBƒùBƒ@BƒŠBƒÜBƒ4Bƒ‘BƒôBƒ\BƒÉBƒ;Bƒ²Bƒ/Bƒ°Bƒ7BƒÁBƒPBƒäBƒ|BƒBƒ¸Bƒ\BƒBƒ°Bƒ`BƒBƒÉBƒ‚Bƒ?BƒBƒÂBƒˆBƒPBƒBƒ èBƒ ¸Bƒ ‹Bƒ `Bƒ 6Bƒ Bƒ éBƒ ÅBƒ ¢Bƒ Bƒ bBƒ DBƒ &Bƒ Bƒ ðBƒ ÖBƒ ¼Bƒ £Bƒ ‹Bƒ sBƒ [Bƒ DBƒ ,Bƒ Bƒ ýBƒ åBƒ ÍBƒ ´Bƒ ›Bƒ Bƒ eBƒ IBƒ ,Bƒ Bƒ ïBƒ ÎBƒ ¬Bƒ ˆBƒ aBƒ :Bƒ BƒåBƒ¸BƒˆBƒUBƒ BƒèBƒ®BƒpBƒ1BƒîBƒ§Bƒ^BƒB€SB€bB€$…B€,»B€5B€=cB€EÑB€NQB€VâB€_ƒB€h2B€pñB€y½B€‚–B€‹|B€”nB€jB€¦rB€¯ƒB€¸œB€ÁÀB€ÊêB€ÔB€ÝTB€æ’B€ïÕB€ùBgB µBBWB'«B0ýB:QBC£BLóBVAB_ŒBhÔBrB{TB„ŒB¾B–èB  B©&B²6B»=BÄ:BÍ,BÖBÞëBç·BðvBù&B‚ÆB‚ WB‚ÖB‚EB‚#¢B‚+ìB‚4$B‚B‚B‚ˆÆB‚àB‚–ßB‚ÁB‚¤†B‚«,B‚±´B‚¸B‚¾dB‚ÄŒB‚Ê‘B‚ÐuB‚Ö6B‚ÛÓB‚áLB‚æ¡B‚ëÏB‚ðØB‚õ¹B‚úsB‚ÿBƒmBƒ­Bƒ ÂBƒŒBƒ BƒbBƒŽBƒ’BƒoBƒ"$Bƒ$³Bƒ'Bƒ)aBƒ+ƒBƒ-Bƒ/]Bƒ1Bƒ2²Bƒ4,Bƒ5‡Bƒ6ÃBƒ7âBƒ8äBƒ9ÊBƒ:–Bƒ;GBƒ;ÞBƒ<]Bƒ<ÃBƒ=Bƒ=LBƒ=oBƒ=~Bƒ=xBƒ=_Bƒ=4Bƒ<öBƒ<¨BƒBƒ1Bƒ$BƒBƒBƒôBƒáBƒÌBƒ¶BƒžBƒ„BƒiBƒJBƒ*BƒBƒ âBƒ ºBƒ Bƒ bBƒ 2Bƒ þBƒ ÈBƒ ŽBƒ PB€ |B€–B€ÄB€%B€-[B€5ÃB€>=B€FÈB€OcB€XB€`ÈB€i’B€rhB€{LB€„=B€8B€–@B€ŸRB€¨nB€±“B€º¿B€ÃôB€Í0B€ÖsB€ß»B€é B€òZB€û¯BBbB¿B!B*yB3×B=4BFBOæBYBƒ/jBƒ.’Bƒ-·Bƒ,ÝBƒ,Bƒ+&Bƒ*LBƒ)tBƒ(ŸBƒ'ÍBƒ&ÿBƒ&7Bƒ%tBƒ$°Bƒ#ìBƒ#-Bƒ"vBƒ!ÅBƒ!Bƒ wBƒÚBƒCBƒ±Bƒ&Bƒ¡Bƒ!Bƒ§Bƒ2BƒÄBƒZBƒõBƒ•Bƒ;BƒåBƒ”BƒHBƒBƒ½Bƒ~BƒDBƒ BƒÚBƒ«Bƒ€BƒXBƒ4BƒBƒ÷BƒÝBƒÆBƒ³Bƒ¢Bƒ”BƒˆBƒ€BƒyBƒuBƒtBƒtBƒvBƒ{BƒBƒ‰Bƒ’BƒBƒ©Bƒ·BƒÅBƒÕBƒæBƒ÷Bƒ BƒBƒ/BƒCBƒWBƒkBƒBƒ“Bƒ§BƒºBƒÎBƒáBƒóBƒBƒBƒ$Bƒ3BƒABƒMBƒXBƒbBƒiBƒoBƒtBƒvBƒwBƒtBƒpBƒjBƒbBƒVBƒHBƒ7Bƒ#Bƒ BƒóBƒÖBƒ¶Bü,B€DB€†B€ÜB€EB€'ÀB€0NB€8ìB€AšB€JYB€S'B€\B€dîB€måB€vèB€÷B€‰B€’6B€›eB€¤œB€­ÜB€·$B€ÀrB€ÉÇB€Ó"B€Ü‚B€åæB€ïNB€ø¸B&B •BBvB'åB1TB:ÁBD,BM”BVøB`XBi³BsB|VB…žBŽÞB˜B¡DBªhB³ƒB¼’BÅ–BÎŒB×wBàSBé BñßBúŽB‚,B‚ ºB‚5B‚žB‚$ôB‚-6B‚5dB‚=|B‚EB‚MkB‚U@B‚\ýB‚d¡B‚l-B‚sžB‚zöB‚‚2B‚‰RB‚TB‚—;B‚žB‚¤®B‚«8B‚±£B‚·íB‚¾B‚ÄB‚ÊB‚ÏÂB‚Õ`B‚ÚØB‚à+B‚åYB‚ê`B‚ï@B‚ó÷B‚ø…B‚üëBƒ'BƒBƒÂBƒ ABƒ—BƒÆBƒÌBƒ«BƒdBƒùBƒ jBƒ"·Bƒ$àBƒ&èBƒ(ÐBƒ*–Bƒ,ÉBH9BQ¥B[BdpBmÎBw%B€uB‰¼B’ýBœ3B¥`B®ƒB·›BÀ¦BɦBÒ™BÛ}BäTBíBõÒBþzB‚B‚”B‚B‚ eB‚(¯B‚0æB‚9B‚AB‚I B‚PæB‚X­B‚`[B‚gðB‚okB‚vÌB‚~B‚…:B‚ŒHB‚“8B‚š B‚ ¾B‚§SB‚­ÇB‚´B‚ºOB‚À`B‚ÆOB‚ÌB‚ÑÃB‚×FB‚ܤB‚áÜB‚æïB‚ëÙB‚ð›B‚õ7B‚ù§B‚ýíBƒìBƒ¢Bƒ .Bƒ BƒÊBƒÝBƒÉBƒBƒ2Bƒ¯Bƒ Bƒ"@Bƒ$UBƒ&IBƒ(Bƒ)ÐBƒ+fBƒ,ÝBƒ.7Bƒ/tBƒ0–Bƒ1Bƒ2ŠBƒ3]Bƒ4Bƒ4ºBƒ5FBƒ5¼Bƒ6Bƒ6gBƒ6žBƒ6ÂBƒ6ÔBƒ6ÕBƒ6ÄBƒ6£Bƒ6sBƒ64Bƒ5éBƒ5Bƒ5*Bƒ4ºBƒ4>Bƒ3¹Bƒ3*Bƒ2”Bƒ1öBƒ1RBƒ0§Bƒ/÷Bƒ/BBƒ.ŠBƒ-ÐBƒ-Bƒ,UBƒ+–Bƒ*ÙBƒ*Bƒ)`Bƒ(§Bƒ'òBƒ'@Bƒ&”Bƒ%íBƒ%EBƒ$œBƒ#ûBƒ#_Bƒ"ÊBƒ"6B€GB€PB€XûB€bB€kB€t6B€}`B€†•B€ÓB€™B€¢kB€«ÂB€µ!B€¾†B€ÇðB€Ñ`B€ÚÔB€äKB€íÆB€÷CBÁB ABÁBAB&¿B0BƒWBƒrBƒBƒ¯BƒÑBƒõBƒBƒCBƒmBƒ˜BƒÅBƒóBƒ#BƒSBƒ…Bƒ¸BƒìBƒ !Bƒ VBƒ ŒBƒ ÃBƒ ùBƒ!0Bƒ!gBƒ!ŸBƒ!ÖBƒ" Bƒ"CBƒ"zBƒ"°Bƒ"åBƒ#Bƒ#MBƒ#€Bƒ#²Bƒ#äBƒ$Bƒ$BBƒ$nBƒ$šBƒ$ÃBƒ$ëBƒ%Bƒ%5Bƒ%WBƒ%vBƒ%”Bƒ%¯Bƒ%ÈBƒ%ÞBƒ%ñBƒ&Bƒ&Bƒ&Bƒ&!Bƒ&$B×2Bç¾BøtB€¨B€ *B€½B€cB€'B€/àB€8¸B€AœB€JB€S’B€\ B€e»B€nâB€xB€OB€Š”B€“âB€9B€¦˜B€¯ýB€¹iB€ÂÛB€ÌPB€ÕÌB€ßJB€èËB€òOB€ûÕBZBâBhB!íB+qB4òB>qBGìBQbBZÓBd?Bm¤BwB€ZB‰¨B’íBœ)B¥[B®B·œBÀªBɬBÒ BÛ…Bä\Bí"BõÙBþ~B‚B‚”B‚B‚ ]B‚(£B‚0ÕB‚8ñB‚@öB‚HåB‚P¼B‚XzB‚` B‚g¬B‚oB‚vtB‚}¯B‚„ÎB‚‹ÏB‚’³B‚™yB‚ B‚¦§B‚­ B‚³SB‚¹wB‚¿yB‚ÅWB‚ËB‚ЪB‚ÖB‚ÛgB‚àB‚åŒB‚êcB‚ïB‚ó˜B‚÷óB‚üB‚ÿÔBƒuBƒðBƒ BBƒ kBƒpBƒNBƒBƒžBƒBƒ_BƒBƒ!šBƒ#†Bƒ%SBƒ'Bƒ(’Bƒ*Bƒ+\Bƒ,˜Bƒ-¸Bƒ.¿Bƒ/¬Bƒ0Bƒ1>Bƒ1ãBƒ2tBƒ2îBƒ3SBƒ3¥Bƒ3äBƒ4Bƒ4+Bƒ44Bƒ4/Bƒ4Bƒ3õBƒ3ÄBƒ3…Bƒ3:Bƒ2äBƒ2„Bƒ2Bƒ1¦Bƒ1*Bƒ0¦Bƒ0Bƒ/ŒBƒ.öBƒ.\Bƒ-¿Bƒ-Bƒ,{Bƒ+×Bƒ+3Bƒ*ŽBƒ)ëBƒ)IBƒ(©Bƒ(Bƒ'uBƒ&âBƒ&TBƒ%ÅBƒ%6Bƒ$­Bƒ$+Bƒ#®Bƒ#8Bƒ"ÉBƒ"_Bƒ!ûBƒ!Bƒ!DBƒ òBƒ ¥Bƒ ]Bƒ BƒÞBƒ¦BƒsBƒEBƒBƒ÷BƒÖBƒ»Bƒ¤BƒBƒ‚BƒwBƒpBƒnBƒnBƒrBƒzBƒ†Bƒ”Bƒ¦Bƒ»BƒÒBƒîBƒ Bƒ+BƒNBƒsBƒ›BƒÅBƒñBƒ Bƒ PBƒ Bƒ µBƒ ëBƒ!"Bƒ!ZBƒ!“Bƒ!ÎBƒ" Bƒ"GBƒ"…Bƒ"ÃBƒ#Bƒ#BBƒ#ƒBƒ#ÃBƒ$Bƒ$EBƒ$‡Bƒ$ÇBƒ% Bƒ%JBƒ%ŠBƒ%ÊBƒ&Bƒ&GBƒ&†Bƒ&ÂBƒ&þBƒ'8Bƒ'rBƒ'«Bƒ'áBƒ(Bƒ(JBƒ(|Bƒ(¬Bƒ(ÛBƒ)Bƒ)0Bƒ)YBƒ)~Bƒ)¡Bƒ)ÂBƒ)ÞBƒ)úBƒ*Bƒ*&Bƒ*8Bƒ*FB̃BÝBíàBþËB€îB€‰B€5B€!ñB€*¿B€3œB€<ˆB€E‚B€NŠB€WžB€`ÀB€iíB€s$B€|fB€…²B€B€˜dB€¡ÈB€«3B€´¥B€¾B€Ç™B€ÑB€ÚžB€ä&B€í°B€÷;BÈB TBáBlB&öB0~B:BCƒBMBVwB_éBiTBr¹B|B…jB޶B—øB¡0Bª\B³~B¼’BÅšBΔB×€Bà]Bé*BñèBú“B‚.B‚ ¶B‚,B‚ŽB‚$ÚB‚-B‚56B‚=BB‚E8B‚MB‚TÜB‚\‰B‚dB‚k•B‚róB‚z6B‚\B‚ˆeB‚QB‚–B‚œÍB‚£\B‚©ËB‚°B‚¶EB‚¼PB‚Â7B‚ÇûB‚ÍšB‚ÓB‚ØhB‚ݘB‚â B‚ç€B‚ì9B‚ðÇB‚õ-B‚ùKB‚ý!BƒÎBƒRBƒ®Bƒ ãBƒ òBƒÜBƒ¡BƒBBƒ¿BƒBƒRBƒkBƒ!cBƒ#;Bƒ$öBƒ&’Bƒ(Bƒ)tBƒ*»Bƒ+çBƒ,úBƒ-óBƒ.ÔBƒ/Bƒ0PBƒ0ëBƒ1rBƒ1ãBƒ2ABƒ2ŒBƒ2ÄBƒ2ìBƒ3Bƒ3Bƒ3Bƒ2èBƒ2ÂBƒ2‘Bƒ2RBƒ2Bƒ1´Bƒ1VBƒ0ïBƒ0~Bƒ0Bƒ/ŠBƒ/Bƒ.|Bƒ-îBƒ-\Bƒ,ÉBƒ,2Bƒ+šBƒ+Bƒ*hBƒ)ÑBƒ):Bƒ(¦Bƒ(Bƒ'ŠBƒ'Bƒ&€Bƒ%üBƒ%wBƒ$ûBƒ$„Bƒ$Bƒ#§Bƒ#CBƒ"äBƒ"‹Bƒ"8Bƒ!ëBƒ!¤Bƒ!`Bƒ!$Bƒ ìBƒ ¹Bƒ ŒBƒ cBƒ ?Bƒ !Bƒ BƒðBƒÞBƒÑBƒÈBƒÃBƒÂBƒÆBƒÌBƒ×BƒåBƒöBƒ Bƒ $Bƒ ?Bƒ ^Bƒ €Bƒ ¤Bƒ ËBƒ ôBƒ!!Bƒ!PBƒ!Bƒ!´Bƒ!êBƒ"!Bƒ"ZBƒ"–Bƒ"ÓBƒ#Bƒ#QBƒ#’Bƒ#ÕBƒ$Bƒ$^Bƒ$¤Bƒ$ëBƒ%3Bƒ%{Bƒ%ÅBƒ&Bƒ&XBƒ&¢Bƒ&ìBƒ'6Bƒ'€Bƒ'ËBƒ(Bƒ(]Bƒ(¦Bƒ(ïBƒ)7Bƒ)}Bƒ)ÄBƒ* Bƒ*MBƒ*Bƒ*ÑBƒ+Bƒ+OBƒ+ŒBƒ+ÈBƒ,Bƒ,8Bƒ,nBƒ,¢Bƒ,ÒBƒ-Bƒ-.Bƒ-WBƒ-~Bƒ-¢Bƒ-ÄBƒ-ãBƒ-þBƒ.BšBÓBBäBõB€B€ ³B€eB€'B€%ûB€.ÞB€7ÐB€@ÐB€IÜB€RøB€\B€eQB€nŽB€wÕB€'B€ŠB€“äB€NB€¦¾B€°6B€¹³B€Ã5B€Ì¼B€ÖEB€ßÒB€éaB€òòB€ü„BB¨B9B"ÈB,UB5ßB?eBHçBRdB[ÛBeLBn¶BxBsBŠÄB” BIB¦|B¯¢B¸½BÁËBÊÊBÓ¼BÜŸBårBî5BöçBÿˆB‚B‚’B‚úB‚!MB‚)ŒB‚1µB‚9ÈB‚AÄB‚I¨B‚QuB‚Y(B‚`ÂB‚hBB‚o§B‚vðB‚~B‚….B‚Œ!B‚’öB‚™¬B‚ CB‚¦¹B‚­B‚³BB‚¹TB‚¿CB‚ÅB‚ʵB‚Ð8B‚Õ•B‚ÚÍB‚ßÜB‚äÆB‚é†B‚îB‚òB‚ö´B‚ú”B‚þKBƒÙBƒ>Bƒ~Bƒ —Bƒ‹BƒZBƒBƒBƒóBƒ6BƒYBƒ]Bƒ!@Bƒ#Bƒ$¬Bƒ&7Bƒ'¤Bƒ(øBƒ*/Bƒ+LBƒ,QBƒ->Bƒ.Bƒ.ÐBƒ/wBƒ0 Bƒ0†Bƒ0ðBƒ1FBƒ1‹Bƒ1½Bƒ1àBƒ1ñBƒ1ôBƒ1èBƒ1ÎBƒ1¨Bƒ1uBƒ17Bƒ0îBƒ0œBƒ0@Bƒ/ÜBƒ/pBƒ.þBƒ.…Bƒ.Bƒ-…Bƒ,ÿBƒ,vBƒ+êBƒ+^Bƒ*ÐBƒ*BBƒ)¶Bƒ)*Bƒ(¢Bƒ(Bƒ'›Bƒ'Bƒ&§Bƒ&.Bƒ%´Bƒ%ABƒ$ÔBƒ$nBƒ$ Bƒ#³Bƒ#_Bƒ#Bƒ"ÈBƒ"„Bƒ"FBƒ"Bƒ!ÚBƒ!­Bƒ!„Bƒ!`Bƒ!ABƒ!'Bƒ!Bƒ!Bƒ óBƒ ìBƒ èBƒ èBƒ ìBƒ õBƒ!Bƒ!Bƒ!$Bƒ!;Bƒ!VBƒ!tBƒ!•Bƒ!¹Bƒ!àBƒ" Bƒ"8Bƒ"hBƒ"šBƒ"ÏBƒ#Bƒ#@Bƒ#|Bƒ#ºBƒ#úBƒ$†B‚FqB‚NCB‚UüB‚]œB‚e"B‚lB‚sÝB‚{B‚‚(B‚‰!B‚üB‚–¹B‚VB‚£ÓB‚ª0B‚°kB‚¶ƒB‚¼yB‚ÂMB‚ÇüB‚͆B‚ÒêB‚Ø(B‚Ý@B‚â1B‚æúB‚ë™B‚ðB‚ôAB‚ø)B‚ûéB‚ÿBƒðBƒ9Bƒ \Bƒ ZBƒ2BƒèBƒyBƒèBƒ7BƒdBƒqBƒ_Bƒ!/Bƒ"àBƒ$uBƒ%îBƒ'JBƒ(Bƒ)µBƒ*ÅBƒ+¼Bƒ,›Bƒ-dBƒ.Bƒ.³Bƒ/;Bƒ/°Bƒ0Bƒ0`Bƒ0žBƒ0ËBƒ0èBƒ0öBƒ0õBƒ0æBƒ0ËBƒ0£Bƒ0pBƒ02Bƒ/ëBƒ/šBƒ/ABƒ.àBƒ.xBƒ. Bƒ-—Bƒ- Bƒ,¥Bƒ,&Bƒ+¥Bƒ+#Bƒ* Bƒ*Bƒ)›Bƒ)Bƒ(œBƒ( Bƒ'©Bƒ'6Bƒ&ÈBƒ&ZBƒ%êBƒ%Bƒ%Bƒ$ÂBƒ$lBƒ$Bƒ#ÏBƒ#ŠBƒ#JBƒ#Bƒ"ÜBƒ"­Bƒ"‚Bƒ"^Bƒ">Bƒ"#Bƒ" Bƒ!üBƒ!îBƒ!æBƒ!âBƒ!ãBƒ!èBƒ!ðBƒ!ýBƒ"Bƒ""Bƒ":Bƒ"VBƒ"vBƒ"˜Bƒ"¾Bƒ"èBƒ#Bƒ#CBƒ#uBƒ#ªBƒ#âBƒ$Bƒ$YBƒ$˜Bƒ$ÚBƒ%Bƒ%cBƒ%ªBƒ%ôBƒ&?Bƒ&ŒBƒ&ÛBƒ'+Bƒ'|Bƒ'ÏBƒ(#Bƒ(xBƒ(ÎBƒ)$Bƒ)|Bƒ)ÔBƒ*-Bƒ*†Bƒ*ßBƒ+:Bƒ+“Bƒ+íBƒ,FBƒ,¡Bƒ,úBƒ-TBƒ-¬Bƒ.Bƒ.[Bƒ.³Bƒ/Bƒ/^Bƒ/±Bƒ0Bƒ0TBƒ0¦Bƒ0óBƒ1ABƒ1ŒBƒ1ÖBƒ2Bƒ2dBƒ2¦Bƒ2èBƒ3&Bƒ3dBƒ3žBƒ3ÖBƒ4 Bƒ4=Bƒ4lBƒ4™Bƒ4ÁB±BÁÖBÒºBãÅBôöB€&B€ âB€®B€ŒB€&xB€/sB€8}B€A”B€J¸B€SèB€]$B€fkB€o¼B€yB€‚yB€‹äB€•XB€žÒB€¨RB€±ØB€»bB€ÄñB€Î…B€ØB€á²B€ëLB€ôæB€þBB¶BNB$äB.vB8BABKBT—B^BgƒBpïBzRBƒ¬BŒþB–DBŸ€B¨°B±ÔBºëBÃôBÌðBÕÜBÞºBç‡BðBBøíB‚†B‚ B‚}B‚ÜB‚#%B‚+XB‚3vB‚;}B‚CmB‚KDB‚SB‚Z©B‚b4B‚i¥B‚púB‚x3B‚PB‚†OB‚1B‚“ôB‚š–B‚¡B‚§|B‚­¾B‚³ÜB‚¹ÙB‚¿³B‚ÅhB‚ÊùB‚ÐeB‚ÕªB‚ÚÊB‚ßÁB‚ä‘B‚é9B‚í¶B‚ñîB‚õàB‚ù¨B‚ýHBƒÂBƒBƒ?Bƒ EBƒ (BƒæBƒBƒúBƒRBƒˆBƒŸBƒ–BƒpBƒ!,Bƒ"ÊBƒ$LBƒ%´Bƒ'Bƒ(3Bƒ)LBƒ*NBƒ+7Bƒ, Bƒ,ÇBƒ-nBƒ.Bƒ.Bƒ.ìBƒ/DBƒ/Bƒ/ÄBƒ/ëBƒ0Bƒ0 Bƒ0 Bƒ/øBƒ/ÚBƒ/²Bƒ/Bƒ/ABƒ.úBƒ.¬Bƒ.VBƒ-øBƒ-”Bƒ-,Bƒ,¾Bƒ,LBƒ+ØBƒ+bBƒ*éBƒ*pBƒ)öBƒ)~Bƒ)Bƒ(’Bƒ( Bƒ'³Bƒ'IBƒ&åBƒ&€Bƒ&Bƒ%ºBƒ%_Bƒ% Bƒ$¿Bƒ$wBƒ$4Bƒ#øBƒ#ÁBƒ#Bƒ#dBƒ#=Bƒ#Bƒ#Bƒ"èBƒ"ÔBƒ"ÇBƒ"¾Bƒ"¹Bƒ"¸Bƒ"½Bƒ"ÅBƒ"ÑBƒ"âBƒ"öBƒ#Bƒ#*Bƒ#JBƒ#nBƒ#•Bƒ#¾Bƒ#ìBƒ$Bƒ$PBƒ$‡Bƒ$ÀBƒ$üBƒ%:Bƒ%|Bƒ%ÀBƒ&Bƒ&OBƒ&šBƒ&æBƒ'4Bƒ'…Bƒ'×Bƒ(+Bƒ(€Bƒ(×Bƒ)/Bƒ)ˆBƒ)äBƒ*?Bƒ*œBƒ*ùBƒ+XBƒ+¶Bƒ,Bƒ,uBƒ,ÕBƒ-6Bƒ-–Bƒ-øBƒ.XBƒ.¹Bƒ/Bƒ/xBƒ/ØBƒ06Bƒ0•Bƒ0òBƒ1PBƒ1«Bƒ2Bƒ2_Bƒ2·Bƒ3Bƒ3cBƒ3¶Bƒ4 Bƒ4ZBƒ4¨Bƒ4õBƒ5?Bƒ5ˆBƒ5ÎBƒ6Bƒ6SBƒ6’Bƒ6ÎBƒ7Bƒ7>Bƒ7rBƒ7¢B©}Bº@BË.BÜBBízBþØB€+B€ýB€ÞB€"ÎB€+ÍB€4ÛB€=õB€GB€PPB€YB€bÛB€l.B€uB€~óB€ˆbB€‘ÙB€›VB€¤ÚB€®cB€·òB€Á„B€ËB€Ô³B€ÞNB€çìB€ñŠB€û(BÆBcBÿB!˜B+.B4ÀB>OBGØBQ\BZÙBdPBm¿Bw%B€„B‰ØB“"BœaB¥–B®½B·ØBÀåBÉäBÒÔBÛµBä†BíFBõõBþ’B‚B‚‘B‚ôB‚ AB‚(zB‚0œB‚8§B‚@œB‚HwB‚P;B‚WåB‚_uB‚fêB‚nEB‚u„B‚|¤B‚ƒ©B‚ŠB‚‘XB‚˜B‚ž‰B‚¤ñB‚«8B‚±^B‚·`B‚½?B‚ÂûB‚È’B‚ÎB‚ÓOB‚ØuB‚ÝsB‚âIB‚æøB‚ë}B‚ï¼B‚óµB‚÷†B‚û.B‚þ¯Bƒ Bƒ>BƒMBƒ 8Bƒ þBƒ¢Bƒ$Bƒ„BƒÄBƒåBƒåBƒÈBƒŒBƒ!4Bƒ"ÀBƒ$1Bƒ%†Bƒ&ÂBƒ'æBƒ(ñBƒ)äBƒ*ÀBƒ+‡Bƒ,7Bƒ,ÔBƒ-\Bƒ-ÒBƒ.6Bƒ.ˆBƒ.ÈBƒ.úBƒ/Bƒ/0Bƒ/5Bƒ/-Bƒ/Bƒ.ûBƒ.ÑBƒ.žBƒ.bBƒ.Bƒ-ÐBƒ-|Bƒ-"Bƒ,ÂBƒ,^Bƒ+÷Bƒ+‹Bƒ+Bƒ*¯Bƒ*?Bƒ)ÏBƒ)`Bƒ(òBƒ(†Bƒ(Bƒ'¸Bƒ'WBƒ&üBƒ&ŸBƒ&BBƒ%êBƒ%™Bƒ%MBƒ%Bƒ$ÉBƒ$Bƒ$[Bƒ$,Bƒ$Bƒ#ÞBƒ#ÀBƒ#¥Bƒ#Bƒ#Bƒ#vBƒ#oBƒ#mBƒ#pBƒ#vBƒ#Bƒ#‘Bƒ#¥Bƒ#¼Bƒ#ØBƒ#÷Bƒ$Bƒ$@Bƒ$jBƒ$˜Bƒ$ÉBƒ$ýBƒ%4Bƒ%nBƒ%«Bƒ%ëBƒ&.Bƒ&sBƒ&»Bƒ'Bƒ'RBƒ' Bƒ'ðBƒ(DBƒ(˜Bƒ(ïBƒ)HBƒ)¡Bƒ)ýBƒ*ZBƒ*¸Bƒ+Bƒ+xBƒ+ÙBƒ,CBƒ>†B—B§îB¸îBÊBÛ\BìÊBþZB€B€îB€æB€"ìB€,B€5$B€>RB€GŽB€PÔB€Z%B€c€B€läB€vRB€ÇB€‰DB€’ÈB€œSB€¥ãB€¯wB€¹B€Â¬B€ÌKB€ÕíB€ßB€é5B€òÙB€ü~B!BÂBbB"þB,—B6+B?»BIFBRÊB\FBe¼Bo*BxŽBêB‹:B”€B¼B¦êB° B¹!BÂ(BË BÔ BÜáBå©Bî`B÷Bÿ—B‚B‚B‚ØB‚!B‚)EB‚1ZB‚9XB‚A>B‚I B‚PÀB‚XZB‚_ÛB‚g@B‚n‰B‚u¶B‚|ÆB‚ƒ¹B‚ŠB‚‘BB‚—×B‚žLB‚¤ B‚ªÓB‚°ãB‚¶ÐB‚¼šB‚ÂAB‚ÇÁB‚ÍB‚ÒRB‚×`B‚ÜGB‚áB‚åœB‚éîB‚íúB‚ñàB‚õB‚ù2B‚ü¢B‚ÿëBƒBƒBƒïBƒ ªBƒCBƒºBƒBƒIBƒbBƒ\Bƒ:BƒùBƒžBƒ 'Bƒ!–Bƒ"ìBƒ$'Bƒ%LBƒ&XBƒ'MBƒ(.Bƒ(øBƒ)®Bƒ*QBƒ*àBƒ+]Bƒ+ÉBƒ,$Bƒ,oBƒ,«Bƒ,ØBƒ,øBƒ- Bƒ-Bƒ- Bƒ,ûBƒ,áBƒ,¾Bƒ,’Bƒ,^Bƒ,$Bƒ+âBƒ+œBƒ+RBƒ+Bƒ*¯Bƒ*ZBƒ*Bƒ)«Bƒ)SBƒ(üBƒ(¥Bƒ(PBƒ'þBƒ'°Bƒ'eBƒ' Bƒ&ÚBƒ&‘Bƒ&PBƒ&Bƒ%ßBƒ%¯Bƒ%„Bƒ%_Bƒ%>Bƒ%%Bƒ%Bƒ$þBƒ$òBƒ$ìBƒ$êBƒ$ìBƒ$ôBƒ%Bƒ%Bƒ%$Bƒ%=Bƒ%ZBƒ%zBƒ% Bƒ%ÈBƒ%ôBƒ&$Bƒ&XBƒ&ŽBƒ&ÈBƒ'Bƒ'FBƒ'ŠBƒ'ÑBƒ(Bƒ(gBƒ(¶Bƒ)Bƒ)\Bƒ)²Bƒ* Bƒ*fBƒ*ÃBƒ+#Bƒ+„Bƒ+çBƒ,LBƒ,²Bƒ-Bƒ-„Bƒ-îBƒ.ZBƒ.ÇBƒ/6Bƒ/¥Bƒ0Bƒ0†Bƒ0øBƒ1jBƒ1ÝBƒ2QBƒ2ÄBƒ38Bƒ3¬Bƒ4 Bƒ4”Bƒ5Bƒ5|Bƒ5ïBƒ6bBƒ6ÔBƒ7FBƒ7·Bƒ8'Bƒ8–Bƒ9Bƒ9rBƒ9ÞBƒ:HBƒ:²Bƒ;Bƒ;€Bƒ;åBƒBƒ>pBƒ>ÄBƒ?Bƒ?eBƒ?²Bƒ?ûBƒ@BB’lB£FB´FBÅnBÖ¼Bè,Bù½B€¹B€£B€œB€ ¤B€)ºB€2ÞB€< B€EIB€NB€WâB€a>B€j¤B€tB€}‰B€‡B€‹B€šB€£¦B€­]Bƒ>¾Bƒ?Bƒ?yBƒ?ÓBƒ@*Bƒ@€Bƒ@ÓBƒA#BƒApBƒA¼BŽoBŸKB°NBÁxBÒÆBä8BõÌB€ÁB€ «B€¦B€­B€'ÄB€0çB€:B€CTB€LœB€UîB€_KB€h°B€rB€{–B€…B€Ž™B€˜$B€¡µB€«KB€´äB€¾‚B€È!B€ÑÄB€ÛhB€åB€î²B€øXBüB ŸB>BÜB(uB2 B;œBE'BN¬BX*Ba¡BkBtuB}ÒB‡$BlB™¨B¢ÙB«üBµB¾BÇBÏÿBØÚBá¤Bê]BóBû™B‚B‚ ˆB‚âB‚&B‚%TB‚-lB‚5mB‚=WB‚E(B‚LàB‚T~B‚\B‚clB‚jºB‚qëB‚yB‚÷B‚†ÑB‚ŠB‚”%B‚š B‚ úB‚§2B‚­IB‚³=B‚¹ B‚¾¹B‚ÄAB‚É£B‚ÎàB‚ÓöB‚ØåB‚Ý«B‚âIB‚æ¤B‚ê½B‚î¬B‚òtB‚öB‚ùB‚üåBƒBƒ#Bƒ BƒÔBƒ yBƒ þBƒaBƒ¦BƒËBƒÔBƒ½Bƒ‹Bƒ=BƒÔBƒQBƒ ´Bƒ!þBƒ#0Bƒ$KBƒ%NBƒ&ABƒ>«Bƒ?Bƒ?wBƒ?ÛBƒ@B‚ñ B‚ô±B‚ø0B‚ûŠB‚þÁBƒÒBƒÁBƒBƒ 8Bƒ ÂBƒ+BƒuBƒ¡Bƒ®BƒŸBƒrBƒ+BƒÈBƒJBƒ³Bƒ!Bƒ"=Bƒ>«Bƒ?Bƒ?ƒBƒ?ìBƒ@TBƒ@»BƒABƒA€BƒAßBƒBkBƒ>ÜBƒ?LBƒ?»Bƒ@'Bƒ@’Bƒ@üBƒAcBƒAÈBƒB,BƒBBƒBìBƒCIBƒC£BƒCúBƒDPBƒD¢B†B—fB¨hB¹BÊÜBÜKBíÝBÿB€°B€¨B€®B€#ÃB€,äB€6B€?LB€H’B€QáB€[;B€džB€n B€w}B€€ùB€ŠzB€”B€B€§"B€°¹B€ºRB€ÃðB€ÍŽB€×/B€àÑB€êsB€ôB€ýµBTBñB‹B$"B-´B7BB@ÊBJLBSÇB]:Bf¦Bp BycB‚²B‹øB•1Bž`B§B°•B¹œB”BË|BÔVBÝBåÖBî|B÷Bÿ‘B‚þB‚WB‚›B‚ ÉB‚(âB‚0ãB‚8ÍB‚@žB‚HXB‚OøB‚W~B‚^èB‚f8B‚mlB‚tƒB‚{}B‚‚YB‚‰B‚µB‚–3B‚œ‘B‚¢ÏB‚¨êB‚®âB‚´¸B‚ºjB‚¿÷B‚Å`B‚Ê£B‚ÏÀB‚Ô¶B‚Ù…B‚Þ+B‚âB‚æ´B‚ê¯B‚î„B‚ò1B‚õ¹B‚ùB‚üZB‚ÿtBƒlBƒBBƒöBƒ ˆBƒ üBƒPBƒ…BƒœBƒ—BƒuBƒ8BƒÞBƒlBƒàBƒ:Bƒ }Bƒ!©Bƒ"¾Bƒ#¾Bƒ$¨Bƒ%~Bƒ&@Bƒ&ðBƒ'Bƒ(Bƒ(”Bƒ(ÿBƒ)ZBƒ)¨Bƒ)èBƒ*Bƒ*@Bƒ*ZBƒ*jBƒ*pBƒ*lBƒ*^Bƒ*JBƒ*/Bƒ* Bƒ)äBƒ)·Bƒ)†Bƒ)PBƒ)Bƒ(ßBƒ(£Bƒ(gBƒ(*Bƒ'ïBƒ'¶Bƒ'}Bƒ'JBƒ'Bƒ&ìBƒ&¿Bƒ&‘Bƒ&hBƒ&DBƒ&'Bƒ&Bƒ%úBƒ%ëBƒ%áBƒ%ÜBƒ%ÛBƒ%ßBƒ%èBƒ%õBƒ&Bƒ&Bƒ&6Bƒ&TBƒ&uBƒ&œBƒ&ÅBƒ&óBƒ'$Bƒ'YBƒ'‘Bƒ'ÍBƒ( Bƒ(NBƒ(”Bƒ(ÜBƒ)(Bƒ)vBƒ)ÇBƒ*Bƒ*qBƒ*ËBƒ+&Bƒ+„Bƒ+äBƒ,FBƒ,«Bƒ-Bƒ-zBƒ-äBƒ.PBƒ.¾Bƒ/.Bƒ/ŸBƒ0Bƒ0…Bƒ0ùBƒ1pBƒ1çBƒ2_Bƒ2ØBƒ3RBƒ3ÌBƒ4HBƒ4ÄBƒ5@Bƒ5½Bƒ6:Bƒ6·Bƒ74Bƒ7²Bƒ8/Bƒ8¬Bƒ9)Bƒ9¦Bƒ:"Bƒ:žBƒ;Bƒ;”Bƒ<Bƒ<‡Bƒ=Bƒ=vBƒ=ìBƒ>aBƒ>ÕBƒ?HBƒ?¸Bƒ@(Bƒ@–BƒABƒAlBƒAÔBƒB;BƒB BƒCBƒCcBƒCÀBƒDBƒDuBƒDËBƒE B…@B–B§B¸:BÉ‚BÚîBì|Bþ*B€üB€òB€öB€# B€,)B€5UB€>B€GÐB€QB€ZtB€cÕB€m>B€v°B€€*B€‰©B€“/B€œºB€¦JB€¯ÞB€¹uB€ÃB€Ì¬B€ÖKB€ßêB€éŠB€ó)B€üÇBdBÿB–B#*B,ºB6FB?ËBIKBRÄB\5BeŸBoBxWB¤BŠçB”BKB¦kB¯}B¸‚BÁxBÊ_BÓ6BÛýBä³BíWBõêBþiB‚ÔB‚,B‚oB‚œB‚'³B‚/´B‚7œB‚?nB‚G&B‚NÅB‚VJB‚]´B‚eB‚l6B‚sMB‚zGB‚#B‚‡àB‚ŽB‚”ýB‚›[B‚¡˜B‚§´B‚­­B‚³ƒB‚¹7B‚¾ÅB‚Ä/B‚ÉsB‚Î’B‚Ó‰B‚ØXB‚ÝB‚áhB‚åŽB‚éŒB‚ídB‚ñB‚ô B‚øB‚ûGB‚þeBƒ`Bƒ9BƒñBƒ ‰Bƒ ÿBƒXBƒ’Bƒ­Bƒ«BƒŽBƒTBƒBƒ’Bƒ BƒjBƒ²Bƒ âBƒ!üBƒ#Bƒ#ðBƒ$ÊBƒ%Bƒ&FBƒ&çBƒ'xBƒ'øBƒ(gBƒ(ÈBƒ)Bƒ)_Bƒ)–Bƒ)ÂBƒ)àBƒ)õBƒ)ÿBƒ*Bƒ)øBƒ)èBƒ)ÐBƒ)³Bƒ)Bƒ)gBƒ):Bƒ)Bƒ(ÕBƒ( Bƒ(hBƒ(0Bƒ'øBƒ'ÀBƒ'‹Bƒ'VBƒ'%Bƒ&ùBƒ&ÏBƒ&¥Bƒ&|Bƒ&UBƒ&5Bƒ&Bƒ&Bƒ%ôBƒ%çBƒ%àBƒ%ÞBƒ%àBƒ%æBƒ%ñBƒ&Bƒ&Bƒ&,Bƒ&HBƒ&hBƒ&‹Bƒ&´Bƒ&ßBƒ'Bƒ'ABƒ'xBƒ'±Bƒ'îBƒ(.Bƒ(rBƒ(¸Bƒ)Bƒ)OBƒ)žBƒ)ðBƒ*EBƒ*œBƒ*öBƒ+SBƒ+±Bƒ,Bƒ,vBƒ,ÛBƒ-BBƒ-ªBƒ.Bƒ.‚Bƒ.ðBƒ/`Bƒ/ÒBƒ0DBƒ0¸Bƒ1-Bƒ1¤Bƒ2Bƒ2”Bƒ3 Bƒ3‡Bƒ4Bƒ4}Bƒ4ùBƒ5uBƒ5óBƒ6pBƒ6íBƒ7kBƒ7çBƒ8eBƒ8ãBƒ9_Bƒ9ÝBƒ:ZBƒ:ÕBƒ;QBƒ;ËBƒ%Bƒ>šBƒ?Bƒ?Bƒ?òBƒ@bBƒ@ÐBƒAB€GXB€P¤B€YøB€cVB€l½B€v+B€¡B€‰B€’¡B€œ)B€¥¶B€¯GB€¸ÛB€ÂsB€Ì B€Õ¨B€ßEB€èáB€ò~B€üB³BJBßB"pB+ýB5…B?BH…BQûB[jBdÐBn.BwƒB€ÎBŠB“CBœlB¥ŠB®™B·œBÀBÉsBÒIBÛ BãÁBìcBôóBýpB‚ÚB‚/B‚pB‚œB‚&±B‚.°B‚6—B‚>fB‚FB‚M¼B‚U?B‚\¨B‚cöB‚k(B‚r>B‚y7B‚€B‚†ÏB‚lB‚“êB‚šIB‚ …B‚¦¡B‚¬šB‚²pB‚¸#B‚½²B‚ÃB‚ÈaB‚Í€B‚ÒxB‚×IB‚ÛñB‚àZB‚äƒB‚è„B‚ì]B‚ðB‚óžB‚÷B‚úLB‚ýmBƒlBƒHBƒBƒžBƒ Bƒ tBƒ±BƒÐBƒÓBƒ¹BƒƒBƒ3BƒÉBƒEBƒ©BƒõBƒ )Bƒ!HBƒ"PBƒ#BBƒ$"Bƒ$îBƒ%¦Bƒ&LBƒ&âBƒ'fBƒ'ÚBƒ(?Bƒ(•Bƒ(ÞBƒ)Bƒ)JBƒ)lBƒ)†Bƒ)”Bƒ)™Bƒ)•Bƒ)‰Bƒ)vBƒ)\Bƒ).Bƒ>¢Bƒ?Bƒ?‰Bƒ?úBƒ@jBƒ@ØBƒAEBƒA¯BƒBBƒBBƒBäBƒCHBƒC©BƒDBƒDdBƒD¾BƒEBƒEkB„B•^B¦SB·lBÈ­BÚBë’Bý6B€|B€mB€lB€"xB€+’B€4¹B€=êB€G(B€PoB€YÀB€cB€l~B€uéB€]B€ˆÖB€’TB€›ÚB€¥cB€®ñB€¸‚B€ÂB€Ë¬B€ÕDB€ÞÜB€èuB€òB€û¦B=BÐBaB!ïB+xB4ýB>|BGöBQhBZÔBd7Bm‘BvãB€*B‰hB’™B›¿B¤ÚB­æB¶äB¿ÖBÈ·BщBÚKBâüBë›Bô(Bü¤B‚ B‚ ^B‚œB‚ÅB‚%ØB‚-ÔB‚5¹B‚=†B‚E;B‚L×B‚TYB‚[ÁB‚c B‚j>B‚qQB‚xJB‚#B‚…ÞB‚Œ{B‚’øB‚™UB‚Ÿ‘B‚¥¬B‚«¤B‚±zB‚·.B‚¼¼B‚Â&B‚ÇkB‚ÌŠB‚Ñ‚B‚ÖSB‚ÚüB‚ßfB‚ã‘B‚ç“B‚ëoB‚ï%B‚ò´B‚öB‚ùgB‚üŠB‚ÿŠBƒjBƒ(BƒÆBƒ CBƒ ¢BƒâBƒBƒ BƒóBƒÂBƒuBƒBƒŽBƒõBƒDBƒ}Bƒ žBƒ!«Bƒ"¢Bƒ#…Bƒ$TBƒ%Bƒ%¼Bƒ&TBƒ&ÜBƒ'UBƒ'½Bƒ(Bƒ(dBƒ(¤Bƒ(ÖBƒ(þBƒ)Bƒ)-Bƒ)5Bƒ)5Bƒ)-Bƒ)Bƒ)Bƒ(ìBƒ(ÊBƒ(¤Bƒ({Bƒ(NBƒ(Bƒ'ïBƒ'½Bƒ'ŒBƒ'ZBƒ'+Bƒ&ýBƒ&ÒBƒ&©Bƒ&‡Bƒ&bBƒ&Bƒ;·Bƒ<0Bƒ<¨Bƒ= Bƒ=–Bƒ> Bƒ>Bƒ>òBƒ?dBƒ?ÕBƒ@CBƒ@±BƒABƒAˆBƒAðBƒBWBƒB»BƒCBƒC~BƒCÞBƒD9BƒD”BƒDëBƒE@B…+B•òB¦áB·ôBÉ,BÚˆBìBý¢B€¯B€œB€—B€" B€+¶B€4ØB€>B€G?B€PƒB€YÐB€c'B€l†B€uíB€\B€ˆÒB€’MB€›ÍB€¥SB€®ÜB€¸iB€ÁùB€Ë‹B€ÕB€Þ³B€èGB€ñÜB€ûoBB‘BB!¨B+-B4®B>)BGžBQ BZtBcÓBm)BvwB»BˆôB’"B›DB¤ZB­cB¶^B¿KBÈ)BÐøBÙ¶BâdBëBóŠBüB‚eB‚ µB‚ðB‚B‚%'B‚- B‚5B‚<ÍB‚DB‚LB‚S˜B‚ZüB‚bGB‚iuB‚pˆB‚w}B‚~UB‚…B‚‹ªB‚’%B‚˜B‚ž¼B‚¤ÔB‚ªÌB‚°¢B‚¶SB‚»áB‚ÁJB‚ÆŽB‚Ë­B‚Ð¥B‚ÕvB‚Ú B‚ÞŠB‚â¶B‚æ¹B‚ê–B‚îMB‚ñßB‚õLB‚ø•B‚û»B‚þ¾BƒŸBƒ`BƒBƒ €Bƒ áBƒ#BƒIBƒQBƒ=BƒBƒÅBƒaBƒäBƒNBƒ¡BƒÝBƒ Bƒ!Bƒ" Bƒ"òBƒ#ÄBƒ$„Bƒ%2Bƒ%ÏBƒ&ZBƒ&ÖBƒ'BBƒ' Bƒ'ðBƒ(3Bƒ(iBƒ(”Bƒ(´Bƒ(ÉBƒ(ÕBƒ(ÙBƒ(ÔBƒ(ÇBƒ(´Bƒ(›Bƒ(}Bƒ(ZBƒ(3Bƒ( Bƒ'ÝBƒ'¯Bƒ'€Bƒ'QBƒ'#Bƒ&õBƒ&ÉBƒ&¡Bƒ&{Bƒ&YBƒ&7Bƒ&Bƒ%õBƒ%ÛBƒ%ÇBƒ%¸Bƒ%¬Bƒ%¥Bƒ%£Bƒ%¦Bƒ%¬Bƒ%·Bƒ%ÆBƒ%ÙBƒ%ðBƒ& Bƒ&+Bƒ&NBƒ&tBƒ&žBƒ&ÌBƒ&ýBƒ'1Bƒ'iBƒ'¥Bƒ'âBƒ($Bƒ(hBƒ(°Bƒ(ùBƒ)FBƒ)•Bƒ)èBƒ*.Bƒ> Bƒ?Bƒ?€Bƒ?îBƒ@ZBƒ@ÅBƒA.BƒA–BƒAûBƒB_BƒBÀBƒC!BƒCBƒCÚBƒD4BƒDŠBƒDßB†_B—B¨B¹BÊBBÛ•Bí Bþ B€)B€B€ B€#B€, B€5=B€>fB€GœB€PÛB€Z$B€cvB€lÐB€v3B€B€‰ B€’„B€›ÿB€¥€B€¯B€¸B€ÂB€Ë¥B€Õ4B€ÞÄB€èTB€ñäB€ûsBB‹BB!˜B+B4”B> BG{BPåBZHBc¢BlõBv=B|Bˆ±B‘ÛBšùB¤ B­B¶B¾ïBÇÉBГBÙNBá÷BêBóBû‰B‚èB‚ 5B‚mB‚B‚$œB‚,’B‚4rB‚<9B‚CèB‚K~B‚RúB‚Z\B‚a¤B‚hÐB‚oàB‚vÒB‚}¨B‚„_B‚ŠøB‚‘qB‚—ÊB‚žB‚¤B‚ªB‚¯äB‚µ”B‚»!B‚ÀˆB‚ÅÌB‚ÊéB‚ÏàB‚Ô±B‚ÙYB‚ÝÄB‚áðB‚åõB‚éÓB‚í‹B‚ñB‚ôŒB‚÷×B‚úþB‚þBƒæBƒ¨BƒJBƒÌBƒ /Bƒ tBƒœBƒ¦Bƒ•BƒhBƒ!BƒÀBƒFBƒ³BƒBƒFBƒnBƒ €Bƒ!~Bƒ"fBƒ#Bƒ'Bƒ&åBƒ&¹Bƒ&Bƒ&hBƒ&CBƒ&#Bƒ&Bƒ%àBƒ%ÄBƒ%¬Bƒ%˜Bƒ%ŠBƒ%€Bƒ%zBƒ%yBƒ%{Bƒ%ƒBƒ%ŽBƒ%žBƒ%±Bƒ%ÈBƒ%äBƒ&Bƒ&&Bƒ&LBƒ&vBƒ&¤Bƒ&ÕBƒ' Bƒ'@Bƒ'{Bƒ'¹Bƒ'ùBƒ(=Bƒ(ƒBƒ(ÌBƒ)Bƒ)gBƒ)¸Bƒ* Bƒ*aBƒ*¹Bƒ+Bƒ+pBƒ+ÎBƒ,/Bƒ,’Bƒ,öBƒ-\Bƒ-ÄBƒ.-Bƒ.˜Bƒ/Bƒ/rBƒ/áBƒ0QBƒ0ÂBƒ14Bƒ1§Bƒ2Bƒ2Bƒ3Bƒ3}Bƒ3ôBƒ4kBƒ4ãBƒ5\Bƒ5ÔBƒ6MBƒ6ÆBƒ7>Bƒ7·Bƒ80Bƒ8¨Bƒ9!Bƒ9™Bƒ:Bƒ:‡Bƒ:ýBƒ;sBƒ;èBƒ<\Bƒ<ÏBƒ=BBƒ=³Bƒ>#Bƒ>“Bƒ?Bƒ?mBƒ?ØBƒ@ABƒ@¨BƒABƒAsBƒAÕBƒB6BƒB”BƒBñBƒCKBƒC£BƒCùBƒDLBˆ+B˜äB©ÀBºÄBËíBÝ4Bî¡B€B€ëB€ÏB€ÂB€#ÁB€,ÎB€5èB€? B€H;B€QvB€Z¹B€dB€m\B€v¹B€€B€‰‰B€’úB€œqB€¥ìB€¯kB€¸îB€ÂtB€ËûB€Õ…B€ßB€è›B€ò%B€û®B6B¼B?B!¾B+9B4°B>"BGŒBPñBZOBc¤BlñBv5BoBˆŸB‘ÃBšÜB£éB¬èBµÛB¾¿BÇ”BÐZBÙBá´BêHBòÊBû8B‚”B‚ ÜB‚B‚.B‚$7B‚,)B‚4B‚;ÈB‚CtB‚KB‚RB‚YÞB‚a"B‚hJB‚oVB‚vFB‚}B‚ƒÍB‚ŠdB‚ÚB‚—1B‚gB‚£|B‚©pB‚¯AB‚´ïB‚º{B‚¿àB‚Å"B‚Ê>B‚Ï4B‚ÔB‚جB‚ÝB‚áBB‚åGB‚é%B‚ìÞB‚ðqB‚óáB‚÷+B‚úTB‚ýZBƒ>BƒBƒ¤Bƒ(Bƒ Bƒ ÓBƒýBƒ BƒúBƒÐBƒŠBƒ+Bƒ³Bƒ"BƒzBƒ»BƒåBƒùBƒ ùBƒ!äBƒ"½Bƒ#‚Bƒ$5Bƒ$ÖBƒ%hBƒ%éBƒ&ZBƒ&¾Bƒ'Bƒ'[Bƒ'—Bƒ'ÇBƒ'ìBƒ(Bƒ(Bƒ( Bƒ(!Bƒ(Bƒ( Bƒ'÷Bƒ'ÝBƒ'¿Bƒ'Bƒ'wBƒ'PBƒ'%Bƒ&úBƒ&ÏBƒ&¤Bƒ&yBƒ&QBƒ&+Bƒ&Bƒ%éBƒ%ÉBƒ%¨Bƒ%ŒBƒ%uBƒ%bBƒ%TBƒ%KBƒ%EBƒ%DBƒ%HBƒ%OBƒ%[Bƒ%jBƒ%~Bƒ%•Bƒ%±Bƒ%ÏBƒ%òBƒ&Bƒ&ABƒ&nBƒ&žBƒ&ÑBƒ'Bƒ'BBƒ'~Bƒ'¾Bƒ(Bƒ(FBƒ(ŽBƒ(ØBƒ)%Bƒ)tBƒ)ÇBƒ*Bƒ*rBƒ*ÊBƒ+%Bƒ+‚Bƒ+àBƒ,ABƒ,¤Bƒ-Bƒ-nBƒ-ÕBƒ.>Bƒ.¨Bƒ/Bƒ/€Bƒ/îBƒ0]Bƒ0ÍBƒ1>Bƒ1°Bƒ2#Bƒ2—Bƒ3 Bƒ3€Bƒ3õBƒ4jBƒ4àBƒ5WBƒ5ÍBƒ6DBƒ6ºBƒ71Bƒ7§Bƒ8Bƒ8”Bƒ9 Bƒ9~Bƒ9óBƒ:gBƒ:ÛBƒ;NBƒ;ÀBƒ<1Bƒ<¡Bƒ=Bƒ=~Bƒ=ëBƒ>VBƒ>ÀBƒ?*Bƒ?‘Bƒ?÷Bƒ@[Bƒ@¾BƒABƒA}BƒAÚBƒB4BƒBBƒBäBƒC8BƒCŠBŠ’B›BB¬B½BÎ,BßjBðËB€&B€ öB€ÕB€ÂB€$¼B€-ÃB€6ÖB€?õB€I B€RSB€[’B€dÚB€n(B€w€B€€ÞB€ŠDB€“°B€ B€¦–B€°B€¹ŒB€Ã B€ÌB€ÖB€ß–B€éB€òŸB€ü"B¤B$B¡B"B+B5B>lBGÑBQ0BZˆBc×BmBv\B‘Bˆ»B‘ÚBšíB£ôB¬îBµÛB¾ºBÇŠBÐJBØúBášBê)Bò¦BûB‚fB‚ ªB‚ØB‚òB‚#öB‚+äB‚3ºB‚;zB‚C!B‚J¯B‚R$B‚Y~B‚`¾B‚gãB‚nìB‚uØB‚|§B‚ƒXB‚‰êB‚^B‚–²B‚œåB‚¢øB‚¨èB‚®¸B‚´dB‚¹ìB‚¿PB‚ÄB‚É©B‚ÎB‚ÓjB‚ØB‚ÜzB‚à¥B‚ä«B‚èŠB‚ìBB‚ïÖB‚óFB‚ö’B‚ùºB‚üÀB‚ÿ¦BƒiBƒBƒ’Bƒ øBƒ @BƒjBƒyBƒkBƒBBƒþBƒ¡Bƒ*BƒœBƒõBƒ8BƒdBƒzBƒ |Bƒ!iBƒ"CBƒ# Bƒ#ÀBƒ$cBƒ$÷Bƒ%zBƒ%îBƒ&SBƒ&¬Bƒ&öBƒ'3Bƒ'eBƒ'ŒBƒ'©Bƒ'¼Bƒ'ÆBƒ'ÉBƒ'ÃBƒ'·Bƒ'¤Bƒ'ŒBƒ'pBƒ'OBƒ'+Bƒ'Bƒ&ÜBƒ&²Bƒ&ˆBƒ&^Bƒ&5Bƒ&Bƒ%èBƒ%ÆBƒ%§Bƒ%ˆBƒ%hBƒ%MBƒ%6Bƒ%$Bƒ%Bƒ% Bƒ%Bƒ%Bƒ% Bƒ%Bƒ%Bƒ%,Bƒ%>Bƒ%UBƒ%pBƒ%ŽBƒ%°Bƒ%ÔBƒ%ýBƒ&(Bƒ&XBƒ&ŠBƒ&¿Bƒ&øBƒ'3Bƒ'pBƒ'±Bƒ'ôBƒ(PBƒ>¶Bƒ?Bƒ?|Bƒ?ÛBƒ@9Bƒ@–Bƒ@ðBƒAJBƒA BƒAôBƒBGBƒB—BŒBž0B®ùB¿æBÐøBâ.Bó‚B€|B€ FB€B€B€%ùB€.ûB€8B€A B€JDB€SsB€\ªB€eëB€o5B€x…B€ÞB€‹=B€”¢B€ž B€§{B€°îB€ºdB€ÃÞB€ÍYB€ÖÖB€àTB€éÒB€óPB€üÍBHBÂB8B"«B,B5„B>éBHHBQ BZòBd;Bm|Bv´BâB‰B’B›+B¤-B­!B¶B¾àBǪBÐeBÙBáªBê2BòªBûB‚`B‚ B‚ÆB‚ÛB‚#ÚB‚+ÃB‚3”B‚;OB‚BñB‚J{B‚QëB‚YAB‚`|B‚gB‚n¢B‚uŠB‚|TB‚ƒB‚‰B‚B‚–PB‚œ€B‚¢B‚¨}B‚®IB‚³òB‚¹wB‚¾ØB‚ÄB‚É-B‚ÎB‚ÒêB‚׎B‚ÛöB‚à!B‚ä%B‚èB‚ë»B‚ïOB‚ò¾B‚ö B‚ù3B‚ü:B‚ÿBƒäBƒˆBƒ Bƒ tBƒ ½Bƒ èBƒøBƒêBƒÃBƒ€Bƒ$Bƒ®Bƒ"Bƒ|BƒÀBƒíBƒBƒ Bƒ øBƒ!ÓBƒ"œBƒ#SBƒ#ùBƒ$ŽBƒ%Bƒ%ˆBƒ%ïBƒ&HBƒ&”Bƒ&ÔBƒ'Bƒ'1Bƒ'OBƒ'dBƒ'oBƒ'sBƒ'nBƒ'dBƒ'RBƒ'Bƒ&Bƒ%îBƒ%ÆBƒ%¢Bƒ%€Bƒ%bBƒ%CBƒ%"Bƒ%Bƒ$ñBƒ$ßBƒ$ÐBƒ$ÇBƒ$ÂBƒ$ÀBƒ$ÃBƒ$ÊBƒ$ÔBƒ$ãBƒ$ôBƒ% Bƒ%$Bƒ%@Bƒ%aBƒ%„Bƒ%¬Bƒ%ÖBƒ&Bƒ&4Bƒ&gBƒ&žBƒ&×Bƒ'Bƒ'RBƒ'”Bƒ'ØBƒ(Bƒ(hBƒ(²Bƒ)Bƒ)PBƒ)¢Bƒ)÷Bƒ*MBƒ*¥Bƒ*ÿBƒ+[Bƒ+¸Bƒ,Bƒ,xBƒ,ÚBƒ->Bƒ-¢Bƒ.Bƒ.pBƒ.ØBƒ/BBƒ/¬Bƒ0Bƒ0„Bƒ0ñBƒ1^Bƒ1ÍBƒ2Bƒ>rBƒ>ÐBƒ?+Bƒ?„Bƒ?ÞBƒ@3Bƒ@‡Bƒ@ÚBƒA*BƒAwB‘B¡¬B²jBÃLBÔRBåzBöÂB€B€ ØB€ªB€ŠB€'xB€0sB€9yB€BŒB€K¨B€TÐB€^B€g;B€p~B€yÈB€ƒB€ŒrB€•ÏB€Ÿ2B€¨šB€²B€»uB€ÄçB€Î\B€×ÒB€áHB€êÀB€ô6B€ý¬B!B“BB#nB,ÖB69B?—BHïBRAB[ŠBdÍBnBw8B€`B‰|B’B›•B¤B­}B¶]B¿0BÇóBЧBÙLBáàBêbBòÓBû2B‚}B‚ µB‚ÙB‚çB‚#áB‚+ÄB‚3B‚;DB‚BâB‚JfB‚QÐB‚Y"B‚`XB‚gtB‚nsB‚uVB‚|B‚‚ÆB‚‰QB‚¼B‚–B‚œ4B‚¢@B‚¨*B‚­òB‚³–B‚¹B‚¾wB‚ñB‚ÈÅB‚Í´B‚Ò|B‚×B‚Û„B‚ß­B‚ã±B‚çŽB‚ëFB‚îØB‚òFB‚õ’B‚ø»B‚ûÂB‚þ§BƒkBƒBƒ•BƒýBƒ EBƒ qBƒ€BƒtBƒMBƒ Bƒ°Bƒ;Bƒ¯Bƒ BƒPBƒ~Bƒ˜BƒœBƒ ŒBƒ!iBƒ"3Bƒ"ëBƒ#’Bƒ$(Bƒ$®Bƒ%%Bƒ%Bƒ%çBƒ&5Bƒ&vBƒ&«Bƒ&ÕBƒ&ôBƒ' Bƒ'Bƒ'Bƒ'Bƒ'Bƒ&ÿBƒ&èBƒ&ÏBƒ&°Bƒ&ŽBƒ&hBƒ&BBƒ&Bƒ%ðBƒ%ÈBƒ%ŸBƒ%xBƒ%SBƒ%2Bƒ%Bƒ$ôBƒ$ÔBƒ$¹Bƒ$¢Bƒ$Bƒ$‚Bƒ$wBƒ$qBƒ$oBƒ$pBƒ$vBƒ$Bƒ$Bƒ$Bƒ$²Bƒ$ÉBƒ$åBƒ%Bƒ%&Bƒ%KBƒ%sBƒ%žBƒ%ÍBƒ%þBƒ&2Bƒ&jBƒ&¤Bƒ&àBƒ' Bƒ'aBƒ'¦Bƒ'ìBƒ(4Bƒ(Bƒ(ÍBƒ)Bƒ)nBƒ)ÀBƒ*Bƒ*lBƒ*ÅBƒ+Bƒ+|Bƒ+ÙBƒ,8Bƒ,˜Bƒ,úBƒ-\Bƒ-ÁBƒ.&Bƒ.ŒBƒ.óBƒ/[Bƒ/ÄBƒ0.Bƒ0˜Bƒ1Bƒ1nBƒ1ÚBƒ2FBƒ2³Bƒ3Bƒ3ŒBƒ3úBƒ4fBƒ4ÔBƒ5ABƒ5®Bƒ6Bƒ6†Bƒ6òBƒ7^Bƒ7ÈBƒ82Bƒ8œBƒ9Bƒ9mBƒ9ÔBƒ::Bƒ: Bƒ;Bƒ;fBƒ;ÈBƒ<(Bƒ<‡Bƒ<äBƒ=ABƒ=›Bƒ=ôBƒ>JBƒ> Bƒ>óBƒ?DBƒ?“Bƒ?áBƒ@,B•'B¥²B¶bBÇ6BØ/BéHBú‚B€ïB€¬B€vB€ PB€)6B€2)B€;)B€D4B€MJB€VjB€_“B€hÆB€rB€{CB€„ŽB€ÞB€—4B€ B€©ðB€³UB€¼½B€Æ'B€Ï”B€ÙB€âqB€ëáB€õPB€þ¾B+B•BýB$bB-ÂB7B@tBIÅBSB\QBeŒBn¿BwèBBŠB“)Bœ(B¥B®B¶ÛB¿¦BÈcBÑBÙ®Bâ;Bê·Bó!BûyB‚¾B‚ ðB‚ B‚B‚$B‚+åB‚3¬B‚;ZB‚BñB‚JpB‚QÕB‚Y!B‚`RB‚ghB‚nbB‚u@B‚|B‚‚¥B‚‰+B‚’B‚•ÚB‚œB‚¢B‚§îB‚­²B‚³SB‚¸ÑB‚¾,B‚ÃbB‚ÈsB‚Í^B‚Ò$B‚ÖÂB‚Û&B‚ßOB‚ãOB‚ç,B‚êâB‚îsB‚ñáB‚õ+B‚øSB‚ûYB‚þ=BƒBƒ¥Bƒ+Bƒ‘Bƒ ÚBƒ BƒBƒ BƒãBƒ¢BƒFBƒÒBƒFBƒ¢BƒèBƒBƒ1Bƒ6Bƒ 'Bƒ!Bƒ!ÐBƒ"ˆBƒ#0Bƒ#ÇBƒ$NBƒ$ÆBƒ%/Bƒ%ŠBƒ%ØBƒ&Bƒ&PBƒ&zBƒ&›Bƒ&±Bƒ&¿Bƒ&ÄBƒ&ÂBƒ&¹Bƒ&©Bƒ&”Bƒ&zBƒ&\Bƒ&:Bƒ&Bƒ%îBƒ%ÆBƒ%Bƒ%tBƒ%LBƒ%%Bƒ%Bƒ$ÞBƒ$¿Bƒ$ŸBƒ$Bƒ$cBƒ$LBƒ$8Bƒ$)Bƒ$Bƒ$Bƒ$Bƒ$Bƒ$Bƒ$ Bƒ$+Bƒ$:Bƒ$LBƒ$cBƒ$|Bƒ$˜Bƒ$¸Bƒ$ÜBƒ%Bƒ%+Bƒ%XBƒ%‡Bƒ%¸Bƒ%íBƒ&$Bƒ&^Bƒ&šBƒ&ÙBƒ'Bƒ'^Bƒ'¤Bƒ'ìBƒ(6Bƒ(‚Bƒ(ÐBƒ) Bƒ)rBƒ)ÆBƒ*Bƒ*rBƒ*ÊBƒ+$Bƒ+€Bƒ+ÜBƒ,:Bƒ,šBƒ,úBƒ-\Bƒ-¾Bƒ."Bƒ.†Bƒ.ëBƒ/QBƒ/·Bƒ0Bƒ0†Bƒ0îBƒ1VBƒ1¿Bƒ2(Bƒ2‘Bƒ2ûBƒ3cBƒ3ÍBƒ46Bƒ4ŸBƒ5Bƒ5pBƒ5ØBƒ6@Bƒ6§Bƒ7 Bƒ7sBƒ7ØBƒ8Bƒ=ŽBƒ=ÜBƒ>)Bƒ>rBƒ>ºB™ÌBªHBºêB˰BÜ™Bí¥BþÒB€B€ÃB€†B€"XB€+7B€4"B€=B€FB€O+B€XCB€aeB€jB€sÂB€|ýB€†?B€ˆB€˜ÖB€¢(B€«€B€´ÝB€¾Bƒ&#Bƒ&Bƒ%ãBƒ%¾Bƒ%˜Bƒ%oBƒ%FBƒ%Bƒ$ôBƒ$ÍBƒ$§Bƒ$„Bƒ$eBƒ$DBƒ$"Bƒ$Bƒ#íBƒ#ØBƒ#ÈBƒ#¼Bƒ#²Bƒ#®Bƒ#¬Bƒ#¯Bƒ#µBƒ#¿Bƒ#ÍBƒ#ÝBƒ#ñBƒ$Bƒ$"Bƒ$@Bƒ$aBƒ$„Bƒ$ªBƒ$ÔBƒ%Bƒ%0Bƒ%aBƒ%–Bƒ%ÌBƒ&Bƒ&ABƒ&Bƒ&ÀBƒ'Bƒ'FBƒ'Bƒ'ÖBƒ( Bƒ(lBƒ(ºBƒ) Bƒ)\Bƒ)°Bƒ*Bƒ*ZBƒ*²Bƒ+ Bƒ+eBƒ+ÀBƒ,Bƒ,zBƒ,ÙBƒ-8Bƒ-˜Bƒ-ùBƒ.[Bƒ.½Bƒ/ Bƒ/„Bƒ/çBƒ0LBƒ0°Bƒ1Bƒ1zBƒ1ßBƒ2CBƒ2¨Bƒ3Bƒ3rBƒ3ÖBƒ4:Bƒ4ŸBƒ5Bƒ5eBƒ5ÈBƒ6)Bƒ6ŠBƒ6êBƒ7JBƒ7¨Bƒ8Bƒ8bBƒ8¾Bƒ9Bƒ9pBƒ9ÇBƒ:Bƒ:rBƒ:ÆBƒ;Bƒ;hBƒ;¶Bƒ<BƒBƒ%Bƒ$ìBƒ$ÁBƒ$˜Bƒ$pBƒ$HBƒ$%Bƒ$Bƒ#âBƒ#ÀBƒ#¡Bƒ#ˆBƒ#rBƒ#_Bƒ#QBƒ#GBƒ#@Bƒ#=Bƒ#>Bƒ#ABƒ#IBƒ#TBƒ#bBƒ#sBƒ#ˆBƒ# Bƒ#ºBƒ#ØBƒ#ùBƒ$Bƒ$DBƒ$lBƒ$˜Bƒ$ÆBƒ$÷Bƒ%*Bƒ%aBƒ%™Bƒ%ÔBƒ&Bƒ&NBƒ&Bƒ&ÒBƒ'Bƒ'^Bƒ'¦Bƒ'ðBƒ(=Bƒ(ŠBƒ(ÙBƒ)*Bƒ)|Bƒ)ÏBƒ*$Bƒ*zBƒ*ÑBƒ+(Bƒ+‚Bƒ+ÜBƒ,7Bƒ,’Bƒ,ïBƒ-LBƒ-ªBƒ.Bƒ.hBƒ.ÇBƒ/'Bƒ/†Bƒ/çBƒ0GBƒ0§Bƒ1 Bƒ1iBƒ1ÉBƒ2*Bƒ2‰Bƒ2êBƒ3HBƒ3§Bƒ4Bƒ4dBƒ4ÀBƒ5Bƒ5yBƒ5ÕBƒ6.Bƒ6‡Bƒ6àBƒ76Bƒ7ŒBƒ7áBƒ84Bƒ8‡Bƒ8×Bƒ9&Bƒ9tBƒ9ÀBƒ: Bƒ:RBƒ:™Bƒ:ÞBƒ; Bƒ;bB¤¦BµBŃBÖ*BæôB÷ßB€tB€ B€¯B€aB€'"B€/ðB€8ÊB€A°B€J¢B€SŸB€\¦B€eµB€nÎB€wðB€B€ŠHB€“B€œ¼B€¥üB€¯CB€¸B€ÁÛB€Ë+B€Ô}B€ÝÒB€ç'B€ð|B€ùÐB%B wBÇBB(_B1¥B:æBD#BMYBVŠB_²BhÔBqìBzýB„BB•òBžØB§²B°€B¹@BÁôBʘBÓ-BÛ³Bä(BìBôàBý!B‚OB‚ iB‚pB‚cB‚%@B‚-B‚4¸B‚Bƒ5‘Bƒ5âBƒ63Bƒ6‚Bƒ6ÐBƒ7Bƒ7fBƒ7°Bƒ7÷Bƒ8=Bƒ8‚Bƒ8ÄBƒ9Bƒ9DBƒ9€BªÐB»BËŒBÜ BìØBý²B€VB€âB€}B€!&B€)ÞB€2£B€;tB€DQB€M9B€V,B€_)B€h0B€q?B€zWB€ƒvB€ŒB€•ÉB€žüB€¨4B€±pB€º±B€ÃôB€Í;B€Ö„B€ßÎB€éB€òeB€û°BúBCB‰B ÍB* B3JBBsNB|TB…RBŽEB—-B  B¨ÛB± BºXBÃBËœBÔ(BÜ¥BåBínBõ¸BýðB‚B‚(B‚&B‚B‚%æB‚-¤B‚5MB‚<àB‚DZB‚K¼B‚SB‚Z5B‚aLB‚hGB‚o(B‚uìB‚|”B‚ƒB‚‰ŒB‚ÛB‚– B‚œB‚¢ B‚§ÝB‚­‹B‚³B‚¸‚B‚½ÈB‚ÂìB‚ÇêB‚ÌÄB‚ÑyB‚ÖB‚Ú\B‚ÞyB‚âoB‚æ@B‚éíB‚íuB‚ðÚB‚ôB‚÷=B‚úBƒ+“Bƒ+èBƒ,>Bƒ,”Bƒ,êBƒ-@Bƒ-—Bƒ-îBƒ.DBƒ.›Bƒ.òBƒ/HBƒ/žBƒ/ôBƒ0JBƒ0ŸBƒ0óBƒ1HBƒ1›Bƒ1îBƒ2ABƒ2’Bƒ2ãBƒ32Bƒ3€Bƒ3ÏBƒ4Bƒ4gBƒ4±Bƒ4ùBƒ5ABƒ5‡Bƒ5ÌBƒ6Bƒ6PBƒ6Bƒ6ÎBƒ7 Bƒ7FBƒ7~B±ƒBÁ¼BÒBâœBó@B€B€ vB€ùB€‹B€$+B€,ÙB€5“B€>[B€G-B€P B€XõB€aèB€jäB€sêB€|÷B€† B€(B€˜KB€¡sB€ª¡B€³ÔB€½ B€ÆCB€ÏB€Ø½B€áýB€ë>B€ôB€ý¿BÿB=BzB"³B+éB5B>HBGqBP“BY¯BbÄBkÒBt×B}ÔB†ÇB°B˜B¡bBª)B²äB»‘BÄ1BÌÃBÕEBݹBæBînBö¯BþÞB‚úB‚B‚ùB‚ÚB‚&¦B‚.]B‚5þB‚=†B‚DøB‚LRB‚S”B‚Z¼B‚aÊB‚h¾B‚o–B‚vSB‚|óB‚ƒwB‚‰ÝB‚%B‚–MB‚œXB‚¢BB‚¨ B‚­³B‚³9B‚¸B‚½ßB‚ÂûB‚ÇõB‚ÌÉB‚ÑwB‚ÖB‚ÚPB‚ÞiB‚â]B‚æ*B‚éÓB‚íYB‚ðºB‚óùB‚÷B‚úB‚üîB‚ÿ©BƒDBƒÂBƒ"Bƒ dBƒ ‰Bƒ “Bƒ‚BƒVBƒBƒ°Bƒ9BƒªBƒBƒEBƒrBƒ‰BƒŒBƒ|BƒWBƒ Bƒ ØBƒ!~Bƒ"Bƒ"™Bƒ#Bƒ#yBƒ#ÒBƒ$ Bƒ$aBƒ$•Bƒ$¿Bƒ$ÞBƒ$óBƒ$ÿBƒ%Bƒ$þBƒ$óBƒ$áBƒ$ÊBƒ$­Bƒ$‹Bƒ$fBƒ$>Bƒ$Bƒ#çBƒ#ºBƒ#‹Bƒ#^Bƒ#1Bƒ#Bƒ"ÜBƒ"¶Bƒ"Bƒ"hBƒ"CBƒ"$Bƒ"Bƒ!îBƒ!ÚBƒ!ÈBƒ!ºBƒ!¯Bƒ!§Bƒ!£Bƒ!¢Bƒ!¤Bƒ!ªBƒ!²Bƒ!½Bƒ!ËBƒ!ÜBƒ!ðBƒ"Bƒ" Bƒ";Bƒ"YBƒ"zBƒ"œBƒ"ÂBƒ"êBƒ#Bƒ#@Bƒ#nBƒ#žBƒ#ÐBƒ$Bƒ$:Bƒ$rBƒ$«Bƒ$æBƒ%#Bƒ%bBƒ%¢Bƒ%ãBƒ&%Bƒ&iBƒ&¯Bƒ&ôBƒ'GB‚E°B‚MB‚T:B‚[ZB‚b_B‚iJB‚pB‚vÐB‚}hB‚ƒãB‚ŠBB‚‚B‚–¤B‚œ¦B‚¢‰B‚¨KB‚­íB‚³lB‚¸ÊB‚¾B‚ÃB‚ÈB‚ÌÜB‚Ñ…B‚ÖB‚ÚSB‚ÞhB‚âWB‚æ B‚éÅB‚íGB‚ð¥B‚óàB‚öúB‚ùòB‚üËB‚ÿƒBƒBƒ—BƒôBƒ 4Bƒ WBƒ _BƒKBƒBƒÕBƒtBƒúBƒiBƒÀBƒBƒ,BƒBBƒDBƒ1Bƒ BƒÔBƒ ŠBƒ!/Bƒ!ÃBƒ"HBƒ"¾Bƒ#$Bƒ#}Bƒ#ÉBƒ$Bƒ$BèBðËBøøB‚B‚ B‚B‚óB‚ ÁB‚(zB‚0B‚7¬B‚?"B‚F‚B‚MÊB‚TùB‚\B‚c B‚iïB‚p¶B‚wbB‚}òB‚„fB‚мB‚õB‚—B‚ B‚¢äB‚¨ŸB‚®9B‚³±B‚¹B‚¾:B‚ÃKB‚È7B‚ÌÿB‚Ñ¡B‚ÖB‚ÚeB‚ÞtB‚â_B‚æ$B‚éÅB‚íAB‚ð›B‚óÓB‚öéB‚ùÞB‚ü³B‚ÿhBƒþBƒvBƒÏBƒ Bƒ ,Bƒ 1BƒBƒêBƒ BƒBƒ áBƒ!tBƒ!÷Bƒ"jBƒ"ÐBƒ#'Bƒ#rBƒ#°Bƒ#âBƒ$ Bƒ$%Bƒ$8Bƒ$ABƒ$BBƒ$:Bƒ$,Bƒ$Bƒ#üBƒ#ÜBƒ#¸Bƒ#Bƒ#dBƒ#6Bƒ#Bƒ"ÓBƒ"¡Bƒ"oBƒ">Bƒ"Bƒ!àBƒ!µBƒ!‰Bƒ!\Bƒ!4Bƒ!Bƒ ìBƒ ÎBƒ ³Bƒ ›Bƒ ‡Bƒ vBƒ gBƒ \Bƒ UBƒ PBƒ NBƒ NBƒ RBƒ XBƒ bBƒ mBƒ |Bƒ ŒBƒ ŸBƒ µBƒ ÍBƒ æBƒ!Bƒ!"Bƒ!CBƒ!fBƒ!‹Bƒ!±Bƒ!ÚBƒ"Bƒ"0Bƒ"^Bƒ"ŽBƒ"¾Bƒ"ñBƒ#%Bƒ#[Bƒ#’Bƒ#ÊBƒ$Bƒ$>Bƒ$zBƒ$¶Bƒ$ôBƒ%3Bƒ%sBƒ%³Bƒ%ôBƒ&6Bƒ&yBƒ&¼Bƒ'Bƒ'DBƒ'‰Bƒ'ÎBƒ(Bƒ(YBƒ(ŸBƒ(åBƒ)+Bƒ)qBƒ)·Bƒ)ýBƒ*CBƒ*ˆBƒ*ÎBƒ+Bƒ+XBƒ+œBƒ+àBƒ,#Bƒ,fBƒ,¨Bƒ,éBƒ-*Bƒ-iBƒ-¨Bƒ-æBƒ.#Bƒ.^Bƒ.˜Bƒ.ÒBƒ/ Bƒ/BBƒ/wBƒ/«Bƒ/ÝBƒ0Bƒ0>Bƒ0lBƒ0˜Bƒ0ÂBÈpBØmBèŽBøÒB€œB€ àB€3B€–B€&B€.ˆB€7B€?°B€HVB€Q B€YÆB€bŽB€k_B€t:B€}B€† B€ŽþB€—ùB€ ùB€©ÿB€³ B€¼B€Å.B€ÎFB€×`B€à|B€éšB€ò¸B€ûÖBõBB.B HB)`B2sB;ƒBDBM•BV–B_Bh„BqpBzTBƒ/BŒB”ÈB†B¦8B®ßB·xBÀBȆBÐøBÙZBá®BéòBò%BúGB‚XB‚ VB‚@B‚B‚!ÜB‚)ŠB‚1$B‚8¨B‚@B‚GjB‚N¨B‚UÎB‚\ÛB‚cÎB‚j¨B‚qfB‚x B‚~B‚„ûB‚‹IB‚‘xB‚—‰B‚|B‚£OB‚©B‚®”B‚´B‚¹TB‚¾€B‚ÉB‚ÈnB‚Í/B‚ÑÌB‚ÖCB‚ÚƒB‚ÞB‚âqB‚æ1B‚éÎB‚íFB‚ðœB‚óÏB‚öâB‚ùÒB‚ü£B‚ÿTBƒæBƒ[Bƒ±BƒëBƒ Bƒ BƒñBƒ¾BƒpBƒ BƒŒBƒöBƒIBƒ†Bƒ¬Bƒ¾Bƒ¼Bƒ¥Bƒ|Bƒ@BƒóBƒ ”Bƒ!%Bƒ!¦Bƒ"Bƒ"|Bƒ"ÒBƒ#Bƒ#VBƒ#‡Bƒ#¬Bƒ#ÆBƒ#ÖBƒ#ÞBƒ#ÝBƒ#ÔBƒ#ÄBƒ#®Bƒ#Bƒ#nBƒ#GBƒ#Bƒ"ïBƒ"¾Bƒ"ŒBƒ"XBƒ"$Bƒ!ïBƒ!»Bƒ!‰Bƒ!WBƒ!*Bƒ ûBƒ ËBƒ  Bƒ xBƒ SBƒ 1Bƒ Bƒ÷BƒàBƒËBƒºBƒ«BƒŸBƒ–Bƒ‘BƒBƒBƒBƒ”Bƒ›Bƒ¤Bƒ±BƒÀBƒÐBƒäBƒúBƒ Bƒ +Bƒ GBƒ eBƒ „Bƒ ¦Bƒ ÊBƒ ïBƒ!Bƒ!>Bƒ!iBƒ!”Bƒ!ÁBƒ!ðBƒ" Bƒ"RBƒ"„Bƒ"¸Bƒ"íBƒ##Bƒ#ZBƒ#’Bƒ#ËBƒ$Bƒ$@Bƒ${Bƒ$¸Bƒ$ôBƒ%2Bƒ%pBƒ%®Bƒ%íBƒ&,Bƒ&lBƒ&¬Bƒ&ìBƒ',Bƒ'lBƒ'¬Bƒ'ìBƒ(,Bƒ(mBƒ(¬Bƒ(ìBƒ)+Bƒ)iBƒ)¨Bƒ)æBƒ*$Bƒ*`Bƒ*œBƒ*ØBƒ+Bƒ+MBƒ+†Bƒ+¾Bƒ+ôBƒ,,Bƒ,`Bƒ,”Bƒ,ÆBƒ,øBƒ-(Bƒ-WBƒ-„Bƒ-¯Bƒ-ÚBƒ.Bƒ.*Bƒ.NBÑBàèBðóB€B€¸B€ðB€8B€!B€)öB€2iB€:ëB€CzB€LB€TºB€]lB€f'B€níB€w¼B€€”B€‰tB€’[B€›HB€¤=B€­7B€¶6B€¿:B€ÈAB€ÑLB€ÚYB€ãiB€ìyB€õŒB€þžB°BÁBÑB"ÞB+éB4ðB=ôBFóBOíBXáBaÏBj¶Bs–B|nB…=BŽB–¾BŸpB¨B°°B¹?BÁÀBÊ4BÒšBÚòBã:BërBóšBû±B‚¶B‚ ¨B‚‰B‚VB‚#B‚*²B‚2AB‚9ºB‚AB‚HhB‚OœB‚V¸B‚]ºB‚d¤B‚ktB‚r(B‚xÂB‚@B‚…¢B‚‹æB‚’ B‚˜B‚ÿB‚£ÊB‚©uB‚®þB‚´gB‚¹®B‚¾ÒB‚ÃÔB‚ȲB‚ÍlB‚ÒB‚ÖqB‚Ú«B‚Þ¯B‚âB‚æJB‚éàB‚íTB‚ð¥B‚óÔB‚öáB‚ùÎB‚üšB‚ÿHBƒ×BƒFBƒšBƒÐBƒ êBƒ èBƒÌBƒ•BƒEBƒÜBƒ[BƒÂBƒBƒLBƒqBƒ€Bƒ{BƒcBƒ7BƒøBƒ¨Bƒ HBƒ ×Bƒ!VBƒ!ÆBƒ"(Bƒ"{Bƒ"ÂBƒ"üBƒ#*Bƒ#MBƒ#fBƒ#tBƒ#zBƒ#vBƒ#lBƒ#YBƒ#@Bƒ#!Bƒ"þBƒ"ÔBƒ"§Bƒ"wBƒ"DBƒ"Bƒ!ÙBƒ!¡Bƒ!jBƒ!4Bƒ þBƒ ËBƒ ™Bƒ gBƒ 5Bƒ BƒÛBƒ²BƒBƒlBƒMBƒ2BƒBƒBƒñBƒâBƒÔBƒËBƒÃBƒ¾Bƒ¼Bƒ½Bƒ¿BƒÄBƒÌBƒÖBƒâBƒñBƒBƒBƒ)Bƒ@BƒXBƒsBƒBƒ®BƒÎBƒïBƒ Bƒ 7Bƒ ]Bƒ „Bƒ ®Bƒ ØBƒ!Bƒ!0Bƒ!^Bƒ!ŽBƒ!¾Bƒ!ïBƒ""Bƒ"UBƒ"‰Bƒ"¾Bƒ"óBƒ#*Bƒ#`Bƒ#—Bƒ#ÐBƒ$Bƒ$ABƒ$zBƒ$³Bƒ$íBƒ%'Bƒ%aBƒ%›Bƒ%ÕBƒ&Bƒ&IBƒ&ƒBƒ&½Bƒ&öBƒ'0Bƒ'iBƒ' Bƒ'ØBƒ(Bƒ(FBƒ(}Bƒ(²Bƒ(èBƒ)Bƒ)NBƒ)€Bƒ)²Bƒ)âBƒ*Bƒ*@Bƒ*lBƒ*˜Bƒ*ÂBƒ*ëBƒ+Bƒ+9Bƒ+^Bƒ+Bƒ+£Bƒ+ÃBÚBéÐBùÅB€íB€ B€5B€rB€%½B€.B€6~B€>ôB€GvB€PB€XžB€aBB€iòB€r«B€{nB€„9B€ B€•æB€žÇB€§¯B€°œB€¹ŽB€Â…B€ËB€Ô}B€Ý~B€æ€B€ï„B€ø‰BB “B˜BšB%›B.™B7“B@ŠBI|BRiB[QBd2Bm BuàB~ªB‡mB&B˜ÕB¡zBªB²¢B»$BÚBÌBÔ[BܦBäãBíBõ+Bý6B‚0B‚ B‚ìB‚­B‚$ZB‚+óB‚3wB‚:äB‚BBƒSBƒjBƒƒBƒžBƒºBƒ×BƒöBƒBƒ9Bƒ\BƒBƒ§BƒÎBƒöBƒ Bƒ JBƒ uBƒ ¢Bƒ ÏBƒ üBƒ!+Bƒ![Bƒ!‹Bƒ!¼Bƒ!íBƒ"Bƒ"QBƒ"„Bƒ"·Bƒ"êBƒ#Bƒ#QBƒ#…Bƒ#¹Bƒ#íBƒ$!Bƒ$UBƒ$‰Bƒ$¼Bƒ$ïBƒ%"Bƒ%UBƒ%‡Bƒ%¹Bƒ%ëBƒ&Bƒ&KBƒ&{Bƒ&ªBƒ&×Bƒ'Bƒ'1Bƒ'\Bƒ'†Bƒ'°Bƒ'ØBƒ'ÿBƒ(%Bƒ(JBƒ(mBƒ(Bƒ(°Bƒ(ÏBƒ(ìBƒ) Bƒ)#BãqBó'B€‚B€ €B€B€°B€!àB€*B€2lB€:ÇB€C/B€K¥B€T&B€\²B€eKB€míB€v™B€OB€ˆ B€ÒB€™ŸB€¢sB€«MB€´-B€½B€ÅûB€ÎéB€×ÙB€àËB€éÁB€ò¸B€û¯B§B žB•BŠB(}B1nB:[BCDBL)BU B]ãBf·Bo„BxJBB‰½B’iB› B££B¬0B´±B½'BÅBÍêBÖ8BÞvBæ¦BîÆBöÖBþÔB‚ÂB‚žB‚fB‚B‚%½B‚-JB‚4ÂB‚<%B‚CqB‚J¦B‚QÅB‚XÊB‚_¹B‚fB‚mHB‚sèB‚znB‚€ØB‚‡%B‚VB‚“jB‚™_B‚Ÿ7B‚¤ðB‚ªˆB‚°B‚µXB‚ºŽB‚¿¡B‚Ä“B‚ÉaB‚Î B‚ÒB‚ÖòB‚ÛB‚ßB‚âêB‚æ™B‚ê%B‚íB‚ðÓB‚óøB‚öûB‚ùÞB‚ü¡B‚ÿDBƒÊBƒ2Bƒ|Bƒ«Bƒ ¼Bƒ ³BƒBƒQBƒúBƒŠBƒBƒbBƒ¬BƒàBƒþBƒBƒýBƒÞBƒ­BƒjBƒBƒ®Bƒ 8Bƒ ²Bƒ!Bƒ!zBƒ!ÈBƒ" Bƒ"?Bƒ"iBƒ"‡Bƒ"›Bƒ"¤Bƒ"¤Bƒ"Bƒ"Bƒ"uBƒ"WBƒ"4Bƒ" Bƒ!ÛBƒ!ªBƒ!sBƒ!;Bƒ!Bƒ ÅBƒ †Bƒ JBƒ BƒÑBƒ–Bƒ_Bƒ'BƒíBƒ¸Bƒ†BƒVBƒ)BƒBƒÚBƒ·Bƒ–BƒyBƒ]BƒEBƒ0BƒBƒ BƒÿBƒôBƒêBƒãBƒßBƒÝBƒÝBƒßBƒäBƒêBƒòBƒüBƒBƒBƒ&Bƒ8BƒKBƒ`BƒvBƒŽBƒ¨BƒÃBƒßBƒüBƒBƒ;Bƒ\Bƒ~Bƒ¢BƒÆBƒìBƒBƒ9BƒaBƒŠBƒ³BƒÝBƒ Bƒ 2Bƒ ^Bƒ ŠBƒ ¶Bƒ ãBƒ!Bƒ!>Bƒ!kBƒ!™Bƒ!ÆBƒ!ôBƒ"!Bƒ"OBƒ"|Bƒ"ªBƒ"×Bƒ#Bƒ#0Bƒ#\Bƒ#ˆBƒ#²Bƒ#ÞBƒ$Bƒ$1Bƒ$YBƒ$Bƒ$¨Bƒ$ÎBƒ$ôBƒ%Bƒ%BâcBêxBò~BútB‚YB‚ ,B‚îB‚žB‚!:B‚(ÃB‚07B‚7—B‚>âB‚FB‚M4B‚T:B‚[)B‚bB‚h½B‚obB‚uìB‚|[B‚‚°B‚ˆèB‚B‚•B‚šäB‚ §B‚¦LB‚«ÑB‚±6B‚¶{B‚»žB‚ÀŸB‚ÅB‚ÊBƒBƒåBƒ¼Bƒ–BƒsBƒRBƒ3BƒBƒüBƒåBƒÎBƒºBƒ©BƒšBƒŒBƒ€BƒvBƒnBƒhBƒdBƒaBƒ`Bƒ`BƒbBƒfBƒjBƒrBƒyBƒ‚BƒŒBƒ˜Bƒ¤Bƒ²BƒÁBƒÑBƒâBƒôBƒBƒBƒ.BƒCBƒYBƒpBƒ†BƒžBƒ¶BƒÎBƒçBƒBƒBƒ4BƒNBƒhBƒ‚BƒBƒ·BƒÒBƒìBƒBƒ Bƒ:BƒSBƒmBƒ†BƒžBƒ¶BƒÎBƒäBƒûBƒBƒ&Bƒ:BƒMBƒ`BƒrBƒƒBƒ“Bƒ¢Bƒ¯Bƒ¼BƒÈBƒÒBƒÛBƒãBƒéBƒîBƒòB€žB€DB€üB€ÆB€% B€-ŠB€5„B€=‹B€E¡B€MÅB€UöB€^4B€f|B€nÑB€w0B€™B€ˆ B€ˆB€™ B€¡™B€ª,B€²ÆB€»gB€Ä B€Ì¶B€ÕeB€ÞB€æÎB€ï†B€øABýB ¹BwB3B#ïB,ªB5bB>BFËBOzBX$B`ÊBijBrBz˜Bƒ$B‹¨B”$Bœ—B¥B­_Bµ´B½ýBÆ:BÎkBÖBÞ¥Bæ­Bî¦BöBþjB‚4B‚ ìB‚’B‚&B‚$¨B‚,B‚3pB‚:µB‚AæB‚IB‚PB‚VòB‚]ÈB‚d†B‚k+B‚q·B‚x*B‚~‚B‚„¿B‚ŠàB‚åB‚–ÎB‚œ™B‚¢FB‚§ÖB‚­EB‚²–B‚·ÆB‚¼ÖB‚ÁÄB‚ÆB‚Ë:B‚ÏÀB‚Ô$B‚ØbB‚ÜoB‚àJB‚äB‚ç”B‚ëB‚îSB‚ñB‚ô‹B‚÷uB‚ú@B‚üíB‚ÿzBƒêBƒB€²B€¦/B€®²B€·B‚E.B‚L-B‚SB‚YèB‚`¤B‚gHB‚mÓB‚tEB‚zžB‚€ÜB‚‡B‚ B‚’÷B‚˜ÈB‚ž{B‚¤B‚©ŠB‚®äB‚´B‚¹8B‚¾2B‚à B‚ÇÃB‚ÌXB‚ÐÌB‚ÕB‚ÙGB‚ÝBB‚á B‚ä²B‚è5B‚ë–B‚îÕB‚ñòB‚ôðB‚÷ÌB‚úŠB‚ý)B‚ÿ©Bƒ BƒRBƒ{Bƒ‰Bƒ |Bƒ TBƒBƒ·BƒDBƒ¸BƒBƒ[Bƒ‹Bƒ¦Bƒ¬BƒBƒzBƒEBƒýBƒ£Bƒ8Bƒ¼Bƒ0Bƒ•BƒëBƒ3BƒnBƒœBƒ¼BƒÒBƒÜBƒÜBƒÓBƒÀBƒ¤Bƒ€BƒUBƒ#BƒìBƒ®BƒlBƒ&BƒÜBƒŽBƒ?BƒíBƒ›BƒGBƒôBƒ¢BƒPBƒBƒ±Bƒ`BƒBƒÈBƒBƒ:BƒöBƒ¶BƒxBƒ=BƒBƒÍBƒ˜BƒeBƒ5BƒBƒÜBƒ²Bƒ‹BƒeBƒABƒ BƒBƒâBƒÆBƒ«Bƒ’Bƒ{BƒfBƒQBƒ?Bƒ.BƒBƒBƒBƒøBƒîBƒäBƒÜBƒÖBƒÐBƒËBƒÈBƒÄBƒÃBƒÂBƒÂBƒÂBƒÄBƒÆBƒÈBƒÌBƒÏBƒÓBƒØBƒÞBƒãBƒéBƒïBƒõBƒüBƒBƒ BƒBƒBƒBƒ&Bƒ,Bƒ2Bƒ9Bƒ?BƒEBƒKBƒPBƒTBƒYBƒ\Bƒ`BƒcBƒdBƒfBƒfBƒfBƒeBƒcBƒaBƒ]BƒXBƒSBƒLBƒCBƒ;Bƒ0Bƒ$BƒBƒ B€BB€¼B€'HB€.åB€6’B€>NB€FB€MôB€UÜB€]ÒB€eÔB€mãB€uþB€~"B€†RB€ŽŒB€–ÐB€ŸB€§pB€¯ÌB€¸/B€À™B€É B€Ñ}B€ÙøB€âvB€êøB€ó}B€üBŽB B¥B1B&½B/HB7ÑB@YBHÞBQ`BYÞBbYBjÍBs=B{§B„ BŒfB”»BB¥JB­„Bµ´B½ÙBÅóBÎBÖBÝúBåâBí¼BõˆBýDB‚ñB‚ ŽB‚B‚”B‚"ýB‚*SB‚1•B‚8ÅB‚?àB‚FæB‚M×B‚T²B‚[wB‚b$B‚hºB‚o8B‚uœB‚{èB‚‚B‚ˆ0B‚Ž-B‚”B‚™ÒB‚ŸyB‚¥B‚ªoB‚¯½B‚´ìB‚¹ûB‚¾êB‚øB‚ÈdB‚ÌïB‚ÑXB‚ÕžB‚Ù¿B‚ݰB‚ásB‚åB‚èŠB‚ëãB‚ïB‚ò0B‚õ%B‚÷úB‚ú°B‚ýHB‚ÿÁBƒBƒ]Bƒ€Bƒ‡Bƒ sBƒ FBƒ þBƒBƒ%Bƒ”BƒêBƒ,BƒWBƒlBƒmBƒYBƒ2BƒøBƒ¬BƒMBƒÝBƒ]BƒÍBƒ.Bƒ€BƒÄBƒúBƒ#BƒABƒRBƒYBƒUBƒHBƒ1BƒBƒêBƒ¼Bƒ†BƒJBƒBƒÃBƒxBƒ*BƒÙBƒ†Bƒ1BƒÚBƒ‚Bƒ+BƒÔBƒ~Bƒ+Bƒ×Bƒ‚Bƒ0BƒáBƒ”BƒJBƒBƒ½BƒzBƒ:BƒüBƒÀBƒ†BƒOBƒBƒèBƒ¶BƒˆBƒ[Bƒ0BƒBƒàBƒºBƒ—BƒtBƒUBƒ6BƒBƒþBƒäBƒÌBƒ¶Bƒ BƒŒBƒyBƒhBƒWBƒHBƒ:Bƒ-Bƒ"BƒBƒ BƒBƒüBƒôBƒîBƒèBƒäBƒßBƒÜBƒØBƒÖBƒÔBƒÒBƒÑBƒÐBƒÐBƒÏBƒÏBƒÏBƒÐBƒÐBƒÐBƒÒBƒÒBƒÒBƒÒBƒÓBƒÓBƒÒBƒÑBƒÑBƒÐBƒÎBƒÍBƒÊBƒÆBƒÃBƒ¿BƒºBƒ´Bƒ­Bƒ§BƒžBƒ•Bƒ‹BƒBƒuBƒhBƒZBƒKBƒ:Bƒ(BƒBƒB€|B€%èB€-dB€4ðB€<ŽB€D:B€KöB€SÀB€[—B€c}B€knB€smB€{wB€ƒ‹B€‹«B€“ÔB€œB€¤BB€¬…B€´ÐB€½"B€Å{B€ÍÚB€Ö=B€Þ¦B€çB€ï„B€÷øBnBçBaBÛB"WB*ÑB3KB;ÃBD:BL®BUB]ŒBeôBnXBv·BB‡bB­B—ñB ,B¨^B°‡B¸§BÀ¼BÈÅBÐÃBصBà›BèrBðB‚Þ&B‚áÝB‚årB‚èäB‚ì4B‚ïbB‚òoB‚õ]B‚ø*B‚úÙB‚ýiB‚ÿÚBƒ0BƒhBƒ…Bƒ†Bƒ lBƒ 8Bƒ éBƒ„BƒBƒmBƒ¿BƒûBƒ!Bƒ1Bƒ,BƒBƒçBƒ¨BƒVBƒôBƒBƒúBƒfBƒÂBƒBƒPBƒ‚Bƒ¨BƒÁBƒÏBƒÐBƒÉBƒ¸BƒœBƒyBƒNBƒBƒâBƒ¢Bƒ]BƒBƒÅBƒrBƒBƒÆBƒlBƒBƒ·Bƒ[BƒBƒ¦BƒOBƒöBƒœBƒFBƒòBƒ¢BƒSBƒBƒ¼BƒuBƒ0BƒíBƒ­BƒnBƒ2BƒøBƒ¿Bƒ‰BƒUBƒ#BƒóBƒÅBƒ˜BƒnBƒDBƒBƒ÷BƒÔBƒ°BƒBƒpBƒRBƒ6BƒBƒBƒèBƒÐBƒºBƒ¥Bƒ‘Bƒ~BƒlBƒ\BƒLBƒB€3ªB€;'B€B´B€JOB€QûB€Y´B€a|B€iPB€q2B€yB€B€‰B€‘(B€™AB€¡bB€©ŒB€±¾B€¹øB€Â8B€ÊB€ÒÍB€ÛB€ãvB€ëÒB€ô1B€ü“B÷B ^BÆB0B&˜B/B7jB?ÐBH5BP—BXöBaRBi©BqûBzHB‚BŠÐB“ B›˜B‚E…B‚L^B‚S"B‚YÐB‚`hB‚fêB‚mTB‚s¦B‚yáB‚€B‚† B‚‹øB‚‘ËB‚—ƒB‚ B‚¢ B‚¨B‚­KB‚²sB‚·}B‚¼hB‚Á3B‚ÅßB‚ÊiB‚ÎÒB‚ÓB‚×?B‚ÛBB‚ßB‚â¹B‚æ;B‚éšB‚ìØB‚ïõB‚òñB‚õÎB‚øŠB‚û)B‚ýªBƒ BƒRBƒ|Bƒ‰Bƒ|Bƒ UBƒ Bƒ ¹BƒFBƒºBƒBƒ^BƒBƒ§Bƒ¬BƒBƒzBƒCBƒùBƒžBƒ2Bƒ´Bƒ&BƒˆBƒÛBƒ BƒVBƒ€BƒœBƒ­Bƒ²Bƒ¬BƒœBƒ‚Bƒ_Bƒ4BƒBƒÅBƒ„BƒBƒ "Bƒ Bƒ êBƒ ÌBƒ ®Bƒ ŽBƒ lBƒ JBƒ (Bƒ BƒÞB€2"B€9\B€@¦B€HB€OmB€VçB€^pB€fB€m¬B€u^B€}B€„æB€Œ¼B€”œB€œˆB€¤|B€¬xB€´B€¼B€Ä£B€ÌÀB€ÔãB€Ý B€å:B€ílB€õ£B€ýÞBB\BžBâB'&B/jB7¯B?òBH4BPtBX²B`ìBi$BqVBy…B­B‰ÐB‘íBšB¢BªB²Bº BÁôBÉÔBѪBÙtBá2BèäBð‰Bø Bÿ©B‚#B‚ŽB‚êB‚4B‚$nB‚+–B‚2­B‚9°B‚@¡B‚G~B‚NGB‚TûB‚[™B‚b"B‚h”B‚nîB‚u2B‚{^B‚pB‚‡jB‚HB‚“B‚˜¹B‚žHB‚£ºB‚©B‚®IB‚³eB‚¸bB‚½@B‚ÁÿB‚ÆžB‚ËB‚ÏzB‚Ó¶B‚×ÏB‚ÛÇB‚ßB‚ã)B‚æ¢B‚é÷B‚í+B‚ð?B‚ó2B‚öB‚øºB‚ûPB‚ýÈBƒ#BƒaBƒ„BƒŠBƒuBƒ FBƒ þBƒ œBƒ"BƒBƒæBƒ'BƒQBƒeBƒdBƒOBƒ&BƒêBƒ›Bƒ;BƒÉBƒFBƒ³BƒBƒ^BƒžBƒÑBƒõBƒ BƒBƒBƒBƒûBƒÝBƒ¶Bƒ†BƒNBƒBƒÊBƒ~Bƒ,BƒÖBƒ|BƒBƒ¼BƒXBƒóBƒ‹Bƒ$Bƒ»BƒTBƒíBƒˆBƒ"Bƒ½BƒYBƒ÷Bƒ™BƒBƒ÷Bƒ²BƒnBƒ-Bƒ íBƒ ¯Bƒ rBƒ 7Bƒ ýBƒ ÅBƒ ŽBƒ XBƒ $Bƒ ñBƒ ÀBƒ Bƒ _Bƒ 2Bƒ Bƒ ØBƒ ­Bƒ ƒBƒ ZBƒ 2Bƒ Bƒ äBƒ ¾Bƒ ™Bƒ uBƒ QBƒ /Bƒ BƒêBƒÉBƒ¨BƒˆBƒhBƒHBƒ)Bƒ BƒëBƒÍBƒ®BƒBƒrBƒTBƒ6BƒBƒúBƒÜBƒ½BƒŸBƒ€BƒaBƒBBƒ"BƒBƒâBƒÁBƒ Bƒ~Bƒ\Bƒ9BƒBƒñBƒÌBƒ¦BƒBƒXBƒ0BƒBƒÜBƒ²Bƒ†BƒYBƒ+BƒûBƒÊB€?ùB€GB€N8B€UpB€\¸B€dB€ktB€ræB€zgB€õB€‰B€‘4B€˜äB€  B€¨fB€°6B€¸ B€¿îB€ÇÖB€ÏÆB€×¾B€ßºB€ç½B€ïÅB€÷ÒB€ÿâB÷BB(B DB(aB0B8B@»BHØBPôBYBa%Bi9BqJByWB_B‰bB‘_B™VB¡FB©.B±B¸çBÀ¶BÈ|BÐ7B×èBߎBç'BîµBö5Bý¨B‚ B‚ dB‚¬B‚äB‚" B‚)#B‚0*B‚7B‚=ÿB‚DÎB‚KŠB‚R1B‚XÄB‚_BB‚e«B‚kþB‚r8B‚x\B‚~iB‚„]B‚Š8B‚úB‚•¢B‚›/B‚ ¢B‚¥÷B‚«2B‚°OB‚µPB‚º2B‚¾öB‚ÛB‚È!B‚̆B‚ÐÌB‚ÔðB‚ØòB‚ÜÒB‚à…B‚ä B‚çmB‚ê®B‚íÎB‚ðÏB‚ó¯B‚öpB‚ùB‚û—B‚ýýBƒGBƒuBƒˆBƒ~Bƒ[Bƒ Bƒ ÆBƒ VBƒÎBƒ.BƒxBƒ«BƒÈBƒÐBƒÃBƒ¢BƒmBƒ&BƒÌBƒ`BƒäBƒVBƒ¸Bƒ BƒPBƒ†Bƒ¯BƒÊBƒÙBƒÜBƒÓBƒÀBƒ¢Bƒ|BƒLBƒBƒÓBƒŒBƒ=BƒéBƒBƒ1BƒÏBƒiBƒþBƒ’Bƒ$BƒµBƒDBƒÓBƒdBƒôBƒ†BƒBƒªBƒ>BƒÒBƒkBƒBƒ£BƒBBƒãBƒ‡Bƒ+BƒÒBƒ|Bƒ'BƒÔBƒƒBƒ4Bƒ æBƒ ›Bƒ QBƒ Bƒ ÃBƒ ~Bƒ :Bƒ øBƒ ·Bƒ yBƒ B€¾B€ÅÐB€Í¦B€ÕB€ÝeB€åOB€í=B€õ2B€ý+B(B )B,B3B%:B-DB5NB=XBEbBMlBUtB]zBe}Bm~Bu{B}tB…hBXB•AB%B¥B¬ÖB´¤B¼hBÄ$BËÖBÓBÛBâ¯Bê6Bñ±BùB‚€B‚ÒB‚B‚LB‚rB‚$ˆB‚+B‚2B‚9dB‚@4B‚FòB‚MœB‚T3B‚ZµB‚a"B‚gzB‚m¼B‚sèB‚yûB‚÷B‚…ÜB‚‹§B‚‘ZB‚–òB‚œpB‚¡ÔB‚§B‚¬GB‚±WB‚¶IB‚»B‚¿ÔB‚ÄlB‚ÈåB‚Í>B‚ÑvB‚ÕB‚Ù„B‚ÝXB‚àÿB‚äyB‚çÑB‚ëB‚îB‚ñB‚óëB‚ö¢B‚ù;B‚û¶B‚þBƒVBƒ{Bƒ„BƒsBƒGBƒ Bƒ £Bƒ ,BƒBƒöBƒ9BƒeBƒ{Bƒ|BƒiBƒBBƒBƒºBƒZBƒèBƒfBƒÔBƒ1BƒBƒ¾BƒïBƒBƒ)Bƒ3Bƒ0Bƒ$Bƒ BƒêBƒ¾BƒŠBƒMBƒ Bƒ¾BƒkBƒBƒµBƒRBƒëBƒ€BƒBƒ¢Bƒ0Bƒ¼BƒHBƒÒBƒ^BƒêBƒyBƒBƒ“Bƒ#Bƒ´BƒHBƒÞBƒwBƒBƒ­BƒLBƒíBƒBƒ4Bƒ ÛBƒ ƒBƒ .Bƒ ÚBƒ ‡Bƒ 7Bƒ èBƒ ›Bƒ OBƒ Bƒ ½Bƒ vBƒ 1Bƒ íBƒ ªBƒ iBƒ )BƒëBƒ®BƒqBƒ6BƒüBƒÄBƒŒBƒVBƒBƒëBƒ¶Bƒ„BƒRBƒ!BƒðBƒÀBƒ‘BƒcBƒ4BƒBƒÚBƒ®Bƒ‚BƒWBƒ,BƒBƒ×Bƒ­BƒƒBƒZBƒ0BƒBƒÝBƒµBƒ‹BƒcBƒ9BƒBƒæBƒ½Bƒ“BƒiBƒ>BƒBƒéBƒ¾Bƒ’BƒfBƒ9Bƒ B‚ÿÝB‚ÿ¯B‚ÿ€B‚ÿPB‚ÿB‚þîB‚þ¼B‚þŠB‚þUB‚þ!B‚ýêB‚ý´B‚ý|B‚ýDB‚ý B‚üÏB€N]B€UPB€\SB€cfB€j‰B€q»B€xúB€€IB€‡£B€ B€–~B€þB€¥ˆB€­B€´¼B€¼dB€ÄB€ËÎB€ÓB€ÛXB€ã'B€êþB€òÙB€ú¸BB ‡BsBbB"UB*HB2=B:3BB)BJBRBZBaúBiéBqÖBy¾B¤B‰ƒB‘_B™4B¡B¨ÌB°ŽB¸GB¿øBÇ BÏ?BÖÔBÞ^BåÞBíRBô¹BüB‚aB‚ ¡B‚ÓB‚öB‚ B‚' B‚.B‚4âB‚;²B‚BqB‚IB‚O¶B‚V:B‚\«B‚cB‚iNB‚oB‚ušB‚{B‚ŠB‚‡^B‚B‚’¼B‚˜EB‚´B‚£B‚¨AB‚­^B‚²_B‚·CB‚¼ B‚À²B‚ÅB‚D²B‚KLB‚QÔB‚XFB‚^¦B‚dñB‚k&B‚qFB‚wPB‚}BB‚ƒB‚ˆâB‚ŽŽB‚” B‚™™B‚žøB‚¤=B‚©gB‚®uB‚³gB‚¸B‚ùB‚øÃB‚ø„B‚øEB‚øB‚÷ÄB‚÷B‚÷=B‚öøB€]B‚XB‚cB‚_B‚%LB‚,*B‚2øB‚9µB‚@`B‚FúB‚MB‚SöB‚ZWB‚`¤B‚fÝB‚mB‚sB‚yB‚~êB‚„´B‚ŠhB‚B‚•…B‚šíB‚ =B‚¥rB‚ªŒB‚¯‹B‚´nB‚¹5B‚½ÞB‚ÂkB‚ÆÙB‚Ë(B‚ÏYB‚ÓjB‚×[B‚Û,B‚ÞÛB‚â^B‚å¶B‚èìB‚ìB‚î÷B‚ñÍB‚ô…B‚÷B‚ùšB‚ûøB‚þ:Bƒ`BƒjBƒYBƒ/BƒêBƒ ŒBƒ Bƒ ‡Bƒ áBƒ$BƒPBƒgBƒiBƒVBƒ/BƒôBƒ§BƒGBƒÖBƒSBƒ¿BƒBƒhBƒ¦BƒÕBƒöBƒ BƒBƒ BƒýBƒâBƒ¼BƒŒBƒSBƒBƒÇBƒuBƒBƒ¾BƒXBƒîBƒBƒ Bƒ”BƒBƒžBƒ BƒŸBƒBƒžBƒBƒBƒBƒ Bƒ Bƒ¤Bƒ(Bƒ °Bƒ :Bƒ ÆBƒ SBƒ âBƒ tBƒ Bƒ žBƒ 5Bƒ ÎBƒ jBƒ Bƒ¤BƒEBƒçBƒ‹Bƒ0Bƒ×Bƒ€Bƒ*BƒÔBƒBƒ/BƒßBƒBƒBBƒôBƒ©Bƒ^BƒBƒÎBƒ†Bƒ@BƒûBƒ·BƒtBƒ2BƒðBƒ¯BƒoBƒ0B‚ÿòB‚ÿ´B‚ÿwB‚ÿ:B‚þþB‚þÂB‚þˆB‚þMB‚þB‚ýÙB‚ý B‚ýfB‚ý.B‚üõB‚ü¼B‚ü„B‚üLB‚üB‚ûÛB‚û¥B‚ûlB‚û4B‚úûB‚úÄB‚ú‹B‚úSB‚úB‚ùáB‚ù¦B‚ùnB‚ù2B‚øùB‚ø½B‚ø‚B‚øFB‚ø B‚÷ÌB‚÷B‚÷OB‚÷B‚öÐB‚ö‘B‚öNB‚ö B‚õÉB‚õ†B‚õ?B‚ôúB‚ô²B‚ôkB‚ô!B€dÚB€k“B€r^B€y8B€€ B€‡B€ŽB€•/B€œOB€£{B€ª²B€±öB€¹CB€À›B€ÇþB€ÏhB€ÖÛB€ÞXB€åÛB€íeB€ô÷B€üŽB*B ÍBsBB"ËB*{B2.B9ãBA™BIOBQBX½B`tBh(BoÛBwŒB9B†ãBŽŠB–+BÈB¥_B¬ðB´{B»þBÃzBÊîBÒXBÙºBáBè`Bï£BöÛBþB‚'B‚ 9B‚>B‚6B‚!B‚'øB‚.ÂB‚5|B‚<&B‚B¾B‚IEB‚OºB‚VB‚\jB‚b¥B‚hÌB‚nÞB‚tÛB‚zÂB‚€’B‚†LB‚‹îB‚‘xB‚–éB‚œBB‚¡B‚¦¦B‚«±B‚° B‚µtB‚º+B‚¾ÆB‚ÃDB‚Ç£B‚ËåB‚ÐB‚Ô B‚×ðB‚Û²B‚ßUB‚âÌB‚æB‚éBB‚ìMB‚ï7B‚òB‚ô®B‚÷>B‚ù®B‚üB‚þ;BƒWBƒXBƒ>Bƒ Bƒ½Bƒ VBƒ ØBƒ BBƒ ”BƒÎBƒôBƒBƒþBƒäBƒ¶BƒuBƒ!Bƒ»BƒCBƒºBƒ BƒvBƒ¾BƒöBƒBƒBƒêBƒ˜BƒHBƒøBƒªBƒ\BƒBƒÄBƒzBƒ0B‚ÿçB‚ÿ B‚ÿYB‚ÿB‚þÎB‚þŠB‚þFB‚þB‚ýÂB‚ý€B‚ý@B‚üÿB‚ü¿B‚ü€B‚üAB‚üB‚ûÄB‚û†B‚ûIB‚û B‚úÎB‚ú‘B‚úUB‚úB‚ùÜB‚ùŸB‚ùcB‚ù&B‚øêB‚ø­B‚øqB‚ø4B‚÷÷B‚÷¹B‚÷|B‚÷>B‚÷B‚öÁB‚ö‚B‚öCB‚öB‚õÂB‚õ‚B‚õ@B‚ôþB‚ô»B‚ôxB‚ô3B‚óîB‚ó¨B‚óbB‚óB‚òÒB‚òˆB‚ò>B‚ñòB‚ñ¦B‚ñXB€lB€s7B€yîB€€³B€‡ˆB€ŽkB€•\B€œZB€£fB€ª|B€±ŸB€¸ÎB€ÀB€ÇJB€Î—B€ÕìB€ÝJB€ä±B€ì B€ó•B€ûB’B B¥B6B ËB(bB/ýB7šB?9BFÚBN{BVB]¼Be]BlüBt™B|4BƒÌB‹`B’ñBš}B¢B©†B±B¸vB¿åBÇLBΪBÖBÝMBäBëÈBò÷BúB‚1B‚œB‚E!B‚K”B‚QöB‚XEB‚^B‚d©B‚j½B‚p¾B‚v§B‚|}B‚‚BƒrBƒBƒ—Bƒ‹BƒiBƒ4BƒíBƒ’Bƒ&Bƒ§BƒBƒxBƒÊBƒ BƒBƒÒBƒaBƒêBƒnBƒïBƒlBƒæBƒ]BƒÓBƒHBƒ»Bƒ.Bƒ ¢Bƒ Bƒ Bƒ Bƒ wBƒ îBƒ gBƒ ãBƒ aBƒáBƒbBƒæBƒlBƒôBƒ}BƒBƒ–Bƒ$Bƒ¶BƒHBƒÜBƒrBƒ Bƒ¢BƒB$¤B,B3{B:êBB]BIÑBQFBX¼B`2Bg¨BoBv‘B~B…sBŒàB”JB›°B£BªnB±ÅB¹BÀaBÇ¥BÎáBÖBÝBBäeBë~BòŽBù”B‚B‚|B‚^B‚4B‚ýB‚"¸B‚)eB‚0B‚6“B‚=B‚C‚B‚IáB‚P/B‚VjB‚\”B‚b«B‚h®B‚nžB‚tzB‚zAB‚óB‚…ŽB‚‹B‚‚B‚•ÚB‚›B‚ @B‚¥NB‚ªCB‚¯B‚³ÞB‚¸„B‚½B‚Á{B‚ÅÍB‚ÊB‚ÎB‚ÒB‚ÕìB‚Ù¨B‚ÝDB‚à¿B‚äB‚ç8B‚ê>B‚í%B‚ïíB‚ò—B‚õ#B‚÷’B‚ùäB‚üB‚þ5Bƒ4BƒBƒãBƒ”Bƒ,Bƒ¬Bƒ Bƒ eBƒ ŸBƒ ÄBƒÒBƒËBƒ°BƒBƒ>BƒéBƒBƒBƒ~BƒâBƒ6Bƒ|Bƒ²BƒØBƒòBƒþBƒþBƒñBƒØBƒ´Bƒ…BƒNBƒ BƒÀBƒlBƒBƒ®BƒDBƒÔBƒ_BƒãBƒdBƒáBƒZBƒÐBƒCBƒµBƒ%Bƒ •Bƒ Bƒ uBƒ åBƒ WBƒ ÉBƒ :Bƒ ®Bƒ #Bƒ›BƒBƒ‘BƒBƒŽBƒBƒ”BƒBƒ¡Bƒ*Bƒ¶BƒBBƒÐBƒaBƒòBƒ†BƒBƒ²BƒIB‚ÿãB‚ÿ~B‚ÿB‚þ·B‚þVB‚ýöB‚ý—B‚ý:B‚üÞB‚ü‚B‚ü)B‚ûÐB‚ûxB‚û!B‚úËB‚úvB‚ú"B‚ùÏB‚ù|B‚ù+B‚øÚB‚øŠB‚ø:B‚÷ëB‚÷B‚÷OB‚÷B‚ö¶B‚öjB‚öB‚õÓB‚õˆB‚õ=B‚ôóB‚ô©B‚ô_B‚ôB‚óÌB‚óƒB‚ó:B‚òðB‚ò¨B‚ò^B‚òB‚ñÌB‚ñ‚B‚ñ9B‚ðïB‚ð¥B‚ð[B‚ðB‚ïÅB‚ïzB‚ï.B‚îâB‚î•B‚îHB‚íûB‚í­B‚í^B‚íB‚ì¾B‚ìnB‚ìB‚ëÉB‚ëvB‚ë"B‚êÌB‚êxB‚ê B‚éÈB‚éoB‚éB€ƒ§B€ŠB€ŽB€—B€±B€¤WB€« B€±ÌB€¸šB€¿tB€ÆXB€ÍIB€ÔCB€ÛHB€âUB€élB€ð‹B€÷²B€þàBB QB“BÙB#%B*uB1ÈB9B@yBGÕBO3BV’B]òBeRBl²BtB{oB‚ËBŠ%B‘|B˜ÏB B§kB®²BµóB½/BÄdBË’BÒ¹BÙØBàîBçüBïBõûBüëB‚ÐB‚ ªB‚xB‚8B‚íB‚%”B‚,,B‚2·B‚92B‚?žB‚EùB‚LDB‚R~B‚X§B‚^¾B‚dÁB‚j²B‚pB‚vYB‚|B‚­B‚‡6B‚ŒªB‚’B‚—MB‚œ|B‚¡’B‚¦B‚«tB‚°?B‚´ïB‚¹„B‚½þB‚Â^B‚Æ B‚ÊÆB‚ÎÏB‚Ò¹B‚Ö…B‚Ú3B‚ÝÂB‚á1B‚ävB‚çB‚êŠB‚íeB‚ð!B‚òÁB‚õAB‚÷¦B‚ùìB‚üB‚þ(BƒBƒùBƒºBƒbBƒñBƒhBƒ ÈBƒ Bƒ CBƒ ^BƒfBƒXBƒ5BƒÿBƒµBƒYBƒëBƒkBƒÙBƒ8Bƒ‡BƒÆBƒöBƒBƒ,Bƒ3Bƒ-BƒBƒþBƒÔBƒ BƒdBƒBƒÍBƒuBƒBƒ®Bƒ@BƒÌBƒRBƒÔBƒPBƒÉBƒ>Bƒ°Bƒ Bƒ ŽBƒ ûBƒ gBƒ ÒBƒ ?Bƒ «Bƒ Bƒ ˆBƒõBƒfBƒ×BƒLBƒÂBƒ9Bƒ´Bƒ0Bƒ®Bƒ.Bƒ°Bƒ4Bƒ¹Bƒ@BƒÉBƒTBƒàBƒnB‚ÿþB‚ÿB‚ÿ"B‚þ¶B‚þLB‚ýãB‚ý{B‚ýB‚ü°B‚üLB‚ûêB‚ûˆB‚û)B‚úÊB‚úlB‚úB‚ù´B‚ùYB‚øÿB‚ø¦B‚øNB‚÷÷B‚÷¡B‚÷LB‚ööB‚ö£B‚öOB‚õýB‚õ«B‚õYB‚õB‚ô¸B‚ôhB‚ôB‚óÉB‚ózB‚ó,B‚òÞB‚òB‚òCB‚ñõB‚ñ¨B‚ñ[B‚ñB‚ðÁB‚ðsB‚ð'B‚ïÙB‚ïŒB‚ï?B‚îñB‚î¤B‚îVB‚îB‚íºB‚íjB‚íB‚ìÌB‚ì|B‚ì,B‚ëÛB‚ëŠB‚ë7B‚êåB‚ê‘B‚ê=B‚ééB‚é“B‚é=B‚èæB‚èŽB‚è5B‚çÛB‚çB‚ç%B‚æÈB‚æjB€‹‹B€‘âB€˜IB€ž¿B€¥CB€«ÕB€²tB€¹ B€¿ØB€ÆB€ÍmB€ÔGB€Û,B€âB€éB€ðB€÷B€þ.BFB fB‹B¶B!çB)B0VB7“B>ÔBFBM]BT¤B[íBc6Bj€BqÉByB€YB‡ŸBŽâB–#BaB¤šB«ÏB³Bº+BÁPBÈpBψBÖ™BÝ¢Bä£Bë›BòŠBùoB‚IB‚B‚ ÝB‚–B‚BB‚!áB‚(sB‚.÷B‚5mB‚;ÔB‚B+B‚HsB‚NªB‚TÑB‚ZæB‚`èB‚fÙB‚l·B‚rB‚x8B‚}ÚB‚ƒfB‚ˆßB‚ŽAB‚“ŒB‚˜ÀB‚ÝB‚¢âB‚§ÏB‚¬¢B‚±]B‚µýB‚ºƒB‚¾íB‚ÃB·XB¾lBÅ{BÌ„BÓ†BÚBátBè^Bï@BöBüèB‚­B‚ hB‚B‚¹B‚PB‚$ÚB‚+WB‚1ÆB‚8(B‚>zB‚D¼B‚JðB‚QB‚W%B‚]&B‚cB‚hóB‚n½B‚ttB‚zB‚¦B‚…!B‚ІB‚ÖB‚•B‚š2B‚Ÿ=B‚¤1B‚© B‚­ÏB‚²xB‚·B‚»}B‚¿ØB‚ÄB‚ÈB‚Þ±B‚âB‚å/B‚è0B‚ëB‚íÔB‚ðxB‚óB‚õjB‚÷¸B‚ùéB‚üB‚ýûB‚ÿÜBƒ¤BƒQBƒçBƒdBƒÈBƒ Bƒ NBƒ oBƒ {Bƒ rBƒUBƒ$BƒÞBƒ‡BƒBƒ¡BƒBƒvBƒÈBƒ Bƒ>BƒbBƒyBƒ‚Bƒ~BƒnBƒQBƒ)BƒöBƒºBƒsBƒ$BƒËBƒjBƒBƒ’BƒBƒŸBƒBƒ—Bƒ Bƒ }Bƒ êBƒ VBƒ ¾Bƒ %Bƒ ‹Bƒ ðBƒ TBƒ¹BƒBƒ‡BƒîBƒTBƒ½Bƒ(Bƒ•BƒBƒuBƒéBƒ^BƒÕBƒNBƒÉBƒFB‚ÿÅB‚ÿFB‚þÈB‚þLB‚ýÒB‚ýXB‚üâB‚ülB‚û÷B‚û…B‚ûB‚ú¤B‚ú5B‚ùÈB‚ù]B‚øòB‚ø‰B‚ø!B‚÷ºB‚÷TB‚öðB‚öŒB‚ö*B‚õÉB‚õhB‚õ B‚ôªB‚ôLB‚óïB‚ó“B‚ó7B‚òÝB‚òƒB‚ò*B‚ñÑB‚ñyB‚ñ!B‚ðÊB‚ðtB‚ðB‚ïÇB‚ïrB‚ïB‚îÈB‚îsB‚îB‚íËB‚íwB‚í#B‚ìÏB‚ì{B‚ì)B‚ëÕB‚ëB‚ë,B‚êÙB‚ê…B‚ê0B‚éÜB‚é‡B‚é2B‚èÜB‚è‡B‚è0B‚çÚB‚çƒB‚ç+B‚æÓB‚æzB‚æ!B‚åÇB‚ålB‚åB‚äµB‚äXB‚ãúB‚ãœB‚ãBƒjBƒŠBƒšBƒžBƒ•Bƒ~Bƒ^Bƒ1BƒùBƒ·BƒlBƒBƒ»BƒVBƒéBƒuBƒûBƒ{Bƒ öBƒ kBƒ ÜBƒ JBƒ ´Bƒ Bƒ €Bƒ äBƒ EBƒ§Bƒ BƒjBƒÎBƒ1Bƒ”BƒùBƒ^BƒÆBƒ0Bƒ›Bƒ BƒzBƒëBƒ`B‚ÿÖB‚ÿMB‚þÇB‚þCB‚ýÀB‚ý?B‚üÀB‚üBB‚ûÆB‚ûLB‚úÔB‚ú\B‚ùæB‚ùrB‚ùB‚øŽB‚øB‚÷°B‚÷BB‚öÖB‚ökB‚öB‚õ˜B‚õ1B‚ôÊB‚ôeB‚ôB‚óB‚ó;B‚òÙB‚òxB‚òB‚ñ¹B‚ñ[B‚ðþB‚ð B‚ðDB‚ïèB‚ïŽB‚ï3B‚îÙB‚îB‚î&B‚íÎB‚íuB‚íB‚ìÆB‚ìnB‚ìB‚ëÀB‚ëiB‚ëB‚ê¼B‚êfB‚êB‚é¸B‚éaB‚é B‚è´B‚è]B‚èB‚ç®B‚çWB‚æÿB‚æ§B‚æMB‚åôB‚å›B‚åAB‚äæB‚äŒB‚ä0B‚ãÔB‚ãwB‚ãB‚âºB‚â[B‚áüB‚á›B‚á9B‚à×B‚àtB‚àB‚ߪB‚ßDB‚ÞÜB€£ÆB€©ßB€°B€¶=B€¼‚B€ÂÔB€É2B€ÏB€ÖB€Ü—B€ã%B€é¾B€ð`B€÷ B€ýÁB~B DBBåBÀB& B-ˆB4tB;cBBXBIQBPLBWJB^KBeLBlPBsTBzXB\Bˆ_BbB–bB`B¤\B«TB²HB¹8BÀ$BÇ BÍìBÔÇBÛ›BâhBé.BïìBö BýLB‚ïB‚ ‡B‚B‚˜B‚B‚$zB‚*ÙB‚1*B‚7nB‚=¥B‚CÍB‚IæB‚OïB‚UéB‚[ÒB‚aªB‚grB‚m&B‚rÉB‚xYB‚}ÖB‚ƒ>B‚ˆ’B‚ÒB‚’üB‚˜B‚B‚¡öB‚¦ÆB‚«~B‚°B‚´¦B‚¹B‚½iB‚Á£B‚ÅÂB‚ÉÇB‚ͯB‚Ñ|B‚Õ,B‚Ø¿B‚Ü4B‚ß‹B‚âÄB‚åÓB‚è¹B‚ë€B‚î)B‚ð¶B‚ó$B‚õwB‚÷®B‚ùÉB‚ûÉB‚ý¯B‚ÿ{Bƒ.BƒÈBƒJBƒ´BƒBƒBBƒ iBƒ yBƒ tBƒ [Bƒ .Bƒ îBƒšBƒ3Bƒ»Bƒ2Bƒ–BƒìBƒ1BƒgBƒŽBƒ§Bƒ²Bƒ°Bƒ¢Bƒ†Bƒ`Bƒ.BƒòBƒ¬Bƒ\BƒBƒ¡Bƒ7BƒÇBƒOBƒ ÑBƒ LBƒ ÃBƒ 5Bƒ ¢Bƒ Bƒ tBƒ ÖBƒ 8Bƒ˜Bƒ÷BƒUBƒ´BƒBƒrBƒÓBƒ3Bƒ“BƒöBƒ[BƒÁBƒ*Bƒ•BƒB‚ÿqB‚þãB‚þVB‚ýÊB‚ýAB‚üºB‚ü4B‚û°B‚û.B‚ú®B‚ú/B‚ù²B‚ù6B‚ø¼B‚øDB‚÷ÍB‚÷WB‚öãB‚öpB‚õþB‚õŽB‚õ B‚ô²B‚ôEB‚óÚB‚ópB‚óB‚òžB‚ò8B‚ñÑB‚ñlB‚ñB‚ð¤B‚ðBB‚ïàB‚ïB‚ïB‚î¿B‚î`B‚îB‚í¤B‚íGB‚ìëB‚ìB‚ì3B‚ëØB‚ë}B‚ë"B‚êÈB‚ênB‚êB‚éºB‚éaB‚éB‚è¯B‚èVB‚çüB‚ç£B‚çJB‚æñB‚æ˜B‚æ>B‚åäB‚åŠB‚å/B‚äÕB‚ä{B‚äB‚ãÃB‚ãhB‚ã B‚â®B‚âPB‚áòB‚á“B‚á3B‚àÓB‚àrB‚àB‚ß®B‚ßJB‚ÞæB‚ÞB‚ÞB‚Ý´B‚ÝLB‚ÜãB‚ÜxB€¬B€² B€¸B€¾?B€ÄnB€Ê©B€ÐòB€×GB€Ý¨B€äB€ê‹B€ñ B€÷˜B€þ.BÌB rBBÕB’B&VB- B3ïB:ÃBAœBHyBOYBV=B]$Bd BjöBqâBxÎBºB†¦B’B”|B›dB¢KB©/B°B¶ìB½ÅBÄ™BËhBÒ2BØõBß²BæhBíBó½Bú[B‚ðB‚{B‚ ýB‚tB‚àB‚!AB‚'–B‚-ßB‚4B‚:HB‚@iB‚F|B‚LB‚RsB‚XXB‚^,B‚cïB‚i¢B‚oBB‚tÐB‚zLB‚µB‚… B‚ŠKB‚wB‚”ŽB‚™B‚ž|B‚£PB‚¨B‚¬µB‚±CB‚µ¹B‚ºB‚¾ZB‚„B‚Æ’B‚ʇB‚Î`B‚ÒB‚Õ¾B‚ÙBB‚ܨB‚ßñB‚ãB‚æB‚èõB‚ë¯B‚îLB‚ðÌB‚ó.B‚õtB‚÷ŸB‚ù®B‚û¤B‚ýB‚ÿ@BƒèBƒxBƒðBƒQBƒšBƒÍBƒêBƒ òBƒ äBƒ ÄBƒ ŽBƒ EBƒ êBƒ|BƒýBƒlBƒËBƒBƒXBƒˆBƒ¨Bƒ¼BƒÁBƒºBƒ¥Bƒ…BƒYBƒ"BƒáBƒ–BƒABƒäBƒ~BƒBƒ œBƒ Bƒ žBƒ Bƒ ‰Bƒ ÷Bƒ `Bƒ ÇBƒ *BƒŠBƒéBƒFBƒ¡BƒüBƒWBƒ³BƒBƒnBƒËBƒ(BƒˆBƒéBƒMB‚ÿ³B‚ÿB‚þ…B‚ýñB‚ý`B‚üÐB‚üBB‚û¶B‚û,B‚ú£B‚úB‚ù˜B‚ùB‚ø”B‚øB‚÷•B‚÷B‚öžB‚ö$B‚õ¬B‚õ5B‚ôÀB‚ôLB‚óÙB‚óhB‚òøB‚òˆB‚òB‚ñ®B‚ñCB‚ðØB‚ðnB‚ðB‚ïŸB‚ï8B‚îÒB‚îmB‚î B‚í¦B‚íCB‚ìáB‚ì€B‚ì B‚ëÀB‚ë`B‚ëB‚ê£B‚êEB‚éçB‚éŠB‚é-B‚èÑB‚ètB‚èB‚ç½B‚çaB‚çB‚æªB‚æOB‚åóB‚å˜B‚åBƒwBƒ BƒºBƒÇBƒÇBƒºBƒ BƒzBƒIBƒBƒÈBƒxBƒBƒ ½Bƒ SBƒ áBƒ hBƒ èBƒ bBƒ ÖBƒ EBƒ °Bƒ BƒzBƒÚBƒ6Bƒ‘BƒëBƒCBƒ›BƒôBƒLBƒ¥BƒBƒ[BƒµBƒB‚ÿqB‚þÒB‚þ5B‚ý›B‚ýB‚ükB‚ûØB‚ûEB‚ú´B‚ú&B‚ù™B‚ùB‚ø…B‚÷þB‚÷xB‚öôB‚örB‚õòB‚õrB‚ôõB‚ôyB‚óÿB‚ó…B‚óB‚ò˜B‚ò#B‚ñ¯B‚ñB‚æàB‚æB‚æ#B‚åÅB‚åhB‚å B‚ä­B‚äPB‚ãòB‚ã•B‚ã7B‚âÚB‚â|B‚âB‚áÀB‚ábB‚áB‚à¥B‚àEB‚ßæB‚߆B‚ß&B‚ÞÄB‚ÞcB‚ÞB‚ÝŸB‚ÝBƒ@Bƒ,Bƒ Bƒ ËBƒ }Bƒ Bƒ ©Bƒ %Bƒ Bƒ êBƒ 3Bƒ nBƒ ™Bƒ ¶Bƒ ÄBƒ ÅBƒ ¹Bƒ  Bƒ |Bƒ KBƒ Bƒ ÊBƒ {Bƒ !Bƒ ¾Bƒ TBƒ áBƒ gBƒ æBƒ ^BƒÐBƒ=Bƒ¦Bƒ BƒiBƒÄBƒBƒuBƒÉBƒBƒpBƒÂBƒBƒgB‚ÿ¼B‚ÿB‚þfB‚ý¼B‚ýB‚ülB‚ûÈB‚û'B‚ú‡B‚ùéB‚ùNB‚ø´B‚øB‚÷ˆB‚öõB‚ödB‚õÔB‚õFB‚ô»B‚ô1B‚ó©B‚ó"B‚òžB‚òB‚ñ™B‚ñB‚ðšB‚ðB‚ï¢B‚ï(B‚î®B‚î7B‚íÁB‚íLB‚ìØB‚ìfB‚ëõB‚ë…B‚ëB‚ê¨B‚ê:B‚éÎB‚écB‚èùB‚èB‚è&B‚ç¾B‚çWB‚æðB‚æ‹B‚æ&B‚åÁB‚å]B‚äùB‚ä–B‚ä4B‚ãÑB‚ãoB‚ãB‚â­B‚âKB‚áêB‚áŠB‚á)B‚àÈB‚àiB‚àB‚ß§B‚ßGB‚ÞæB‚Þ†B‚Þ%B‚ÝÄB‚ÝcB‚ÝB‚ÜžB‚ÜBDBJBP#BV:B\VBbxBhBnÈBtöB{(B\B‡“BÍB”BšCB ~B¦¼B¬øB³3B¹nB¿§BÅÞBÌBÒDBØrBÞœBäÂBêäBñB÷Bý(B‚2B‚ 6B‚1B‚%B‚B‚ ôB‚&ÎB‚,žB‚2dB‚8 B‚=ÑB‚CvB‚IB‚NœB‚TB‚YB‚^ôB‚dLB‚i•B‚nÏB‚sùB‚yB‚~B‚ƒB‚‡þB‚ŒÕB‚‘™B‚–KB‚šéB‚ŸtB‚£ìB‚¨NB‚¬œB‚°ÕB‚´øB‚¹B‚¼ûB‚ÀÚB‚Ä¢B‚ÈQB‚ËéB‚ÏgB‚ÒÌB‚ÖB‚ÙJB‚Ü_B‚ß[B‚â;B‚äÿB‚ç›B‚êB‚ìfB‚î¢B‚ðÅB‚òËB‚ô¸B‚öŒB‚øGB‚ùèB‚ûrB‚üåB‚þAB‚ÿ†BƒµBƒÎBƒÒBƒÂBƒBƒeBƒBƒ¼BƒLBƒËBƒ8Bƒ”BƒáBƒ Bƒ JBƒ iBƒ yBƒ |Bƒ qBƒ ZBƒ 6Bƒ BƒÌBƒ†Bƒ6BƒÜBƒzBƒ Bƒ™BƒBƒ˜BƒBƒ}BƒæBƒIBƒ¨BƒBƒXBƒ¬B‚ÿûB‚ÿHB‚þ“B‚ýÝB‚ý%B‚ümB‚ûµB‚úýB‚úFB‚ù‘B‚øÞB‚ø)B‚÷uB‚öÃB‚öB‚õhB‚ô½B‚ôB‚ópB‚òÌB‚ò+B‚ñB‚ððB‚ðUB‚ï½B‚ï&B‚î’B‚îB‚ípB‚ìáB‚ìTB‚ëÊB‚ëAB‚ê¹B‚ê4B‚é°B‚é.B‚è­B‚è.B‚ç°B‚ç4B‚æ¹B‚æ@B‚åÈB‚åQB‚äÛB‚ägB‚ãôB‚ã‚B‚ãB‚â B‚â1B‚áÃB‚áVB‚àêB‚à~B‚àB‚ߪB‚ßAB‚ÞÙB‚ÞqB‚Þ B‚Ý£B‚Ý=B‚ÜØB‚ÜrB‚ÜB‚Û©B‚ÛDB‚ÚàB‚Ú}B‚ÚB‚Ù¶B‚ÙSB‚ØðB‚ØŒB‚Ø)B‚ׯB‚×bB‚ÖÿB‚Ö›B‚Ö7B‚ÕÓB‚ÕnB‚Õ B‚Ô¤B‚Ô?B‚ÓÙB‚ÓrB‚Ó B‚Ò£B‚Ò;B‚ÑÒB‚ÑhB‚ÐþB‚Ð’B‚Ð&B‚ϹB‚ÏKB‚ÎÜB‚ÎlB‚ÍûB‚͉B‚ÍB‚Ì¡B‚Ì,B‚˵B€ñ1B€ö~B€ûÚBBB·B 8BÅB]BB"­B(dB.&B3ïB9ÁB?œBE~BKhBQYBWOB]MBcOBiVBocBusB{‡BŸB‡¹BÕB“ôBšB 5B¦XB¬zB²œB¸¾B¾ÞBÄüBËBÑ4B×KBÝ_BãpBé|BïƒBõ†BûƒB‚yB‚jB‚ TB‚6B‚B‚ãB‚$­B‚*nB‚0%B‚5ÒB‚;uB‚A B‚FšB‚LB‚QB‚VøB‚\TB‚a¢B‚fáB‚lB‚q6B‚vIB‚{LB‚€@B‚…#B‚‰õB‚޶B‚“dB‚˜B‚œ‰B‚¡B‚¥bB‚©±B‚­êB‚²B‚¶B‚ºB‚½ûB‚ÁÈB‚Å}B‚ÉB‚Ì B‚Ð B‚Ó`B‚ÖšB‚Ù¼B‚ÜÁB‚ß­B‚â}B‚å3B‚ç¿B‚ê#B‚ìmB‚îšB‚ð®B‚ò§B‚ô‡B‚öMB‚÷ûB‚ù‘B‚ûB‚üvB‚ýÅB‚þÿBƒ#Bƒ2Bƒ,BƒBƒãBƒ¡BƒLBƒæBƒnBƒäBƒHBƒBƒáBƒBƒ=BƒTBƒ^BƒZBƒHBƒ*BƒBƒÌBƒŒBƒ@BƒëBƒŒBƒ$Bƒ³Bƒ:BƒºBƒ2Bƒ¤BƒBƒtBƒÓBƒ/Bƒ†B‚ÿØB‚ÿ(B‚þuB‚ýÀB‚ýB‚üOB‚û•B‚úÚB‚ú B‚ùfB‚ø­B‚÷õB‚÷?B‚ö‰B‚õÓB‚õ B‚ônB‚ó¿B‚óB‚òjB‚ñÃB‚ñB‚ð{B‚ïÚB‚ï=B‚î B‚îB‚íoB‚ìÙB‚ìFB‚ë´B‚ë%B‚ê˜B‚ê B‚é‚B‚èùB‚èsB‚çîB‚çkB‚æêB‚æjB‚åëB‚ånB‚äóB‚äyB‚äB‚ã‰B‚ãB‚âžB‚â*B‚á¸B‚áGB‚àÖB‚àgB‚ßùB‚ß‹B‚ßB‚Þ³B‚ÞIB‚ÝÞB‚ÝvB‚Ý B‚Ü¥B‚Ü=B‚Û×B‚ÛpB‚Û B‚Ú¥B‚ÚAB‚ÙÜB‚ÙxB‚ÙB‚ذB‚ØMB‚×éB‚׆B‚×"B‚ÖÀB‚Ö]B‚ÕøB‚Õ•B‚Õ2B‚ÔÎB‚ÔjB‚ÔB‚Ó¡B‚Ó=B‚ÒØB‚ÒqB‚Ò B‚Ñ¥B‚Ñ>B‚ÐÕB‚ÐlB‚ÐB‚ÏšB‚Ï.B‚ÎÃB‚ÎWB‚ÍêB‚ÍzB‚Í B‚Ì›B‚Ì*B‚˸B‚ËCB‚ÊÏB‚ÊYB‚ÉâB€ú2B€ÿhB¬B üBXBÁB5B´B%>B*ÒB0pB6B;ÈBABGBBM BRÚBX±B^ŽBdpBjYBpFBv8B|.B‚(Bˆ$BŽ$B”&Bš+B 0B¦7B¬?B²EB¸MB¾TBÄZBÊ^BÐ`BÖ`BÜ]BâVBèLBî>Bô+BúBÿöB‚ÓB‚ ªB‚zB‚BB‚B‚"¼B‚(lB‚.B‚3²B‚9FB‚>ÐB‚DNB‚IÃB‚O,B‚TˆB‚YØB‚_B‚dRB‚izB‚n“B‚sžB‚x›B‚}‡B‚‚dB‚‡1B‚‹ìB‚—B‚•/B‚™¶B‚ž*B‚¢‹B‚¦ÙB‚«B‚¯8B‚³HB‚·DB‚»*B‚¾ùB‚³B‚ÆUB‚ÉàB‚ÍTB‚аB‚ÓòB‚×B‚Ú+B‚Ý B‚ßüB‚â½B‚åbB‚çßB‚ê5B‚ìoB‚îŽB‚ð“B‚òB‚ôQB‚ö B‚÷«B‚ù4B‚ú¥B‚üB‚ýDB‚þsB‚ÿŒBƒBƒBƒ[Bƒ$BƒØBƒzBƒ BƒˆBƒöBƒRBƒŸBƒÜBƒ Bƒ(Bƒ9Bƒ;Bƒ1BƒBƒõBƒÆBƒ‹BƒEBƒôBƒšBƒ6BƒÉBƒSBƒÖBƒQBƒÆBƒ2BƒšBƒûBƒXB‚ÿ¯B‚ÿB‚þSB‚ý B‚üéB‚ü1B‚ûvB‚ú»B‚ùÿB‚ùBB‚ø…B‚÷ÉB‚÷B‚öTB‚õB‚ôåB‚ô,B‚ówB‚òÄB‚òB‚ñfB‚ðºB‚ðB‚ïkB‚îÇB‚î%B‚í†B‚ìéB‚ìNB‚ëµB‚ëB‚êŠB‚é÷B‚égB‚èØB‚èKB‚çÁB‚ç8B‚æ±B‚æ,B‚å¨B‚å%B‚ä¦B‚ä'B‚ã©B‚ã-B‚â²B‚â:B‚áÂB‚áLB‚à×B‚àbB‚ßðB‚ßB‚ßB‚ÞžB‚Þ0B‚ÝÃB‚ÝVB‚ÜëB‚Ü€B‚ÜB‚Û­B‚ÛDB‚ÚÝB‚ÚuB‚ÚB‚Ù©B‚ÙCB‚ØÞB‚ØyB‚ØB‚×°B‚×MB‚ÖéB‚Ö†B‚Ö#B‚ÕÀB‚Õ]B‚ÔùB‚Ô–B‚Ô4B‚ÓÐB‚ÓmB‚Ó B‚Ò¥B‚ÒAB‚ÑÝB‚ÑxB‚ÑB‚ЮB‚ÐGB‚ÏáB‚ÏzB‚ÏB‚ΩB‚Î@B‚ÍÖB‚ÍkB‚ÍB‚Ì’B‚Ì&B‚˸B‚ËHB‚Ê×B‚ÊfB‚ÉóB‚ÉB‚É B‚È”B‚ÈBHBfB BÈB B[B"·B(B-ŽB3B8ŒB>BC±BIPBN÷BT¦BZ[B`BeÚBk¢BqpBwBB}B‚õBˆÓB޶B”›BšƒB kB¦VB¬BB².B¸B¾BÃôBÉßBÏÈBÕ¯BÛ”BávBçUBí0BóBøÚBþ¨B‚pB‚ 3B‚ïB‚¥B‚SB‚ úB‚&™B‚,0B‚1¾B‚7BB‚<½B‚B-B‚G”B‚LîB‚R>B‚W‚B‚\ºB‚aåB‚gB‚lB‚qB‚vB‚zíB‚ÂB‚„ˆB‚‰>B‚ãB‚’wB‚–úB‚›jB‚ŸÉB‚¤B‚¨MB‚¬rB‚°ƒB‚´€B‚¸fB‚¼9B‚¿õB‚ÜB‚Ç+B‚ʤB‚ÎB‚ÑNB‚Ô~B‚×—B‚Ú–B‚Ý{B‚àFB‚â÷B‚åŒB‚çúB‚ê@B‚ìkB‚î|B‚ðsB‚òPB‚ôB‚õÀB‚÷TB‚øÑB‚ú6B‚û„B‚ü½B‚ýàB‚þíB‚ÿçBƒÌBƒBƒ[BƒBƒžBƒ%Bƒ›BƒBƒTBƒ˜BƒÍBƒóBƒ BƒBƒBƒþBƒàBƒ¶BƒBƒ@BƒôBƒžBƒ?BƒÖBƒdBƒêBƒhBƒßBƒNBƒ¸BƒB‚ÿzB‚þÓB‚þ'B‚ýwB‚üÄB‚üB‚ûTB‚úšB‚ùÝB‚ùB‚ø_B‚÷¡B‚öáB‚ö$B‚õfB‚ô«B‚óòB‚ó8B‚ò~B‚ñÆB‚ñB‚ð`B‚ï±B‚ïB‚îYB‚í²B‚í B‚ìiB‚ëÉB‚ë*B‚êB‚éõB‚é]B‚èÈB‚è4B‚ç¤B‚çB‚æ‡B‚åûB‚årB‚äêB‚ädB‚ãàB‚ã^B‚âÝB‚â^B‚áàB‚ádB‚àêB‚àpB‚ßùB‚ß‚B‚ßB‚ÞšB‚Þ&B‚ݶB‚ÝEB‚ÜÖB‚ÜhB‚ÛúB‚ÛŽB‚Û#B‚Ú¸B‚ÚNB‚ÙæB‚Ù~B‚ÙB‚دB‚ØIB‚×äB‚×~B‚×B‚ÖµB‚ÖQB‚ÕíB‚ÕŠB‚Õ'B‚ÔÄB‚ÔbB‚ÓÿB‚ÓœB‚Ó:B‚ÒØB‚ÒtB‚ÒB‚ѯB‚ÑLB‚ÐéB‚Ð…B‚Ð!B‚ϽB‚ÏXB‚ÎòB‚ÎB‚Î'B‚ÍÀB‚ÍXB‚ÌñB‚̇B‚ÌB‚Ë´B‚ËHB‚ÊÜB‚ÊoB‚ÊB‚É‘B‚É!B‚ȯB‚ÈYBC¡BHòBNLBS­BYB^ŠBdBi„Bo Bt™Bz,BÃB…`B‹B¦B–OB›ûB¡ªB§[B­ B²ÁB¸wB¾-BÃãBÉ™BÏNBÕBÚ¶BàgBæBëÁBñjB÷Bü°B‚MB‚åB‚ xB‚B‚ŒB‚ B‚#†B‚(øB‚.bB‚3ÅB‚9B‚>oB‚C·B‚HôB‚N'B‚SPB‚XmB‚]B‚b…B‚g~B‚lkB‚qKB‚vB‚záB‚–B‚„B‚ÿÝBƒjBƒæBƒQBƒ¬Bƒ÷Bƒ1Bƒ]BƒzBƒˆBƒŠBƒ}BƒdBƒ>Bƒ BƒÑBƒˆBƒ6BƒÙBƒsBƒB‚ÿŒB‚ÿ B‚þ„B‚ýõB‚ý^B‚üÂB‚ü B‚ûxB‚úËB‚úB‚ùdB‚ø«B‚÷ïB‚÷0B‚öoB‚õ¬B‚ôèB‚ô#B‚ó]B‚ò˜B‚ñÒB‚ñB‚ðLB‚ïŒB‚îÍB‚îB‚íPB‚ì”B‚ëÛB‚ë%B‚êrB‚éÁB‚éB‚èhB‚çÀB‚çB‚æwB‚åÖB‚å9B‚äœB‚äB‚ãlB‚âØB‚âEB‚áµB‚á&B‚àšB‚àB‚߈B‚ßB‚Þ~B‚ÝûB‚ÝzB‚ÜüB‚ÜB‚ÜB‚ÛŠB‚ÛB‚ÚšB‚Ú%B‚Ù²B‚Ù>B‚ØÎB‚Ø^B‚×ïB‚ׂB‚×B‚ÖªB‚Ö@B‚ÕÖB‚ÕnB‚ÕB‚Ô B‚Ô:B‚ÓÔB‚ÓpB‚Ó B‚ÒªB‚ÒGB‚ÑåB‚уB‚Ñ"B‚ÐÁB‚Ð`B‚ÐB‚Ï B‚Ï@B‚ÎàB‚΀B‚Î"B‚ÍÂB‚ÍbB‚ÍB‚Ì¢B‚ÌBB‚ËáB‚Ë€B‚ËB‚ʽB‚Ê[B‚ÉùB‚É–B‚É2B‚ÈÍB‚ÈhB‚ÈB‚ÇœB‚Ç4B‚ÆÌB‚ÆbB‚ÅøB‚ÅŒB‚Å!B‚ijB‚ÄDB‚ÃÕB‚ÃdB‚ÂðB‚Â|B‚ÂB‚Á‘B(LB-B1ÎB6¡B;€B@jBE_BJ^BOgBTzBY–B^ºBcèBiBnYBsBxèB~9BƒŽBˆëBŽLB“²B™BžŠB£ûB©pB®èB´`B¹ÜB¿YBÄÖBÊUBÏÓBÕRBÚÏBàLBåÇBëABð¸Bö,BûžB‚ B‚vB‚ ÜB‚=B‚šB‚ðB‚!@B‚&‹B‚+ÎB‚1 B‚6@B‚;mB‚@’B‚E®B‚JÀB‚OÊB‚TÉB‚Y¾B‚^¨B‚c‡B‚hZB‚m"B‚qÜB‚vŠB‚{+B‚¾B‚„CB‚ˆºB‚!B‚‘zB‚•ÃB‚™ûB‚ž$B‚¢;B‚¦@B‚ª5B‚®B‚±æB‚µ£B‚¹MB‚¼âB‚ÀdB‚ÃÑB‚Ç)B‚ÊkB‚͘B‚ЮB‚Ó­B‚Ö–B‚ÙhB‚Ü"B‚ÞÃB‚áLB‚ã»B‚æB‚è?B‚êFB‚ì3B‚îB‚ïÃB‚ñfB‚òòB‚ôgB‚õÆB‚÷B‚ø@B‚ù^B‚úfB‚ûZB‚ü:B‚ýB‚ýÀB‚þgB‚þüB‚ÿ€B‚ÿñBƒSBƒ¤BƒæBƒBƒB‚Ý·B‚Ý1B‚Ü®B‚Ü,B‚Û«B‚Û-B‚Ú°B‚Ú6B‚Ù¼B‚ÙEB‚ØÏB‚ØZB‚×èB‚×vB‚×B‚Ö–B‚Ö)B‚Õ¼B‚ÕQB‚ÔæB‚Ô}B‚ÔB‚Ó®B‚ÓHB‚ÒãB‚Ò~B‚ÒB‚Ñ·B‚ÑUB‚ÐóB‚Ð’B‚Ð1B‚ÏÑB‚ÏqB‚ÏB‚γB‚ÎTB‚ÍõB‚Í—B‚Í8B‚ÌÚB‚Ì|B‚ÌB‚ËÀB‚ËaB‚ËB‚ʤB‚ÊDB‚ÉåB‚É…B‚É$B‚ÈÄB‚ÈcB‚ÈB‚ÇŸB‚ÇB‚ìB‚íßB‚ïŒB‚ñ!B‚òžB‚ôB‚õVB‚öB‚÷¶B‚øÆB‚ùÂB‚úªB‚û~B‚ü?B‚üîB‚ý‹B‚þB‚þŽB‚þöB‚ÿNB‚ÿ—B‚ÿÐB‚ÿøBƒBƒ BƒBƒB‚ÿöB‚ÿÏB‚ÿ›B‚ÿ\B‚ÿB‚þ¿B‚þaB‚ýùB‚ýˆB‚ýB‚üŒB‚üB‚ûqB‚úÙB‚ú:B‚ù–B‚øìB‚øB‚ÔÐB‚ÔcB‚ÓøB‚ÓŽB‚Ó$B‚Ò½B‚ÒVB‚ÑðB‚ÑŒB‚Ñ(B‚ÐÄB‚ÐbB‚ÐB‚Ï B‚Ï?B‚ÎàB‚ÎB‚Î"B‚ÍÄB‚ÍfB‚ÍB‚̬B‚ÌNB‚ËñB‚Ë•B‚Ë8B‚ÊÜB‚ÊB‚Ê"B‚ÉÆB‚ÉiB‚É B‚È®B‚ÈPB‚ÇòB‚Ç“B‚Ç4B‚ÆÕB‚ÆtB‚ÆB‚ŲB‚ÅOB‚ÄíB‚ĉB‚Ä$B‚þB‚ÃWB‚ÂïB‚‡B‚ÂB‚Á±B‚ÁDB‚ÀÖB‚ÀgB‚¿÷B‚¿…B‚¿B‚¾œB;:B?ÂBDVBHõBM BRVBWB[âB`´Be’BjxBogBt^By\B~cBƒpBˆ‚BœB’»B—ßB B¢7B§iB¬ŸB±×B·B¼RBÁ”BÆÖBÌBÑ`BÖ¦BÛêBá1BæuBëºBðüBö>Bû|B‚¸B‚òB‚ (B‚YB‚‡B‚±B‚ÕB‚$ôB‚*B‚/!B‚4.B‚94B‚>2B‚C)B‚HB‚LþB‚QÛB‚V¯B‚[zB‚`:B‚dðB‚i›B‚n:B‚rÎB‚wVB‚{ÒB‚€@B‚„¢B‚ˆöB‚B‚ÜÔB‚ßSB‚á¹B‚äB‚æ>B‚èKB‚ê1B‚ëþB‚í³B‚ïPB‚ðÖB‚òEB‚óžB‚ôàB‚öB‚÷&B‚ø)B‚ùB‚ùõB‚ú¾B‚ûtB‚üB‚ü¨B‚ý(B‚ý—B‚ýöB‚þDB‚þƒB‚þ²B‚þÓB‚þæB‚þêB‚þáB‚þËB‚þ¨B‚þzB‚þ@B‚ýûB‚ý«B‚ýPB‚üìB‚üB‚üB‚ûˆB‚ûB‚útB‚ùÞB‚ùAB‚øžB‚÷öB‚÷HB‚ö•B‚õÝB‚õ"B‚ôcB‚ó¡B‚òÜB‚òB‚ñLB‚ð‚B‚ï·B‚îìB‚î B‚íUB‚ì‹B‚ëÃB‚êûB‚ê7B‚étB‚è²B‚çðB‚ç/B‚æsB‚å¹B‚åB‚äPB‚ã B‚âóB‚âIB‚á¡B‚àýB‚à[B‚ß¼B‚ß B‚Þ†B‚ÝîB‚ÝZB‚ÜÈB‚Ü8B‚ÛªB‚ÛB‚Ú–B‚ÚB‚ÙŠB‚ÙB‚؆B‚ØB‚׋B‚×B‚Ö˜B‚Ö B‚ÕªB‚Õ6B‚ÔÄB‚ÔSB‚ÓäB‚ÓvB‚Ó B‚ÒžB‚Ò4B‚ÑÌB‚ÑdB‚ÐþB‚ЙB‚Ð4B‚ÏÑB‚ÏoB‚ÏB‚έB‚ÎMB‚ÍîB‚ÍB‚Í2B‚ÌÔB‚ÌxB‚ÌB‚Ë¿B‚ËcB‚ËB‚Ê­B‚ÊRB‚É÷B‚ÉœB‚ÉBB‚ÈçB‚ÈŒB‚È1B‚ÇÖB‚Ç{B‚ÇB‚ÆÃB‚ÆgB‚Æ B‚ŬB‚ÅOB‚ÄðB‚ÄB‚Ä1B‚ÃÐB‚ÃoB‚à B‚ªB‚ÂEB‚ÁàB‚ÁyB‚ÁB‚ÀªB‚À?B‚¿ÔB‚¿hB‚¾ûB‚¾ŠB‚¾B‚½¨B‚½4BDÊBI7BM±BR6BVÈB[bB`Bd¸BiqBn3BrþBwÒB|®BB†zB‹lBcB•`BšbBŸkB¤xB©ŠB®ŸB³¹B¸ÖB½õBÃBÈB‚TB‚fB‚sB‚${B‚)~B‚.{B‚3sB‚8dB‚=NB‚B0B‚G B‚KßB‚P«B‚UmB‚Z&B‚^ÖB‚c|B‚hB‚l§B‚q-B‚u§B‚zB‚~wB‚‚ÌB‚‡B‚‹PB‚}B‚“œB‚—¬B‚›®B‚Ÿ B‚£‚B‚§TB‚«B‚®ÆB‚²fB‚µóB‚¹nB‚¼×B‚À.B‚ÃpB‚Æ B‚ɼB‚ÌÂB‚Ï´B‚Ò‘B‚ÕXB‚Ø B‚Ú¤B‚Ý(B‚ß–B‚áëB‚ä(B‚æMB‚èJB‚ê B‚ëÝB‚í‚B‚ïB‚ð†B‚ñçB‚ó2B‚ôfB‚õ†B‚ö‘B‚÷ˆB‚øjB‚ù:B‚ùöB‚ú¡B‚û8B‚ûÀB‚ü5B‚ü™B‚üîB‚ý3B‚ýhB‚ýB‚ý¦B‚ý°B‚ý­B‚ýœB‚ý~B‚ýUB‚ýB‚üÞB‚ü’B‚ü;B‚ûÛB‚ûqB‚úþB‚ú‚B‚ùýB‚ùqB‚øÞB‚øCB‚÷¢B‚öüB‚öNB‚õœB‚ôæB‚ô,B‚ómB‚ò«B‚ñæB‚ñB‚ðUB‚ïŠB‚î½B‚íðB‚í#B‚ìVB‚ë‰B‚ê½B‚éòB‚é+B‚èdB‚ç¡B‚æÞB‚æB‚åYB‚ä›B‚ãáB‚ã+B‚âwB‚áÆB‚áB‚àmB‚߯B‚ß"B‚ÞB‚ÝàB‚ÝDB‚ܪB‚ÜB‚Û~B‚ÚìB‚Ú]B‚ÙÐB‚ÙFB‚ؽB‚Ø7B‚ײB‚×0B‚Ö±B‚Ö4B‚Õ¸B‚Õ>B‚ÔÆB‚ÔPB‚ÓÛB‚ÓhB‚ÒøB‚ÒˆB‚ÒB‚Ñ®B‚ÑCB‚ÐÚB‚ÐqB‚Ð B‚ϤB‚Ï@B‚ÎÜB‚ÎzB‚ÎB‚͸B‚ÍYB‚ÌúB‚ÌœB‚Ì>B‚ËâB‚ˆB‚Ë+B‚ÊÐB‚ÊvB‚ÊB‚ÉÂB‚ÉhB‚ÉB‚È·B‚È^B‚ÈB‚Ç­B‚ÇTB‚ÆûB‚Æ¢B‚ÆIB‚ÅðB‚Å–B‚ÅB‚û˜B‚ûâB‚üB‚üIB‚üfB‚üuB‚üvB‚ükB‚üRB‚ü,B‚ûûB‚û¾B‚ûvB‚û$B‚úÆB‚ú`B‚ùïB‚ùwB‚øõB‚ølB‚÷ÚB‚÷BB‚ö£B‚õþB‚õRB‚ô¢B‚óìB‚ó2B‚òtB‚ñ²B‚ðíB‚ð%B‚ï[B‚îB‚íÀB‚ìòB‚ì#B‚ëTB‚ê…B‚é¶B‚èêB‚èB‚çTB‚æB‚åÈB‚åB‚ä?B‚ã}B‚â¿B‚âB‚áLB‚à˜B‚ßçB‚ß8B‚ÞŽB‚ÝæB‚ÝAB‚Ü B‚ÜB‚ÛdB‚ÚÊB‚Ú4B‚Ù B‚ÙB‚Ø€B‚×óB‚×iB‚ÖâB‚Ö]B‚ÕÙB‚ÕYB‚ÔÚB‚Ô]B‚ÓâB‚ÓjB‚ÒôB‚ÒB‚Ò B‚Ñ›B‚Ñ,B‚оB‚ÐQB‚ÏçB‚Ï~B‚ÏB‚ίB‚ÎJB‚ÍæB‚Í„B‚Í"B‚ÌÂB‚ÌcB‚ÌB‚˦B‚ËJB‚ÊîB‚Ê“B‚Ê9B‚ÉßB‚ɆB‚É-B‚ÈÖB‚È~B‚È&B‚ÇÏB‚ÇyB‚Ç"B‚ÆÌB‚ÆuB‚ÆB‚ÅÉB‚ÅrB‚ÅB‚ÄÅB‚ÄmB‚ÄB‚ÿB‚ÃgB‚ÃB‚µB‚Â[B‚ÂB‚Á¦B‚ÁJB‚ÀîB‚ÀB‚À1B‚¿ÒB‚¿rB‚¿B‚¾®B‚¾JB‚½åB‚½~B‚½B‚¼®B‚¼CB‚»ÖB‚»hB‚ºùB‚ºˆBXB\NB`”BdåBi@Bm§BrBvB{BžB„2BˆÎBrB’B–ÏB›‡B FB¥ B©ÕB®¥B³yB¸QB½-BÂBÆðBËÖBоBÕ©BÚ•Bß‚BäqBé`BîNBó=Bø,BýB‚B‚ðB‚ ØB‚¾B‚¡B‚B‚]B‚$5B‚) B‚-ØB‚2£B‚7hB‚<&B‚@ßB‚E‘B‚JB‚õ B‚ôýB‚ôSB‚ó¤B‚òïB‚ò6B‚ñyB‚ð·B‚ïòB‚ï*B‚î_B‚í’B‚ìÄB‚ëôB‚ë#B‚êRB‚éB‚è°B‚çàB‚çB‚æDB‚åyB‚ä±B‚ãìB‚ã&B‚â`B‚áB‚àÞB‚à#B‚ßkB‚Þ¶B‚ÞB‚ÝWB‚Ü«B‚ÜB‚Û_B‚Ú½B‚ÚB‚ÙƒB‚ØêB‚ØTB‚×ÀB‚×/B‚Ö¡B‚ÖB‚ÕŒB‚ÕB‚ÔB‚ÓÿB‚Ó€B‚ÓB‚Ò‡B‚ÒB‚Ñ–B‚Ñ"B‚ЮB‚Ð=B‚ÏÍB‚Ï`B‚ÎôB‚ΉB‚Î B‚͹B‚ÍSB‚ÌïB‚ÌŒB‚Ì*B‚ËÉB‚ËjB‚Ë B‚Ê®B‚ÊRB‚ÉöB‚ÉœB‚ÉCB‚ÈêB‚È’B‚È:B‚ÇäB‚ÇŽB‚Ç8B‚ÆãB‚ÆŽB‚Æ9B‚ÅåB‚Å‘B‚Å=B‚ÄéB‚Ä•B‚ÄAB‚ÃíB‚ÙB‚ÃDB‚ÂðB‚›B‚ÂFB‚ÁðB‚ÁšB‚ÁCB‚ÀìB‚À”B‚À;B‚¿áB‚¿‡B‚¿,B‚¾ÐB‚¾rB‚¾B‚½µB‚½TB‚¼òB‚¼B‚¼+B‚»ÅB‚»^B‚ºõB‚ºŠB‚ºB‚¹±B‚¹ABaÎBeîBjBnPBrBvÛB{0BBƒõBˆeBŒÜB‘]B•åBštBŸ B£¦B¨HB¬ðB±žB¶PB»B¿ÃBÄ‚BÉEBÎ BÒÓBןBÜlBá:Bæ BêÜBï­BôBùPBþ!B‚òB‚ÀB‚ B‚YB‚!B‚çB‚ªB‚$iB‚)%B‚-ÜB‚2ŽB‚7B‚‚^B‚†rB‚ŠzB‚ŽwB‚’eB‚–GB‚šB‚âB‚¡šB‚¥DB‚¨ßB‚¬jB‚¯æB‚³QB‚¶¬B‚¹öB‚½/B‚ÀWB‚ÃlB‚ÆoB‚É`B‚Ì=B‚ÏB‚ѽB‚Ô_B‚ÖíB‚ÙeB‚ÛÈB‚ÞB‚àMB‚âoB‚äyB‚ælB‚è7B‚éÚB‚ëeB‚ìÚB‚î8B‚ï‚B‚ðµB‚ñÔB‚òÞB‚óÔB‚ô·B‚õ†B‚öCB‚öìB‚÷†B‚ø B‚ø‚B‚øèB‚ù=B‚ùƒB‚ù¸B‚ùàB‚ùøB‚úB‚úB‚ùñB‚ùÔB‚ù«B‚ùvB‚ù6B‚øêB‚ø”B‚ø4B‚÷ËB‚÷XB‚öÜB‚öXB‚õÊB‚õ7B‚ô›B‚óúB‚óRB‚ò£B‚ñðB‚ñ7B‚ðzB‚ïºB‚îôB‚î,B‚íaB‚ì”B‚ëÄB‚êóB‚ê B‚éNB‚èzB‚ç§B‚æÕB‚æB‚å4B‚äfB‚ã™B‚âÑB‚â B‚áDB‚à}B‚ß¹B‚ÞúB‚Þ>B‚Ý…B‚ÜÐB‚ÜB‚ÛpB‚ÚÆB‚ÚB‚ÙxB‚Ø×B‚Ø9B‚×B‚×B‚ÖoB‚ÕÝB‚ÕLB‚Ô¿B‚Ô4B‚Ó¬B‚Ó'B‚Ò¤B‚Ò#B‚ѤB‚Ñ(B‚ЯB‚Ð7B‚ÏÁB‚ÏNB‚ÎÜB‚ÎlB‚ÍÿB‚Í“B‚Í(B‚ÌÀB‚ÌZB‚ËôB‚Ë‘B‚Ë.B‚ÊÍB‚ÊnB‚ÊB‚ɳB‚ÉVB‚ÈüB‚È¢B‚ÈIB‚ÇòB‚ÇšB‚ÇDB‚ÆîB‚ÆšB‚ÆFB‚ÅòB‚ÅŸB‚ÅLB‚ÄúB‚ĨB‚ÄWB‚ÄB‚ôB‚ÃcB‚ÃB‚ÂÀB‚ÂoB‚ÂB‚ÁÌB‚ÁzB‚Á(B‚ÀÕB‚À‚B‚À/B‚¿ÚB‚¿…B‚¿0B‚¾ÚB‚¾‚B‚¾+B‚½ÒB‚½xB‚½B‚¼ÂB‚¼eB‚¼B‚»¦B‚»EB‚ºãB‚º€B‚ºB‚¹´B‚¹LB‚¸áB‚¸vB‚¸Bk›Bo¡Bs±BwÌB{òB€"B„ZBˆBŒèB‘=B•˜B™ýBžhB¢ÛB§TB«ÔB°YB´äB¹tB¾ B¤BÇBBËäBЊBÕ2BÙÞBÞ‹Bã;BçìBìŸBñRBöBúºBÿnB‚!B‚ÔB‚ …B‚5B‚âB‚ŽB‚ 6B‚$ÜB‚)~B‚.B‚2¶B‚7LB‚;ÜB‚@gB‚DìB‚IlB‚MåB‚RXB‚VÃB‚[(B‚_ƒB‚cØB‚h#B‚lfB‚pžB‚tÎB‚xôB‚}B‚B‚…%B‚‰B‚ B‚ïB‚”ÄB‚˜B‚œHB‚ŸöB‚£•B‚§&B‚ª©B‚®B‚±€B‚´ÔB‚¸B‚»KB‚¾nB‚ÁB‚Ä~B‚ÇlB‚ÊGB‚ÍB‚ÏÅB‚ÒgB‚ÔõB‚×nB‚ÙÔB‚Ü$B‚Þ_B‚à…B‚â”B‚äB‚æoB‚è)B‚éºB‚ë5B‚ìšB‚íèB‚ï"B‚ðGB‚ñVB‚òRB‚ó;B‚ôB‚ôÒB‚õB‚öB‚ö«B‚÷&B‚÷‘B‚÷êB‚ø5B‚øpB‚øœB‚ø¹B‚øÈB‚øÊB‚ø¾B‚ø¦B‚ø€B‚øOB‚øB‚÷ËB‚÷xB‚÷B‚ö´B‚öCB‚õÊB‚õHB‚ô¾B‚ô,B‚ó“B‚òóB‚òLB‚ñŸB‚ðìB‚ð5B‚ïyB‚î¸B‚íóB‚í*B‚ì_B‚ë’B‚êÁB‚éïB‚éB‚èGB‚çrB‚æœB‚åÈB‚äôB‚ä!B‚ãPB‚â€B‚á´B‚àêB‚à#B‚ß[B‚Þ”B‚ÝÐB‚ÝB‚ÜSB‚ÛšB‚ÚåB‚Ú3B‚Ù„B‚ØÚB‚Ø2B‚׎B‚ÖíB‚ÖNB‚Õ´B‚ÕB‚Ô‡B‚ÓõB‚ÓfB‚ÒÚB‚ÒPB‚ÑÉB‚ÑDB‚ÐÃB‚ÐDB‚ÏÇB‚ÏLB‚ÎÔB‚Î^B‚ÍêB‚ÍxB‚ÍB‚Ì›B‚Ì0B‚ËÅB‚Ë]B‚Ê÷B‚Ê’B‚Ê0B‚ÉÎB‚ÉnB‚ÉB‚ȲB‚ÈVB‚ÇüB‚Ç¢B‚ÇJB‚ÆóB‚ÆB‚ÆHB‚ÅóB‚Å B‚ÅNB‚ÄûB‚ĪB‚ÄYB‚Ä B‚ùB‚ÃiB‚ÃB‚ÂÌB‚Â}B‚Â.B‚ÁáB‚Á‘B‚ÁCB‚ÀõB‚À¦B‚ÀXB‚À B‚¿¹B‚¿jB‚¿B‚¾ÈB‚¾vB‚¾$B‚½ÒB‚½B‚½*B‚¼ÕB‚¼B‚¼(B‚»ÏB‚»vB‚»B‚ºÀB‚ºbB‚ºB‚¹¤B‚¹CB‚¸àB‚¸{B‚¸B‚·¬B‚·BB‚¶×BuuBy_B}VBVB…`B‰tB’B‘¸B•èBšBž_B¢¨B¦öB«LB¯¨B´ B¸tB¼âBÁUBÅÎBÊJBÎËBÓOBרBÜbBàðBå€BêBî¦Bó:B÷ÏBüeB‚ýB‚“B‚ (B‚½B‚PB‚âB‚rB‚!B‚%‹B‚*B‚.—B‚3B‚7”B‚< B‚@€B‚DîB‚IWB‚MºB‚RB‚VlB‚Z»B‚_B‚cCB‚gzB‚kªB‚oÑB‚sîB‚xB‚| B‚€ B‚„B‚‡íB‚‹ÌB‚ B‚“hB‚—$B‚šÒB‚žuB‚¢ B‚¥B‚©B‚¬rB‚¯ÍB‚³B‚¶VB‚¹ƒB‚¼ B‚¿«B‚Â¥B‚ÅB‚ÈgB‚Ë-B‚ÍàB‚ЀB‚ÓB‚ÕˆB‚×îB‚Ú@B‚Ü~B‚Þ¦B‚àºB‚â·B‚äžB‚æoB‚èB‚é˜B‚ëB‚ìWB‚í•B‚î¿B‚ïÔB‚ðÕB‚ñÃB‚òœB‚ódB‚ôB‚ô»B‚õLB‚õÌB‚ö;B‚öšB‚öéB‚÷(B‚÷XB‚÷zB‚÷ŒB‚÷’B‚÷ŠB‚÷vB‚÷TB‚÷'B‚öíB‚ö¨B‚öXB‚õþB‚õšB‚õ,B‚ô¶B‚ô7B‚ó®B‚óB‚ò‡B‚ñèB‚ñCB‚ð˜B‚ïæB‚ï0B‚îtB‚í´B‚ìïB‚ì'B‚ë\B‚êŒB‚é»B‚èéB‚èB‚ç?B‚æhB‚å‘B‚äºB‚ããB‚ãB‚â:B‚ágB‚à–B‚ßÉB‚ÞþB‚Þ7B‚ÝnB‚Ü¥B‚ÛáB‚Û B‚ÚdB‚ÙªB‚ØõB‚ØCB‚וB‚ÖêB‚ÖBB‚ÕŸB‚ÔýB‚ÔaB‚ÓÆB‚Ó/B‚ÒœB‚Ò B‚Ñ|B‚ÐñB‚ÐhB‚ÏäB‚Ï`B‚ÎàB‚ÎbB‚ÍæB‚ÍnB‚Ì÷B‚̃B‚ÌB‚Ë¢B‚Ë4B‚ÊÈB‚Ê^B‚É÷B‚É’B‚É-B‚ÈËB‚ÈjB‚È B‚Ç®B‚ÇRB‚Æ÷B‚ÆžB‚ÆFB‚ÅðB‚ÅšB‚ÅFB‚ÄòB‚Ä B‚ÄOB‚ÃþB‚îB‚Ã_B‚ÃB‚ÂÃB‚ÂvB‚Â)B‚ÁÝB‚ÁB‚ÁEB‚ÀùB‚À®B‚ÀcB‚ÀB‚¿ÌB‚¿€B‚¿5B‚¾éB‚¾B‚¾QB‚¾B‚½·B‚½iB‚½B‚¼ÌB‚¼|B‚¼+B‚»ÚB‚»ˆB‚»4B‚ºàB‚º‹B‚º4B‚¹ÜB‚¹‚B‚¹(B‚¸ÌB‚¸nB‚¸B‚·¯B‚·MB‚¶èB‚¶ƒB‚¶B‚µ²BZBƒ*B‡BŠêBŽÙB’ÒB–ÔBšÞBžòB£ B§1B«\B¯ŽB³ÈB¸B¼LBÀ˜BÄéBÉ?BÍšBÑùBÖ\BÚÃBß-BãšBè Bì}BðñBõfBùÜBþTB‚ÍB‚EB‚ ¾B‚5B‚¬B‚"B‚•B‚"B‚&xB‚*åB‚/OB‚3¶B‚8B‚B‚wAB‚{9B‚(B‚ƒ B‚†çB‚Š·B‚Ž|B‚’5B‚•ãB‚™„B‚B‚ ¢B‚¤B‚§ŠB‚ªêB‚®B‚ÄèB‚Ä’B‚Ä?B‚ÃíB‚ÛB‚ÃKB‚ÂûB‚­B‚Â`B‚ÂB‚ÁÇB‚Á{B‚Á1B‚ÀçB‚ÀB‚ÀTB‚À B‚¿ÂB‚¿zB‚¿2B‚¾êB‚¾¢B‚¾ZB‚¾B‚½ÊB‚½B‚½8B‚¼ïB‚¼¥B‚¼[B‚¼B‚»ÅB‚»zB‚»-B‚ºßB‚º‘B‚ºAB‚¹ñB‚¹ŸB‚¹MB‚¸ùB‚¸¤B‚¸NB‚·öB‚·B‚·BB‚¶æB‚¶ˆB‚¶(B‚µÆB‚µbB‚´ýB‚´–B‰PBBÄB”ŽB˜aBœ=B #B¤B¨ B¬B°B´B¸3B¼OBÀrBÄšBÈÈBÌüBÑ4BÕrBÙ³BÝøBâABæBêÜBï/Bó‚B÷ØBü0B‚ˆB‚áB‚ B‚ÄãB‚ĉB‚Ä1B‚ÃÛB‚ÆB‚Ã3B‚ÂáB‚ÂB‚Â@B‚ÁòB‚Á¥B‚ÁYB‚ÁB‚ÀÃB‚ÀzB‚À1B‚¿éB‚¿¢B‚¿[B‚¿B‚¾ÏB‚¾ŠB‚¾EB‚½ÿB‚½»B‚½vB‚½2B‚¼íB‚¼¨B‚¼dB‚¼B‚»ÙB‚»“B‚»MB‚»B‚º¾B‚ºwB‚º.B‚¹äB‚¹›B‚¹OB‚¹B‚¸¶B‚¸hB‚¸B‚·ÈB‚·uB‚·"B‚¶ÎB‚¶wB‚¶B‚µÅB‚µjB‚µ B‚´®B‚´MB‚³êB‚³…B“PB–ëBšBž=B¡ôB¥µB©B­QB±+BµB¸øB¼êBÀâBÄàBÈæBÌñBÑBÕBÙ2BÝRBáuBåœBéÈBíöBò&BöZBúBþÈB‚B‚;B‚ wB‚²B‚îB‚)B‚eB‚ ŸB‚$ØB‚)B‚-FB‚1yB‚5ªB‚9ØB‚>B‚B+B‚FOB‚JnB‚N‰B‚RžB‚V¯B‚ZºB‚^ÀB‚b¾B‚f¶B‚j¨B‚n’B‚rtB‚vPB‚z!B‚}ëB‚¬B‚…dB‚‰B‚ŒµB‚OB‚“ÞB‚—bB‚šÛB‚žGB‚¡¨B‚¤þB‚¨FB‚«€B‚®®B‚±ÎB‚´àB‚·äB‚ºÙB‚½¾B‚À–B‚Ã\B‚ÆB‚ȺB‚ËOB‚ÍÕB‚ÐGB‚ÒªB‚ÔùB‚×6B‚Ù`B‚ÛwB‚Ý|B‚ßlB‚áGB‚ãB‚äÂB‚æaB‚çÕB‚é B‚êWB‚ëyB‚ì‡B‚íB‚îgB‚ï;B‚ïüB‚ð¬B‚ñIB‚ñÔB‚òPB‚òºB‚óB‚ó_B‚óšB‚óÇB‚óäB‚óõB‚ó÷B‚óìB‚óÔB‚ó°B‚óB‚óCB‚òüB‚òªB‚òLB‚ñçB‚ñvB‚ðýB‚ð{B‚ïðB‚ï^B‚îÃB‚î"B‚ízB‚ìËB‚ìB‚ë]B‚êžB‚éÚB‚éB‚èFB‚çwB‚æ¤B‚åÏB‚ä÷B‚äB‚ãCB‚âgB‚áŠB‚à®B‚ßÐB‚ÞôB‚ÞB‚Ý?B‚ÜgB‚Û‘B‚Ú½B‚ÙíB‚Ù!B‚ØXB‚׎B‚ÖÄB‚ÕþB‚ÕBá;BåB‚äÍB‚æHB‚çšB‚èÁB‚éÕB‚êÕB‚ëÃB‚ìœB‚ícB‚îB‚î¼B‚ïNB‚ïÎB‚ð?B‚ðŸB‚ððB‚ñ0B‚ñcB‚ñ†B‚ñ›B‚ñ¢B‚ñœB‚ñ‰B‚ñiB‚ñ>B‚ñB‚ðÂB‚ðuB‚ðB‚ï¹B‚ïMB‚îÖB‚îWB‚íÐB‚í@B‚ì¨B‚ì B‚ëbB‚êµB‚êB‚éJB‚è‹B‚çÈB‚æÿB‚æ3B‚åbB‚äB‚ã¸B‚âÞB‚âB‚á%B‚àGB‚ßfB‚Þ†B‚Ý¥B‚ÜÄB‚ÛãB‚ÛB‚Ú&B‚ÙIB‚ØoB‚טB‚ÖÂB‚ÕñB‚Õ"B‚ÔYB‚ÓŽB‚ÒÃB‚ÑýB‚Ñ;B‚Ð~B‚ÏÄB‚ÏB‚Î_B‚ͲB‚Í B‚ÌfB‚ËÆB‚Ë)B‚ÊB‚ÉûB‚ÉiB‚ÈÛB‚ÈPB‚ÇÊB‚ÇFB‚ÆÆB‚ÆHB‚ÅÎB‚ÅXB‚ÄãB‚ÄrB‚ÄB‚ØB‚Ã/B‚ÂÈB‚ÂeB‚ÂB‚Á¤B‚ÁHB‚ÀîB‚À–B‚À?B‚¿ëB‚¿™B‚¿IB‚¾úB‚¾®B‚¾bB‚¾B‚½ÑB‚½ŠB‚½EB‚½B‚¼¾B‚¼}B‚¼NB‚B&B‚EüB‚IÏB‚MŸB‚QkB‚U4B‚XøB‚\¹B‚`uB‚d,B‚gÞB‚kŠB‚o0B‚rÐB‚vjB‚yýB‚}ˆB‚ B‚„ŠB‚‡þB‚‹jB‚ŽÌB‚’'B‚•wB‚˜¾B‚›ûB‚Ÿ.B‚¢VB‚¥tB‚¨…B‚«ŒB‚®†B‚±tB‚´VB‚·*B‚¹òB‚¼¬B‚¿XB‚ÁöB‚ĆB‚ÇB‚ÉyB‚ËÛB‚Î.B‚ÐpB‚Ò¢B‚ÔÄB‚ÖÔB‚ØÔB‚ÚÂB‚ÜžB‚ÞgB‚àB‚áÁB‚ãRB‚äÐB‚æ9B‚çyB‚èB‚é‘B‚ê€B‚ë\B‚ì&B‚ìÝB‚í‚B‚îB‚îšB‚ï B‚ïoB‚ïÁB‚ðB‚ð9B‚ð_B‚ðvB‚ðB‚ð{B‚ðjB‚ðLB‚ð"B‚ïíB‚ï¬B‚ï_B‚ïB‚î¦B‚î;B‚íÆB‚íHB‚ìÂB‚ì2B‚ëœB‚êýB‚êXB‚é¬B‚èùB‚è@B‚ç‚B‚æ¾B‚åöB‚å)B‚äXB‚ã„B‚â¬B‚áÒB‚àõB‚àB‚ß6B‚ÞUB‚ÝqB‚ÜB‚Û«B‚ÚÉB‚ÙçB‚ÙB‚Ø&B‚×HB‚ÖnB‚Õ•B‚Ô¿B‚ÓíB‚ÓB‚ÒUB‚ÑŠB‚оB‚ÏøB‚Ï6B‚ÎxB‚ÍÀB‚Í B‚ÌZB‚˯B‚ËB‚ÊdB‚ÉÄB‚É)B‚È‘B‚ÇþB‚ÇmB‚ÆáB‚ÆXB‚ÅÒB‚ÅPB‚ÄÒB‚ÄWB‚ÃßB‚ÃjB‚ÂøB‚ŠB‚ÂB‚ÁµB‚ÁNB‚ÀëB‚ÀŠB‚À+B‚¿ÐB‚¿vB‚¿B‚¾ÉB‚¾vB‚¾&B‚½×B‚½ŠB‚½?B‚¼öB‚¼®B‚¼hB‚¼#B‚»àB‚»ŸB‚»_B‚» B‚ºâB‚º¥B‚ºjB‚º/B‚¹õB‚¹¼B‚¹„B‚¹LB‚¹B‚¸ÞB‚¸¨B‚¸rB‚¸=B‚¸B‚·ÒB‚·œB‚·gB‚·1B‚¶üB‚¶ÆB‚¶B‚¶ZB‚¶"B‚µêB‚µ²B‚µyB‚µ?B‚µB‚´ÉB‚´ŒB‚´NB‚´B‚³ÏB‚³ŽB‚³KB‚³B‚²ÀB‚²xB‚²/B‚±äB‚±—B‚±HB‚°øB‚°¤B‚°OB‚¯øB‚¯žB»ÓB¾þBÂ3BÅpBÈ·BÌBÏ^BÒ½BÖ$BÙ“BÝBà„BäBçBëBî±BòJBõçBùŠBý0B‚ÚB‚ˆB‚8B‚ íB‚¤B‚\B‚B‚ÔB‚’B‚"QB‚&B‚)ÑB‚-“B‚1SB‚5B‚8ÒB‚B‚Ê™B‚ÌäB‚Ï B‚ÑLB‚ÓhB‚ÕuB‚×pB‚ÙZB‚Û3B‚ÜüB‚Þ±B‚àTB‚áæB‚ãcB‚äÏB‚æ&B‚çTB‚èXB‚éIB‚ê'B‚êòB‚ë«B‚ìSB‚ìèB‚ínB‚íãB‚îFB‚î›B‚îàB‚ïB‚ï=B‚ïVB‚ïaB‚ï_B‚ïPB‚ï4B‚ï B‚î×B‚î–B‚îLB‚íöB‚í–B‚í,B‚ì¸B‚ì;B‚ëµB‚ë'B‚ê’B‚éóB‚éNB‚è¢B‚çðB‚ç7B‚æxB‚åµB‚äìB‚ä B‚ãNB‚âyB‚á¡B‚àÅB‚ßçB‚ßB‚Þ%B‚ÝBB‚Ü]B‚ÛxB‚Ú“B‚Ù­B‚ØÈB‚×åB‚×B‚Ö"B‚ÕCB‚ÔgB‚ÓŽB‚Ò·B‚ÑäB‚ÑB‚ÐLB‚ÏB‚εB‚ÍîB‚Í,B‚ÌoB‚Ë·B‚ËB‚ÊSB‚ɨB‚ÉB‚È^B‚ÇÀB‚Ç&B‚ÆB‚ÅüB‚ÅnB‚ÄãB‚Ä\B‚ÃÙB‚ÃYB‚ÂÝB‚ÂdB‚ÁîB‚Á|B‚Á B‚À B‚À6B‚¿ÐB‚¿lB‚¿ B‚¾®B‚¾RB‚½úB‚½£B‚½NB‚¼ýB‚¼®B‚¼`B‚¼B‚»ËB‚»„B‚»>B‚ºúB‚º¸B‚ºwB‚º8B‚¹úB‚¹¾B‚¹ƒB‚¹IB‚¹B‚¸ÙB‚¸¢B‚¸lB‚¸7B‚¸B‚·ÐB‚·B‚·jB‚·8B‚·B‚¶ÕB‚¶¤B‚¶rB‚¶BB‚¶B‚µàB‚µ®B‚µ|B‚µJB‚µB‚´åB‚´±B‚´|B‚´HB‚´B‚³ÜB‚³¤B‚³jB‚³1B‚²öB‚²ºB‚²|B‚²ìB‚B‹B‚F(B‚IÄB‚M^B‚PöB‚TŠB‚XB‚[¬B‚_7B‚b¿B‚fBB‚iÁB‚mB‚­B‚¯ìB‚²²B‚µlB‚¸B‚º¼B‚½QB‚¿ÚB‚ÂTB‚ÄÂB‚Ç"B‚ÉsB‚˶B‚ÍêB‚ÐB‚Ò&B‚Ô,B‚Ö"B‚Ø B‚ÙÞB‚Û£B‚ÝVB‚ÞøB‚àˆB‚âB‚ãrB‚äËB‚æB‚ç-B‚èB‚èþB‚éËB‚ê„B‚ë.B‚ëÅB‚ìKB‚ìÁB‚í'B‚í|B‚íÃB‚íúB‚î#B‚î=B‚îIB‚îHB‚î:B‚î B‚íøB‚íÅB‚í†B‚í B‚A‹B‚E B‚H‹B‚L B‚O†B‚SB‚VyB‚YïB‚]bB‚`ÒB‚d?B‚g¨B‚k B‚nmB‚qÉB‚u B‚xrB‚{¾B‚B‚‚EB‚…B‚ˆ²B‚‹ßB‚B‚’!B‚•7B‚˜DB‚›JB‚žFB‚¡9B‚¤#B‚§B‚©ÙB‚¬¥B‚¯fB‚²B‚´ÈB‚·hB‚¹üB‚¼…B‚¿B‚ÁpB‚ÃÒB‚Æ(B‚ÈoB‚ʨB‚ÌÔB‚ÎñB‚ÑB‚ÒÿB‚ÔïB‚ÖÐB‚Ø¡B‚ÚaB‚ÜB‚ݰB‚ß?B‚à»B‚â&B‚ãB‚äÅB‚åúB‚çB‚çãB‚è±B‚élB‚êB‚ê®B‚ë4B‚ë«B‚ìB‚ìiB‚ì¯B‚ìèB‚íB‚í,B‚í:B‚í:B‚í,B‚íB‚ììB‚ìºB‚ì|B‚ì2B‚ëÞB‚ë€B‚ëB‚ê¤B‚ê(B‚é¤B‚éB‚è‚B‚çäB‚ç?B‚æ”B‚åáB‚å(B‚äiB‚ã¥B‚âÜB‚â B‚á;B‚àdB‚ߊB‚Þ¬B‚ÝÌB‚ÜéB‚ÜB‚ÛB‚Ú5B‚ÙLB‚ØcB‚×yB‚ÖŽB‚Õ¥B‚Ô¼B‚ÓÖB‚ÒðB‚Ò B‚Ñ+B‚ÐMB‚ÏrB‚ΜB‚ÍÈB‚ÌøB‚Ì/B‚ËcB‚Ê—B‚ÉÑB‚ÉB‚ÈRB‚ÇšB‚ÆçB‚Æ:B‚ÅB‚ÄëB‚ÄJB‚ïB‚ÃB‚„B‚ÁõB‚ÁiB‚ÀâB‚À^B‚¿àB‚¿cB‚¾ëB‚¾wB‚¾B‚½˜B‚½.B‚¼ÇB‚¼dB‚¼B‚»¥B‚»KB‚ºóB‚ºžB‚ºKB‚¹üB‚¹®B‚¹cB‚¹B‚¸ÔB‚¸B‚¸NB‚¸B‚·ÐB‚·”B‚·ZB‚·!B‚¶êB‚¶´B‚¶€B‚¶MB‚¶B‚µìB‚µ¼B‚µB‚µaB‚µ5B‚µ B‚´ÞB‚´´B‚´‹B‚´aB‚´8B‚´B‚³çB‚³¿B‚³—B‚³oB‚³GB‚³B‚²õB‚²ÌB‚²¡B‚²xB‚²MB‚²!B‚±õB‚±ÈB‚±™B‚±jB‚±:B‚±B‚°ÖB‚°¢B‚°lB‚°5B‚¯üB‚¯ÂB‚¯†B‚¯HB‚¯B‚®ÆB‚®‚B‚®;B‚­óB‚­¨B‚­ZB‚­ BÚ¦BÝ}Bà]BãFBæ6Bé/Bì/Bï7BòEBõ[BøxBû™BþÂB‚ðB‚$B‚\B‚ ™B‚ÛB‚!B‚kB‚¸B‚ B‚^B‚"´B‚& B‚)hB‚,ÆB‚0$B‚3„B‚6æB‚:GB‚=ªB‚A B‚DoB‚GÐB‚K2B‚N’B‚QðB‚UNB‚X©B‚\B‚_YB‚b­B‚eýB‚iKB‚l•B‚oÛB‚sB‚vZB‚y’B‚|ÆB‚ôB‚ƒB‚†?B‚‰[B‚ŒqB‚B‚’‡B‚•ˆB‚˜€B‚›qB‚žYB‚¡9B‚¤B‚¦ÞB‚©¢B‚¬\B‚¯ B‚±´B‚´OB‚¶àB‚¹fB‚»àB‚¾NB‚À±B‚ÃB‚ÅQB‚ÇB‚ɼB‚ËÞB‚ÍòB‚ÏøB‚ÑðB‚ÓØB‚Õ²B‚×|B‚Ù8B‚ÚãB‚ÜB‚Þ B‚߃B‚àíB‚âDB‚ãŒB‚äÀB‚åâB‚æÙB‚ç§B‚ècB‚é B‚é¤B‚ê+B‚ê£B‚ë B‚ë`B‚ë¨B‚ëàB‚ì B‚ì&B‚ì4B‚ì4B‚ì(B‚ìB‚ëèB‚ë¶B‚ëyB‚ë/B‚êÜB‚ê}B‚êB‚é¢B‚é'B‚è¢B‚èB‚çB‚æâB‚æ=B‚å‘B‚äÞB‚ä%B‚ãfB‚â¡B‚á×B‚áB‚à4B‚ß\B‚ÞB‚Ý¢B‚ÜÀB‚ÛÜB‚ÚõB‚Ú B‚Ù"B‚Ø8B‚×KB‚Ö_B‚ÕsB‚Ô†B‚Ó›B‚Ò±B‚ÑÈB‚ÐáB‚ÏüB‚ÏB‚Î;B‚Í`B‚̈B‚Ë´B‚ÊäB‚ÊB‚ÉOB‚ȃB‚ǼB‚ÆûB‚Æ?B‚ŇB‚ÄÖB‚Ä(B‚ÀB‚ÂÜB‚Â=B‚Á¢B‚Á B‚ÀzB‚¿ìB‚¿cB‚¾ÞB‚¾\B‚½ßB‚½fB‚¼ðB‚¼~B‚¼B‚»¤B‚»=B‚ºÙB‚ºxB‚ºB‚¹ÀB‚¹hB‚¹B‚¸ÂB‚¸sB‚¸'B‚·ÝB‚·–B‚·RB‚·B‚¶ÎB‚¶B‚¶TB‚¶B‚µâB‚µ¬B‚µxB‚µEB‚µB‚´äB‚´µB‚´ˆB‚´\B‚´1B‚´B‚³ßB‚³·B‚³B‚³jB‚³DB‚³B‚²úB‚²ÖB‚²²B‚²ŽB‚²jB‚²HB‚²$B‚±ÿB‚±ÜB‚±·B‚±“B‚±nB‚±HB‚±"B‚°ûB‚°ÔB‚°ªB‚°€B‚°VB‚°*B‚¯ýB‚¯ÎB‚¯žB‚¯nB‚¯:B‚¯B‚®ÐB‚®—B‚®^B‚®"B‚­ãB‚­¤B‚­`B‚­B‚¬ÕB‚¬‹B‚¬?BåBç¾BêBíLBð BòûBõßBøÉBûºBþ±B‚°B‚´B‚¾B‚ ÎB‚ âB‚üB‚B‚>B‚eB‚B‚ ½B‚#ïB‚'#B‚*[B‚-•B‚0ÐB‚4B‚7MB‚:B‚=ÏB‚AB‚DTB‚G–B‚JÙB‚NB‚Q\B‚TB‚WÜB‚[B‚^VB‚aB‚dÆB‚gûB‚k-B‚n[B‚q†B‚t¬B‚wÏB‚zîB‚~B‚B‚„,B‚‡6B‚Š:B‚9B‚0B‚“!B‚– B‚˜îB‚›ÊB‚žžB‚¡iB‚¤,B‚¦çB‚©˜B‚¬AB‚®àB‚±tB‚´B‚¶B‚¸öB‚»bB‚½ÂB‚ÀB‚Â_B‚ÄœB‚ÆÍB‚ÈðB‚ËB‚ÍB‚Ï B‚ÐüB‚ÒÜB‚Ô¯B‚ÖrB‚Ø'B‚ÙÍB‚ÛbB‚ÜéB‚Þ_B‚߯B‚áB‚â_B‚ã“B‚ä¶B‚åÆB‚æ¬B‚çgB‚èB‚è§B‚é/B‚é¦B‚ê B‚êcB‚êªB‚êäB‚ë B‚ë)B‚ë7B‚ë7B‚ë+B‚ëB‚êëB‚ê¹B‚ê{B‚ê2B‚éÞB‚é€B‚éB‚è¥B‚è*B‚ç¤B‚çB‚æ‚B‚åãB‚å>B‚ä’B‚ãßB‚ã$B‚âeB‚áŸB‚àÔB‚àB‚ß0B‚ÞVB‚ÝzB‚ÜšB‚Û·B‚ÚÐB‚ÙèB‚ØýB‚ØB‚×$B‚Ö6B‚ÕGB‚ÔXB‚ÓiB‚Ò{B‚ÑŽB‚ТB‚Ï·B‚ÎÏB‚ÍêB‚ÍB‚Ì&B‚ËJB‚ÊrB‚ÉžB‚ÈÏB‚ÈB‚Ç9B‚ÆnB‚ŦB‚ÄæB‚Ä*B‚ÃsB‚ÂÂB‚ÂB‚ÁmB‚ÀËB‚À.B‚¿”B‚¾ÿB‚¾oB‚½ãB‚½[B‚¼ØB‚¼YB‚»ÞB‚»fB‚ºôB‚º„B‚ºB‚¹°B‚¹LB‚¸êB‚¸B‚¸2B‚·ÛB‚·†B‚·6B‚¶çB‚¶œB‚¶SB‚¶ B‚µÉB‚µˆB‚µJB‚µB‚´ÓB‚´›B‚´fB‚´2B‚´B‚³ÏB‚³ B‚³tB‚³HB‚³B‚²õB‚²ÎB‚²¨B‚²ƒB‚²_B‚²B‚°B‚¯ûB‚¯ØB‚¯¶B‚¯‘B‚¯lB‚¯FB‚¯B‚®öB‚®ÌB‚® B‚®tB‚®EB‚®B‚­âB‚­¯B‚­yB‚­AB‚­B‚¬ÊB‚¬ŒB‚¬JB‚¬B‚«ÁB‚«xBïfBòBô©B÷XBúBüÍBÿ“B‚_B‚3B‚ B‚ ìB‚ ÒB‚¾B‚¯B‚¥B‚¡B‚ B‚¤B‚"¬B‚%¸B‚(ÆB‚+ØB‚.îB‚2B‚5B‚8yB‚AšB‚D¼B‚GÝB‚KB‚N$B‚QFB‚TiB‚WŠB‚Z«B‚]ËB‚`èB‚dB‚gB‚j7B‚mLB‚p^B‚smB‚vxB‚y€B‚|„B‚„B‚‚B‚…uB‚ˆfB‚‹RB‚Ž8B‚‘B‚“ñB‚–ÅB‚™‘B‚œWB‚ŸB‚¡ÌB‚¤zB‚§!B‚©¾B‚¬TB‚®áB‚±dB‚³ÞB‚¶MB‚¸³B‚»B‚½_B‚¿¤B‚ÁßB‚ÄB‚Æ2B‚ÈJB‚ÊTB‚ÌSB‚ÎEB‚Ð)B‚ÒB‚ÓÉB‚Õ„B‚×2B‚ØÐB‚Ú`B‚ÛáB‚ÝSB‚ÞµB‚àB‚áIB‚âzB‚ãšB‚äªB‚å¨B‚æ{B‚ç$B‚ç»B‚èBB‚è¸B‚éB‚étB‚é»B‚éóB‚êB‚ê7B‚êDB‚êDB‚ê8B‚êB‚é÷B‚éÅB‚é‡B‚é=B‚èéB‚èŠB‚è"B‚ç®B‚ç2B‚æ­B‚æB‚åˆB‚äêB‚äDB‚ã—B‚âãB‚â(B‚ágB‚à B‚ßÔB‚ßB‚Þ-B‚ÝSB‚ÜuB‚Û“B‚Ú®B‚ÙÆB‚ØÜB‚×ðB‚×B‚ÖB‚Õ!B‚Ô/B‚Ó>B‚ÒKB‚Ñ[B‚ÐkB‚Ï{B‚ÎB‚Í¢B‚̸B‚ËÑB‚ÊíB‚Ê B‚É0B‚ÈWB‚ǃB‚Æ´B‚ÅéB‚ÅB‚ÄRB‚ÃŒB‚ÂËB‚ÂB‚ÁZB‚À©B‚¿þB‚¿WB‚¾¶B‚¾B‚½B‚¼ïB‚¼`B‚»ÕB‚»PB‚ºÏB‚ºRB‚¹ÙB‚¹dB‚¸ôB‚¸‡B‚¸B‚·¹B‚·WB‚¶ùB‚¶žB‚¶GB‚µóB‚µ¢B‚µTB‚µ B‚´ÂB‚´}B‚´;B‚³ûB‚³¾B‚³ƒB‚³KB‚³B‚²áB‚²°B‚²€B‚²RB‚²&B‚±üB‚±ÔB‚±­B‚±ˆB‚±dB‚±AB‚±B‚°ÿB‚°àB‚°ÁB‚°¤B‚°†B‚°jB‚°OB‚°4B‚°B‚¯ÿB‚¯åB‚¯ËB‚¯±B‚¯—B‚¯|B‚¯bB‚¯HB‚¯,B‚¯B‚®õB‚®ØB‚®»B‚®œB‚®}B‚®]B‚®;B‚®B‚­ôB‚­ÏB‚­¨B‚­€B‚­VB‚­*B‚¬üB‚¬ÌB‚¬›B‚¬gB‚¬2B‚«ùB‚«¾B‚«‚B‚«BB‚«B‚ª»BùÔBüUBþßB‚pB‚ B‚ªB‚ SB‚ B‚·B‚rB‚4B‚üB‚ÈB‚›B‚sB‚"NB‚%/B‚(B‚*üB‚-éB‚0ØB‚3ËB‚6ÀB‚9¸B‚<²B‚?®B‚B­B‚E­B‚H®B‚K¯B‚N±B‚Q´B‚T¸B‚WºB‚Z½B‚]¾B‚`¿B‚c¿B‚f½B‚i¹B‚l´B‚o¬B‚r¡B‚u”B‚x„B‚{pB‚~YB‚=B‚„B‚†ùB‚‰ÑB‚Œ£B‚pB‚’8B‚”úB‚—µB‚škB‚B‚ŸÁB‚¢bB‚¤üB‚§B‚ªB‚¬˜B‚¯B‚±‚B‚³éB‚¶GB‚¸›B‚ºæB‚½&B‚¿\B‚ÁˆB‚èB‚žB‚ÇÈB‚ÉÆB‚˸B‚ÍžB‚ÏxB‚ÑDB‚ÓB‚Ô¶B‚ÖZB‚×ñB‚ÙyB‚ÚóB‚Ü^B‚Ý»B‚ßB‚àFB‚átB‚â’B‚ã B‚äB‚å‰B‚æJB‚æàB‚çeB‚çÙB‚è>B‚è“B‚èÙB‚éB‚é8B‚éSB‚é`B‚é_B‚éPB‚é6B‚éB‚èÛB‚èœB‚èRB‚çýB‚çžB‚ç4B‚æÀB‚æCB‚å½B‚å.B‚ä–B‚ãøB‚ãPB‚â¢B‚áìB‚á0B‚ànB‚ߦB‚ÞÚB‚ÞB‚Ý/B‚ÜTB‚ÛtB‚ÚB‚ÙªB‚ØÀB‚×ÓB‚ÖåB‚ÕôB‚ÕB‚ÔB‚ÓB‚Ò'B‚Ñ2B‚Ð>B‚ÏKB‚ÎXB‚ÍgB‚ÌxB‚ËŠB‚ÊŸB‚É·B‚ÈÓB‚ÇòB‚ÇB‚Æ;B‚ÅgB‚ĘB‚ÃÍB‚ÃB‚Â7B‚ÁqB‚À°B‚¿õB‚¿@B‚¾B‚½åB‚½@B‚¼ B‚¼B‚»oB‚ºÝB‚ºQB‚¹ÈB‚¹EB‚¸ÆB‚¸KB‚·ÔB‚·cB‚¶ôB‚¶‹B‚¶$B‚µÂB‚µcB‚µB‚´±B‚´]B‚´ B‚³¿B‚³uB‚³.B‚²êB‚²¨B‚²jB‚².B‚±õB‚±¾B‚±ŠB‚±YB‚±)B‚°üB‚°ÑB‚°§B‚°€B‚°[B‚°6B‚°B‚¯ôB‚¯ÕB‚¯¶B‚¯šB‚¯~B‚¯dB‚¯JB‚¯2B‚¯B‚¯B‚®ìB‚®ÕB‚®ÀB‚®«B‚®•B‚®€B‚®lB‚®WB‚®BB‚®,B‚®B‚®B‚­êB‚­ÓB‚­»B‚­¢B‚­ˆB‚­nB‚­RB‚­6B‚­B‚¬ùB‚¬×B‚¬µB‚¬‘B‚¬lB‚¬EB‚¬B‚«ïB‚«ÂB‚«“B‚«bB‚«.B‚ª÷B‚ª¾B‚ª‚B‚ªDB‚ªB‚IB‚®B‚ B‚ B‚ B‚B‚B‚ªB‚BB‚ÞB‚‚B‚ +B‚"ÚB‚%B‚(FB‚+B‚-ÄB‚0‰B‚3RB‚6B‚8ïB‚;ÂB‚>˜B‚ApB‚DKB‚G(B‚JB‚LåB‚OÆB‚R¨B‚UŠB‚XmB‚[OB‚^2B‚aB‚cöB‚f×B‚i·B‚l•B‚oqB‚rLB‚u$B‚wúB‚zÍB‚}B‚€jB‚ƒ3B‚…øB‚ˆºB‚‹wB‚Ž/B‚âB‚“‘B‚–:B‚˜ÞB‚›{B‚žB‚ £B‚£-B‚¥°B‚¨,B‚ª¡B‚­B‚¯rB‚±ÐB‚´#B‚¶oB‚¸±B‚ºêB‚½B‚¿>B‚ÁZB‚ÃjB‚ÅqB‚ÇlB‚É\B‚ËAB‚ÍB‚ÎèB‚ЩB‚Ò^B‚ÔB‚Õ B‚×.B‚Ø®B‚Ú!B‚Û„B‚ÜÚB‚Þ"B‚ß[B‚à„B‚áŸB‚â©B‚ã£B‚äŽB‚åhB‚æB‚æ™B‚ç B‚çpB‚çÃB‚èB‚è=B‚èdB‚è|B‚è†B‚è…B‚èuB‚èYB‚è0B‚çüB‚ç¼B‚çpB‚çB‚æºB‚æNB‚åÙB‚å[B‚äÔB‚äDB‚ã«B‚ã B‚âbB‚á²B‚àüB‚à>B‚ßzB‚Þ±B‚ÝâB‚ÝB‚Ü5B‚ÛXB‚ÚvB‚ÙB‚بB‚×¼B‚ÖÍB‚ÕÜB‚ÔêB‚ÓöB‚ÒÿB‚Ò B‚ÑB‚ÐB‚Ï#B‚Î-B‚Í6B‚ÌAB‚ËNB‚Ê]B‚ÉoB‚ȃB‚Ç™B‚Æ´B‚ÅÒB‚ÄôB‚ÄB‚ÃFB‚ÂwB‚Á­B‚ÀâB‚ÀB‚¿PB‚¾‘B‚½ÖB‚½"B‚¼tB‚»ÊB‚»&B‚º‡B‚¹íB‚¹XB‚¸ÉB‚¸>B‚·¹B‚·7B‚¶ºB‚¶BB‚µÎB‚µ^B‚´óB‚´ŒB‚´(B‚³ÈB‚³nB‚³B‚²ÁB‚²qB‚²$B‚±ÚB‚±”B‚±PB‚±B‚°ÒB‚°˜B‚°aB‚°,B‚¯úB‚¯ÊB‚¯œB‚¯rB‚¯IB‚¯"B‚®ýB‚®ÚB‚®ºB‚®šB‚®}B‚®aB‚®FB‚®-B‚®B‚­ÿB‚­êB‚­ÔB‚­ÁB‚­®B‚­œB‚­‹B‚­zB‚­iB‚­YB‚­IB‚­9B‚­)B‚­B‚­ B‚¬ùB‚¬èB‚¬×B‚¬ÆB‚¬´B‚¬¡B‚¬B‚¬xB‚¬cB‚¬MB‚¬4B‚¬B‚¬B‚«æB‚«ÈB‚«¨B‚«ˆB‚«eB‚«@B‚«B‚ªðB‚ªÆB‚ª™B‚ªhB‚ª6B‚ªB‚©ÊB‚©B‚©RB‚ÆB‚B‚^B‚´B‚B‚yB‚æB‚YB‚!ÒB‚$RB‚&ÖB‚)`B‚+ðB‚.…B‚1B‚3¼B‚6]B‚9B‚;­B‚>[B‚A B‚C¿B‚FtB‚I,B‚KçB‚N¤B‚QbB‚T"B‚VãB‚Y£B‚\fB‚_)B‚aëB‚d®B‚gpB‚j2B‚lóB‚o²B‚rpB‚u-B‚wçB‚z B‚}VB‚€ B‚‚¹B‚…gB‚ˆB‚жB‚XB‚öB‚’B‚•$B‚—´B‚š>B‚œÃB‚ŸBB‚¡»B‚¤.B‚¦›B‚©B‚«_B‚­·B‚°B‚²NB‚´ŽB‚¶ÆB‚¸õB‚»B‚½9B‚¿MB‚ÁWB‚ÃXB‚ÅNB‚Ç:B‚ÉB‚ÊòB‚̾B‚Î~B‚Ð2B‚ÑÛB‚ÓwB‚ÕB‚Ö‹B‚ØB‚ÙkB‚ÚÇB‚ÜB‚ÝVB‚Þ‰B‚߬B‚àÁB‚áÈB‚â¿B‚ã¦B‚ä~B‚åFB‚åâB‚æSB‚æ³B‚çB‚çFB‚çxB‚çžB‚çµB‚ç½B‚ç¹B‚ç¨B‚çŠB‚ç`B‚ç)B‚æçB‚æšB‚æBB‚åàB‚åtB‚äþB‚ä|B‚ãôB‚ãbB‚âÈB‚â&B‚á|B‚àÊB‚àB‚ßSB‚ÞŽB‚ÝÂB‚ÜòB‚ÜB‚Û@B‚ÚaB‚Ù}B‚Ø–B‚׫B‚Ö¼B‚ÕÌB‚ÔØB‚ÓãB‚ÒìB‚ÑóB‚ÐúB‚ÐB‚ÏB‚Î B‚ÍB‚ÌB‚Ë B‚Ê)B‚É4B‚ÈAB‚ÇQB‚ÆdB‚ÅzB‚Ä“B‚ðB‚ÂÒB‚ÁùB‚Á$B‚ÀTB‚¿ŠB‚¾ÀB‚½ôB‚½/B‚¼pB‚»¶B‚»B‚ºUB‚¹­B‚¹ B‚¸lB‚·ÔB‚·AB‚¶³B‚¶+B‚µ¦B‚µ'B‚´¬B‚´7B‚³ÆB‚³XB‚²ðB‚²ŒB‚²+B‚±ÏB‚±vB‚±"B‚°ÒB‚°„B‚°:B‚¯õB‚¯²B‚¯rB‚¯6B‚®ýB‚®ÆB‚®“B‚®bB‚®4B‚® B‚­àB‚­¹B‚­•B‚­sB‚­SB‚­5B‚­B‚¬þB‚¬æB‚¬ÏB‚¬¹B‚¬¥B‚¬’B‚¬€B‚¬pB‚¬`B‚¬RB‚¬DB‚¬8B‚¬+B‚¬B‚¬B‚¬ B‚«þB‚«óB‚«éB‚«ÞB‚«ÓB‚«ÈB‚«½B‚«°B‚«¤B‚«˜B‚«ŠB‚«{B‚«lB‚«\B‚«IB‚«7B‚«#B‚«B‚ªöB‚ªÞB‚ªÄB‚ª¨B‚ª‰B‚ªiB‚ªHB‚ª"B‚©üB‚©ÓB‚©¨B‚©zB‚©IB‚©B‚¨ÞB‚¨¦B‚LB‚wB‚©B‚ãB‚"$B‚$lB‚&¼B‚)B‚+kB‚-ÌB‚02B‚2žB‚5B‚7„B‚9þB‚<|B‚>ÿB‚A†B‚DB‚FžB‚I.B‚KÂB‚NXB‚PðB‚SŠB‚V'B‚XÄB‚[dB‚^B‚`¥B‚cGB‚eéB‚hB‚k.B‚mÐB‚prB‚sB‚u²B‚xOB‚zìB‚}†B‚€B‚‚µB‚…HB‚‡ÙB‚ŠfB‚ŒðB‚vB‚‘úB‚”xB‚–òB‚™hB‚›ØB‚žDB‚ «B‚£ B‚¥fB‚§»B‚ª B‚¬QB‚®’B‚°ÍB‚²ÿB‚µ*B‚·NB‚¹hB‚»{B‚½†B‚¿‡B‚Á€B‚ÃoB‚ÅTB‚Ç0B‚ÉB‚ÊÊB‚̆B‚Î8B‚ÏàB‚Ñ{B‚Ó B‚ÔB‚ÖB‚×tB‚ØÔB‚Ú'B‚ÛlB‚Ü¥B‚ÝÏB‚ÞìB‚ßüB‚àýB‚áîB‚âÒB‚ã¦B‚älB‚å!B‚å«B‚æ B‚æVB‚æ•B‚æÆB‚æèB‚æüB‚çB‚æûB‚æèB‚æÈB‚æ›B‚æcB‚æB‚åÏB‚åvB‚åB‚ä¢B‚ä*B‚ã¨B‚ãB‚â‰B‚áìB‚áHB‚àœB‚ßéB‚ß/B‚ÞnB‚ݦB‚ÜÙB‚ÜB‚Û.B‚ÚQB‚ÙoB‚؉B‚× B‚Ö²B‚ÕÁB‚ÔÎB‚ÓØB‚ÒßB‚ÑæB‚ÐêB‚ÏîB‚ÎñB‚ÍóB‚ÌöB‚ËøB‚ÊüB‚ÊB‚ÉB‚È B‚ÇB‚Æ!B‚Å0B‚ÄAB‚ÃVB‚ÂnB‚ÁŒB‚À­B‚¿ÓB‚¾þB‚¾.B‚½fB‚¼›B‚»ÐB‚» B‚ºLB‚¹”B‚¸áB‚¸4B‚·B‚¶ëB‚¶OB‚µ¸B‚µ(B‚´›B‚´B‚³’B‚³B‚²B‚²*B‚±»B‚±RB‚°ëB‚°ŠB‚°-B‚¯ÔB‚¯~B‚¯-B‚®àB‚®—B‚®QB‚®B‚­ÐB‚­”B‚­\B‚­&B‚¬õB‚¬ÅB‚¬˜B‚¬oB‚¬HB‚¬$B‚¬B‚«âB‚«ÅB‚«ªB‚«B‚«yB‚«dB‚«PB‚«>B‚«-B‚«B‚«B‚«B‚ªùB‚ªîB‚ªåB‚ªÜB‚ªÕB‚ªÎB‚ªÈB‚ªÁB‚ª»B‚ª¶B‚ª±B‚ª«B‚ª¦B‚ª¡B‚ª›B‚ª”B‚ªŽB‚ª‡B‚ªB‚ªwB‚ªnB‚ªdB‚ªXB‚ªKB‚ª>B‚ª.B‚ªB‚ª B‚©ùB‚©ãB‚©ÌB‚©³B‚©—B‚©zB‚©ZB‚©8B‚©B‚¨íB‚¨ÄB‚¨–B‚¨gB‚¨6B‚¨B‚#ÚB‚%èB‚'þB‚*B‚,>B‚.hB‚0˜B‚2ÏB‚5 B‚7NB‚9–B‚;âB‚>4B‚@‹B‚BåB‚EDB‚G§B‚JB‚LyB‚NæB‚QWB‚SËB‚VAB‚X¸B‚[3B‚]®B‚`-B‚b¬B‚e,B‚g¬B‚j.B‚l°B‚o2B‚q´B‚t5B‚v¶B‚y6B‚{¶B‚~3B‚€¯B‚ƒ*B‚…¡B‚ˆB‚Š‹B‚ŒüB‚iB‚‘ÔB‚”:B‚–žB‚˜ýB‚›XB‚®B‚ B‚¢LB‚¤”B‚¦ÖB‚©B‚«JB‚­zB‚¯¤B‚±ÈB‚³äB‚µúB‚¸B‚ºB‚¼ B‚¾B‚¿òB‚ÁØB‚ôB‚ňB‚ÇSB‚ÉB‚ÊËB‚ÌxB‚ÎB‚Ï´B‚ÑBB‚ÒÄB‚ÔB‚ºtB‚¹©B‚¸åB‚¸'B‚·oB‚¶½B‚¶B‚µkB‚´ËB‚´0B‚³›B‚³ B‚²B‚±ýB‚±}B‚±B‚°ŒB‚°B‚¯°B‚¯HB‚®æB‚®ˆB‚®.B‚­ØB‚­†B‚­8B‚¬îB‚¬¨B‚¬fB‚¬(B‚«íB‚«¶B‚«B‚«PB‚«"B‚ª÷B‚ªÏB‚ªªB‚ªˆB‚ªhB‚ªJB‚ª0B‚ªB‚ªB‚©ìB‚©ÚB‚©ÊB‚©»B‚©®B‚©¢B‚©˜B‚©B‚©‰B‚©‚B‚©~B‚©yB‚©vB‚©tB‚©rB‚©qB‚©pB‚©pB‚©pB‚©pB‚©pB‚©pB‚©pB‚©pB‚©oB‚©nB‚©lB‚©jB‚©gB‚©cB‚©]B‚©WB‚©PB‚©HB‚©=B‚©2B‚©%B‚©B‚©B‚¨ôB‚¨àB‚¨ÊB‚¨°B‚¨–B‚¨xB‚¨YB‚¨5B‚¨B‚§éB‚§¾B‚§B‚§_B‚.lB‚0^B‚2VB‚4UB‚6[B‚8gB‚:yB‚<’B‚>°B‚@ÓB‚BüB‚E*B‚G\B‚I”B‚KÏB‚NB‚PSB‚RšB‚TåB‚W2B‚Y‚B‚[ÖB‚^,B‚`„B‚bÞB‚e:B‚g˜B‚iöB‚lUB‚n¶B‚qB‚sxB‚uÚB‚x;B‚zœB‚|ýB‚\B‚»B‚„B‚†tB‚ˆÎB‚‹&B‚|B‚ÏB‚’ B‚”nB‚–¸B‚˜ÿB‚›CB‚ƒB‚Ÿ¾B‚¡öB‚¤(B‚¦VB‚¨B‚ª¢B‚¬ÁB‚®ÙB‚°ëB‚²øB‚´ýB‚¶üB‚¸õB‚ºæB‚¼ÏB‚¾±B‚ÀŒB‚Â^B‚Ä(B‚ÅèB‚Ç¡B‚ÉQB‚Ê÷B‚Ì”B‚Î&B‚ϰB‚Ñ/B‚Ò£B‚Ô B‚ÕlB‚ÖÀB‚ØB‚ÙFB‚ÚvB‚Û›B‚ܵB‚ÝÁB‚ÞÀB‚ß³B‚à˜B‚áoB‚â:B‚âõB‚ã£B‚äCB‚äÔB‚å9B‚åpB‚å™B‚å´B‚åÂB‚åÁB‚å´B‚åšB‚åsB‚åAB‚åB‚ä¹B‚ädB‚äB‚ãšB‚ã&B‚â¨B‚â B‚á‘B‚àøB‚àVB‚߬B‚ÞüB‚ÞDB‚Ý„B‚ܽB‚ÛñB‚ÛB‚ÚFB‚ÙiB‚؆B‚× B‚Ö´B‚ÕÅB‚ÔÒB‚ÓÜB‚ÒâB‚ÑçB‚ÐéB‚ÏèB‚ÎçB‚ÍäB‚ÌàB‚ËÛB‚ÊØB‚ÉÒB‚ÈÎB‚ÇËB‚ÆÉB‚ÅÈB‚ÄÉB‚ÃÌB‚ÂÒB‚ÁÚB‚ÀçB‚¿õB‚¿B‚¾ B‚½;B‚¼[B‚»‚B‚º¬B‚¹ÞB‚¹B‚¸KB‚·B‚¶½B‚¶B‚µHB‚´—B‚³íB‚³HB‚²©B‚²B‚±}B‚°ðB‚°gB‚¯äB‚¯fB‚®ïB‚®{B‚® B‚­¤B‚­@B‚¬ßB‚¬„B‚¬-B‚«ÛB‚«ŒB‚«BB‚ªüB‚ªºB‚ª|B‚ªAB‚ª B‚©ÖB‚©¦B‚©yB‚©PB‚©*B‚©B‚¨åB‚¨ÈB‚¨¬B‚¨”B‚¨~B‚¨jB‚¨XB‚¨IB‚¨—B‚@€B‚BnB‚DbB‚F\B‚H[B‚J`B‚LjB‚NzB‚PŒB‚R¤B‚TÁB‚VáB‚YB‚[,B‚]WB‚_…B‚aµB‚cèB‚fB‚hVB‚jB‚lÊB‚oB‚qEB‚s…B‚uÄB‚xB‚zFB‚|†B‚~ÇB‚B‚ƒHB‚…‡B‚‡ÄB‚ŠB‚Œ=B‚ŽvB‚®B‚’äB‚•B‚—GB‚™uB‚› B‚ÈB‚ŸëB‚¢ B‚¤(B‚¦@B‚¨SB‚ªaB‚¬lB‚®pB‚°pB‚²jB‚´^B‚¶LB‚¸4B‚ºB‚»ðB‚½ÄB‚¿‘B‚ÁVB‚ÃB‚ÄÊB‚ÆxB‚ÈB‚É»B‚ËNB‚ÌÚB‚Î\B‚ÏÕB‚ÑEB‚ÒªB‚ÔB‚ÕVB‚Ö›B‚××B‚ÙB‚Ú-B‚ÛFB‚ÜTB‚ÝWB‚ÞMB‚ß6B‚àB‚àäB‚á§B‚â]B‚ãB‚ã B‚ä,B‚ä«B‚äüB‚å!B‚å8B‚åAB‚åB‚݆B‚ÜÆB‚ÜB‚Û4B‚ÚaB‚ÙˆB‚Ø©B‚×ÅB‚ÖÜB‚ÕîB‚ÔüB‚ÔB‚ÓB‚ÒB‚ÑB‚Ð B‚ÏB‚ÎB‚ÌøB‚ËîB‚ÊãB‚É×B‚ÈËB‚ǾB‚ƲB‚ŧB‚ÄœB‚ÔB‚ÂŒB‚Á‡B‚ÀƒB‚¿‚B‚¾„B‚½ŠB‚¼’B‚» B‚º±B‚¹ÆB‚¸áB‚¸B‚·&B‚¶QB‚µƒB‚´»B‚³óB‚³)B‚²fB‚±ªB‚°ôB‚°FB‚¯B‚®ûB‚®`B‚­ÉB‚­:B‚¬°B‚¬,B‚«®B‚«5B‚ªÂB‚ªTB‚©ëB‚©‡B‚©(B‚¨ÏB‚¨zB‚¨*B‚§ÞB‚§—B‚§TB‚§B‚¦ÚB‚¦¥B‚¦qB‚¦BB‚¦B‚¥ðB‚¥ÌB‚¥«B‚¥ŽB‚¥tB‚¥\B‚¥HB‚¥6B‚¥(B‚¥B‚¥B‚¥ B‚¥B‚¥B‚¥B‚¥B‚¥B‚¥ B‚¥B‚¥B‚¥ B‚¥*B‚¥5B‚¥BB‚¥OB‚¥^B‚¥lB‚¥|B‚¥ŒB‚¥œB‚¥­B‚¥½B‚¥ÏB‚¥àB‚¥ðB‚¦B‚¦B‚¦ B‚¦.B‚¦=B‚¦JB‚¦VB‚¦aB‚¦mB‚¦uB‚¦}B‚¦ƒB‚¦‡B‚¦ŠB‚¦‹B‚¦ŠB‚¦†B‚¦B‚¦{B‚¦qB‚¦dB‚¦VB‚¦DB‚¦0B‚¦B‚¥þB‚¥àB‚¥ÀB‚¥›B‚NOB‚OèB‚Q‡B‚S.B‚TÚB‚V‹B‚XCB‚ZB‚[ÃB‚]ŠB‚_UB‚a&B‚bûB‚dÔB‚f±B‚h’B‚jvB‚l^B‚nHB‚p6B‚r&B‚tB‚v B‚xB‚yüB‚{÷B‚}òB‚îB‚íB‚ƒëB‚…êB‚‡éB‚‰éB‚‹èB‚çB‚æB‚‘ãB‚“àB‚•ÜB‚—ÖB‚™ÎB‚›ÅB‚ºB‚Ÿ¬B‚¡B‚£ŠB‚¥tB‚§\B‚©@B‚«!B‚¬þB‚®×B‚°¬B‚²|B‚´HB‚¶B‚·ÒB‚¹B‚»FB‚¼øB‚¾¤B‚ÀJB‚ÁêB‚ÄB‚ÅB‚Æ¢B‚È&B‚ɤB‚ËB‚̇B‚ÍíB‚ÏKB‚РB‚ÑíB‚Ó1B‚ÔlB‚ÕžB‚ÖÅB‚×äB‚ØøB‚ÚB‚ÛB‚ÛúB‚ÜäB‚ÝÄB‚Þ™B‚ßbB‚à B‚àÒB‚áyB‚âB‚â B‚ã!B‚ã•B‚ãûB‚äVB‚ä‚B‚ä€B‚äqB‚äVB‚ä.B‚ãúB‚ãºB‚ãnB‚ãB‚â¶B‚âJB‚áÕB‚áUB‚àÌB‚à9B‚ßB‚ÞùB‚ÞLB‚ݘB‚ÜÝB‚ÜB‚ÛPB‚ÚB‚Ù¨B‚ØËB‚×éB‚×B‚ÖB‚Õ#B‚Ô,B‚Ó3B‚Ò6B‚Ñ5B‚Ð1B‚Ï*B‚Î"B‚ÍB‚Ì B‚ÊüB‚ÉíB‚ÈÝB‚ÇÍB‚ƼB‚ŬB‚ÄœB‚ÃB‚€B‚ÁtB‚ÀjB‚¿aB‚¾\B‚½YB‚¼YB‚»]B‚ºeB‚¹qB‚¸€B‚·–B‚¶°B‚µÐB‚´öB‚´ B‚³SB‚²‹B‚±ÂB‚°úB‚°7B‚¯|B‚®ÇB‚®B‚­sB‚¬ÒB‚¬8B‚«¤B‚«B‚ªŽB‚ª B‚©B‚©B‚¨©B‚¨>B‚§ØB‚§vB‚§B‚¦ÄB‚¦sB‚¦&B‚¥ÞB‚¥šB‚¥[B‚¥ B‚¤éB‚¤·B‚¤ˆB‚¤^B‚¤8B‚¤B‚£ôB‚£ØB‚£¿B‚£ªB‚£—B‚£ˆB‚£{B‚£rB‚£jB‚£fB‚£cB‚£dB‚£fB‚£jB‚£pB‚£xB‚£‚B‚£ŽB‚£›B‚£ªB‚£¹B‚£ÊB‚£ÜB‚£ïB‚¤B‚¤B‚¤-B‚¤CB‚¤YB‚¤oB‚¤†B‚¤œB‚¤²B‚¤ÊB‚¤ßB‚¤õB‚¥ B‚¥B‚¥3B‚¥FB‚¥XB‚¥iB‚¥xB‚¥‡B‚¥•B‚¥ B‚¥ªB‚¥±B‚¥¸B‚¥¼B‚¥¾B‚¥¾B‚¥½B‚¥¸B‚¥°B‚¥¨B‚¥šB‚¥‹B‚¥xB‚¥cB‚¥JB‚¥.B‚¥B‚XúB‚ZvB‚[øB‚]€B‚_B‚`¢B‚bB‚Ø^B‚×xB‚ÖB‚ÕœB‚Ô§B‚Ó­B‚Ò®B‚ѬB‚ЦB‚ÏœB‚ÎB‚ÍB‚ÌpB‚Ë\B‚ÊFB‚É0B‚ÈB‚ÆÿB‚ÅåB‚ÄÌB‚óB‚šB‚Á‚B‚ÀjB‚¿TB‚¾@B‚½/B‚¼B‚»B‚º B‚¹B‚·ÿB‚·B‚¶B‚µB‚´B‚³1B‚²JB‚±iB‚°B‚¯ºB‚®íB‚®'B‚­_B‚¬—B‚«ÕB‚«B‚ªjB‚©¾B‚©B‚¨|B‚§åB‚§TB‚¦ÊB‚¦GB‚¥ÉB‚¥RB‚¤àB‚¤tB‚¤B‚£®B‚£SB‚¢þB‚¢®B‚¢cB‚¢B‚¡ÜB‚¡ŸB‚¡hB‚¡5B‚¡B‚ ÜB‚ ¶B‚ ”B‚ vB‚ \B‚ EB‚ 2B‚ #B‚ B‚ B‚ B‚ B‚ B‚ B‚ B‚ B‚ !B‚ .B‚ >B‚ NB‚ bB‚ wB‚ B‚ ¦B‚ ÀB‚ ÛB‚ ÷B‚¡B‚¡3B‚¡RB‚¡rB‚¡”B‚¡µB‚¡×B‚¡ùB‚¢B‚¢=B‚¢_B‚¢‚B‚¢£B‚¢ÄB‚¢æB‚£B‚£%B‚£DB‚£aB‚£}B‚£˜B‚£³B‚£ÊB‚£áB‚£öB‚¤ B‚¤B‚¤*B‚¤6B‚¤AB‚¤JB‚¤OB‚¤RB‚¤SB‚¤PB‚¤JB‚¤BB‚¤6B‚¤&B‚¤B‚£ýB‚n_B‚o B‚pæB‚r3B‚s…B‚tÜB‚v8B‚w™B‚xÿB‚ziB‚{ØB‚}IB‚~ÀB‚€:B‚¸B‚ƒ9B‚„½B‚†DB‚‡ÎB‚‰[B‚ŠêB‚Œ{B‚ŽB‚£B‚‘:B‚’ÒB‚”kB‚–B‚— B‚™B‚âëB‚âB‚â&B‚á³B‚á6B‚à°B‚àB‚߆B‚ÞãB‚Þ8B‚Ý„B‚ÜÉB‚ÜB‚Û;B‚ÚiB‚Ù‘B‚زB‚×ÍB‚ÖâB‚ÕòB‚ÔüB‚ÔB‚ÓB‚ÑÿB‚ÐøB‚ÏîB‚ÎßB‚ÍÎB‚̺B‚ˤB‚ÊŒB‚ÉrB‚ÈVB‚Ç9B‚ÆB‚ÄþB‚ÃàB‚ÂÀB‚Á£B‚À†B‚¿jB‚¾OB‚½6B‚¼B‚» B‚¹øB‚¸éB‚·ÝB‚¶ÔB‚µÐB‚´ÎB‚³ÓB‚²ÜB‚±éB‚°üB‚°B‚¯4B‚®ZB‚­…B‚¬¸B‚«óB‚«,B‚ªcB‚©£B‚¨ëB‚¨9B‚§B‚¦ëB‚¦OB‚¥ºB‚¥+B‚¤¢B‚¤"B‚£¦B‚£1B‚¢ÂB‚¢XB‚¡öB‚¡˜B‚¡AB‚ ïB‚ ¢B‚ ZB‚ B‚ŸÚB‚Ÿ¢B‚ŸnB‚Ÿ?B‚ŸB‚žîB‚žÌB‚ž®B‚ž•B‚žB‚žmB‚ž_B‚žUB‚žMB‚žIB‚žHB‚žKB‚žPB‚žYB‚ždB‚žqB‚žB‚ž“B‚ž¨B‚ž¿B‚žØB‚žòB‚ŸB‚Ÿ-B‚ŸLB‚ŸmB‚ŸB‚Ÿ²B‚Ÿ×B‚ŸüB‚ "B‚ IB‚ pB‚ ˜B‚ ÀB‚ èB‚¡B‚¡8B‚¡`B‚¡ˆB‚¡¯B‚¡ÖB‚¡üB‚¢"B‚¢EB‚¢hB‚¢‹B‚¢¬B‚¢ËB‚¢éB‚£B‚£ B‚£9B‚£PB‚£eB‚£wB‚£‡B‚£•B‚£ B‚£¨B‚£¬B‚£¯B‚£®B‚£«B‚££B‚£™B‚£‹B‚£yB‚yB‚z;B‚{cB‚|’B‚}ÆB‚~þB‚€;B‚~B‚‚ÄB‚„B‚…^B‚†²B‚ˆ B‚‰dB‚ŠÁB‚Œ"B‚†B‚ŽîB‚VB‚‘ÃB‚“1B‚”¢B‚–B‚—ˆB‚˜þB‚šuB‚›íB‚fB‚žáB‚ \B‚¡ÖB‚£RB‚¤ÎB‚¦IB‚§ÅB‚©?B‚ªºB‚¬3B‚­«B‚¯"B‚°˜B‚² B‚³~B‚´ïB‚¶]B‚·ÉB‚¹3B‚ºšB‚»þB‚½_B‚¾½B‚ÀB‚ÁnB‚ÂÁB‚ÄB‚Å\B‚Æ¢B‚ÇäB‚É"B‚ÊZB‚ËŽB‚̼B‚ÍæB‚Ï B‚Ð&B‚Ñ>B‚ÒPB‚ÓZB‚Ô`B‚Õ]B‚ÖTB‚×DB‚Ø-B‚ÙB‚ÙèB‚ÚºB‚Û„B‚ÜFB‚ÜþB‚ݯB‚ÞWB‚ÞöB‚ߌB‚àB‚àB‚áB‚á†B‚áìB‚âHB‚â™B‚âàB‚ãB‚ãLB‚ãsB‚ãŽB‚ãB‚ã~B‚ã/B‚âÕB‚âpB‚âB‚áˆB‚áB‚àvB‚ßßB‚ß?B‚Þ–B‚ÝåB‚Ý+B‚ÜiB‚Û B‚ÚÏB‚ÙøB‚ÙB‚Ø6B‚×KB‚ÖZB‚ÕeB‚ÔjB‚ÓjB‚ÒeB‚Ñ]B‚ÐQB‚ÏAB‚Î.B‚ÍB‚ËýB‚ÊâB‚ÉÆB‚ȦB‚Ç…B‚ÆcB‚Å@B‚ÄB‚ÂúB‚ÁÖB‚À´B‚¿‘B‚¾pB‚½PB‚¼2B‚»B‚¹ûB‚¸ãB‚·ÎB‚¶¼B‚µ®B‚´£B‚³B‚²›B‚±žB‚°¦B‚¯³B‚®ÅB‚­ÞB‚¬ýB‚¬"B‚«NB‚ªB‚©¼B‚¨öB‚¨.B‚§nB‚¦·B‚¦B‚¥]B‚¤»B‚¤!B‚£B‚£B‚¢zB‚¡úB‚¡B‚¡B‚ ¢B‚ B‚ÛàB‚Ü~B‚ÝB‚Ý©B‚Þ6B‚Þ¾B‚ß?B‚ߺB‚à0B‚àžB‚áB‚áhB‚áÂB‚âB‚âbB‚â§B‚âäB‚ãB‚ãHB‚ãnB‚ãB‚ã¢B‚ã¯B‚ã´B‚ã°B‚ã¤B‚ãŽB‚ãnB‚ãFB‚ãB‚âÙB‚âmB‚áÑB‚á,B‚à}B‚߯B‚ßB‚Þ>B‚ÝnB‚Ü•B‚Û·B‚ÚÐB‚ÙâB‚ØïB‚×õB‚ÖôB‚ÕïB‚ÔäB‚ÓÔB‚Ò¾B‚ѤB‚ЇB‚ÏdB‚Î?B‚ÍB‚ËêB‚Ê»B‚ÉŠB‚ÈVB‚Ç!B‚ÅêB‚ıB‚ÃxB‚Â>B‚ÁB‚¿ÈB‚¾B‚½RB‚¼B‚ºàB‚¹¨B‚¸rB‚·>B‚¶ B‚´ÜB‚³¯B‚²…B‚±^B‚°;B‚¯B‚®B‚¬êB‚«ØB‚ªËB‚©ÃB‚¨ÁB‚§ÄB‚¦ÎB‚¥ßB‚¤öB‚¤B‚£9B‚¢gB‚¡œB‚ ÙB‚ B‚ŸPB‚ž”B‚ßB‚4B‚œB‚›óB‚›_B‚šÒB‚šMB‚™ÏB‚™YB‚˜èB‚˜€B‚˜B‚—ÃB‚—nB‚— B‚–ØB‚––B‚–ZB‚–$B‚•ôB‚•ÉB‚•£B‚•„B‚•hB‚•SB‚•BB‚•6B‚•/B‚•,B‚•.B‚•3B‚•=B‚•KB‚•]B‚•rB‚•‹B‚•¨B‚•ÈB‚•êB‚–B‚–:B‚–eB‚–“B‚–ÄB‚–÷B‚—-B‚—dB‚—B‚—ÙB‚˜B‚˜TB‚˜”B‚˜ÕB‚™B‚™ZB‚™ŸB‚™äB‚š)B‚šoB‚šµB‚šüB‚›BB‚›‰B‚›ÏB‚œB‚œZB‚œ B‚œäB‚'B‚iB‚«B‚êB‚ž)B‚žeB‚ž¡B‚žÚB‚ŸB‚ŸGB‚ŸyB‚Ÿ«B‚ŸØB‚ B‚ -B‚ TB‚ vB‚ –B‚ ²B‚ ÌB‚ àB‚ óB‚¡B‚¡ B‚¡B‚®ãB‚¯rB‚°B‚°œB‚±9B‚±ÙB‚²|B‚³%B‚³ÐB‚´~B‚µ0B‚µæB‚¶žB‚·XB‚¸B‚¸×B‚¹šB‚º^B‚»&B‚»ïB‚¼ºB‚½ˆB‚¾VB‚¿%B‚¿öB‚ÀÈB‚Á›B‚ÂoB‚ÃDB‚ÄB‚ÄîB‚ÅÃB‚Æ™B‚ÇnB‚ÈDB‚ÉB‚ÉíB‚ÊÁB‚Ë”B‚ÌfB‚Í7B‚ÎB‚ÎÕB‚Ï¡B‚ÐmB‚Ñ6B‚ÑýB‚ÒÂB‚Ó…B‚ÔEB‚ÕB‚Õ¾B‚ÖvB‚×,B‚×ÞB‚ØŒB‚Ù8B‚ÙßB‚ÚƒB‚Û#B‚Û¿B‚ÜWB‚ÜêB‚ÝzB‚ÞB‚ÞŠB‚ß B‚ß…B‚ßûB‚àlB‚àØB‚á=B‚ážB‚á÷B‚âKB‚â™B‚âàB‚ã!B‚ã[B‚ãŽB‚ã»B‚ãßB‚ãýB‚äB‚ä"B‚ä(B‚ä(B‚äB‚äB‚ãôB‚ãÒB‚ã¨B‚ãvB‚ã9B‚âôB‚â¥B‚â'B‚áxB‚à¿B‚ßÿB‚ß5B‚ÞcB‚ÝŠB‚Ü©B‚ÛÁB‚ÚÒB‚ÙÜB‚ØàB‚×ÞB‚ÖÖB‚ÕÈB‚ÔµB‚ÓœB‚Ò€B‚Ñ^B‚Ð8B‚ÏB‚ÍâB‚̲B‚Ë~B‚ÊHB‚ÉB‚ÇÖB‚Æ™B‚Å\B‚ÄB‚ÂÜB‚ÁšB‚ÀZB‚¿B‚½ÖB‚¼•B‚»UB‚ºB‚¸×B‚·šB‚¶`B‚µ'B‚³ðB‚²½B‚±ŒB‚°_B‚¯5B‚®B‚¬íB‚«ÐB‚ª¶B‚©£B‚¨”B‚§‹B‚¦ˆB‚¥ŠB‚¤”B‚£¤B‚¢ºB‚¡ØB‚ þB‚ ,B‚ŸaB‚žžB‚ÛB‚B‚œ\B‚›¨B‚šýB‚š[B‚™ÀB‚™.B‚˜¢B‚˜B‚—£B‚—/B‚–ÁB‚–[B‚•üB‚•¤B‚•RB‚•B‚”ÂB‚”ƒB‚”KB‚”B‚“ìB‚“ÅB‚“£B‚“ˆB‚“qB‚“`B‚“SB‚“LB‚“HB‚“JB‚“QB‚“\B‚“jB‚“~B‚“”B‚“®B‚“ÍB‚“ïB‚”B‚”B‚ XB‚ oB‚ B‚ B‚ ›B‚¹«B‚ºB‚º’B‚» B‚»‰B‚¼ B‚¼B‚½B‚½£B‚¾3B‚¾ÆB‚¿[B‚¿ôB‚ÀŽB‚Á,B‚ÁÍB‚ÂoB‚ÃB‚ûB‚ÄcB‚ÅB‚źB‚ÆgB‚ÇB‚ÇÅB‚ÈvB‚É(B‚ÉÚB‚ÊŽB‚ËAB‚ËõB‚̪B‚Í^B‚ÎB‚ÎÇB‚ÏzB‚Ð-B‚ÐàB‚Ñ’B‚ÒCB‚ÒóB‚Ó¢B‚ÔOB‚ÔûB‚Õ¥B‚ÖMB‚ÖôB‚×™B‚Ø;B‚ØÜB‚ÙzB‚ÚB‚Ú¬B‚ÛBB‚ÛÔB‚ÜdB‚ÜðB‚ÝyB‚ÝþB‚Þ€B‚ÞýB‚ßvB‚ßìB‚à]B‚àÊB‚á2B‚á•B‚áôB‚âNB‚â£B‚âòB‚ãB‚Ñ B‚ÏÖB‚ΜB‚Í_B‚ÌB‚ÊÜB‚É—B‚ÈOB‚ÇB‚źB‚ÄlB‚ÃB‚ÁÏB‚À€B‚¿0B‚½ßB‚¼B‚»@B‚¹ñB‚¸¤B‚·XB‚¶ B‚´ÄB‚³}B‚²8B‚°÷B‚¯¸B‚®|B‚­EB‚¬B‚ªàB‚©´B‚¨B‚§lB‚¦NB‚¥6B‚¤%B‚£B‚¢B‚¡B‚ B‚Ÿ*B‚žAB‚_B‚œ„B‚›³B‚šéB‚š(B‚™fB‚˜£B‚—éB‚—8B‚–B‚•ïB‚•WB‚”ÇB‚”@B‚“ÀB‚“IB‚’ÙB‚’pB‚’B‚‘¶B‚‘cB‚‘B‚ÒB‚”B‚\B‚*B‚B‚ÚB‚ºB‚¢B‚ŽB‚€B‚wB‚sB‚tB‚{B‚†B‚–B‚ªB‚ÃB‚àB‚B‚&B‚OB‚{B‚«B‚ÞB‚‘B‚‘NB‚‘‹B‚‘ÊB‚’ B‚’QB‚’˜B‚’áB‚“,B‚“yB‚“ÈB‚”B‚”jB‚”¾B‚•B‚•hB‚•¿B‚–B‚–nB‚–ÆB‚—B‚—yB‚—ÑB‚˜+B‚˜ƒB‚˜ÜB‚™5B‚™‹B‚™âB‚š8B‚šŒB‚šßB‚›2B‚›ƒB‚›ÑB‚œB‚œiB‚œ²B‚œúB‚>B‚€B‚¿B‚üB‚ž4B‚žlB‚ž B‚žÏB‚žüB‚Ÿ$B‚ŸIB‚ŸjB‚Ÿ‡B‚Ÿ B‚Ÿ´B‚Ï>B‚ÏtB‚Ï­B‚ÏêB‚Ð*B‚ÐpB‚жB‚ÑB‚ÑNB‚Ñ B‚ÑóB‚ÒIB‚Ò¢B‚ÒýB‚Ó[B‚ÓºB‚ÔB‚Ô€B‚ÔæB‚ÕMB‚ÕµB‚ÖB‚Ö‹B‚ÖøB‚×fB‚×ÔB‚ØCB‚Ø´B‚Ù%B‚Ù–B‚ÚB‚ÚyB‚ÚëB‚Û]B‚ÛÎB‚Ü@B‚ܰB‚Ý B‚ÝB‚ÝþB‚ÞlB‚ÞÙB‚ßEB‚߯B‚àB‚àB‚àäB‚áHB‚áªB‚â B‚âgB‚âÂB‚ãB‚ãqB‚ãÄB‚äB‚äcB‚ä®B‚äõB‚å9B‚åyB‚å·B‚åðB‚æ&B‚æXB‚æ…B‚æ¯B‚æÔB‚æôB‚çB‚ç(B‚ç;B‚çHB‚çPB‚çTB‚çRB‚çKB‚ç>B‚ç+B‚çB‚æôB‚æÏB‚æ¥B‚ætB‚æ=B‚åþB‚åºB‚ånB‚åB‚äÂB‚äbB‚ãúB‚ãŠB‚ãB‚â”B‚â B‚áUB‚àkB‚ß{B‚Þ‚B‚݃B‚Ü}B‚ÛoB‚Ú\B‚ÙCB‚Ø%B‚×B‚Õ×B‚Ô©B‚ÓvB‚Ò>B‚ÑB‚ÏÄB‚΂B‚ÍB‚™—B‚™ñB‚šIB‚š B‚šôB‚›HB‚›™B‚›èB‚œ4B‚œB‚œÆB‚ B‚NB‚B‚ÉB‚žB‚ž6B‚žhB‚ž–B‚žÀB‚žçB‚Ÿ B‚Ÿ&B‚Ÿ@B‚Ú B‚Ú"B‚Ú=B‚Ú[B‚Ú~B‚Ú¤B‚ÚÌB‚ÚøB‚Û'B‚ÛXB‚ÛŒB‚ÛÂB‚ÛûB‚Ü6B‚ÜtB‚Ü´B‚ÜôB‚Ý7B‚Ý|B‚ÝÃB‚Þ B‚ÞTB‚ÞžB‚ÞêB‚ß7B‚ß„B‚ßÓB‚à"B‚àrB‚àÁB‚áB‚ábB‚á²B‚âB‚âSB‚â£B‚âòB‚ãAB‚ãB‚ãÝB‚ä*B‚äuB‚äÀB‚å B‚åQB‚å˜B‚åÜB‚æ B‚æaB‚æ¡B‚æÞB‚çB‚çRB‚çˆB‚ç¼B‚çîB‚èB‚èHB‚èpB‚è–B‚è¸B‚è×B‚èòB‚é B‚éB‚é/B‚é:B‚éCB‚éGB‚éGB‚éBB‚é9B‚é,B‚éB‚éB‚èåB‚èÃB‚èœB‚èpB‚è>B‚èB‚çÊB‚ç‡B‚ç>B‚æïB‚æ›B‚æ?B‚åÝB‚åuB‚åB‚äB‚äB‚ãB‚ãB‚âsB‚áÙB‚áB‚àB‚ß B‚ÞB‚ÜñB‚ÛÙB‚Ú»B‚Ù—B‚ØnB‚×?B‚Ö B‚ÔÓB‚Ó–B‚ÒUB‚ÑB‚ÏÇB‚Î{B‚Í,B‚ËÚB‚Ê…B‚É.B‚ÇÕB‚ÆzB‚ÅB‚ÃÀB‚Â`B‚ÁB‚¿¢B‚¾AB‚¼áB‚»‚B‚º"B‚¸ÄB‚·fB‚¶ B‚´±B‚³XB‚²B‚°®B‚¯^B‚®B‚¬ÅB‚«~B‚ª;B‚¨üB‚§ÁB‚¦‹B‚¥YB‚¤,B‚£B‚¡åB‚ ÉB‚Ÿ´B‚ž¥B‚žB‚œœB‚›£B‚š°B‚™ÆB‚˜äB‚˜ B‚—8B‚–pB‚•°B‚”ðB‚”.B‚“uB‚’ÆB‚’ B‚‘‚B‚îB‚aB‚ÝB‚bB‚ŽîB‚ŽƒB‚ŽB‚ÄB‚oB‚"B‚ŒÜB‚ŒžB‚ŒfB‚Œ4B‚Œ B‚‹åB‚‹ÈB‚‹±B‚‹ŸB‚‹”B‚‹B‚‹ŽB‚‹“B‚‹B‚‹¬B‚‹ÂB‚‹ÚB‚‹ùB‚ŒB‚ŒBB‚ŒnB‚ŒB‚ŒÐB‚B‚BB‚€B‚ÂB‚ŽB‚ŽNB‚Ž™B‚ŽçB‚7B‚‰B‚ÞB‚6B‚ŽB‚éB‚‘FB‚‘¤B‚’B‚’dB‚’ÆB‚“*B‚“B‚“òB‚”VB‚”¼B‚•!B‚•‡B‚•ìB‚–QB‚–·B‚—B‚—~B‚—âB‚˜DB‚˜¤B‚™B‚™bB‚™¿B‚šB‚šsB‚šÊB‚›B‚›rB‚›ÁB‚œB‚œZB‚œ¢B‚œæB‚(B‚fB‚ B‚ØB‚ž B‚ž:B‚žfB‚žB‚ž¯B‚žÍB‚äÖB‚äÐB‚äÍB‚äÎB‚äÑB‚äÙB‚äâB‚äïB‚äþB‚åB‚å$B‚å:B‚åTB‚åoB‚åŒB‚å«B‚åÍB‚åïB‚æB‚æ9B‚æaB‚æ‰B‚æ³B‚æÝB‚çB‚ç5B‚çbB‚çB‚ç¾B‚çíB‚èB‚èKB‚èyB‚è¨B‚è×B‚éB‚é4B‚ébB‚éB‚é¼B‚éçB‚êB‚ê;B‚êdB‚ê‹B‚ê±B‚êÕB‚êøB‚ëB‚ë8B‚ëUB‚ëpB‚ë‰B‚ë B‚ë´B‚ëÆB‚ëÖB‚ëâB‚ëìB‚ëóB‚ëöB‚ë÷B‚ëõB‚ëîB‚ëäB‚ëØB‚ëÇB‚ë³B‚ëšB‚ë}B‚ë\B‚ë8B‚ëB‚êáB‚ê®B‚êxB‚ê;B‚éûB‚éµB‚éjB‚éB‚èÄB‚èiB‚è B‚ç¢B‚ç6B‚æÄB‚æLB‚åÎB‚åIB‚ä¾B‚ä-B‚ã–B‚â÷B‚âRB‚á¦B‚àÇB‚ß·B‚Þ B‚݃B‚Ü_B‚Û5B‚ÚB‚ØÑB‚טB‚ÖYB‚ÕB‚ÓÏB‚Ò„B‚Ñ4B‚ÏáB‚΋B‚Í2B‚ËÖB‚ÊxB‚ÉB‚ǵB‚ÆQB‚ÄìB‚ÄB‚ÂB‚À´B‚¿KB‚½ãB‚¼zB‚»B‚¹ªB‚¸CB‚¶ÞB‚µzB‚´B‚²·B‚±YB‚¯ýB‚®¤B‚­NB‚«ûB‚ª¬B‚©aB‚¨B‚¦ÖB‚¥™B‚¤`B‚£+B‚¡üB‚ ÓB‚Ÿ¯B‚ž’B‚{B‚œkB‚›bB‚š`B‚™fB‚˜sB‚—ˆB‚–¦B‚•ËB‚”úB‚”2B‚“tB‚’´B‚‘óB‚‘;B‚ŒB‚èB‚KB‚ޏB‚Ž.B‚¬B‚2B‚ŒÁB‚ŒXB‚‹öB‚‹B‚‹LB‚‹B‚оB‚ŠƒB‚ŠNB‚Š B‚‰ùB‚‰ÙB‚‰¿B‚‰«B‚‰žB‚‰–B‚‰•B‚‰™B‚‰¢B‚‰±B‚‰ÆB‚‰ßB‚‰ýB‚Š B‚ŠHB‚ŠtB‚ФB‚ŠÙB‚‹B‚‹NB‚‹ŽB‚‹ÒB‚ŒB‚ŒcB‚Œ°B‚B‚TB‚ªB‚ŽB‚Ž]B‚ŽºB‚B‚zB‚ÝB‚AB‚§B‚‘B‚‘vB‚‘ßB‚’IB‚’´B‚“B‚“ŠB‚“öB‚”bB‚”ÎB‚•:B‚•¤B‚–B‚–yB‚–âB‚—JB‚—±B‚˜B‚˜{B‚˜ÞB‚™?B‚™B‚™ûB‚šVB‚š®B‚›B‚›WB‚›§B‚›õB‚œ@B‚œ†B‚œÊB‚ B‚GB‚B‚´B‚åB‚žB‚ž8B‚ž\B‚ï B‚ï|B‚ï[B‚ï=B‚ï"B‚ï B‚îöB‚îäB‚îÔB‚îÆB‚î»B‚î²B‚î«B‚î¦B‚î¤B‚î¢B‚î£B‚î¥B‚î©B‚î®B‚î´B‚î¼B‚îÄB‚îÎB‚îÙB‚îäB‚îðB‚îüB‚ï B‚ïB‚ï$B‚ï2B‚ï@B‚ïNB‚ï\B‚ïiB‚ïvB‚ï‚B‚ïŽB‚ïšB‚ï¤B‚ï®B‚ï¶B‚ï¾B‚ïÄB‚ïÉB‚ïÍB‚ïÏB‚ïÐB‚ïÏB‚ïÌB‚ïÇB‚ïÀB‚ï·B‚ï¬B‚ïžB‚ïŽB‚ï|B‚ïgB‚ïOB‚ï4B‚ïB‚îöB‚îÒB‚î¬B‚îB‚îSB‚î"B‚ííB‚í´B‚íxB‚í7B‚ìòB‚ìªB‚ì\B‚ì B‚ë´B‚ëZB‚êúB‚ê–B‚ê-B‚é¿B‚éLB‚èÔB‚èVB‚çÓB‚çJB‚æ¼B‚æ(B‚åŽB‚äïB‚äIB‚ãB‚âêB‚â2B‚árB‚àB‚ß^B‚Þ3B‚ÝB‚ÛÎB‚Ú“B‚ÙRB‚Ø B‚ÖÃB‚ÕuB‚Ô"B‚ÒÌB‚ÑrB‚ÐB‚γB‚ÍPB‚ËêB‚Ê‚B‚ÉB‚Ç«B‚Æ=B‚ÄÎB‚Ã^B‚ÁìB‚ÀzB‚¿ B‚½–B‚¼%B‚º³B‚¹CB‚·ÔB‚¶fB‚´øB‚³ŽB‚²$B‚°¾B‚¯ZB‚­øB‚¬šB‚«@B‚©èB‚¨”B‚§DB‚¥úB‚¤³B‚£qB‚¢5B‚ þB‚ŸÌB‚ž B‚{B‚œ\B‚›CB‚š2B‚™(B‚˜$B‚—*B‚–6B‚•LB‚”iB‚“B‚’¾B‚‘öB‚‘8B‚yB‚¸B‚B‚ŽTB‚°B‚B‚Œ„B‚‹ûB‚‹zB‚‹B‚Š”B‚Š-B‚‰ÎB‚‰wB‚‰(B‚ˆâB‚ˆ¢B‚ˆhB‚ˆ7B‚ˆ B‚‡êB‚‡ÌB‚‡·B‚‡§B‚‡žB‚‡šB‚‡œB‚‡¥B‚‡²B‚‡ÆB‚‡ßB‚‡üB‚ˆ B‚ˆHB‚ˆtB‚ˆ¥B‚ˆÛB‚‰B‚‰RB‚‰”B‚‰ÚB‚Š#B‚ŠpB‚Š¿B‚‹B‚‹iB‚‹ÂB‚ŒB‚Œ|B‚ŒÜB‚?B‚¤B‚Ž B‚ŽtB‚ŽßB‚JB‚·B‚&B‚•B‚‘B‚‘vB‚‘çB‚’YB‚’ËB‚“=B‚“¯B‚”!B‚”’B‚•B‚•sB‚•âB‚–PB‚–¾B‚—*B‚—”B‚—ýB‚˜dB‚˜ÉB‚™,B‚™ŒB‚™êB‚šFB‚šŸB‚šõB‚›HB‚›˜B‚›åB‚œ.B‚œtB‚œ¶B‚œôB‚.B‚cB‚”B‚ÀB‚èB‚úgB‚ú&B‚ùçB‚ù¬B‚ùrB‚ùB‚ÄÅB‚ÃJB‚ÁÐB‚ÀTB‚¾ØB‚½\B‚»âB‚ºfB‚¸ìB‚·tB‚µýB‚´‡B‚³B‚±¡B‚°1B‚®ÄB‚­ZB‚«ôB‚ªB‚©/B‚§ÔB‚¦{B‚¥(B‚£ØB‚¢ŽB‚¡IB‚  B‚žÐB‚›B‚œnB‚›EB‚š%B‚™ B‚—øB‚–ìB‚•éB‚”íB‚“ùB‚“B‚’+B‚‘QB‚B‚ºB‚ŽüB‚Ž>B‚~B‚ŒÈB‚ŒB‚‹xB‚ŠßB‚ŠNB‚‰ÈB‚‰IB‚ˆÓB‚ˆfB‚ˆB‚‡¦B‚‡PB‚‡B‚†ÀB‚†ƒB‚†NB‚† B‚…øB‚…ØB‚…ÀB‚…­B‚…¡B‚…›B‚…œB‚…£B‚…°B‚…ÂB‚…ÚB‚…÷B‚†B‚†BB‚†nB‚† B‚†ÖB‚‡B‚‡PB‚‡“B‚‡ÚB‚ˆ%B‚ˆtB‚ˆÆB‚‰B‚‰tB‚‰ÐB‚Š/B‚Š‘B‚ŠôB‚‹[B‚‹ÄB‚Œ/B‚ŒœB‚ B‚|B‚îB‚ŽaB‚ŽÕB‚KB‚ÁB‚8B‚°B‚‘(B‚‘ B‚’B‚’B‚“ B‚“€B‚“÷B‚”mB‚”âB‚•WB‚•ÊB‚–=B‚–­B‚—B‚—‰B‚—óB‚˜]B‚˜ÃB‚™(B‚™‰B‚™èB‚šDB‚šœB‚šòB‚›DB‚›“B‚›ÞB‚œ&B‚œhB‚œ¨B‚œâB‚B‚JB‚vBƒ0BƒÒBƒuBƒBƒÄBƒnBƒBƒÌBƒ}Bƒ1BƒçBƒŸBƒXBƒBƒÐBƒŽBƒOBƒB‚ÿÓB‚ÿ–B‚ÿ[B‚ÿ!B‚þèB‚þ°B‚þxB‚þAB‚þ B‚ýÕB‚ý B‚ýjB‚ý5B‚ýB‚üËB‚ü—B‚übB‚ü-B‚û÷B‚ûÁB‚û‹B‚ûTB‚ûB‚úäB‚ú«B‚úqB‚ú6B‚ùúB‚ù¼B‚ù~B‚ù=B‚øüB‚ø¹B‚øtB‚ø.B‚÷åB‚÷›B‚÷OB‚÷B‚ö°B‚ö^B‚öB‚õ±B‚õWB‚ôúB‚ôœB‚ô8B‚óÔB‚ólB‚óB‚ò“B‚ò"B‚ñ­B‚ñ4B‚ðºB‚ð:B‚ï·B‚ï1B‚î¦B‚îB‚í†B‚ìïB‚ìTB‚ëµB‚ëB‚êiB‚é¼B‚é B‚èVB‚ç›B‚æÜB‚æB‚åMB‚äB‚ã«B‚âÐB‚áñB‚á B‚ßõB‚Þ«B‚Ý[B‚ÜB‚Ú¬B‚ÙMB‚×ëB‚Ö…B‚ÕB‚Ó«B‚Ò:B‚ÐÅB‚ÏNB‚ÍÕB‚ÌYB‚ÊÚB‚ÉZB‚ÇÙB‚ÆVB‚ÄÑB‚ÃNB‚ÁÈB‚ÀBB‚¾¼B‚½6B‚»²B‚º-B‚¸ªB‚·(B‚µ¦B‚´'B‚²©B‚±.B‚¯µB‚®@B‚¬ÌB‚«\B‚©ïB‚¨†B‚§!B‚¥ÀB‚¤dB‚£ B‚¡¹B‚ lB‚Ÿ#B‚àB‚œ£B‚›mB‚šB‚̵B‚Ë,B‚É B‚ÈB‚Æ…B‚ÄöB‚ÃfB‚ÁÖB‚ÀFB‚¾µB‚½&B‚»–B‚ºB‚¸yB‚¶íB‚µbB‚³ÙB‚²RB‚°ÎB‚¯KB‚­ËB‚¬OB‚ªÕB‚©^B‚§íB‚¦~B‚¥B‚£®B‚¢NB‚ òB‚ŸšB‚žIB‚œþB‚›·B‚šxB‚™>B‚˜ B‚–àB‚•¼B‚”žB‚“‰B‚’zB‚‘uB‚xB‚ƒB‚Ž–B‚³B‚ŒÛB‚Œ B‚‹DB‚ŠˆB‚‰ËB‚‰ B‚ˆXB‚‡®B‚‡ B‚†uB‚…èB‚…eB‚„êB‚„xB‚„B‚ƒ¯B‚ƒXB‚ƒB‚‚ÂB‚‚‚B‚‚KB‚‚B‚ôB‚ÔB‚ºB‚©B‚žB‚™B‚œB‚¤B‚´B‚ÈB‚äB‚‚B‚‚+B‚‚WB‚‚ˆB‚‚¾B‚‚úB‚ƒ:B‚ƒB‚ƒÈB‚„B‚„gB‚„¼B‚…B‚…tB‚…ÔB‚†8B‚† B‚‡ B‚‡wB‚‡çB‚ˆYB‚ˆÍB‚‰DB‚‰¾B‚Š8B‚Š´B‚‹3B‚‹²B‚Œ2B‚Œ´B‚7B‚ºB‚Ž>B‚ŽÂB‚GB‚ËB‚PB‚ÔB‚‘XB‚‘ÜB‚’^B‚’àB‚“`B‚“ßB‚”]B‚”ÚB‚•UB‚•ÎB‚–EB‚–¹B‚—+B‚—›B‚˜B‚˜sB‚˜ÚB‚™>B‚™žB‚™üB‚šUB‚šªB‚šýB‚›JB‚›“B‚›ØB‚œB‚œSB‚œ‰Bƒ¾Bƒ#BƒŠBƒôBƒ`BƒÎBƒ=Bƒ¯Bƒ"Bƒ˜BƒBƒ‡BƒBƒ|BƒùBƒwBƒöBƒwBƒøBƒ{BƒþBƒƒBƒBƒBƒBƒ ›Bƒ "Bƒ ªBƒ 2Bƒ »Bƒ CBƒ ÌBƒ TBƒ ÝBƒ fBƒîBƒvBƒþBƒ†Bƒ Bƒ“BƒBƒžBƒ"Bƒ¥Bƒ(Bƒ©Bƒ*Bƒ©Bƒ'Bƒ¤BƒBƒ™BƒB‚ÿˆB‚þþB‚þqB‚ýâB‚ýRB‚üÀB‚ü,B‚û•B‚úýB‚úbB‚ùÆB‚ù&B‚ø„B‚÷ßB‚÷8B‚öŽB‚õâB‚õ2B‚ô€B‚óÊB‚óB‚òVB‚ñ˜B‚ðÕB‚ðB‚ïGB‚î{B‚í«B‚ì×B‚ëÿB‚ë$B‚êFB‚ébB‚è{B‚çB‚æ¡B‚å­B‚äµB‚ã¹B‚â¸B‚á³B‚à¨B‚ßjB‚ÝúB‚܃B‚Û B‚ÙŒB‚Ø B‚Ö†B‚ÔýB‚ÓrB‚ÑäB‚ÐTB‚ÎÁB‚Í,B‚Ë—B‚ÉÿB‚ÈgB‚ÆÌB‚Å2B‚ÖB‚ÁûB‚À`B‚¾ÃB‚½)B‚»ŽB‚¹ôB‚¸]B‚¶ÆB‚µ0B‚³B‚² B‚°}B‚®ðB‚­fB‚«àB‚ª]B‚¨ÜB‚§aB‚¥éB‚¤vB‚£B‚¡œB‚ 6B‚žÖB‚{B‚œ&B‚š×B‚™B‚˜LB‚—B‚•ÚB‚”¬B‚“…B‚’gB‚‘PB‚@B‚:B‚ŽBƒŸBƒþBƒ^Bƒ¼BƒBƒtBƒÎBƒ'Bƒ~BƒÔBƒ)Bƒ{BƒÌBƒB‚ÿiB‚þµB‚ýþB‚ýFB‚üŠB‚ûÏB‚ûB‚úNB‚ùŠB‚øÄB‚÷üB‚÷0B‚öcB‚õ’B‚ô¿B‚óéB‚óB‚ò4B‚ñUB‚ðtB‚ïŽB‚î¦B‚íºB‚ìËB‚ëØB‚êâB‚ééB‚èìB‚çêB‚ææB‚åÞB‚äÑB‚ãÁB‚â¬B‚á”B‚àwB‚ß&B‚Ý¡B‚ÜB‚ÚŒB‚ØüB‚×iB‚ÕÒB‚Ô:B‚ÒŸB‚ÑB‚ÏaB‚ÍÀB‚ÌB‚ÊyB‚ÈÔB‚Ç-B‚ņB‚ÃßB‚Â8B‚À‘B‚¾êB‚½CB‚»B‚¹øB‚¸UB‚¶´B‚µB‚³uB‚±ÙB‚°?B‚®©B‚­B‚«„B‚©öB‚¨mB‚¦çB‚¥eB‚£çB‚¢nB‚ úB‚Ÿ‹B‚ž B‚œ¼B‚›^B‚šB‚˜²B‚—fB‚–!B‚”âB‚“«B‚’zB‚‘RB‚1B‚B‚ŽB‚B‚ŒB‚‹ B‚ŠB‚‰B‚‚ B‚‚ B‚B‚B‚€‰B‚€B‚¶B‚[B‚B‚~¾B‚~|B‚~BB‚~B‚}èB‚}ÇB‚}®B‚}›B‚}B‚}ŒB‚}B‚}šB‚}«B‚}ÂB‚}àB‚~B‚~-B‚~\B‚~’B‚~ÌB‚ B‚QB‚œB‚êB‚€>B‚€–B‚€òB‚RB‚¶B‚‚B‚‚ŠB‚‚úB‚ƒlB‚ƒâB‚„ZB‚„ÕB‚…TB‚…ÔB‚†VB‚†ÜB‚‡bB‚‡ëB‚ˆtB‚‰B‚‰B‚ŠB‚ŠªB‚‹9B‚‹ÉB‚ŒZB‚ŒëB‚{B‚Ž B‚ŽB‚-B‚½B‚KB‚ÙB‚‘fB‚‘òB‚’|B‚“B‚“ŠB‚”B‚”’B‚•B‚•B‚– B‚–„B‚–úB‚—mB‚—ÛB‚˜GB‚˜°B‚™B‚™tB‚™ÐB‚š(B‚š|B‚šËB‚›B‚›ZB‚›šBƒ0@Bƒ/jBƒ.•Bƒ-ÂBƒ,ñBƒ,#Bƒ+UBƒ*ˆBƒ)¾Bƒ(ôBƒ(,Bƒ'fBƒ&¡Bƒ%ÜBƒ%Bƒ$VBƒ#–Bƒ"ÖBƒ"Bƒ!WBƒ ™BƒÝBƒ BƒdBƒ¨BƒíBƒ2BƒxBƒ¾BƒBƒJBƒBƒØBƒBƒdBƒªBƒðBƒ6Bƒ{BƒÀBƒBƒIBƒŒBƒÎBƒBƒRBƒ ’Bƒ ÓBƒ Bƒ OBƒ ŒBƒ ÇBƒ Bƒ;BƒsBƒªBƒàBƒBƒFBƒvBƒ¦BƒÓBƒþBƒ)B‚ÿPB‚þvB‚ýšB‚ü½B‚ûÜB‚úúB‚úB‚ù0B‚øFB‚÷[B‚ölB‚õ}B‚ô‰B‚ó”B‚ò›B‚ñ B‚ð¢B‚ï¡B‚îB‚í—B‚ìB‚ë€B‚êpB‚é\B‚èFB‚ç,B‚æB‚äîB‚ãÉB‚â¢B‚áuB‚àEB‚ÞâB‚ÝJB‚Û¯B‚ÚB‚ØnB‚ÖÈB‚Õ"B‚ÓxB‚ÑÍB‚Ð B‚ÎpB‚ÌÀB‚ËB‚É[B‚Ç©B‚ÅõB‚ÄBB‚ÂŽB‚ÀÚB‚¿'B‚½uB‚»ÃB‚ºB‚¸dB‚¶·B‚µ B‚³bB‚±»B‚°B‚®tB‚¬ÖB‚«;B‚©£B‚¨B‚¦~B‚¤òB‚£jB‚¡æB‚ hB‚žïB‚zB‚œ B‚š£B‚™AB‚—äB‚–B‚•?B‚“öB‚’¶B‚‘|B‚JB‚B‚ýB‚ŒãB‚‹ÒB‚ŠÉB‚‰ÉB‚ˆÓB‚‡æB‚‡B‚†)B‚…ZB‚„•B‚ƒÜB‚ƒ B‚‚bB‚±B‚ B‚€lB‚ØB‚OB‚~ÐB‚~[B‚}ïB‚}ŒB‚}3B‚|âB‚|šB‚|[B‚|%B‚{öB‚{ÐB‚{²B‚{›B‚{B‚{…B‚{…B‚{ŒB‚{šB‚{¯B‚{ÊB‚{ìB‚|B‚|BB‚|vB‚|°B‚|ðB‚}4B‚}~B‚}ÍB‚~!B‚~yB‚~ÖB‚8B‚žB‚€B‚€tB‚€æB‚[B‚ÒB‚‚NB‚‚ÌB‚ƒMB‚ƒÑB‚„WB‚„ßB‚…jB‚…÷B‚†…B‚‡B‚‡¦B‚ˆ:B‚ˆÍB‚‰bB‚‰øB‚ŠŽB‚‹%B‚‹¼B‚ŒRB‚ŒéB‚€B‚ŽB‚Ž«B‚AB‚ÕB‚hB‚ùB‚‘‰B‚’B‚’¤B‚“.B‚“·B‚”>B‚”ÁB‚•BB‚•ÀB‚–B‚¿~B‚½¿B‚¼B‚ºEB‚¸ŠB‚¶ÑB‚µB‚³eB‚±³B‚°B‚®VB‚¬¬B‚«B‚©bB‚§ÃB‚¦(B‚¤‘B‚¢ÿB‚¡pB‚ŸèB‚ždB‚œæB‚›mB‚™úB‚˜B‚—&B‚•ÇB‚”mB‚“B‚‘ÐB‚‹B‚OB‚ŽB‚ŒîB‚‹ÊB‚НB‚‰œB‚ˆ”B‚‡“B‚†›B‚…®B‚„ÊB‚ƒñB‚ƒ#B‚‚_B‚¥B‚€êB‚€.B‚}B‚~ÕB‚~8B‚}§B‚}B‚|¢B‚|/B‚{ÄB‚{cB‚{ B‚z½B‚zxB‚zB‚ÅB‚‚OB‚‚ÛB‚ƒhB‚ƒùB‚„ŒB‚… B‚…¶B‚†NB‚†çB‚‡€B‚ˆB‚ˆ·B‚‰SB‚‰ðB‚ŠŒB‚‹*B‚‹ÆB‚ŒdB‚ŒÿB‚›B‚Ž6B‚ŽÏB‚iB‚B‚–B‚‘*B‚‘¼B‚’NB‚’ÛB‚“hB‚“ñB‚”wB‚”üB‚•|B‚•úB‚–tB‚–ëB‚—^B‚—ÌB‚˜8B‚˜žB‚™B‚™^B‚™·B‚š B‚šYB‚š£BƒEµBƒD¤BƒC”BƒB…BƒAxBƒ@lBƒ?`Bƒ>WBƒ=OBƒB‚³~B‚±¿B‚°B‚®KB‚¬•B‚ªãB‚©4B‚§ŠB‚¥äB‚¤BB‚¢¤B‚¡ B‚ŸxB‚êB‚œ`B‚šÝB‚™_B‚—èB‚–wB‚• B‚“¨B‚’LB‚öB‚¨B‚ŽaB‚#B‚‹íB‚Š¿B‚‰™B‚ˆ|B‚‡hB‚†^B‚…\B‚„eB‚ƒwB‚‚“B‚ºB‚€ëB‚€'B‚oB‚~´B‚}øB‚}GB‚|¡B‚|B‚{vB‚zðB‚zsB‚zB‚y™B‚y:B‚xåB‚x™B‚xVB‚xB‚wëB‚wÂB‚w¢B‚wŠB‚wzB‚wrB‚wrB‚wyB‚w‡B‚wB‚w¹B‚wÝB‚xB‚x8B‚xnB‚xªB‚xîB‚y6B‚y„B‚y×B‚z0B‚zŽB‚zðB‚{XB‚{ÃB‚|4B‚|¨B‚} B‚}œB‚~B‚~ŸB‚%B‚®B‚€;B‚€ÊB‚\B‚ðB‚‚†B‚ƒB‚ƒ¹B‚„TB‚„òB‚…B‚†0B‚†ÑB‚‡sB‚ˆB‚ˆ¸B‚‰[B‚‰ýB‚Š B‚‹CB‚‹åB‚Œ‡B‚(B‚ÇB‚ŽfB‚B‚ B‚9B‚ÒB‚‘hB‚‘üB‚’ŽB‚“B‚“©B‚”3B‚”¹B‚•öBƒ=˜Bƒ<9Bƒ:ÚBƒ9|Bƒ8Bƒ6¿Bƒ5`Bƒ4Bƒ2£Bƒ1CBƒ/äBƒ.…Bƒ-&Bƒ+ÆBƒ*fBƒ)Bƒ'¥Bƒ&EBƒ$ãBƒ#‚Bƒ" Bƒ ¾Bƒ[BƒøBƒ”Bƒ0BƒËBƒfBƒBƒšBƒ4BƒÌBƒcBƒûBƒ‘Bƒ &Bƒ »Bƒ PBƒãBƒvBƒBƒ˜Bƒ(Bƒ·BƒDB‚þÒB‚ý]B‚ûéB‚útB‚øüB‚÷„B‚ö B‚ô‘B‚óB‚ñ˜B‚ðB‚îœB‚íB‚ë™B‚êB‚è“B‚çB‚å‡B‚ãþB‚âuB‚àêB‚ß^B‚ÝœB‚Û£B‚Ù©B‚×®B‚Õ´B‚Ó¸B‚ѼB‚Ï¿B‚ÍÂB‚ËÈB‚ÉÌB‚ÇÐB‚Å×B‚ÃÞB‚ÁçB‚¿ñB‚½ýB‚¼ B‚ºB‚¸.B‚¶BB‚´ZB‚²tB‚°“B‚®´B‚¬ÚB‚«B‚©/B‚§`B‚¥–B‚£ÏB‚¢B‚ RB‚žœB‚œëB‚›@B‚™šB‚—ûB‚–aB‚”ÏB‚“CB‚‘¿B‚AB‚ŽÊB‚\B‚‹õB‚Š–B‚‰?B‚‡ðB‚†ªB‚…nB‚„:B‚ƒB‚îB‚€ÖB‚ÈB‚~ÄB‚}ËB‚|ÜB‚{÷B‚{B‚zPB‚yB‚xÕB‚xB‚wcB‚v³B‚vB‚uxB‚têB‚tiB‚sñB‚s„B‚s B‚rÇB‚rxB‚r3B‚q÷B‚qÄB‚q›B‚q{B‚qcB‚qTB‚qNB‚qOB‚qYB‚qjB‚q„B‚q¤B‚qÌB‚qüB‚r2B‚rnB‚r²B‚rûB‚sKB‚s¡B‚sýB‚t^B‚tÅB‚u1B‚u¢B‚vB‚v“B‚wB‚w–B‚xB‚xªB‚y:B‚yÍB‚zcB‚zýB‚{šB‚|:B‚|ÜB‚}‚B‚~)B‚~ÒB‚~B‚€+B‚€ÚB‚‰B‚‚;B‚‚íB‚ƒ B‚„TB‚…B‚…½B‚†qB‚‡&B‚‡ÚB‚ˆŽB‚‰AB‚‰óB‚ФB‚‹UB‚ŒB‚Œ°B‚\B‚ŽB‚ެB‚RB‚ôB‚”B‚‘1B‚‘ÊB‚’bB‚’ôB‚“„B‚”B‚”˜B‚•B‚•›B‚–B‚–ŒB‚–ýB‚—iB‚—ÐB‚˜1B‚˜ŒBƒplBƒnäBƒm^BƒkØBƒjRBƒhÎBƒgIBƒeÄBƒd@Bƒb¾Bƒa:Bƒ_·Bƒ^5Bƒ\²Bƒ[0BƒY®BƒX.BƒV¬BƒU+BƒSªBƒR*BƒPªBƒO*BƒMªBƒL*BƒJªBƒI*BƒG«BƒF,BƒD¬BƒC-BƒA®Bƒ@.Bƒ>¯Bƒ=/Bƒ;°Bƒ:1Bƒ8±Bƒ72Bƒ5²Bƒ42Bƒ2²Bƒ12Bƒ/²Bƒ.1Bƒ,±Bƒ+0Bƒ)¯Bƒ(-Bƒ&¬Bƒ%*Bƒ#¨Bƒ"%Bƒ ¢BƒBƒœBƒBƒ“BƒBƒ‰BƒBƒ~BƒøBƒpBƒéBƒaBƒ ØBƒ OBƒ ÆBƒB‚ž{B‚œ¾B‚›B‚™TB‚—©B‚–B‚”fB‚’ÎB‚‘>B‚´B‚Ž2B‚Œ¸B‚‹EB‚‰ÚB‚ˆxB‚‡B‚…ÍB‚„…B‚ƒFB‚‚B‚€äB‚ÁB‚~¨B‚}™B‚|”B‚{šB‚z«B‚yÆB‚xíB‚xB‚w\B‚v¤B‚uìB‚u2B‚t„B‚sâB‚sJB‚r¾B‚r=B‚qÇB‚q\B‚púB‚p£B‚pVB‚pB‚oÙB‚o©B‚o‚B‚odB‚oOB‚oCB‚o@B‚oEB‚oRB‚ofB‚o„B‚o¨B‚oÔB‚pB‚p@B‚pB‚pÉB‚qB‚qjB‚qÅB‚r%B‚r‹B‚röB‚sgB‚sÝB‚tXB‚tØB‚u\B‚uåB‚vrB‚wB‚w˜B‚x0B‚xÌB‚ykB‚zB‚z³B‚{[B‚|B‚|³B‚}bB‚~B‚~ÅB‚zB‚€/B‚€æB‚žB‚‚WB‚ƒB‚ƒÊB‚„…B‚…?B‚…ùB‚†´B‚‡mB‚ˆ&B‚ˆÝB‚‰•B‚ŠJB‚ŠÿB‚‹²B‚ŒbB‚B‚¾B‚ŽiB‚B‚¶B‚XB‚øB‚‘“B‚’,B‚’ÀB‚“RB‚“ÞB‚”hB‚”ìB‚•lB‚•çB‚–]B‚–ÎB‚—9B‚— B‚—ÿBƒ{ BƒyfBƒwÂBƒvBƒt{BƒrØBƒq5Bƒo’BƒmðBƒlNBƒj«Bƒi BƒghBƒeÆBƒd$Bƒb„Bƒ`âBƒ_ABƒ] Bƒ\BƒZ_BƒX¾BƒWBƒU~BƒSÝBƒR>BƒPBƒNýBƒM]BƒK½BƒJBƒH}BƒFÝBƒE=BƒCBƒAýBƒ@]Bƒ>½Bƒ=Bƒ;|Bƒ9ÜBƒ8B‚m5B‚m4B‚mB‚•ºB‚–0B‚–žB‚— B‚—nBƒ…¦BƒƒåBƒ‚#Bƒ€bBƒ~¡Bƒ|ßBƒ{Bƒy^BƒwœBƒuÚBƒtBƒrYBƒp˜Bƒn×BƒmBƒkUBƒi•BƒgÔBƒfBƒdRBƒb’Bƒ`ÐBƒ_Bƒ]OBƒ[ŽBƒYÎBƒX BƒVLBƒTŒBƒRËBƒQ BƒOJBƒMŠBƒKÊBƒJ BƒHHBƒF‡BƒDÇBƒCBƒAEBƒ?…Bƒ=ÄBƒ<Bƒ:BBƒ8‚Bƒ6ÁBƒ5Bƒ3@Bƒ1~Bƒ/¾Bƒ-ýBƒ,ÉBƒ<ÉBƒ:ÉBƒ8ÉBƒ6ÊBƒ4ÊBƒ2ÌBƒ0ÌBƒ.ÎBƒ,ÐBƒ*ÒBƒ(ÔBƒ&×Bƒ$ÚBƒ"ÞBƒ áBƒåBƒêBƒïBƒôBƒúBƒBƒBƒBƒBƒ Bƒ &Bƒ /Bƒ8BƒCBƒNBƒYB‚ÿdB‚ýqB‚û~B‚ùŒB‚÷šB‚õ¨B‚ó¸B‚ñÉB‚ïÙB‚íëB‚ëýB‚êB‚è$B‚æ8B‚äMB‚âdB‚àzB‚Þ’B‚ÜrB‚ÚB‚×ÄB‚ÕoB‚ÓB‚ÐÉB‚ÎzB‚Ì+B‚ÉßB‚Ç–B‚ÅOB‚à B‚ÀÉB‚¾ŒB‚¼PB‚ºB‚·åB‚µµB‚³ŠB‚±bB‚¯@B‚­ B‚«B‚¨òB‚¦ãB‚¤ÙB‚¢ÔB‚ ÖB‚žÝB‚œéB‚šýB‚™B‚—7B‚•^B‚“ŒB‚‘ÂB‚ÿB‚ŽDB‚ŒB‚ŠäB‚‰@B‚‡¥B‚†B‚„ˆB‚ƒB‚ŽB‚€ B‚~ºB‚}^B‚| B‚zÄB‚y†B‚xRB‚w)B‚v B‚t÷B‚sïB‚ròB‚rB‚qB‚pAB‚orB‚n°B‚mûB‚mDB‚l‹B‚kßB‚k@B‚j¬B‚j$B‚i§B‚i6B‚hÏB‚huB‚h%B‚gßB‚g¤B‚gsB‚gLB‚g/B‚gB‚gB‚gB‚gB‚g(B‚gBB‚gdB‚gŽB‚gÀB‚gúB‚hB‚°úB‚®¼B‚¬ƒB‚ªOB‚¨!B‚¥÷B‚£ÔB‚¡¸B‚Ÿ¡B‚‘B‚›ˆB‚™„B‚—ˆB‚•”B‚“¦B‚‘¿B‚áB‚Ž B‚Œ;B‚ŠuB‚ˆ¶B‚‡B‚…SB‚ƒ®B‚‚B‚€B‚~øB‚}yB‚|B‚z˜B‚y6B‚wßB‚v’B‚uPB‚tB‚ríB‚qÌB‚p¶B‚o¬B‚n¬B‚mºB‚lÓB‚kùB‚k*B‚jiB‚i³B‚hýB‚hEB‚gšB‚fûB‚fhB‚eâB‚egB‚døB‚d•B‚d=B‚cðB‚c­B‚cvB‚cIB‚c&B‚c B‚bþB‚bùB‚býB‚c B‚c!B‚c@B‚chB‚c™B‚cÐB‚dB‚dZB‚dªB‚eB‚e`B‚eÅB‚f2B‚f¦B‚gB‚gžB‚h$B‚h¯B‚i@B‚iÖB‚jrB‚kB‚k¸B‚lbB‚mB‚mÂB‚nyB‚o3B‚oñB‚p²B‚qvB‚r=B‚sB‚sÓB‚t¢B‚usB‚vFB‚wB‚wñB‚xÈB‚y B‚zzB‚{TB‚|.B‚} B‚}åB‚~ÀB‚šB‚€uB‚MB‚‚&B‚‚ýB‚ƒÔB‚„¨B‚…{B‚†LB‚‡B‚‡çB‚ˆ±B‚‰xB‚ŠBƒVÝBƒT~BƒRBƒO¿BƒM`BƒKBƒH¤BƒFGBƒCêBƒAŽBƒ?2Bƒ<ØBƒ:~Bƒ8&Bƒ5ÍBƒ3uBƒ1Bƒ.ÉBƒ,tBƒ* Bƒ'ÍBƒ%{Bƒ#*Bƒ ÛBƒŒBƒ?BƒóBƒ¨Bƒ^BƒBƒÏBƒ‰Bƒ DBƒ BƒÀBƒ€BƒBBƒB‚þÊB‚üB‚úYB‚ø#B‚õîB‚ó¼B‚ñ‹B‚ï[B‚í/B‚ëB‚èÚB‚æ³B‚äB‚âjB‚àIB‚Þ*B‚ÛÒB‚ÙCB‚Ö¶B‚Ô+B‚Ñ£B‚ÏB‚ÌœB‚ÊB‚Ç¢B‚Å+B‚¸B‚ÀGB‚½ÜB‚»uB‚¹B‚¶´B‚´ZB‚²B‚¯·B‚­mB‚«)B‚¨êB‚¦²B‚¤B‚¢RB‚ ,B‚ž B‚›ôB‚™âB‚—ÖB‚•ÓB‚“ÖB‚‘âB‚õB‚ŽB‚Œ3B‚Š^B‚ˆ’B‚†ÎB‚…B‚ƒbB‚¸B‚€B‚~‚B‚|öB‚{tB‚yûB‚xŒB‚w(B‚uÎB‚tB‚s;B‚rB‚pÓB‚o±B‚nšB‚mB‚lB‚k›B‚j´B‚iÙB‚i B‚hJB‚g•B‚fÞB‚f'B‚e{B‚dÝB‚dKB‚cÅB‚cLB‚bÞB‚b{B‚b$B‚aÙB‚a˜B‚acB‚a8B‚aB‚aB‚`óB‚`ðB‚`øB‚aB‚a B‚aBB‚alB‚a B‚aÜB‚b B‚bkB‚b¿B‚cB‚c|B‚cåB‚dVB‚dÌB‚eJB‚eÍB‚fWB‚fæB‚g|B‚hB‚h¶B‚i[B‚jB‚j³B‚kfB‚lB‚lØB‚m—B‚nZB‚oB‚oèB‚p´B‚qƒB‚rTB‚s(B‚sþB‚tÖB‚u¯B‚vŠB‚wgB‚xDB‚y#B‚zB‚zâB‚{ÂB‚|¢B‚}‚B‚~bB‚AB‚€ B‚€ýB‚ÚB‚‚µB‚ƒB‚„fB‚…Bƒ¿ÎBƒ½^BƒºìBƒ¸xBƒ¶Bƒ³Bƒ±Bƒ®¡Bƒ¬)Bƒ©°Bƒ§6Bƒ¤¼Bƒ¢@BƒŸÄBƒGBƒšÊBƒ˜LBƒ•ÍBƒ“NBƒÎBƒŽNBƒ‹ÎBƒ‰MBƒ†ÌBƒ„KBƒÊBƒHBƒ|ÆBƒzDBƒwÂBƒu@Bƒr¾BƒpBƒJÁBƒHFBƒEÌBƒCRBƒ@ØBƒ>`Bƒ;éBƒ9sBƒ6þBƒ4ŠBƒ2Bƒ/¤Bƒ-3Bƒ*ÄBƒ(UBƒ%èBƒ#|Bƒ!Bƒ¨Bƒ@BƒÛBƒvBƒBƒ±BƒRBƒ ôBƒ —Bƒ =BƒäBƒBƒ8B‚ÿåB‚ý”B‚ûEB‚ø÷B‚ö­B‚ôdB‚òB‚ïÙB‚í—B‚ëWB‚éB‚æÞB‚ä¦B‚âpB‚àBƒK‡BƒHÒBƒFBƒCjBƒ@¸Bƒ>Bƒ;YBƒ8«Bƒ5ÿBƒ3TBƒ0¬Bƒ.Bƒ+^Bƒ(»Bƒ&Bƒ#yBƒ ÚBƒ>Bƒ¤Bƒ BƒwBƒâBƒQBƒÂBƒ 6Bƒ ¬Bƒ$BƒŸBƒB‚ÿœB‚ýB‚ú¤B‚ø,B‚õ¸B‚óFB‚ð×B‚îkB‚ìB‚éœB‚ç:B‚äÛB‚âB‚à&B‚ÝÑB‚ÛCB‚Ø{B‚Õ¸B‚ÒùB‚Ð=B‚͆B‚ÊÓB‚È$B‚Å{B‚ÂÖB‚À6B‚½›B‚»B‚¸vB‚µìB‚³hB‚°éB‚®pB‚«þB‚©’B‚§-B‚¤ÎB‚¢wB‚ 'B‚ÞB‚›œB‚™aB‚—/B‚•B‚’áB‚ÇB‚Ž´B‚ŒªB‚Š©B‚ˆ°B‚†ÁB‚„ÛB‚‚þB‚*B‚`B‚} B‚{êB‚z=B‚x›B‚wB‚uvB‚sôB‚r|B‚qB‚o®B‚nXB‚m B‚kÎB‚jœB‚itB‚hYB‚gJB‚fHB‚eQB‚dhB‚cB‚b¾B‚aüB‚aGB‚`‘B‚_ÙB‚_0B‚^’B‚^B‚]}B‚]B‚\›B‚\¿Bƒ;ôBƒ9,Bƒ6dBƒ3ŸBƒ0ÜBƒ.Bƒ+ZBƒ(Bƒ%áBƒ#(Bƒ qBƒ¼Bƒ BƒZBƒ­BƒBƒZBƒ ´Bƒ BƒqBƒÔBƒ:Bƒ¢B‚þB‚û~B‚øïB‚öeB‚óÝB‚ñZB‚îØB‚ì\B‚éâB‚çkB‚äúB‚â‹B‚à B‚ݹB‚ÛB‚Ø?B‚ÕjB‚Ò™B‚ÏÌB‚ÍB‚ÊAB‚Ç‚B‚ÄÊB‚ÂB‚¿gB‚¼¾B‚ºB‚·~B‚´æB‚²UB‚¯ÊB‚­EB‚ªÈB‚¨QB‚¥àB‚£xB‚¡B‚ž»B‚œiB‚šB‚—ÚB‚•ŸB‚“lB‚‘BB‚B‚B‚ŠôB‚ˆìB‚†îB‚„øB‚ƒ B‚)B‚PB‚}B‚{¼B‚zB‚xPB‚vªB‚uB‚s~B‚qøB‚p}B‚o B‚m©B‚lQB‚kB‚iÃB‚hŽB‚geB‚fIB‚e9B‚d5B‚c>B‚bTB‚axB‚`©B‚_æB‚_2B‚^|B‚]ÄB‚]B‚\}B‚[íB‚[jB‚ZóB‚Z‰B‚Z+B‚YØB‚Y’B‚YXB‚Y(B‚YB‚XéB‚XÚB‚XÖB‚XÜB‚XìB‚YB‚Y(B‚YUB‚YŠB‚YÉB‚ZB‚Z`B‚Z·B‚[B‚[€B‚[ïB‚\fB‚\äB‚]jB‚]öB‚^‰B‚_!B‚_ÀB‚`eB‚aB‚aÀB‚buB‚c0B‚cðB‚d³B‚e|B‚fHB‚gB‚gîB‚hÅB‚i B‚jB‚k`B‚lDB‚m*B‚nB‚nþB‚oêB‚pÙB‚qÈB‚r¹B‚sªB‚tB‚uB‚vƒB‚wwB‚xjB‚y]B‚zPB‚{AB‚|2B‚}"B‚~B‚~ýB‚çB‚€ÐB‚¶B‚‚šB‚ƒ{B‚„YB‚…4B‚† B‚†áB‚‡²B‚ˆ~B‚‰GB‚Š B‚ŠÊB‚‹…B‚Œ:B‚ŒêB‚•B‚Ž:B‚ŽÙB‚rB‚B‚BƒîBƒë&BƒèEBƒåaBƒâ{Bƒß”BƒÜªBƒÙ¿BƒÖÒBƒÓäBƒÐôBƒÎBƒËBƒÈBƒÅ&BƒÂ/Bƒ¿8Bƒ¼@Bƒ¹EBƒ¶KBƒ³OBƒ°SBƒ­VBƒªXBƒ§ZBƒ¤[Bƒ¡\Bƒž\Bƒ›\Bƒ˜\Bƒ•\Bƒ’\BƒZBƒŒZBƒ‰ZBƒ†ZBƒƒZBƒ€ZBƒ}[Bƒz\Bƒw^Bƒt`BƒqcBƒngBƒkkBƒhqBƒewBƒb~Bƒ_†Bƒ\BƒYšBƒV¦BƒS´BƒPÂBƒMÒBƒJäBƒG÷BƒE BƒB#Bƒ?;BƒB‚c,B‚b(B‚a0B‚`FB‚_iB‚^™B‚]×B‚]"B‚\lB‚[´B‚[ B‚ZmB‚YÝB‚YZB‚XäB‚X{B‚XB‚WÍB‚W‡B‚WNB‚W B‚VýB‚VåB‚V×B‚VÕB‚VÜB‚VîB‚W B‚W/B‚W^B‚W•B‚W×B‚X B‚XrB‚XÎB‚Y1B‚YœB‚ZB‚ZˆB‚[ B‚[’B‚\"B‚\¸B‚]TB‚]÷B‚^ B‚_NB‚`B‚`»B‚azB‚b=B‚cB‚cÑB‚d¢B‚ewB‚fOB‚g+B‚h B‚híB‚iÓB‚j»B‚k¦B‚l’B‚m‚B‚nsB‚oeB‚pYB‚qOB‚rEB‚sBƒ`Bƒ†Bƒ¯Bƒ ÜBƒ Bƒ?BƒvBƒ±B‚ÿïB‚ý1B‚úwB‚÷ÁB‚õB‚ò`B‚ï¶B‚íB‚êoB‚çÒB‚å:B‚â¦B‚àB‚ÝB‚ÚÈB‚×ÊB‚ÔÑB‚ÑÞB‚ÎîB‚ÌB‚É#B‚ÆEB‚ÃnB‚À›B‚½ÑB‚» B‚¸MB‚µ•B‚²äB‚°9B‚­–B‚ªúB‚¨eB‚¥×B‚£QB‚ ÔB‚ž^B‚›ïB‚™ŠB‚—,B‚”ØB‚’ŒB‚HB‚ŽB‚‹ÜB‚‰´B‚‡–B‚…€B‚ƒtB‚rB‚zB‚}ŒB‚{©B‚yÐB‚xB‚v=B‚t„B‚rÖB‚q2B‚o›B‚nB‚lB‚kB‚i¯B‚hPB‚gB‚eºB‚d‚B‚cVB‚b6B‚a$B‚`B‚_&B‚^:B‚]\B‚\ŒB‚[ÊB‚[B‚Z`B‚Y§B‚XüB‚X`B‚WÐB‚WNB‚VØB‚VpB‚VB‚UÃB‚UB‚UFB‚UB‚T÷B‚TâB‚TÖB‚TÔB‚TÞB‚TòB‚UB‚U7B‚UhB‚U¢B‚UåB‚V2B‚V‡B‚VåB‚WJB‚W¸B‚X.B‚X«B‚Y0B‚Y¼B‚ZNB‚ZèB‚[‡B‚\.B‚\ÚB‚]ŒB‚^CB‚_B‚_ÂB‚`‰B‚aUB‚b%B‚búB‚cÒB‚d¯B‚eB‚frB‚gZB‚hCB‚i/B‚jB‚kB‚lB‚løB‚mïB‚nèB‚oáB‚pÜB‚q×B‚rÒB‚sÎB‚tÌB‚uÈB‚vÃB‚w¾B‚x¸B‚y³B‚z«B‚{¢B‚|—B‚}ŠB‚~|B‚kB‚€WB‚@B‚‚'B‚ƒ B‚ƒëB‚„ÈB‚… B‚†tB‚‡EB‚ˆB‚ˆØB‚‰šB‚ŠVB‚‹B‚‹ÀB‚ŒlB‚B‚²B‚ŽLB‚ŽÞB„rBƒÿ\BƒüABƒù&BƒöBƒòåBƒïÂBƒìBƒévBƒæMBƒã"BƒßõBƒÜÆBƒÙ—BƒÖeBƒÓ3BƒÏþBƒÌÉBƒÉ’BƒÆZBƒÃ!Bƒ¿çBƒ¼­Bƒ¹qBƒ¶5Bƒ²øBƒ¯»Bƒ¬}Bƒ©?Bƒ¦Bƒ¢ÂBƒŸ„BƒœDBƒ™Bƒ•ÇBƒ’‰BƒKBƒŒ BƒˆÐBƒ…“Bƒ‚VBƒBƒ{áBƒx§BƒunBƒr6BƒoBƒkÊBƒh•BƒebBƒb1Bƒ_Bƒ[ÓBƒX¦BƒU{BƒRRBƒO*BƒLBƒHâBƒEÂBƒB£Bƒ?‡BƒB‚/B‚€B‚B‚ïB‚‚ÓB‚ƒ´B‚„B‚…hB‚†Bƒ¶âBƒ³†Bƒ°(Bƒ¬ËBƒ©mBƒ¦Bƒ¢²BƒŸUBƒ›÷Bƒ˜šBƒ•Bƒ‰ÅBƒ†NBƒ‚×BƒbBƒ{îBƒxzBƒuBƒq˜Bƒn*Bƒj½BƒgRBƒcèBƒ`Bƒ]BƒY¸BƒVWBƒRøBƒOœBƒLCBƒHìBƒE˜BƒBFBƒ>÷Bƒ;¬Bƒ8cBƒ5Bƒ1ÜBƒ.Bƒ+bBƒ(*Bƒ$öBƒ!ÆBƒšBƒrBƒNBƒ-BƒBƒúBƒ çBƒØBƒÎBƒÉB‚ÿÈB‚üÍB‚ùÖB‚öåB‚óøB‚ñB‚î0B‚ëTB‚è~B‚å­B‚ââB‚àB‚Ý^B‚ÚdB‚×0B‚ÔB‚ÐÛB‚Í»B‚Ê¡B‚ÇŽB‚Ä‚B‚Á}B‚¾B‚»‰B‚¸šB‚µ²B‚²ÓB‚¯ûB‚­,B‚ªdB‚§¥B‚¤îB‚¢?B‚ŸšB‚œýB‚šhB‚—ÞB‚•\B‚’ãB‚uB‚ŽB‚‹³B‚‰aB‚‡B‚„ÜB‚‚¨B‚€B‚~`B‚|LB‚zBB‚xDB‚vPB‚thB‚r‹B‚p¹B‚nóB‚m9B‚kŠB‚ièB‚hQB‚fÆB‚eHB‚cÖB‚brB‚aB‚_ÎB‚^B‚]^B‚\:B‚[#B‚ZB‚YB‚X1B‚WQB‚V~B‚U»B‚UB‚TNB‚S•B‚RêB‚RNB‚Q¿B‚Q=B‚PÉB‚PaB‚PB‚O¹B‚OwB‚OBB‚OB‚NúB‚NçB‚NàB‚NäB‚NòB‚O B‚O.B‚O\B‚O’B‚OÓB‚PB‚PqB‚PÍB‚Q2B‚Q B‚RB‚R“B‚SB‚S¦B‚T:B‚TÖB‚UxB‚V"B‚VÒB‚WˆB‚XDB‚YB‚YÌB‚Z™B‚[kB‚\BB‚]B‚]üB‚^àB‚_ÈB‚`³B‚a¢B‚b”B‚cŠB‚d‚B‚e}B‚fzB‚gyB‚hzB‚i}B‚j‚B‚k‡B‚lŽB‚m–B‚nB‚o¦B‚p®B‚q·B‚r¿B‚sÆB‚tÍB‚uÓB‚vÖB‚wÚB‚xÛB‚yÚB‚z×B‚{ÒB‚|ÊB‚}ÀB‚~²B‚¡B‚€ŒB‚tB‚‚XB‚ƒ8B‚„B‚„éB‚…»B‚†‡B‚‡OB‚ˆB‚ˆÌB‚‰‚B‚Š2B‚ŠÛB‚‹~B‚ŒB„ ÂB„XB„ëB„{B„B„’B„ B„ŸB„"B„¢BƒþBƒú›Bƒ÷BƒóŒBƒðBƒìuBƒèæBƒåWBƒáÆBƒÞ4BƒÚ Bƒ× BƒÓvBƒÏßBƒÌGBƒÈ¯BƒÅBƒÁ|Bƒ½âBƒºHBƒ¶­Bƒ³Bƒ¯vBƒ«ÛBƒ¨ABƒ¤§Bƒ¡ BƒrBƒ™ÙBƒ–ABƒ’©BƒBƒ‹|Bƒ‡èBƒ„TBƒ€ÂBƒ}0Bƒy¡BƒvBƒr‡BƒnýBƒktBƒgíBƒdiBƒ`æBƒ]fBƒYéBƒVnBƒRöBƒO€BƒL BƒHœBƒE/BƒAÆBƒ>^Bƒ:ûBƒ7›Bƒ4>Bƒ0æBƒ-‘Bƒ*@Bƒ&òBƒ#¨Bƒ dBƒ"BƒæBƒ®BƒyBƒJBƒ Bƒ úBƒÚBƒ¿Bƒ©B‚ý—B‚úŒB‚÷…B‚ô„B‚ñŠB‚î”B‚ë¤B‚è»B‚åØB‚âûB‚à$B‚ÝTB‚ÚHB‚×B‚ÓÄB‚ЋB‚ÍZB‚Ê0B‚ÇB‚ÃòB‚ÀÞB‚½ÒB‚ºÎB‚·ÑB‚´ÝB‚±ðB‚¯ B‚¬/B‚©\B‚¦‘B‚£ÎB‚¡B‚žeB‚›¾B‚™ B‚–ŒB‚”B‚‘B‚B‚ŒšB‚Š5B‚‡ÜB‚…ŒB‚ƒGB‚ B‚~ÝB‚|¸B‚zžB‚xB‚vŠB‚t’B‚r¤B‚pÃB‚nìB‚m"B‚kdB‚i±B‚h B‚fqB‚dãB‚cbB‚aîB‚`†B‚_,B‚]ÝB‚\žB‚[jB‚ZDB‚Y,B‚X"B‚W%B‚V6B‚UVB‚T‚B‚S¾B‚S B‚RRB‚Q—B‚PíB‚PPB‚OÀB‚O?B‚NËB‚NdB‚N B‚M¼B‚M|B‚MFB‚MB‚MB‚LðB‚LéB‚LîB‚LþB‚MB‚M>B‚MmB‚M¥B‚MèB‚N5B‚NŠB‚NèB‚OOB‚O¿B‚P7B‚P¸B‚Q@B‚QÐB‚RfB‚SB‚S«B‚TVB‚U B‚UÂB‚VB‚WFB‚XB‚XàB‚Y¶B‚ZB‚[nB‚\QB‚]8B‚^#B‚_B‚`B‚`úB‚aóB‚bïB‚cíB‚dîB‚eñB‚föB‚gýB‚iB‚jB‚kB‚l$B‚m0B‚n;B‚oIB‚pUB‚q`B‚rlB‚svB‚tB‚u‡B‚vŽB‚w“B‚x–B‚y—B‚z•B‚{‘B‚|ŠB‚}€B‚~rB‚aB‚€LB‚3B‚‚B‚‚õB‚ƒÎB‚„¤B‚…sB‚†>B‚‡B‚‡ÂB‚ˆzB‚‰-B‚‰ÙB‚Š~B‚‹sep-1.4.1/docs/000077500000000000000000000000001475511417100132425ustar00rootroot00000000000000sep-1.4.1/docs/Makefile000066400000000000000000000151541475511417100147100ustar00rootroot00000000000000# Makefile for Sphinx documentation # # You can set these variables from the command line. SPHINXOPTS = SPHINXBUILD = sphinx-build PAPER = BUILDDIR = _build # User-friendly check for sphinx-build ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1) $(error The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from http://sphinx-doc.org/) endif # Internal variables. PAPEROPT_a4 = -D latex_paper_size=a4 PAPEROPT_letter = -D latex_paper_size=letter ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) . # the i18n builder cannot share the environment and doctrees with the others I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) . .PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest gettext help: @echo "Please use \`make ' where is one of" @echo " html to make standalone HTML files" @echo " dirhtml to make HTML files named index.html in directories" @echo " singlehtml to make a single large HTML file" @echo " pickle to make pickle files" @echo " json to make JSON files" @echo " htmlhelp to make HTML files and a HTML help project" @echo " qthelp to make HTML files and a qthelp project" @echo " devhelp to make HTML files and a Devhelp project" @echo " epub to make an epub" @echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter" @echo " latexpdf to make LaTeX files and run them through pdflatex" @echo " latexpdfja to make LaTeX files and run them through platex/dvipdfmx" @echo " text to make text files" @echo " man to make manual pages" @echo " texinfo to make Texinfo files" @echo " info to make Texinfo files and run them through makeinfo" @echo " gettext to make PO message catalogs" @echo " changes to make an overview of all changed/added/deprecated items" @echo " xml to make Docutils-native XML files" @echo " pseudoxml to make pseudoxml-XML files for display purposes" @echo " linkcheck to check all external links for integrity" @echo " doctest to run all doctests embedded in the documentation (if enabled)" clean: rm -rf $(BUILDDIR)/* rm -rf api/* html: $(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html @echo @echo "Build finished. The HTML pages are in $(BUILDDIR)/html." dirhtml: $(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml @echo @echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml." singlehtml: $(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml @echo @echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml." pickle: $(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle @echo @echo "Build finished; now you can process the pickle files." json: $(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json @echo @echo "Build finished; now you can process the JSON files." htmlhelp: $(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp @echo @echo "Build finished; now you can run HTML Help Workshop with the" \ ".hhp project file in $(BUILDDIR)/htmlhelp." qthelp: $(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp @echo @echo "Build finished; now you can run "qcollectiongenerator" with the" \ ".qhcp project file in $(BUILDDIR)/qthelp, like this:" @echo "# qcollectiongenerator $(BUILDDIR)/qthelp/sep.qhcp" @echo "To view the help file:" @echo "# assistant -collectionFile $(BUILDDIR)/qthelp/sep.qhc" devhelp: $(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp @echo @echo "Build finished." @echo "To view the help file:" @echo "# mkdir -p $$HOME/.local/share/devhelp/sep" @echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/sep" @echo "# devhelp" epub: $(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub @echo @echo "Build finished. The epub file is in $(BUILDDIR)/epub." latex: $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex @echo @echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex." @echo "Run \`make' in that directory to run these through (pdf)latex" \ "(use \`make latexpdf' here to do that automatically)." latexpdf: $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex @echo "Running LaTeX files through pdflatex..." $(MAKE) -C $(BUILDDIR)/latex all-pdf @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." latexpdfja: $(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex @echo "Running LaTeX files through platex and dvipdfmx..." $(MAKE) -C $(BUILDDIR)/latex all-pdf-ja @echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex." text: $(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text @echo @echo "Build finished. The text files are in $(BUILDDIR)/text." man: $(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man @echo @echo "Build finished. The manual pages are in $(BUILDDIR)/man." texinfo: $(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo @echo @echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo." @echo "Run \`make' in that directory to run these through makeinfo" \ "(use \`make info' here to do that automatically)." info: $(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo @echo "Running Texinfo files through makeinfo..." make -C $(BUILDDIR)/texinfo info @echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo." gettext: $(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale @echo @echo "Build finished. The message catalogs are in $(BUILDDIR)/locale." changes: $(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes @echo @echo "The overview file is in $(BUILDDIR)/changes." linkcheck: $(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck @echo @echo "Link check complete; look for any errors in the above output " \ "or in $(BUILDDIR)/linkcheck/output.txt." doctest: $(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest @echo "Testing of doctests in the sources finished, look at the " \ "results in $(BUILDDIR)/doctest/output.txt." xml: $(SPHINXBUILD) -b xml $(ALLSPHINXOPTS) $(BUILDDIR)/xml @echo @echo "Build finished. The XML files are in $(BUILDDIR)/xml." pseudoxml: $(SPHINXBUILD) -b pseudoxml $(ALLSPHINXOPTS) $(BUILDDIR)/pseudoxml @echo @echo "Build finished. The pseudo-XML files are in $(BUILDDIR)/pseudoxml." sep-1.4.1/docs/apertures.rst000066400000000000000000000222761475511417100160170ustar00rootroot00000000000000Aperture photometry =================== There are four aperture functions available: ================== ========================= Function Sums data within... ================== ========================= `sep.sum_circle` circle(s) `sep.sum_circann` circular annulus/annuli `sep.sum_ellipse` ellipse(s) `sep.sum_ellipann` elliptical annulus/annuli ================== ========================= The follow examples demonstrate options for circular aperture photometry. The other functions behave similarly. .. code-block:: python # sum flux in circles of radius=3.0 flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0) # x, y and r can be arrays and obey numpy broadcasting rules. # Here, r is an array instead of a single number: flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0 * np.ones(len(objs))) # use a different subpixel sampling (default is 5; 0 means "exact") flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0, subpix=0) **Error calculation** In the default modes illustrated above, the uncertainty ``fluxerr`` is not calculated and values of 0 are simply returned. The uncertainty can be flexibly and efficiently calculated, depending on the characteristics of your data. The presence of an ``err`` or ``var`` keyword indicates a per-pixel noise, while the presense of a ``gain`` keyword indicates that the Poisson uncertainty on the total sum should be included. Some illustrative examples: .. code-block:: python # Specify a per-pixel "background" error and a gain. This is suitable # when the data have been background subtracted. flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0, err=bkg.globalrms, gain=1.0) # Variance can be passed instead of error, with identical results. flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0, var=bkg.globalrms**2, gain=1.0) # Error or variance can be arrays, indicating that the background error # is variable. bkgrms = bkg.rms() # array, same shape as data flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0, err=bkgrms, gain=1.0) # If your uncertainty array already includes Poisson noise from the object, # leave gain as None (default): flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0, err=error_array) # If your data represent raw counts (it is not background-subtracted), # set only gain to get the poisson error: flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0, gain=1.0) The error is calculated as .. math:: \sigma_F^2 = \sum_i \sigma_i^2 + F/g where the sum is over pixels in the aperture, :math:`\sigma_i` is the noise in each pixel, :math:`F` is the sum in the aperture and :math:`g` is the gain. The last term is not added if ``gain`` is `None`. **Masking** Apply a mask (same shape as data). Pixels where the mask is True are "corrected" to the average value within the aperture. .. code-block:: python flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0, mask=mask) **Local background subtraction** The `~sep.sum_circle` and `~sep.sum_ellipse` functions have options for performing local background subtraction. For example, to subtract the background calculated in an annulus between 6 and 8 pixel radius: .. code-block:: python flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0, mask=mask, bkgann=(6., 8.)) Pixels in the background annulus are not subsampled and any masked pixels in the annulus are completely igored rather than corrected. The inner and outer radii can also be arrays. The error in the background is included in the reported error. Equivalent of FLUX_AUTO (e.g., MAG_AUTO) in Source Extractor ------------------------------------------------------------ This is a two-step process. First we calculate the Kron radius for each object, then we perform elliptical aperture photometry within that radius: .. code-block:: python kronrad, krflag = sep.kron_radius(data, x, y, a, b, theta, 6.0) flux, fluxerr, flag = sep.sum_ellipse(data, x, y, a, b, theta, 2.5*kronrad, subpix=1) flag |= krflag # combine flags into 'flag' This specific example is the equilvalent of setting ``PHOT_AUTOPARAMS 2.5, 0.0`` in Source Extractor (note the 2.5 in the argument to ``sep.sum_ellipse``). The second Source Extractor parameter is a minimum diameter. To replicate Source Extractor behavior for non-zero values of the minimum diameter, one would put in logic to use circular aperture photometry if the Kron radius is too small. For example: .. code-block:: python r_min = 1.75 # minimum diameter = 3.5 use_circle = kronrad * np.sqrt(a * b) < r_min cflux, cfluxerr, cflag = sep.sum_circle(data, x[use_circle], y[use_circle], r_min, subpix=1) flux[use_circle] = cflux fluxerr[use_circle] = cfluxerr flag[use_circle] = cflag .. warning:: Caution should be used when calculating Kron radii in crowded fields. In almost all cases, one would want to pass in a segmentation map to mask out nearby objects, as described below in :ref:`segmentation masking`. Equivalent of FLUX_RADIUS in Source Extractor --------------------------------------------- In Source Extractor, the FLUX_RADIUS parameter gives the radius of a circle enclosing a desired fraction of the total flux. For example, with the setting ``PHOT_FLUXFRAC 0.5``, FLUX_RADIUS will give the radius of a circle containing half the "total flux" of the object. For the definition of "total flux", Source Extractor uses its measurement of FLUX_AUTO, which is taken through an elliptical aperture (see above). Thus, with the setting ``PHOT_FLUXFRAC 1.0``, you would find the circle containing the same flux as whatever ellipse Source Extractor used for ``FLUX_AUTO``. Given a previous calculation of ``flux`` as above, calculate the radius for a flux fraction of 0.5: .. code-block:: python r, flag = sep.flux_radius(data, objs['x'], objs['y'], 6.*objs['a'], 0.5, normflux=flux, subpix=5) And for multiple flux fractions: .. code-block:: python r, flag = sep.flux_radius(data, objs['x'], objs['y'], 6.*objs['a'], [0.5, 0.6], normflux=flux, subpix=5) Equivalent of XWIN_IMAGE, YWIN_IMAGE in Source Extractor -------------------------------------------------------- Source Extractor's XWIN_IMAGE, YWIN_IMAGE parameters can be used for more accurate object centroids than the default X_IMAGE, Y_IMAGE. Here, the ``winpos`` function provides this behavior. To match Source Extractor exactly, the right ``sig`` parameter (giving a description of the effective width) must be used for each object. Source Extractor uses ``2. / 2.35 * (half-light radius)`` where the half-light radius is calculated using ``flux_radius`` with a fraction of 0.5 and a normalizing flux of ``FLUX_AUTO``. The equivalent here is: .. code-block:: python sig = 2. / 2.35 * r # r from sep.flux_radius() above, with fluxfrac = 0.5 xwin, ywin, flag = sep.winpos(data, objs['x'], objs['y'], sig) .. _segmentation masking: Segmentation-masked image measurements -------------------------------------- SourceExtractor provides a mechanism for measuring the "AUTO" and "FLUX_RADIUS" parameters for a given object including a mask for neighboring sources. In addition to the mask, setting the SourceExtractor parameter ``MASK_TYPE=CORRECT`` further fills the masked pixels of a given source with "good" pixel values reflected opposite of the masked pixels. The ``SEP`` photometry and measurement functions provide an option for simple masking without reflection or subtracting neighbor flux. For example, using a segmentation array provided by ``sep.extract``, we can compute the masked ``flux_radius`` that could otherwise be artificially large due to flux from nearby sources: .. code-block:: python # list of object id numbers that correspond to the segments seg_id = np.arange(1, len(objs)+1, dtype=np.int32) r, flag = sep.flux_radius(data, objs['x'], objs['y'], 6.*objs['a'], 0.5, seg_id=seg_id, seg=seg, normflux=flux, subpix=5) To enforce that a given measurement **only** includes pixels within a segment, provide negative values in the ``seg_id`` list. Otherwise the mask for a given object will be pixels with ``(seg == 0) | (seg_id == id_i)``. The following functions include the segmentation masking: ``sum_circle``, ``sum_circann``, ``sum_ellipse``, ``sum_ellipann``, ``flux_radius`` , and ``kron_radius`` (``winpos`` **currently does not**). Masking image regions --------------------- Create a boolean array with elliptical regions set to True: .. code-block:: python mask = np.zeros(data.shape, dtype=np.bool) sep.mask_ellipse(mask, objs['x'], objs['y'], obs['a'], objs['b'], objs['theta'], r=3.) sep-1.4.1/docs/changelogs/000077500000000000000000000000001475511417100153545ustar00rootroot00000000000000sep-1.4.1/docs/changelogs/changelog.rst000066400000000000000000000003621475511417100200360ustar00rootroot00000000000000.. _changelog: Changelog ========= Upgrading From kbarbary/sep --------------------------- .. toctree:: :maxdepth: 2 changes_to_c_api Full Changelog -------------- .. toctree:: :maxdepth: 2 new_changes original_changes sep-1.4.1/docs/changelogs/changes_to_c_api.rst000066400000000000000000000047651475511417100213670ustar00rootroot00000000000000Changes to the C API ==================== This page details cumulative changes to the C API between v1.2.1 and v1.4.0, or since this package was forked from `kbarbary/sep `_. Almost all changes to the public API are to integer parameters, many of which have been changed from ``int`` to ``int64_t``, to fix problems which may arise with extremely large arrays. The other change of note is to the ``sep_image`` struct, which enables the user to pass an existing segmentation map, and re-extract all morphological and photometric quantities on a different image. All changes here are transparent to users of the Python interface. .. c:struct:: sep_image - Three new parameters have been added: .. c:var:: int64_t * segids The unique ids in an existing segmentation map. .. c:var:: int64_t * idcounts The number of occurrences of each unique id in an existing segmentation map. .. c:var:: int64_t numids The total number of unique ids in an existing segmentation map. - The type of ``w`` and ``h`` has changed from ``int`` to ``int64_t``. .. c:struct:: sep_bkg - The type of the following parameters has changed from ``int`` to ``int64_t``: ``w``, ``h``, ``bw``, ``bh``, ``nx``, ``ny``, and ``n``. .. c:struct:: sep_catalog - The type of the following parameters has changed from ``int`` to ``int64_t``: ``npix``, ``tnpix``, ``xmin``, ``xmax``, ``ymin``, ``ymax``, ``xcpeak``, ``ycpeak``, ``xpeak``, ``ypeak``, ``pix``, and ``objectspix``. .. c:function:: int sep_background() - The type of the following parameters has changed from ``int`` to ``int64_t``: ``bw``, ``bh``, ``fw``, and ``fh``. .. c:function:: float sep_bkg_pix() - The type of ``x`` and ``y`` has changed from ``int`` to ``int64_t``. .. c:function:: int sep_bkg_line() - The type of ``y`` has changed from ``int`` to ``int64_t``. .. c:function:: int sep_bkg_subline() - The type of ``y`` has changed from ``int`` to ``int64_t``. .. c:function:: int sep_bkg_rmsline() - The type of ``y`` has changed from ``int`` to ``int64_t``. .. c:function:: int sep_extract() - The type of ``convw`` and ``convh`` has changed from ``int`` to ``int64_t``. .. c:function:: int sep_sum_circann_multi() - The type of ``n`` has changed from ``int`` to ``int64_t``. .. c:function:: int sep_flux_radius() - The type of ``n`` has changed from ``int`` to ``int64_t``. .. c:function:: void sep_set_ellipse() - The type of ``w`` and ``h`` has changed from ``int`` to ``int64_t``. sep-1.4.1/docs/changelogs/new_changes.rst000066400000000000000000000001571475511417100203720ustar00rootroot00000000000000New Changelog ============= **Full Changelog** .. include:: ../../CHANGES.md :parser: myst_parser.sphinx_ sep-1.4.1/docs/changelogs/original_changes.md000066400000000000000000000124641475511417100212010ustar00rootroot00000000000000Original Changelog ================== This is the original changelog from [kbarbary/sep](https://github.com/kbarbary/sep), copied here for posterity. v1.2.1 (1 June 2022) -------------------- * Same as v1.2.0 but with new wheels for Python 3.10 and AArch64. v1.2.0 (1 May 2021) ------------------- * Changed `numpy.float` and `numpy.int` types for deprecations in numpy 1.20 (#96). * Make it possible to safely invoke C library from multiple threads on independent inputs. Global config functions such as `set_sub_object_limit()` and `set_extract_pixstack()` still configure global params (once for all threads), while other functions will retain their data in thread-local storages, so they can be invoked from multiple threads as long as they work on independent structures. Library compilation will now require a C11 compatible compiler, which should be nowadays available on all supported platforms. * Mark some pointer parameters with `const *`. This is a backward-compatible change, but makes it easier to extract constants that can be safely shared between multiple threads and/or invocations. v1.1.1 (6 January 2021) ----------------------- * Same as v1.1.0 but with wheels built and uploaded to PyPI. Please report if you have problems with wheels. v1.1.0 (3 January 2021) ----------------------- * Add segmentation masking to the photometry and kron/auto functions (#69). * Add functions `sep.set_sub_object_limit(limit)` and `sep.get_sub_object_limit()` for modifying and retrieving the sub-object deblending limit. Previously this parameter was hard-coded to 1024. 1024 is now the default value. * This and future versions are now Python 3 only. Python 2 is no longer supported. * Modernize setup.py with pyproject.toml v1.0.3 (12 June 2018) --------------------- * Fix double-free bug in sep_extract() arising when an error status occurs and convolution is on. (#56) * Work around numpy dependency in setup. (#59) v1.0.2 (19 September 2017) -------------------------- * Fix makefile so that `make install` works on OS X for the C library. Python module and C code are unchanged. v1.0.1 (10 July 2017) --------------------- * Fix bug when using masked filter and noise array where objects with member pixels at end of image (maximum y coordinate) were erroneously missed. v1.0.0 (30 September 2016) -------------------------- * Remove features deprecated in previous versions. * Fix bug in Background.rms() giving nonsensical results. v0.6.0 (25 August 2016) ----------------------- * New, more coherent C API. This change should be transparent to users of the Python module. * Add variance uncertainty parameters `errx2`, `erry2` and `errxy` to output of `sep.extract()`. * Add a minimum sigma to `sep.winpos()` to match Source Extractor behavior. * Fix use of boolean masks in `sep.kron_radius()`. Formerly, using a boolean mask resulted in nonsense results. * Fix segfault in `Background.back()` when box size is same as image size. * Fix bug in creating long error messages on Python 3. v0.5.2 (4 January 2016) ----------------------- Adds OS X and Windows support. v0.5.1 (30 November 2015) ------------------------- Bugfix release for problem in setup.py in packaged code. v0.5.0 (22 November 2015) ------------------------- * `sep.extract()` now uses a more correct matched filter algorithm in the presence of a noise array, rather than simple convolution. The `conv` keyword has been changed to `filter_kernel` to reflect this, and a `filter_type` keyword has been added to allow selecting the old behavior of simple convolution. * `sep.extract()` now accepts a `mask` keyword argument. * `sep.extract()` can now return a segmentation map. * Special methods added to allow `data - bkg` and `np.array(bkg)` where `bkg` is a Background object. v0.4.1 (10 November 2015) ------------------------- Bugfix release, fixing error estimate in `sep.sum_circle` and `sep.sum_ellipse` when `bkgann` keyword argument is given. v0.4.0 (1 June 2015) -------------------- * New `sep.winpos()` function. v0.3.0 (23 February 2015) ------------------------- * New `sep.flux_radius()` function. v0.2.0 (13 December 2014) ------------------------- * **[breaking change]** `theta` field in `extract()` output is now in radians rather than degrees, for compatibility with new ellipse aperture functions. * **[deprecation]** Change `mask_ellipse()` parameters from ellipse coefficients to ellipse axes and position angle, to match aperture functions. (Old behavior still works as well.) * **[deprecation]** Change `apercirc()` to `sum_circle()`, to match new aperture functions. (Old name, `apercirc()`, still works.) * Add `sum_circann()`, `sum_ellipse()`, `sum_ellipann()`, `kron_radius()`, `ellipse_coeffs()`, `ellipse_axes()` functions. * Exact mode aperture photometery in all functions, with `subpix=0`. * Enable variable thresholding in `sep.extract`. [#11] * Fix bug in background masking. This bug impacted masking in all functions that used masking. Also affected C library. * More detail in error messages coming from within the C library. More helpful error message for non-native byteorder arrays. * Add ability to change pixel stack size used in `extract()`, with `set_extract_pixstack()` function v0.1.0 (11 August 2014) ----------------------- This is the first official release. sep-1.4.1/docs/conf.py000066400000000000000000000221561475511417100145470ustar00rootroot00000000000000# -*- coding: utf-8 -*- # # seppy documentation build configuration file, created by # sphinx-quickstart on Mon Jul 7 18:52:28 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. """The sphinx configuration file for the SEP documentation.""" import os import sys import sep try: from sphinx_astropy.conf.v2 import * except ImportError: print( "ERROR: the documentation requires the sphinx-astropy package to be installed." ) sys.exit(1) # generate api directory if it doesn't already exist if not os.path.exists("api"): os.mkdir("api") # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # sys.path.append(os.path.abspath('ext')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # intersphinx_mapping = { # "python": ("http://docs.python.org/", None), # "numpy": ("http://docs.scipy.org/doc/numpy/", None), # } # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.intersphinx", "sphinx.ext.mathjax", "numpydoc", "nbsphinx", "IPython.sphinxext.ipython_console_highlighting", "sphinx_copybutton", "myst_parser", ] numpydoc_show_class_members = False autosummary_generate = ["reference.rst"] autoclass_content = "class" autodoc_default_flags = ["members", "no-special-members"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = "sep" copyright = "2014-2024, Peter Watson and contributors" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # THe short X.Y version. version = ".".join(sep.__version__.split(".")[0:2]) # The full version, including alpha/beta/rc tags. release = sep.__version__ html_title = f"{project} {release.split('+')[0]} documentation" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build", "**.ipynb_checkpoints"] # The reST default role (used for this markup: `text`) to use for all # documents. default_role = "autolink" # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "pydata_sphinx_theme" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # " v documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = "sepdoc" # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ("index", "sep.tex", "sep Documentation", "Peter Watson", "manual"), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [("index", "sep", "sep Documentation", ["Peter Watson"], 1)] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "sep", "sep Documentation", "Peter Watson", "sep", "One line description of project.", "Miscellaneous", ), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False sep-1.4.1/docs/filter.rst000066400000000000000000000124051475511417100152630ustar00rootroot00000000000000Matched Filter (Convolution) ============================ For source detection, SEP supports using a matched filter, which can give the optimal detection signal-to-noise for objects with some known shape. This is controlled using the ``filter_kernel`` keyword in `sep.extract`. For example: .. code-block:: python import sep kernel = np.array([[1., 2., 3., 2., 1.], [2., 3., 5., 3., 2.], [3., 5., 8., 5., 3.], [2., 3., 5., 3., 2.], [1., 2., 3., 2., 1.]]) objects = sep.extract(data, thresh, filter_kernel=kernel) If ``filter_kernel`` is not specified, a default 3-by-3 kernel is used. To disable filtering entirely, specify ``filter_kernel=None``. What array should be used for ``filter_kernel``? It should be approximately the shape of the objects you are trying to detect. For example, to optimize for the detection of point sources, ``filter_kernel`` should be set to shape of the point spread function (PSF) in the data. For galaxy detection, a larger kernel could be used. In practice, anything that is roughly the shape of the desired object works well since the main goal is to negate the effects of background noise, and a reasonable estimate is good enough. Correct treatment in the presence of variable noise --------------------------------------------------- In Source Extractor, the matched filter is implemented assuming there is equal noise across all pixels in the kernel. The matched filter then simplifies to a convolution of the data with the kernel. In `sep.extract`, this is also the behavior when there is constant noise (when ``err`` is not specified). In the presence of independent noise on each pixel, SEP uses a full matched filter implementation that correctly accounts for the noise in each pixel. This is not available in Source Extractor. Some benefits of this method are that detector sensitivity can be taken into account and edge effects are handled gracefully. For example, suppose we have an image with noise that is higher in one region than another. This can often occur when coadding images: .. code-block:: python # create a small image with higher noise in the upper left n = 16 X, Y = np.meshgrid(np.arange(n), np.arange(n)) mask = Y > X error = np.ones((n, n)) error[mask] = 4.0 data = error * np.random.normal(size=(n, n)) # add source to middle of data source = 3.0 * np.array([[1., 2., 1.], [2., 4., 2.], [1., 2., 1.]]) m = n // 2 - 1 data[m:m+3, m:m+3] += source plt.imshow(data, interpolation='nearest', origin='lower', cmap='bone') .. image:: matched_filter_example.png :width: 500px Specifying ``filter_type='conv'`` will use simple convolution, matching the behavior of Source Extractor. The object is not detected: >>> objects = sep.extract(data, 3.0, err=error, filter_type='conv') >>> len(objects) 0 Setting ``filter_type='matched'`` (the default) correctly deweights the noisier pixels around the source and detects the object: >>> objects = sep.extract(data, 3.0, err=error, filter_type='matched') >>> len(objects) 1 Derivation of the matched filter formula ---------------------------------------- Assume that we have an image containing a single point source. This produces a signal with PSF :math:`S_i` and noise :math:`N_i` at each pixel indexed by :math:`i`. Then the measured image data :math:`D_i` (i.e. our pixel values) is given by: .. math:: D_i = S_i + N_i Then we want to apply a linear transformation :math:`T_i` which gives an output :math:`Y`: .. math:: Y = \sum_i T_i D_i = T^T D We use matrix notation from here on and drop the explicit sums. Our objective is to find the transformation :math:`T_i` which maximizes the signal-to-noise ratio :math:`SNR`. .. math:: SNR^2 = \frac{(T^T S)^2}{E[(T^T N)^2]} We can expand the denominator as: .. math:: E[(T^T N)^2] = E[(T^T N)(N^T T)] = T^T \cdot E[N N^T] \cdot T = T^T C T Where :math:`C_{ik}` is the covariance of the noise between pixels :math:`i` and :math:`k`. Now using the Cauchy-Schwarz inequality on the numerator: .. math:: (T^T S)^2 = (T^T C^{1/2} C^{-1/2} S)^2 \le (T^T C^{1/2})^2 (C^{-1/2} S)^2 = (T^T C T) (S^T C^{-1} S) since :math:`C^T = C`. The signal-to-noise ratio is therefore bounded by: .. math:: &SNR^2 \le \frac{(T^T C T)(S^T C^{-1} S)}{(T^T C T)} \\ &SNR^2 \le S^T C^{-1} S Choosing :math:`T = \alpha C^{-1} S` where :math:`\alpha` is an arbitrary normalization constant, we get equality. Hence this choise of :math:`T` is the optimal linear tranformation. We normalize this linear transformation so that if there is no signal and only noise, we get an expected signal-to-noise ratio of 1. With this definition, the output :math:`SNR` represents the number of standard deviations above the background. This gives: .. math:: &E[(T^T N)^2] = T^T C T = \alpha^2 S^T C^{-1} C C^{-1} S = \alpha^2 S^T C^{-1} S = 1 \\ &\alpha = \frac{1}{\sqrt{S^T C^{-1} S}} Putting everything together, our normalized linear transformation is: .. math:: T = \frac{C^{-1} S}{\sqrt{S^T C^{-1} S}} And the optimal signal-to-noise is given in terms of the known variables as: .. math:: SNR = \frac{S^T C^{-1} D}{\sqrt{S^T C^{-1} S}} sep-1.4.1/docs/index.rst000066400000000000000000000111461475511417100151060ustar00rootroot00000000000000SEP === *Python library for Source Extraction and Photometry* About ----- `Source Extractor `_ (Bertin & Arnouts 1996) is a widely used command-line program for segmentation and analysis of astronomical images. It reads in FITS format files, performs a configurable series of tasks, including background estimation, source detection, deblending and a wide array of source measurements, and finally outputs a FITS format catalog file. While Source Extractor is highly useful, the fact that it can only be used as an executable can limit its applicability or lead to awkward workflows. There is often a desire to have programmatic access to perform one or more of the above tasks on in-memory images as part of a larger custom analysis. **SEP makes the core algorithms of Source Extractor available as a library of stand-alone functions and classes.** These operate directly on in-memory arrays (no FITS files or configuration files). The code is derived from the Source Extractor code base (written in C) and aims to produce results compatible with Source Extractor whenever possible. SEP consists of a C library with no dependencies outside the standard library, and a Python module that wraps the C library in a Pythonic API. The Python wrapper operates on NumPy arrays with NumPy as its only dependency. See below for language-specfic build and usage instructions. **Some features:** - spatially variable background and noise estimation - source extraction, with on-the-fly convolution and source deblending - circular and elliptical aperture photometry - fast: implemented in C with Python bindings via Cython **Additional features not in Source Extractor:** - Optimized matched filter for variable noise in source extraction. - Circular annulus and elliptical annulus aperture photometry functions. - Local background subtraction in shape consistent with aperture in aperture photometry functions. - Exact pixel overlap mode in all aperture photometry functions. - Masking of elliptical regions on images. SEP, SEP-PJW, and Package Names ............................... ``sep`` was originally released by Kyle Barbary, at `kbarbary/sep `_ (``sep<=1.2.1``). For a brief period, the package was maintained by Peter Watson, under the ``sep-pjw`` package name, at `PJ-Watson/sep-pjw `_ and `PyPI/sep-pjw `_ (``1.3.0<=sep-pjw<=1.3.8``). Both of these repositories will be archived, and future development will take place at `sep-developers/sep `_ (``sep>=1.4.0``). Note that there may be some incompatibilities between ``sep==1.2.1`` and ``sep==1.4.0`` when using the C-API directly -- the changes are documented :doc:`here `. Installation ------------ with conda .......... SEP can be installed with conda from the ``conda-forge`` channel:: conda install -c conda-forge sep with pip ........ SEP can also be installed with `pip `_. After ensuring that numpy is installed, run :: python -m pip install sep If you get an error about permissions, you are probably using your system Python. In this case, I recommend using `pip's "user install" `_ option to install sep into your user directory :: python -m pip install --user sep Do **not** install ``sep`` or other third-party Python packages using ``sudo`` unless you are fully aware of the risks. Usage Guide ----------- .. toctree:: :maxdepth: 1 tutorial filter apertures changelogs/changelog .. toctree:: :hidden: reference For complete API documentation, see :doc:`reference`. Contributing ------------ Report a bug or documentation issue: http://github.com/sep-developers/sep/issues Development of ``sep`` takes place on GitHub at http://github.com/sep-developers/sep. Contributions of bug fixes, documentation improvements and minor feature additions are welcome via GitHub pull requests. For major features, it is best to open an issue discussing the change first. License and Citation -------------------- The license for SEP is the Lesser GNU Public License (LGPL), granted with the permission from the original author of Source Extractor. If you use SEP in a publication, please cite `Barbary (2016) `_ and the original Source Extractor paper: `Bertin & Arnouts 1996 `_. The DOI for the sep v1.0.0 code release is `10.5281/zenodo.159035 `_. sep-1.4.1/docs/matched_filter_example.png000066400000000000000000000305121475511417100204360ustar00rootroot00000000000000‰PNG  IHDR Xšv‚psBIT|dˆ pHYsaa¨?§i IDATxœíÝyx•õ¹èý{HƒdV)"‚ ¢Çºm­[@|­ZO•Ö©}­J{µÖé²p)¸¨ã9Em«Xk·àV|·Z¶­Zœ­(nEæQÅ$²Þ?zÂÙ9h¥ü~š|>×Õ?ú¬õ\÷½Ì@¾yÖÊ*‹Åb$P’{ å @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2­s/ŸgõêÕñÈ#DïÞ½£]»v¹×€¡ªª*,XGydtíÚ5÷:4#„/¼Gy$N=õÔÜk@‹tçwÆw¾óÜkÐŒ¾ðz÷îÇý÷³¢k·žÿðù|à_ãˆÑßnÔìWÿüB£ÎÛ^_ÿÖ>wÆ´ßÄÿóÝ3uë=w{´)kÓèsÿ¿{Oürêìé4úÜ%KæG¯^_mÔ¹o¿ý|£çn‰¿þM£Ï½óÆâÔóÇ5úüw^šßès·ÇÚkuÞœgŽÙè¹=öèÑès·ÇÀýöjÔy·^sMœ}ÁžûÒŸÿÚès·ÇÓ>Ú¨ó–.ýϨ¬Ü³Ñs÷ÙoD£ÏmŒukWÅ“¼w˿ð£¾ðêŸvÕµ[Ïè¹ëîÿðùemÛ7꼈ˆw;½Û¨ó¶×Wú4þ¨víÛ7úüv¥«=w{”¶+mô¹mÛµÊÝzï¸ehß¾S£ÏmÕªõvŸÃ{5î‡Óˆˆö;n×ù¯¨iô¹Û£U]ãž.ZZÚ6ºîRÙè¹=¿²[£ÏÝ}÷Þ»QçµïرÑçFD,}/Ï/MÚµkÜ×`«V­}nDl×çÆöðôgv4/B’ @2HF€Ðì :<÷ IíÿßͽBRƒ†”{…¤vÞ¹[î’:è›ß̽BR}úʽBRÿ4²ñ/¸ÿ2Úi§–õõ ŸE€Ðìí3ôÀÜ+$µÿ!-+@ömq’ç¯årð7ÿᾌöüjË ÃŽ:*÷ I ø$#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2­s/ÛêÙG:'Ù¥KϤóê-š·8ËÜ…sf™»×ð½²Ìí½Oï,s¯˜vm–¹7O¸-Ëܧî}*Ë܈ˆU‹Ve™;bÔˆ,s—½»,ËÜ_^ðË,s|@–¹#ûç,s+*+’ÎÛTø$éI:¯¦ª&é†&Lˆ£Ž:*ÇÚ$äÐÙa*++cùòåÑ­[·xñÅcذa[ݧ¬¬,žyæ™1bÄ–cgžyfôîÝ;&L˜=öX~øá)× !W@ØaJKK£[·nñ·§Z}š6mÚ4ˆzcÆŒ‰ˆˆyóæ5Ý‚d'@øBX¾|yDDtíÚ5ó&4%ÂÂUW];wö:€fÎk@ÈnòäÉñØců~õ«(//ϽMȲºûî»ãç?ÿyœuÖYñƒü ÷:41W@ÈæücŒ;6Ž=öؘ:uêçÞÿÅçþmJËë½ÇÀØ£Ï>Mµ"´óç½ï¼ý×Ç6ÖTeÚ†æN€Åœ9sâøãáÇÇ=÷Ü%%Ÿ1nÿáGDEEÏÛ@ËòÕþCâ«ý‡48¶jå’˜~×M™6¢9ó,’›;wnsÌ1ѧOŸ˜5kV”••}þI4 ®€°CÝtÓM±nݺXºtiDD<ðÀ±pለ7n\ …8òÈ#cݺuqá…ƃ>Øàü¾}û~êû„Ð<v¨)S¦Äûï¿…B!fΜ3f̈B¡cÇŽºººX¼xq …¸øâ‹·:ÿ{ßûžhÆ;Ô{ï½÷¹÷©««K° _D^$#@€dŒ’ @2HF€É oDÈ—FݦºØ¼isÒ™mÊÚ$WoèáC³ÌÝå+»d™Û½w,s?X¹*Ëܧ~0ËÜ“Ïù~–¹ƒ†enDÄo&MÉ2wŸ}É2÷§ßÈ2·´mY–¹¹¬[±6ËÜNåIçµ)+M:–à $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’i{ØV=úôˆ½vK:³¼¢<é¼z¿ûåÿÊ2·oßý²Ì|ؾYæ¶k×!ËÜo{|–¹¯>ñJ–¹C¿94Ë܈ˆkOŸšeîŸ}.ËÜåï-Ï2·}yû,s[—æù1¦ãβÌ-Ö›õ<Ž8∸ýöÛãì³ÏN¹6‰¹ÂQZZݺu‹ˆˆb±ø™÷›>}z{ì±[â#"âðÃ~ýúÅ=÷ÜÓä{—!™%K–ĪU«â€Øê¶aÆÅË/¿œa+R $³lÙ²ˆˆèÙ³çV·õìÙ3>øà¯hæÉTUUEDDYYÙV·µmÛ¶Á}hžÉ´k×.""jjj¶º­ºººÁ}hžü,’©êUýS±þ«eË–EEEE´iÓæ3Ïì¡{£mÛ†²÷¾ÃbÀ¾Ÿþ·€móö›/ÅÛs¾³æÿrv4B2½zõŠ]vÙ%žþù­n{î¹ç¶¼Èg9ü˜£G¯Ýšj=h±ú Ø/ú دÁ±•ËÇÝӮʹÍ™§`‘Ô 'œ³fÍŠÅ‹o9öØcÅüùóãÄO̸)¸ÂsÓM7źuëbéÒ¥ñÀÄÂ… #"bܸqQ^^—^ziÜ{ï½ñõ¯=~ô£ÅG}W_}u <8N?ýôœë€a‡™2eJ¼ÿþûQ(bæÌ™1cÆŒ( 1vìØ(//]wÝ5þã?þ#~ò“ŸÄÅ_eeeqì±ÇÆ”)Sþîë?h;Ì{ï½·M÷0`@<üðÃM¼ _D^$#@€dŒ’ @2HF€É oDȗƜǞˆöíË“Î<ø›ÿœt^½qW]–eî‚×d™{Ç/nÉ2÷ÈSË2÷™þ”enß!{e™»k¿]³ÌˆxþéW³Ì­ÝX›enç]:g™[·¹.ËÜòŠ´ÿ&Ô«ÞPeîË>H:¯¶fcÒy´®€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dLëÜ À¶úÚÑGFϯìžtf÷ÞݓΫwÿMÓ³Ìí?l`–¹\wQ–¹·Løm–¹ïþç«Yæ^vÝO²Ì=pϾYæFDÜÛaN–¹Ï=òB–¹›6Öf™[ÒªU–¹ë׬Ï2·U¦Ç»Ó.“Ϋ®ý0éûh²} %xó¯/ÄÜ¿¾ÐàXMµ÷ç¢i’ª­­Í›7êñˆˆM›6}æ¹GŽ9%z~e÷&Û ZªƒˆƒhplùÒ…qǯ®Ì´Í™¿‚ERûí·_¼ôÒK1þüÇÿð‡?D«V­bðàÁ™6 W@Hêg?ûYLŸ>=¾öµ¯Åyç]ºt‰Y³fÅÃ?gŸ}vôèÑ#÷Š4!BRƒŽ'Ÿ|2&L˜W_}uTWWGŸ>}bòäÉqá…æ^€&&@Hnøðáñïÿþï¹× ¯’ @2HF€É $#@€dŒ’ñNè|i´)k¥mÛ$yÕ/L:¯Þ?}ó„,s7oÚœeîœÇ_Ê2·¼Kç,sÛ¶ë˜eîã?Ÿeîkód™±ô¥YæV}\•en.¹~˜Ø\S—enëÒ<¸¤UÚßoÞœç¿/ÍŸ+ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $Ó:÷°­^~ò…øÏòIgŽþöIçÕÛX½1ËÜÅo/Î2·¼¢<ËÜ>ƒ÷È2w§n;e™»féš,sW¾¿"ËÜœ …B–¹wî˜enmMm–¹­]›enYÛÒ:vìï¼óN,Y²$÷j41BRëׯ±cÇÆ¨Q£â¾ûî˽‰y IÝu×]±råʘ4iRDDlذ!êê¼Ó*@K!@HjöìÙQ^^‹-нöÚ+:uê;wŽþð‡QSS“{=š˜!©ùóçǦM›b̘1qÔQGÅŒ3âŒ3Έ©S§Æé§Ÿž{=š˜×€ÔÇŸ|òIœsÎ9qÝu×EDĘ1cbãÆqóÍ7Çå—_}ûöͼ%MÅ’j×®]DDœrÊ) Ž×ÿÿ¿üå/Éw W@Hª²²2Þ|óÍèÞ½{ƒãݺu‹ˆˆµk×~æ¹óæÍ‰Ö­KëÙ³Oôì¹çŽ_Zy¯¿o¿ñRƒc55U™¶¡¹ $uÀÄìÙ³cñâÅñÕ¯~uËñ¥K—FDÄ.»ìò™çöï`”—wmò ¥é¿ÏþÑŸý[¹lQÜõ›)™6¢9ó,’:餓""â7¿ùMƒã¿þõ¯£M›6qØa‡eØ €T\!©!C†Ägœ¿ýíocÓ¦Mq衇ƓO>÷Ýw_\zé¥Ñ£GÜ+ЄÉM:5vÛm·¸í¶ÛbæÌ™Ñ»wï¸îºëbܸq¹W ‰ ’kݺuŒ?>ÆŸ{ó $#@€dŒ’ @2HF€É ï„ΗFmíÆØ¸±:é̲öeIçÕÛ}ŸÝ³ÌÝk`Ÿ,sÿôгYæÖÕ³Ì-)É󻟎;wÌ2wå•YæFDì´ËNYæ~°ìƒ,s‹Å<ŸÓë׬Ï2wcÕÆ,s»VVd™»±:ñãÍôùDóç Œ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É´Î½l«>úÅ.ÝwM:³¼¢<é¼z ^[eîºë²ÌÝXS›en]]1ËÜŽ;wÌ2wíòµYævìœçñFDTo¨Î2·s×<ß;>\™çk¸¢²"ËÜ6¥y~Œ©ú8ÏçÕ'U%WýIMÒy´®€É $#@€dŒ’ d7iÒ¤())‰Aƒå^€&&@ÈjñâÅ1yòäèСC …ÜëÐļ!Y]pÁqðÁǦM›bõêÕ¹× ‰¹B6O=õTLŸ>=®»îº(‹®€´„,6oÞçŸ~œ}öÙ1pàÀÜ눧`‘ÅÔ©ScáÂ…ñøãç^€„\!¹5kÖÄøñãcüøñQQQ‘{ $wÙe—E×®]ãüóÏϽ ‰y IÍŸ??n½õÖ¸îºëbñâÅ[ŽWWWÇÆãý÷ßòòòØyç·:÷Ï?¥eíûêÞC¢ßÞC›|ohÎÞyëÕxçíWÛXSiš;BRK–,‰ººº7n\Œ7n«Û÷Øcøñ¿üå/·ºíoŒŽ]ºïšbMhQúîµoôÝkßÇV¯\3þõfÚˆæL€Ô AƒbæÌ™ þän±XŒË.»,>þøã¸þúëcÏ=÷̸!MI€TEEEwÜq[¿öÚk#"bôèÑ©W !/Bç ¡P(x#B€À¾žxâ‰Ü+€+ @2HF€É $#@€dŒ’ @2Þ /²vm£]ÇvIgVo¨N:¯^i»Ò,s?ú`}–¹mÊò<ÞÚšYæ~°lM–¹:wÌ2wM¦Çѵ²"ËÜb1ËØè°Sžq.­ý8ËÜòŠò,sS«ªù0÷ 4S®€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dLëÜ À¶êÙ§G|¥ÏnIg>pËŒ¤óêí÷õ³ÌmÕªU–¹uuuYæ¶j“ç[`I¦ÿÎ…’B–¹emK³Ìˆ(iészÓæ,s[µÊó{ÅÒLã×~œek²ÌMýßyóæ<ŸÇ4®€É $#@€dŒ’ $÷üóÏÇy猎;Æî»ï'Ÿ|rÌŸ??÷j41ïBrW^ye<ûì³qâ‰'ÆàÁƒcÙ²eqÓM7Å~ûíùË_bàÀ¹W ‰’ûéOÆ ‹Ö­ÿϧßÉ'Ÿƒ Šù—‰ßýîw· ) ’;è ƒ¶:Ö·oß0`@Ì›7/ÃF¤â5 |!‹ÅX±bEtíÚ5÷*4!ÂÂïÿûXºtiœ|òɹW  ²›7o^œ{î¹qðÁÇw¿ûÝÜëЄY-_¾<Ž9æ˜Øyçã¾ûî‹B¡{%š¡“͇~GuT¬_¿>þô§?E=þîý§ßþëh×¾Cƒcûòµ8àjÊ5 Ù›÷ú‹ñÖë/58VSS•iš;BÕÕÕ1jÔ¨xçwböìÙÑ¿ÿÏ=ç„ï_é³g‚í eé¿ÏþÑŸý[±lQÜõëk2mDs&@HnóæÍqòÉ'Çœ9sâßþíßâÀ̽‰’ûéO>ø`Œ5*V¯^wÞygƒÛO=õÔL›ÐÔɽúê«Q(âÁŒ|°Ám…BA€4c„äžxâ‰Ü+‰?à $#@€dŒ’ @2HF€É $ãÐùÒ˜û—¹±ò“Îì;xï¤óê­_•öqÖ+iÝ*ËܶÚf™Û:ÓãmÓ¶M–¹­YŸenYû²,s#"–¾³4àæˆàIDATËÜÿm`–¹+®Ì2wÍÒ5Yæ …5·X,¦˜v-†+ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $Ó:÷°­Ú—wˆN]:å^#‰\ó£>Ê2wÓÆÚ,s‹mò| ,Ïôñ­èY‘enÝæº,s#"ÚuªÊ2·¥}-µnÓ*ËÜÒ¶eYænÞ¼9ËÜ6emÒÎk[št-‡+ @2HF€É $#@€dÉÕÔÔÄE]•••Ѿ}û1bDÌž=;÷Z$ @Hî{ßû^\{íµqÚi§Å 7Ü­ZµŠ£>:ž~úéÜ«Ðļ!I=÷Üsq÷ÝwÇ5×\?ùÉO""â´ÓN‹}öÙ'.¼ðBÐ̹BR÷Ýw_´nÝ:¾ÿýïo9VVVgžyf<ûì³±dÉ’ŒÛÐÔI½üòËѯ_¿èرcƒãÆ ‹ˆˆW^y%ÇZ$"@HjÙ²eѳgÏ­Ž×[ºtiê•HH€TUUU”••mu¼mÛ¶[n ù $Õ®]»¨©©Ùêxuuõ–Ûh¾ü,’êÙ³ç§>ÍjÙ²eQYYù™çþ鱋²ÿ}¥¤^¿½‡F¿ûíØ% …yóÕçcî«Ï78V]íY 4 BRC‡'Ÿ|2>úè£èÔ©Ó–ãsæÌ‰ˆˆ!C†|æ¹_;ü¸èÖc×&ßZšû‹ûkplù’…1í^‘i#š3OÁ"©o}ë[±yóæ¸å–[¶«©©‰Ûn»-FŒ½zõʸMÍ’>|xœxâ‰qÉ%—ÄÊ•+cÏ=÷ŒiÓ¦ÅÂ… ã¶Ûn˽ML€ÜwÜ?ÿùÏãw¿û]¬]»6öÝwߘ5kVrÈ!¹W ‰ ’+++‹«®º*®ºêªÜ«˜×€É $#@höÞ~ó¥Ü+$õÆ+Ïå^!©·ÞhYß7ÿ¯7 kîZÚçóë/ÏɽBR-íëwÞk/æ^¾ÍÞÛs_νBRo¶°ØÞz³e}|çþõ…Ü+$ÕÒ>Ÿßx¹e=Þ–öõ;ïuHH€É oDÈ^UUUDD|°fE£Î¯©®Ž•ËïÈ•šÜ†ªö>·ºº*–/y¿qs?ü¤Ñs·GI«B£ÏÝX]ÕèoIëVž»=ZoÇÜ¿}|6nni›FÏÝźºFŸ»=ŸÏÕŸÔ4úÜíÑî£v:¯¦ú“X¶¸ñ÷“õ}nÛóõÑ&ÓçôæF~N×TWÅŠe‹=·u›´?¶­Yµ<"þϿð£ŠÅb1÷ð÷üþ÷¿SO=5÷Ð"Ýyçñï|'÷4#„/¼Õ«WÇ#<½{÷Žví÷[EàSUU ,ˆ#<2ºvíš{š$ãEè@2HF€É B³TSS]tQTVVFûöícĈ1{öìÜk5‰çŸ>Î;ï¼8p`tìØ1vß}÷8ùä“cþüù¹WKfÒ¤IQRRƒ ʽJ“y饗bôèÑQQQ:tˆAƒÅ7Þ˜{­&ñ /ÄqÇ•••Ñ¡C‡Ø{ï½câĉ_ú÷"ذaCL˜0!FŽ]ºt‰’’’˜6mÚ§Þwîܹ1räÈèÔ©STTTÄØ±ccõêÕ‰7Þ>Ûòx‹ÅbÜ~ûí1zôèØm·Ý¢cÇŽ1hР˜4iRÔÔäy—ÆúG>¾õjkkcÀ€QRRS¦LI´)ä'@h–¾÷½ïŵ×^§vZÜpà ѪU«8úè£ã駟νÚwå•WÆÌ™3ãˆ#Žˆn¸!¾ÿýïÇSO=ûí·_¼ñƹ×kr‹/ŽÉ“'G‡¢Phü~‘=úè£qÐAÅêÕ«cüøñqà 7ıÇK–,ɽÚ÷Úk¯Å!‡¯½öZüøÇ?Žë¯¿>:è ˜0aBœrÊ)¹×Û.«V­Š‰'Æ[o½C† ‰ˆøÔÏÙŋǡ‡ï¾ûn\qÅqÁÄC=GqDÔÖÖ¦^»Ñ¶åñnذ!Î8ãŒX³fMœsÎ9qýõ×ÇðáÃc„ qÔQGåX»Ñ¶õãû_Ýxã±hÑ¢mº/4+EhfæÌ™S, Å)S¦l9V]]]ìÛ·oñàƒθYÓxæ™gеµµ ŽÍŸ?¿Ø¶mÛâ©§žši«tN>ùäâ7¿ùÍâa‡VÜgŸ}r¯³Ã}øá‡ÅîÝ»O8á„Ü«$q饗 …BñÍ7ßlpü»ßýn±P(×­[—i³íWSSS\±bE±X,_xá…b¡P(N›6m«ûsÎ9Å:-Z´åØìÙ³‹…B¡xË-·$Ûw{mËãݸqcñÙgŸÝêÜË/¿¼X(гgÏN²ëް­ßz+V¬(î´ÓNÅ_üâ[ý›Í+ 4;÷Ýw_´nÝ:¾ÿýïo9VVVgžyf<ûì³Íî·ÆtP´nݺÁ±¾}ûÆ€bÞ¼y™¶Jã©§žŠéÓ§Çu×]Åb±Yþñ®»îŠ•+WƤI“"âo¿1®««Ë¼UÓ©³Ñnݺ58Þ£GhÕªU”––æXk‡(--Ýò¸Šç-¸¦OŸÇ{lìºë®[Ž~øáѯ_¿¸çž{š|Ïe[o›6mbĈ[3fLDÄ—ê{ض~|ë]|ñÅÑ¿ï0N‹$@hv^~ùåèׯ_tìØ±ÁñaÆEDÄ+¯¼’c­¤ŠÅb¬X±¢Y¿síæÍ›ãüóϳÏ>;˜{&3{öì(//E‹Å^{í:uŠÎ;ÇøÃ/Ýsä·ÅgœÝ»w3Ï<3^}õÕX´hQÜ}÷Ý1uêÔ7nÜ–@i®–,Y«V­Š8`«Û† /¿ür†­Ò[¾|yDD³ýöÜsÏÅwÜ×]w]îU ‹ÖŸørY¶lYôìÙs«ãõÇ–.]šz¥ä~ÿûßÇÒ¥Kã¿øEîUšÌÔ©ScáÂ…ñøãç^¥IÍŸ??6mÚcÆŒ‰³Î:+®¼òÊxâ‰'âÆoŒuëÖÅ]wÝ•{Ū²²2ž~úé8úè£cèС[Ž_vÙeqùå—gÜ,eË–ED|æ÷°>ø jkk£M›6©WKꪫ®ŠÎ;é^²-ŠÅbœþùñío;<ðÀX°`Aî• 9B³SUUeee[oÛ¶í–Û›³yóæÅ¹çž|p|÷»ßͽN“X³fMŒ?>ƹ×iRüq|òÉ'qÎ9çlùmé˜1cbãÆqóÍ7Çå—_}ûöͼ厳bÅŠ-?tÞzë­QQQ³fÍŠI“&E÷îÝãÜsÏͼaÓªÿþôyßÚs€Lž<9{ì±øÕ¯~ååå¹×Ùán¿ýöxýõ×cÆŒ¹WlÍN»ví>õ©)ÕÕÕ[no®–/_ÇsLì¼óÎqß}÷5Ë×DDüí·á]»vóÏ??÷*M®þóõÿþ P§œrJÜ|óÍñ—¿ü¥YÈĉcÉ’%ñöÛoGeeeDü-¸êêê⢋.ŠSN9%ºté’y˦Sÿñn©ßÃî¾ûîøùÏguVüà?Ƚη~ýú¸ä’Kâ /Œ^½zå^²ñšž={~êÓ¬êŸÚPÿCMsóá‡ÆQGëׯ‡~8zôè‘{¥&1þü¸õÖ[ãüóÏŋǂ bÁ‚Q]]7nŒ÷ß?Ö®]›{ͦþóµ{÷î Ž×¿Øµ9=Öˆˆ?ÿùÏ1tèЭ¾NGŸ|òI³ WýS¯ê¿_ýWË–-‹ŠŠŠf{õãücŒ;6Ž=öؘ:ujîušÄ5×\µµµqÒI'mùÞµxñ∈øàƒbÁ‚_ª?µ %@hv†o¿ýv|ôÑG ŽÏ™3'"bËßgoNª««cÔ¨QñÎ;ïĬY³¢ÿþ¹Wj2K–,‰ººº7n\ôéÓgËÿž{î¹xûí·c=öˆ‰'æ^s‡©1rý)õê#{—]vI¾SSª­­Í›7êñˆˆM›6¥^)©^½zÅ.»ìÏ?ÿüV·=÷ÜsÍòûWÄß¾?üñ1|øð¸çž{¢¤¤yþx²hÑ¢X»vm 8pË÷®C=4"þöÔ³>}úÄܹs3o M¯y~…Ó¢}ë[ߊ͛7Ç-·Ü²åXMMMÜvÛm1bĈfwÙ{óæÍqòÉ'Çœ9sâÞ{ï<0÷JMjРA1sæÌ¸ÿþû·üoæÌ™1pàÀØ}÷Ýãþûï3Ï<3÷š;ÌI'¿ùÍoÿõ¯mÚ´‰Ã;,ÃVMg¿ýö‹—^z)æÏŸßàøþð‡hÕªU <8Óféœp 1kÖ¬ÑùØcÅüùóãÄO̸YÓ˜;wnsÌ1ѧOŸ˜5kÖ§¾þ¥¹7n\ƒï]÷ßÜ|óÍqúé§Çý÷ß½{÷λ$$à5 4;ÇO<1.¹ä’X¹reì¹çž1mÚ´X¸paÜvÛm¹×Ûá~úӟƃ>£FŠÕ«WÇwÞÙàöSO=5ÓfM£¢¢"Ž;Ž_{íµ1zôèÔ+5©!C†Ägœ¿ýíocÓ¦Mq衇ƓO>÷Ýw_\zé¥Íî©v?ûÙÏbúôéñµ¯}-Î;ï¼èÒ¥KÌš5+~øá8û쳿ô÷¦›nŠuëÖm¹‚õÀÄÂ… #âo?œ–——Ç¥—^÷Þ{o|ýë_ýèGñÑGÅÕW_ƒŽÓO?=çúÿ°Ï{¼…B!Ž<òÈX·n]\xá…ñàƒ68¿oß¾Ÿú>!_TŸ÷x‡Ú௻EÄ–¿‚5pàÀf÷ý >SÎwA„¦R]]]üÙÏ~VìÙ³g±mÛ¶Å<°øè£æ^«IvØaÅ’’’b¡PØê%%%¹×Kæ°Ã+4(÷M¢¶¶¶ø?þÇÿ(öîÝ»XZZZìׯ_ñúë¯Ï½V“™3gNqäÈ‘Åòòòbiii±ÿþÅ+®¸¢¸yóæÜ«m·Þ½{7øú¬ÿÚ-)))¾ÿþû[î÷Æo<òÈb‡Š]ºt)žvÚiÅ•+Wfܼq>ïñ¾÷Þ{[þÿ§};ýôÓs?„ȶ~|ÿ«úÿÞ –¤P,nÃÛuì^$#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€É $#@€dŒ’ @2HF€Éüÿ ºFFæSïŸIEND®B`‚sep-1.4.1/docs/reference.rst000066400000000000000000000036161475511417100157400ustar00rootroot00000000000000Reference/API ============= **Background estimation & source detection** .. autosummary:: :toctree: api sep.Background sep.extract **Aperture photometry** .. autosummary:: :toctree: api sep.sum_circle sep.sum_circann sep.sum_ellipse sep.sum_ellipann **Aperture utilities** .. autosummary:: :toctree: api sep.kron_radius sep.flux_radius sep.winpos sep.mask_ellipse sep.ellipse_axes sep.ellipse_coeffs **Low-level utilities** .. autosummary:: :toctree: api sep.get_extract_pixstack sep.set_extract_pixstack sep.get_sub_object_limit sep.set_sub_object_limit **Flags** ======================== =========================================== Flag Description ======================== =========================================== ``sep.OBJ_MERGED`` object is result of deblending ``sep.OBJ_TRUNC`` object is truncated at image boundary ``sep.OBJ_SINGU`` x, y fully correlated in object ``sep.APER_TRUNC`` aperture truncated at image boundary ``sep.APER_HASMASKED`` aperture contains one or more masked pixels ``sep.APER_ALLMASKED`` aperture contains only masked pixels ``sep.APER_NONPOSITIVE`` aperture sum is negative in ``kron_radius`` ======================== =========================================== To see if a given flag is set in ``flags``:: is_merged = (flags & sep.OBJ_MERGED) != 0 .. note:: The coordinate convention in SEP is that (0, 0) corresponds to the center of the first element of the data array. This agrees with the 0-based indexing in Python and C. However, note that this differs from the FITS convention where the center of the first element is at coordinates (1, 1). As Source Extractor deals with FITS files, its outputs follow the FITS convention. Thus, the coordinates from SEP will be offset from Source Extractor coordinates by -1 in x and y. sep-1.4.1/docs/rtd-pip-requirements000066400000000000000000000001201475511417100172560ustar00rootroot00000000000000numpy Cython nbsphinx matplotlib fitsio numpydoc jupyter sphinx-astropy[confv2] sep-1.4.1/docs/tutorial.ipynb000066400000000000000000000271141475511417100161550ustar00rootroot00000000000000{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Tutorial\n", "\n", "This tutorial shows the basic steps of using SEP to detect objects in an image and perform some basic aperture photometry.\n", "\n", "Here, we use the `fitsio` package, just to read the test image, but you can also use `astropy.io.fits` for this purpose (or any other FITS reader)." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import sep" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# additional setup for reading the test image and displaying plots\n", "import fitsio\n", "import matplotlib.pyplot as plt\n", "from matplotlib import rcParams\n", "\n", "%matplotlib inline\n", "\n", "rcParams['figure.figsize'] = [10., 8.]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, we'll read an example image from a FITS file and display it, just to show what we're dealing with. The example image is just 256 x 256 pixels." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# read image into standard 2-d numpy array\n", "data = fitsio.read(\"../data/image.fits\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# show the image\n", "m, s = np.mean(data), np.std(data)\n", "plt.imshow(data, interpolation='nearest', cmap='gray', vmin=m-s, vmax=m+s, origin='lower')\n", "plt.colorbar();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Background subtraction\n", "\n", "Most optical/IR data must be background subtracted before sources can be detected. In SEP, background estimation and source detection are two separate steps." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# measure a spatially varying background on the image\n", "bkg = sep.Background(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There are various options for controlling the box size used in estimating the background. It is also possible to mask pixels. For example:\n", "```python\n", "bkg = sep.Background(data, mask=mask, bw=64, bh=64, fw=3, fh=3)\n", "```\n", "See the reference section for descriptions of these parameters.\n", "\n", "This returns an `Background` object that holds information on the spatially varying background and spatially varying background noise level. We can now do various things with this `Background` object:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# get a \"global\" mean and noise of the image background:\n", "print(bkg.globalback)\n", "print(bkg.globalrms)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# evaluate background as 2-d array, same size as original image\n", "bkg_image = bkg.back()\n", "# bkg_image = np.array(bkg) # equivalent to above" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# show the background\n", "plt.imshow(bkg_image, interpolation='nearest', cmap='gray', origin='lower')\n", "plt.colorbar();" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# evaluate the background noise as 2-d array, same size as original image\n", "bkg_rms = bkg.rms()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# show the background noise\n", "plt.imshow(bkg_rms, interpolation='nearest', cmap='gray', origin='lower')\n", "plt.colorbar();" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# subtract the background\n", "data_sub = data - bkg\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "One can also subtract the background from the data array in-place by doing `bkg.subfrom(data)`.\n", "\n", "
\n", "\n", "**Warning:**\n", "\n", "If the data array is not background-subtracted or the threshold is too low, you will tend to get one giant object when you run object detection using `sep.extract`. Or, more likely, an exception will be raised due to exceeding the internal memory constraints of the `sep.extract` function.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Object detection\n", "\n", "Now that we've subtracted the background, we can run object detection on the background-subtracted data. You can see the background noise level is pretty flat. So here we're setting the detection threshold to be a constant value of $1.5 \\sigma$ where $\\sigma$ is the global background RMS." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "objects = sep.extract(data_sub, 1.5, err=bkg.globalrms)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`sep.extract` has many options for controlling detection threshold, pixel masking, filtering, and object deblending. See the reference documentation for details.\n", "\n", "`objects` is a NumPy structured array with many fields." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# how many objects were detected\n", "len(objects)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`objects['x']` and `objects['y']` will give the centroid coordinates of the objects. Just to check where the detected objects are, we'll over-plot the object coordinates with some basic shape parameters on the image:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from matplotlib.patches import Ellipse\n", "\n", "# plot background-subtracted image\n", "fig, ax = plt.subplots()\n", "m, s = np.mean(data_sub), np.std(data_sub)\n", "im = ax.imshow(data_sub, interpolation='nearest', cmap='gray',\n", " vmin=m-s, vmax=m+s, origin='lower')\n", "\n", "# plot an ellipse for each object\n", "for i in range(len(objects)):\n", " e = Ellipse(xy=(objects['x'][i], objects['y'][i]),\n", " width=6*objects['a'][i],\n", " height=6*objects['b'][i],\n", " angle=objects['theta'][i] * 180. / np.pi)\n", " e.set_facecolor('none')\n", " e.set_edgecolor('red')\n", " ax.add_artist(e)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`objects` has many other fields, giving information such as second moments, and peak pixel positions and values. See the reference documentation for `sep.extract` for descriptions of these fields. You can see the available fields:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [], "source": [ "# available fields\n", "objects.dtype.names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Aperture photometry\n", "\n", "Finally, we'll perform simple circular aperture photometry with a 3 pixel radius at the locations of the objects:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "flux, fluxerr, flag = sep.sum_circle(data_sub, objects['x'], objects['y'],\n", " 3.0, err=bkg.globalrms, gain=1.0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`flux`, `fluxerr` and `flag` are all 1-d arrays with one entry per object." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# show the first 10 objects results:\n", "for i in range(10):\n", " print(\"object {:d}: flux = {:f} +/- {:f}\".format(i, flux[i], fluxerr[i]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Finally a brief word on byte order\n", "\n", "
\n", "\n", "**Note:**\n", "\n", "If you are using SEP to analyze data read from FITS files with\n", "[astropy.io.fits](http://astropy.readthedocs.org/en/stable/io/fits/)\n", "you may see an error message such as:\n", "\n", "```\n", "ValueError: Input array with dtype '>f4' has non-native byte order.\n", "Only native byte order arrays are supported. To change the byte\n", "order of the array 'data', do 'data = data.astype(data.dtype.newbyteorder(\"=\"))'\n", "```\n", "\n", "It is usually easiest to do this byte-swap operation directly after\n", "reading the array from the FITS file. The exact procedure is slightly different,\n", "depending on the version of ``numpy``. For ``numpy<2.0``, the operation was:\n", "\n", "```python\n", "# Byte order changed in-place\n", ">>> data = data.byteswap(inplace=True).newbyteorder() \n", "# Data copied to a new array\n", ">>> new_data = data.byteswap().newbyteorder()\n", "```\n", "\n", "For ``numpy>=2.0``, the correct operation is one of the following:\n", "\n", "```python\n", "# Copies data to a new array, preserves the ordering of the original array\n", ">>> new_data = data.astype(data.dtype.newbyteorder(\"=\")) \n", "# The same outcome as the previous operation\n", ">>> new_data = data.byteswap()\n", ">>> new_data = new_data.view(new_data.dtype.newbyteorder(\"=\"))\n", "# Changes data in-place\n", ">>> data = data.byteswap()\n", ">>> data = data.view(data.dtype.newbyteorder(\"=\"))\n", "```\n", "\n", "If you do this in-place operation, ensure that there are no other\n", "references to ``data``, as they will be rendered nonsensical.\n", "\n", "For the interested reader, this byteswap operation is necessary because\n", "``astropy.io.fits`` always returns big-endian byte order arrays, even on\n", "little-endian machines. This is due to the FITS standard requiring\n", "big-endian arrays (see the \n", "[FITS Standard](https://fits.gsfc.nasa.gov/fits_standard.html)), and \n", "``astropy.io.fits`` aiming for backwards compatibility.\n", "
" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 } sep-1.4.1/licenses/000077500000000000000000000000001475511417100141175ustar00rootroot00000000000000sep-1.4.1/licenses/BSD_LICENSE.txt000066400000000000000000000027271475511417100164420ustar00rootroot00000000000000Copyright (c) 2011-14, photutils developers All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the Astropy Team nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. sep-1.4.1/licenses/LGPL_LICENSE.txt000066400000000000000000000167431475511417100165730ustar00rootroot00000000000000 GNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public License, supplemented by the additional permissions listed below. 0. Additional Definitions. As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU GPL" refers to version 3 of the GNU General Public License. "The Library" refers to a covered work governed by this License, other than an Application or a Combined Work as defined below. An "Application" is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library. A "Combined Work" is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the "Linked Version". The "Minimal Corresponding Source" for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version. The "Corresponding Application Code" for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work. 1. Exception to Section 3 of the GNU GPL. You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL. 2. Conveying Modified Versions. If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked), then you may convey a copy of the modified version: a) under this License, provided that you make a good faith effort to ensure that, in the event an Application does not supply the function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy. 3. Object Code Incorporating Material from Library Header Files. The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following: a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License. b) Accompany the object code with a copy of the GNU GPL and this license document. 4. Combined Works. You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following: a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License. b) Accompany the Combined Work with a copy of the GNU GPL and this license document. c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document. d) Do one of the following: 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source. 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version. e) Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4d1, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.) 5. Combined Libraries. You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following: a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License. b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work. 6. Revised Versions of the GNU Lesser General Public License. The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation. If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library. sep-1.4.1/licenses/MIT_LICENSE.txt000066400000000000000000000020771475511417100164610ustar00rootroot00000000000000The MIT License (MIT) Copyright (c) 2014-2016: SEP developers Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. sep-1.4.1/paper/000077500000000000000000000000001475511417100134215ustar00rootroot00000000000000sep-1.4.1/paper/paper.bib000066400000000000000000000012121475511417100152020ustar00rootroot00000000000000@ARTICLE{bertin96, author = {{Bertin}, E. and {Arnouts}, S.}, title = "{SExtractor: Software for source extraction.}", journal = {\aaps}, keywords = {METHODS: DATA ANALYSIS, TECHNIQUES: IMAGE PROCESSING, GALAXIES: PHOTOMETRY}, year = 1996, month = jun, volume = 117, pages = {393-404}, doi = {10.1051/aas:1996164}, adsurl = {http://adsabs.harvard.edu/abs/1996A\%26AS..117..393B}, adsnote = {Provided by the SAO/NASA Astrophysics Data System} } @online{sextractor, author = {Emanuel Bertin}, title = {SExtractor}, year = 2016, url = {http://www.astromatic.net/software/sextractor}, urldate = {2016-08-25} } sep-1.4.1/paper/paper.md000066400000000000000000000055061475511417100150600ustar00rootroot00000000000000--- title: 'SEP: Source Extractor as a library' tags: - astronomy authors: - name: Kyle Barbary orcid: 0000-0002-2532-3696 affiliation: University of California, Berkeley date: 29 August 2016 bibliography: paper.bib --- # Summary Source Extractor [@bertin96; @sextractor] is a widely used command-line program for segmentation and analysis of astronomical images. It reads in FITS format files, performs a configurable series of tasks, including background estimation, source detection, deblending and a wide array of source measurements, and finally outputs a FITS format catalog file. While Source Extractor is highly useful, the fact that it can only be used as an executable -- reading input files, producing output files and controlled by a limited set of configuration options specified in another file -- can limit its applicability or lead to awkward workflows. There is often a desire to have programmatic access to perform one or more of the above tasks on in-memory images as part of a larger custom analysis. SEP makes available the core algorithms of Source Extractor in a library of stand-alone functions and classes. These operate directly on in-memory arrays (no FITS files or configuration files). The code is derived from the Source Extractor code base (written in C) and aims to produce results compatible with Source Extractor whenever possible. SEP consists of a C library with no dependencies outside the standard library, and a Python module that wraps the C library in a Pythonic API. The Python wrapper operates on NumPy arrays with NumPy as its only dependency. It is generated using Cython. From Source Extractor, SEP includes background estimation, image segmentation (including on-the-fly filtering and source deblending), aperture photometry in circular and elliptical apertures, and source measurements such as Kron radius, "windowed" position fitting, and half-light radius. Additionally, several features not in Source Extractor have been added: - Optimized matched filter for variable noise in source extraction. - Circular annulus and elliptical annulus aperture photometry functions. - Local background subtraction in shape consistent with aperture in aperture photometry functions. - Exact pixel overlap mode in all aperture photometry functions. - Masking of elliptical regions on images. Finally, note that SEP is essentially a fork of Source Extractor that has already diverged significantly from the original code base. One might ask why SEP is not part of Source Extractor itself: the command-line interface in Source Extractor could be built on top of such a library. The answer is that a vast array of changes were necessary in order to expose the functionality as stand-alone C functions. It would be a lot of work to rewrite Source Extractor itself in this way, with little gain for the executable itself. # References sep-1.4.1/pyproject.toml000066400000000000000000000042521475511417100152310ustar00rootroot00000000000000[build-system] requires = [ "setuptools>=61.0, <72.2.0", "wheel", "numpy>=2.0.0rc2", "Cython", "setuptools_scm>=8.0", ] build-backend = "setuptools.build_meta" [project] name = "sep" dynamic = ["version"] authors = [ { name="Emmanuel Bertin"}, { name="Kyle Barbary"}, { name="Kyle Boone"}, { name="Thomas Robitaille"}, { name="Matt Craig"}, { name="Curtis McCully"}, { name="Evert Rol"}, { name="Joe Lyman"}, { name="Michael Wuertenberger"}, { name="Ingvar Stepanyan"}, { name="Gabe Brammer"}, { name="Peter Watson"}, ] maintainers = [ { name="Peter Watson", email="peter.watson+sep@inaf.it" }, ] description="Astronomical source extraction and photometry library" readme = "README.md" license = { text = "LGPLv3+" } classifiers=[ "Development Status :: 5 - Production/Stable", "Programming Language :: Python :: 3", "License :: OSI Approved :: GNU Lesser General Public License v3 or later (LGPLv3+)", "Topic :: Scientific/Engineering :: Astronomy", "Intended Audience :: Science/Research", ] requires-python = ">=3.9" dependencies = [ "numpy>=1.26.4" ] [project.optional-dependencies] docs = [ "sphinx-copybutton>=0.5", "sphinx>=7.2", "numpydoc>=1.6", "matplotlib>=3.6", "sphinx-astropy[confv2]>=1.9.1", "nbsphinx>=0.9.3", "pandoc>=2.3", "fitsio>=1.2.1", "jupyter", "myst-parser>=2.0.0", ] [project.urls] "Homepage" = "https://github.com/sep-developers/sep" "Bug Tracker" = "https://github.com/sep-developers/sep/issues" "Documentation" = "http://sep-pjw.readthedocs.org" [tool.setuptools_scm] [tool.black] line-length = 88 target-version = ['py312'] extend-exclude = '(.*.txt|.*.md|.*.toml|.*.odg)' preview = true [tool.isort] profile = "black" [tool.numpydoc_validation] checks = [ "all", # report on all checks, except the below "EX01", "SA01", "ES01", ] exclude = [ # don't report on objects that match any of these regex '\.undocumented_method$', '\.__repr__$', '\._.*$', # Ignore anything that's private (e.g., starts with _) ] override_SS05 = [ # override SS05 to allow docstrings starting with these words '^Process ', '^Assess ', '^Access ', ] sep-1.4.1/sep.pyx000066400000000000000000002357161475511417100136610ustar00rootroot00000000000000# This wrapper licensed under an MIT license. """ Source Extraction and Photometry This module is a wrapper of the SEP C library. """ import numpy as np cimport cython cimport numpy as np from cpython.mem cimport PyMem_Free, PyMem_Malloc from cpython.version cimport PY_MAJOR_VERSION from libc cimport limits from libc.math cimport sqrt np.import_array() # To access the numpy C-API. from importlib.metadata import PackageNotFoundError, version try: __version__ = version("sep") except PackageNotFoundError: # package is not installed pass # ----------------------------------------------------------------------------- # Definitions from the SEP C library # macro definitions from sep.h DEF SEP_TBYTE = 11 DEF SEP_TINT = 31 DEF SEP_TFLOAT = 42 DEF SEP_TDOUBLE = 82 # input flag values (C macros) DEF SEP_NOISE_NONE = 0 DEF SEP_NOISE_STDDEV = 1 DEF SEP_NOISE_VAR = 2 # filter types for sep_extract DEF SEP_FILTER_CONV = 0 DEF SEP_FILTER_MATCHED = 1 # Threshold types DEF SEP_THRESH_REL = 0 DEF SEP_THRESH_ABS = 1 # input flags for aperture photometry DEF SEP_MASK_IGNORE = 0x0004 # Output flag values accessible from python OBJ_MERGED = np.short(0x0001) OBJ_TRUNC = np.short(0x0002) OBJ_DOVERFLOW = np.short(0x0004) OBJ_SINGU = np.short(0x0008) APER_TRUNC = np.short(0x0010) APER_HASMASKED = np.short(0x0020) APER_ALLMASKED = np.short(0x0040) APER_NONPOSITIVE = np.short(0x0080) # macro defintion from sepcore.h # This is not part of the SEP API, but we pull it out because want to # explicitly detect memory errors so that we can raise MemoryError(). DEF MEMORY_ALLOC_ERROR = 1 # header definitions cdef extern from "sep.h": ctypedef struct sep_image: const void *data const void *noise const void *mask const void *segmap int dtype int ndtype int mdtype int sdtype np.int64_t *segids np.int64_t *idcounts np.int64_t numids np.int64_t w np.int64_t h double noiseval short noise_type double gain double maskthresh ctypedef struct sep_bkg: np.int64_t w np.int64_t h float globalback float globalrms ctypedef struct sep_catalog: np.int64_t nobj float *thresh np.int64_t *npix np.int64_t *tnpix np.int64_t *xmin np.int64_t *xmax np.int64_t *ymin np.int64_t *ymax double *x double *y double *x2 double *y2 double *xy double *errx2 double *erry2 double *errxy float *a float *b float *theta float *cxx float *cyy float *cxy float *cflux float *flux float *cpeak float *peak np.int64_t *xcpeak np.int64_t *ycpeak np.int64_t *xpeak np.int64_t *ypeak short *flag np.int64_t **pix np.int64_t *objectspix int sep_background(const sep_image *im, np.int64_t bw, np.int64_t bh, np.int64_t fw, np.int64_t fh, double fthresh, sep_bkg **bkg) float sep_bkg_global(const sep_bkg *bkg) float sep_bkg_globalrms(const sep_bkg *bkg) int sep_bkg_array(const sep_bkg *bkg, void *arr, int dtype) int sep_bkg_rmsarray(const sep_bkg *bkg, void *arr, int dtype) int sep_bkg_subarray(const sep_bkg *bkg, void *arr, int dtype) void sep_bkg_free(sep_bkg *bkg) int sep_extract(const sep_image *image, float thresh, int thresh_type, int minarea, float *conv, np.int64_t convw, np.int64_t convh, int filter_type, int deblend_nthresh, double deblend_cont, int clean_flag, double clean_param, sep_catalog **catalog) void sep_catalog_free(sep_catalog *catalog) int sep_sum_circle(const sep_image *image, double x, double y, double r, int id, int subpix, short inflags, double *sum, double *sumerr, double *area, short *flag) int sep_sum_circann(const sep_image *image, double x, double y, double rin, double rout, int id, int subpix, short inflags, double *sum, double *sumerr, double *area, short *flag) int sep_sum_ellipse(const sep_image *image, double x, double y, double a, double b, double theta, double r, int id, int subpix, short inflags, double *sum, double *sumerr, double *area, short *flag) int sep_sum_ellipann(const sep_image *image, double x, double y, double a, double b, double theta, double rin, double rout, int id, int subpix, short inflags, double *sum, double *sumerr, double *area, short *flag) int sep_flux_radius(const sep_image *image, double x, double y, double rmax, int id, int subpix, short inflag, double *fluxtot, double *fluxfrac, int n, double *r, short *flag) int sep_kron_radius(const sep_image *image, double x, double y, double cxx, double cyy, double cxy, double r, int id, double *kronrad, short *flag) int sep_windowed(const sep_image *image, double x, double y, double sig, int subpix, short inflag, double *xout, double *yout, int *niter, short *flag) int sep_ellipse_axes(double cxx, double cyy, double cxy, double *a, double *b, double *theta) void sep_ellipse_coeffs(double a, double b, double theta, double *cxx, double *cyy, double *cxy) void sep_set_ellipse(unsigned char *arr, np.int64_t w, np.int64_t h, double x, double y, double cxx, double cyy, double cxy, double r, unsigned char val) void sep_set_extract_pixstack(size_t val) size_t sep_get_extract_pixstack() void sep_set_sub_object_limit(int val) int sep_get_sub_object_limit() void sep_get_errmsg(int status, char *errtext) void sep_get_errdetail(char *errtext) # ----------------------------------------------------------------------------- # Utility functions cdef int _get_sep_dtype(dtype) except -1: """Convert a numpy dtype to the corresponding SEP dtype integer code.""" if not dtype.isnative: raise ValueError( "Input array with dtype `{0}` has non-native byte order. " "Only native byte order arrays are supported. " "To change the byte order of the array `data`, do " "`data = data.astype(data.dtype.newbyteorder('='))`".format(dtype)) t = dtype.type if t is np.single: return SEP_TFLOAT elif t is np.bool_ or t is np.ubyte: return SEP_TBYTE elif dtype == np.double: return SEP_TDOUBLE elif dtype == np.intc: return SEP_TINT raise ValueError('input array dtype not supported: {0}'.format(dtype)) cdef int _check_array_get_dims(np.ndarray arr, np.int64_t *w, np.int64_t *h) except -1: """Check some things about an array and return dimensions""" # Raise an informative message if array is not C-contiguous if not arr.flags["C_CONTIGUOUS"]: raise ValueError("array is not C-contiguous") # Check that there are exactly 2 dimensions if arr.ndim != 2: raise ValueError("array must be 2-d") # ensure that arr dimensions are not too large for C ints. if arr.shape[0] <= limits.INT_MAX: h[0] = arr.shape[0] else: raise ValueError("array height ({0:d}) greater than INT_MAX ({1:d})" .format(arr.shape[0], limits.INT_MAX)) if arr.shape[1] <= limits.INT_MAX: w[0] = arr.shape[1] else: raise ValueError("array width ({0:d}) greater than INT_MAX ({1:d})" .format(arr.shape[1], limits.INT_MAX)) return 0 cdef int _assert_ok(int status) except -1: """Get the SEP error message corresponding to status code""" cdef char *errmsg cdef char *errdetail if status == 0: return 0 # First check if we have an out-of-memory error, so we don't try to # allocate more memory to hold the error message. if status == MEMORY_ALLOC_ERROR: raise MemoryError # Otherwise, get error message. errmsg = PyMem_Malloc(61 * sizeof(char)) sep_get_errmsg(status, errmsg) pyerrmsg = errmsg PyMem_Free(errmsg) # Get error detail. errdetail = PyMem_Malloc(512 * sizeof(char)) sep_get_errdetail(errdetail) pyerrdetail = errdetail PyMem_Free(errdetail) # If error detail is present, append it to the message. if pyerrdetail != b"": pyerrmsg = pyerrmsg + b": " + pyerrdetail # Convert string to unicode if on python 3 if PY_MAJOR_VERSION == 3: msg = pyerrmsg.decode() else: msg = pyerrmsg raise Exception(msg) cdef int _parse_arrays(np.ndarray data, err, var, mask, segmap, sep_image *im) except -1: """Helper function for functions accepting data, error, mask & segmap arrays. Fills in an sep_image struct.""" cdef np.int64_t ew, eh, mw, mh, sw, sh cdef np.uint8_t[:,:] buf, ebuf, mbuf, sbuf # Clear im fields we might not touch (everything besides data, dtype, w, h) im.noise = NULL im.mask = NULL im.segmap = NULL im.numids = 0 im.ndtype = 0 im.mdtype = 0 im.noiseval = 0.0 im.noise_type = SEP_NOISE_NONE im.gain = 0.0 im.maskthresh = 0.0 # Get main image info _check_array_get_dims(data, &(im.w), &(im.h)) im.dtype = _get_sep_dtype(data.dtype) buf = data.view(dtype=np.uint8) im.data = &buf[0, 0] # Check if noise is error or variance. noise = None # will point to either error or variance. if err is not None: if var is not None: raise ValueError("Cannot specify both err and var") noise = err im.noise_type = SEP_NOISE_STDDEV elif var is not None: noise = var im.noise_type = SEP_NOISE_VAR # parse noise if noise is None: im.noise = NULL im.noise_type = SEP_NOISE_NONE im.noiseval = 0.0 elif isinstance(noise, np.ndarray): if noise.ndim == 0: im.noise = NULL im.noiseval = noise elif noise.ndim == 2: _check_array_get_dims(noise, &ew, &eh) if ew != im.w or eh != im.h: raise ValueError("size of error/variance array must match" " data") im.ndtype = _get_sep_dtype(noise.dtype) ebuf = noise.view(dtype=np.uint8) im.noise = &ebuf[0, 0] else: raise ValueError("error/variance array must be 0-d or 2-d") else: im.noise = NULL im.noiseval = noise # Optional input: mask if mask is None: im.mask = NULL else: _check_array_get_dims(mask, &mw, &mh) if mw != im.w or mh != im.h: raise ValueError("size of mask array must match data") im.mdtype = _get_sep_dtype(mask.dtype) mbuf = mask.view(dtype=np.uint8) im.mask = &mbuf[0, 0] # Optional input: segmap if segmap is None: im.segmap = NULL else: _check_array_get_dims(segmap, &sw, &sh) if sw != im.w or sh != im.h: raise ValueError("size of segmap array must match data") im.sdtype = _get_sep_dtype(segmap.dtype) sbuf = segmap.view(dtype=np.uint8) im.segmap = &sbuf[0, 0] # ----------------------------------------------------------------------------- # Background Estimation cdef class Background: """ Background(data, mask=None, maskthresh=0.0, bw=64, bh=64, fw=3, fh=3, fthresh=0.0) Representation of spatially variable image background and noise. Parameters ---------- data : 2-d `~numpy.ndarray` Data array. mask : 2-d `~numpy.ndarray`, optional Mask array, optional maskthresh : float, optional Mask threshold. This is the inclusive upper limit on the mask value in order for the corresponding pixel to be unmasked. For boolean arrays, False and True are interpreted as 0 and 1, respectively. Thus, given a threshold of zero, True corresponds to masked and False corresponds to unmasked. bw, bh : int, optional Size of background boxes in pixels. Default is 64. fw, fh : int, optional Filter width and height in boxes. Default is 3. fthresh : float, optional Filter threshold. Default is 0.0. """ cdef sep_bkg *ptr # pointer to C struct cdef np.dtype orig_dtype # dtype code of original image @cython.boundscheck(False) @cython.wraparound(False) def __cinit__(self, np.ndarray data not None, np.ndarray mask=None, float maskthresh=0.0, int bw=64, int bh=64, int fw=3, int fh=3, float fthresh=0.0): cdef int status cdef sep_image im _parse_arrays(data, None, None, mask, None, &im) im.maskthresh = maskthresh status = sep_background(&im, bw, bh, fw, fh, fthresh, &self.ptr) _assert_ok(status) self.orig_dtype = data.dtype # Note: all initialization work is done in __cinit__. This is just here # for the docstring. def __init__(self, np.ndarray data not None, np.ndarray mask=None, float maskthresh=0.0, int bw=64, int bh=64, int fw=3, int fh=3, float fthresh=0.0): """Background(data, mask=None, maskthresh=0.0, bw=64, bh=64, fw=3, fh=3, fthresh=0.0)""" pass property globalback: """Global background level.""" def __get__(self): return sep_bkg_global(self.ptr) property globalrms: """Global background RMS.""" def __get__(self): return sep_bkg_globalrms(self.ptr) def back(self, dtype=None, copy=None): """back(dtype=None) Create an array of the background. Parameters ---------- dtype : `~numpy.dtype`, optional Data type of output array. Default is the dtype of the original data. Returns ------- back : `~numpy.ndarray` Array with same dimensions as original data. """ cdef int sep_dtype cdef np.uint8_t[:, :] buf if dtype is None: dtype = self.orig_dtype else: dtype = np.dtype(dtype) sep_dtype = _get_sep_dtype(dtype) result = np.empty((self.ptr.h, self.ptr.w), dtype=dtype) buf = result.view(dtype=np.uint8) status = sep_bkg_array(self.ptr, &buf[0, 0], sep_dtype) _assert_ok(status) if copy: return result.copy() else: return result def rms(self, dtype=None): """rms(dtype=None) Create an array of the background rms. Parameters ---------- dtype : `~numpy.dtype`, optional Data type of output array. Default is the dtype of the original data. Returns ------- rms : `~numpy.ndarray` Array with same dimensions as original data. """ cdef int sep_dtype cdef np.uint8_t[:, :] buf if dtype is None: dtype = self.orig_dtype else: dtype = np.dtype(dtype) sep_dtype = _get_sep_dtype(dtype) result = np.empty((self.ptr.h, self.ptr.w), dtype=dtype) buf = result.view(dtype=np.uint8) status = sep_bkg_rmsarray(self.ptr, &buf[0, 0], sep_dtype) _assert_ok(status) return result def subfrom(self, np.ndarray data not None): """subfrom(data) Subtract the background from an existing array. Like ``data = data - bkg``, but avoids making a copy of the data. Parameters ---------- data : `~numpy.ndarray` Input array, which will be updated in-place. Shape must match that of the original image used to measure the background. """ cdef np.int64_t w, h cdef int status, sep_dtype cdef np.uint8_t[:, :] buf assert self.ptr is not NULL _check_array_get_dims(data, &w, &h) sep_dtype = _get_sep_dtype(data.dtype) buf = data.view(dtype=np.uint8) # ensure dimensions match original image if (w != self.ptr.w or h != self.ptr.h): raise ValueError("Data dimensions do not match background " "dimensions") status = sep_bkg_subarray(self.ptr, &buf[0, 0], sep_dtype) _assert_ok(status) def __array__(self, dtype=None, copy=None): return self.back(dtype=dtype, copy=copy) def __rsub__(self, np.ndarray data not None): data = np.copy(data) self.subfrom(data) return data def __dealloc__(self): if self.ptr is not NULL: sep_bkg_free(self.ptr) # ----------------------------------------------------------------------------- # Source Extraction # This needs to match the result from extract cdef packed struct Object: np.float64_t thresh np.int64_t npix np.int64_t tnpix np.int64_t xmin np.int64_t xmax np.int64_t ymin np.int64_t ymax np.float64_t x np.float64_t y np.float64_t x2 np.float64_t y2 np.float64_t xy np.float64_t a np.float64_t b np.float64_t theta np.float64_t cxx np.float64_t cyy np.float64_t cxy np.float64_t cflux np.float64_t flux np.float64_t cpeak np.float64_t peak np.float64_t errx2 np.float64_t erry2 np.float64_t errxy np.int64_t xcpeak np.int64_t ycpeak np.int64_t xpeak np.int64_t ypeak short flag default_kernel = np.array([[1.0, 2.0, 1.0], [2.0, 4.0, 2.0], [1.0, 2.0, 1.0]], dtype=np.float32) @cython.boundscheck(False) @cython.wraparound(False) def extract(np.ndarray data not None, float thresh, err=None, var=None, gain=None, np.ndarray mask=None, double maskthresh=0.0, int minarea=5, np.ndarray filter_kernel=default_kernel, filter_type='matched', int deblend_nthresh=32, double deblend_cont=0.005, bint clean=True, double clean_param=1.0, segmentation_map=None): """extract(data, thresh, err=None, mask=None, minarea=5, filter_kernel=default_kernel, filter_type='matched', deblend_nthresh=32, deblend_cont=0.005, clean=True, clean_param=1.0, segmentation_map=False) Extract sources from an image. Parameters ---------- data : `~numpy.ndarray` Data array (2-d). thresh : float Threshold pixel value for detection. If an ``err`` or ``var`` array is not given, this is interpreted as an absolute threshold. If ``err`` or ``var`` is given, this is interpreted as a relative threshold: the absolute threshold at pixel (j, i) will be ``thresh * err[j, i]`` or ``thresh * sqrt(var[j, i])``. err, var : float or `~numpy.ndarray`, optional Error *or* variance (specify at most one). This can be used to specify a pixel-by-pixel detection threshold; see "thresh" argument. gain : float, optional Conversion factor between data array units and poisson counts. This does not affect detection; it is used only in calculating Poisson noise contribution to uncertainty parameters such as ``errx2``. If not given, no Poisson noise will be added. mask : `~numpy.ndarray`, optional Mask array. ``True`` values, or numeric values greater than ``maskthresh``, are considered masked. Masking a pixel is equivalent to setting data to zero and noise (if present) to infinity, and occurs *before* filtering. maskthresh : float, optional Threshold for a pixel to be masked. Default is ``0.0``. minarea : int, optional Minimum number of pixels required for an object. Default is 5. filter_kernel : `~numpy.ndarray` or None, optional Filter kernel used for on-the-fly filtering (used to enhance detection). Default is a 3x3 array: [[1,2,1], [2,4,2], [1,2,1]]. Set to ``None`` to skip convolution. filter_type : {'matched', 'conv'}, optional Filter treatment. This affects filtering behavior when a noise array is supplied. ``'matched'`` (default) accounts for pixel-to-pixel noise in the filter kernel. ``'conv'`` is simple convolution of the data array, ignoring pixel-to-pixel noise across the kernel. ``'matched'`` should yield better detection of faint sources in areas of rapidly varying noise (such as found in coadded images made from semi-overlapping exposures). The two options are equivalent when noise is constant. deblend_nthresh : int, optional Number of thresholds used for object deblending. Default is 32. deblend_cont : float, optional Minimum contrast ratio used for object deblending. Default is 0.005. To entirely disable deblending, set to 1.0. clean : bool, optional Perform cleaning? Default is True. clean_param : float, optional Cleaning parameter (see SExtractor manual). Default is 1.0. segmentation_map : `~numpy.ndarray` or bool, optional If ``True``, also return a "segmentation map" giving the member pixels of each object. Default is False. *New in v1.3.0*: An existing segmentation map can also be supplied in the form of an `~numpy.ndarray`. If this is the case, then the object detection stage is skipped, and the objects in the segmentation map are analysed and extracted. Returns ------- objects : `~numpy.ndarray` Extracted object parameters (structured array). Available fields are: * ``thresh`` (float) Threshold at object location. * ``npix`` (int) Number of pixels belonging to the object. * ``tnpix`` (int) Number of pixels above threshold (unconvolved data). * ``xmin``, ``xmax`` (int) Minimum, maximum x coordinates of pixels. * ``ymin``, ``ymax`` (int) Minimum, maximum y coordinates of pixels. * ``x``, ``y`` (float) object barycenter (first moments). * ``x2``, ``y2``, ``xy`` (float) Second moments. * ``errx2``, ``erry2``, ``errxy`` (float) Second moment errors. Note that these will be zero if error is not given. * ``a``, ``b``, ``theta`` (float) Ellipse parameters, scaled as described by Section 8.4.2 in "The Source Extractor Guide" or Section 10.1.5-6 of v2.13 of SExtractor's User Manual. * ``cxx``, ``cyy``, ``cxy`` (float) Alternative ellipse parameters. * ``cflux`` (float) Sum of member pixels in convolved data. * ``flux`` (float) Sum of member pixels in unconvolved data. * ``cpeak`` (float) Peak value in convolved data. * ``peak`` (float) Peak value in unconvolved data. * ``xcpeak``, ``ycpeak`` (int) Coordinate of convolved peak pixel. * ``xpeak``, ``ypeak`` (int) Coordinate of unconvolved peak pixel. * ``flag`` (int) Extraction flags. segmap : `~numpy.ndarray`, optional Array of integers with same shape as data. Pixels not belonging to any object have value 0. All pixels belonging to the ``i``-th object (e.g., ``objects[i]``) have value ``i+1``. Only returned if ``segmentation_map = True | ~numpy.ndarray``. """ cdef int kernelw, kernelh, status, i, j cdef int filter_typecode, thresh_type cdef sep_catalog *catalog = NULL cdef np.ndarray[Object] result cdef float[:, :] kernelflt cdef float *kernelptr cdef np.int32_t[:, :] segmap_buf cdef np.int32_t *segmap_ptr cdef np.int64_t *objpix cdef sep_image im cdef np.int64_t[:] idbuf, countbuf # parse arrays if type(segmentation_map) is np.ndarray: _parse_arrays(data, err, var, mask, segmentation_map, &im) ids, counts = np.unique(segmentation_map, return_counts=True) # Remove non-object IDs: filter_ids = ids>0 segids = np.ascontiguousarray(ids[filter_ids].astype(dtype=np.int64)) idcounts = np.ascontiguousarray(counts[filter_ids].astype(dtype=np.int64)) if np.nansum(idcounts)>get_extract_pixstack(): raise ValueError( f"The number of object pixels ({np.nansum(idcounts)}) in " "the segmentation map exceeds the allocated pixel stack " f"({get_extract_pixstack()}). Use " "`sep.set_extract_pixstack()` to increase the size, " "or check that the correct segmentation map has been " "supplied." ) idbuf = segids.view(dtype=np.int64) countbuf = idcounts.view(dtype=np.int64) im.segids = &idbuf[0] im.idcounts = &countbuf[0] im.numids = len(segids) else: _parse_arrays(data, err, var, mask, None, &im) im.maskthresh = maskthresh if gain is not None: im.gain = gain # Parse filter input if filter_kernel is None: kernelptr = NULL kernelw = 0 kernelh = 0 else: kernelflt = filter_kernel.astype(np.float32) kernelptr = &kernelflt[0, 0] kernelw = kernelflt.shape[1] kernelh = kernelflt.shape[0] if filter_type == 'matched': filter_typecode = SEP_FILTER_MATCHED elif filter_type == 'conv': filter_typecode = SEP_FILTER_CONV else: raise ValueError("unknown filter_type: {!r}".format(filter_type)) # If image has error info, the threshold is relative, otherwise # it is absolute. if im.noise_type == SEP_NOISE_NONE: thresh_type = SEP_THRESH_ABS else: thresh_type = SEP_THRESH_REL status = sep_extract(&im, thresh, thresh_type, minarea, kernelptr, kernelw, kernelh, filter_typecode, deblend_nthresh, deblend_cont, clean, clean_param, &catalog) _assert_ok(status) # Allocate result record array and fill it result = np.empty(catalog.nobj, dtype=np.dtype([('thresh', np.float64), ('npix', np.int64), ('tnpix', np.int64), ('xmin', np.int64), ('xmax', np.int64), ('ymin', np.int64), ('ymax', np.int64), ('x', np.float64), ('y', np.float64), ('x2', np.float64), ('y2', np.float64), ('xy', np.float64), ('errx2', np.float64), ('erry2', np.float64), ('errxy', np.float64), ('a', np.float64), ('b', np.float64), ('theta', np.float64), ('cxx', np.float64), ('cyy', np.float64), ('cxy', np.float64), ('cflux', np.float64), ('flux', np.float64), ('cpeak', np.float64), ('peak', np.float64), ('xcpeak', np.int64), ('ycpeak', np.int64), ('xpeak', np.int64), ('ypeak', np.int64), ('flag', np.short)])) for i in range(catalog.nobj): result['thresh'][i] = catalog.thresh[i] result['npix'][i] = catalog.npix[i] result['tnpix'][i] = catalog.tnpix[i] result['xmin'][i] = catalog.xmin[i] result['xmax'][i] = catalog.xmax[i] result['ymin'][i] = catalog.ymin[i] result['ymax'][i] = catalog.ymax[i] result['x'][i] = catalog.x[i] result['y'][i] = catalog.y[i] result['x2'][i] = catalog.x2[i] result['y2'][i] = catalog.y2[i] result['xy'][i] = catalog.xy[i] result['errx2'][i] = catalog.errx2[i] result['erry2'][i] = catalog.erry2[i] result['errxy'][i] = catalog.errxy[i] result['a'][i] = catalog.a[i] result['b'][i] = catalog.b[i] result['theta'][i] = catalog.theta[i] result['cxx'][i] = catalog.cxx[i] result['cyy'][i] = catalog.cyy[i] result['cxy'][i] = catalog.cxy[i] result['cflux'][i] = catalog.cflux[i] result['flux'][i] = catalog.flux[i] result['cpeak'][i] = catalog.cpeak[i] result['peak'][i] = catalog.peak[i] result['xcpeak'][i] = catalog.xcpeak[i] result['ycpeak'][i] = catalog.ycpeak[i] result['xpeak'][i] = catalog.xpeak[i] result['ypeak'][i] = catalog.ypeak[i] result['flag'][i] = catalog.flag[i] # construct a segmentation map, if it was requested. if type(segmentation_map) is np.ndarray or segmentation_map: # Note: We have to write out `(data.shape[0], data.shape[1])` because # because Cython turns `data.shape` later into an int pointer when # the function argument is typed as np.ndarray. segmap = np.zeros((data.shape[0], data.shape[1]), dtype=np.int32) segmap_buf = segmap segmap_ptr = &segmap_buf[0, 0] for i in range(catalog.nobj): objpix = catalog.pix[i] for j in range(catalog.npix[i]): segmap_ptr[objpix[j]] = i + 1 # Free the C catalog sep_catalog_free(catalog) if type(segmentation_map) is np.ndarray or segmentation_map: return result, segmap else: return result # ----------------------------------------------------------------------------- # Aperture Photometry @cython.boundscheck(False) @cython.wraparound(False) def sum_circle(np.ndarray data not None, x, y, r, var=None, err=None, gain=None, np.ndarray mask=None, double maskthresh=0.0, seg_id=None, np.ndarray segmap=None, bkgann=None, int subpix=5): """sum_circle(data, x, y, r, err=None, var=None, mask=None, maskthresh=0.0, segmap=None, seg_id=None, bkgann=None, gain=None, subpix=5) Sum data in circular aperture(s). Parameters ---------- data : `~numpy.ndarray` 2-d array to be summed. x, y, r : array_like Center coordinates and radius (radii) of aperture(s). ``x`` corresponds to the second ("fast") axis of the input array and ``y`` corresponds to the first ("slow") axis. ``x, y = (0.0, 0.0)`` corresponds to the center of the first element of the array. These inputs obey numpy broadcasting rules. err, var : float or `~numpy.ndarray` Error *or* variance (specify at most one). mask : `~numpy.ndarray`, optional Mask array. If supplied, a given pixel is masked if its value is greater than ``maskthresh``. maskthresh : float, optional Threshold for a pixel to be masked. Default is ``0.0``. segmap : `~numpy.ndarray`, optional Segmentation image with dimensions of ``data`` and dtype ``np.int32``. This is an optional input and corresponds to the segmentation map output by `~sep.extract`. seg_id : array_like, optional Array of segmentation ids used to mask additional pixels in the image. Dimensions correspond to the dimensions of ``x`` and ``y``. The behavior differs depending on whether ``seg_id`` is negative or positive. If ``seg_id`` is positive, all pixels belonging to other objects are masked. (Pixel ``j, i`` is masked if ``seg[j, i] != seg_id and seg[j, i] != 0``). If ``seg_id`` is negative, all pixels other than those belonging to the object of interest are masked. (Pixel ``j, i`` is masked if ``seg[j, i] != -seg_id``). NB: must be included if ``segmap`` is provided. bkgann : tuple, optional Length 2 tuple giving the inner and outer radius of a "background annulus". If supplied, the background is estimated by averaging unmasked pixels in this annulus. If supplied, the inner and outer radii obey numpy broadcasting rules along with ``x``, ``y`` and ``r``. gain : float, optional Conversion factor between data array units and poisson counts, used in calculating poisson noise in aperture sum. If ``None`` (default), do not add poisson noise. subpix : int, optional Subpixel sampling factor. If 0, exact overlap is calculated. Default is 5. Returns ------- sum : `~numpy.ndarray` The sum of the data array within the aperture. sumerr : `~numpy.ndarray` Error on the sum. flags : `~numpy.ndarray` Integer giving flags. (0 if no flags set.) """ cdef double flux1, fluxerr1, area1, cdef double bkgflux, bkgfluxerr, bkgarea cdef short flag1, bkgflag cdef size_t i cdef int status cdef np.broadcast it cdef sep_image im # Test for map without seg_id. Nothing happens if seg_id supplied but # without segmap. if (segmap is not None) and (seg_id is None): raise ValueError('`segmap` supplied but not `seg_id`.') _parse_arrays(data, err, var, mask, segmap, &im) im.maskthresh = maskthresh if gain is not None: im.gain = gain # Require that inputs are float64 arrays. This has to be done because we # are using a broadcasting iterator below, where we need to know the type # in advance. There are other ways to do this, e.g., using NpyIter_Multi # in the numpy C-API. However, the best way to use this from cython # is not clear to me at this time. # # docs.scipy.org/doc/numpy/reference/c-api.iterator.html#NpyIter_MultiNew dt = np.dtype(np.double) dint = np.dtype(np.int32) x = np.require(x, dtype=dt) y = np.require(y, dtype=dt) r = np.require(r, dtype=dt) # Segmentation image and ids with same dimensions as x, y, etc. if seg_id is not None: seg_id = np.require(seg_id, dtype=dint) if seg_id.shape != x.shape: raise ValueError('Shapes of `x` and `seg_id` do not match') else: seg_id = np.zeros(len(x), dtype=dint) if bkgann is None: # allocate ouput arrays shape = np.broadcast(x, y, r).shape sum = np.empty(shape, dt) sumerr = np.empty(shape, dt) flag = np.empty(shape, np.short) it = np.broadcast(x, y, r, seg_id, sum, sumerr, flag) while np.PyArray_MultiIter_NOTDONE(it): status = sep_sum_circle( &im, (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], (np.PyArray_MultiIter_DATA(it, 2))[0], (np.PyArray_MultiIter_DATA(it, 3))[0], subpix, 0, np.PyArray_MultiIter_DATA(it, 4), np.PyArray_MultiIter_DATA(it, 5), &area1, np.PyArray_MultiIter_DATA(it, 6)) _assert_ok(status) # Advance the iterator np.PyArray_MultiIter_NEXT(it) return sum, sumerr, flag else: rin, rout = bkgann # Require float arrays (see note above) rin = np.require(rin, dtype=dt) rout = np.require(rout, dtype=dt) # allocate ouput arrays shape = np.broadcast(x, y, r, rin, rout).shape sum = np.empty(shape, dt) sumerr = np.empty(shape, dt) flag = np.empty(shape, np.short) it = np.broadcast(x, y, r, rin, rout, seg_id, sum, sumerr, flag) while np.PyArray_MultiIter_NOTDONE(it): status = sep_sum_circle( &im, (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], (np.PyArray_MultiIter_DATA(it, 2))[0], (np.PyArray_MultiIter_DATA(it, 5))[0], subpix, 0, &flux1, &fluxerr1, &area1, &flag1) _assert_ok(status) # background subtraction # Note that background output flags are not used. status = sep_sum_circann( &im, (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], (np.PyArray_MultiIter_DATA(it, 3))[0], (np.PyArray_MultiIter_DATA(it, 4))[0], (np.PyArray_MultiIter_DATA(it, 5))[0], 1, SEP_MASK_IGNORE, &bkgflux, &bkgfluxerr, &bkgarea, &bkgflag) _assert_ok(status) if not bkgarea > 0: raise ValueError( "The background annulus does not contain any valid pixels, " "for the object at index " f"{np.PyArray_MultiIter_INDEX(it)}." ) if area1 > 0: flux1 -= bkgflux / bkgarea * area1 bkgfluxerr = bkgfluxerr / bkgarea * area1 fluxerr1 = sqrt(fluxerr1*fluxerr1 + bkgfluxerr*bkgfluxerr) (np.PyArray_MultiIter_DATA(it, 6))[0] = flux1 (np.PyArray_MultiIter_DATA(it, 7))[0] = fluxerr1 (np.PyArray_MultiIter_DATA(it, 8))[0] = flag1 np.PyArray_MultiIter_NEXT(it) return sum, sumerr, flag @cython.boundscheck(False) @cython.wraparound(False) def sum_circann(np.ndarray data not None, x, y, rin, rout, var=None, err=None, gain=None, np.ndarray mask=None, double maskthresh=0.0, seg_id=None, np.ndarray segmap=None, int subpix=5): """sum_circann(data, x, y, rin, rout, err=None, var=None, mask=None, maskthresh=0.0, seg_id=None, segmap=None, gain=None, subpix=5) Sum data in circular annular aperture(s). Parameters ---------- data : `~numpy.ndarray` 2-d array to be summed. x, y, rin, rout : array_like Center coordinates and inner and outer radii of aperture(s). ``x`` corresponds to the second ("fast") axis of the input array and ``y`` corresponds to the first ("slow") axis. ``x, y = (0.0, 0.0)`` corresponds to the center of the first element of the array. These inputs obey numpy broadcasting rules. It is required that ``rout >= rin >= 0.0``. err, var : float or ndarray Error *or* variance (specify at most one). mask : `~numpy.ndarray`, optional Mask array. If supplied, a given pixel is masked if its value is greater than ``maskthresh``. maskthresh : float, optional Threshold for a pixel to be masked. Default is ``0.0``. segmap : `~numpy.ndarray`, optional Segmentation image with dimensions of ``data`` and dtype ``np.int32``. This is an optional input and corresponds to the segmentation map output by `~sep.extract`. seg_id : array_like, optional Array of segmentation ids used to mask additional pixels in the image. Dimensions correspond to the dimensions of ``x`` and ``y``. The behavior differs depending on whether ``seg_id`` is negative or positive. If ``seg_id`` is positive, all pixels belonging to other objects are masked. (Pixel ``j, i`` is masked if ``seg[j, i] != seg_id and seg[j, i] != 0``). If ``seg_id`` is negative, all pixels other than those belonging to the object of interest are masked. (Pixel ``j, i`` is masked if ``seg[j, i] != -seg_id``). NB: must be included if ``segmap`` is provided. gain : float, optional Conversion factor between data array units and poisson counts, used in calculating poisson noise in aperture sum. If ``None`` (default), do not add poisson noise. subpix : int, optional Subpixel sampling factor. Default is 5. Returns ------- sum : `~numpy.ndarray` The sum of the data array within the aperture. sumerr : `~numpy.ndarray` Error on the sum. flags : `~numpy.ndarray` Integer giving flags. (0 if no flags set.) """ cdef double area1 cdef size_t i cdef int status cdef np.broadcast it cdef sep_image im # Test for segmap without seg_id. Nothing happens if seg_id supplied but # without segmap. if (segmap is not None) and (seg_id is None): raise ValueError('`segmap` supplied but not `seg_id`.') _parse_arrays(data, err, var, mask, segmap, &im) im.maskthresh = maskthresh if gain is not None: im.gain = gain # convert inputs to double arrays dt = np.dtype(np.double) dint = np.dtype(np.int32) x = np.require(x, dtype=dt) y = np.require(y, dtype=dt) rin = np.require(rin, dtype=dt) rout = np.require(rout, dtype=dt) # Segmentation image and ids with same dimensions as x, y, etc. if seg_id is not None: seg_id = np.require(seg_id, dtype=dint) if seg_id.shape != x.shape: raise ValueError('Shapes of `x` and `seg_id` do not match') else: seg_id = np.zeros(len(x), dtype=dint) # allocate ouput arrays shape = np.broadcast(x, y, rin, rout).shape sum = np.empty(shape, dt) sumerr = np.empty(shape, dt) flag = np.empty(shape, np.short) # it = np.broadcast(x, y, rin, rout, sum, sumerr, flag) it = np.broadcast(x, y, rin, rout, seg_id, sum, sumerr, flag) while np.PyArray_MultiIter_NOTDONE(it): status = sep_sum_circann( &im, (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], (np.PyArray_MultiIter_DATA(it, 2))[0], (np.PyArray_MultiIter_DATA(it, 3))[0], (np.PyArray_MultiIter_DATA(it, 4))[0], subpix, 0, np.PyArray_MultiIter_DATA(it, 5), np.PyArray_MultiIter_DATA(it, 6), &area1, np.PyArray_MultiIter_DATA(it, 7)) _assert_ok(status) np.PyArray_MultiIter_NEXT(it) return sum, sumerr, flag def sum_ellipse(np.ndarray data not None, x, y, a, b, theta, r=1.0, var=None, err=None, gain=None, np.ndarray mask=None, double maskthresh=0.0, seg_id=None, np.ndarray segmap=None, bkgann=None, int subpix=5): """sum_ellipse(data, x, y, a, b, theta, r, err=None, var=None, mask=None, maskthresh=0.0, seg_id=None, segmap=None, bkgann=None, gain=None, subpix=5) Sum data in elliptical aperture(s). Parameters ---------- data : `~numpy.ndarray` 2-d array to be summed. x, y : array_like Center coordinates and radius (radii) of aperture(s). ``x`` corresponds to the second ("fast") axis of the input array and ``y`` corresponds to the first ("slow") axis. ``x, y = (0.0, 0.0)`` corresponds to the center of the first element of the array. These inputs obey numpy broadcasting rules. a, b, theta : array_like Ellipse parameters. These inputs, along with ``x``, ``y``, and ``r``, obey numpy broadcasting rules. ``a`` is the semi-major axis, ``b`` is the semi-minor axis and ``theta`` is angle in radians between the positive x axis and the major axis. It must be in the range ``[-pi/2, pi/2]``. It is also required that ``a >= b >= 0.0``. r : array_like, optional Scaling factor for the semi-minor and semi-major axes. The actual ellipse used will have semi-major axis ``a * r`` and semi-minor axis ``b * r``. Setting this parameter to a value other than 1.0 is exactly equivalent to scaling both ``a`` and ``b`` by the same value. Default is 1.0. err, var : float or `~numpy.ndarray` Error *or* variance (specify at most one). mask : `~numpy.ndarray`, optional Mask array. If supplied, a given pixel is masked if its value is greater than ``maskthresh``. maskthresh : float, optional Threshold for a pixel to be masked. Default is ``0.0``. segmap : `~numpy.ndarray`, optional Segmentation image with dimensions of ``data`` and dtype ``np.int32``. This is an optional input and corresponds to the segmentation map output by `~sep.extract`. seg_id : array_like, optional Array of segmentation ids used to mask additional pixels in the image. Dimensions correspond to the dimensions of ``x`` and ``y``. The behavior differs depending on whether ``seg_id`` is negative or positive. If ``seg_id`` is positive, all pixels belonging to other objects are masked. (Pixel ``j, i`` is masked if ``seg[j, i] != seg_id and seg[j, i] != 0``). If ``seg_id`` is negative, all pixels other than those belonging to the object of interest are masked. (Pixel ``j, i`` is masked if ``seg[j, i] != -seg_id``). NB: must be included if ``segmap`` is provided. bkgann : tuple, optional Length 2 tuple giving the inner and outer radius of a "background annulus". If supplied, the background is estimated by averaging unmasked pixels in this annulus. If supplied, the inner and outer radii obey numpy broadcasting rules, along with ``x``, ``y``, and ellipse parameters. gain : float, optional Conversion factor between data array units and poisson counts, used in calculating poisson noise in aperture sum. If ``None`` (default), do not add poisson noise. subpix : int, optional Subpixel sampling factor. Default is 5. Returns ------- sum : `~numpy.ndarray` The sum of the data array within the aperture. sumerr : `~numpy.ndarray` Error on the sum. flags : `~numpy.ndarray` Integer giving flags. (0 if no flags set.) """ cdef double flux1, fluxerr1, x1, y1, r1, area1, rin1, rout1 cdef double bkgflux, bkgfluxerr, bkgarea cdef short flag1, bkgflag cdef size_t i cdef int status cdef np.broadcast it cdef sep_image im # Test for seg without seg_id. Nothing happens if seg_id supplied but # without segmap. if (segmap is not None) and (seg_id is None): raise ValueError('`segmap` supplied but not `seg_id`.') _parse_arrays(data, err, var, mask, segmap, &im) im.maskthresh = maskthresh if gain is not None: im.gain = gain # Require that inputs are float64 arrays. See note in circular aperture. dt = np.dtype(np.double) dint = np.dtype(np.int32) x = np.require(x, dtype=dt) y = np.require(y, dtype=dt) a = np.require(a, dtype=dt) b = np.require(b, dtype=dt) theta = np.require(theta, dtype=dt) r = np.require(r, dtype=dt) # Segmentation image and ids with same dimensions as x, y, etc. if seg_id is not None: seg_id = np.require(seg_id, dtype=dint) if seg_id.shape != x.shape: raise ValueError('Shapes of `x` and `seg_id` do not match') else: seg_id = np.zeros(len(x), dtype=dint) if bkgann is None: # allocate ouput arrays shape = np.broadcast(x, y, a, b, theta, r).shape sum = np.empty(shape, dt) sumerr = np.empty(shape, dt) flag = np.empty(shape, np.short) it = np.broadcast(x, y, a, b, theta, r, seg_id, sum, sumerr, flag) while np.PyArray_MultiIter_NOTDONE(it): status = sep_sum_ellipse( &im, (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], (np.PyArray_MultiIter_DATA(it, 2))[0], (np.PyArray_MultiIter_DATA(it, 3))[0], (np.PyArray_MultiIter_DATA(it, 4))[0], (np.PyArray_MultiIter_DATA(it, 5))[0], (np.PyArray_MultiIter_DATA(it, 6))[0], subpix, 0, np.PyArray_MultiIter_DATA(it, 7), np.PyArray_MultiIter_DATA(it, 8), &area1, np.PyArray_MultiIter_DATA(it, 9)) _assert_ok(status) np.PyArray_MultiIter_NEXT(it) return sum, sumerr, flag else: rin, rout = bkgann # Require float arrays (see note above) rin = np.require(rin, dtype=dt) rout = np.require(rout, dtype=dt) # allocate ouput arrays shape = np.broadcast(x, y, a, b, theta, r, rin, rout).shape sum = np.empty(shape, dt) sumerr = np.empty(shape, dt) flag = np.empty(shape, np.short) it = np.broadcast(x, y, a, b, theta, r, rin, rout, seg_id, sum, sumerr, flag) while np.PyArray_MultiIter_NOTDONE(it): status = sep_sum_ellipse( &im, (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], (np.PyArray_MultiIter_DATA(it, 2))[0], (np.PyArray_MultiIter_DATA(it, 3))[0], (np.PyArray_MultiIter_DATA(it, 4))[0], (np.PyArray_MultiIter_DATA(it, 5))[0], (np.PyArray_MultiIter_DATA(it, 8))[0], subpix, 0, &flux1, &fluxerr1, &area1, &flag1) _assert_ok(status) status = sep_sum_ellipann( &im, (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], (np.PyArray_MultiIter_DATA(it, 2))[0], (np.PyArray_MultiIter_DATA(it, 3))[0], (np.PyArray_MultiIter_DATA(it, 4))[0], (np.PyArray_MultiIter_DATA(it, 6))[0], (np.PyArray_MultiIter_DATA(it, 7))[0], (np.PyArray_MultiIter_DATA(it, 8))[0], subpix, 0, &bkgflux, &bkgfluxerr, &bkgarea, &bkgflag) _assert_ok(status) if not bkgarea > 0: raise ValueError( "The background annulus does not contain any valid pixels, " "for the object at index " f"{np.PyArray_MultiIter_INDEX(it)}." ) if (area1 > 0): flux1 -= bkgflux / bkgarea * area1 bkgfluxerr = bkgfluxerr / bkgarea * area1 fluxerr1 = sqrt(fluxerr1*fluxerr1 + bkgfluxerr*bkgfluxerr) (np.PyArray_MultiIter_DATA(it, 9))[0] = flux1 (np.PyArray_MultiIter_DATA(it, 10))[0] = fluxerr1 (np.PyArray_MultiIter_DATA(it, 11))[0] = flag1 #PyArray_MultiIter_NEXT is used to advance the iterator np.PyArray_MultiIter_NEXT(it) return sum, sumerr, flag @cython.boundscheck(False) @cython.wraparound(False) def sum_ellipann(np.ndarray data not None, x, y, a, b, theta, rin, rout, var=None, err=None, gain=None, np.ndarray mask=None, double maskthresh=0.0, seg_id=None, np.ndarray segmap=None, int subpix=5): """sum_ellipann(data, x, y, a, b, theta, rin, rout, err=None, var=None, mask=None, maskthresh=0.0, gain=None, subpix=5) Sum data in elliptical annular aperture(s). Parameters ---------- data : `~numpy.ndarray` 2-d array to be summed. x, y : array_like Center coordinates and radius (radii) of aperture(s). ``x`` corresponds to the second ("fast") axis of the input array and ``y`` corresponds to the first ("slow") axis. ``x, y = (0.0, 0.0)`` corresponds to the center of the first element of the array. These inputs obey numpy broadcasting rules. a, b, theta, rin, rout : array_like Elliptical annulus parameters. These inputs, along with ``x`` and ``y``, obey numpy broadcasting rules. ``a`` is the semi-major axis, ``b`` is the semi-minor axis and ``theta`` is angle in radians between the positive x axis and the major axis. It must be in the range ``[-pi/2, pi/2]``. It is also required that ``a >= b >= 0.0`` and ``rout >= rin >= 0.0`` err, var : float or `~numpy.ndarray` Error *or* variance (specify at most one). mask : `~numpy.ndarray`, optional Mask array. If supplied, a given pixel is masked if its value is greater than ``maskthresh``. maskthresh : float, optional Threshold for a pixel to be masked. Default is ``0.0``. gain : float, optional Conversion factor between data array units and poisson counts, used in calculating poisson noise in aperture sum. If ``None`` (default), do not add poisson noise. segmap : `~numpy.ndarray`, optional Segmentation image with dimensions of ``data`` and dtype ``np.int32``. This is an optional input and corresponds to the segmentation map output by `~sep.extract`. seg_id : array_like, optional Array of segmentation ids used to mask additional pixels in the image. Dimensions correspond to the dimensions of ``x`` and ``y``. The behavior differs depending on whether ``seg_id`` is negative or positive. If ``seg_id`` is positive, all pixels belonging to other objects are masked. (Pixel ``j, i`` is masked if ``seg[j, i] != seg_id and seg[j, i] != 0``). If ``seg_id`` is negative, all pixels other than those belonging to the object of interest are masked. (Pixel ``j, i`` is masked if ``seg[j, i] != -seg_id``). NB: must be included if ``segmap`` is provided. subpix : int, optional Subpixel sampling factor. Default is 5. Returns ------- sum : `~numpy.ndarray` The sum of the data array within the aperture(s). sumerr : `~numpy.ndarray` Error on the sum. flags : `~numpy.ndarray` Integer giving flags. (0 if no flags set.) """ cdef double flux1, fluxerr1, x1, y1, r1, area1, rin1, rout1 cdef double bkgflux, bkgfluxerr, bkgarea cdef short flag1, bkgflag cdef size_t i cdef int status cdef np.broadcast it cdef sep_image im # Test for segmap without seg_id. Nothing happens if seg_id supplied but # without segmap. if (segmap is not None) and (seg_id is None): raise ValueError('`segmap` supplied but not `seg_id`.') _parse_arrays(data, err, var, mask, segmap, &im) im.maskthresh = maskthresh if gain is not None: im.gain = gain # Require that inputs are float64 arrays. See note in circular aperture. dt = np.dtype(np.double) dint = np.dtype(np.int32) x = np.require(x, dtype=dt) y = np.require(y, dtype=dt) a = np.require(a, dtype=dt) b = np.require(b, dtype=dt) theta = np.require(theta, dtype=dt) rin = np.require(rin, dtype=dt) rout = np.require(rout, dtype=dt) # Segmentation image and ids with same dimensions as x, y, etc. if seg_id is not None: seg_id = np.require(seg_id, dtype=dint) if seg_id.shape != x.shape: raise ValueError('Shapes of `x` and `seg_id` do not match') else: seg_id = np.zeros(len(x), dtype=dint) # allocate ouput arrays shape = np.broadcast(x, y, a, b, theta, rin, rout).shape sum = np.empty(shape, dt) sumerr = np.empty(shape, dt) flag = np.empty(shape, np.short) it = np.broadcast(x, y, a, b, theta, rin, rout, seg_id, sum, sumerr, flag) while np.PyArray_MultiIter_NOTDONE(it): status = sep_sum_ellipann( &im, (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], (np.PyArray_MultiIter_DATA(it, 2))[0], (np.PyArray_MultiIter_DATA(it, 3))[0], (np.PyArray_MultiIter_DATA(it, 4))[0], (np.PyArray_MultiIter_DATA(it, 5))[0], (np.PyArray_MultiIter_DATA(it, 6))[0], (np.PyArray_MultiIter_DATA(it, 7))[0], subpix, 0, np.PyArray_MultiIter_DATA(it, 8), np.PyArray_MultiIter_DATA(it, 9), &area1, np.PyArray_MultiIter_DATA(it, 10)) _assert_ok(status) np.PyArray_MultiIter_NEXT(it) return sum, sumerr, flag @cython.boundscheck(False) @cython.wraparound(False) def flux_radius(np.ndarray data not None, x, y, rmax, frac, normflux=None, np.ndarray mask=None, double maskthresh=0.0, seg_id=None, np.ndarray segmap=None, int subpix=5): """flux_radius(data, x, y, rmax, frac, normflux=None, mask=None, maskthresh=0.0, subpix=5) Return radius of a circle enclosing requested fraction of total flux. Parameters ---------- data : `~numpy.ndarray` 2-d array to be summed. x, y : array_like Center coordinates and radius (radii) of aperture(s). ``x`` corresponds to the second ("fast") axis of the input array and ``y`` corresponds to the first ("slow") axis. ``x, y = (0.0, 0.0)`` corresponds to the center of the first element of the array. Shapes must match. rmax : array_like Maximum radius to analyze. Used as normalizing flux if ``normflux`` is None. Shape must match x and y. frac : array_like Requested fraction of light (in range 0 to 1). Can be scalar or array. normflux : array_like, optional Normalizing flux for each position. If not given, the sum within ``rmax`` is used as the normalizing flux. If given, shape must match x, y and rmax. mask : `~numpy.ndarray`, optional Mask array. If supplied, a given pixel is masked if its value is greater than ``maskthresh``. maskthresh : float, optional Threshold for a pixel to be masked. Default is ``0.0``. segmap : `~numpy.ndarray`, optional Segmentation image with dimensions of ``data`` and dtype ``np.int32``. This is an optional input and corresponds to the segmentation map output by `~sep.extract`. seg_id : array_like, optional Array of segmentation ids used to mask additional pixels in the image. Dimensions correspond to the dimensions of ``x`` and ``y``. The behavior differs depending on whether ``seg_id`` is negative or positive. If ``seg_id`` is positive, all pixels belonging to other objects are masked. (Pixel ``j, i`` is masked if ``seg[j, i] != seg_id and seg[j, i] != 0``). If ``seg_id`` is negative, all pixels other than those belonging to the object of interest are masked. (Pixel ``j, i`` is masked if ``seg[j, i] != -seg_id``). NB: must be included if ``segmap`` is provided. subpix : int, optional Subpixel sampling factor. Default is 5. Returns ------- radius : `~numpy.ndarray` The sum of the data array within the aperture(s). Shape is same as ``x``, except if ``frac`` is an array; then the dimension of ``frac`` will be appended. For example, if ``x`` and ``frac`` are both 1-d arrays, the result will be a 2-d array with the trailing dimension corresponding to ``frac``. flags : `~numpy.ndarray` Integer giving flags. Same shape as ``x``. (0 if no flags set.) """ cdef double flux1, fluxerr1, x1, y1, r1, area1, rin1, rout1 cdef double bkgflux, bkgfluxerr, bkgarea cdef short flag1, bkgflag cdef int i cdef int status, fracn cdef short[:] flag cdef double[:, :] radius cdef double[:] fractmp cdef double[:] xtmp cdef double[:] ytmp cdef double[:] rtmp cdef double[:] normfluxbuf cdef double *normfluxptr cdef sep_image im # Test for segmap without seg_id. Nothing happens if seg_id supplied but # without segmap. if (segmap is not None) and (seg_id is None): raise ValueError('`segmap` supplied but not `seg_id`.') _parse_arrays(data, None, None, mask, segmap, &im) im.maskthresh = maskthresh # Require that inputs are float64 arrays with same shape. See note in # circular aperture. # Also require that frac is a contiguous array. dt = np.dtype(np.double) dint = np.dtype(np.int32) x = np.require(x, dtype=dt) y = np.require(y, dtype=dt) rmax = np.require(rmax, dtype=dt) frac = np.require(frac, dtype=dt) inshape = x.shape infracshape = frac.shape if (y.shape != inshape or rmax.shape != inshape): raise ValueError("shape of x, y, and r must match") if seg_id is not None: seg_id = np.require(seg_id, dtype=dint) if seg_id.shape != x.shape: raise ValueError('Shapes of `x` and `seg_id` do not match') else: seg_id = np.zeros(len(x), dtype=dint) # Convert input arrays to 1-d for correct looping and indexing. xtmp = np.ravel(x) ytmp = np.ravel(y) rtmp = np.ravel(rmax) itmp = np.ravel(seg_id) fractmp = np.ravel(np.ascontiguousarray(frac)) fracn = len(fractmp) # optional `normflux` input. normfluxptr = NULL if normflux is not None: normflux = np.require(normflux, dtype=dt) if normflux.shape != inshape: raise ValueError("shape of normflux must match shape of " "x, y and r") normfluxbuf = np.ravel(normflux) normfluxptr = &normfluxbuf[0] # Allocate ouput arrays. (We'll reshape these later to match the # input shapes.) flag = np.empty(len(xtmp), np.short) radius = np.empty((len(xtmp), len(fractmp)), dt) for i in range(len(xtmp)): if normfluxptr != NULL: normfluxptr = &normfluxbuf[i] status = sep_flux_radius(&im, xtmp[i], ytmp[i], rtmp[i], itmp[i], subpix, 0, normfluxptr, &fractmp[0], fracn, &radius[i, 0], &flag[i]) _assert_ok(status) return (np.asarray(radius).reshape(inshape + infracshape), np.asarray(flag).reshape(inshape)) @cython.boundscheck(False) @cython.wraparound(False) def mask_ellipse(np.ndarray arr not None, x, y, a=None, b=None, theta=None, r=1.0, cxx=None, cyy=None, cxy=None): """mask_ellipse(arr, x, y, a, b, theta, r=1.0) Mask ellipse(s) in an array. Set array elements to True (or 1) if they fall within the given ellipse. The ``r`` keyword can be used to scale the ellipse. Equivalently, after converting ``a``, ``b``, ``theta`` to a coefficient ellipse representation (``cxx``, ``cyy``, ``cxy``), pixels that fulfill the condition .. math:: cxx(x_i - x)^2 + cyy(y_i - y)^2 + cxx(x_i - x)(y_i - y) < r^2 will be masked. Parameters ---------- arr : `~numpy.ndarray` Input array to be masked. Array is updated in-place. x, y : array_like Center of ellipse(s). a, b, theta : array_like, optional Parameters defining the extent of the ellipe(s). cxx, cyy, cxy : array_like, optional Alternative ellipse representation. Can be used as ``mask_ellipse(arr, x, y, cxx=..., cyy=..., cxy=...)``. r : array_like, optional Scale factor of ellipse(s). Default is 1. """ cdef np.int64_t w, h cdef np.uint8_t[:,:] buf cdef double cxx_, cyy_, cxy_ dt = np.dtype(np.double) # only boolean arrays supported if not (arr.dtype.type is np.bool_ or arr.dtype.type is np.ubyte): raise ValueError("Array data type not supported: {0:s}" .format(arr.dtype)) _check_array_get_dims(arr, &w, &h) buf = arr.view(dtype=np.uint8) x = np.require(x, dtype=dt) y = np.require(y, dtype=dt) r = np.require(r, dtype=dt) # a, b, theta representation if (a is not None and b is not None and theta is not None): a = np.require(a, dtype=dt) b = np.require(b, dtype=dt) theta = np.require(theta, dtype=dt) it = np.broadcast(x, y, a, b, theta, r) while np.PyArray_MultiIter_NOTDONE(it): sep_ellipse_coeffs((np.PyArray_MultiIter_DATA(it, 2))[0], (np.PyArray_MultiIter_DATA(it, 3))[0], (np.PyArray_MultiIter_DATA(it, 4))[0], &cxx_, &cyy_, &cxy_) sep_set_ellipse(&buf[0, 0], w, h, (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], cxx_, cyy_, cxy_, (np.PyArray_MultiIter_DATA(it, 5))[0], 1) np.PyArray_MultiIter_NEXT(it) # cxx, cyy, cxy representation elif (cxx is not None and cyy is not None and cxy is not None): cxx = np.require(cxx, dtype=dt) cyy = np.require(cyy, dtype=dt) cxy = np.require(cxy, dtype=dt) it = np.broadcast(x, y, cxx, cyy, cxy, r) while np.PyArray_MultiIter_NOTDONE(it): sep_set_ellipse(&buf[0, 0], w, h, (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], (np.PyArray_MultiIter_DATA(it, 2))[0], (np.PyArray_MultiIter_DATA(it, 3))[0], (np.PyArray_MultiIter_DATA(it, 4))[0], (np.PyArray_MultiIter_DATA(it, 5))[0], 1) np.PyArray_MultiIter_NEXT(it) else: raise ValueError("Must specify either a, b and theta or " "cxx, cyy and cxy.") def kron_radius(np.ndarray data not None, x, y, a, b, theta, r, np.ndarray mask=None, double maskthresh=0.0, seg_id=None, np.ndarray segmap=None): """kron_radius(data, x, y, a, b, theta, r, mask=None, maskthresh=0.0, seg_id=None, segmap=None) Calculate Kron "radius" within an ellipse. The Kron radius is given by .. math:: \sum_i r_i I(r_i) / \sum_i I(r_i) where the sum is over all pixels in the aperture and the radius is given in units of ``a`` and ``b``: ``r_i`` is the distance to the pixel relative to the distance to the ellipse specified by ``a``, ``b``, ``theta``. Equivalently, after converting the ellipse parameters to their coefficient representation, ``r_i`` is given by .. math:: r_i^2 = cxx(x_i - x)^2 + cyy(y_i - y)^2 + cxx(x_i - x)(y_i - y) Parameters ---------- data : `~numpy.ndarray` Data array. x, y : array_like Ellipse center(s). a, b, theta : array_like Ellipse parameters. r : array_like "Radius" of ellipse over which to integrate. If the ellipse extent correponds to second moments of an object, this is the number of "isophotal radii" in Source Extractor parlance. A Fixed value of 6 is used in Source Extractor. mask : `numpy.ndarray`, optional An optional mask. maskthresh : float, optional Pixels with mask > maskthresh will be ignored. segmap : `~numpy.ndarray`, optional Segmentation image with dimensions of ``data`` and dtype ``np.int32``. This is an optional input and corresponds to the segmentation map output by `~sep.extract`. seg_id : array_like, optional Array of segmentation ids used to mask additional pixels in the image. Dimensions correspond to the dimensions of ``x`` and ``y``. The behavior differs depending on whether ``seg_id`` is negative or positive. If ``seg_id`` is positive, all pixels belonging to other objects are masked. (Pixel ``j, i`` is masked if ``seg[j, i] != seg_id and seg[j, i] != 0``). If ``seg_id`` is negative, all pixels other than those belonging to the object of interest are masked. (Pixel ``j, i`` is masked if ``seg[j, i] != -seg_id``). NB: must be included if ``segmap`` is provided. Returns ------- kronrad : array_like The Kron radius. flag : array_like Integer value indicating conditions about the aperture or how many masked pixels it contains. """ cdef double cxx, cyy, cxy cdef sep_image im # Test for segmap without seg_id. Nothing happens if seg_id supplied but # without segmap. if (segmap is not None) and (seg_id is None): raise ValueError('`segmap` supplied but not `seg_id`.') _parse_arrays(data, None, None, mask, segmap, &im) im.maskthresh = maskthresh # See note in apercirc on requiring specific array type dt = np.dtype(np.double) dint = np.dtype(np.int32) x = np.require(x, dtype=dt) y = np.require(y, dtype=dt) a = np.require(a, dtype=dt) b = np.require(b, dtype=dt) theta = np.require(theta, dtype=dt) r = np.require(r, dtype=dt) # Segmentation image and ids with same dimensions as x, y, etc. if seg_id is not None: seg_id = np.require(seg_id, dtype=dint) if seg_id.shape != x.shape: raise ValueError('Shapes of `x` and `seg_id` do not match') else: seg_id = np.zeros(len(x), dtype=dint) # allocate output arrays shape = np.broadcast(x, y, a, b, theta, r).shape kr = np.empty(shape, np.float64) flag = np.empty(shape, np.short) it = np.broadcast(x, y, a, b, theta, r, seg_id, kr, flag) while np.PyArray_MultiIter_NOTDONE(it): sep_ellipse_coeffs((np.PyArray_MultiIter_DATA(it, 2))[0], (np.PyArray_MultiIter_DATA(it, 3))[0], (np.PyArray_MultiIter_DATA(it, 4))[0], &cxx, &cyy, &cxy) status = sep_kron_radius(&im, (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], cxx, cyy, cxy, (np.PyArray_MultiIter_DATA(it, 5))[0], (np.PyArray_MultiIter_DATA(it, 6))[0], np.PyArray_MultiIter_DATA(it, 7), np.PyArray_MultiIter_DATA(it, 8)) _assert_ok(status) np.PyArray_MultiIter_NEXT(it) return kr, flag def winpos(np.ndarray data not None, xinit, yinit, sig, np.ndarray mask=None, double maskthresh=0.0, int subpix=11, double minsig=2.0/2.35*0.5): """winpos(data, xinit, yinit, sig, mask=None, maskthresh=0.0, subpix=11, minsig=2.0/2.35*0.5) Calculate more accurate object centroids using 'windowed' algorithm. Starting from the supplied initial center position, an iterative algorithm is used to determine a better object centroid. On each iteration, the centroid is calculated using all pixels within a circular aperture of ``4*sig`` from the current position, weighting pixel positions by their flux and the amplitude of a 2-d Gaussian with sigma ``sig``. Iteration stops when the change in position falls under some threshold or a maximum number of iterations is reached. This is equivalent to ``XWIN_IMAGE`` and ``YWIN_IMAGE`` parameters in Source Extractor (for the correct choice of sigma for each object). **Note:** One should be cautious about using windowed positions in crowded fields or for sources with nearby neighbors, as the iterative algorithm can fail catastrophically. Parameters ---------- data : `~numpy.ndarray` Data array. xinit, yinit : array_like Initial center(s). sig : array_like Gaussian sigma used for weighting pixels. Pixels within a circular aperture of radius 4*sig are included. mask : `numpy.ndarray`, optional An optional mask. maskthresh : float, optional Pixels with mask > maskthresh will be ignored. subpix : int, optional Subpixel sampling used to determine pixel overlap with aperture. 11 is used in Source Extractor. For exact overlap calculation, use 0. minsig : float, optional Minimum bound on ``sig`` parameter. ``sig`` values smaller than this are increased to ``minsig`` to replicate Source Extractor behavior. Source Extractor uses a minimum half-light radius of 0.5 pixels, equivalent to a sigma of 0.5 * 2.0 / 2.35. Returns ------- x, y : np.ndarray New x and y position(s). flag : np.ndarray Flags. """ cdef int status cdef double cxx, cyy, cxy, sigval cdef int niter = 0 # not currently returned cdef sep_image im _parse_arrays(data, None, None, mask, None, &im) im.maskthresh = maskthresh # See note in apercirc on requiring specific array type dt = np.dtype(np.double) xinit = np.require(xinit, dtype=dt) yinit = np.require(yinit, dtype=dt) sig = np.require(sig, dtype=dt) # allocate output arrays shape = np.broadcast(xinit, yinit, sig).shape x = np.empty(shape, np.float64) y = np.empty(shape, np.float64) flag = np.empty(shape, np.short) it = np.broadcast(xinit, yinit, sig, x, y, flag) while np.PyArray_MultiIter_NOTDONE(it): sigval = (np.PyArray_MultiIter_DATA(it, 2))[0] if sigval < minsig: sigval = minsig status = sep_windowed(&im, (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], sigval, subpix, 0, np.PyArray_MultiIter_DATA(it, 3), np.PyArray_MultiIter_DATA(it, 4), &niter, np.PyArray_MultiIter_DATA(it, 5)) _assert_ok(status) np.PyArray_MultiIter_NEXT(it) return x, y, flag def ellipse_coeffs(a, b, theta): """ellipse_coeffs(a, b, theta) Convert from ellipse axes and angle to coefficient representation. Parameters ---------- a, b, theta : array_like Ellipse(s) semi-major, semi-minor axes and position angle respectively. Position angle is radians counter clockwise from positive x axis to major axis, and lies in range ``[-pi/2, pi/2]`` Returns ------- cxx, cyy, cxy : `~numpy.ndarray` Describes the ellipse(s) ``cxx * x^2 + cyy * y^2 + cxy * xy = 1`` """ dt = np.dtype(np.double) a = np.require(a, dtype=dt) b = np.require(b, dtype=dt) theta = np.require(theta, dtype=dt) shape = np.broadcast(a, b, theta).shape cxx = np.empty(shape, dt) cyy = np.empty(shape, dt) cxy = np.empty(shape, dt) it = np.broadcast(a, b, theta, cxx, cyy, cxy) while np.PyArray_MultiIter_NOTDONE(it): sep_ellipse_coeffs((np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], (np.PyArray_MultiIter_DATA(it, 2))[0], np.PyArray_MultiIter_DATA(it, 3), np.PyArray_MultiIter_DATA(it, 4), np.PyArray_MultiIter_DATA(it, 5)) np.PyArray_MultiIter_NEXT(it) return cxx, cyy, cxy def ellipse_axes(cxx, cyy, cxy): """ellipse_axes(cxx, cyy, cxy) Convert from coefficient ellipse representation to ellipse axes and angle. Parameters ---------- cxx, cyy, cxy : array_like Describes the ellipse(s) ``cxx * x**2 + cyy * y**2 + cxy * x * y = 1`` Returns ------- a, b, theta : `~numpy.ndarray` Ellipse(s) semi-major, semi-minor axes and position angle respectively. Position angle is radians counter clockwise from positive x axis to major axis, and lies in range ``(-pi/2, pi/2)`` Raises ------ ValueError If input parameters do not describe an ellipse. """ cdef int status dt = np.dtype(np.double) cxx = np.require(cxx, dtype=dt) cyy = np.require(cyy, dtype=dt) cxy = np.require(cxy, dtype=dt) shape = np.broadcast(cxx, cyy, cxy).shape a = np.empty(shape, dt) b = np.empty(shape, dt) theta = np.empty(shape, dt) status = 0 it = np.broadcast(cxx, cyy, cxy, a, b, theta) while np.PyArray_MultiIter_NOTDONE(it): status = sep_ellipse_axes( (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], (np.PyArray_MultiIter_DATA(it, 2))[0], np.PyArray_MultiIter_DATA(it, 3), np.PyArray_MultiIter_DATA(it, 4), np.PyArray_MultiIter_DATA(it, 5)) if status: break np.PyArray_MultiIter_NEXT(it) if status: raise ValueError( "parameters do not describe ellipse: " "cxx={0:f}, cyy={1:f}, cxy={2:f}".format( (np.PyArray_MultiIter_DATA(it, 0))[0], (np.PyArray_MultiIter_DATA(it, 1))[0], (np.PyArray_MultiIter_DATA(it, 2))[0])) return a, b, theta # ----------------------------------------------------------------------------- # Utility functions def set_extract_pixstack(size_t size): """set_extract_pixstack(size) Set the size in pixels of the internal pixel buffer used in extract(). The current value can be retrieved with get_extract_pixstack. The initial default is 300000. """ sep_set_extract_pixstack(size) def get_extract_pixstack(): """get_extract_pixstack() Get the size in pixels of the internal pixel buffer used in extract(). """ return sep_get_extract_pixstack() def set_sub_object_limit(int limit): """set_sub_object_limit(limit) Set the limit on the number of sub-objects when deblending in extract(). The current value can be retrieved with get_sub_object_limit. The initial default is 1024. """ sep_set_sub_object_limit(limit) def get_sub_object_limit(): """get_sub_object_limit() Get the limit on the number of sub-objects when deblending in extract(). """ return sep_get_sub_object_limit() sep-1.4.1/setup.py000077500000000000000000000037221475511417100140330ustar00rootroot00000000000000"""Setup file to build the C library.""" import os import re import sys from glob import glob from setuptools import Extension, setup from setuptools_scm import ScmVersion, get_version from setuptools_scm.version import guess_next_version def _new_version_scheme(version: ScmVersion) -> str: return version.format_next_version(guess_next_version, "{guessed}-dev{distance}") def _new_local_scheme(version: ScmVersion) -> str: return version.format_choice("", "-{node}") c_version_string = get_version( version_scheme=_new_version_scheme, local_scheme=_new_local_scheme, ) # from setuptools import setup from setuptools.dist import Distribution # Detect if setup.py is being run with an argument that doesn't require # building anything. (egg info, help commands, etc) options = Distribution.display_option_names + ["help-commands", "help"] is_non_build = ( any("--" + opt in sys.argv for opt in options) or len(sys.argv) == 1 or sys.argv[1] in ("egg_info", "clean", "help") ) # extension module(s): only add if we actually need to build, because we need # to import numpy and cython to build, and we'd rather non-build commands # work when those dependencies are not installed. if is_non_build: extensions = None else: import numpy from Cython.Build import cythonize sourcefiles = ["sep.pyx"] + glob(os.path.join("src", "*.c")) headerfiles = glob(os.path.join("src", "*.h")) include_dirs = [numpy.get_include(), "src"] extensions = [ Extension( "sep", sourcefiles, include_dirs=include_dirs, depends=headerfiles, define_macros=[ ("_USE_MATH_DEFINES", "1"), ("NPY_NO_DEPRECATED_API", "NPY_2_0_API_VERSION"), ], extra_compile_args=['-DSEP_VERSION_STRING="' + c_version_string + '"'], ) ] extensions = cythonize( extensions, language_level=3, ) setup(ext_modules=extensions) sep-1.4.1/src/000077500000000000000000000000001475511417100131015ustar00rootroot00000000000000sep-1.4.1/src/analyse.c000066400000000000000000000204541475511417100147060ustar00rootroot00000000000000/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% * * This file is part of SEP * * Copyright 1993-2011 Emmanuel Bertin -- IAP/CNRS/UPMC * Copyright 2014 SEP developers * * SEP is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * SEP is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with SEP. If not, see . * *%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include #include #include #include #include #include "extract.h" #include "sep.h" #include "sepcore.h" /********************************** cleanprep ********************************/ /* * Prepare object for cleaning, by calculating mthresh. * This used to be in analyse() / examineiso(). */ int analysemthresh(int objnb, objliststruct * objlist, int minarea, PIXTYPE thresh) { objstruct * obj = objlist->obj + objnb; pliststruct * pixel = objlist->plist; pliststruct * pixt; PIXTYPE tpix; float *heap, *heapt, *heapj, *heapk, swap; int j, k, h, status; status = RETURN_OK; heap = heapt = heapj = heapk = NULL; h = minarea; if (obj->fdnpix < minarea) { obj->mthresh = 0.0; return status; } QCALLOC(heap, float, minarea, status); heapt = heap; /*-- Find the minareath pixel in decreasing intensity for CLEANing */ for (pixt = pixel + obj->firstpix; pixt >= pixel; pixt = pixel + PLIST(pixt, nextpix)) { /* amount pixel is above threshold */ tpix = PLISTPIX(pixt, cdvalue) - (PLISTEXIST(thresh) ? PLISTPIX(pixt, thresh) : thresh); if (h > 0) { *(heapt++) = (float)tpix; } else if (h) { if ((float)tpix > *heap) { *heap = (float)tpix; for (j = 0; (k = (j + 1) << 1) <= minarea; j = k) { heapk = heap + k; heapj = heap + j; if (k != minarea && *(heapk - 1) > *heapk) { heapk++; k++; } if (*heapj <= *(--heapk)) { break; } swap = *heapk; *heapk = *heapj; *heapj = swap; } } } else { fqmedian(heap, minarea); } h--; } obj->mthresh = *heap; exit: free(heap); return status; } /************************* preanalyse **************************************/ void preanalyse(int no, objliststruct * objlist) { objstruct * obj = &objlist->obj[no]; pliststruct *pixel = objlist->plist, *pixt; PIXTYPE peak, cpeak, val, cval; double rv; int64_t x, y, xmin, xmax, ymin, ymax, fdnpix; int64_t xpeak, ypeak, xcpeak, ycpeak; /*----- initialize stacks and bounds */ fdnpix = 0; rv = 0.0; peak = cpeak = -BIG; ymin = xmin = 2 * MAXPICSIZE; /* to be really sure!! */ ymax = xmax = 0; xpeak = ypeak = xcpeak = ycpeak = 0; /* avoid -Wall warnings */ /*----- integrate results */ for (pixt = pixel + obj->firstpix; pixt >= pixel; pixt = pixel + PLIST(pixt, nextpix)) { x = PLIST(pixt, x); y = PLIST(pixt, y); val = PLISTPIX(pixt, value); cval = PLISTPIX(pixt, cdvalue); if (peak < val) { peak = val; xpeak = x; ypeak = y; } if (cpeak < cval) { cpeak = cval; xcpeak = x; ycpeak = y; } rv += cval; if (xmin > x) { xmin = x; } if (xmax < x) { xmax = x; } if (ymin > y) { ymin = y; } if (ymax < y) { ymax = y; } fdnpix++; } obj->fdnpix = fdnpix; obj->fdflux = (float)rv; obj->fdpeak = cpeak; obj->dpeak = peak; obj->xpeak = xpeak; obj->ypeak = ypeak; obj->xcpeak = xcpeak; obj->ycpeak = ycpeak; obj->xmin = xmin; obj->xmax = xmax; obj->ymin = ymin; obj->ymax = ymax; } /******************************** analyse *********************************/ /* If robust = 1, you must have run previously with robust=0 */ void analyse(int no, objliststruct * objlist, int robust, double gain) { objstruct * obj = &objlist->obj[no]; pliststruct *pixel = objlist->plist, *pixt; PIXTYPE peak, val, cval; double thresh, thresh2, t1t2, darea, mx, my, mx2, my2, mxy, rv, rv2, tv, xm, ym, xm2, ym2, xym, temp, temp2, theta, pmx2, pmy2, errx2, erry2, errxy, cvar, cvarsum; int64_t x, y, xmin, ymin, area2, dnpix; preanalyse(no, objlist); dnpix = 0; mx = my = tv = 0.0; mx2 = my2 = mxy = 0.0; cvarsum = errx2 = erry2 = errxy = 0.0; thresh = obj->thresh; peak = obj->dpeak; rv = obj->fdflux; rv2 = rv * rv; thresh2 = (thresh + peak) / 2.0; area2 = 0; xmin = obj->xmin; ymin = obj->ymin; for (pixt = pixel + obj->firstpix; pixt >= pixel; pixt = pixel + PLIST(pixt, nextpix)) { x = PLIST(pixt, x) - xmin; /* avoid roundoff errors on big images */ y = PLIST(pixt, y) - ymin; /* avoid roundoff errors on big images */ cval = PLISTPIX(pixt, cdvalue); tv += (val = PLISTPIX(pixt, value)); if (val > thresh) { dnpix++; } if (val > thresh2) { area2++; } mx += cval * x; my += cval * y; mx2 += cval * x * x; my2 += cval * y * y; mxy += cval * x * y; } /* compute object's properties */ xm = mx / rv; /* mean x */ ym = my / rv; /* mean y */ /* In case of blending, use previous barycenters */ if ((robust) && (obj->flag & SEP_OBJ_MERGED)) { double xn, yn; xn = obj->mx - xmin; yn = obj->my - ymin; xm2 = mx2 / rv + xn * xn - 2 * xm * xn; ym2 = my2 / rv + yn * yn - 2 * ym * yn; xym = mxy / rv + xn * yn - xm * yn - xn * ym; xm = xn; ym = yn; } else { xm2 = mx2 / rv - xm * xm; /* variance of x */ ym2 = my2 / rv - ym * ym; /* variance of y */ xym = mxy / rv - xm * ym; /* covariance */ } /* Calculate the errors on the variances */ for (pixt = pixel + obj->firstpix; pixt >= pixel; pixt = pixel + PLIST(pixt, nextpix)) { x = PLIST(pixt, x) - xmin; /* avoid roundoff errors on big images */ y = PLIST(pixt, y) - ymin; /* avoid roundoff errors on big images */ cvar = PLISTEXIST(var) ? PLISTPIX(pixt, var) : 0.0; if (gain > 0.0) { /* add poisson noise if given */ cval = PLISTPIX(pixt, cdvalue); if (cval > 0.0) { cvar += cval / gain; } } /* Note that this works for both blended and non-blended cases * because xm is set to xn above for the blended case. */ cvarsum += cvar; errx2 += cvar * (x - xm) * (x - xm); erry2 += cvar * (y - ym) * (y - ym); errxy += cvar * (x - xm) * (y - ym); } errx2 /= rv2; erry2 /= rv2; errxy /= rv2; /* Handle fully correlated x/y (which cause a singularity...) */ if ((temp2 = xm2 * ym2 - xym * xym) < 0.00694) { xm2 += 0.0833333; ym2 += 0.0833333; temp2 = xm2 * ym2 - xym * xym; obj->flag |= SEP_OBJ_SINGU; /* handle it for the error parameters */ cvarsum *= 0.08333 / rv2; if (errx2 * erry2 - errxy * errxy < cvarsum * cvarsum) { errx2 += cvarsum; erry2 += cvarsum; } } if ((fabs(temp = xm2 - ym2)) > 0.0) { theta = atan2(2.0 * xym, temp) / 2.0; } else { theta = PI / 4.0; } temp = sqrt(0.25 * temp * temp + xym * xym); pmy2 = pmx2 = 0.5 * (xm2 + ym2); pmx2 += temp; pmy2 -= temp; obj->dnpix = (LONG)dnpix; obj->dflux = tv; obj->mx = xm + xmin; /* add back xmin */ obj->my = ym + ymin; /* add back ymin */ obj->mx2 = xm2; obj->errx2 = errx2; obj->my2 = ym2; obj->erry2 = erry2; obj->mxy = xym; obj->errxy = errxy; obj->a = (float)sqrt(pmx2); obj->b = (float)sqrt(pmy2); obj->theta = theta; obj->cxx = (float)(ym2 / temp2); obj->cyy = (float)(xm2 / temp2); obj->cxy = (float)(-2 * xym / temp2); darea = (double)area2 - dnpix; t1t2 = thresh / thresh2; /* debugging */ /*if (t1t2>0.0 && !PLISTEXIST(thresh)) */ /* was: prefs.dweight_flag */ if (t1t2 > 0.0) { obj->abcor = (darea < 0.0 ? darea : -1.0) / (2 * PI * log(t1t2 < 1.0 ? t1t2 : 0.99) * obj->a * obj->b); if (obj->abcor > 1.0) { obj->abcor = 1.0; } } else { obj->abcor = 1.0; } } sep-1.4.1/src/aperture.c000066400000000000000000000704711475511417100151050ustar00rootroot00000000000000/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% * * This file is part of SEP * * Copyright 1993-2011 Emmanuel Bertin -- IAP/CNRS/UPMC * Copyright 2014 SEP developers * * SEP is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * SEP is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with SEP. If not, see . * *%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include #include #include #include #include #include "overlap.h" #include "sep.h" #include "sepcore.h" #define FLUX_RADIUS_BUFSIZE 64 #define WINPOS_NITERMAX 16 /* Maximum number of steps */ #define WINPOS_NSIG 4 /* Measurement radius */ #define WINPOS_STEPMIN 0.0001 /* Minimum change in position for continuing */ #define WINPOS_FAC 2.0 /* Centroid offset factor (2 for a Gaussian) */ /* Adding (void *) pointers is a GNU C extension, not part of standard C. When compiling on Windows with MS VIsual C compiler need to cast the (void *) to something the size of one byte. */ #if defined(_MSC_VER) #define MSVC_VOID_CAST (char *) #else #define MSVC_VOID_CAST #endif /****************************************************************************/ /* conversions between ellipse representations */ /* return ellipse semi-major and semi-minor axes and position angle, given representation: cxx*x^2 + cyy*y^2 + cxy*x*y = 1 derived from http://mathworld.wolfram.com/Ellipse.html Input requirements: cxx*cyy - cxy*cxy/4. > 0. cxx + cyy > 0. */ int sep_ellipse_axes( double cxx, double cyy, double cxy, double * a, double * b, double * theta ) { double p, q, t; p = cxx + cyy; q = cxx - cyy; t = sqrt(q * q + cxy * cxy); /* Ensure that parameters actually describe an ellipse. */ if ((cxx * cyy - cxy * cxy / 4. <= 0.) || (p <= 0.)) { return NON_ELLIPSE_PARAMS; } *a = sqrt(2. / (p - t)); *b = sqrt(2. / (p + t)); /* theta = 0 if cxy == 0, else (1/2) acot(q/cxy) */ *theta = (cxy == 0.) ? 0. : (q == 0. ? 0. : atan(cxy / q)) / 2.; if (cxx > cyy) { *theta += PI / 2.; } if (*theta > PI / 2.) { *theta -= PI; } return RETURN_OK; } void sep_ellipse_coeffs( double a, double b, double theta, double * cxx, double * cyy, double * cxy ) { double costheta, sintheta; costheta = cos(theta); sintheta = sin(theta); *cxx = costheta * costheta / (a * a) + sintheta * sintheta / (b * b); *cyy = sintheta * sintheta / (a * a) + costheta * costheta / (b * b); *cxy = 2. * costheta * sintheta * (1. / (a * a) - 1. / (b * b)); } /*****************************************************************************/ /* Helper functions for aperture functions */ /* determine the extent of the box that just contains the circle with * parameters x, y, r. xmin is inclusive and xmax is exclusive. * Ensures that box is within image bound and sets a flag if it is not. */ static void boxextent( double x, double y, double rx, double ry, int64_t w, int64_t h, int64_t * xmin, int64_t * xmax, int64_t * ymin, int64_t * ymax, short * flag ) { *xmin = (int64_t)(x - rx + 0.5); *xmax = (int64_t)(x + rx + 1.4999999); *ymin = (int64_t)(y - ry + 0.5); *ymax = (int64_t)(y + ry + 1.4999999); if (*xmin < 0) { *xmin = 0; *flag |= SEP_APER_TRUNC; } if (*xmax > w) { *xmax = w; *flag |= SEP_APER_TRUNC; } if (*ymin < 0) { *ymin = 0; *flag |= SEP_APER_TRUNC; } if (*ymax > h) { *ymax = h; *flag |= SEP_APER_TRUNC; } } static void boxextent_ellipse( double x, double y, double cxx, double cyy, double cxy, double r, int64_t w, int64_t h, int64_t * xmin, int64_t * xmax, int64_t * ymin, int64_t * ymax, short * flag ) { double dxlim, dylim; dxlim = cxx - cxy * cxy / (4.0 * cyy); dxlim = dxlim > 0.0 ? r / sqrt(dxlim) : 0.0; dylim = cyy - cxy * cxy / (4.0 * cxx); dylim = dylim > 0.0 ? r / sqrt(dylim) : 0.0; boxextent(x, y, dxlim, dylim, w, h, xmin, xmax, ymin, ymax, flag); } /* determine oversampled annulus for a circle */ static void oversamp_ann_circle(double r, double * r_in2, double * r_out2) { *r_in2 = r - 0.7072; *r_in2 = (*r_in2 > 0.0) ? (*r_in2) * (*r_in2) : 0.0; *r_out2 = r + 0.7072; *r_out2 = (*r_out2) * (*r_out2); } /* determine oversampled "annulus" for an ellipse */ static void oversamp_ann_ellipse(double r, double b, double * r_in2, double * r_out2) { *r_in2 = r - 0.7072 / b; *r_in2 = (*r_in2 > 0.0) ? (*r_in2) * (*r_in2) : 0.0; *r_out2 = r + 0.7072 / b; *r_out2 = (*r_out2) * (*r_out2); } /*****************************************************************************/ /* circular aperture */ #define APER_NAME sep_sum_circle #define APER_ARGS double r #define APER_DECL double r2, r_in2, r_out2 #define APER_CHECKS \ if (r < 0.0) \ return ILLEGAL_APER_PARAMS #define APER_INIT \ r2 = r * r; \ oversamp_ann_circle(r, &r_in2, &r_out2) #define APER_BOXEXTENT \ boxextent(x, y, r, r, im->w, im->h, &xmin, &xmax, &ymin, &ymax, flag) #define APER_EXACT circoverlap(dx - 0.5, dy - 0.5, dx + 0.5, dy + 0.5, r) #define APER_RPIX2 dx * dx + dy * dy #define APER_RPIX2_SUBPIX dx1 * dx1 + dy2 #define APER_COMPARE1 rpix2 < r_out2 #define APER_COMPARE2 rpix2 > r_in2 #define APER_COMPARE3 rpix2 < r2 #include "aperture.i" #undef APER_NAME #undef APER_ARGS #undef APER_DECL #undef APER_CHECKS #undef APER_INIT #undef APER_BOXEXTENT #undef APER_EXACT #undef APER_RPIX2 #undef APER_RPIX2_SUBPIX #undef APER_COMPARE1 #undef APER_COMPARE2 #undef APER_COMPARE3 /*****************************************************************************/ /* elliptical aperture */ #define APER_NAME sep_sum_ellipse #define APER_ARGS double a, double b, double theta, double r #define APER_DECL double cxx, cyy, cxy, r2, r_in2, r_out2 #define APER_CHECKS \ if (!(r >= 0.0 && b >= 0.0 && a >= b && theta >= -PI / 2. && theta <= PI / 2.)) \ return ILLEGAL_APER_PARAMS #define APER_INIT \ r2 = r * r; \ oversamp_ann_ellipse(r, b, &r_in2, &r_out2); \ sep_ellipse_coeffs(a, b, theta, &cxx, &cyy, &cxy); \ a *= r; \ b *= r #define APER_BOXEXTENT \ boxextent_ellipse( \ x, y, cxx, cyy, cxy, r, im->w, im->h, &xmin, &xmax, &ymin, &ymax, flag \ ) #define APER_EXACT ellipoverlap(dx - 0.5, dy - 0.5, dx + 0.5, dy + 0.5, a, b, theta) #define APER_RPIX2 cxx * dx * dx + cyy * dy * dy + cxy * dx * dy #define APER_RPIX2_SUBPIX cxx * dx1 * dx1 + cyy * dy2 + cxy * dx1 * dy #define APER_COMPARE1 rpix2 < r_out2 #define APER_COMPARE2 rpix2 > r_in2 #define APER_COMPARE3 rpix2 < r2 #include "aperture.i" #undef APER_NAME #undef APER_ARGS #undef APER_DECL #undef APER_CHECKS #undef APER_INIT #undef APER_BOXEXTENT #undef APER_EXACT #undef APER_RPIX2 #undef APER_RPIX2_SUBPIX #undef APER_COMPARE1 #undef APER_COMPARE2 #undef APER_COMPARE3 /*****************************************************************************/ /* circular annulus aperture */ #define APER_NAME sep_sum_circann #define APER_ARGS double rin, double rout #define APER_DECL double rin2, rin_in2, rin_out2, rout2, rout_in2, rout_out2 #define APER_CHECKS \ if (!(rin >= 0.0 && rout >= rin)) \ return ILLEGAL_APER_PARAMS #define APER_INIT \ rin2 = rin * rin; \ oversamp_ann_circle(rin, &rin_in2, &rin_out2); \ rout2 = rout * rout; \ oversamp_ann_circle(rout, &rout_in2, &rout_out2) #define APER_BOXEXTENT \ boxextent(x, y, rout, rout, im->w, im->h, &xmin, &xmax, &ymin, &ymax, flag) #define APER_EXACT \ (circoverlap(dx - 0.5, dy - 0.5, dx + 0.5, dy + 0.5, rout) \ - circoverlap(dx - 0.5, dy - 0.5, dx + 0.5, dy + 0.5, rin)) #define APER_RPIX2 dx * dx + dy * dy #define APER_RPIX2_SUBPIX dx1 * dx1 + dy2 #define APER_COMPARE1 (rpix2 < rout_out2) && (rpix2 > rin_in2) #define APER_COMPARE2 (rpix2 > rout_in2) || (rpix2 < rin_out2) #define APER_COMPARE3 (rpix2 < rout2) && (rpix2 > rin2) #include "aperture.i" #undef APER_NAME #undef APER_ARGS #undef APER_DECL #undef APER_CHECKS #undef APER_INIT #undef APER_BOXEXTENT #undef APER_EXACT #undef APER_RPIX2 #undef APER_RPIX2_SUBPIX #undef APER_COMPARE1 #undef APER_COMPARE2 #undef APER_COMPARE3 /*****************************************************************************/ /* elliptical annulus aperture */ #define APER_NAME sep_sum_ellipann #define APER_ARGS double a, double b, double theta, double rin, double rout #define APER_DECL \ double cxx, cyy, cxy; \ double rin2, rin_in2, rin_out2, rout2, rout_in2, rout_out2 #define APER_CHECKS \ if (!(rin >= 0.0 && rout >= rin && b >= 0.0 && a >= b && theta >= -PI / 2. \ && theta <= PI / 2.)) \ return ILLEGAL_APER_PARAMS #define APER_INIT \ rin2 = rin * rin; \ oversamp_ann_ellipse(rin, b, &rin_in2, &rin_out2); \ rout2 = rout * rout; \ oversamp_ann_ellipse(rout, b, &rout_in2, &rout_out2); \ sep_ellipse_coeffs(a, b, theta, &cxx, &cyy, &cxy) #define APER_BOXEXTENT \ boxextent_ellipse( \ x, y, cxx, cyy, cxy, rout, im->w, im->h, &xmin, &xmax, &ymin, &ymax, flag \ ) #define APER_EXACT \ (ellipoverlap(dx - 0.5, dy - 0.5, dx + 0.5, dy + 0.5, a * rout, b * rout, theta) \ - ellipoverlap(dx - 0.5, dy - 0.5, dx + 0.5, dy + 0.5, a * rin, b * rin, theta)) #define APER_RPIX2 cxx * dx * dx + cyy * dy * dy + cxy * dx * dy #define APER_RPIX2_SUBPIX cxx * dx1 * dx1 + cyy * dy2 + cxy * dx1 * dy #define APER_COMPARE1 (rpix2 < rout_out2) && (rpix2 > rin_in2) #define APER_COMPARE2 (rpix2 > rout_in2) || (rpix2 < rin_out2) #define APER_COMPARE3 (rpix2 < rout2) && (rpix2 > rin2) #include "aperture.i" #undef APER_NAME #undef APER_ARGS #undef APER_DECL #undef APER_CHECKS #undef APER_INIT #undef APER_BOXEXTENT #undef APER_EXACT #undef APER_RPIX2 #undef APER_RPIX2_SUBPIX #undef APER_COMPARE1 #undef APER_COMPARE2 #undef APER_COMPARE3 /*****************************************************************************/ /* * This is just different enough from the other aperture functions * that it doesn't quite make sense to use aperture.i. */ int sep_sum_circann_multi( const sep_image * im, double x, double y, double rmax, int64_t n, int id, int subpix, short inflag, double * sum, double * sumvar, double * area, double * maskarea, short * flag ) { PIXTYPE pix, varpix; double dx, dy, dx1, dy2, offset, scale, scale2, tmp, rpix2; int64_t ix, iy, xmin, xmax, ymin, ymax, sx, sy, size, esize, msize, ssize, pos; int status; short errisarray, errisstd; const BYTE *datat, *errort, *maskt, *segt; converter convert, econvert, mconvert, sconvert; double rpix, r_out, r_out2, d, prevbinmargin, nextbinmargin, step, stepdens; int64_t j, ismasked; /* input checks */ if (rmax < 0.0 || n < 1) { return ILLEGAL_APER_PARAMS; } if (subpix < 1) { return ILLEGAL_SUBPIX; } /* clear results arrays */ memset(sum, 0, (size_t)(n * sizeof(double))); memset(sumvar, 0, (size_t)(n * sizeof(double))); memset(area, 0, (size_t)(n * sizeof(double))); if (im->mask) { memset(maskarea, 0, (size_t)(n * sizeof(double))); } /* initializations */ size = esize = msize = ssize = 0; datat = maskt = segt = NULL; errort = im->noise; *flag = 0; varpix = 0.0; scale = 1.0 / subpix; scale2 = scale * scale; offset = 0.5 * (scale - 1.0); r_out = rmax + 1.5; /* margin for interpolation */ r_out2 = r_out * r_out; step = rmax / n; stepdens = 1.0 / step; prevbinmargin = 0.7072; nextbinmargin = step - 0.7072; j = 0; d = 0.; ismasked = 0; errisarray = 0; errisstd = 0; /* get data converter(s) for input array(s) */ if ((status = get_converter(im->dtype, &convert, &size))) { return status; } if (im->mask && (status = get_converter(im->mdtype, &mconvert, &msize))) { return status; } if (im->segmap && (status = get_converter(im->sdtype, &sconvert, &ssize))) { return status; } /* get image noise */ if (im->noise_type != SEP_NOISE_NONE) { errisstd = (im->noise_type == SEP_NOISE_STDDEV); if (im->noise) { errisarray = 1; if ((status = get_converter(im->ndtype, &econvert, &esize))) { return status; } } else { varpix = (errisstd) ? im->noiseval * im->noiseval : im->noiseval; } } /* get extent of box */ boxextent(x, y, r_out, r_out, im->w, im->h, &xmin, &xmax, &ymin, &ymax, flag); /* loop over rows in the box */ for (iy = ymin; iy < ymax; iy++) { /* set pointers to the start of this row */ pos = (iy % im->h) * im->w + xmin; datat = MSVC_VOID_CAST im->data + pos * size; if (errisarray) { errort = MSVC_VOID_CAST im->noise + pos * esize; } if (im->mask) { maskt = MSVC_VOID_CAST im->mask + pos * msize; } if (im->segmap) { segt = MSVC_VOID_CAST im->segmap + pos * ssize; } /* loop over pixels in this row */ for (ix = xmin; ix < xmax; ix++) { dx = ix - x; dy = iy - y; rpix2 = dx * dx + dy * dy; if (rpix2 < r_out2) { /* get pixel values */ pix = convert(datat); if (errisarray) { varpix = econvert(errort); if (errisstd) { varpix *= varpix; } } ismasked = 0; if (im->mask) { if (mconvert(maskt) > im->maskthresh) { *flag |= SEP_APER_HASMASKED; ismasked = 1; } } /* Segmentation image: If `id` is negative, require segmented pixels within the aperture. If `id` is positive, mask pixels with nonzero segment ids not equal to `id`. */ if (im->segmap) { if (id > 0) { if ((sconvert(segt) > 0.) && (sconvert(segt) != id)) { *flag |= SEP_APER_HASMASKED; ismasked = 1; } } else { if (sconvert(segt) != -1 * id) { *flag |= SEP_APER_HASMASKED; ismasked = 1; } } } /* check if oversampling is needed (close to bin boundary?) */ rpix = sqrt(rpix2); d = fmod(rpix, step); if (d < prevbinmargin || d > nextbinmargin) { dx += offset; dy += offset; for (sy = subpix; sy--; dy += scale) { dx1 = dx; dy2 = dy * dy; for (sx = subpix; sx--; dx1 += scale) { j = (int64_t)(sqrt(dx1 * dx1 + dy2) * stepdens); if (j < n) { if (ismasked) { maskarea[j] += scale2; } else { sum[j] += scale2 * pix; sumvar[j] += scale2 * varpix; } area[j] += scale2; } } } } else /* pixel not close to bin boundary */ { j = (int64_t)(rpix * stepdens); if (j < n) { if (ismasked) { maskarea[j] += 1.0; } else { sum[j] += pix; sumvar[j] += varpix; } area[j] += 1.0; } } } /* closes "if pixel might be within aperture" */ /* increment pointers by one element */ datat += size; if (errisarray) { errort += esize; } maskt += msize; segt += ssize; } } /* correct for masked values */ if (im->mask) { if (inflag & SEP_MASK_IGNORE) { for (j = n; j--;) { area[j] -= maskarea[j]; } } else { for (j = n; j--;) { tmp = area[j] == maskarea[j] ? 0.0 : area[j] / (area[j] - maskarea[j]); sum[j] *= tmp; sumvar[j] *= tmp; } } } /* add poisson noise, only if gain > 0 */ if (im->gain > 0.0) { for (j = n; j--;) { if (sum[j] > 0.0) { sumvar[j] += sum[j] / im->gain; } } } return status; } /* for use in flux_radius */ static double inverse(double xmax, const double * y, int64_t n, double ytarg) { double step; int64_t i; step = xmax / n; i = 0; /* increment i until y[i] is >= to ytarg */ while (i < n && y[i] < ytarg) { i++; } if (i == 0) { if (ytarg <= 0. || y[0] == 0.) { return 0.; } return step * ytarg / y[0]; } if (i == n) { return xmax; } /* note that y[i-1] corresponds to x=step*i. */ return step * (i + (ytarg - y[i - 1]) / (y[i] - y[i - 1])); } int sep_flux_radius( const sep_image * im, double x, double y, double rmax, int id, int subpix, short inflag, const double * fluxtot, const double * fluxfrac, int64_t n, double * r, short * flag ) { int status; int64_t i; double f; double sumbuf[FLUX_RADIUS_BUFSIZE] = {0.}; double sumvarbuf[FLUX_RADIUS_BUFSIZE]; double areabuf[FLUX_RADIUS_BUFSIZE]; double maskareabuf[FLUX_RADIUS_BUFSIZE]; /* measure FLUX_RADIUS_BUFSIZE annuli out to rmax. */ status = sep_sum_circann_multi( im, x, y, rmax, FLUX_RADIUS_BUFSIZE, id, subpix, inflag, sumbuf, sumvarbuf, areabuf, maskareabuf, flag ); /* sum up sumbuf array */ for (i = 1; i < FLUX_RADIUS_BUFSIZE; i++) { sumbuf[i] += sumbuf[i - 1]; } /* if given, use "total flux", else, use sum within rmax. */ f = fluxtot ? *fluxtot : sumbuf[FLUX_RADIUS_BUFSIZE - 1]; /* Use inverse to get the radii corresponding to the requested flux fracs */ for (i = 0; i < n; i++) { r[i] = inverse(rmax, sumbuf, FLUX_RADIUS_BUFSIZE, fluxfrac[i] * f); } return status; } /*****************************************************************************/ /* calculate Kron radius from pixels within an ellipse. */ int sep_kron_radius( const sep_image * im, double x, double y, double cxx, double cyy, double cxy, double r, int id, double * kronrad, short * flag ) { float pix; double r1, v1, r2, area, rpix2, dx, dy; int64_t ix, iy, xmin, xmax, ymin, ymax, pos, size, msize, ssize; int status; int ismasked; const BYTE *datat, *maskt, *segt; converter convert, mconvert, sconvert; r2 = r * r; r1 = v1 = 0.0; area = 0.0; *flag = 0; datat = maskt = segt = NULL; size = msize = ssize = 0; /* get data converter(s) for input array(s) */ if ((status = get_converter(im->dtype, &convert, &size))) { return status; } if (im->mask && (status = get_converter(im->mdtype, &mconvert, &msize))) { return status; } if (im->segmap && (status = get_converter(im->sdtype, &sconvert, &ssize))) { return status; } /* get extent of ellipse in x and y */ boxextent_ellipse( x, y, cxx, cyy, cxy, r, im->w, im->h, &xmin, &xmax, &ymin, &ymax, flag ); /* loop over rows in the box */ for (iy = ymin; iy < ymax; iy++) { /* set pointers to the start of this row */ pos = (iy % im->h) * im->w + xmin; datat = MSVC_VOID_CAST im->data + pos * size; if (im->mask) { maskt = MSVC_VOID_CAST im->mask + pos * msize; } if (im->segmap) { segt = MSVC_VOID_CAST im->segmap + pos * ssize; } /* loop over pixels in this row */ for (ix = xmin; ix < xmax; ix++) { dx = ix - x; dy = iy - y; rpix2 = cxx * dx * dx + cyy * dy * dy + cxy * dx * dy; if (rpix2 <= r2) { pix = convert(datat); ismasked = 0; if ((pix < -BIG) || (im->mask && mconvert(maskt) > im->maskthresh)) { ismasked = 1; } /* Segmentation image: If `id` is negative, require segmented pixels within the aperture. If `id` is positive, mask pixels with nonzero segment ids not equal to `id`. */ if (im->segmap) { if (id > 0) { if ((sconvert(segt) > 0.) && (sconvert(segt) != id)) { ismasked = 1; } } else { if (sconvert(segt) != -1 * id) { ismasked = 1; } } } if (ismasked > 0) { *flag |= SEP_APER_HASMASKED; } else { r1 += sqrt(rpix2) * pix; v1 += pix; area++; } } /* increment pointers by one element */ datat += size; maskt += msize; segt += ssize; } } if (area == 0) { *flag |= SEP_APER_ALLMASKED; *kronrad = 0.0; } else if (r1 <= 0.0 || v1 <= 0.0) { *flag |= SEP_APER_NONPOSITIVE; *kronrad = 0.0; } else { *kronrad = r1 / v1; } return RETURN_OK; } /* set array values within an ellipse (uc = unsigned char array) */ void sep_set_ellipse( unsigned char * arr, int64_t w, int64_t h, double x, double y, double cxx, double cyy, double cxy, double r, unsigned char val ) { unsigned char * arrt; int64_t xmin, xmax, ymin, ymax, xi, yi; double r2, dx, dy, dy2; short flag; /* not actually used, but input to boxextent */ flag = 0; r2 = r * r; boxextent_ellipse(x, y, cxx, cyy, cxy, r, w, h, &xmin, &xmax, &ymin, &ymax, &flag); for (yi = ymin; yi < ymax; yi++) { arrt = arr + (yi * w + xmin); dy = yi - y; dy2 = dy * dy; for (xi = xmin; xi < xmax; xi++, arrt++) { dx = xi - x; if ((cxx * dx * dx + cyy * dy2 + cxy * dx * dy) <= r2) { *arrt = val; } } } } /*****************************************************************************/ /* * As with `sep_sum_circann_multi`, this is different enough from the other * aperture functions that it doesn't quite make sense to use aperture.i. * * To reproduce SExtractor: * - use sig = obj.hl_radius * 2/2.35. * - use obj.posx/posy for initial position * */ int sep_windowed( const sep_image * im, double x, double y, double sig, int subpix, short inflag, double * xout, double * yout, int * niter, short * flag ) { PIXTYPE pix, varpix; double dx, dy, dx1, dy2, offset, scale, scale2, tmp, dxpos, dypos, weight; double maskarea, maskweight, maskdxpos, maskdypos; double r, tv, twv, sigtv, totarea, overlap, rpix2, invtwosig2; double wpix; int64_t ix, iy, xmin, xmax, ymin, ymax, sx, sy, pos, size, esize, msize; int i, status; short errisarray, errisstd; const BYTE *datat, *errort, *maskt; converter convert, econvert, mconvert; double r2, r_in2, r_out2; /* input checks */ if (sig < 0.0) { return ILLEGAL_APER_PARAMS; } if (subpix < 0) { return ILLEGAL_SUBPIX; } /* initializations */ size = esize = msize = 0; tv = sigtv = 0.0; overlap = totarea = maskweight = 0.0; datat = maskt = NULL; errort = im->noise; *flag = 0; varpix = 0.0; scale = 1.0 / subpix; scale2 = scale * scale; offset = 0.5 * (scale - 1.0); invtwosig2 = 1.0 / (2.0 * sig * sig); errisarray = 0; errisstd = 0; /* Integration radius */ r = WINPOS_NSIG * sig; /* calculate oversampled annulus */ r2 = r * r; oversamp_ann_circle(r, &r_in2, &r_out2); /* get data converter(s) for input array(s) */ if ((status = get_converter(im->dtype, &convert, &size))) { return status; } if (im->mask && (status = get_converter(im->mdtype, &mconvert, &msize))) { return status; } /* get image noise */ if (im->noise_type != SEP_NOISE_NONE) { errisstd = (im->noise_type == SEP_NOISE_STDDEV); if (im->noise) { errisarray = 1; if ((status = get_converter(im->ndtype, &econvert, &esize))) { return status; } } else { varpix = (errisstd) ? im->noiseval * im->noiseval : im->noiseval; } } /* iteration loop */ for (i = 0; i < WINPOS_NITERMAX; i++) { /* get extent of box */ boxextent(x, y, r, r, im->w, im->h, &xmin, &xmax, &ymin, &ymax, flag); /* TODO: initialize values */ // mx2ph // my2ph // esum, emxy, emx2, emy2, mx2, my2, mxy tv = twv = sigtv = 0.0; overlap = totarea = maskarea = maskweight = 0.0; dxpos = dypos = 0.0; maskdxpos = maskdypos = 0.0; /* loop over rows in the box */ for (iy = ymin; iy < ymax; iy++) { /* set pointers to the start of this row */ pos = (iy % im->h) * im->w + xmin; datat = MSVC_VOID_CAST im->data + pos * size; if (errisarray) { errort = MSVC_VOID_CAST im->noise + pos * esize; } if (im->mask) { maskt = MSVC_VOID_CAST im->mask + pos * msize; } /* loop over pixels in this row */ for (ix = xmin; ix < xmax; ix++) { dx = ix - x; dy = iy - y; rpix2 = dx * dx + dy * dy; if (rpix2 < r_out2) { if (rpix2 > r_in2) /* might be partially in aperture */ { if (subpix == 0) { overlap = circoverlap(dx - 0.5, dy - 0.5, dx + 0.5, dy + 0.5, r); } else { dx += offset; dy += offset; overlap = 0.0; for (sy = subpix; sy--; dy += scale) { dx1 = dx; dy2 = dy * dy; for (sx = subpix; sx--; dx1 += scale) { if (dx1 * dx1 + dy2 < r2) { overlap += scale2; } } } } } else { /* definitely fully in aperture */ overlap = 1.0; } /* get pixel value and variance value */ pix = convert(datat); if (errisarray) { varpix = econvert(errort); if (errisstd) { varpix *= varpix; } } /* offset of this pixel from center */ dx = ix - x; dy = iy - y; /* weight by gaussian */ weight = exp(-rpix2 * invtwosig2); if (im->mask && (mconvert(maskt) > im->maskthresh)) { *flag |= SEP_APER_HASMASKED; maskarea += overlap; maskweight += overlap * weight; maskdxpos += overlap * weight * dx; maskdypos += overlap * weight * dy; } else { tv += pix * overlap; wpix = pix * overlap * weight; twv += wpix; dxpos += wpix * dx; dypos += wpix * dy; } totarea += overlap; } /* closes "if pixel might be within aperture" */ /* increment pointers by one element */ datat += size; if (errisarray) { errort += esize; } maskt += msize; } /* closes loop over x */ } /* closes loop over y */ /* we're done looping over pixels for this iteration. * Our summary statistics are: * * tv : total value * twv : total weighted value * dxpos : weighted dx * dypos : weighted dy */ /* Correct for masked values: This effectively makes it as if * the masked pixels had the value of the average unmasked value * in the aperture. */ if (im->mask) { /* this option will probably not yield accurate values */ if (inflag & SEP_MASK_IGNORE) { totarea -= maskarea; } else { tmp = tv / (totarea - maskarea); /* avg unmasked pixel value */ twv += tmp * maskweight; dxpos += tmp * maskdxpos; dypos += tmp * maskdypos; } } /* update center */ if (twv > 0.0) { x += (dxpos /= twv) * WINPOS_FAC; y += (dypos /= twv) * WINPOS_FAC; } else { break; } /* Stop here if position does not change */ if (dxpos * dxpos + dypos * dypos < WINPOS_STEPMIN * WINPOS_STEPMIN) { break; } } /* closes loop over interations */ /* assign output results */ *xout = x; *yout = y; *niter = i + 1; return status; } sep-1.4.1/src/aperture.i000066400000000000000000000116241475511417100151060ustar00rootroot00000000000000/* Adding (void *) pointers is a GNU C extension, not part of standard C. When compiling on Windows with MS Visual C compiler need to cast the (void *) to something the size of one byte. */ #if defined(_MSC_VER) #define MSVC_VOID_CAST (char *) #else #define MSVC_VOID_CAST #endif int APER_NAME( const sep_image * im, double x, double y, APER_ARGS, int id, int subpix, short inflag, double * sum, double * sumerr, double * area, short * flag ) { PIXTYPE pix, varpix; double dx, dy, dx1, dy2, offset, scale, scale2, tmp; double tv, sigtv, totarea, maskarea, overlap, rpix2; int64_t ix, iy, xmin, xmax, ymin, ymax, sx, sy, pos, size, esize, msize, ssize; int ismasked, status; short errisarray, errisstd; const BYTE *datat, *errort, *maskt, *segt; converter convert, econvert, mconvert, sconvert; APER_DECL; /* input checks */ APER_CHECKS; if (subpix < 0) { return ILLEGAL_SUBPIX; } /* initializations */ size = esize = msize = ssize = 0; tv = sigtv = 0.0; overlap = totarea = maskarea = 0.0; datat = maskt = segt = NULL; errort = im->noise; *flag = 0; varpix = 0.0; scale = 1.0 / subpix; scale2 = scale * scale; offset = 0.5 * (scale - 1.0); errisarray = 0; errisstd = 0; APER_INIT; /* get data converter(s) for input array(s) */ if ((status = get_converter(im->dtype, &convert, &size))) { return status; } if (im->mask && (status = get_converter(im->mdtype, &mconvert, &msize))) { return status; } if (im->segmap && (status = get_converter(im->sdtype, &sconvert, &ssize))) { return status; } /* get image noise */ if (im->noise_type != SEP_NOISE_NONE) { errisstd = (im->noise_type == SEP_NOISE_STDDEV); if (im->noise) { errisarray = 1; if ((status = get_converter(im->ndtype, &econvert, &esize))) { return status; } } else { varpix = (errisstd) ? im->noiseval * im->noiseval : im->noiseval; } } /* get extent of box */ APER_BOXEXTENT; /* loop over rows in the box */ for (iy = ymin; iy < ymax; iy++) { /* set pointers to the start of this row */ pos = (iy % im->h) * im->w + xmin; datat = MSVC_VOID_CAST im->data + pos * size; if (errisarray) { errort = MSVC_VOID_CAST im->noise + pos * esize; } if (im->mask) { maskt = MSVC_VOID_CAST im->mask + pos * msize; } if (im->segmap) { segt = MSVC_VOID_CAST im->segmap + pos * ssize; } /* loop over pixels in this row */ for (ix = xmin; ix < xmax; ix++) { dx = ix - x; dy = iy - y; rpix2 = APER_RPIX2; if (APER_COMPARE1) { if (APER_COMPARE2) /* might be partially in aperture */ { if (subpix == 0) { overlap = APER_EXACT; } else { dx += offset; dy += offset; overlap = 0.0; for (sy = subpix; sy--; dy += scale) { dx1 = dx; dy2 = dy * dy; for (sx = subpix; sx--; dx1 += scale) { rpix2 = APER_RPIX2_SUBPIX; if (APER_COMPARE3) { overlap += scale2; } } } } } else { /* definitely fully in aperture */ overlap = 1.0; } pix = convert(datat); if (errisarray) { varpix = econvert(errort); if (errisstd) { varpix *= varpix; } } ismasked = 0; if (im->mask && (mconvert(maskt) > im->maskthresh)) { ismasked = 1; } /* Segmentation image: If `id` is negative, require segmented pixels within the aperture. If `id` is positive, mask pixels with nonzero segment ids not equal to `id`. */ if (im->segmap) { if (id > 0) { if ((sconvert(segt) > 0.) && (sconvert(segt) != id)) { ismasked = 1; } } else { if (sconvert(segt) != -1 * id) { ismasked = 1; } } } if (ismasked > 0) { *flag |= SEP_APER_HASMASKED; maskarea += overlap; } else { tv += pix * overlap; sigtv += varpix * overlap; } totarea += overlap; } /* closes "if pixel might be within aperture" */ /* increment pointers by one element */ datat += size; if (errisarray) { errort += esize; } maskt += msize; segt += ssize; } } /* correct for masked values */ if (im->mask) { if (inflag & SEP_MASK_IGNORE) { totarea -= maskarea; } else { tv *= (tmp = totarea / (totarea - maskarea)); sigtv *= tmp; } } /* add poisson noise, only if gain > 0 */ if (im->gain > 0.0 && tv > 0.0) { sigtv += tv / im->gain; } *sum = tv; *sumerr = sqrt(sigtv); *area = totarea; return status; } sep-1.4.1/src/background.c000066400000000000000000000705211475511417100153710ustar00rootroot00000000000000/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% * * This file is part of SEP * * Copyright 1993-2011 Emmanuel Bertin -- IAP/CNRS/UPMC * Copyright 2014 SEP developers * * SEP is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * SEP is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with SEP. If not, see . * *%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include #include #include #include #include #include "sep.h" #include "sepcore.h" #define BACK_MINGOODFRAC 0.5 /* min frac with good weights*/ #define QUANTIF_NSIGMA 5 /* histogram limits */ #define QUANTIF_NMAXLEVELS 4096 /* max nb of quantif. levels */ #define QUANTIF_AMIN 4 /* min nb of "mode pixels" */ /* Background info in a single mesh*/ typedef struct { float mode, mean, sigma; /* Background mode, mean and sigma */ int64_t * histo; /* Pointer to a histogram */ int nlevels; /* Nb of histogram bins */ float qzero, qscale; /* Position of histogram */ float lcut, hcut; /* Histogram cuts */ int64_t npix; /* Number of pixels involved */ } backstruct; /* internal helper functions */ void backhisto( backstruct * backmesh, const PIXTYPE * buf, const PIXTYPE * wbuf, int64_t bufsize, int64_t n, int64_t w, int64_t bw, PIXTYPE maskthresh ); void backstat( backstruct * backmesh, const PIXTYPE * buf, const PIXTYPE * wbuf, int64_t bufsize, int64_t n, int64_t w, int64_t bw, PIXTYPE maskthresh ); int filterback(sep_bkg * bkg, int64_t fw, int64_t fh, double fthresh); float backguess(backstruct * bkg, float * mean, float * sigma); int makebackspline(const sep_bkg * bkg, float * map, float * dmap); int sep_background( const sep_image * image, int64_t bw, int64_t bh, int64_t fw, int64_t fh, double fthresh, sep_bkg ** bkg ) { const BYTE *imt, *maskt; int64_t npix; /* size of image */ int64_t nx, ny, nb; /* number of background boxes in x, y, total */ int64_t bufsize; /* size of a "row" of boxes in pixels (w*bh) */ int64_t elsize; /* size (in bytes) of an image array element */ int64_t melsize; /* size (in bytes) of a mask array element */ PIXTYPE *buf, *mbuf; const PIXTYPE *buft, *mbuft; PIXTYPE maskthresh; array_converter convert, mconvert; backstruct *backmesh, *bm; /* info about each background "box" */ sep_bkg * bkgout; /* output */ int64_t j, k, m; int status; status = RETURN_OK; npix = image->w * image->h; bufsize = image->w * bh; maskthresh = image->maskthresh; if (image->mask == NULL) { maskthresh = 0.0; } backmesh = bm = NULL; bkgout = NULL; buf = mbuf = NULL; buft = mbuft = NULL; convert = mconvert = NULL; /* determine number of background boxes */ if ((nx = (image->w - 1) / bw + 1) < 1) { nx = 1; } if ((ny = (image->h - 1) / bh + 1) < 1) { ny = 1; } nb = nx * ny; /* Allocate temp memory & initialize */ QCALLOC(backmesh, backstruct, nx, status); bm = backmesh; /* Allocate the returned struct */ QMALLOC(bkgout, sep_bkg, 1, status); bkgout->w = image->w; bkgout->h = image->h; bkgout->nx = nx; bkgout->ny = ny; bkgout->n = nb; bkgout->bw = bw; bkgout->bh = bh; bkgout->back = NULL; bkgout->sigma = NULL; bkgout->dback = NULL; bkgout->dsigma = NULL; QMALLOC(bkgout->back, float, nb, status); QMALLOC(bkgout->sigma, float, nb, status); QMALLOC(bkgout->dback, float, nb, status); QMALLOC(bkgout->dsigma, float, nb, status); /* cast input array pointers. These are used to step through the arrays. */ imt = (const BYTE *)image->data; maskt = (const BYTE *)image->mask; /* get the correct array converter and element size, based on dtype code */ status = get_array_converter(image->dtype, &convert, &elsize); if (status != RETURN_OK) { goto exit; } if (image->mask) { status = get_array_converter(image->mdtype, &mconvert, &melsize); if (status != RETURN_OK) { goto exit; } } /* If the input array type is not PIXTYPE, allocate a buffer to hold converted values */ if (image->dtype != PIXDTYPE) { QMALLOC(buf, PIXTYPE, bufsize, status); buft = buf; if (status != RETURN_OK) { goto exit; } } if (image->mask && (image->mdtype != PIXDTYPE)) { QMALLOC(mbuf, PIXTYPE, bufsize, status); mbuft = mbuf; if (status != RETURN_OK) { goto exit; } } /* loop over rows of background boxes. * (here, we could loop over individual boxes rather than entire * rows, but this is convenient for converting the image and mask * arrays. This is also how it is originally done in SExtractor, * because the pixel buffers are only read in from disk in * increments of a row of background boxes at a time.) */ for (j = 0; j < ny; j++) { /* if the last row, modify the width appropriately*/ if (j == ny - 1 && npix % bufsize) { bufsize = npix % bufsize; } /* convert this row to PIXTYPE and store in buffer(s)*/ if (image->dtype != PIXDTYPE) { convert(imt, bufsize, buf); } else { buft = (const PIXTYPE *)imt; } if (image->mask) { if (image->mdtype != PIXDTYPE) { mconvert(maskt, bufsize, mbuf); } else { mbuft = (const PIXTYPE *)maskt; } } /* Get clipped mean, sigma for all boxes in the row */ backstat(backmesh, buft, mbuft, bufsize, nx, image->w, bw, maskthresh); /* Allocate histograms in each box in this row. */ bm = backmesh; for (m = nx; m--; bm++) { if (bm->mean <= -BIG) { bm->histo = NULL; } else { QCALLOC(bm->histo, int64_t, bm->nlevels, status); } } backhisto(backmesh, buft, mbuft, bufsize, nx, image->w, bw, maskthresh); /* Compute background statistics from the histograms */ bm = backmesh; for (m = 0; m < nx; m++, bm++) { k = m + nx * j; backguess(bm, bkgout->back + k, bkgout->sigma + k); free(bm->histo); bm->histo = NULL; } /* increment array pointers to next row of background boxes */ imt += elsize * bufsize; if (image->mask) { maskt += melsize * bufsize; } } /* free memory */ free(buf); buf = NULL; free(mbuf); mbuf = NULL; free(backmesh); backmesh = NULL; /* Median-filter and check suitability of the background map */ if ((status = filterback(bkgout, fw, fh, fthresh)) != RETURN_OK) { goto exit; } /* Compute 2nd derivatives along the y-direction */ if ((status = makebackspline(bkgout, bkgout->back, bkgout->dback)) != RETURN_OK) { goto exit; } if ((status = makebackspline(bkgout, bkgout->sigma, bkgout->dsigma)) != RETURN_OK) { goto exit; } *bkg = bkgout; return status; /* If we encountered a problem, clean up any allocated memory */ exit: free(buf); free(mbuf); if (backmesh) { bm = backmesh; for (m = 0; m < nx; m++, bm++) { free(bm->histo); } } free(backmesh); sep_bkg_free(bkgout); *bkg = NULL; return status; } /******************************** backstat **********************************/ /* Compute robust statistical estimators in a row of meshes. */ void backstat( backstruct * backmesh, const PIXTYPE * buf, const PIXTYPE * wbuf, int64_t bufsize, int64_t n, int64_t w, int64_t bw, PIXTYPE maskthresh ) { backstruct * bm; double pix, wpix, sig, mean, sigma, step; const PIXTYPE *buft, *wbuft; PIXTYPE lcut, hcut; int64_t m, h, x, y, npix, wnpix, offset, lastbite; h = bufsize / w; /* height of background boxes in this row */ bm = backmesh; offset = w - bw; step = sqrt(2 / PI) * QUANTIF_NSIGMA / QUANTIF_AMIN; for (m = n; m--; bm++, buf += bw) { if (!m && (lastbite = w % bw)) { bw = lastbite; offset = w - bw; } mean = sigma = 0.0; buft = buf; npix = 0; /* We separate the weighted case at this level to avoid penalty in CPU */ if (wbuf) { wbuft = wbuf; for (y = h; y--; buft += offset, wbuft += offset) { for (x = bw; x--;) { pix = *(buft++); if ((wpix = *(wbuft++)) <= maskthresh && pix > -BIG) { mean += pix; sigma += pix * pix; npix++; } } } } else { for (y = h; y--; buft += offset) { for (x = bw; x--;) { if ((pix = *(buft++)) > -BIG) { mean += pix; sigma += pix * pix; npix++; } } } } /*-- If not enough valid pixels, discard this mesh */ if ((float)npix < (float)(bw * h * BACK_MINGOODFRAC)) { bm->mean = bm->sigma = -BIG; if (wbuf) { wbuf += bw; } continue; } mean /= (double)npix; sigma = (sig = sigma / npix - mean * mean) > 0.0 ? sqrt(sig) : 0.0; lcut = bm->lcut = (PIXTYPE)(mean - 2.0 * sigma); hcut = bm->hcut = (PIXTYPE)(mean + 2.0 * sigma); mean = sigma = 0.0; npix = wnpix = 0; buft = buf; /* do statistics for this mesh again, with cuts */ if (wbuf) { wbuft = wbuf; for (y = h; y--; buft += offset, wbuft += offset) { for (x = bw; x--;) { pix = *(buft++); if ((wpix = *(wbuft++)) <= maskthresh && pix <= hcut && pix >= lcut) { mean += pix; sigma += pix * pix; npix++; } } } } else { for (y = h; y--; buft += offset) { for (x = bw; x--;) { pix = *(buft++); if (pix <= hcut && pix >= lcut) { mean += pix; sigma += pix * pix; npix++; } } } } bm->npix = npix; mean /= (double)npix; sig = sigma / npix - mean * mean; sigma = sig > 0.0 ? sqrt(sig) : 0.0; bm->mean = mean; bm->sigma = sigma; if ((bm->nlevels = (int)(step * npix + 1)) > QUANTIF_NMAXLEVELS) { bm->nlevels = QUANTIF_NMAXLEVELS; } bm->qscale = sigma > 0.0 ? 2 * QUANTIF_NSIGMA * sigma / bm->nlevels : 1.0; bm->qzero = mean - QUANTIF_NSIGMA * sigma; if (wbuf) { wbuf += bw; } } } /******************************** backhisto *********************************/ /* Fill histograms in a row of meshes. */ void backhisto( backstruct * backmesh, const PIXTYPE * buf, const PIXTYPE * wbuf, int64_t bufsize, int64_t n, int64_t w, int64_t bw, PIXTYPE maskthresh ) { backstruct * bm; const PIXTYPE *buft, *wbuft; float qscale, cste, wpix; int64_t * histo; int64_t h, m, x, y, nlevels, lastbite, offset, bin; h = bufsize / w; bm = backmesh; offset = w - bw; for (m = 0; m++ < n; bm++, buf += bw) { if (m == n && (lastbite = w % bw)) { bw = lastbite; offset = w - bw; } /*-- Skip bad meshes */ if (bm->mean <= -BIG) { if (wbuf) { wbuf += bw; } continue; } nlevels = bm->nlevels; histo = bm->histo; qscale = bm->qscale; cste = 0.499999 - bm->qzero / qscale; buft = buf; if (wbuf) { wbuft = wbuf; for (y = h; y--; buft += offset, wbuft += offset) { for (x = bw; x--;) { bin = (int64_t)(*(buft++) / qscale + cste); if ((wpix = *(wbuft++)) <= maskthresh && bin < nlevels && bin >= 0) { (*(histo + bin))++; } } } wbuf += bw; } else { for (y = h; y--; buft += offset) { for (x = bw; x--;) { bin = (int64_t)(*(buft++) / qscale + cste); if (bin >= 0 && bin < nlevels) { (*(histo + bin))++; } } } } } } /******************************* backguess **********************************/ /* Estimate the background from a histogram; */ float backguess(backstruct * bkg, float * mean, float * sigma) #define EPS (1e-4) /* a small number */ { int64_t *histo, *hilow, *hihigh, *histot; unsigned long lowsum, highsum, sum; double ftemp, mea, sig, sig1, med, dpix; int64_t i, n, lcut, hcut, nlevelsm1, pix; /* Leave here if the mesh is already classified as `bad' */ if (bkg->mean <= -BIG) { *mean = *sigma = -BIG; return -BIG; } histo = bkg->histo; hcut = nlevelsm1 = bkg->nlevels - 1; lcut = 0; sig = 10.0 * nlevelsm1; sig1 = 1.0; mea = med = bkg->mean; /* iterate until sigma converges or drops below 0.1 (up to 100 iterations) */ for (n = 100; n-- && (sig >= 0.1) && (fabs(sig / sig1 - 1.0) > EPS);) { sig1 = sig; sum = mea = sig = 0.0; lowsum = highsum = 0; histot = hilow = histo + lcut; hihigh = histo + hcut; for (i = lcut; i <= hcut; i++) { if (lowsum < highsum) { lowsum += *(hilow++); } else { highsum += *(hihigh--); } sum += (pix = *(histot++)); mea += (dpix = (double)pix * i); sig += dpix * i; } med = hihigh >= histo ? ((hihigh - histo) + 0.5 + ((double)highsum - lowsum) / (2.0 * (*hilow > *hihigh ? *hilow : *hihigh))) : 0.0; if (sum) { mea /= (double)sum; sig = sig / sum - mea * mea; } sig = sig > 0.0 ? sqrt(sig) : 0.0; lcut = (ftemp = med - 3.0 * sig) > 0.0 ? (int64_t)(ftemp > 0.0 ? ftemp + 0.5 : ftemp - 0.5) : 0; hcut = (ftemp = med + 3.0 * sig) < nlevelsm1 ? (int64_t)(ftemp > 0.0 ? ftemp + 0.5 : ftemp - 0.5) : nlevelsm1; } *mean = fabs(sig) > 0.0 ? (fabs(bkg->sigma / (sig * bkg->qscale) - 1) < 0.0 ? bkg->qzero + mea * bkg->qscale : (fabs((mea - med) / sig) < 0.3 ? bkg->qzero + (2.5 * med - 1.5 * mea) * bkg->qscale : bkg->qzero + med * bkg->qscale)) : bkg->qzero + mea * bkg->qscale; *sigma = sig * bkg->qscale; return *mean; } /****************************************************************************/ int filterback(sep_bkg * bkg, int64_t fw, int64_t fh, double fthresh) /* Median filterthe background map to remove the contribution * from bright sources. */ { float *back, *sigma, *back2, *sigma2, *bmask, *smask, *sigmat; float d2, d2min, med, val, sval; int64_t i, j, px, py, np, nx, ny, npx, npx2, npy, npy2, dpx, dpy, x, y, nmin; int status; status = RETURN_OK; bmask = smask = back2 = sigma2 = NULL; nx = bkg->nx; ny = bkg->ny; np = bkg->n; npx = fw / 2; npy = fh / 2; npy *= nx; QMALLOC(bmask, float, (2 * npx + 1) * (2 * npy + 1), status); QMALLOC(smask, float, (2 * npx + 1) * (2 * npy + 1), status); QMALLOC(back2, float, np, status); QMALLOC(sigma2, float, np, status); back = bkg->back; sigma = bkg->sigma; val = sval = 0.0; /* to avoid gcc -Wall warnings */ /* Look for `bad' meshes and interpolate them if necessary */ for (i = 0, py = 0; py < ny; py++) { for (px = 0; px < nx; px++, i++) { if ((back2[i] = back[i]) <= -BIG) { /*------ Seek the closest valid mesh */ d2min = BIG; nmin = 0; for (j = 0, y = 0; y < ny; y++) { for (x = 0; x < nx; x++, j++) { if (back[j] > -BIG) { d2 = (float)(x - px) * (x - px) + (y - py) * (y - py); if (d2 < d2min) { val = back[j]; sval = sigma[j]; nmin = 1; d2min = d2; } else if (d2 == d2min) { val += back[j]; sval += sigma[j]; nmin++; } } } } back2[i] = nmin ? val / nmin : 0.0; sigma[i] = nmin ? sval / nmin : 1.0; } } } memcpy(back, back2, (size_t)np * sizeof(float)); /* Do the actual filtering */ for (py = 0; py < np; py += nx) { npy2 = np - py - nx; if (npy2 > npy) { npy2 = npy; } if (npy2 > py) { npy2 = py; } for (px = 0; px < nx; px++) { npx2 = nx - px - 1; if (npx2 > npx) { npx2 = npx; } if (npx2 > px) { npx2 = px; } i = 0; for (dpy = -npy2; dpy <= npy2; dpy += nx) { y = py + dpy; for (dpx = -npx2; dpx <= npx2; dpx++) { x = px + dpx; bmask[i] = back[x + y]; smask[i++] = sigma[x + y]; } } if (fabs((med = fqmedian(bmask, i)) - back[px + py]) >= fthresh) { back2[px + py] = med; sigma2[px + py] = fqmedian(smask, i); } else { back2[px + py] = back[px + py]; sigma2[px + py] = sigma[px + py]; } } } free(bmask); free(smask); bmask = smask = NULL; memcpy(back, back2, np * sizeof(float)); bkg->global = fqmedian(back2, np); free(back2); back2 = NULL; memcpy(sigma, sigma2, np * sizeof(float)); bkg->globalrms = fqmedian(sigma2, np); if (bkg->globalrms <= 0.0) { sigmat = sigma2 + np; for (i = np; i-- && *(--sigmat) > 0.0;) ; if (i >= 0 && i < (np - 1)) { bkg->globalrms = fqmedian(sigmat + 1, np - 1 - i); } else { bkg->globalrms = 1.0; } } free(sigma2); sigma2 = NULL; return status; exit: if (bmask) { free(bmask); } if (smask) { free(smask); } if (back2) { free(back2); } if (sigma2) { free(sigma2); } return status; } /******************************* makebackspline ******************************/ /* * Pre-compute 2nd derivatives along the y direction at background nodes. */ int makebackspline(const sep_bkg * bkg, float * map, float * dmap) { int64_t x, y, nbx, nby, nbym1; int status; float *dmapt, *mapt, *u, temp; u = NULL; status = RETURN_OK; nbx = bkg->nx; nby = bkg->ny; nbym1 = nby - 1; for (x = 0; x < nbx; x++) { mapt = map + x; dmapt = dmap + x; if (nby > 1) { QMALLOC(u, float, nbym1, status); /* temporary array */ *dmapt = *u = 0.0; /* "natural" lower boundary condition */ mapt += nbx; for (y = 1; y < nbym1; y++, mapt += nbx) { temp = -1 / (*dmapt + 4); *(dmapt += nbx) = temp; temp *= *(u++) - 6 * (*(mapt + nbx) + *(mapt - nbx) - 2 * *mapt); *u = temp; } *(dmapt += nbx) = 0.0; /* "natural" upper boundary condition */ for (y = nby - 2; y--;) { temp = *dmapt; dmapt -= nbx; *dmapt = (*dmapt * temp + *(u--)) / 6.0; } free(u); u = NULL; } else { *dmapt = 0.0; } } return status; exit: if (u) { free(u); } return status; } /*****************************************************************************/ float sep_bkg_global(const sep_bkg * bkg) { return bkg->global; } float sep_bkg_globalrms(const sep_bkg * bkg) { return bkg->globalrms; } /*****************************************************************************/ float sep_bkg_pix(const sep_bkg * bkg, int64_t x, int64_t y) /* * return background at position x,y. * (linear interpolation between background map vertices). */ { int64_t nx, ny, xl, yl, pos; double dx, dy, cdx; float * b; float b0, b1, b2, b3; b = bkg->back; nx = bkg->nx; ny = bkg->ny; dx = (double)x / bkg->bw - 0.5; dy = (double)y / bkg->bh - 0.5; dx -= (xl = (int64_t)dx); dy -= (yl = (int64_t)dy); if (xl < 0) { xl = 0; dx -= 1.0; } else if (xl >= nx - 1) { xl = nx < 2 ? 0 : nx - 2; dx += 1.0; } if (yl < 0) { yl = 0; dy -= 1.0; } else if (yl >= ny - 1) { yl = ny < 2 ? 0 : ny - 2; dy += 1.0; } pos = yl * nx + xl; cdx = 1 - dx; b0 = *(b += pos); /* consider when nbackx or nbacky = 1 */ b1 = nx < 2 ? b0 : *(++b); b2 = ny < 2 ? *b : *(b += nx); b3 = nx < 2 ? *b : *(--b); return (float)((1 - dy) * (cdx * b0 + dx * b1) + dy * (dx * b2 + cdx * b3)); } /*****************************************************************************/ int bkg_line_flt_internal( const sep_bkg * bkg, float * values, float * dvalues, int64_t y, float * line ) /* Interpolate background at line y (bicubic spline interpolation between * background map vertices) and save to line. * (values, dvalues) is either (bkg->back, bkg->dback) or * (bkg->sigma, bkg->dsigma) depending on whether the background value or rms * is being evaluated. */ { int64_t i, j, x, yl, nbx, nbxm1, nby, nx, width, ystep, changepoint; int status; float dx, dx0, dy, dy3, cdx, cdy, cdy3, temp, xstep; float *nodebuf, *dnodebuf, *u; float *node, *nodep, *dnode, *blo, *bhi, *dblo, *dbhi; status = RETURN_OK; nodebuf = node = NULL; dnodebuf = dnode = NULL; u = NULL; width = bkg->w; nbx = bkg->nx; nbxm1 = nbx - 1; nby = bkg->ny; if (nby > 1) { dy = (float)y / bkg->bh - 0.5; dy -= (yl = (int64_t)dy); if (yl < 0) { yl = 0; dy -= 1.0; } else if (yl >= nby - 1) { yl = nby < 2 ? 0 : nby - 2; dy += 1.0; } /*-- Interpolation along y for each node */ cdy = 1 - dy; dy3 = (dy * dy * dy - dy); cdy3 = (cdy * cdy * cdy - cdy); ystep = nbx * yl; blo = values + ystep; bhi = blo + nbx; dblo = dvalues + ystep; dbhi = dblo + nbx; QMALLOC(nodebuf, float, nbx, status); /* Interpolated background */ nodep = node = nodebuf; for (x = nbx; x--;) { *(nodep++) = cdy * *(blo++) + dy * *(bhi++) + cdy3 * *(dblo++) + dy3 * *(dbhi++); } /*-- Computation of 2nd derivatives along x */ QMALLOC(dnodebuf, float, nbx, status); /* 2nd derivative along x */ dnode = dnodebuf; if (nbx > 1) { QMALLOC(u, float, nbxm1, status); /* temporary array */ *dnode = *u = 0.0; /* "natural" lower boundary condition */ nodep = node + 1; for (x = nbxm1; --x; nodep++) { temp = -1 / (*(dnode++) + 4); *dnode = temp; temp *= *(u++) - 6 * (*(nodep + 1) + *(nodep - 1) - 2 * *nodep); *u = temp; } *(++dnode) = 0.0; /* "natural" upper boundary condition */ for (x = nbx - 2; x--;) { temp = *(dnode--); *dnode = (*dnode * temp + *(u--)) / 6.0; } free(u); u = NULL; dnode--; } } else { /*-- No interpolation and no new 2nd derivatives needed along y */ node = values; dnode = dvalues; } /*-- Interpolation along x */ if (nbx > 1) { nx = bkg->bw; xstep = 1.0 / nx; changepoint = nx / 2; dx = (xstep - 1) / 2; /* dx of the first pixel in the row */ dx0 = ((nx + 1) % 2) * xstep / 2; /* dx of the 1st pixel right to a bkgnd node */ blo = node; bhi = node + 1; dblo = dnode; dbhi = dnode + 1; for (x = i = 0, j = width; j--; i++, dx += xstep) { if (i == changepoint && x > 0 && x < nbxm1) { blo++; bhi++; dblo++; dbhi++; dx = dx0; } cdx = 1 - dx; *(line++) = (float)(cdx * (*blo + (cdx * cdx - 1) * *dblo) + dx * (*bhi + (dx * dx - 1) * *dbhi)); if (i == nx) { x++; i = 0; } } } else { for (j = width; j--;) { *(line++) = (float)*node; } } exit: if (nodebuf) { free(nodebuf); } if (dnodebuf) { free(dnodebuf); } if (u) { free(u); } return status; } int sep_bkg_line_flt(const sep_bkg * bkg, int64_t y, float * line) /* Interpolate background at line y (bicubic spline interpolation between * background map vertices) and save to line */ { return bkg_line_flt_internal(bkg, bkg->back, bkg->dback, y, line); } /*****************************************************************************/ int sep_bkg_rmsline_flt(const sep_bkg * bkg, int64_t y, float * line) /* Interpolate background rms at line y (bicubic spline interpolation between * background map vertices) and save to line */ { return bkg_line_flt_internal(bkg, bkg->sigma, bkg->dsigma, y, line); } /*****************************************************************************/ /* Multiple dtype functions and convenience functions. * These mostly wrap the two "line" functions above. */ int sep_bkg_line(const sep_bkg * bkg, int64_t y, void * line, int dtype) { array_writer write_array; int64_t size; int status; float * tmpline; if (dtype == SEP_TFLOAT) { return sep_bkg_line_flt(bkg, y, (float *)line); } tmpline = NULL; status = get_array_writer(dtype, &write_array, &size); if (status != RETURN_OK) { goto exit; } QMALLOC(tmpline, float, bkg->w, status); status = sep_bkg_line_flt(bkg, y, tmpline); if (status != RETURN_OK) { goto exit; } /* write to desired output type */ write_array(tmpline, bkg->w, line); exit: free(tmpline); return status; } int sep_bkg_rmsline(const sep_bkg * bkg, int64_t y, void * line, int dtype) { array_writer write_array; int64_t size; int status; float * tmpline; if (dtype == SEP_TFLOAT) { return sep_bkg_rmsline_flt(bkg, y, (float *)line); } tmpline = NULL; status = get_array_writer(dtype, &write_array, &size); if (status != RETURN_OK) { goto exit; } QMALLOC(tmpline, float, bkg->w, status); status = sep_bkg_rmsline_flt(bkg, y, tmpline); if (status != RETURN_OK) { goto exit; } /* write to desired output type */ write_array(tmpline, bkg->w, line); exit: free(tmpline); return status; } int sep_bkg_array(const sep_bkg * bkg, void * arr, int dtype) { int64_t y, width, size; int status; array_writer write_array; float * tmpline; BYTE * line; tmpline = NULL; status = RETURN_OK; width = bkg->w; if (dtype == SEP_TFLOAT) { tmpline = (float *)arr; for (y = 0; y < bkg->h; y++, tmpline += width) { if ((status = sep_bkg_line_flt(bkg, y, tmpline)) != RETURN_OK) { return status; } } return status; } if ((status = get_array_writer(dtype, &write_array, &size)) != RETURN_OK) { goto exit; } QMALLOC(tmpline, float, width, status); line = (BYTE *)arr; for (y = 0; y < bkg->h; y++, line += size * width) { if ((status = sep_bkg_line_flt(bkg, y, tmpline)) != RETURN_OK) { goto exit; } write_array(tmpline, width, line); } exit: free(tmpline); return status; } int sep_bkg_rmsarray(const sep_bkg * bkg, void * arr, int dtype) { int64_t y, width, size; int status; array_writer write_array; float * tmpline; BYTE * line; tmpline = NULL; status = RETURN_OK; width = bkg->w; if (dtype == SEP_TFLOAT) { tmpline = (float *)arr; for (y = 0; y < bkg->h; y++, tmpline += width) { if ((status = sep_bkg_rmsline_flt(bkg, y, tmpline)) != RETURN_OK) { return status; } } return status; } if ((status = get_array_writer(dtype, &write_array, &size)) != RETURN_OK) { goto exit; } QMALLOC(tmpline, float, width, status); line = (BYTE *)arr; for (y = 0; y < bkg->h; y++, line += size * width) { if ((status = sep_bkg_rmsline_flt(bkg, y, tmpline)) != RETURN_OK) { goto exit; } write_array(tmpline, width, line); } exit: free(tmpline); return status; } int sep_bkg_subline(const sep_bkg * bkg, int64_t y, void * line, int dtype) { array_writer subtract_array; int status; int64_t size; PIXTYPE * tmpline; tmpline = NULL; status = RETURN_OK; QMALLOC(tmpline, PIXTYPE, bkg->w, status); status = sep_bkg_line_flt(bkg, y, tmpline); if (status != RETURN_OK) { goto exit; } status = get_array_subtractor(dtype, &subtract_array, &size); if (status != RETURN_OK) { goto exit; } subtract_array(tmpline, bkg->w, line); exit: free(tmpline); return status; } int sep_bkg_subarray(const sep_bkg * bkg, void * arr, int dtype) { array_writer subtract_array; int64_t y, size, width; int status; PIXTYPE * tmpline; BYTE * arrt; tmpline = NULL; status = RETURN_OK; width = bkg->w; arrt = (BYTE *)arr; QMALLOC(tmpline, PIXTYPE, width, status); status = get_array_subtractor(dtype, &subtract_array, &size); if (status != RETURN_OK) { goto exit; } for (y = 0; y < bkg->h; y++, arrt += (width * size)) { if ((status = sep_bkg_line_flt(bkg, y, tmpline)) != RETURN_OK) { goto exit; } subtract_array(tmpline, width, arrt); } exit: free(tmpline); return status; } /*****************************************************************************/ void sep_bkg_free(sep_bkg * bkg) { if (bkg) { free(bkg->back); free(bkg->dback); free(bkg->sigma); free(bkg->dsigma); } free(bkg); } sep-1.4.1/src/convolve.c000066400000000000000000000147441475511417100151120ustar00rootroot00000000000000/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% * * This file is part of SEP * * Copyright 1993-2011 Emmanuel Bertin -- IAP/CNRS/UPMC * Copyright 2014 SEP developers * * SEP is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * SEP is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the f* GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with SEP. If not, see . * *%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include #include #include #include "extract.h" #include "sep.h" #include "sepcore.h" /* Convolve one line of an image with a given kernel. * * buf : arraybuffer struct containing buffer of data to convolve, and image dimension metadata. * conv : convolution kernel * convw, convh : width and height of conv * buf : output convolved line (buf->dw elements long) */ int convolve( arraybuffer * buf, int64_t y, const float * conv, int64_t convw, int64_t convh, PIXTYPE * out ) { int64_t convw2, convn, cx, cy, i, dcx, y0; PIXTYPE * line; /* current line in input buffer */ PIXTYPE * outend; /* end of output buffer */ PIXTYPE *src, *dst, *dstend; outend = out + buf->dw; convw2 = convw / 2; y0 = y - convh / 2; /* start line in image */ /* Cut off top of kernel if it extends beyond image */ if (y0 + convh > buf->dh) { convh = buf->dh - y0; } /* cut off bottom of kernel if it extends beyond image */ if (y0 < 0) { convh = convh + y0; conv += convw * (-y0); y0 = 0; } /* check that buffer has needed lines */ if ((y0 < buf->yoff) || (y0 + convh > buf->yoff + buf->bh)) { return LINE_NOT_IN_BUF; } memset(out, 0, buf->dw * sizeof(PIXTYPE)); /* initialize output to zero */ /* loop over pixels in the convolution kernel */ convn = convw * convh; for (i = 0; i < convn; i++) { cx = i % convw; /* x index in conv kernel */ cy = i / convw; /* y index in conv kernel */ line = buf->bptr + buf->bw * (y0 - buf->yoff + cy); /* start of line */ /* get start and end positions in the source and target line */ dcx = cx - convw2; /* offset of conv pixel from conv center; determines offset between in and out line */ if (dcx >= 0) { src = line + dcx; dst = out; dstend = outend - dcx; } else { src = line; dst = out - dcx; dstend = outend; } /* multiply and add the values */ while (dst < dstend) { *(dst++) += conv[i] * *(src++); } } return RETURN_OK; } /* Apply a matched filter to one line of an image with a given kernel. * * Calculates * * sum(conv_i * f_i / n_i^2) / sqrt(sum(conv_i^2 / n_i^2)) * * at each pixel in the line, where the sums are over i (pixels in the * convolution kernel). * * imbuf : arraybuffer for data array * nbuf : arraybuffer for noise array * y : line to apply the matched filter to in an image * conv : convolution kernel * convw, convh : width and height of conv * work : work buffer (`imbuf->dw` elements long) * out : output line (`imbuf->dw` elements long) * noise_type : indicates contents of nbuf (std dev or variance) * * imbuf and nbuf should have same data dimensions and be on the same line * (their `yoff` fields should be the same). */ int matched_filter( arraybuffer * imbuf, arraybuffer * nbuf, int64_t y, const float * conv, int64_t convw, int64_t convh, PIXTYPE * work, PIXTYPE * out, int noise_type ) { int64_t convw2, convn, cx, cy, i, dcx, y0; PIXTYPE imval, varval; PIXTYPE *imline, *nline; /* current line in input buffer */ PIXTYPE * outend; /* end of output buffer */ PIXTYPE *src_im, *src_n, *dst_num, *dst_denom, *dst_num_end; outend = out + imbuf->dw; convw2 = convw / 2; y0 = y - convh / 2; /* start line in image */ /* Cut off top of kernel if it extends beyond image */ if (y0 + convh > imbuf->dh) { convh = imbuf->dh - y0; } /* cut off bottom of kernel if it extends beyond image */ if (y0 < 0) { convh = convh + y0; conv += convw * (-y0); y0 = 0; } /* check that buffer has needed lines */ if ((y0 < imbuf->yoff) || (y0 + convh > imbuf->yoff + imbuf->bh) || (y0 < nbuf->yoff) || (y0 + convh > nbuf->yoff + nbuf->bh)) { return LINE_NOT_IN_BUF; } /* check that image and noise buffer match */ if ((imbuf->yoff != nbuf->yoff) || (imbuf->dw != nbuf->dw)) { return LINE_NOT_IN_BUF; /* TODO new error status code */ } /* initialize output buffers to zero */ memset(out, 0, imbuf->bw * sizeof(PIXTYPE)); memset(work, 0, imbuf->bw * sizeof(PIXTYPE)); /* loop over pixels in the convolution kernel */ convn = convw * convh; for (i = 0; i < convn; i++) { cx = i % convw; /* x index in conv kernel */ cy = i / convw; /* y index in conv kernel */ imline = imbuf->bptr + imbuf->bw * (y0 - imbuf->yoff + cy); nline = nbuf->bptr + nbuf->bw * (y0 - nbuf->yoff + cy); /* get start and end positions in the source and target line */ dcx = cx - convw2; /* offset of conv pixel from conv center; determines offset between in and out line */ if (dcx >= 0) { src_im = imline + dcx; src_n = nline + dcx; dst_num = out; dst_denom = work; dst_num_end = outend - dcx; } else { src_im = imline; src_n = nline; dst_num = out - dcx; dst_denom = work - dcx; dst_num_end = outend; } /* actually calculate values */ while (dst_num < dst_num_end) { imval = *src_im; varval = (noise_type == SEP_NOISE_VAR) ? (*src_n) : (*src_n) * (*src_n); if (varval != 0.0) { *dst_num += conv[i] * imval / varval; *dst_denom += conv[i] * conv[i] / varval; } src_im++; src_n++; dst_num++; dst_denom++; } } /* close loop over convolution kernel */ /* take the square root of the denominator (work) buffer and divide the * numerator by it. */ for (dst_num = out, dst_denom = work; dst_num < outend; dst_num++, dst_denom++) { *dst_num = *dst_num / sqrt(*dst_denom); } return RETURN_OK; } sep-1.4.1/src/deblend.c000066400000000000000000000315471475511417100146540ustar00rootroot00000000000000/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% * * This file is part of SEP * * Copyright 1993-2011 Emmanuel Bertin -- IAP/CNRS/UPMC * Copyright 2014 SEP developers * * SEP is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * SEP is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with SEP. If not, see . * *%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include #include #include #include #include #include "extract.h" #include "sep.h" #include "sepcore.h" #ifndef RAND_MAX #define RAND_MAX 2147483647 #endif #define NBRANCH 16 /* starting number per branch */ static _Atomic int nsonmax = 1024; /* max. number sub-objects per level */ /* get and set pixstack */ void sep_set_sub_object_limit(int val) { nsonmax = val; } int sep_get_sub_object_limit() { return nsonmax; } int belong(int, objliststruct *, int, objliststruct *); int64_t * createsubmap(objliststruct *, int64_t, int64_t *, int64_t *, int64_t *, int64_t *); int gatherup(objliststruct *, objliststruct *); /******************************** deblend ************************************/ /* Divide a list of isophotal detections in several parts (deblending). NOTE: Even if the object is not deblended, the output objlist threshold is recomputed if a variable threshold is used. This can return two error codes: DEBLEND_OVERFLOW or MEMORY_ALLOC_ERROR */ int deblend( objliststruct * objlistin, objliststruct * objlistout, int deblend_nthresh, double deblend_mincont, int minarea, deblendctx * ctx ) { objstruct * obj; objliststruct debobjlist, debobjlist2; double thresh, thresh0, value0; int64_t h, i, j, k, l, m, subx, suby, subh, subw, xn, nbm = NBRANCH; int64_t * submap; int status; submap = NULL; status = RETURN_OK; xn = deblend_nthresh; l = 0; /* reset global static objlist for deblending */ objliststruct * const objlist = ctx->objlist; memset(objlist, 0, (size_t)xn * sizeof(objliststruct)); /* initialize local object lists */ debobjlist.obj = debobjlist2.obj = NULL; debobjlist.plist = debobjlist2.plist = NULL; debobjlist.nobj = debobjlist2.nobj = 0; debobjlist.npix = debobjlist2.npix = 0; /* Create the submap for the object. * The submap is used in lutz(). We create it here because we may call * lutz multiple times below, and we only want to create it once. */ submap = createsubmap(objlistin, l, &subx, &suby, &subw, &subh); if (!submap) { status = MEMORY_ALLOC_ERROR; goto exit; } for (l = 0; l < objlistin->nobj && status == RETURN_OK; l++) { /* set thresholds of object lists based on object threshold */ thresh0 = objlistin->obj[l].thresh; objlistout->thresh = debobjlist2.thresh = thresh0; /* add input object to global deblending objlist and one local objlist */ if ((status = addobjdeep(l, objlistin, &objlist[0])) != RETURN_OK) { goto exit; } if ((status = addobjdeep(l, objlistin, &debobjlist2)) != RETURN_OK) { goto exit; } value0 = objlist[0].obj[0].fdflux * deblend_mincont; ctx->ok[0] = (short)1; for (k = 1; k < xn; k++) { /*------ Calculate threshold */ thresh = objlistin->obj[l].fdpeak; debobjlist.thresh = thresh > 0.0 ? thresh0 * pow(thresh / thresh0, (double)k / xn) : thresh0; /*--------- Build tree (bottom->up) */ if (objlist[k - 1].nobj >= nsonmax) { status = DEBLEND_OVERFLOW; goto exit; } for (i = 0; i < objlist[k - 1].nobj; i++) { status = lutz( objlistin->plist, submap, subx, suby, subw, &objlist[k - 1].obj[i], &debobjlist, minarea, &ctx->lutz ); if (status != RETURN_OK) { goto exit; } for (j = h = 0; j < debobjlist.nobj; j++) { if (belong(j, &debobjlist, i, &objlist[k - 1])) { debobjlist.obj[j].thresh = debobjlist.thresh; if ((status = addobjdeep(j, &debobjlist, &objlist[k])) != RETURN_OK) { goto exit; } m = objlist[k].nobj - 1; if (m >= nsonmax) { status = DEBLEND_OVERFLOW; goto exit; } if (h >= nbm - 1) { if (!(ctx->son = (short *) realloc(ctx->son, xn * nsonmax * (nbm += 16) * sizeof(short)))) { status = MEMORY_ALLOC_ERROR; goto exit; } } ctx->son[k - 1 + xn * (i + nsonmax * (h++))] = (short)m; ctx->ok[k + xn * m] = (short)1; } } ctx->son[k - 1 + xn * (i + nsonmax * h)] = (short)-1; } } /*------- cut the right branches (top->down) */ for (k = xn - 2; k >= 0; k--) { obj = objlist[k + 1].obj; for (i = 0; i < objlist[k].nobj; i++) { for (m = h = 0; (j = (int64_t)ctx->son[k + xn * (i + nsonmax * h)]) != -1; h++) { if (obj[j].fdflux - obj[j].thresh * obj[j].fdnpix > value0) { m++; } ctx->ok[k + xn * i] &= ctx->ok[k + 1 + xn * j]; } if (m > 1) { for (h = 0; (j = (int64_t)ctx->son[k + xn * (i + nsonmax * h)]) != -1; h++) { if (ctx->ok[k + 1 + xn * j] && obj[j].fdflux - obj[j].thresh * obj[j].fdnpix > value0) { objlist[k + 1].obj[j].flag |= SEP_OBJ_MERGED; status = addobjdeep(j, &objlist[k + 1], &debobjlist2); if (status != RETURN_OK) { goto exit; } } } ctx->ok[k + xn * i] = (short)0; } } } if (ctx->ok[0]) { status = addobjdeep(0, &debobjlist2, objlistout); } else { status = gatherup(&debobjlist2, objlistout); } } exit: if (status == DEBLEND_OVERFLOW) { put_errdetail( "limit of sub-objects reached while deblending. Increase " "it with sep.set_sub_object_limit(), decrease number of deblending " "thresholds ,or increase the detection threshold." ); } free(submap); submap = NULL; free(debobjlist2.obj); free(debobjlist2.plist); for (k = 0; k < xn; k++) { free(objlist[k].obj); free(objlist[k].plist); } free(debobjlist.obj); free(debobjlist.plist); return status; } /******************************* allocdeblend ******************************/ /* Allocate the memory allocated by global pointers in refine.c */ int allocdeblend(int deblend_nthresh, int64_t w, int64_t h, deblendctx * ctx) { int status = RETURN_OK; memset(ctx, 0, sizeof(deblendctx)); QMALLOC(ctx->son, short, deblend_nthresh * nsonmax * NBRANCH, status); QMALLOC(ctx->ok, short, deblend_nthresh * nsonmax, status); QMALLOC(ctx->objlist, objliststruct, deblend_nthresh, status); status = lutzalloc(w, h, &ctx->lutz); if (status != RETURN_OK) { goto exit; } return status; exit: freedeblend(ctx); return status; } /******************************* freedeblend *******************************/ /* Free the memory allocated by global pointers in refine.c */ void freedeblend(deblendctx * ctx) { lutzfree(&ctx->lutz); free(ctx->son); ctx->son = NULL; free(ctx->ok); ctx->ok = NULL; free(ctx->objlist); ctx->objlist = NULL; } /********************************* gatherup **********************************/ /* Collect faint remaining pixels and allocate them to their most probable progenitor. */ int gatherup(objliststruct * objlistin, objliststruct * objlistout) { char * bmp; float *amp, *p, dx, dy, drand, dist, distmin; objstruct *objin = objlistin->obj, *objout, *objt; pliststruct *pixelin = objlistin->plist, *pixelout, *pixt, *pixt2; int64_t i, k, l, *n, iclst, npix, bmwidth, nobj = objlistin->nobj, xs, ys, x, y; int status; bmp = NULL; amp = p = NULL; n = NULL; status = RETURN_OK; objlistout->thresh = objlistin->thresh; QMALLOC(amp, float, nobj, status); QMALLOC(p, float, nobj, status); QMALLOC(n, int64_t, nobj, status); for (i = 1; i < nobj; i++) { analyse(i, objlistin, 0, 0.0); } p[0] = 0.0; bmwidth = objin->xmax - (xs = objin->xmin) + 1; npix = bmwidth * (objin->ymax - (ys = objin->ymin) + 1); if (!(bmp = (char *)calloc(1, npix * sizeof(char)))) { bmp = NULL; status = MEMORY_ALLOC_ERROR; goto exit; } for (objt = objin + (i = 1); i < nobj; i++, objt++) { /*-- Now we have passed the deblending section, reset threshold */ objt->thresh = objlistin->thresh; /* ------------ flag pixels which are already allocated */ for (pixt = pixelin + objin[i].firstpix; pixt >= pixelin; pixt = pixelin + PLIST(pixt, nextpix)) { bmp[(PLIST(pixt, x) - xs) + (PLIST(pixt, y) - ys) * bmwidth] = '\1'; } status = addobjdeep(i, objlistin, objlistout); if (status != RETURN_OK) { goto exit; } n[i] = objlistout->nobj - 1; dist = objt->fdnpix / (2 * PI * objt->abcor * objt->a * objt->b); amp[i] = dist < 70.0 ? objt->thresh * expf(dist) : 4.0 * objt->fdpeak; /* ------------ limitate expansion ! */ if (amp[i] > 4.0 * objt->fdpeak) { amp[i] = 4.0 * objt->fdpeak; } } objout = objlistout->obj; /* DO NOT MOVE !!! */ if (!(pixelout = realloc(objlistout->plist, (objlistout->npix + npix) * plistsize))) { status = MEMORY_ALLOC_ERROR; goto exit; } objlistout->plist = pixelout; k = objlistout->npix; iclst = 0; /* To avoid gcc -Wall warnings */ for (pixt = pixelin + objin->firstpix; pixt >= pixelin; pixt = pixelin + PLIST(pixt, nextpix)) { x = PLIST(pixt, x); y = PLIST(pixt, y); if (!bmp[(x - xs) + (y - ys) * bmwidth]) { pixt2 = pixelout + (l = (k++ * plistsize)); memcpy(pixt2, pixt, (size_t)plistsize); PLIST(pixt2, nextpix) = -1; distmin = 1e+31; for (objt = objin + (i = 1); i < nobj; i++, objt++) { dx = x - objt->mx; dy = y - objt->my; dist = 0.5 * (objt->cxx * dx * dx + objt->cyy * dy * dy + objt->cxy * dx * dy) / objt->abcor; p[i] = p[i - 1] + (dist < 70.0 ? amp[i] * expf(-dist) : 0.0); if (dist < distmin) { distmin = dist; iclst = i; } } if (p[nobj - 1] > 1.0e-31) { drand = p[nobj - 1] * rand_r(&randseed) / (float)RAND_MAX; for (i = 1; i < nobj && p[i] < drand; i++) ; if (i == nobj) { i = iclst; } } else { i = iclst; } objout[n[i]].lastpix = PLIST(pixelout + objout[n[i]].lastpix, nextpix) = l; } } objlistout->npix = k; if (!(objlistout->plist = realloc(pixelout, objlistout->npix * plistsize))) { status = MEMORY_ALLOC_ERROR; } exit: free(bmp); free(amp); free(p); free(n); return status; } /**************** belong (originally in manobjlist.c) ************************/ /* * say if an object is "included" in another. Returns 1 if the pixels of the * first object are included in the pixels of the second object. */ int belong( int corenb, objliststruct * coreobjlist, int shellnb, objliststruct * shellobjlist ) { objstruct *cobj = &(coreobjlist->obj[corenb]), *sobj = &(shellobjlist->obj[shellnb]); pliststruct *cpl = coreobjlist->plist, *spl = shellobjlist->plist, *pixt; int64_t xc = PLIST(cpl + cobj->firstpix, x), yc = PLIST(cpl + cobj->firstpix, y); for (pixt = spl + sobj->firstpix; pixt >= spl; pixt = spl + PLIST(pixt, nextpix)) { if ((PLIST(pixt, x) == xc) && (PLIST(pixt, y) == yc)) { return 1; } } return 0; } /******************************** createsubmap *******************************/ /* Create pixel-index submap for deblending. */ int64_t * createsubmap( objliststruct * objlistin, int64_t no, int64_t * subx, int64_t * suby, int64_t * subw, int64_t * subh ) { objstruct * obj; pliststruct *pixel, *pixt; int64_t i, n, xmin, ymin, w, *pix, *pt, *submap; obj = objlistin->obj + no; pixel = objlistin->plist; *subx = xmin = obj->xmin; *suby = ymin = obj->ymin; *subw = w = obj->xmax - xmin + 1; *subh = obj->ymax - ymin + 1; n = w * *subh; if (!(submap = pix = malloc(n * sizeof(int64_t)))) { return NULL; } pt = pix; for (i = n; i--;) { *(pt++) = -1; } for (i = obj->firstpix; i != -1; i = PLIST(pixt, nextpix)) { pixt = pixel + i; *(pix + (PLIST(pixt, x) - xmin) + (PLIST(pixt, y) - ymin) * w) = i; } return submap; } sep-1.4.1/src/extract.c000066400000000000000000001155151475511417100147270ustar00rootroot00000000000000/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% * * This file is part of SEP * * Copyright 1993-2011 Emmanuel Bertin -- IAP/CNRS/UPMC * Copyright 2014 SEP developers * * SEP is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * SEP is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with SEP. If not, see . * *%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ /* Note: was scan.c in SExtractor. */ #include #include #include #include #include #include #include "extract.h" #include "sep.h" #include "sepcore.h" #define DETECT_MAXAREA 0 /* replaces prefs.ext_maxarea */ #define WTHRESH_CONVFAC 1e-4 /* Factor to apply to weights when */ /* thresholding filtered weight-maps */ /* globals */ _Thread_local int64_t plistexist_cdvalue, plistexist_thresh, plistexist_var; _Thread_local int64_t plistoff_value, plistoff_cdvalue, plistoff_thresh, plistoff_var; _Thread_local int64_t plistsize; _Thread_local unsigned int randseed; static _Atomic size_t extract_pixstack = 300000; /* get and set pixstack */ void sep_set_extract_pixstack(size_t val) { extract_pixstack = val; } size_t sep_get_extract_pixstack() { return extract_pixstack; } int sortit( infostruct * info, objliststruct * objlist, int minarea, objliststruct * finalobjlist, int deblend_nthresh, double deblend_mincont, double gain, deblendctx * deblendctx ); int segsortit( infostruct * info, objliststruct * objlist, objliststruct * finalobjlist, double gain ); void plistinit(int hasconv, int hasvar); void clean(objliststruct * objlist, double clean_param, int * survives); PIXTYPE get_mean_thresh(infostruct * info, pliststruct * pixel); int convert_to_catalog( objliststruct * objlist, const int * survives, sep_catalog * cat, int64_t w, int include_pixels ); int arraybuffer_init( arraybuffer * buf, const void * arr, int dtype, int64_t w, int64_t h, int64_t bufw, int64_t bufh ); void arraybuffer_readline(arraybuffer * buf); void arraybuffer_free(arraybuffer * buf); /********************* array buffer functions ********************************/ /* initialize buffer */ /* bufw must be less than or equal to w */ int arraybuffer_init( arraybuffer * buf, const void * arr, int dtype, int64_t w, int64_t h, int64_t bufw, int64_t bufh ) { int status; int64_t yl; status = RETURN_OK; /* data info */ buf->dptr = arr; buf->dw = w; buf->dh = h; /* buffer array info */ buf->bptr = NULL; QMALLOC(buf->bptr, PIXTYPE, bufw * bufh, status); buf->bw = bufw; buf->bh = bufh; /* pointers to within buffer */ buf->midline = buf->bptr + bufw * (bufh / 2); /* ptr to middle buffer line */ buf->lastline = buf->bptr + bufw * (bufh - 1); /* ptr to last buffer line */ status = get_array_converter(dtype, &(buf->readline), &(buf->elsize)); if (status != RETURN_OK) { goto exit; } /* initialize yoff */ buf->yoff = -bufh; /* read in lines until the first data line is one line above midline */ for (yl = 0; yl < bufh - bufh / 2 - 1; yl++) { arraybuffer_readline(buf); } return status; exit: free(buf->bptr); buf->bptr = NULL; return status; } /* read a line into the buffer at the top, shifting all lines down one */ void arraybuffer_readline(arraybuffer * buf) { PIXTYPE * line; int64_t y; /* shift all lines down one */ for (line = buf->bptr; line < buf->lastline; line += buf->bw) { memcpy(line, line + buf->bw, sizeof(PIXTYPE) * buf->bw); } /* which image line now corresponds to the last line in buffer? */ buf->yoff++; y = buf->yoff + buf->bh - 1; if (y < buf->dh) { buf->readline(buf->dptr + buf->elsize * buf->dw * y, buf->dw, buf->lastline); } } void arraybuffer_free(arraybuffer * buf) { free(buf->bptr); buf->bptr = NULL; } /* apply_mask_line: Apply the mask to the image and noise buffers. * * If convolution is off, masked values should simply be not * detected. For this, would be sufficient to either set data to zero or * set noise (if present) to infinity. * * If convolution is on, strictly speaking, a masked (unknown) pixel * should "poison" the convolved value whenever it is present in the * convolution kernel (e.g., NaN behavior). However, practically we'd * rather use a "best guess" for the value. Without doing * interpolation from neighbors, 0 is the best guess (assuming image * is background subtracted). * * For the purpose of the full matched filter, we should set noise = infinity. * * So, this routine sets masked pixels to zero in the image buffer and * infinity in the noise buffer (if present). It affects the first */ void apply_mask_line( arraybuffer * mbuf, arraybuffer * imbuf, arraybuffer * nbuf, double maskthresh ) { int64_t i; for (i = 0; i < mbuf->bw; i++) { if (mbuf->lastline[i] > maskthresh) { imbuf->lastline[i] = 0.0; if (nbuf) { nbuf->lastline[i] = BIG; } } } } /****************************** extract **************************************/ int sep_extract( const sep_image * image, float thresh, int thresh_type, int minarea, const float * conv, int64_t convw, int64_t convh, int filter_type, int deblend_nthresh, double deblend_cont, int clean_flag, double clean_param, sep_catalog ** catalog ) { arraybuffer dbuf, nbuf, mbuf, sbuf; infostruct curpixinfo, initinfo, freeinfo; objliststruct objlist; char newmarker; size_t mem_pixstack; int64_t nposize, oldnposize; int64_t w, h; int64_t co, i, pstop, xl, xl2, yl, cn; int64_t ididx, numids, totnpix; int64_t prevpix, bufh; int64_t stacksize, convn; int status, isvarthresh, isvarnoise, luflag; short trunflag; PIXTYPE relthresh, cdnewsymbol, pixvar, pixsig; float sum; pixstatus cs, ps; infostruct *info, *store, *idinfo; objliststruct * finalobjlist; pliststruct *pixel, *pixt; char * marker; PIXTYPE *scan, *cdscan, *wscan, *dummyscan, *sscan; PIXTYPE *sigscan, *workscan; float * convnorm; int64_t *start, *end, *cumcounts; int * survives; pixstatus * psstack; char errtext[512]; sep_catalog * cat; deblendctx deblendctx; status = RETURN_OK; pixel = NULL; convnorm = NULL; scan = wscan = cdscan = dummyscan = sscan = NULL; sigscan = workscan = NULL; info = NULL; store = NULL; idinfo = NULL; marker = NULL; psstack = NULL; start = end = cumcounts = NULL; finalobjlist = NULL; survives = NULL; cat = NULL; convn = 0; sum = 0.0; w = image->w; h = image->h; numids = (image->numids) ? image->numids : 1; prevpix = 0; isvarthresh = 0; relthresh = 0.0; pixvar = 0.0; pixsig = 0.0; isvarnoise = 0; memset(&deblendctx, 0, sizeof(deblendctx)); mem_pixstack = sep_get_extract_pixstack(); if (image->segmap) { QCALLOC(cumcounts, int64_t, numids, status); QCALLOC(idinfo, infostruct, numids, status); totnpix = 0; for (i = 0; i < numids; i++) { cumcounts[i] = totnpix; totnpix += image->idcounts[i]; } if ((size_t)totnpix > mem_pixstack) { goto exit; } } /* seed the random number generator consistently on each call to get * consistent results. rand_r() is used in deblending. */ randseed = 1; /* Noise characteristics of the image: None, scalar or variable? */ if (image->noise_type == SEP_NOISE_NONE) { } /* nothing to do */ else if (image->noise == NULL) { /* noise is constant; we can set pixel noise now. */ if (image->noise_type == SEP_NOISE_STDDEV) { pixsig = image->noiseval; pixvar = pixsig * pixsig; } else if (image->noise_type == SEP_NOISE_VAR) { pixvar = image->noiseval; pixsig = sqrt(pixvar); } else { return UNKNOWN_NOISE_TYPE; } } else { /* noise is variable; we deal with setting pixvar and pixsig at each * pixel. */ isvarnoise = 1; } /* Deal with relative thresholding. (For an absolute threshold * nothing needs to be done, as `thresh` should already contain the constant * threshold, and `isvarthresh` is already 0.) */ if (thresh_type == SEP_THRESH_REL) { /* The image must have noise information. */ if (image->noise_type == SEP_NOISE_NONE) { return RELTHRESH_NO_NOISE; } isvarthresh = isvarnoise; /* threshold is variable if noise is */ if (isvarthresh) { relthresh = thresh; /* used below to set `thresh` for each pixel. */ } else { /* thresh is constant; convert relative threshold to absolute */ thresh *= pixsig; } } /* this is input `thresh` regardless of thresh_type. */ objlist.thresh = thresh; /*Allocate memory for buffers */ stacksize = w + 1; QMALLOC(info, infostruct, stacksize, status); QCALLOC(store, infostruct, stacksize, status); QMALLOC(marker, char, stacksize, status); QMALLOC(dummyscan, PIXTYPE, stacksize, status); QMALLOC(psstack, pixstatus, stacksize, status); QCALLOC(start, int64_t, stacksize, status); QMALLOC(end, int64_t, stacksize, status); if ((status = allocdeblend(deblend_nthresh, w, h, &deblendctx)) != RETURN_OK) { goto exit; } /* Initialize buffers for input array(s). * The buffer size depends on whether or not convolution is active. * If not convolving, the buffer size is just a single line. If convolving, * the buffer height equals the height of the convolution kernel. */ bufh = conv ? convh : 1; status = arraybuffer_init(&dbuf, image->data, image->dtype, w, h, stacksize, bufh); if (status != RETURN_OK) { goto exit; } if (isvarnoise) { status = arraybuffer_init(&nbuf, image->noise, image->ndtype, w, h, stacksize, bufh); if (status != RETURN_OK) { goto exit; } } if (image->mask) { status = arraybuffer_init(&mbuf, image->mask, image->mdtype, w, h, stacksize, bufh); if (status != RETURN_OK) { goto exit; } } if (image->segmap) { status = arraybuffer_init(&sbuf, image->segmap, image->sdtype, w, h, stacksize, bufh); if (status != RETURN_OK) { goto exit; } } /* `scan` (or `wscan`) is always a pointer to the current line being * processed. It might be the only line in the buffer, or it might be the * middle line. */ scan = dbuf.midline; if (isvarnoise) { wscan = nbuf.midline; } /* More initializations */ initinfo.pixnb = 0; initinfo.flag = 0; initinfo.firstpix = initinfo.lastpix = -1; if (image->segmap) { sscan = sbuf.midline; for (i = 0; i < numids; i++) { idinfo[i].pixnb = 0; idinfo[i].flag = 0; idinfo[i].firstpix = idinfo[i].lastpix = -1; } } for (xl = 0; xl < stacksize; xl++) { marker[xl] = 0; dummyscan[xl] = -BIG; } co = pstop = 0; if (image->segmap) { objlist.nobj = numids; QMALLOC(objlist.obj, objstruct, numids, status); } else { objlist.nobj = 1; } curpixinfo.pixnb = 1; /* Init finalobjlist */ QMALLOC(finalobjlist, objliststruct, 1, status); finalobjlist->obj = NULL; finalobjlist->plist = NULL; finalobjlist->nobj = finalobjlist->npix = 0; /* Allocate memory for the pixel list */ plistinit((conv != NULL), (image->noise_type != SEP_NOISE_NONE)); if (!(pixel = objlist.plist = malloc(nposize = mem_pixstack * plistsize))) { status = MEMORY_ALLOC_ERROR; goto exit; } /*----- at the beginning, "free" object fills the whole pixel list */ freeinfo.firstpix = 0; freeinfo.lastpix = nposize - plistsize; pixt = pixel; for (i = plistsize; i < nposize; i += plistsize, pixt += plistsize) { PLIST(pixt, nextpix) = i; } PLIST(pixt, nextpix) = -1; /* can only use a matched filter when convolving and when there is a noise * array */ if (!(conv && isvarnoise)) { filter_type = SEP_FILTER_CONV; } if (conv) { /* allocate memory for convolved buffers */ QMALLOC(cdscan, PIXTYPE, stacksize, status); if (filter_type == SEP_FILTER_MATCHED) { QMALLOC(sigscan, PIXTYPE, stacksize, status); QMALLOC(workscan, PIXTYPE, stacksize, status); } /* normalize the filter */ convn = convw * convh; QMALLOC(convnorm, PIXTYPE, convn, status); for (i = 0; i < convn; i++) { sum += fabs(conv[i]); } for (i = 0; i < convn; i++) { convnorm[i] = conv[i] / sum; } } /*----- MAIN LOOP ------ */ for (yl = 0; yl <= h; yl++) { ps = COMPLETE; cs = NONOBJECT; /* Need an empty line for Lutz' algorithm to end gracely */ if (yl == h) { if (conv) { free(cdscan); // cdscan set to dummyscan below if (filter_type == SEP_FILTER_MATCHED) { for (xl = 0; xl < stacksize; xl++) { sigscan[xl] = -BIG; } } } cdscan = dummyscan; } else { arraybuffer_readline(&dbuf); if (isvarnoise) { arraybuffer_readline(&nbuf); } if (image->mask) { arraybuffer_readline(&mbuf); apply_mask_line(&mbuf, &dbuf, (isvarnoise ? &nbuf : NULL), image->maskthresh); } if (image->segmap) { arraybuffer_readline(&sbuf); } /* filter the lines */ if (conv) { status = convolve(&dbuf, yl, convnorm, convw, convh, cdscan); if (status != RETURN_OK) { goto exit; } if (filter_type == SEP_FILTER_MATCHED) { status = matched_filter( &dbuf, &nbuf, yl, convnorm, convw, convh, workscan, sigscan, image->noise_type ); if (status != RETURN_OK) { goto exit; } } } else { cdscan = scan; } } trunflag = (yl == 0 || yl == h - 1) ? SEP_OBJ_TRUNC : 0; for (xl = 0; xl <= w; xl++) { if (xl == w) { cdnewsymbol = -BIG; } else { cdnewsymbol = cdscan[xl]; } newmarker = marker[xl]; /* marker at this pixel */ marker[xl] = 0; curpixinfo.flag = trunflag; /* set pixel variance/noise based on noise array */ if (isvarthresh) { if (xl == w || yl == h) { pixsig = pixvar = 0.0; } else if (image->noise_type == SEP_NOISE_VAR) { pixvar = wscan[xl]; pixsig = sqrt(pixvar); } else if (image->noise_type == SEP_NOISE_STDDEV) { pixsig = wscan[xl]; pixvar = pixsig * pixsig; } else { status = UNKNOWN_NOISE_TYPE; goto exit; } /* set `thresh` (This is needed later, even * if filter_type is SEP_FILTER_MATCHED */ thresh = relthresh * pixsig; } /* luflag: is pixel above thresh (Y/N)? */ /* First check if segmap exists */ if (image->segmap) { if ((sscan[xl] > 0) && (xl != w) && (yl != h)) { if (xl == 0 || xl == w - 1) { curpixinfo.flag |= SEP_OBJ_TRUNC; } for (ididx = 0; ididx < numids; ididx++) { if (image->segids[ididx] == (int64_t)sscan[xl]) { pixt = pixel + prevpix * plistsize; prevpix = cumcounts[ididx] + idinfo[ididx].pixnb; pixt = pixel + prevpix * plistsize; PLIST(pixt, x) = xl; PLIST(pixt, y) = yl; PLIST(pixt, value) = scan[xl]; if (PLISTEXIST(cdvalue)) { PLISTPIX(pixt, cdvalue) = cdnewsymbol; }; if (PLISTEXIST(var)) { PLISTPIX(pixt, var) = pixvar; }; if (PLISTEXIST(thresh)) { PLISTPIX(pixt, thresh) = thresh; }; if (idinfo[ididx].pixnb == 0) { idinfo[ididx].firstpix = prevpix * plistsize; idinfo[ididx].pixnb = 1; } else if (idinfo[ididx].pixnb == image->idcounts[ididx] - 1) { idinfo[ididx].pixnb++; idinfo[ididx].lastpix = prevpix * plistsize; PLIST(pixt, nextpix) = -1; } else { idinfo[ididx].pixnb++; }; break; } } } } else { if (filter_type == SEP_FILTER_MATCHED) { luflag = ((xl != w) && (sigscan[xl] > relthresh)) ? 1 : 0; } else { luflag = cdnewsymbol > thresh ? 1 : 0; } if (luflag) { /* flag the current object if we're near the image bounds */ if (xl == 0 || xl == w - 1) { curpixinfo.flag |= SEP_OBJ_TRUNC; }; /* point pixt to first free pixel in pixel list */ /* and increment the "first free pixel" */ pixt = pixel + (cn = freeinfo.firstpix); freeinfo.firstpix = PLIST(pixt, nextpix); curpixinfo.lastpix = curpixinfo.firstpix = cn; /* set values for the new pixel */ PLIST(pixt, nextpix) = -1; PLIST(pixt, x) = xl; PLIST(pixt, y) = yl; PLIST(pixt, value) = scan[xl]; if (PLISTEXIST(cdvalue)) { PLISTPIX(pixt, cdvalue) = cdnewsymbol; }; if (PLISTEXIST(var)) { PLISTPIX(pixt, var) = pixvar; }; if (PLISTEXIST(thresh)) { PLISTPIX(pixt, thresh) = thresh; }; /* Check if we have run out of free pixels in objlist.plist */ if (freeinfo.firstpix == freeinfo.lastpix) { status = PIXSTACK_FULL; sprintf( errtext, "The limit of %d active object pixels over the " "detection threshold was reached. Check that " "the image is background subtracted and the " "detection threshold is not too low. If you " "need to increase the limit, use " "set_extract_pixstack.", (int)mem_pixstack ); put_errdetail(errtext); goto exit; /* The code in the rest of this block increases the * stack size as needed. Currently, it is never * executed. This is because it isn't clear that * this is a good idea: most times when the stack * overflows it is due to user error: too-low * threshold or image not background subtracted. */ /* increase the stack size */ oldnposize = nposize; mem_pixstack = (int)(mem_pixstack * 2); nposize = mem_pixstack * plistsize; pixel = realloc(pixel, nposize); objlist.plist = pixel; if (!pixel) { status = MEMORY_ALLOC_ERROR; goto exit; } /* set next free pixel to the start of the new block * and link up all the pixels in the new block */ PLIST(pixel + freeinfo.firstpix, nextpix) = oldnposize; pixt = pixel + oldnposize; for (i = oldnposize + plistsize; i < nposize; i += plistsize, pixt += plistsize) { PLIST(pixt, nextpix) = i; } PLIST(pixt, nextpix) = -1; /* last free pixel is now at the end of the new block */ freeinfo.lastpix = nposize - plistsize; } /*------------------------------------------------------------*/ /* if the current status on this line is not already OBJECT... */ /* start segment */ if (cs != OBJECT) { cs = OBJECT; if (ps == OBJECT) { if (start[co] == UNKNOWN) { marker[xl] = 'S'; start[co] = xl; } else { marker[xl] = 's'; } } else { psstack[pstop++] = ps; marker[xl] = 'S'; start[++co] = xl; ps = COMPLETE; info[co] = initinfo; } } } /* closes if pixel above threshold */ /* process new marker ---------------------------------------------*/ /* newmarker is marker[ ] at this pixel position before we got to it. We'll only enter this if marker[ ] was set on a previous loop iteration. */ if (newmarker) { if (newmarker == 'S') { psstack[pstop++] = ps; if (cs == NONOBJECT) { psstack[pstop++] = COMPLETE; info[++co] = store[xl]; start[co] = UNKNOWN; } else { update(&info[co], &store[xl], pixel); } ps = OBJECT; } else if (newmarker == 's') { if ((cs == OBJECT) && (ps == COMPLETE)) { pstop--; xl2 = start[co]; update(&info[co - 1], &info[co], pixel); if (start[--co] == UNKNOWN) { start[co] = xl2; } else { marker[xl2] = 's'; } } ps = OBJECT; } else if (newmarker == 'f') { ps = INCOMPLETE; } else if (newmarker == 'F') { ps = psstack[--pstop]; if ((cs == NONOBJECT) && (ps == COMPLETE)) { if (start[co] == UNKNOWN) { if ((int64_t)info[co].pixnb >= minarea) { /* update threshold before object is processed */ if (PLISTEXIST(thresh)) { objlist.thresh = get_mean_thresh(&info[co], objlist.plist); } else { objlist.thresh = thresh; } status = sortit( &info[co], &objlist, minarea, finalobjlist, deblend_nthresh, deblend_cont, image->gain, &deblendctx ); if (status != RETURN_OK) { goto exit; }; } /* free the chain-list */ PLIST(pixel + info[co].lastpix, nextpix) = freeinfo.firstpix; freeinfo.firstpix = info[co].firstpix; } else { marker[end[co]] = 'F'; store[start[co]] = info[co]; } co--; ps = psstack[--pstop]; } } } /* end of if (newmarker) ------------------------------------------*/ /* update the info or end segment */ if (luflag) { update(&info[co], &curpixinfo, pixel); } else if (cs == OBJECT) { cs = NONOBJECT; if (ps != COMPLETE) { marker[xl] = 'f'; end[co] = xl; } else { ps = psstack[--pstop]; marker[xl] = 'F'; store[start[co]] = info[co]; co--; } } } } /*------------ End of the loop over the x's -----------------------*/ } /*---------------- End of the loop over the y's -----------------------*/ if (image->segmap) { for (i = 0; i < numids; i++) { status = segsortit(&idinfo[i], &objlist, finalobjlist, image->gain); } } else { /* convert `finalobjlist` to an array of `sepobj` structs */ /* if cleaning, see which objects "survive" cleaning. */ if (clean_flag) { /* Calculate mthresh for all objects in the list (needed for cleaning) */ for (i = 0; i < finalobjlist->nobj; i++) { status = analysemthresh(i, finalobjlist, minarea, thresh); if (status != RETURN_OK) { goto exit; } } QMALLOC(survives, int, finalobjlist->nobj, status); clean(finalobjlist, clean_param, survives); } } /* convert to output catalog */ QCALLOC(cat, sep_catalog, 1, status); status = convert_to_catalog(finalobjlist, survives, cat, w, 1); if (status != RETURN_OK) { goto exit; } exit: if (finalobjlist) { free(finalobjlist->obj); free(finalobjlist->plist); free(finalobjlist); } if (image->segmap) { arraybuffer_free(&sbuf); free(idinfo); free(cumcounts); } freedeblend(&deblendctx); free(pixel); free(info); free(store); free(marker); free(dummyscan); free(psstack); free(start); free(end); free(survives); arraybuffer_free(&dbuf); if (image->noise) { arraybuffer_free(&nbuf); } if (image->mask) { arraybuffer_free(&mbuf); } if (conv) { free(convnorm); } if (filter_type == SEP_FILTER_MATCHED) { free(sigscan); free(workscan); } if (status != RETURN_OK) { /* free cdscan if we didn't do it on the last `yl` line */ if (conv && (cdscan != dummyscan)) { free(cdscan); } /* clean up catalog if it was allocated */ sep_catalog_free(cat); cat = NULL; } *catalog = cat; return status; } int segsortit( infostruct * info, objliststruct * objlist, objliststruct * finalobjlist, double gain ) { objstruct obj; int status; status = RETURN_OK; /*----- Allocate memory to store object data */ objlist->obj = &obj; objlist->nobj = 1; memset(&obj, 0, (size_t)sizeof(objstruct)); objlist->npix = info->pixnb; obj.firstpix = info->firstpix; obj.lastpix = info->lastpix; obj.flag = info->flag; obj.thresh = plistexist_thresh ? get_mean_thresh(info, objlist->plist) : objlist->thresh; analyse(0, objlist, 1, gain); status = addobjdeep(0, objlist, finalobjlist); if (status != RETURN_OK) { goto exit; } exit: return status; } /********************************* sortit ************************************/ /* build the object structure. */ int sortit( infostruct * info, objliststruct * objlist, int minarea, objliststruct * finalobjlist, int deblend_nthresh, double deblend_mincont, double gain, deblendctx * deblendctx ) { objliststruct objlistout, *objlist2; objstruct obj; int64_t i; int status; status = RETURN_OK; objlistout.obj = NULL; objlistout.plist = NULL; objlistout.nobj = objlistout.npix = 0; /*----- Allocate memory to store object data */ objlist->obj = &obj; objlist->nobj = 1; memset(&obj, 0, (size_t)sizeof(objstruct)); objlist->npix = info->pixnb; obj.firstpix = info->firstpix; obj.lastpix = info->lastpix; obj.flag = info->flag; obj.thresh = objlist->thresh; preanalyse(0, objlist); status = deblend( objlist, &objlistout, deblend_nthresh, deblend_mincont, minarea, deblendctx ); if (status) { /* formerly, this wasn't a fatal error, so a flag was set for * the object and we continued. I'm leaving the flag-setting * here in case we want to change this to a non-fatal error in * the future, but currently the flag setting is irrelevant. */ objlist2 = objlist; for (i = 0; i < objlist2->nobj; i++) { objlist2->obj[i].flag |= SEP_OBJ_DOVERFLOW; } goto exit; } else { objlist2 = &objlistout; } /* Analyze the deblended objects and add to the final list */ for (i = 0; i < objlist2->nobj; i++) { analyse(i, objlist2, 1, gain); /* this does nothing if DETECT_MAXAREA is 0 (and it currently is) */ if (DETECT_MAXAREA && objlist2->obj[i].fdnpix > DETECT_MAXAREA) { continue; } /* add the object to the final list */ status = addobjdeep(i, objlist2, finalobjlist); if (status != RETURN_OK) { goto exit; } } exit: free(objlistout.plist); free(objlistout.obj); return status; } /********** addobjdeep (originally in manobjlist.c) **************************/ /* Add object number `objnb` from list `objl1` to list `objl2`. Unlike `addobjshallow` this also copies plist pixels to the second list. */ int addobjdeep(int objnb, objliststruct * objl1, objliststruct * objl2) { objstruct * objl2obj; pliststruct *plist1 = objl1->plist, *plist2 = objl2->plist; int64_t fp, i, j, npx, objnb2; fp = objl2->npix; /* 2nd list's plist size in pixels */ j = fp * plistsize; /* 2nd list's plist size in bytes */ objnb2 = objl2->nobj; /* # of objects currently in 2nd list*/ /* Allocate space in `objl2` for the new object */ if (objnb2) { objl2obj = realloc(objl2->obj, (++objl2->nobj) * sizeof(objstruct)); } else { objl2obj = malloc((++objl2->nobj) * sizeof(objstruct)); } if (!objl2obj) { goto earlyexit; } objl2->obj = objl2obj; /* Allocate space for the new object's pixels in 2nd list's plist */ npx = objl1->obj[objnb].fdnpix; if (fp) { plist2 = realloc(plist2, (objl2->npix += npx) * plistsize); } else { plist2 = malloc((objl2->npix = npx) * plistsize); } if (!plist2) { goto earlyexit; } objl2->plist = plist2; /* copy the plist */ plist2 += j; for (i = objl1->obj[objnb].firstpix; i != -1; i = PLIST(plist1 + i, nextpix)) { memcpy(plist2, plist1 + i, (size_t)plistsize); PLIST(plist2, nextpix) = (j += plistsize); plist2 += plistsize; } PLIST(plist2 -= plistsize, nextpix) = -1; /* copy the object itself */ objl2->obj[objnb2] = objl1->obj[objnb]; objl2->obj[objnb2].firstpix = fp * plistsize; objl2->obj[objnb2].lastpix = j - plistsize; return RETURN_OK; /* if early exit, reset 2nd list */ earlyexit: objl2->nobj--; objl2->npix = fp; return MEMORY_ALLOC_ERROR; } /****************************** plistinit ************************************ * (originally init_plist() in sextractor) PURPOSE initialize a pixel-list and its components. ***/ void plistinit(int hasconv, int hasvar) { pbliststruct * pbdum = NULL; plistsize = sizeof(pbliststruct); plistoff_value = (char *)&pbdum->value - (char *)pbdum; if (hasconv) { plistexist_cdvalue = 1; plistoff_cdvalue = plistsize; plistsize += sizeof(PIXTYPE); } else { plistexist_cdvalue = 0; plistoff_cdvalue = plistoff_value; } if (hasvar) { plistexist_var = 1; plistoff_var = plistsize; plistsize += sizeof(PIXTYPE); plistexist_thresh = 1; plistoff_thresh = plistsize; plistsize += sizeof(PIXTYPE); } else { plistexist_var = 0; plistexist_thresh = 0; } } /************************** clean an objliststruct ***************************/ /* Fill a list with whether each object in the list survived the cleaning (assumes that mthresh has already been calculated for all objects in the list) */ void clean(objliststruct * objlist, double clean_param, int * survives) { objstruct *obj1, *obj2; int64_t i, j; double amp, ampin, alpha, alphain, unitarea, unitareain, beta, val; float dx, dy, rlim; beta = clean_param; /* initialize to all surviving */ for (i = 0; i < objlist->nobj; i++) { survives[i] = 1; } obj1 = objlist->obj; for (i = 0; i < objlist->nobj; i++, obj1++) { if (!survives[i]) { continue; } /* parameters for test object */ unitareain = PI * obj1->a * obj1->b; ampin = obj1->fdflux / (2 * unitareain * obj1->abcor); alphain = (pow(ampin / obj1->thresh, 1.0 / beta) - 1) * unitareain / obj1->fdnpix; /* loop over remaining objects in list*/ obj2 = obj1 + 1; for (j = i + 1; j < objlist->nobj; j++, obj2++) { if (!survives[j]) { continue; } dx = obj1->mx - obj2->mx; dy = obj1->my - obj2->my; rlim = obj1->a + obj2->a; rlim *= rlim; if (dx * dx + dy * dy > rlim * CLEAN_ZONE * CLEAN_ZONE) { continue; } /* if obj1 is bigger, see if it eats obj2 */ if (obj2->fdflux < obj1->fdflux) { val = 1 + alphain * (obj1->cxx * dx * dx + obj1->cyy * dy * dy + obj1->cxy * dx * dy); if (val > 1.0 && ((float)(val < 1e10 ? ampin * pow(val, -beta) : 0.0) > obj2->mthresh)) { survives[j] = 0; /* the test object eats this one */ } } /* if obj2 is bigger, see if it eats obj1 */ else { unitarea = PI * obj2->a * obj2->b; amp = obj2->fdflux / (2 * unitarea * obj2->abcor); alpha = (pow(amp / obj2->thresh, 1.0 / beta) - 1) * unitarea / obj2->fdnpix; val = 1 + alpha * (obj2->cxx * dx * dx + obj2->cyy * dy * dy + obj2->cxy * dx * dy); if (val > 1.0 && ((float)(val < 1e10 ? amp * pow(val, -beta) : 0.0) > obj1->mthresh)) { survives[i] = 0; /* this object eats the test object */ } } } /* inner loop over objlist (obj2) */ } /* outer loop of objlist (obj1) */ } /************************** get_mean_thresh **********************************/ /* Compute an average threshold from all pixels in the cluster */ PIXTYPE get_mean_thresh(infostruct * info, pliststruct * pixel) { pliststruct * pixt; int pix_accum = 0; double thresh_accum = 0; // Threshold must be cast to double to avoid precision loss for (pixt = pixel + info->firstpix; pixt >= pixel; pixt = pixel + PLIST(pixt, nextpix)) { thresh_accum += (double)PLISTPIX(pixt, thresh); pix_accum++; } return (PIXTYPE)(thresh_accum / pix_accum); } /*****************************************************************************/ /* sep_catalog manipulations */ void free_catalog_fields(sep_catalog * catalog) { free(catalog->thresh); free(catalog->npix); free(catalog->tnpix); free(catalog->xmin); free(catalog->xmax); free(catalog->ymin); free(catalog->ymax); free(catalog->x); free(catalog->y); free(catalog->x2); free(catalog->y2); free(catalog->xy); free(catalog->errx2); free(catalog->erry2); free(catalog->errxy); free(catalog->a); free(catalog->b); free(catalog->theta); free(catalog->cxx); free(catalog->cyy); free(catalog->cxy); free(catalog->cflux); free(catalog->flux); free(catalog->cpeak); free(catalog->peak); free(catalog->xcpeak); free(catalog->ycpeak); free(catalog->xpeak); free(catalog->ypeak); free(catalog->flag); free(catalog->pix); free(catalog->objectspix); memset(catalog, 0, sizeof(sep_catalog)); } /* convert_to_catalog() * * Convert the final object list to an output catalog. * * `survives`: array of 0 or 1 indicating whether or not to output each object * (ignored if NULL) * `cat`: catalog object to be filled. * `w`: width of image (used to calculate linear indicies). */ int convert_to_catalog( objliststruct * objlist, const int * survives, sep_catalog * cat, int64_t w, int include_pixels ) { int64_t i, j, k; int64_t totnpix; int nobj = 0; int status = RETURN_OK; objstruct * obj; pliststruct *pixt, *pixel; /* Set struct to zero in case the caller didn't. * This is important if there is a memory error and we have to call * free_catalog_fields() to recover at exit */ memset(cat, 0, sizeof(sep_catalog)); /* Count number of surviving objects so that we can allocate the appropriate amount of space in the output catalog. */ if (survives) { for (i = 0; i < objlist->nobj; i++) { nobj += survives[i]; } } else { nobj = objlist->nobj; } /* allocate catalog fields */ cat->nobj = nobj; QMALLOC(cat->thresh, float, nobj, status); QMALLOC(cat->npix, int64_t, nobj, status); QMALLOC(cat->tnpix, int64_t, nobj, status); QMALLOC(cat->xmin, int64_t, nobj, status); QMALLOC(cat->xmax, int64_t, nobj, status); QMALLOC(cat->ymin, int64_t, nobj, status); QMALLOC(cat->ymax, int64_t, nobj, status); QMALLOC(cat->x, double, nobj, status); QMALLOC(cat->y, double, nobj, status); QMALLOC(cat->x2, double, nobj, status); QMALLOC(cat->y2, double, nobj, status); QMALLOC(cat->xy, double, nobj, status); QMALLOC(cat->errx2, double, nobj, status); QMALLOC(cat->erry2, double, nobj, status); QMALLOC(cat->errxy, double, nobj, status); QMALLOC(cat->a, float, nobj, status); QMALLOC(cat->b, float, nobj, status); QMALLOC(cat->theta, float, nobj, status); QMALLOC(cat->cxx, float, nobj, status); QMALLOC(cat->cyy, float, nobj, status); QMALLOC(cat->cxy, float, nobj, status); QMALLOC(cat->cflux, float, nobj, status); QMALLOC(cat->flux, float, nobj, status); QMALLOC(cat->cpeak, float, nobj, status); QMALLOC(cat->peak, float, nobj, status); QMALLOC(cat->xcpeak, int64_t, nobj, status); QMALLOC(cat->ycpeak, int64_t, nobj, status); QMALLOC(cat->xpeak, int64_t, nobj, status); QMALLOC(cat->ypeak, int64_t, nobj, status); QMALLOC(cat->cflux, float, nobj, status); QMALLOC(cat->flux, float, nobj, status); QMALLOC(cat->flag, short, nobj, status); /* fill output arrays */ j = 0; /* running index in output array */ for (i = 0; i < objlist->nobj; i++) { if ((survives == NULL) || survives[i]) { obj = objlist->obj + i; cat->thresh[j] = obj->thresh; cat->npix[j] = obj->fdnpix; cat->tnpix[j] = obj->dnpix; cat->xmin[j] = obj->xmin; cat->xmax[j] = obj->xmax; cat->ymin[j] = obj->ymin; cat->ymax[j] = obj->ymax; cat->x[j] = obj->mx; cat->y[j] = obj->my; cat->x2[j] = obj->mx2; cat->y2[j] = obj->my2; cat->xy[j] = obj->mxy; cat->errx2[j] = obj->errx2; cat->erry2[j] = obj->erry2; cat->errxy[j] = obj->errxy; cat->a[j] = obj->a; cat->b[j] = obj->b; cat->theta[j] = obj->theta; cat->cxx[j] = obj->cxx; cat->cyy[j] = obj->cyy; cat->cxy[j] = obj->cxy; cat->cflux[j] = obj->fdflux; /* these change names */ cat->flux[j] = obj->dflux; cat->cpeak[j] = obj->fdpeak; cat->peak[j] = obj->dpeak; cat->xpeak[j] = obj->xpeak; cat->ypeak[j] = obj->ypeak; cat->xcpeak[j] = obj->xcpeak; cat->ycpeak[j] = obj->ycpeak; cat->flag[j] = obj->flag; j++; } } if (include_pixels) { /* count the total number of pixels */ totnpix = 0; for (i = 0; i < cat->nobj; i++) { totnpix += cat->npix[i]; } /* allocate buffer for all objects' pixels */ QMALLOC(cat->objectspix, int64_t, totnpix, status); /* allocate array of pointers into the above buffer */ QMALLOC(cat->pix, int64_t *, nobj, status); pixel = objlist->plist; /* for each object, fill buffer and direct object's to it */ k = 0; /* current position in `objectspix` buffer */ j = 0; /* output object index */ for (i = 0; i < objlist->nobj; i++) { obj = objlist->obj + i; /* input object */ if ((survives == NULL) || survives[i]) { /* point this object's pixel list into the buffer. */ cat->pix[j] = cat->objectspix + k; /* fill the actual pixel values */ for (pixt = pixel + obj->firstpix; pixt >= pixel; pixt = pixel + PLIST(pixt, nextpix), k++) { cat->objectspix[k] = PLIST(pixt, x) + w * PLIST(pixt, y); } j++; } } } exit: if (status != RETURN_OK) { free_catalog_fields(cat); } return status; } void sep_catalog_free(sep_catalog * catalog) { if (catalog != NULL) { free_catalog_fields(catalog); } free(catalog); } sep-1.4.1/src/extract.h000066400000000000000000000144651475511417100147360ustar00rootroot00000000000000/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% * * This file is part of SEP * * Copyright 1993-2011 Emmanuel Bertin -- IAP/CNRS/UPMC * Copyright 2014 SEP developers * * SEP is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * SEP is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with SEP. If not, see . * *%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include "sepcore.h" #define UNKNOWN -1 /* flag for LUTZ */ #define CLEAN_ZONE 10.0 /* zone (in sigma) to consider for processing */ #define CLEAN_STACKSIZE 3000 /* replaces prefs.clean_stacksize */ /* (MEMORY_OBJSTACK in sextractor inputs) */ #define CLEAN_MARGIN 0 /* replaces prefs.cleanmargin which was set based */ /* on stuff like apertures and vignet size */ #define MARGIN_SCALE 2.0 /* Margin / object height */ #define MARGIN_OFFSET 4.0 /* Margin offset (pixels) */ #define MAXDEBAREA 3 /* max. area for deblending (must be >= 1)*/ #define MAXPICSIZE 1048576 /* max. image size in any dimension */ /* plist-related macros */ #define PLIST(ptr, elem) (((pbliststruct *)(ptr))->elem) #define PLISTEXIST(elem) (plistexist_##elem) #define PLISTPIX(ptr, elem) (*((PIXTYPE *)((ptr) + plistoff_##elem))) /* Extraction status */ typedef enum { COMPLETE, INCOMPLETE, NONOBJECT, OBJECT } pixstatus; /* Temporary object parameters during extraction */ typedef struct structinfo { int64_t pixnb; /* Number of pixels included */ int64_t firstpix; /* Pointer to first pixel of pixlist */ int64_t lastpix; /* Pointer to last pixel of pixlist */ short flag; /* Extraction flag */ } infostruct; typedef char pliststruct; /* Dummy type for plist */ typedef struct { int64_t nextpix; int64_t x, y; PIXTYPE value; } pbliststruct; /* array buffer struct */ typedef struct { const BYTE * dptr; /* pointer to original data, can be any supported type */ int dtype; /* data type of original data */ int64_t dw, dh; /* original data width, height */ PIXTYPE * bptr; /* buffer pointer (self-managed memory) */ int64_t bw, bh; /* buffer width, height (bufw can be larger than w due */ /* to padding). */ PIXTYPE * midline; /* "middle" line in buffer (at index bh/2) */ PIXTYPE * lastline; /* last line in buffer */ array_converter readline; /* function to read a data line into buffer */ int64_t elsize; /* size in bytes of one element in original data */ int64_t yoff; /* line index in original data corresponding to bufptr */ } arraybuffer; /* globals */ extern _Thread_local int64_t plistexist_cdvalue, plistexist_thresh, plistexist_var; extern _Thread_local int64_t plistoff_value, plistoff_cdvalue, plistoff_thresh, plistoff_var; extern _Thread_local int64_t plistsize; extern _Thread_local unsigned int randseed; typedef struct { /* thresholds */ float thresh; /* detect threshold (ADU) */ float mthresh; /* max. threshold (ADU) */ /* # pixels */ int64_t fdnpix; /* nb of extracted pix */ int64_t dnpix; /* nb of pix above thresh */ int64_t npix; /* "" in measured frame */ int64_t nzdwpix; /* nb of zero-dweights around */ int64_t nzwpix; /* nb of zero-weights inside */ /* position */ int64_t xpeak, ypeak; /* pos of brightest pix */ int64_t xcpeak, ycpeak; /* pos of brightest pix */ double mx, my; /* barycenter */ int64_t xmin, xmax, ymin, ymax, ycmin, ycmax; /* x,y limits */ /* shape */ double mx2, my2, mxy; /* variances and covariance */ float a, b, theta, abcor; /* moments and angle */ float cxx, cyy, cxy; /* ellipse parameters */ double errx2, erry2, errxy; /* Uncertainties on the variances */ /* flux */ float fdflux; /* integrated ext. flux */ float dflux; /* integrated det. flux */ float flux; /* integrated mes. flux */ float fluxerr; /* integrated variance */ PIXTYPE fdpeak; /* peak intensity (ADU) */ PIXTYPE dpeak; /* peak intensity (ADU) */ PIXTYPE peak; /* peak intensity (ADU) */ /* flags */ short flag; /* extraction flags */ /* accessing individual pixels in plist*/ int64_t firstpix; /* ptr to first pixel */ int64_t lastpix; /* ptr to last pixel */ } objstruct; typedef struct { int64_t nobj; /* number of objects in list */ objstruct * obj; /* pointer to the object array */ int64_t npix; /* number of pixels in pixel-list */ pliststruct * plist; /* pointer to the pixel-list */ PIXTYPE thresh; /* detection threshold */ } objliststruct; int analysemthresh(int objnb, objliststruct * objlist, int minarea, PIXTYPE thresh); void preanalyse(int, objliststruct *); void analyse(int, objliststruct *, int, double); typedef struct { infostruct *info, *store; char * marker; pixstatus * psstack; int64_t *start, *end, *discan; int64_t xmin, ymin, xmax, ymax; } lutzbuffers; int lutzalloc(int64_t, int64_t, lutzbuffers *); void lutzfree(lutzbuffers *); int lutz( pliststruct * plistin, int64_t * objrootsubmap, int64_t subx, int64_t suby, int64_t subw, objstruct * objparent, objliststruct * objlist, int minarea, lutzbuffers * buffers ); void update(infostruct *, infostruct *, pliststruct *); typedef struct { objliststruct * objlist; short *son, *ok; lutzbuffers lutz; } deblendctx; int allocdeblend(int deblend_nthresh, int64_t w, int64_t h, deblendctx *); void freedeblend(deblendctx *); int deblend(objliststruct *, objliststruct *, int, double, int, deblendctx *); /*int addobjshallow(objstruct *, objliststruct *); int rmobjshallow(int, objliststruct *); void mergeobjshallow(objstruct *, objstruct *); */ int addobjdeep(int, objliststruct *, objliststruct *); int convolve( arraybuffer * buf, int64_t y, const float * conv, int64_t convw, int64_t convh, PIXTYPE * out ); int matched_filter( arraybuffer * imbuf, arraybuffer * nbuf, int64_t y, const float * conv, int64_t convw, int64_t convh, PIXTYPE * work, PIXTYPE * out, int noise_type ); sep-1.4.1/src/lutz.c000066400000000000000000000240141475511417100142440ustar00rootroot00000000000000/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% * * This file is part of SEP * * Copyright 1993-2011 Emmanuel Bertin -- IAP/CNRS/UPMC * Copyright 2014 SEP developers * * SEP is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * SEP is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with SEP. If not, see . * *%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ /* Note: was extract.c in SExtractor. */ #include #include #include #include #include "extract.h" #include "sep.h" #include "sepcore.h" #define NOBJ 256 /* starting number of obj. */ void lutzsort(infostruct *, objliststruct *); /******************************* lutzalloc ***********************************/ /* Allocate once for all memory space for buffers used by lutz(). */ int lutzalloc(int64_t width, int64_t height, lutzbuffers * buffers) { int64_t * discant; int64_t stacksize, i; int status = RETURN_OK; memset(buffers, 0, sizeof(lutzbuffers)); stacksize = width + 1; buffers->xmin = buffers->ymin = 0; buffers->xmax = width - 1; buffers->ymax = height - 1; QMALLOC(buffers->info, infostruct, stacksize, status); QMALLOC(buffers->store, infostruct, stacksize, status); QMALLOC(buffers->marker, char, stacksize, status); QMALLOC(buffers->psstack, pixstatus, stacksize, status); QMALLOC(buffers->start, int64_t, stacksize, status); QMALLOC(buffers->end, int64_t, stacksize, status); QMALLOC(buffers->discan, int64_t, stacksize, status); discant = buffers->discan; for (i = stacksize; i--;) { *(discant++) = -1; } return status; exit: lutzfree(buffers); return status; } /******************************* lutzfree ************************************/ /* Free once for all memory space for buffers used by lutz(). */ void lutzfree(lutzbuffers * buffers) { free(buffers->discan); buffers->discan = NULL; free(buffers->info); buffers->info = NULL; free(buffers->store); buffers->store = NULL; free(buffers->marker); buffers->marker = NULL; free(buffers->psstack); buffers->psstack = NULL; free(buffers->start); buffers->start = NULL; free(buffers->end); buffers->end = NULL; } static const infostruct initinfo = {.firstpix = -1, .lastpix = -1}; /********************************** lutz *************************************/ /* C implementation of R.K LUTZ' algorithm for the extraction of 8-connected pi- xels in an image */ int lutz( pliststruct * plistin, int64_t * objrootsubmap, int64_t subx, int64_t suby, int64_t subw, objstruct * objparent, objliststruct * objlist, int minarea, lutzbuffers * buffers ) { infostruct curpixinfo; objstruct * obj; pliststruct *plist, *pixel, *plistint; char newmarker; int64_t cn, co, luflag, pstop, xl, xl2, yl, out, deb_maxarea, stx, sty, enx, eny, step, nobjm = NOBJ, inewsymbol, *iscan; short trunflag; PIXTYPE thresh; pixstatus cs, ps; out = RETURN_OK; deb_maxarea = minarea < MAXDEBAREA ? minarea : MAXDEBAREA; /* 3 or less */ plistint = plistin; stx = objparent->xmin; sty = objparent->ymin; enx = objparent->xmax; eny = objparent->ymax; thresh = objlist->thresh; cn = 0; iscan = objrootsubmap + (sty - suby) * subw + (stx - subx); /* As we only analyse a fraction of the map, a step occurs between lines */ step = subw - (++enx - stx); eny++; /*------Allocate memory to store object data */ free(objlist->obj); if (!(obj = objlist->obj = malloc(nobjm * sizeof(objstruct)))) { out = MEMORY_ALLOC_ERROR; plist = NULL; /* To avoid gcc -Wall warnings */ goto exit_lutz; } /*------Allocate memory for the pixel list */ free(objlist->plist); if (!(objlist->plist = malloc((eny - sty) * (enx - stx) * plistsize))) { out = MEMORY_ALLOC_ERROR; plist = NULL; /* To avoid gcc -Wall warnings */ goto exit_lutz; } pixel = plist = objlist->plist; /*----------------------------------------*/ for (xl = stx; xl <= enx; xl++) { buffers->marker[xl] = 0; } objlist->nobj = 0; co = pstop = 0; curpixinfo.pixnb = 1; curpixinfo.flag = curpixinfo.firstpix = curpixinfo.lastpix = 0; for (yl = sty; yl <= eny; yl++, iscan += step) { ps = COMPLETE; cs = NONOBJECT; trunflag = (yl == 0 || yl == buffers->ymax) ? SEP_OBJ_TRUNC : 0; if (yl == eny) { iscan = buffers->discan; } for (xl = stx; xl <= enx; xl++) { newmarker = buffers->marker[xl]; buffers->marker[xl] = 0; if ((inewsymbol = (xl != enx) ? *(iscan++) : -1) < 0) { luflag = 0; } else { curpixinfo.flag = trunflag; plistint = plistin + inewsymbol; luflag = (PLISTPIX(plistint, cdvalue) > thresh ? 1 : 0); } if (luflag) { if (xl == 0 || xl == buffers->xmax) { curpixinfo.flag |= SEP_OBJ_TRUNC; } memcpy(pixel, plistint, (size_t)plistsize); PLIST(pixel, nextpix) = -1; curpixinfo.lastpix = curpixinfo.firstpix = cn; cn += plistsize; pixel += plistsize; /*----------------- Start Segment -----------------------------*/ if (cs != OBJECT) { cs = OBJECT; if (ps == OBJECT) { if (buffers->start[co] == UNKNOWN) { buffers->marker[xl] = 'S'; buffers->start[co] = xl; } else { buffers->marker[xl] = 's'; } } else { buffers->psstack[pstop++] = ps; buffers->marker[xl] = 'S'; buffers->start[++co] = xl; ps = COMPLETE; buffers->info[co] = initinfo; } } } /*-------------------Process New Marker ---------------------------*/ if (newmarker) { if (newmarker == 'S') { buffers->psstack[pstop++] = ps; if (cs == NONOBJECT) { buffers->psstack[pstop++] = COMPLETE; buffers->info[++co] = buffers->store[xl]; buffers->start[co] = UNKNOWN; } else { update(&buffers->info[co], &buffers->store[xl], plist); } ps = OBJECT; } else if (newmarker == 's') { if ((cs == OBJECT) && (ps == COMPLETE)) { pstop--; xl2 = buffers->start[co]; update(&buffers->info[co - 1], &buffers->info[co], plist); if (buffers->start[--co] == UNKNOWN) { buffers->start[co] = xl2; } else { buffers->marker[xl2] = 's'; } } ps = OBJECT; } else if (newmarker == 'f') { ps = INCOMPLETE; } else if (newmarker == 'F') { ps = buffers->psstack[--pstop]; if ((cs == NONOBJECT) && (ps == COMPLETE)) { if (buffers->start[co] == UNKNOWN) { if ((int64_t)buffers->info[co].pixnb >= deb_maxarea) { if (objlist->nobj >= nobjm) { if (!(obj = objlist->obj = (objstruct *) realloc(obj, (nobjm += nobjm / 2) * sizeof(objstruct)))) { out = MEMORY_ALLOC_ERROR; goto exit_lutz; } } lutzsort(&buffers->info[co], objlist); } } else { buffers->marker[buffers->end[co]] = 'F'; buffers->store[buffers->start[co]] = buffers->info[co]; } co--; ps = buffers->psstack[--pstop]; } } } /* end process new marker -----------------------------------------*/ if (luflag) { update(&buffers->info[co], &curpixinfo, plist); } else { /* ----------------- End Segment ------------------------------*/ if (cs == OBJECT) { cs = NONOBJECT; if (ps != COMPLETE) { buffers->marker[xl] = 'f'; buffers->end[co] = xl; } else { ps = buffers->psstack[--pstop]; buffers->marker[xl] = 'F'; buffers->store[buffers->start[co]] = buffers->info[co]; co--; } } } } } exit_lutz: if (objlist->nobj && out == RETURN_OK) { if (!(objlist->obj = realloc(obj, objlist->nobj * sizeof(objstruct)))) { out = MEMORY_ALLOC_ERROR; } } else { free(obj); objlist->obj = NULL; } if (cn && out == RETURN_OK) { if (!(objlist->plist = realloc(plist, cn))) { out = MEMORY_ALLOC_ERROR; } } else { free(objlist->plist); objlist->plist = NULL; } return out; } /********************************* lutzsort ***********************************/ /* Add an object to the object list based on info (pixel info) */ void lutzsort(infostruct * info, objliststruct * objlist) { objstruct * obj = objlist->obj + objlist->nobj; memset(obj, 0, (size_t)sizeof(objstruct)); obj->firstpix = info->firstpix; obj->lastpix = info->lastpix; obj->flag = info->flag; objlist->npix += info->pixnb; preanalyse(objlist->nobj, objlist); objlist->nobj++; } /********************************* update ************************************/ /* update object's properties each time one of its pixels is scanned by lutz() */ void update(infostruct * infoptr1, infostruct * infoptr2, pliststruct * pixel) { infoptr1->pixnb += infoptr2->pixnb; infoptr1->flag |= infoptr2->flag; if (infoptr1->firstpix == -1) { infoptr1->firstpix = infoptr2->firstpix; infoptr1->lastpix = infoptr2->lastpix; } else if (infoptr2->lastpix != -1) { PLIST(pixel + infoptr1->lastpix, nextpix) = infoptr2->firstpix; infoptr1->lastpix = infoptr2->lastpix; } } sep-1.4.1/src/overlap.h000066400000000000000000000357161475511417100147360ustar00rootroot00000000000000/* Licensed under a 3-clause BSD style license. * * Functions for calculating exact overlap between shapes. * * Original cython version by Thomas Robitaille. Converted to C by Kyle * Barbary. */ #include #include "sepcore.h" #if defined(_MSC_VER) #define INLINE _inline #else #define INLINE inline #endif /* Return area of a circle arc between (x1, y1) and (x2, y2) with radius r */ /* reference: http://mathworld.wolfram.com/CircularSegment.html */ static INLINE double area_arc(double x1, double y1, double x2, double y2, double r) { double a, theta; a = sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)); theta = 2. * asin(0.5 * a / r); return 0.5 * r * r * (theta - sin(theta)); } /* Area of a triangle defined by three verticies */ static INLINE double area_triangle( double x1, double y1, double x2, double y2, double x3, double y3 ) { return 0.5 * fabs(x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)); } /* Core of circular overlap routine. * Assumes that xmax >= xmin >= 0.0, ymax >= ymin >= 0.0. * (can always modify input to conform to this). */ static INLINE double circoverlap_core( double xmin, double ymin, double xmax, double ymax, double r ) { double a, b, x1, x2, y1, y2, r2, xmin2, ymin2, xmax2, ymax2; xmin2 = xmin * xmin; ymin2 = ymin * ymin; r2 = r * r; if (xmin2 + ymin2 > r2) { return 0.; } xmax2 = xmax * xmax; ymax2 = ymax * ymax; if (xmax2 + ymax2 < r2) { return (xmax - xmin) * (ymax - ymin); } a = xmax2 + ymin2; /* (corner 1 distance)^2 */ b = xmin2 + ymax2; /* (corner 2 distance)^2 */ if (a < r2 && b < r2) { x1 = sqrt(r2 - ymax2); y1 = ymax; x2 = xmax; y2 = sqrt(r2 - xmax2); return ( (xmax - xmin) * (ymax - ymin) - area_triangle(x1, y1, x2, y2, xmax, ymax) + area_arc(x1, y1, x2, y2, r) ); } if (a < r2) { x1 = xmin; y1 = sqrt(r2 - xmin2); x2 = xmax; y2 = sqrt(r2 - xmax2); return ( area_arc(x1, y1, x2, y2, r) + area_triangle(x1, y1, x1, ymin, xmax, ymin) + area_triangle(x1, y1, x2, ymin, x2, y2) ); } if (b < r2) { x1 = sqrt(r2 - ymin2); y1 = ymin; x2 = sqrt(r2 - ymax2); y2 = ymax; return ( area_arc(x1, y1, x2, y2, r) + area_triangle(x1, y1, xmin, y1, xmin, ymax) + area_triangle(x1, y1, xmin, y2, x2, y2) ); } /* else */ x1 = sqrt(r2 - ymin2); y1 = ymin; x2 = xmin; y2 = sqrt(r2 - xmin2); return (area_arc(x1, y1, x2, y2, r) + area_triangle(x1, y1, x2, y2, xmin, ymin)); } /* Area of overlap of a rectangle and a circle */ static double circoverlap( double xmin, double ymin, double xmax, double ymax, double r ) { /* some subroutines demand that r > 0 */ if (r <= 0.) { return 0.; } if (0. <= xmin) { if (0. <= ymin) { return circoverlap_core(xmin, ymin, xmax, ymax, r); } else if (0. >= ymax) { return circoverlap_core(-ymax, xmin, -ymin, xmax, r); } else { return ( circoverlap(xmin, ymin, xmax, 0., r) + circoverlap(xmin, 0., xmax, ymax, r) ); } } else if (0. >= xmax) { if (0. <= ymin) { return circoverlap_core(-xmax, ymin, -xmin, ymax, r); } else if (0. >= ymax) { return circoverlap_core(-xmax, -ymax, -xmin, -ymin, r); } else { return ( circoverlap(xmin, ymin, xmax, 0., r) + circoverlap(xmin, 0., xmax, ymax, r) ); } } else { if (0. <= ymin) { return ( circoverlap(xmin, ymin, 0., ymax, r) + circoverlap(0., ymin, xmax, ymax, r) ); } if (0. >= ymax) { return ( circoverlap(xmin, ymin, 0., ymax, r) + circoverlap(0., ymin, xmax, ymax, r) ); } else { return ( circoverlap(xmin, ymin, 0., 0., r) + circoverlap(0., ymin, xmax, 0., r) + circoverlap(xmin, 0., 0., ymax, r) + circoverlap(0., 0., xmax, ymax, r) ); } } } /* Start of new circular overlap routine that might be faster. double circoverlap_new(double dx, double dy, double r) { double xmin, xmax, ymin, ymax, xmin2, xmax2, ymin2, ymax2, r2; if (dx < 0.) dx = -dx; if (dy < 0.) dy = -dy; if (dy > dx) { r2 = dy; dy = dx; dx = r2; } xmax = dx + 0.5; ymax = dy + 0.5; xmax2 = xmax*xmax; ymax2 = ymax*ymax; r2 = r*r; if (xmax2 + ymax2 < r2) return 1.; xmin2 = xmin*xmin; if (xmin2 + } */ /*****************************************************************************/ /* ellipse overlap functions */ typedef struct { double x, y; } point; typedef struct { point p1, p2; } intersections; static INLINE void swap(double * a, double * b) { double temp; temp = *a; *a = *b; *b = temp; } static INLINE void swap_point(point * a, point * b) { point temp; temp = *a; *a = *b; *b = temp; } /* rotate values to the left: a=b, b=c, c=a */ static INLINE void rotate(double * a, double * b, double * c) { double temp; temp = *a; *a = *b; *b = *c; *c = temp; } /* Check if a point (x,y) is inside a triangle */ static int in_triangle( double x, double y, double x1, double y1, double x2, double y2, double x3, double y3 ) { int c; c = 0; c += ((y1 > y) != (y2 > y)) && (x < (x2 - x1) * (y - y1) / (y2 - y1) + x1); c += ((y2 > y) != (y3 > y)) && (x < (x3 - x2) * (y - y2) / (y3 - y2) + x2); c += ((y3 > y) != (y1 > y)) && (x < (x1 - x3) * (y - y3) / (y1 - y3) + x3); return c % 2 == 1; } /* Intersection of a line defined by two points with a unit circle */ static intersections circle_line(double x1, double y1, double x2, double y2) { double a, b, delta, dx, dy; double tol = 1.e-10; intersections inter; dx = x2 - x1; dy = y2 - y1; if (fabs(dx) < tol && fabs(dy) < tol) { inter.p1.x = 2.; inter.p1.y = 2.; inter.p2.x = 2.; inter.p2.y = 2.; } else if (fabs(dx) > fabs(dy)) { /* Find the slope and intercept of the line */ a = dy / dx; b = y1 - a * x1; /* Find the determinant of the quadratic equation */ delta = 1. + a * a - b * b; if (delta > 0.) /* solutions exist */ { delta = sqrt(delta); inter.p1.x = (-a * b - delta) / (1. + a * a); inter.p1.y = a * inter.p1.x + b; inter.p2.x = (-a * b + delta) / (1. + a * a); inter.p2.y = a * inter.p2.x + b; } else /* no solution, return values > 1 */ { inter.p1.x = 2.; inter.p1.y = 2.; inter.p2.x = 2.; inter.p2.y = 2.; } } else { /* Find the slope and intercept of the line */ a = dx / dy; b = x1 - a * y1; /* Find the determinant of the quadratic equation */ delta = 1. + a * a - b * b; if (delta > 0.) /* solutions exist */ { delta = sqrt(delta); inter.p1.y = (-a * b - delta) / (1. + a * a); inter.p1.x = a * inter.p1.y + b; inter.p2.y = (-a * b + delta) / (1. + a * a); inter.p2.x = a * inter.p2.y + b; } else /* no solution, return values > 1 */ { inter.p1.x = 2.; inter.p1.y = 2.; inter.p2.x = 2.; inter.p2.y = 2.; } } return inter; } /* The intersection of a line with the unit circle. The intersection the * closest to (x2, y2) is chosen. */ static point circle_segment_single2(double x1, double y1, double x2, double y2) { double dx1, dy1, dx2, dy2; intersections inter; point pt1, pt2, pt; inter = circle_line(x1, y1, x2, y2); pt1 = inter.p1; pt2 = inter.p2; /*Can be optimized, but just checking for correctness right now */ dx1 = fabs(pt1.x - x2); dy1 = fabs(pt1.y - y2); dx2 = fabs(pt2.x - x2); dy2 = fabs(pt2.y - y2); if (dx1 > dy1) /* compare based on x-axis */ { pt = (dx1 > dx2) ? pt2 : pt1; } else { pt = (dy1 > dy2) ? pt2 : pt1; } return pt; } /* Intersection(s) of a segment with the unit circle. Discard any solution not on the segment. */ static inline intersections circle_segment(double x1, double y1, double x2, double y2) { intersections inter, inter_new; point pt1, pt2; inter = circle_line(x1, y1, x2, y2); pt1 = inter.p1; pt2 = inter.p2; if ((pt1.x > x1 && pt1.x > x2) || (pt1.x < x1 && pt1.x < x2) || (pt1.y > y1 && pt1.y > y2) || (pt1.y < y1 && pt1.y < y2)) { pt1.x = 2.; pt1.y = 2.; } if ((pt2.x > x1 && pt2.x > x2) || (pt2.x < x1 && pt2.x < x2) || (pt2.y > y1 && pt2.y > y2) || (pt2.y < y1 && pt2.y < y2)) { pt2.x = 2.; pt2.y = 2.; } if (pt1.x > 1. && pt2.x < 2.) { inter_new.p1 = pt1; inter_new.p2 = pt2; } else { inter_new.p1 = pt2; inter_new.p2 = pt1; } return inter_new; } /* Given a triangle defined by three points (x1, y1), (x2, y2), and (x3, y3), find the area of overlap with the unit circle. */ static double triangle_unitcircle_overlap( double x1, double y1, double x2, double y2, double x3, double y3 ) { double d1, d2, d3, area, xp, yp; int in1, in2, in3, on1, on2, on3; int intersect13, intersect23; intersections inter; point pt1, pt2, pt3, pt4, pt5, pt6; /* Find distance of all vertices to circle center */ d1 = x1 * x1 + y1 * y1; d2 = x2 * x2 + y2 * y2; d3 = x3 * x3 + y3 * y3; /* Order vertices by distance from origin */ if (d1 < d2) { if (d2 < d3) { } else if (d1 < d3) { swap(&x2, &x3); swap(&y2, &y3); swap(&d2, &d3); } else { rotate(&x1, &x3, &x2); rotate(&y1, &y3, &y2); rotate(&d1, &d3, &d2); } } else { if (d1 < d3) { swap(&x1, &x2); swap(&y1, &y2); swap(&d1, &d2); } else if (d2 < d3) { rotate(&x1, &x2, &x3); rotate(&y1, &y2, &y3); rotate(&d1, &d2, &d3); } else { swap(&x1, &x3); swap(&y1, &y3); swap(&d1, &d3); } } /* Determine number of vertices inside circle */ in1 = d1 < 1.; in2 = d2 < 1.; in3 = d3 < 1.; /* Determine which vertices are on the circle */ on1 = fabs(d1 - 1.) < 1.e-10; on2 = fabs(d2 - 1.) < 1.e-10; on3 = fabs(d3 - 1.) < 1.e-10; if (on3 || in3) /* triangle completely within circle */ { area = area_triangle(x1, y1, x2, y2, x3, y3); } else if (in2 || on2) { /* If vertex 1 or 2 are on the edge of the circle, then we use * the dot product to vertex 3 to determine whether an * intersection takes place. */ intersect13 = !on1 || (x1 * (x3 - x1) + y1 * (y3 - y1) < 0.); intersect23 = !on2 || (x2 * (x3 - x2) + y2 * (y3 - y2) < 0.); if (intersect13 && intersect23) { pt1 = circle_segment_single2(x1, y1, x3, y3); pt2 = circle_segment_single2(x2, y2, x3, y3); area = (area_triangle(x1, y1, x2, y2, pt1.x, pt1.y) + area_triangle(x2, y2, pt1.x, pt1.y, pt2.x, pt2.y) + area_arc(pt1.x, pt1.y, pt2.x, pt2.y, 1.)); } else if (intersect13) { pt1 = circle_segment_single2(x1, y1, x3, y3); area = (area_triangle(x1, y1, x2, y2, pt1.x, pt1.y) + area_arc(x2, y2, pt1.x, pt1.y, 1.)); } else if (intersect23) { pt2 = circle_segment_single2(x2, y2, x3, y3); area = (area_triangle(x1, y1, x2, y2, pt2.x, pt2.y) + area_arc(x1, y1, pt2.x, pt2.y, 1.)); } else { area = area_arc(x1, y1, x2, y2, 1.); } } else if (in1) { /* Check for intersections of far side with circle */ inter = circle_segment(x2, y2, x3, y3); pt1 = inter.p1; pt2 = inter.p2; pt3 = circle_segment_single2(x1, y1, x2, y2); pt4 = circle_segment_single2(x1, y1, x3, y3); if (pt1.x > 1.) /* indicates no intersection */ { /* check if the pixel vertex (x1, y2) and the origin are on * different sides of the circle segment. If they are, the * circle segment spans more than pi radians. * We use the formula (y-y1) * (x2-x1) > (y2-y1) * (x-x1) * to determine if (x, y) is on the left of the directed * line segment from (x1, y1) to (x2, y2) */ if (((0. - pt3.y) * (pt4.x - pt3.x) > (pt4.y - pt3.y) * (0. - pt3.x)) != ((y1 - pt3.y) * (pt4.x - pt3.x) > (pt4.y - pt3.y) * (x1 - pt3.x))) { area = (area_triangle(x1, y1, pt3.x, pt3.y, pt4.x, pt4.y) + PI - area_arc(pt3.x, pt3.y, pt4.x, pt4.y, 1.)); } else { area = (area_triangle(x1, y1, pt3.x, pt3.y, pt4.x, pt4.y) + area_arc(pt3.x, pt3.y, pt4.x, pt4.y, 1.)); } } else { /* ensure that pt1 is the point closest to (x2, y2) */ if (((pt2.x - x2) * (pt2.x - x2) + (pt2.y - y2) * (pt2.y - y2)) < ((pt1.x - x2) * (pt1.x - x2) + (pt1.y - y2) * (pt1.y - y2))) { swap_point(&pt1, &pt2); } area = (area_triangle(x1, y1, pt3.x, pt3.y, pt1.x, pt1.y) + area_triangle(x1, y1, pt1.x, pt1.y, pt2.x, pt2.y) + area_triangle(x1, y1, pt2.x, pt2.y, pt4.x, pt4.y) + area_arc(pt1.x, pt1.y, pt3.x, pt3.y, 1.) + area_arc(pt2.x, pt2.y, pt4.x, pt4.y, 1.)); } } else { inter = circle_segment(x1, y1, x2, y2); pt1 = inter.p1; pt2 = inter.p2; inter = circle_segment(x2, y2, x3, y3); pt3 = inter.p1; pt4 = inter.p2; inter = circle_segment(x3, y3, x1, y1); pt5 = inter.p1; pt6 = inter.p2; if (pt1.x <= 1.) { xp = 0.5 * (pt1.x + pt2.x); yp = 0.5 * (pt1.y + pt2.y); area = (triangle_unitcircle_overlap(x1, y1, x3, y3, xp, yp) + triangle_unitcircle_overlap(x2, y2, x3, y3, xp, yp)); } else if (pt3.x <= 1.) { xp = 0.5 * (pt3.x + pt4.x); yp = 0.5 * (pt3.y + pt4.y); area = (triangle_unitcircle_overlap(x3, y3, x1, y1, xp, yp) + triangle_unitcircle_overlap(x2, y2, x1, y1, xp, yp)); } else if (pt5.x <= 1.) { xp = 0.5 * (pt5.x + pt6.x); yp = 0.5 * (pt5.y + pt6.y); area = (triangle_unitcircle_overlap(x1, y1, x2, y2, xp, yp) + triangle_unitcircle_overlap(x3, y3, x2, y2, xp, yp)); } else /* no intersections */ { if (in_triangle(0., 0., x1, y1, x2, y2, x3, y3)) { return PI; } else { return 0.; } } } return area; } /* exact overlap between a rectangle defined by (xmin, ymin, xmax, ymax) and an ellipse with major and minor axes rx and ry respectively and position angle theta. */ static double ellipoverlap( double xmin, double ymin, double xmax, double ymax, double a, double b, double theta ) { double cos_m_theta, sin_m_theta, scale; double x1, y1, x2, y2, x3, y3, x4, y4; cos_m_theta = cos(-theta); sin_m_theta = sin(-theta); /* scale by which the areas will be shrunk */ scale = a * b; /* Reproject rectangle to a frame in which ellipse is a unit circle */ x1 = (xmin * cos_m_theta - ymin * sin_m_theta) / a; y1 = (xmin * sin_m_theta + ymin * cos_m_theta) / b; x2 = (xmax * cos_m_theta - ymin * sin_m_theta) / a; y2 = (xmax * sin_m_theta + ymin * cos_m_theta) / b; x3 = (xmax * cos_m_theta - ymax * sin_m_theta) / a; y3 = (xmax * sin_m_theta + ymax * cos_m_theta) / b; x4 = (xmin * cos_m_theta - ymax * sin_m_theta) / a; y4 = (xmin * sin_m_theta + ymax * cos_m_theta) / b; /* Divide resulting quadrilateral into two triangles and find intersection with unit circle */ return scale * (triangle_unitcircle_overlap(x1, y1, x2, y2, x3, y3) + triangle_unitcircle_overlap(x1, y1, x4, y4, x3, y3)); } sep-1.4.1/src/sep.h000066400000000000000000000377571475511417100140640ustar00rootroot00000000000000/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% * * This file is part of SEP * * Copyright 1993-2011 Emmanuel Bertin -- IAP/CNRS/UPMC * Copyright 2014 SEP developers * * SEP is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * SEP is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with SEP. If not, see . * *%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include #include #ifdef _MSC_VER #define SEP_API __declspec(dllexport) #else #define SEP_API __attribute__((visibility("default"))) #endif /* datatype codes */ #define SEP_TBYTE 11 /* 8-bit unsigned byte */ #define SEP_TINT 31 /* native int type */ #define SEP_TFLOAT 42 #define SEP_TDOUBLE 82 /* object & aperture flags */ #define SEP_OBJ_MERGED 0x0001 /* object is result of deblending */ #define SEP_OBJ_TRUNC 0x0002 /* object truncated at image boundary */ #define SEP_OBJ_DOVERFLOW 0x0004 /* not currently used, but could be */ #define SEP_OBJ_SINGU 0x0008 /* x,y fully correlated */ #define SEP_APER_TRUNC 0x0010 #define SEP_APER_HASMASKED 0x0020 #define SEP_APER_ALLMASKED 0x0040 #define SEP_APER_NONPOSITIVE 0x0080 /* noise_type values in sep_image */ #define SEP_NOISE_NONE 0 #define SEP_NOISE_STDDEV 1 #define SEP_NOISE_VAR 2 /* input flags for aperture photometry */ #define SEP_MASK_IGNORE 0x0004 /* threshold interpretation for sep_extract */ #define SEP_THRESH_REL 0 /* in units of standard deviations (sigma) */ #define SEP_THRESH_ABS 1 /* absolute data values */ /* filter types for sep_extract */ #define SEP_FILTER_CONV 0 #define SEP_FILTER_MATCHED 1 /* structs ------------------------------------------------------------------*/ /* sep_image * * Represents an image, including data, noise and mask arrays, and * gain. */ typedef struct { const void * data; /* data array */ const void * noise; /* noise array (can be NULL) */ const void * mask; /* mask array (can be NULL) */ const void * segmap; /* segmap array (can be NULL) */ int dtype; /* element type of image */ int ndtype; /* element type of noise */ int mdtype; /* element type of mask */ int sdtype; /* element type of segmap */ int64_t * segids; /* unique ids in segmap */ int64_t * idcounts; /* counts of unique ids in segmap */ int64_t numids; /* total number of unique ids in segmap */ int64_t w; /* array width */ int64_t h; /* array height */ double noiseval; /* scalar noise value; used only if noise == NULL */ short noise_type; /* interpretation of noise value */ double gain; /* (poisson counts / data unit) */ double maskthresh; /* pixel considered masked if mask > maskthresh */ } sep_image; /* sep_bkg * * The result of sep_background() -- represents a smooth image background * and its noise with splines. */ typedef struct { int64_t w, h; /* original image width, height */ int64_t bw, bh; /* single tile width, height */ int64_t nx, ny; /* number of tiles in x, y */ int64_t n; /* nx*ny */ float global; /* global mean */ float globalrms; /* global sigma */ float * back; /* node data for interpolation */ float * dback; float * sigma; float * dsigma; } sep_bkg; /* sep_catalog * * The result of sep_extract(). This is a struct of arrays. Each array has * one entry per detected object. */ typedef struct { int nobj; /* number of objects (length of all arrays) */ float * thresh; /* threshold (ADU) */ int64_t * npix; /* # pixels extracted (size of pix array) */ int64_t * tnpix; /* # pixels above thresh (unconvolved) */ int64_t *xmin, *xmax; int64_t *ymin, *ymax; double *x, *y; /* barycenter (first moments) */ double *x2, *y2, *xy; /* second moments */ double *errx2, *erry2, *errxy; /* second moment errors */ float *a, *b, *theta; /* ellipse parameters */ float *cxx, *cyy, *cxy; /* ellipse parameters (alternative) */ float * cflux; /* total flux of pixels (convolved im) */ float * flux; /* total flux of pixels (unconvolved) */ float * cpeak; /* peak intensity (ADU) (convolved) */ float * peak; /* peak intensity (ADU) (unconvolved) */ int64_t *xcpeak, *ycpeak; /* x, y coords of peak (convolved) pixel */ int64_t *xpeak, *ypeak; /* x, y coords of peak (unconvolved) pixel */ short * flag; /* extraction flags */ int64_t ** pix; /* array giving indicies of object's pixels in */ /* image (linearly indexed). Length is `npix`. */ /* (pointer to within the `objectspix` buffer) */ int64_t * objectspix; /* buffer holding pixel indicies for all objects */ } sep_catalog; /*--------------------- global background estimation ------------------------*/ /* sep_background() * * Create representation of spatially varying image background and variance. * * Note that the returned pointer must eventually be freed by calling * `sep_bkg_free()`. * * In addition to the image mask (if present), pixels <= -1e30 and NaN * are ignored. * * Source Extractor defaults: * * - bw, bh = (64, 64) * - fw, fh = (3, 3) * - fthresh = 0.0 */ SEP_API int sep_background( const sep_image * image, int64_t bw, int64_t bh, /* size of a single background tile */ int64_t fw, int64_t fh, /* filter size in tiles */ double fthresh, /* filter threshold */ sep_bkg ** bkg ); /* OUTPUT */ /* sep_bkg_global[rms]() * * Get the estimate of the global background "median" or standard deviation. */ SEP_API float sep_bkg_global(const sep_bkg * bkg); SEP_API float sep_bkg_globalrms(const sep_bkg * bkg); /* sep_bkg_pix() * * Return background at (x, y). * Unlike other routines, this uses simple linear interpolation. */ SEP_API float sep_bkg_pix(const sep_bkg * bkg, int64_t x, int64_t y); /* sep_bkg_[sub,rms]line() * * Evaluate the background or RMS at line `y`. * Uses bicubic spline interpolation between background map verticies. * The second function subtracts the background from the input array. * Line must be an array with same width as original image. */ SEP_API int sep_bkg_line(const sep_bkg * bkg, int64_t y, void * line, int dtype); SEP_API int sep_bkg_subline(const sep_bkg * bkg, int64_t y, void * line, int dtype); SEP_API int sep_bkg_rmsline(const sep_bkg * bkg, int64_t y, void * line, int dtype); /* sep_bkg_[sub,rms]array() * * Evaluate the background or RMS for entire image. * Uses bicubic spline interpolation between background map verticies. * The second function subtracts the background from the input array. * `arr` must be an array of the same size as original image. */ SEP_API int sep_bkg_array(const sep_bkg * bkg, void * arr, int dtype); SEP_API int sep_bkg_subarray(const sep_bkg * bkg, void * arr, int dtype); SEP_API int sep_bkg_rmsarray(const sep_bkg * bkg, void * arr, int dtype); /* sep_bkg_free() * * Free memory associated with bkg. */ SEP_API void sep_bkg_free(sep_bkg * bkg); /*-------------------------- source extraction ------------------------------*/ /* sep_extract() * * Extract sources from an image. Source Extractor defaults are shown * in [ ] above. * * Notes * ----- * `dtype` and `ndtype` indicate the data type (float, int, double) of the * image and noise arrays, respectively. * * If `noise` is NULL, thresh is interpreted as an absolute threshold. * If `noise` is not null, thresh is interpreted as a relative threshold * (the absolute threshold will be thresh*noise[i,j]). * */ SEP_API int sep_extract( const sep_image * image, float thresh, /* detection threshold [1.5] */ int thresh_type, /* threshold units [SEP_THRESH_REL] */ int minarea, /* minimum area in pixels [5] */ const float * conv, /* convolution array (can be NULL) */ /* [{1 2 1 2 4 2 1 2 1}] */ int64_t convw, int64_t convh, /* w, h of convolution array [3,3] */ int filter_type, /* convolution (0) or matched (1) [0] */ int deblend_nthresh, /* deblending thresholds [32] */ double deblend_cont, /* min. deblending contrast [0.005] */ int clean_flag, /* perform cleaning? [1] */ double clean_param, /* clean parameter [1.0] */ sep_catalog ** catalog ); /* OUTPUT catalog */ /* set and get the size of the pixel stack used in extract() */ SEP_API void sep_set_extract_pixstack(size_t val); SEP_API size_t sep_get_extract_pixstack(void); /* set and get the number of sub-objects limit when deblending in extract() */ SEP_API void sep_set_sub_object_limit(int val); SEP_API int sep_get_sub_object_limit(void); /* free memory associated with a catalog */ SEP_API void sep_catalog_free(sep_catalog * catalog); /*-------------------------- aperture photometry ----------------------------*/ /* Sum array values within a circular aperture. * * Notes * ----- * error : Can be a scalar (default), an array, or NULL * If an array, set the flag SEP_ERROR_IS_ARRAY in `inflags`. * Can represent 1-sigma std. deviation (default) or variance. * If variance, set the flag SEP_ERROR_IS_VARIANCE in `inflags`. * * gain : If 0.0, poisson noise on sum is ignored when calculating error. * Otherwise, (sum / gain) is added to the variance on sum. * * area : Total pixel area included in sum. Includes masked pixels that were * corrected. The area can differ from the exact area of a circle due * to inexact subpixel sampling and intersection with array boundaries. */ SEP_API int sep_sum_circle( const sep_image * image, double x, /* center of aperture in x */ double y, /* center of aperture in y */ double r, /* radius of aperture */ int id, /* optional id to test against segmap array */ int subpix, /* subpixel sampling */ short inflags, /* input flags (see below) */ double * sum, /* OUTPUT: sum */ double * sumerr, /* OUTPUT: error on sum */ double * area, /* OUTPUT: area included in sum */ short * flag ); /* OUTPUT: flags */ SEP_API int sep_sum_circann( const sep_image * image, double x, double y, double rin, double rout, int id, int subpix, short inflags, double * sum, double * sumerr, double * area, short * flag ); SEP_API int sep_sum_ellipse( const sep_image * image, double x, double y, double a, double b, double theta, double r, int id, int subpix, short inflags, double * sum, double * sumerr, double * area, short * flag ); SEP_API int sep_sum_ellipann( const sep_image * image, double x, double y, double a, double b, double theta, double rin, double rout, int id, int subpix, short inflags, double * sum, double * sumerr, double * area, short * flag ); /* sep_sum_circann_multi() * * Sum an array of circular annuli more efficiently (but with no exact mode). * * Notable parameters: * * rmax: Input radii are [rmax/n, 2*rmax/n, 3*rmax/n, ..., rmax]. * n: Length of input and output arrays. * sum: Preallocated array of length n holding sums in annuli. sum[0] * corrresponds to r=[0, rmax/n], sum[n-1] to outermost annulus. * sumvar: Preallocated array of length n holding variance on sums. * area: Preallocated array of length n holding area summed in each annulus. * maskarea: Preallocated array of length n holding masked area in each annulus (if mask not NULL). * flag: Output flag (non-array). */ SEP_API int sep_sum_circann_multi( const sep_image * im, double x, double y, double rmax, int64_t n, int id, int subpix, short inflag, double * sum, double * sumvar, double * area, double * maskarea, short * flag ); /* sep_flux_radius() * * Calculate the radii enclosing the requested fraction of flux relative * to radius rmax. * * (see previous functions for most arguments) * rmax : maximum radius to analyze * fluxtot : scale requested flux fractions to this. (If NULL, flux within `rmax` is used.) * fluxfrac : array of requested fractions. * n : length of fluxfrac * r : (output) result array of length n. * flag : (output) scalar flag */ SEP_API int sep_flux_radius( const sep_image * im, double x, double y, double rmax, int id, int subpix, short inflag, const double * fluxtot, const double * fluxfrac, int64_t n, double * r, short * flag ); /* sep_kron_radius() * * Calculate Kron radius within an ellipse given by * * cxx*(x'-x)^2 + cyy*(y'-y)^2 + cxy*(x'-x)*(y'-y) < r^2 * * The Kron radius is sum(r_i * v_i) / sum(v_i) where v_i is the value of pixel * i and r_i is the "radius" of pixel i, as given by the left hand side of * the above equation. * * Flags that might be set: * SEP_APER_HASMASKED - at least one of the pixels in the ellipse is masked. * SEP_APER_ALLMASKED - All pixels in the ellipse are masked. kronrad = 0. * SEP_APER_NONPOSITIVE - There was a nonpositive numerator or deminator. * kronrad = 0. */ SEP_API int sep_kron_radius( const sep_image * im, double x, double y, double cxx, double cyy, double cxy, double r, int id, double * kronrad, short * flag ); /* sep_windowed() * * Calculate "windowed" position parameters via an iterative procedure. * * x, y : initial center * sig : sigma of Gaussian to use for weighting. The integration * radius is 4 * sig. * subpix : Subpixels to use in aperture-pixel overlap. * SExtractor uses 11. 0 is supported for exact overlap. * xout, yout : output center. * niter : number of iterations used. */ SEP_API int sep_windowed( const sep_image * im, double x, double y, double sig, int subpix, short inflag, double * xout, double * yout, int * niter, short * flag ); /* sep_set_ellipse() * * Set array elements within an ellipitcal aperture to a given value. * * Ellipse: cxx*(x'-x)^2 + cyy*(y'-y)^2 + cxy*(x'-x)*(y'-y) = r^2 */ SEP_API void sep_set_ellipse( unsigned char * arr, int64_t w, int64_t h, double x, double y, double cxx, double cyy, double cxy, double r, unsigned char val ); /* sep_ellipse_axes() * sep_ellipse_coeffs() * * Convert between coefficient representation of ellipse, * cxx*(x'-x)^2 + cyy*(y'-y)^2 + cxy*(x'-x)*(y'-y) = r^2, * and axis representation of an ellipse. The axis representation is * defined by: * * a = semimajor axis * b = semiminor axis * theta = angle in radians counter-clockwise from positive x axis */ SEP_API int sep_ellipse_axes( double cxx, double cyy, double cxy, double * a, double * b, double * theta ); SEP_API void sep_ellipse_coeffs( double a, double b, double theta, double * cxx, double * cyy, double * cxy ); /*----------------------- info & error messaging ----------------------------*/ /* sep_version_string : library version (e.g., "0.2.0") */ SEP_API extern const char * const sep_version_string; /* sep_get_errmsg() * * Return a short descriptive error message that corresponds to the input * error status value. The message may be up to 60 characters long, plus * the terminating null character. */ SEP_API void sep_get_errmsg(int status, char * errtext); /* sep_get_errdetail() * * Return a longer error message with more specifics about the problem. * The message may be up to 512 characters. */ SEP_API void sep_get_errdetail(char * errtext); sep-1.4.1/src/sepcore.h000066400000000000000000000105461475511417100147200ustar00rootroot00000000000000/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% * * This file is part of SEP * * Copyright 1993-2011 Emmanuel Bertin -- IAP/CNRS/UPMC * Copyright 2014 SEP developers * * SEP is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * SEP is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with SEP. If not, see . * *%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include #define RETURN_OK 0 /* must be zero */ #define MEMORY_ALLOC_ERROR 1 #define PIXSTACK_FULL 2 #define ILLEGAL_DTYPE 3 #define ILLEGAL_SUBPIX 4 #define NON_ELLIPSE_PARAMS 5 #define ILLEGAL_APER_PARAMS 6 #define DEBLEND_OVERFLOW 7 #define LINE_NOT_IN_BUF 8 #define RELTHRESH_NO_NOISE 9 #define UNKNOWN_NOISE_TYPE 10 #define BIG 1e+30 /* a huge number (< biggest value a float can store) */ #define PI M_PI #define DEG (PI / 180.0) /* 1 deg in radians */ typedef int LONG; typedef unsigned int ULONG; typedef unsigned char BYTE; /* a byte */ /* keep these synchronized */ typedef float PIXTYPE; /* type used inside of functions */ #define PIXDTYPE SEP_TFLOAT /* dtype code corresponding to PIXTYPE */ /* signature of converters */ typedef PIXTYPE (*converter)(const void * ptr); typedef void (*array_converter)(const void * ptr, int64_t n, PIXTYPE * target); typedef void (*array_writer)(const float * ptr, int64_t n, void * target); #define QCALLOC(ptr, typ, nel, status) \ { \ if (!(ptr = (typ *)calloc((size_t)(nel), sizeof(typ)))) { \ char errtext[160]; \ sprintf( \ errtext, \ #ptr " (" #nel \ "=%lu elements) " \ "at line %d in module " __FILE__ " !", \ (size_t)(nel) * sizeof(typ), \ __LINE__ \ ); \ put_errdetail(errtext); \ status = MEMORY_ALLOC_ERROR; \ goto exit; \ }; \ } #define QMALLOC(ptr, typ, nel, status) \ { \ if (!(ptr = malloc((size_t)(nel) * sizeof(typ)))) { \ char errtext[160]; \ sprintf( \ errtext, \ #ptr " (" #nel \ "=%lu elements) " \ "at line %d in module " __FILE__ " !", \ (size_t)(nel) * sizeof(typ), \ __LINE__ \ ); \ put_errdetail(errtext); \ status = MEMORY_ALLOC_ERROR; \ goto exit; \ }; \ } float fqmedian(float * ra, int64_t n); void put_errdetail(const char * errtext); int get_converter(int dtype, converter * f, int64_t * size); int get_array_converter(int dtype, array_converter * f, int64_t * size); int get_array_writer(int dtype, array_writer * f, int64_t * size); int get_array_subtractor(int dtype, array_writer * f, int64_t * size); #if defined(_MSC_VER) #define _Thread_local __declspec(thread) #define _Atomic // this isn't great, but we only use atomic for global settings #define rand_r(SEED) \ rand() // MSVC doesn't provide rand_r, but makes rand safe for re-entrancy #endif sep-1.4.1/src/util.c000066400000000000000000000166771475511417100142430ustar00rootroot00000000000000/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% * * This file is part of SEP * * All content except array comparison functions fqcmp() and fqmedian() is * distributed under an MIT license. * * Copyright 2014 SEP developers * * Array comparison functions fqcmp() and fqmedian() are distributed under an * LGPL license: * * Copyright 1993-2011 Emmanuel Bertin -- IAP/CNRS/UPMC * Copyright 2014 SEP developers * *%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #include #include #include #include #include "sep.h" #include "sepcore.h" #define DETAILSIZE 512 #ifndef SEP_VERSION_STRING #define SEP_VERSION_STRING "1.3.6" #endif const char * const sep_version_string = SEP_VERSION_STRING; static _Thread_local char _errdetail_buffer[DETAILSIZE] = ""; /****************************************************************************/ /* data type conversion mechanics for runtime type conversion */ PIXTYPE convert_dbl(const void * ptr) { return *(const double *)ptr; } PIXTYPE convert_flt(const void * ptr) { return *(const float *)ptr; } PIXTYPE convert_int(const void * ptr) { return *(const int *)ptr; } PIXTYPE convert_byt(const void * ptr) { return *(const BYTE *)ptr; } /* return the correct converter depending on the datatype code */ int get_converter(int dtype, converter * f, int64_t * size) { int status = RETURN_OK; if (dtype == SEP_TFLOAT) { *f = convert_flt; *size = sizeof(float); } else if (dtype == SEP_TINT) { *f = convert_int; *size = sizeof(int); } else if (dtype == SEP_TDOUBLE) { *f = convert_dbl; *size = sizeof(double); } else if (dtype == SEP_TBYTE) { *f = convert_byt; *size = sizeof(BYTE); } else { *f = NULL; *size = 0; status = ILLEGAL_DTYPE; } return status; } /* array conversions */ void convert_array_flt(const void * ptr, int64_t n, PIXTYPE * target) { const float * source = ptr; int64_t i; for (i = 0; i < n; i++, source++) { target[i] = *source; } } void convert_array_dbl(const void * ptr, int64_t n, PIXTYPE * target) { const double * source = ptr; int64_t i; for (i = 0; i < n; i++, source++) { target[i] = *source; } } void convert_array_int(const void * ptr, int64_t n, PIXTYPE * target) { const int * source = ptr; int64_t i; for (i = 0; i < n; i++, source++) { target[i] = *source; } } void convert_array_byt(const void * ptr, int64_t n, PIXTYPE * target) { const BYTE * source = ptr; int64_t i; for (i = 0; i < n; i++, source++) { target[i] = *source; } } int get_array_converter(int dtype, array_converter * f, int64_t * size) { int status = RETURN_OK; if (dtype == SEP_TFLOAT) { *f = convert_array_flt; *size = sizeof(float); } else if (dtype == SEP_TBYTE) { *f = convert_array_byt; *size = sizeof(BYTE); } else if (dtype == SEP_TINT) { *f = convert_array_int; *size = sizeof(int); } else if (dtype == SEP_TDOUBLE) { *f = convert_array_dbl; *size = sizeof(double); } else { *f = NULL; *size = 0; status = ILLEGAL_DTYPE; } return status; } /****************************************************************************/ /* Copy a float array to various sorts of arrays */ void write_array_dbl(const float * ptr, int64_t n, void * target) { double * t = target; int64_t i; for (i = 0; i < n; i++, ptr++) { t[i] = (double)(*ptr); } } void write_array_int(const float * ptr, int64_t n, void * target) { int * t = target; int64_t i; for (i = 0; i < n; i++, ptr++) { t[i] = (int)(*ptr + 0.5); } } /* return the correct writer depending on the datatype code */ int get_array_writer(int dtype, array_writer * f, int64_t * size) { int status = RETURN_OK; if (dtype == SEP_TINT) { *f = write_array_int; *size = sizeof(int); } else if (dtype == SEP_TDOUBLE) { *f = write_array_dbl; *size = sizeof(double); } else { *f = NULL; *size = 0; status = ILLEGAL_DTYPE; } return status; } /* subtract a float array from arrays of various types */ void subtract_array_dbl(const float * ptr, int64_t n, void * target) { double * t = target; int64_t i; for (i = 0; i < n; i++, ptr++) { t[i] -= (double)(*ptr); } } void subtract_array_flt(const float * ptr, int64_t n, void * target) { float * t = target; int64_t i; for (i = 0; i < n; i++, ptr++) { t[i] -= *ptr; } } void subtract_array_int(const float * ptr, int64_t n, void * target) { int * t = target; int64_t i; for (i = 0; i < n; i++, ptr++) { t[i] -= (int)(*ptr + 0.5); } } /* return the correct subtractor depending on the datatype code */ int get_array_subtractor(int dtype, array_writer * f, int64_t * size) { int status = RETURN_OK; char errtext[80]; if (dtype == SEP_TFLOAT) { *f = subtract_array_flt; *size = sizeof(float); } else if (dtype == SEP_TINT) { *f = subtract_array_int; *size = sizeof(int); } else if (dtype == SEP_TDOUBLE) { *f = subtract_array_dbl; *size = sizeof(double); } else { *f = NULL; *size = 0; status = ILLEGAL_DTYPE; sprintf(errtext, "in get_array_subtractor(): %d", dtype); put_errdetail(errtext); } return status; } /*****************************************************************************/ /* Error messaging */ void sep_get_errmsg(int status, char * errtext) /* Return a short descriptive error message that corresponds to the input * error status value. The message may be up to 60 characters long, plus * the terminating null character. */ { errtext[0] = '\0'; switch (status) { case RETURN_OK: strcpy(errtext, "OK - no error"); break; case MEMORY_ALLOC_ERROR: strcpy(errtext, "memory allocation"); break; case PIXSTACK_FULL: strcpy(errtext, "internal pixel buffer full"); break; case DEBLEND_OVERFLOW: strcpy(errtext, "object deblending overflow"); break; case ILLEGAL_DTYPE: strcpy(errtext, "dtype not recognized/unsupported"); break; case ILLEGAL_SUBPIX: strcpy(errtext, "subpix value must be nonnegative"); break; case NON_ELLIPSE_PARAMS: strcpy(errtext, "parameters do not describe ellipse"); break; case ILLEGAL_APER_PARAMS: strcpy(errtext, "invalid aperture parameters"); break; case LINE_NOT_IN_BUF: strcpy(errtext, "array line out of buffer"); break; case RELTHRESH_NO_NOISE: strcpy(errtext, "relative threshold but image has noise_type of NONE"); break; case UNKNOWN_NOISE_TYPE: strcpy(errtext, "image has unknown noise_type"); break; default: strcpy(errtext, "unknown error status"); break; } } void sep_get_errdetail(char * errtext) { strcpy(errtext, _errdetail_buffer); memset(_errdetail_buffer, 0, DETAILSIZE); } void put_errdetail(const char * errtext) { strcpy(_errdetail_buffer, errtext); } /*****************************************************************************/ /* Array median */ static int fqcmp(const void * p1, const void * p2) /* Sorting function for floats, used in fqmedian() below. * Return value is 1 if *p1>*p2, 0 if *p1==*p2, -1 otherwise */ { double f1 = *((const float *)p1); double f2 = *((const float *)p2); return f1 > f2 ? 1 : (f1 < f2 ? -1 : 0); } float fqmedian(float * ra, int64_t n) /* Compute median of an array of floats. * * WARNING: input data are reordered! */ { qsort(ra, n, sizeof(float), fqcmp); if (n < 2) { return *ra; } else { return n & 1 ? ra[n / 2] : (ra[n / 2 - 1] + ra[n / 2]) / 2.0; } } sep-1.4.1/test.py000077500000000000000000000744141475511417100136600ustar00rootroot00000000000000#!/usr/bin/env py.test """Test the python functionality of SEP.""" from __future__ import division, print_function import os import numpy as np import pytest from numpy.lib import recfunctions as rfn from numpy.testing import assert_allclose, assert_approx_equal, assert_equal import sep # unicode_literals doesn't play well with numpy dtype field names # Try to import any FITS reader try: from fitsio import read as getdata NO_FITS = False except: try: from astropy.io.fits import getdata NO_FITS = False except: NO_FITS = True IMAGE_FNAME = os.path.join("data", "image.fits") BACKIMAGE_FNAME = os.path.join("data", "back.fits") RMSIMAGE_FNAME = os.path.join("data", "rms.fits") IMAGECAT_FNAME = os.path.join("data", "image.cat") IMAGECAT_DTYPE = [ ("number", np.int64), ("x", np.float64), ("y", np.float64), ("xwin", np.float64), ("ywin", np.float64), ("x2", np.float64), ("y2", np.float64), ("xy", np.float64), ("errx2", np.float64), ("erry2", np.float64), ("errxy", np.float64), ("a", np.float64), ("flux_aper", np.float64), ("fluxerr_aper", np.float64), ("kron_radius", np.float64), ("flux_auto", np.float64), ("fluxerr_auto", np.float64), ("flux_radius", np.float64, (3,)), ("flags", np.int64), ] SUPPORTED_IMAGE_DTYPES = [np.float64, np.float32, np.int32] # If we have a FITS reader, read in the necessary test images if not NO_FITS: image_data = getdata(IMAGE_FNAME) image_refback = getdata(BACKIMAGE_FNAME) image_refrms = getdata(RMSIMAGE_FNAME) # ----------------------------------------------------------------------------- # Helpers def assert_allclose_structured(x, y): """ Assert that two structured arrays are close. Compares floats relatively and everything else exactly. Parameters ---------- x, y : array-like Structured arrays to be compared. """ assert x.dtype == y.dtype for name in x.dtype.names: if np.issubdtype(x.dtype[name], float): assert_allclose(x[name], y[name]) else: assert_equal(x[name], y[name]) def matched_filter_snr(data, noise, kernel): r""" Super slow implementation of matched filter SNR for testing. At each output pixel :math:`i`, the value is: .. math:: \frac{\sum(\text{data}[i] * \text{kernel}[i] / \text{noise}[i]^2)} {\sqrt\sum(\text{kernel}[i]^2 / \text{noise}[i]^2)} Parameters ---------- data : array-like The 2D data to be tested. noise : array-like The noise corresponding to the input ``data``. kernel : array-like The kernel used for filtering. Returns ------- array-like The output SNR array, the same size as ``data``. """ ctr = kernel.shape[0] // 2, kernel.shape[1] // 2 kslice = ( (0 - ctr[0], kernel.shape[0] - ctr[0]), # range in axis 0 (0 - ctr[1], kernel.shape[1] - ctr[1]), ) # range in axis 1 out = np.empty_like(data) for y in range(data.shape[0]): jmin = y + kslice[0][0] # min and max indicies to sum over jmax = y + kslice[0][1] kjmin = 0 # min and max kernel indicies to sum over kjmax = kernel.shape[0] # if we're over the edge of the image, limit extent if jmin < 0: offset = -jmin jmin += offset kjmin += offset if jmax > data.shape[0]: offset = data.shape[0] - jmax jmax += offset kjmax += offset for x in range(data.shape[1]): imin = x + kslice[1][0] # min and max indicies to sum over imax = x + kslice[1][1] kimin = 0 # min and max kernel indicies to sum over kimax = kernel.shape[1] # if we're over the edge of the image, limit extent if imin < 0: offset = -imin imin += offset kimin += offset if imax > data.shape[1]: offset = data.shape[1] - imax imax += offset kimax += offset d = data[jmin:jmax, imin:imax] n = noise[jmin:jmax, imin:imax] w = 1.0 / n**2 k = kernel[kjmin:kjmax, kimin:kimax] out[y, x] = np.sum(d * k * w) / np.sqrt(np.sum(k**2 * w)) return out # ----------------------------------------------------------------------------- # Test versus Source Extractor results @pytest.mark.skipif(NO_FITS, reason="no FITS reader") def test_vs_sextractor(): """ Test behavior of sep versus sextractor. Note: we turn deblending off for this test. This is because the deblending algorithm uses a random number generator. Since the sequence of random numbers is not the same between sextractor and sep or between different platforms, object member pixels (and even the number of objects) can differ when deblending is on. Deblending is turned off by setting DEBLEND_MINCONT=1.0 in the sextractor configuration file and by setting deblend_cont=1.0 in sep.extract(). """ data = np.copy(image_data) # make an explicit copy so we can 'subfrom' bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3) # Test that SExtractor background is same as SEP: bkgarr = bkg.back(dtype=np.float32) assert_allclose(bkgarr, image_refback, rtol=1.0e-5) # Test that SExtractor background rms is same as SEP: rmsarr = bkg.rms(dtype=np.float32) assert_allclose(rmsarr, image_refrms, rtol=1.0e-4) # Extract objects (use deblend_cont=1.0 to disable deblending). bkg.subfrom(data) objs = sep.extract(data, 1.5, err=bkg.globalrms, deblend_cont=1.0) objs = np.sort(objs, order=["y"]) # Read SExtractor result refobjs = np.loadtxt(IMAGECAT_FNAME, dtype=IMAGECAT_DTYPE) refobjs = np.sort(refobjs, order=["y"]) # Found correct number of sources at the right locations? assert_allclose(objs["x"], refobjs["x"] - 1.0, atol=1.0e-3) assert_allclose(objs["y"], refobjs["y"] - 1.0, atol=1.0e-3) # Correct Variance and Variance Errors? assert_allclose(objs["x2"], refobjs["x2"], atol=1.0e-4) assert_allclose(objs["y2"], refobjs["y2"], atol=1.0e-4) assert_allclose(objs["xy"], refobjs["xy"], atol=1.0e-4) assert_allclose(objs["errx2"], refobjs["errx2"], rtol=1.0e-4) assert_allclose(objs["erry2"], refobjs["erry2"], rtol=1.0e-4) assert_allclose(objs["errxy"], refobjs["errxy"], rtol=1.0e-3) # Test aperture flux flux, fluxerr, flag = sep.sum_circle( data, objs["x"], objs["y"], 5.0, err=bkg.globalrms ) assert_allclose(flux, refobjs["flux_aper"], rtol=2.0e-4) assert_allclose(fluxerr, refobjs["fluxerr_aper"], rtol=1.0e-5) # check if the flags work at all (comparison values assert ((flag & sep.APER_TRUNC) != 0).sum() == 4 assert ((flag & sep.APER_HASMASKED) != 0).sum() == 0 # Test "flux_auto" kr, flag = sep.kron_radius( data, objs["x"], objs["y"], objs["a"], objs["b"], objs["theta"], 6.0 ) flux, fluxerr, flag = sep.sum_ellipse( data, objs["x"], objs["y"], objs["a"], objs["b"], objs["theta"], r=2.5 * kr, err=bkg.globalrms, subpix=1, ) # For some reason, one object doesn't match. It's very small # and kron_radius is set to 0.0 in SExtractor, but 0.08 in sep. # Could be due to a change in SExtractor between v2.8.6 (used to # generate "truth" catalog) and v2.18.11 (from which sep was forked). i = 56 # index is 59 when deblending is on. kr[i] = 0.0 flux[i] = 0.0 fluxerr[i] = 0.0 # We use atol for radius because it is reported to nearest 0.01 in # reference objects. assert_allclose(2.5 * kr, refobjs["kron_radius"], atol=0.01, rtol=0.0) assert_allclose(flux, refobjs["flux_auto"], rtol=0.0005) assert_allclose(fluxerr, refobjs["fluxerr_auto"], rtol=0.0005) # Test using a mask in kron_radius and sum_ellipse. for dtype in [np.bool_, np.int32, np.float32, np.float64]: mask = np.zeros_like(data, dtype=dtype) kr2, flag = sep.kron_radius( data, objs["x"], objs["y"], objs["a"], objs["b"], objs["theta"], 6.0, mask=mask, ) kr2[i] = 0.0 assert np.all(kr == kr2) # Test ellipse representation conversion cxx, cyy, cxy = sep.ellipse_coeffs(objs["a"], objs["b"], objs["theta"]) assert_allclose(cxx, objs["cxx"], rtol=1.0e-4) assert_allclose(cyy, objs["cyy"], rtol=1.0e-4) assert_allclose(cxy, objs["cxy"], rtol=1.0e-4) a, b, theta = sep.ellipse_axes(objs["cxx"], objs["cyy"], objs["cxy"]) assert_allclose(a, objs["a"], rtol=1.0e-4) assert_allclose(b, objs["b"], rtol=1.0e-4) assert_allclose(theta, objs["theta"], rtol=1.0e-4) # test round trip cxx, cyy, cxy = sep.ellipse_coeffs(a, b, theta) assert_allclose(cxx, objs["cxx"], rtol=1.0e-4) assert_allclose(cyy, objs["cyy"], rtol=1.0e-4) assert_allclose(cxy, objs["cxy"], rtol=1.0e-4) # test flux_radius fr, flags = sep.flux_radius( data, objs["x"], objs["y"], 6.0 * refobjs["a"], [0.1, 0.5, 0.6], normflux=refobjs["flux_auto"], subpix=5, ) assert_allclose(fr, refobjs["flux_radius"], rtol=0.04, atol=0.01) # test winpos sig = 2.0 / 2.35 * fr[:, 1] # flux_radius = 0.5 xwin, ywin, flag = sep.winpos(data, objs["x"], objs["y"], sig) assert_allclose(xwin, refobjs["xwin"] - 1.0, rtol=0.0, atol=0.0015) assert_allclose(ywin, refobjs["ywin"] - 1.0, rtol=0.0, atol=0.0015) # ----------------------------------------------------------------------------- # Background def test_masked_background(): """ Check the background filtering. Check that the derived background is consistent with an explicit mask, masking no pixels. Also check that the expected result is returned if certain pixels are masked. """ data = 0.1 * np.ones((6, 6)) data[1, 1] = 1.0 data[4, 1] = 1.0 data[1, 4] = 1.0 data[4, 4] = 1.0 mask = np.zeros((6, 6), dtype=np.bool_) # Background array without mask sky = sep.Background(data, bw=3, bh=3, fw=1, fh=1) bkg1 = sky.back() # Background array with all False mask sky = sep.Background(data, mask=mask, bw=3, bh=3, fw=1, fh=1) bkg2 = sky.back() # All False mask should be the same assert_allclose(bkg1, bkg2) # Masking high pixels should give a flat background mask[1, 1] = True mask[4, 1] = True mask[1, 4] = True mask[4, 4] = True sky = sep.Background(data, mask=mask, bw=3, bh=3, fw=1, fh=1) assert_approx_equal(sky.globalback, 0.1) assert_allclose(sky.back(), 0.1 * np.ones((6, 6))) @pytest.mark.skipif(NO_FITS, reason="no FITS reader") def test_background_special(): """ Test the special methods of `sep.Background`. """ bkg = sep.Background(image_data, bw=64, bh=64, fw=3, fh=3) # test __array__ method assert np.all(np.array(bkg) == bkg.back()) # test __rsub__ method d1 = image_data - bkg d2 = np.copy(image_data) bkg.subfrom(d2) assert np.all(d1 == d2) def test_background_boxsize(): """ Test that `sep.Background` works when boxsize is same as image. """ ny, nx = 100, 100 data = np.ones((ny, nx), dtype=np.float64) bkg = sep.Background(data, bh=ny, bw=nx, fh=1, fw=1) bkg.back() def test_background_rms(): """ Test that `sep.Background.rms` at least works. """ ny, nx = 1024, 1024 data = np.random.randn(ny, nx) bkg = sep.Background(data) rms = bkg.rms() assert rms.dtype == np.float64 assert rms.shape == (ny, nx) # ----------------------------------------------------------------------------- # Extract @pytest.mark.skipif(NO_FITS, reason="no FITS reader") def test_extract_with_noise_array(): """ Test extraction with a flat noise array. This checks that a constant noise array gives the same result as extracting without a noise array, for a given threshold. """ # Get some background-subtracted test data: data = np.copy(image_data) bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3) bkg.subfrom(data) # Ensure that extraction with constant noise array gives the expected # result. We have to use conv=None here because the results are *not* # the same when convolution is on! This is because the noise map is # convolved. Near edges, the convolution doesn't adjust for pixels # off edge boundaries. As a result, the convolved noise map is not # all ones. # Deblending is also turned off, as this appears to differ slightly # across platforms - see `test_vs_sextractor()`. objects = sep.extract( data, 1.5 * bkg.globalrms, filter_kernel=None, deblend_cont=1.0 ) objects2 = sep.extract( data, 1.5 * bkg.globalrms, err=np.ones_like(data), filter_kernel=None, deblend_cont=1.0, ) names_to_remove = ["errx2", "erry2", "errxy"] names_to_keep = [i for i in objects.dtype.names if i not in names_to_remove] objects = objects[names_to_keep] objects2 = objects2[names_to_keep] assert_allclose_structured(objects, objects2) # Less trivial test where thresh is realistic. Still a flat noise map. noise = bkg.globalrms * np.ones_like(data) objects2 = sep.extract(data, 1.5, err=noise, filter_kernel=None, deblend_cont=1.0) names_to_remove = ["errx2", "erry2", "errxy"] names_to_keep = [i for i in objects.dtype.names if i not in names_to_remove] objects = objects[names_to_keep] objects2 = objects2[names_to_keep] assert_allclose_structured(objects, objects2) def test_extract_with_noise_convolution(): """ Test extraction when there is both noise and convolution. This will use the matched filter implementation, and will handle bad pixels and edge effects gracefully. """ # Start with an empty image where we label the noise as 1 sigma everywhere. image = np.zeros((20, 20)) error = np.ones((20, 20)) # Add some noise representing bad pixels. We do not want to detect these. image[17, 3] = 100.0 error[17, 3] = 100.0 image[10, 0] = 100.0 error[10, 0] = 100.0 image[17, 17] = 100.0 error[17, 17] = 100.0 # Add some real point sources that we should find. image[3, 17] = 10.0 image[6, 6] = 2.0 image[7, 6] = 1.0 image[5, 6] = 1.0 image[6, 5] = 1.0 image[6, 7] = 1.0 objects = sep.extract(image, 2.0, minarea=1, err=error) objects.sort(order=["x", "y"]) # Check that we recovered the two correct objects and not the others. assert len(objects) == 2 assert_approx_equal(objects[0]["x"], 6.0) assert_approx_equal(objects[0]["y"], 6.0) assert_approx_equal(objects[1]["x"], 17.0) assert_approx_equal(objects[1]["y"], 3.0) def test_extract_matched_filter_at_edge(): """ Test bright source detection at the edge of an image. Exercise bug where bright star at end of image not detected with noise array and matched filter on. """ data = np.zeros((20, 20)) err = np.ones_like(data) kernel = np.array([[1.0, 2.0, 1.0], [2.0, 4.0, 2.0], [1.0, 2.0, 1.0]]) data[18:20, 9:12] = kernel[0:2, :] objects, pix = sep.extract( data, 2.0, err=err, filter_kernel=kernel, filter_type="matched", segmentation_map=True, ) assert len(objects) == 1 assert objects["npix"][0] == 6 @pytest.mark.skipif(NO_FITS, reason="no FITS reader") def test_extract_with_mask(): """ Test that object detection only occurs in unmasked regions. """ # Get some background-subtracted test data: data = np.copy(image_data) bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3) bkg.subfrom(data) # mask half the image ylim = data.shape[0] // 2 mask = np.zeros(data.shape, dtype=np.bool_) mask[ylim:, :] = True objects = sep.extract(data, 1.5 * bkg.globalrms, mask=mask) # check that we found some objects and that they are all in the unmasked # region. assert len(objects) > 0 assert np.all(objects["y"] < ylim) @pytest.mark.skipif(NO_FITS, reason="no FITS reader") def test_extract_with_maskthresh(): """ Test that object detection only occurs in unmasked regions. """ # Get some background-subtracted test data: data = np.copy(image_data) bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3) bkg.subfrom(data) # mask half the image ylim = data.shape[0] // 2 mask = np.zeros(data.shape, dtype=float) mask[ylim:, :] = 1.0 objects_unmasked = sep.extract(data, 1.5 * bkg.globalrms, deblend_cont=1.0) objects_unmasked_w_thresh = sep.extract( data, 1.5 * bkg.globalrms, maskthresh=1.0, deblend_cont=1.0 ) # Check that changing the mask threshold does not change anything, # if no mask is provided assert_allclose_structured(objects_unmasked, objects_unmasked_w_thresh) objects_masked = sep.extract(data, 1.5 * bkg.globalrms, mask=mask, deblend_cont=1.0) objects_masked_w_hthresh = sep.extract( data, 1.5 * bkg.globalrms, mask=mask, maskthresh=1.0, deblend_cont=1.0 ) objects_masked_w_lthresh = sep.extract( data, 1.5 * bkg.globalrms, mask=mask, maskthresh=0.5, deblend_cont=1.0 ) # Applying a mask should return a different number of objects assert len(objects_unmasked) != len(objects_masked) # As long as the mask is above the threshold, the results should not change assert_allclose_structured(objects_masked, objects_masked_w_lthresh) # Object detection where the maskthresh >= max(mask) should be the same # as if no mask were provided assert_allclose_structured(objects_unmasked, objects_masked_w_hthresh) @pytest.mark.skipif(NO_FITS, reason="no FITS reader") def test_extract_segmentation_map(): """ Test the returned segmentation map. Check that the segmentation map has the same dimensions as the input image, and that the number of object pixels match the catalogue field. """ # Get some background-subtracted test data: data = np.copy(image_data) bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3) bkg.subfrom(data) objects, segmap = sep.extract(data, 1.5 * bkg.globalrms, segmentation_map=True) assert type(segmap) is np.ndarray assert segmap.shape == data.shape for i in range(len(objects)): assert objects["npix"][i] == (segmap == i + 1).sum() @pytest.mark.skipif(NO_FITS, reason="no FITS reader") def test_extract_seg_map_array(): """ Test the extraction when an existing segmentation map is supplied. Test that the returned catalogue is equal with and without a variable noise array, and that the majority of fields match even when deblending is performed on the original extraction. """ # Get some background-subtracted test data: data = np.copy(image_data) bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3) bkg.subfrom(data) noise = bkg.globalrms * np.ones_like(data) for err in [None, noise]: # err=None # err=noise objects, segmap = sep.extract(data, 1.5, err, segmentation_map=True) assert type(segmap) is np.ndarray assert segmap.shape == data.shape for i in range(len(objects)): assert objects["npix"][i] == (segmap == i + 1).sum() objects2, segmap2 = sep.extract(data, 1.5, err, segmentation_map=segmap) # Test the values for which we expect an exact match names_exact_match = [ "thresh", "npix", "tnpix", "xmin", "xmax", "ymin", "ymax", "cflux", "flux", "cpeak", "peak", "xcpeak", "ycpeak", "xpeak", "ypeak", ] # The position depends on the object being deblended. As no deblending # is performed when a segmentation map is supplied, all derived # parameters may vary slightly. We test those for which we have a # measurement of the uncertainty names_close = ["x", "y"] names_close_var = ["x2", "y2"] assert segmap2.shape == data.shape for o_i, o_ii in zip(objects, objects2): o_i_exact = o_i[names_exact_match] o_ii_exact = o_ii[names_exact_match] assert_equal(o_i_exact, o_ii_exact) o_i_close = o_i[names_close] o_ii_close = o_ii[names_close] for n, v in zip(names_close, names_close_var): if o_i["flag"] == 0: assert_equal(o_i[n], o_ii[n]) else: assert_allclose(o_i[n], o_ii[n], atol=np.sqrt(o_i[v])) # Perform a second test with deblending disabled. objects3, segmap3 = sep.extract( data, 1.5, err, segmentation_map=True, deblend_cont=1.0 ) objects4, segmap4 = sep.extract( data, 1.5, err, segmentation_map=segmap3, deblend_cont=1.0 ) # The flag will not be the same, as the second extraction does not test # for deblended objects. objects3 = rfn.drop_fields(objects3, "flag") objects4 = rfn.drop_fields(objects4, "flag") assert_allclose_structured(objects3, objects4) # ----------------------------------------------------------------------------- # aperture tests naper = 1000 x = np.random.uniform(200.0, 800.0, naper) y = np.random.uniform(200.0, 800.0, naper) data_shape = (1000, 1000) def test_aperture_dtypes(): """ Test the aperture extraction of multiple data types. Ensure that all supported image dtypes work in sum_circle() and give the same answer. """ r = 3.0 fluxes = [] for dt in SUPPORTED_IMAGE_DTYPES: data = np.ones(data_shape, dtype=dt) flux, fluxerr, flag = sep.sum_circle(data, x, y, r) fluxes.append(flux) for i in range(1, len(fluxes)): assert_allclose(fluxes[0], fluxes[i]) def test_apertures_small_ellipse_exact(): """Regression test for a bug that manifested primarily when x == y.""" data = np.ones(data_shape) r = 0.3 rtol = 1.0e-10 flux, fluxerr, flag = sep.sum_ellipse(data, x, x, r, r, 0.0, subpix=0) assert_allclose(flux, np.pi * r**2, rtol=rtol) def test_apertures_all(): """ Test that aperture subpixel sampling works. """ data = np.random.rand(*data_shape) r = 3.0 rtol = 1.0e-8 for subpix in [0, 1, 5]: flux_ref, fluxerr_ref, flag_ref = sep.sum_circle(data, x, y, r, subpix=subpix) flux, fluxerr, flag = sep.sum_circann(data, x, y, 0.0, r, subpix=subpix) assert_allclose(flux, flux_ref, rtol=rtol) flux, fluxerr, flag = sep.sum_ellipse(data, x, y, r, r, 0.0, subpix=subpix) assert_allclose(flux, flux_ref, rtol=rtol) flux, fluxerr, flag = sep.sum_ellipse( data, x, y, 1.0, 1.0, 0.0, r=r, subpix=subpix ) assert_allclose(flux, flux_ref, rtol=rtol) def test_apertures_exact(): """ Test area as measured by exact aperture modes on array of ones. """ theta = np.random.uniform(-np.pi / 2.0, np.pi / 2.0, naper) ratio = np.random.uniform(0.2, 1.0, naper) r = 3.0 for dt in SUPPORTED_IMAGE_DTYPES: data = np.ones(data_shape, dtype=dt) for r in [0.5, 1.0, 3.0]: flux, fluxerr, flag = sep.sum_circle(data, x, y, r, subpix=0) assert_allclose(flux, np.pi * r**2) rout = r * 1.1 flux, fluxerr, flag = sep.sum_circann(data, x, y, r, rout, subpix=0) assert_allclose(flux, np.pi * (rout**2 - r**2)) flux, fluxerr, flag = sep.sum_ellipse( data, x, y, 1.0, ratio, theta, r=r, subpix=0 ) assert_allclose(flux, np.pi * ratio * r**2) rout = r * 1.1 flux, fluxerr, flag = sep.sum_ellipann( data, x, y, 1.0, ratio, theta, r, rout, subpix=0 ) assert_allclose(flux, np.pi * ratio * (rout**2 - r**2)) def test_aperture_bkgann_overlapping(): """ Test bkgann functionality in circular & elliptical apertures. """ # If bkgann overlaps aperture exactly, result should be zero # (with subpix=1) data = np.random.rand(*data_shape) r = 5.0 f, _, _ = sep.sum_circle(data, x, y, r, bkgann=(0.0, r), subpix=1) assert_allclose(f, 0.0, rtol=0.0, atol=1.0e-13) f, _, _ = sep.sum_ellipse( data, x, y, 2.0, 1.0, np.pi / 4.0, r=r, bkgann=(0.0, r), subpix=1 ) assert_allclose(f, 0.0, rtol=0.0, atol=1.0e-13) def test_aperture_bkgann_ones(): """ Test bkgann functionality with flat data. """ data = np.ones(data_shape) r = 5.0 bkgann = (6.0, 8.0) # On flat data, result should be zero for any bkgann and subpix f, fe, _ = sep.sum_circle(data, x, y, r, bkgann=bkgann, gain=1.0) assert_allclose(f, 0.0, rtol=0.0, atol=1.0e-13) # for all ones data and no error array, error should be close to # sqrt(Npix_aper + Npix_ann * (Npix_aper**2 / Npix_ann**2)) aper_area = np.pi * r**2 bkg_area = np.pi * (bkgann[1] ** 2 - bkgann[0] ** 2) expected_error = np.sqrt(aper_area + bkg_area * (aper_area / bkg_area) ** 2) assert_allclose(fe, expected_error, rtol=0.1) f, _, _ = sep.sum_ellipse(data, x, y, 2.0, 1.0, np.pi / 4.0, r, bkgann=bkgann) assert_allclose(f, 0.0, rtol=0.0, atol=1.0e-13) def test_masked_segmentation_measurements(): """ Test measurements with segmentation masking. """ NX = 100 data = np.zeros((NX * 2, NX * 2)) yp, xp = np.indices(data.shape) #### # Make two 2D gaussians that slightly overlap # width of the 2D objects gsigma = 10.0 # offset between two gaussians in sigmas off = 4 for xy in [[NX, NX], [NX + off * gsigma, NX + off * gsigma]]: R = np.sqrt((xp - xy[0]) ** 2 + (yp - xy[1]) ** 2) g_i = np.exp(-(R**2) / 2 / gsigma**2) data += g_i # Absolute total total_exact = g_i.sum() # Add some noise rms = 0.02 np.random.seed(1) data += np.random.normal(size=data.shape) * rms # Run source detection objs, segmap = sep.extract( data, thresh=1.2, err=rms, mask=None, segmentation_map=True ) seg_id = np.arange(1, len(objs) + 1, dtype=np.int32) # Compute Kron/Auto parameters x, y, a, b = objs["x"], objs["y"], objs["a"], objs["b"] theta = objs["theta"] kronrad, krflag = sep.kron_radius(data, x, y, a, b, theta, 6.0) flux_auto, fluxerr, flag = sep.sum_ellipse( data, x, y, a, b, theta, 2.5 * kronrad, segmap=segmap, seg_id=seg_id, subpix=1 ) # Test total flux assert_allclose(flux_auto, total_exact, rtol=5.0e-2) # Flux_radius for flux_fraction in [0.2, 0.5]: # Exact solution rhalf_exact = np.sqrt(-np.log(1 - flux_fraction) * gsigma**2 * 2) # Masked measurement flux_radius, flag = sep.flux_radius( data, x, y, 6.0 * a, flux_fraction, seg_id=seg_id, segmap=segmap, normflux=flux_auto, subpix=5, ) # Test flux fraction assert_allclose(flux_radius, rhalf_exact, rtol=5.0e-2) if False: print("test_masked_flux_radius") print(total_exact, flux_auto) print(rhalf_exact, flux_radius) def test_mask_ellipse(): """ Test that the correct number of elements are masked with an ellipse. """ arr = np.zeros((20, 20), dtype=np.bool_) # should mask 5 pixels: sep.mask_ellipse(arr, 10.0, 10.0, 1.0, 1.0, 0.0, r=1.001) assert arr.sum() == 5 # should mask 13 pixels: sep.mask_ellipse(arr, 10.0, 10.0, 1.0, 1.0, 0.0, r=2.001) assert arr.sum() == 13 def test_flux_radius(): """ Test that the correct radius is returned for varying flux fractions. """ data = np.ones(data_shape) fluxfrac = [0.2**2, 0.3**2, 0.7**2, 1.0] true_r = [2.0, 3.0, 7.0, 10.0] r, _ = sep.flux_radius( data, x, y, 10.0 * np.ones_like(x), [0.2**2, 0.3**2, 0.7**2, 1.0], subpix=5 ) for i in range(len(fluxfrac)): assert_allclose(r[:, i], true_r[i], rtol=0.01) def test_mask_ellipse_alt(): """ Mask_ellipse with cxx, cyy, cxy parameters. """ arr = np.zeros((20, 20), dtype=np.bool_) # should mask 5 pixels: sep.mask_ellipse(arr, 10.0, 10.0, cxx=1.0, cyy=1.0, cxy=0.0, r=1.001) assert arr.sum() == 5 # should mask 13 pixels: sep.mask_ellipse(arr, 10.0, 10.0, cxx=1.0, cyy=1.0, cxy=0.0, r=2.001) assert arr.sum() == 13 # ----------------------------------------------------------------------------- # General behavior and utilities def test_byte_order_exception(): """ Test that SEP will not run with non-native byte order. Test that error about byte order is raised with non-native byte order input array. This should happen for Background, extract, and aperture functions. """ data = np.ones((100, 100), dtype=np.float64) data = data.view(data.dtype.newbyteorder("S")) with pytest.raises(ValueError) as excinfo: bkg = sep.Background(data) assert "byte order" in excinfo.value.args[0] def test_set_pixstack(): """ Ensure that setting the pixel stack size works. """ old = sep.get_extract_pixstack() new = old * 2 sep.set_extract_pixstack(new) assert new == sep.get_extract_pixstack() sep.set_extract_pixstack(old) def test_set_sub_object_limit(): """ Ensure that setting the sub-object deblending limit works. """ old = sep.get_sub_object_limit() new = old * 2 sep.set_sub_object_limit(new) assert new == sep.get_sub_object_limit() sep.set_sub_object_limit(old) def test_long_error_msg(): """ Test the error handling in SEP. Ensure that the error message is created successfully when there is an error detail. """ # set extract pixstack to an insanely small value; this will trigger # a detailed error message when running sep.extract() old = sep.get_extract_pixstack() sep.set_extract_pixstack(5) data = np.ones((10, 10), dtype=np.float64) with pytest.raises(Exception) as excinfo: sep.extract(data, 0.1) msg = excinfo.value.args[0] assert type(msg) == str # check that message is the native string type assert msg.startswith("internal pixel buffer full: The limit") # restore sep.set_extract_pixstack(old) sep-1.4.1/tox.ini000066400000000000000000000005351475511417100136300ustar00rootroot00000000000000[tox] minversion = 4.0 envlist = py-{linux,macos,windows} isolated_build = true [gh-actions:env] PLATFORM = ubuntu-latest: linux macos-latest: macos windows-latest: windows [testenv] passenv = HOME deps = pytest astropy allowlist_externals = make commands = pytest test.py linux: make test macos: make test