sm/0000755000176200001440000000000014564167562010711 5ustar liggesuserssm/NAMESPACE0000644000176200001440000000362414563473447012136 0ustar liggesusersuseDynLib(sm, .registration = TRUE) export(binning, britmap, hcv, hnorm, hsj, nise, nmise, nnbr, pause, provide.data, sig.trace, sm.ancova, sm.autoregression, sm.binomial, sm.binomial.bootstrap, sm.density, sm.density.compare, sm.options, sm.poisson, sm.poisson.bootstrap, sm.regression, sm.regression.autocor, sm.rm, sm.script, sm.sphere, sm.survival, sm.ts.pdf, sm.weight, sm.weight2, sm.surface3d, h.select, sm.sigma, sm.sigma2.compare, sm.variogram, sm.discontinuity, sm.monotonicity, sm.pca # The following two lines should be commented out for CRAN release. # sm, s, plot.pam, anova.pam, summary.pam, predict.pam, # fitted.pam, residuals.pam ) # These lines should be commented out for CRAN release. # S3method("plot", "pam") # S3method("anova", "pam") # S3method("summary", "pam") # S3method("predict", "pam") # S3method("fitted", "pam") # S3method("residuals", "pam") importFrom("grDevices", "chull", "col2rgb", "contourLines", "rainbow", "rgb", "topo.colors") importFrom("graphics", "abline", "axis", "box", "contour", "filled.contour", "image", "lines", "par", "persp", "plot", "points", "polygon", "rect", "rug", "segments", "text", "title") importFrom("stats", "acf", "approxfun", "as.formula", "binomial", "df", "dnorm", "fitted", "glm.fit", "model.matrix", "na.omit", "nobs", "optim", "optimise", "pchisq", "poisson", "poly", "qchisq", "quantile", "rbeta", "rbinom", "residuals", "rgamma", "rpois", "sd", "terms", "uniroot", "var", "pf") importFrom("utils", "menu") # import(tcltk) # import(tkrplot) # import(rpanel) # importFrom("rpanel", "rp.plot3d", "rp.do", "rp.tkrplot", "rp.tkrreplot", # "rp.radiogroup", "rp.slider", "rp.checkbox", "rp.control") # importFrom("tkrplot", "tkrplot", "tkrreplot") sm/ChangeLog0000644000176200001440000000560714564135351012462 0ustar liggesusersVersion 2.2-6.0 2024-02-17 Minor bug fixes. Version 2.2-5.7 2021-09-13 Minor bug fixes. Package can also be installed when the tcltk package is not available. Version 2.2-5.6 2018-09-27 Minor bug fixes. Version 2.2-5.5 2018-05-06 Minor bug fixes. Version 2.2-5.4 2014-01-16 Addition of sm.pca function. Extension of sm.variogram function. Other minor bug fixes. Version 2.2-5.3 2013-05-11 Addition of lwd parameter to sm.regression. All datasets given their own help files. Minor corrections to help files and sm.options. Version 2.2-4 2010-02-26 sm.ancova returns the boundaries of the reference band. Minor corrections to sm.discontinuity, pause and help files. Version 2.2-3 2008-09-24 Minor corrections to citation(), density estimation in 2d and 3d when rpanel is used and sm.discontinuity. Periodic covariates allowed. Other small bug fixes. Version 2.2-2 2007-10-09 Removal of \non_function from geyser.Rd. Version 2.2-1 2007-09-22 Minor corrections to .onAttach and sm.options. Version 2.2-0 2007-09-12 Version 2.2 released. Version 2.1-0 2005-09-01 Version 2.1 released. Adrian Bowman takes over as maintainer. Version 2.0-14 2005-02-07 Improve messages, support translations Version 2.0-13 2004-11-11 Update sm.density.compare to pre-2.1 after bug report from Deepayan Sarkar. Scripts trwlgam[13] now work. Use "console" pager on Windows. Version 2.0-12 2004-09-04 sphimage used a[ind] <- b[ind] with NAs in ind. Added NAMESPACE. No longer use .sm.home, but system.file. Use package gam in scripts: trwlgam2 mackgam smackgam now work. Version 2.0-11 2004-08-04 One .Rd error, data -> smdata, remake INDEX Version 2.0-10 2004-07-29 Remove references to packages modreg and sm. Make provide_data more careful about where (as 'trees' duplicates a base dataset). Version 2.0-9 2003-12-18 Set seed for running scripts. Version 2.0-8 2003-09-12 Avoid 'nlevels' as var name. Version 2.0-7 2003-07-18 Documentation improvements. Version 2.0-6 2003-06-03 Avoid generating lty=NA, use PACKAGE=. Version 2.0-5 was unreleased. Version 2.0-4 2001/10/10 tree.q did not work in R, minor improvements to documentation. Version 2.0-3 2001/08/08 QA changes, e.g. T -> TRUE in scripts. Version 2.0-2 2001/06/12 Many help-file improvements. Version 2.0-1 2000/12/08 Version 2 of sm, sm.rm(optimize=TRUE) works. Version 1.0-3 1999/08/15 Moved .sm.home to package:sm, made ts examples work. Version 1.0-2 1999/04/02 Modified for 0.64, using R's chull, jitter, inst/* mechanism, data/00Index, file.* functions. Version 1.0-1 1999/02/20: sm/data/0000755000176200001440000000000014301463453011605 5ustar liggesuserssm/data/mildew.rda0000644000176200001440000000065013773656220013567 0ustar liggesusers r0b```b`gd`b2Y# 'fII-g``xUP#>.qtK-.50waӇOHG#n#C/d<[v'.wzXwZ\wjZBVB^B*b[vq1Dl _rzA:j3 pNcDm Kh9b _:̻p1q:;KB%`4$a@v+u$ꡇC0O)9 J~ Խ"sjsּb CTCJ ,#8*e &p)egY0'Df椠+9'. WJbI^Zh9`^O ;@;sm/data/britpts.rda0000644000176200001440000001144113773656220013775 0ustar liggesusers TՕǛW]Ԙq_ШIMw_BFcT51jtK똸hp4u_FMpЩܞr|~=[644l5a_Gψ -ut]aT:Y{}[Ͼж79϶Ħ6ܺږoߖ9}/Ͼ;?~m[lj//gҙo]G_~)}&ԉW!/~comW'6ݺ{Xڼ;& 9D+^講&E ͳO:G '^~vmzꋟgU{'{S_=߲hsӻsNۄ[[[Gcɛ9ll:WySwj;lmgq8mSweDӞ]?T}e;jS8;2ogV8frm[gj[$ɶlNcs?w[.|e>t de}Ʀɣ4IAkMhSVWW 렝vic;#>~m'":Vۊ[QM9xn 6zz6ۦh޳ģUpic7b;^)x]1moVY'7("&[${ ^K78Na.{\㴳TݟV{[ٔMC Η98 ~gn_m4wbJL`6qk dWu?`. ϧm8m2M+lzZM&?|GBxvp>/ژUڶW-<6gM+qԯ&G4Q6Lg#>5pmbE3xkঙ5&YkF\uf=?|JZo+lyn';b9˶O1,mGAm䝛tΘ86ޓ$ߓ1 $R̟iltklImS7My*z ù3.4M4qOew!TE<޵WǦE8[3?6;OCBlS_?guϤa~F֟f=? k%ѕ8 MWW :LRܫY͢[Kzͮ}ǝ蹬ITvOn?Y3úx8|;M2??QaY>ƈ~] Β{{"ۣ^͑9x6GO9ΓUCg5^WKe.J,!,.q|?K璗9u[ }<'qʃr;9Q_sŅc9',z.B_ҏed= xүdgys[i_:a4qˠK䵳3;#Τ}(J;~b&EoJ$L tiU36vVr: ;ϽD\ Njɫno{Rw?Ǹ}O(:?KԹ(Q}x?;K?%F Jwqvy!jKܷ:KVQJĽD-ϥsIޒ/%xtīD Jw3l_wĿ>xщw׿FЇ}^EYD_Q:ks+$>8ߕ#Q R ZBW; /:䕿H'_|ꧏJ?O{EܓK\D?ѵ h|/RgYݤ^{wĿ}GǸq>C _?uw>G>ǂwc9X^'‡^p /'ҏ=z=;p,I˽g( NO$zR$뽀c(I<}7 E!9u;W', ]' ߕsR a{4z ;AC^LZcq@*N?5܁sا|}H1cK͇1ySi^yb8._=Mcb}ѧ.LQ`Ҍos3 r_Rx7ȼLcpwxɃJ N*.yY\/Sg}Q+|P/|թ^(qo_CbTE/ ۍY*vw5J;q}ՒדۤO>]KmsUJ |7%^n/ۥs9j/f GnipUKZY_?OũZW?Uk>tޡVyVĝw'|^%ϫxSBO-Wd^OP9G]wjɣ`  oox 3?b=9r^SGOp!纄)_]~{}}w5]+aԗ`1/2x W@<Ex<+؇O}w@;>j;VٿbwWX7N?t 6€' 793P?nQ9x4Nǩykxy׆:g;3Pwo?;xπ?k u΀#xÀ' `6[6TǼԅpzAuzν8O>NAGg;}2']7:]@xР7_}֐߆|w<5𻁯 z<~WC~Sƅ]:ut·N㝿Kg^:$OCܭ?TW[Owwz| ɓ| Ӑwgp3'z1ßǍC /go}_yɿ~KH|xվo9y/׿h}mG!:'js ~䉳ڇ~C_oH>K?^o| Pwʾ8u}0y>Yǣok;P^F8wf?~Wnq;W<3FEПx?>FOcq 89zC8r:Hu}iyU')\A/q@Zx/wt ?:nCӇ;r~CտUr2L;ȧ*}{?t}J=R/qC}xRߪ^ 7;AqNC`@֟ПoNs>e2"\B} ku( ]+Q} W#d_>AHY/h5?>Gy?PVx8ݯ=<} w/ߓPC9|۔{}}Ag|.0.p7:=>q_U^SZgr(nCt~u@Ѿݭ4 /j} wjȪ'Toթ;7Ng/3CC%Uw:Ν{sgtG-'ݯ!RCPߜNRD oN/_NoN7U ӟENoV}NN瓧 "cNv$,"C2{Ή?dC=v>l=niΘ_vsNU눖_ly Fd2sm/data/airpc.rda0000644000176200001440000001161613773656220013410 0ustar liggesusersy\u{Ui$ 6qCCȽ1fsHY88ĕr8^7BQ( pdbF#i}ugz&1 DMա{;n7\qӅ7F"X$0LFcϬH-(vwͮԯ'|n>'[>=_ГKWͿyM~7mv?Ɖɾ;q|[{齏'/xR+=$\G?j~^V5_WIzn+:\{w|DYWElUkoʫ(/ʋcR:t}n\ޯ\?ٯZ\KyW%dŦk~׹R_A-pԔUgnx/_޾1J~&n|i۟g/&k cc ~N_9@Q|Qx?O zw~.YLynL>~cWU\/'-{}ukLSj]# =ORMiuVj+0]._猻<}O8*t>Nl.> M⻥DK>"ubcN;\:\m>qz1_H~>y^!5w$L{|L:^+C7v~޺Ƭnįax.}\0[nUX.a#&+^\V&p>"ճ羪|d_fuO\+I}WfP A|ai*x$40< 7#ag}?McQٟɕovͮ<:2k;zzo ?RA:^t0 W$z_g:z+H=ԱzpS~񻡾ual?å4zKvZZ40OOv3oZl7IoW_ Êg]MpݬԽ+Θf'y"mSu'rxO*5c &G,߳qpAxZk#E^>au <~{6de(F?3#uJgVcaovI?<m-SLݠI7C]vwc+BǙ'enɂR6?Os6mTƸ~ꢓOϭOO!ɓsC7?GON2'fԇƩ഍߇#/LQo}@~Wu{gH_*3#RG:\u9ʾ 5A;NK,. si3L̀3.#|(Oj;$hY=QJ;ɳ< ~g#/K~ۥMgj:Z$_},MCO[9Uypįyd|2m%Qf[Ւ_B)I4klK!4V徛O^h|i YD376'#xb%x}T>g !ͥǤiϷ3H=v$Yoϒٞz7v\ɜ0+u`cwk#?aLOslBi#Ny[+7͂v׾+3c›!LYx&]H.# n:! }ԗമJ_&Ͳ3lTWH~y]tFXhJ౭b>QG%6*xfkP%o||5b!u0GYG\Il#ul7;9ssj䳭7G~}0uK\l[!>J>u䋯>i6Ow >4u>Sg~hż^?g_fY9(uFN|N*;Z dv)8޹ZMgE2w'i6r3NW^!+Du2p 4³|DnZ6[91+-2~pbEǰu \V ?48ՒP'QrEyGFͲNWFFO(ӧƤNP(y<@E-9'~! N'?#6PQe>P=xAzO)q3#S.G\naVI e>sT/v9Szd.-tW8pxv~y=)u9z:j 1OL[ˍ-er_eE]@楢<(cT\/sumcףC#›ɼdNM2Om!ϡe]ffG\uu=(sك.=ףyOn#?'ӂ@}xQF> 4}?K2d9З(>@V=hz@m^Уr_m>oټ%?gK6ֹq2ǠV[è EoM?F`4_n[!x l'ʣQ}<{.ϜNoBy{o<GZw'QaZ!x­toZcR^$\<>N zչ:Od Ju}3 1qUFz srT_> 9I鹽 ~3/ujm4#]9xUW#Dd9!xΝynl ڧ\u4?B~t~_f>@2ϠKNk?3>zƨ):Q0>yF ,.϶FoAiR8x;)`s&zyO|qR?6J&#=Ojs>y459-/78:5O/xk]Z@:tNt[Coq%/؇Ml<聿[Gz=B5Y:u>sQ?k_G^ݷ=;ߐYW5p1zw[Imc>Ν;nKީ{MuS+F7,S@/xfh^->-9̖̖N=bhgؙo NMy]'}7soU;8켗a4—`<h'`u_vqڟfq٣e>08װ+h}h9U/~5G]{ev=vƲ}<{n=i'0vN,~NIfVܽ;.xų y;VwcgK~Ε%W~~yZUaYu*ʴ=j?33`th{Csm/data/aircraft.rda0000644000176200001440000002500013773656220014075 0ustar liggesusers}yxUչ !LB!dNDBHDQ#j8R8"j8UTp:ZkRVow}squ|o? S3~j׋\i]ϺoFR>zuz|Ɇt=-a ߷={L_wXE 'zt$OZ=?LzÁ_fp[ҟ֟I.>Ǟe4NG>1>渳)߁[qM%qwqc==k?%(/x9c/6?DZ?eQzҎ66fNG%k]qOr_Fdw_N}\D^ 8=)bYByW|ˬ_5*}/t-=4]K{8t}ּm|Ů8v=rrލKMų2׿.v y׻h?tf^*;ܗ.J>'/u88~+;ޝ\ŷH7q޵oqZmNWuSn+W~{nuIrK?gEr\ݐ>pRyMdi:CլS:οMb(.1nڧӯ/fO=_O;NwW{Z#FyS6:]>ѕ_O{~\zY~WLW>~xw-=b{^O?zYlj#u_֯^.jF> /JP>gwK~D*\?}Yk=yk_tɷ:%+zNz}co +dȹzO)\kgv[Ne8u׬iʵ|ʯI^_K|=et\Mk?4VS{c1 |~ 骾_Q5}(7,I`ׇ۸W5}0|`λ/Ͷ%u67GƘ}Lj+^'v~nqG()M~|4qj֗Pe g3KX-]/ڧ;5|qg3qd'c!o+f7o?\k(_fMk%qd6zo=?oK$HӇY/z?6[/;=慅'=_ob=/tfs/4=/:{P&᧔đkXQq'Ŕc|‰u&R?җW=y:\!} ?O?J}S׊3|w:e:wKn![t^mu4~.Hu#er5zDZHN=oD _%ቦ n$2:USdDKz|Րn ]%68ľ\6xo"qs;5l?ϤE:.[fػzeZO]s^5{UqQuWrh$ 5}VL_nJ?XR?U_#[%3 #Dc*=/.ک~(;Ų K]UoXbCw|bTntzz(xa>&MjhZhQߺXC>Grє&?^Ÿ*>o~4^J>EH|&\'헛\-=%PO^AY0|]•c7C(G%+;?|vETNc|G z$R*f4dQ;T59>=/ $}œ*ƕ~,":_Ӻ; #?r7c_O]䇲cp[uMfr{[%mۈ7_NAeזLHZdm Q/~sDmSW|r^NpƽT~]zIQzmR]k-&QNE=&dzFLPZWq{ɌA;ObxU#*Xu1Iz!S>=H俲lz‡6fޑHOub-մ[/|Swq}pk3X{$M`< oGI|V>df٦Cd>@}Fh~ZqyU[IoG׶~NE-Kz y zdD~JNN[ٳJ3OBqRMUO18_<8!|hWk՚OUnnMo]eA~(_;zh_S몘ٵTL~GatX 7d d&<.w1/,7QL$'g\Nmb_<}ߐ'Ϋ`>OO(HxU[׾z>k++O~)p{3'N7U_ /]sĥ1Wm1ooPJ;u?ڭuɯ| hR# ґ޻h'wS|qHVջCXx"LKWpD}6S.=2FQKGhERu8+̎7x.7=O _S8D?2yI2EdgOk_}ъy_L}7s}ի70oh8W:^0(1G>9ά:zq5r]|ѮSn%2kXJm!s}:!OUtW&OF,JUU3d/V(rVpBxTT1O Q]L|mzbO0^~PzSRNy+U0WQN=_̧szّג,>+!]_ފB{CP%ԻQPnyqkr+Rt Por*OVdȫ}0e%ڧoz⨜TOH hc|(IPQ !8ɩ*Wse]_G_ozKӚ UH? zu qj_%'] U0oYW+i:kx|xzϠ:WmUs-2k!}hJq+\oWzSq ɣ}p|8i,{驖=ޓ+Oq|޳~*o_RyBʣ1ā}^ (jhWλT=-zGWKU/S~c-IYA ǧ6_^Q\Tg~^yEOI>oJu^xB \~H6Q ʡ-f{2ؕwsb̙8 h7q}w zJ r6{Z@Lgj s ; _lQѹ!r/pn:kĹcYb~2_LD=~ )t 1'/_oL4"{X<3$~Z,K.?w7 upYރ~1{9W }78:E~^ F+ eMֱXqWY_Ny y3w(|ݹ)[XEL5"; ? ϼuv]|:xh^ O!|op*D9< :sSW O 2y MWabЊßՠ?.{Ux{ } cF7?!3d?@}NכN{|v>0,5!~q g=2anx ߜ2s6_/^gU|mWyL3}?bA_%|:qS\ DsuMo yv?aJ&`6TcX rgNE!W}7;v[?Z 5…Kg5\"opkcdžxشx;> n~| hu^@-S(Y ݯud wŜ8tǩ.uA 'YyU^낅݁揝 w˷@].89z `b`&xY +S8~l ;}(c\|8k+Յ{#+ }|D bUb(cςlywfء?j'|$y<yK \ja~nAhVGǹW;w#}n.ڜu8:2O|2Y{ |jkF\l& _c>/b ʅ/ ^a"Ы}w\R}qC;s|9`aDt/^W &dXla1`(l9~4q ܨG.\J@ 82]{!| > CBe]^~a1.]0z#Z$zmt:1w mg>6{>>wG1Z| x ۭ0=D]sE1p;-6vyy?*t!8`;ohs"$`-'z_%_{swj w%'-:ԹYgon9C2ڥ66qlt`{W!('/)?z5#?ȣb6@ ,}df$Eԭ\ F#@ A 5ZI~0>[ Pc>>hؙh'yz|gk'>@;Ə{4ZPU|h-&{h6 v1&y]֟=OM ^Cߒ>j &m1f D?L{%_7,6 6?O"#yZ)MςOЀ3;2~2zo2${4%@ p x cfhDn6%n~S^?~vBcI/Dc76!6.l|,rP91?Sfp?H(7$MH`5n"Ы{O"oA!mz&Ѱ0oF[sȃGd$qE- ya=NFQSf"PEQ3WYƎ =cCv@'Tҏ&9;FWjG1-c6p]Mm%-SolQ5z1$zt(.ZDr(/p7zz27# ClQ`Jx>C9V\#C,.mouB V\9!I_Ͻ}^,@ȍNjJ;7γxAۃq r1^=fz {$2e!u^g`|!&I}N}A*;W-369Iρyxg1&Wy47@g!|:4;?t_}xqt !CQ똃,E6N/Y\~ǮAWm['r}:[ ؃!riC9ojtő.(7}gI ~_G<,O&ANu3KhqIry/}Ol=a8Q>|g1\gVzK\osrLgynbJR;NR-|,&.7_xM^}H "OӎboA]=k̴ܞĽo6C̗yRSO@g_~cI>Ycy)AI۹Iuv1lMO7ɷr߼lwdg]lyǜ(^m=y ;u+__̗>3+[j O+>;/NVy}ea_[F5_տ߈2~ý7Yc䍬+N=?sXhzgɵ?+Κ^;hq}gϑuno#5Y)"~ıw#&LuJ0A} `+s%kq`YǦӤѲζ3_r_z.=T vNZtz6rSRw\8w?צGo,p|Ƒcwn4B _V|흍0d<-{cO̧=-:#{_SzCObGZE_Eg;C{l_+-VduOƫ=xĀI|̼c( 9?{Oa_#xx|K!jA^w {}G~ZhML:B~`_7vF _#k,blE-#k |a(:_œwcX?u02;v^[6!ߠ?<Mm 1_J߿l/^*Kw-~ [D{mYt{ĒM&[tQpMb`Ն>V= 6`[ 1EGwn sc6("/1牠+U4tdyRg9Wdo^s"VVԚ͋ {&#'u#/-J/o/^œ~}^̾!#qi"91{CVx:h#$.dc=ѱ#>gl >>4Qtsа8hk!Pv_0o^9G4/#t39 4x4s5^]O_!_ e'3{sm/data/bissell.rda0000644000176200001440000000043313773656220013742 0ustar liggesusers]=N@'kI,A(hѥ)JEv!G2AZX!B@T6'W buJtl Ǡ{\Z֊y1ó$:3վD,#+*WwPc~GU7\UA=FlT>+VnPZ3pCA-ƮWZ1ܙZ_ܝ%x-C[Ş)kewa%4o5+z~߭ix.P(e^lٸ>}eUF8V`"0fs=JVi4UʕfJszXaêUeׂsm/data/mackerel.rda0000644000176200001440000000730313773656220014073 0ustar liggesusers͚pU/ BH^^VP  HQIJ kk]2ݱnqtԁ+u-k=yS7}yι,էʖ?f]\WCxGlkw. AwWWc>rawǬ1A/> &=*?%L T9"T$L߬T٪wL hXL 웧-9}u~ɭ)ÂNLIT_ogԿ`k[%;MFyO c;R۫G'?f\)vO5ե37l>,^myP{=Umw:~T3O.P[_|%*ϹCKZ|_7U/j|v '0KGԏdt;LW^_4D]=_/EϽLyXqʛUK0`/*'y:>{\|GNgo|roUVh}(wSjojgC.S~k Pil%E/ v7&}o:xLy)e_K-5eqmKek<Lc>ϼD[=DEX.YM7~ N'З\}yj8NqL> jծjW%tr?o躞܌U_]XKfi70kSc2Ӝ{| ~.*d߹I[W{am*o:rQ5&>eT>3~b(z/֗yWkys$xa]g~~PO}WK| ISf|v& %뉿}-4^R~/99ءDО}NB?g?tܦoD߮ldo>lMEZȉNLCӜ,gMCp}=S}dI}~3;3﬽;iO3Nr[{ql&in7o3v(덳5_axku2r?7ڱs!>&PFc!7go>ze?[ǼN` -!q~hkx)wqs)lIJ\X{Kh/^L??r?ݩys8M^1o_P.;T)2fڣcN{08'Mbƛ;JP,QwF?{#]N;Ly 'rYN} ;bjľ_ESIӛ7K4K\rx{OjHUJx</yO9/rx쨤=W܌v/m<^CO{ZqƧ/=p1 MGȾ~-Ō+A͋2RƗP.Ql~!ymݰ~6>cml6ap[G0l={Iz6~Wa1m5e B0d;䧵G|0:;v{(XG}>qɧ7Wo{qw|]/:[hB3B'粏tI>'#rLo;uֹke-KB7*tB/:CDӄBW ]F?)*۝.tB]sE˽\ynP  'tpйrO:3{ˊ.whQpwU|4KnDqB ctПDIa1Bǫ_Yh9q=/~y6'emRLM]hb{WBo M` ̺Lb}e\dv"T.}XHp <.3^ǡBRMZNuE.]%BGݤ9-EV|НR':^NU|UB`~+rk$O Iސ;%zygDVĞb2Ntew⻰rl~>%bߡcJ^f6J۱|.b]C֏)[ zGLעo2璟 xw־ma+m~5O\]y*a+`R"Yj3J 5~ݹI)nٺ7jΪq6ŊKM\q5;؋Pbp7ʷuzdz3`5V\^qI_~vWݝ*i$ߤF8o F(>B~WnQհ'&AjK~L<`qFor5ycޜqF=ʆMdt&&&h{@Yΐv+.Vbw3c`5|@~ը.w6&؝EU~vwaͿ[*|G_;;Uo-4/o iG7.L@lg ~c¼MQi m88ڷJ y&F՛ ;zυbI-oyo7{s`b|ֱs|DH%'I\̟˛od>~|cބǾyTaPo4u!~f#oxGMB+w4h|/ͣrn}#O~A}黒}#'qFZ7wZ~rGh찷88zI#r[#Grы|Bį{c̾T7UCԲO>ވ\Y3]gҿ!'.6m^s|s,/yؓSg?wџ}7:={ݏ999c19/qzK]ܗ'BvNϐ\Ϯ ß)W8=wVg]o}.~*nghAS }oOl_A_vx/~xO7I}ۮtxT=};Gz~>>m~!y2ķNsڸqvzP3ەm~?:ϹIBe1? "o0=~=8 Lpzܦ*;ߜeKV}Vv߯m٪ū[WS"/Um#9m銶׬l3)3Z/RC,ho]eXeխB{\~(3ZVKo#l,sm/data/smacker.rda0000644000176200001440000001025113773656220013731 0ustar liggesusers p\eoy7ͣZWylvIKٿim&m*Җb>&qڽW-z3W=ne~ qY'sO&RkMZ`GcG~+Ȅ׵]Y|/5i >ھ'$Qhs1+zLEccv}u~+g>f@;}춍Z?t Ώ]ٺa+G[=B.|zlN)=`y۹%¨i3C)fi7Oӷ3?SyҳAqpAbvwd?y(x<<}?Tzs9)EM 9P}286)k͔g9O>GW:cC|4qhYf]6z` }>tyc\Of#Xd;؞I>M' }Οxʟx>H7k%ހ~<Ƌ^);%'|9cy~/cwFǧ/*W>2|~<OI7&~SkAYWL-"ފ:XϏ kyZGS ~?Ч=5_?rqݏTWW{G+V;k^s0.R+#N44>YWκrM4M{!NLGӐ[חz?NxxU}45^UWxEb+($_꿩Z5^>\4~l$ t/)%h'Y\>&]1A:}_{֛~rR r7^d&wc3^`x]WfJ\xˊ w ]'gk_.5gjBq V +ezR˾֑u[!< k\`Ms+*P+}7S(`P%}$: Y+0"pi ǿR~ ' !p&].Dj+MgbbKIGWt)ڢ͎S,<,|w 8WlqDCW;wn`2y9ۑs٦$uhquM S$>#S^ye.Oh$fdm0C@U$~*Kt/z޹-sٍ0[z@:2\|~2ye1j| 6x.ȾWg:UovlKZ# (ZgsoQl"qP yS`YT!b_D62.(n7"g;Ks 8k8#?SW^3a1se\ϻ9k||/C 霥3X49 5wY❵`*'S׀AW ׳|iL/a4&ċ{S{|}ƢRJsoS!_5=e vkLzکk0 3U](o v[}i7&L&; 荂C9=tqRFY}0"' sޫa`ʽރAԸĮ[qn$^د}Bž-m>-;;ke(DQ${p^SU QB??OțF1<.q-]G\V3J݈kil>}|{jcU\:6wjk5Zom7D<+]w n)uHLH 1U ΃J|^OϏ:jl\G/_MY~3v: n|efzNI y=*qĽg ;UUWsVxgur[vE/= u7! B9/"5B}B6X*B#pw 2{>t!O̷#u3k?Jrf@*33nd\ 0ՏGTnp q/`~!zǑ3܍zbĻ={dJZ˸ .}f 1S}SKźN#4+P?u/aN|6y,vX̺%س{&A[B߇\z%1g#x܎ 턮 9{|^:^?}1?x& z`og rc4/[+|sCw}gח_z/c>n%.Cș`̯؎}c̷'ʾa fv?oָCwC^ ]K}s#6+{ ~]BGRgfܿR>yl8L%XƟq케 51k!O룮O'~ecxi\-y?qG>Z7ۃ7G+Ӻ><>&w~=xרWWj<um鹧}|9їx sN|}kh>Fs >{i_MP% 9 #\-{}gZ5D5ru jC؃vunGwCxtÏ 1ֵ?XPL=3 yؼp{S러G}Yts;yütN&rL37lݹI7ulTfg8J3Gv:~dH"[ y-TBg>x} QfHsm/data/nile.rda0000644000176200001440000000106213773656220013233 0ustar liggesusers]KHUAqB]Ѿ -z^KjZ[{Xi3ޖD A jQ-j2%BjӦMt;~̝3g9k+RJ+!u4?Q^#Z)ecZZw,o6O?)D{+oh".9 9?Y?C42^b5$,$~@}_{USi{(1f'1>96? LF,#N\j0M /0ŸX׫ BssD?b&ٌRlAH%g$dؿTZ{ݨ7/w@{Q#FQİG#8_iA@ 8^8)tiLP9 neP/ \5& Pk. nb*eyxQpyo)3FBD&?&ۙU 7GBϭ* RZͯ3cx%?&ZhT<ؓ+sm/data/trout.rda0000644000176200001440000000060113773656220013457 0ustar liggesusersӻN0`Io)W;SHl !Q!Q\Z4NZ 1 }1";|qccIimg|`ĭq1jhK c悊4EOüW^}7o>"4Gp !p*Q6,1B)7E5FSN_-X Jq0> 㓕yʁ72^+K0j X '3*E-Eㅉ[O"Ћ(',ڮHD×(Q([MCVqIt~ `sm/data/birth.rda0000644000176200001440000000105513773656220013416 0ustar liggesusersMKAgw`WG)R Vn&7Zj/B-/[=K@?'Odv7jO~;3< /OƕR[vЍY*vMWJ9`yZm`ȭykDNm;vSڰzDV{^ҞS8|_4V ?s;34Jy5O|0lZRGc ֈw'?Ȼ9O? t z_="x*=ڋ\;{zT5L sm/data/coalash.rda0000644000176200001440000000161013773656220013715 0ustar liggesusersW=LA^VPGAThaG#!$*qŠƆ L q{liM̛or#WG/y/ek.c>Z7cLr?ij;mT],SDzi&[ر#&#|oh:Csuy{}ԅCzG'?s[G>m{ ۏZ3 qӘƳw8[ϯ݈iCwM-6(-Z^_ߺղ]xգű5ji{!u|Բ5Z|jm[-ˆ$wx>ejUdk!hqrɮhκ k = O#~Q[U^ V7U\rq ̋5Kamq<#?IN.|$tTȓ"/[GWC?@=E;[Ы7PsOzpGO*z}q7/?$Y"nD][wEᝃ/~:tG+9xn|}TQ!^EޡJ"Q1T}N7¨ MDx!y'b?t@Fǀ˩/)Dq1Fy}g>|>X7xo.D^7"$9 yz'}{p9p?Cn t:qW/MɃ9Pf1UL2EnO'+iqϋ@hҿTɲO3\)ݽ`~}s; sm/data/poles.rda0000644000176200001440000000077213773656220013435 0ustar liggesusers]SMKQ}&ЪPJ*U0Y[J&M2ӘDa4*uՕ E)+AH? Wbsfsw{z,CJ)MO(?*lR&/l˒'{X[`^)pr/ Ou-qqlYV&BK(qH9JSb V#o<6t>:'b]^ =7@w9tW>Ӳ9|+Iyy[<147>į81/ئtՕr؏}Is< 4OY|D;/RdB:?JZ v v򧨧Ѓ~J s8qd櫐aҥIuf2O㏩i~rqoWkA1]i=/#CUo.ֻ`%|$tjFls|Osm/data/mosses.rda0000644000176200001440000001223613773656220013622 0ustar liggesusersYy\?3C}ϾTBH]-$M %YIH"dID ImR(=e>9לk=34gBHaâ,A򈊹@pg0V`3\/j#,QMuDSQ}gz*v!HDyxQFc]cDA#ڞ^E1OG{RF"D3QC#EOD}h㭑Rz3RjZ(v#J9=mrFl3 @'*6! و(@><06V!i ~C4]BJň)EH,lQmK&#+'SD;P@Ԑ$ ki1c"ʢ:?m8^k ºѴQl˰q^UrXQXhm60.`;3DBϱ5NsDәh[FDaL (~>έ@`owv/B4C4)aw #=gKw0·>~>CJ p./\21˸6C8oJzy&Fݫ6FDvt=/~HR I^#I'#Ij,ԁe;$9:$iHId&<@R$y If`~It{0 :Ldz#Y qXL^H3 {ñ< ˝ '{,@ $.X &ar@6H|Y/7_WL8_AHJCMVH7iyXvTɘ!1Lwx'\$6?Ā}*Hl&Θ#WJ3y$V<> U1"S-$zD0mAgӐ|<e!QUB؝S(~gP-܀D 3}$rD"' -Z$ZbDx?uH-{׺hi 2;Hk"P50Mk6df zZdUdc:|5AV9_Tdus(&3B _p6e[Pc#] e륽>?8 ۗ\x-*8}+WЯG\4@An-/~]:=0p^[&;䕭րskچ f}~cl ÏAeC_:*@60-϶K&W1bP<9aEsw(图? ֡X+#cɵ/ I++cW+es3hL=OSn@ }Ns R1q0KN(0ZI Ҷ1=BJ, !s=n;}5@paQap&W{k+usDVxi߶5slZxͼF |A*w޼Or8߱ct>'GeRoh 46{){st·hmb|='8*;$<xz;JYaA`_VY ]c@eMH`sJ/m q)3 Tʁ7}#f69_SvAxh(4W/jgzh5-e-2A91igʘA*vT_yx[}ٙC1~T,iE~ީ1rl:pjǻ|^6P{Jw?3C8UrZu+=7Ǟ~+v\zDx {l ٕy+A0l<.e|#q2|=#9d9XC3J_a|Ķx98?nY܀DWUkPzp | ܜ𧟷\pgOءf$ϷLPIUNz_W)ΫNH/ %qbP1Wj6Ys_CPoX\TK p%'om 5q>Dpm8Zoke?ҝļs%' @'[LtۋBŬO5⪂9,3O+ knJ'`cHw8`_{:sȣslϋNӨoz3ea{PZe{*G O\#DY 9S/_ lCyK5= Xa谛ޯ5|&TodP}CU'}gО6Yc߾ v\ ꒹o{ˁBtk-WMäM{)wbv 1خy`ӕ m;2@-} Pm߶[a!%*7 ?O'C_}*g/VA gl$z(U'Ա4)wbK ?`}~50%']i=lq3fu3p?}7rl3*06-Qo8|zLb6,T aLD~{IOVEplZ2.ʚ.)@/; DrB:Qu6O@jm4w}ƙHӿGMg>:# Llzkk ҝ3>xs>譽 #^cu c<: Vz˪?>9l [h"琚wY ÀБ8;TDԨ:>.2?V2Wo-P M4s>ݾoq [3'#P9S33?lW YN)[oz}ZāAy[Mzoizv92yraPQ4>fvlsR:fy 7k @mo Җ򳁡!I_EnpU ( 4FY3g@^oʫ'NrEzu%G}|QÊ@N8%۶%eO g v(;Ze n*{sػ@~X툙m2߀08Ytc!E~_t+ʉ/@4T[NnR[A?;|gCli:v#+@$@ Di~nÕ _dOYzz}!U Sj{J;EOsi#^S`SS ~䷽@us䰱ֽ]@服>:Wȿ,}L=v߇Zx!h>J@rGgs[\o~{e`)/(-|b7GϹsdjO`R/r)R/ͦvc U h#_TlgJ֗q]#y/cs{Cg齟pLs>z&0{0W+8n O˥(BX%&0V,;eYzZ_]He'*7dD `ڲyk;P|7{gm4vI1k߲967SoTghܗ &hS?MFU?辞 @vTω@<]KNƣ@w\`hO&}8yfAGہ=+*Ƒ#^62UCc3kua[_6k *( vc {R鳼#זuqݞ (B?u(UhkTŏ;cjox*?e uykeRʼn OLl vnnFi?0"\l o=&yIq$6)9ӕ4b`pt_$7I[PG)n>7 x`O5ہXkh)H͊7Sk|g\{l2@dUnD9 I29=4ό_ ]ƟvTҟV teɆ@xeiKD.nVf>S &>4纤~?=a!:O <ڀUS}k o ]G΋c9O_? ē(sm/data/lcancer.rda0000644000176200001440000001206413773656220013717 0ustar liggesusersex,ywb;IƆNA' s@p}$-XZҢVҮhc'q8iaaF^| 3Ξ8;CsN CsZpFprq_ӟ}"H$ . yT8$V  Q}iX|XnH0H, 1 1~{a 1 Q^(&Hlt}{eh[:HL> ѭ{ج1H<)_A"ܐxf|Mϟv#HT~'.ߖL̽DOjl|)H,kVA9}V/A"~mM>bZ1N v§qMq=Nlg|;/Hl] \+c6?_#,9Ξw+,2>6A">Ώciy7X|3Ro'Kdžu=N"{a7mbmd=A"kE#ڌ;.y-o=YP1-?6 u ~! f رu ql)O3.F~?7-;õ;k])ߍ q Ok2p}Ɏ\Ux%óջ.5[.?Zf.&Tx-=,.orᅤKr{~x, `Ѕ,ϋlj_Zn~ӽ9X/lqz0 |Җza:/)%ԟɏ6{ŦjҡKs/MU7p}3b>/;-љxf8OrtʮX n;p>a½uwL,6f7ŚuJ<͜ȌV9a=oxgڑFZ$ <3By4_\IiW}aG_mu]6U8y1gm}g%XM2pqN> ˵ױu9B ״AJp~jNx4,k/E/I3K>ZWoJyx.D6qlZ91Q4.w|)7ײyQesMxpWޟzd܄x߶ՈUh3'M2qk;6z7_MqiǼUu|ʣЃ-qO4eTo1Zoh~^q{4Ekhj6-fm iŪĊ3/.UzѿJx QpFLԂQ52MUy^ R8Qz~SYIZz8,h6hSnV-|]Љ8:_bNkSvm>SUi~oF^hN=>XGmU:$u{R>9g6#TGI-Ҳy7lztZ6#_>X׉状3IOPfj(3⹞e):4Vuh{ WyO)Z9 (}_;u^ȋ+gn .="}m>pC0^!6 q{ߝyfލ˪4+u/9:Oʴl^=|5=قC˹sx2C*y͉U*KF9vwg] љQKfMY1ȩ ZUpɸ'جұR9 ǜl%_)yN\Ӣ=/c>,Qh-WE38V >ڍ㾩䟅XTQzүbjx7gݲ]5iVuFK lW̎j4kPQg55Uړeq;?F|̊Lk͒9}yL2F_[Q k6`׫ 1eܝTv.b>L)PsN-MV~Mq4IgԡX}Wyخ:O,ȧG;p_ԗ37c}|ꗴ\'%\-5pnDzQ07V_R5{83ժE1p1J5yc/mp>VCkJW|þF|l/|u?M{z%]ΉI}5k8ggFh4~:_ zXi5kI_Nunz~yZqf^ݙ8)ʹ*k!X&UV^i.MY{t\ãpШX4XQͺ:g/Yu%4o<3ϳO[0GG;ǵѦY}*W~;0 Dn)ak?aښcA l[Ao%7~ߚ_[<>  Q6^;O eAXJN|*[7`7q{b/;ɏĻcw^o=<ipq >¾vG^c7a7|֘/ģX ^{wn+w+ql#b~)?0cv}+CSb;Ɇcfc݅}@.r<rוr([==3Ux6o<5~sNM۷_W |êQ5?#'y0f㋞j+9_͇އiA8ucpU;YYw%/Y16sy3EHx{NQ}.ìXa8 wasJ˷9.\𽭯*d-d^uJMoU=s9hw?_\z9q/e#cŀc2_N#Wa@[2.Ӟol'0SU?J.x6ʋ&J3ޤٮ@-z܆ά}SѓS=F:. CcT8nm~/N\_߸}\Ÿ+%uWs]ٝ,6 7=Eq~T(|S4=OxSvZ0Ǘ 8nfp!mÝ{"فئ~IҬ> cO̩h󺸇XaZoceZ\:p P\>2WhLћj}i+~\?e3{Vó~Kܳc #t;gv^WR 7#_cW(yYg(^g\+pCJOow.)u˽RpM\mн4=}vQw^㞼y0~D=K_[zPƣ}kYmR"ifnCgXtŴd[: ϋam}FO<|K[bdu}@wv٫3 u-qdM ͓wYubN;4_Q}p;ZDiM0ru~O6r򼞾[ч̭-wU}1G“ݓsxLrL)ڻ6DzDZoCupEϧeLĉl f*wL|؎,pX }қ"-^I}FhH*%U{fTѸ~Εm;t`/Ɲ_TeM:Ľa}MşW(D$эe JnIW͊#܄{Y^+0MDJ]7].5L_Dܓܔ>.Z6aY;fVh_ً8MOb;IQ]]ۧŚ+gm'ilg+x_Y?5>с*~T:'foN%]뙲٬khpa_ikv;rΪiX~,Q?lY_s~tUmyYq<[R-?)ҳ\g̳:;oozz'.?KԵ,T~tǣMx֝vc~q e4śzwG7Fp]Ի&lŐRM_czezA;7Uѵf9m{+{fe4=㆜2Ve;yJj\^#=Cobkrc:kq#gfM~L袡U{;C S~9>3TM}g3"\@]v_~3GwHS&>;&Ϸ7hE%xqEUpOz9oyw N~T>ӏԬ?ģ]z3ٍ#IArӃegn7fI:.2b7/,@nS΅)g3FuyO8WiiwJmSj}߿E:tp\up\up\up\yw_^p ݗW޴I]ˋmh#9)yJޕyVH&>|BǶ6iBSHdnzUH%ஐ.c_ d~ H>Dn5w;׺%&a~u&^ i-E>ԛO2_# KIď +CꖏDNX:< AԕG\bꪃ\b1mŨB,:DK)ꭃدe]z<+P ԓG%#X |yDUȇGU}EPD~<"Oȷy Ky y!O_TțGz_yD_Q߀<A iMȫ 4q|m=Q8}oa : : p"ONc `}`?w`]v/  "-1R σ; ĞMoD?qɺ(X'Iܵvfr׉G;~'7U=_{^0OƤ^<q$g$;ҿԋF$" 1_gwv$O>_qb'8O#sE?_C Cj{g^I->oҙߦ)ŒPuoeGa8*gҽ/:]Fx:?<mqC NIkW 0{ EU 5Ghʱ`}yBS1q AesL xutd4<5M΁&fl;9auMr~H?+3yOdq W'{l>;]/|WT\*NuU ^LǢJ8SBVW@mjo:м!h%q wِ~P5;mshr 硦gۻ.F9~ky/Y(7ROvi4d޺FK?/1A=Ud|D4! jCs< 4[( M >13i6Ԍ?gx==\bb@k<914I+ni@&4Sg$\+kr/Y,b]p0y7YuH-<雏*l#~ ZM/y{/gyAA{s3#q||']%#Jۿa3`?ȘQa+l0{#՘_Tc_\3.;[}q)>t`rɯ||? NPfnr41 o߱ߧʣz tTLL7r5~=͢jpon@U4X/ MMl}o tkG$)3u:{rյyrkY\ݹFoP7g$,'d^["H0iއˡ$—Guɫ JI5K<8e%&ZұW>@cv[3N2;tkf~?.ߠbST5H<7[f6`3TEL(~rTma M󻠪 sC/gn>۷#}wuGx r[%Ĵclt͏wXd>{^OM-w:u:48 Y!mYBUŏ2[G1(\>"h;Tw\i<"=ic2|A.ѝ/3Pߑ̠5;eҧw/9zCC箖>' Vξ@SK6մɴpt-nrFN~-f"Iy9Zyy}3X؝D'gSO|K]6Ք UrYDvS,yl'ϒmGFM,oXuੀvΓ1*|Uбx.7Z:q-{Kؼg""5IK,XU}Y5G ?r(=/W^u֫Ͻgν׉|hOϩQ1f_\:(Bg O~.h.'y}wgh?t#}{ps{0|͝^̻-蜬חo~=oۇ:>quE}~ F?ŗW{; jeT})˘Zg)}.uzQu/>!0Pǫǃ7p5ɱ24=#?8uoWQ^BO[t.8?o?/˵?Gޤ3Q^\~~xz-j?Ӄ]>H~n3/%ȼOxWxr}:)cP?W5q%H|?G⑾C}Ib =}?O_R~46ꀾ.89}^==k{;կ̋NxRyĴೖ3V}'d1_|k\/>y6(ߧ*Q4C;Hͽsm/data/magrem.rda0000644000176200001440000000143713773656220013562 0ustar liggesusers]KqK9SBj^46u[ ! 9{^DPD]Q`WEtAЭ?*?@" o<>;{Bb.k|G*4_|UhUZ#k9caY*^v,5y45gD?aEf,Պ=A HK"?o_ĥLWxR\J-bϼ^|C)4 ߋݾ(x pnyWȠX3 q[O@V3~ȿDYp05#,29I\?2f݇E[o΋ s0MgkǷ>kNNnq2{'wߗ2^|>ޜkk ^d?>o 5,}VクF_qI=VHI*/ؕ}|cG%>BW IwF쪛|o;zFѧ6xLҷSM>4uO!ꋀ?1<* Nƞ~SIRG;sďsރ{2%q*=; 3y!%g3[ 'VRS<ַ֯b<$yUQ*_s> ag^rdO9AGj?ž[Jzyt~҇Vrik|>mzџI[`p@A/!7{gg#?lgsm/data/citrate.rda0000644000176200001440000000063613773656220013745 0ustar liggesusersmNAc qI|ŒYhTFn4xЛ7ͣXjx蚟ѸG0B DH2]N g'r<(l0~ /<`8 K2k~ g?\i]~ߵ_b_6ȁ%k4es\?386|`w2 X {Y05y=>$I0W3}殳9y?2ܳĚqVW9_UyS v?Ϸ-g{iyiB>f08RrW1%M%-%{S_%TLUR,Ԋ].QZb'eȷh4|K~$^sm/data/radioc.rda0000644000176200001440000000411513773656220013547 0ustar liggesusers pTg\Hzͦ3V; ֎Sj贎 R@XӖR@uIW:ԊZjT2cUfqj]s&5*3O=Yj핡!cL՘:}ՏSo҆t[%tT5-bȊ bL辚;qV\ySsP?_.f>aq8ZjiqкubZ}B& y!4fYDa.%v)RuAk\Fë[o׆ zwijIMq֘Ƥxw׈w<5F=8'~ 4&W7UbP GP?Q@v{BywNq"j/A)AτUl* }טp@(ߤmX2 8-0Ka)Gf5_?f1zى)։)j9S<(O t[BUL{%:^#Bj덶[2yЬ9D89rngHh/ QƎȷYp1q KByǵv|Jq_\3Wo3&,mN^&DNT^ I8$*kTI,'ճIjV]R9$/pInj˅zؤwIj8j)}}BIu#bPN{{z7Rf/1Wf}5] Y٬yn~[fAyg W>'/ U BCKgQî[ë@CuOis8缵*c}8VЫ ޺5cK_yyƻ?[ݓ{5=}xktƢUZA#z~,j;#b|,f5Q?פ6ΗUf9?%XjƖ۫߇[,Ƿm.~kUwUu\"=5kZn4?-i͸v?fYwuu;o\sN\wg\"uz=Q}?I?I d! e+ϾעG?s7P| 08)|=(O= @P18J_?!C0?a#G?kQ0JF(}ca>ч10F}a>Ӈq0 O'?IOQ|O{ S4=i|O{ g=|,Gy.&CY'e ʺ'Po\=MO_DW&=ss(FU(9ތnEw6;EBq9Qy\>C<׋fѯ>M5h+چ2 :2'Ϡ\͑skA?G9u#Pϓ+Qϓ(?Os(ɿ@(ȿ@(ȿ@(ȿ@E%"ɿ%"ɿEɿHE/K_"R+J%/)K_p2ɿ܂_BɿLe//ϸWvmuޯnW_ַok߲צ7zR7yKy'Cm;T`ǖ+vŋ/Wy¿]dsm/data/stanford.rda0000644000176200001440000000353313773656220014131 0ustar liggesusersW PZ4(䞕 ãk`$ '$@U,)2V|V#@0ƄD+@}L!6BͲli'3~{ιwT.CyaČBĈ%W#b gDV0+l2j|>"=_MMYIr_Q#._ہ<|vq(̥)ieRwe65oהp{ ?.Tj9\֮:n{76dl]QC5I^]QX6[y,t p?SI:p=*$m#-e~tH6~28p]CHE睱j_S`/_f= _} lYo2o.b?5 i^YQ ;'%dO ~ym9owlvŠɁMA6`_:U +@@ R IFrZɌ߇ ty}"nHGǵ|Q^bzSzKbްϖRw c`>0 ؗ/ u1N"f|DCn<G\N)?)?'iSA#Zq`鼢?*~s_ }EElޏxq`0%SqRߥĨiQ*|&;U#iQikI,1Ei'ب(ǸTʜKMJwDǦObSSQsm/data/wonions.rda0000644000176200001440000000152313773656220014002 0ustar liggesusersUKSQF9( PPCns3s:ﶻis:C,R}*}H$W˾Ke/"*{{{9NTn }N|=}|ʕ}dG*":ek&Y2IqndTMUw]1݄\윟$j( |]qL,۔ݘo&(5ii`6Hv;GDyE4q_Mnf#~IYB~b(o?f[v^߶ا>qDy [˟e+O0D\Ue[#9t )&ľD}i: cM3c0bG=ӈ7>=Ѥ}8_.8\ CW}rw7NB*>|;קY𕰠N'v< ?5} va;9oK,x,'G3B]-Eo>NW'y.dCGp\)lupl@\Sox ? >wz$b1: }|(7*{Ō8~Σ䣔uYoOJ yyyy3Xo  oH |!g y9y5.__dn6ίQA_GW>/klERIf/1~d_;J'[\T4D^,C},1/IixXҌsm/data/tephra.rda0000644000176200001440000000060613773656220013572 0ustar liggesusers r0b```b`gd`b2Y# 'f+I-(Jd``20\Kt[vqнP zNA"5P. rг-tJV=pׂ uA N uk/t\Ab.غj3uP{tAO5ĽPw8vЙ tt9ד9PA*7=z]6pP}:0Bݯbn Dfcp3к@A:!h Rt~A!᧽ցSSy@c1bt\)%ziE@CДs ?Ha&usm/data/worm.rda0000644000176200001440000000115413773656220013272 0ustar liggesusersKkSA&X-օ  JZ6 ݆`H u9Cn n]jI 73sށy93չj H )Jb_JP{35M]4v?a;;S؟_\OwXvbr BEgF<ϱz2"=Ox<9J/xҋst^饂ҫyMPz3[=)؆`3.D} L@4at c$8S b3}M4=KCqZۓ"zǖ); 1{qmtf #U+tI5~>1r|մyh_8R.CKj GsѬ[ٗClς/{,ɌO2Ϝh])wύ}jr+ w)iIk= Z4ϧ潑Hk:s)W{ϴ,Ί҉ {3 OQeymo˽ngm]:h4FZY{l׻t[t)/{{;]w^Ǡsm/data/bonions.rda0000644000176200001440000000152413773656220013756 0ustar liggesusersUKSQNXQR>^$2KMm\wӹ޹:~`A/T dE$AC=9|~8^b$$I|Ez&ݝIg%);_ f}c憾۬+ks}a٤wi[6ɬYC!a.g8lپ Op kԀo`sv<5N?6˜s k~t>^@)? mUb0_ۑ>T2pob?4*!N}N$%o"n%} ;q~>OgL/ lD֛ՃȳbJ f8>_t*:/7&y<>>-O35d W 3 .D ֑~1y =ħšK!,Z6I|9̪s}SOP_{s2y/*z/RDjDbtOQ(9}!Z tGu?}yc5!?r uQV#i߷E{#[e)S_!zDy9F⡖>ͽr7c´֛1ik#F6{2(v~gH3$R̫&5*1PO֒:HhcḷEК&ff``keK,EcN.̢Bv+:g XSPT\RǣC}k)3v%.s /e [){9q-/d+S9Tr|J5Tj z/BTĠuΟwQa F|~cȅ jި0 ]q+Onsm/data/dogs.rda0000644000176200001440000000101613773656220013237 0ustar liggesusersN1qYu> c+䕨xQ1k3;$b'HN;әiӋ"qE.llkTf\{6ޮ(3le^2.[w'V&^6vNM'&s~KOojr=ą~WxP9xoxb~*f GÞ<`<ؾɅ%?ØɺC[p7ܞc/z« <`rx<_ޥwDr?$uQo̦Y^bWտism/man/0000755000176200001440000000000014564147547011465 5ustar liggesuserssm/man/trout.Rd0000644000176200001440000000172213773656220013125 0ustar liggesusers\name{trout} \alias{trout} \title{Potassium cyanate and trout eggs} \description{ These data were collected in a toxocological experiment conducted at the University of Waterloo. Different concentrations of potassium cyanate were applied to vials of trout eggs. The eggs in half of the vials were allowed to water-harden before the toxicant was applied. The variables are: \tabular{ll}{ \code{Concentr} \tab toxicant concentration \cr \code{Trouts} \tab number of trout eggs \cr \code{Dead} \tab number of eggs which died \cr \code{Insert} \tab an indicator of whether the eggs were allowed to water-harden } Source: O'Hara Hines & Carter (1993). Improved added variable and partial residual plots for the detection of influential observations in generalized linear models. Applied Statistics 42, 3-20. The data are also reported by Hand et al. (1994), A Handbook of Small Data Sets, data set no.418. } \keyword{smooth} \keyword{regression} sm/man/poles.Rd0000644000176200001440000000100413773656220013063 0ustar liggesusers\name{poles} \alias{poles} \title{Positions of the south pole} \description{ These data refer to positions of the south pole determined from the palaeomagnetic study of New Caledonian laterites. The variables are: \tabular{ll}{ \code{Latitude} \cr \code{Longitude} } The data were collected by Falvey and Musgrave. They are listed in Fisher, Lewis & Embleton (1987), Statistical Analysis of Spherical Data, Cambridge University Press, Cambridge, dataset B1. } \keyword{smooth} \keyword{regression} sm/man/hcv.Rd0000644000176200001440000000673713773656220012543 0ustar liggesusers\name{hcv} \alias{hcv} \title{ Cross-validatory choice of smoothing parameter } \description{ This function uses the technique of cross-validation to select a smoothing parameter suitable for constructing a density estimate or nonparametric regression curve in one or two dimensions. } \usage{ hcv(x, y = NA, hstart = NA, hend = NA, \dots) } \arguments{ \item{x}{ a vector, or two-column matrix of data. If \code{y} is missing these are observations to be used in the construction of a density estimate. If \code{y} is present, these are the covariate values for a nonparametric regression. } \item{y}{ a vector of response values for nonparametric regression. } \item{hstart}{ the smallest value of the grid points to be used in an initial grid search for the value of the smoothing parameter. } \item{hend}{ the largest value of the grid points to be used in an initial grid search for the value of the smoothing parameter. } \item{\dots}{ other optional parameters are passed to the \code{sm.options} function, through a mechanism which limits their effect only to this call of the function. Those specifically relevant for this function are the following: \code{h.weights}, \code{ngrid}, \code{display}, \code{add}; see the documentation of \code{\link{sm.options}} for their description. }} \value{ the value of the smoothing parameter which minimises the cross-validation criterion over the selected grid. } \section{Side Effects}{ If the minimising value is located at the end of the grid of search positions, or if some values of the cross-validatory criterion cannot be evaluated, then a warning message is printed. In these circumstances altering the values of \code{hstart} and \code{hend} may improve performance. } \details{ See Sections 2.4 and 4.5 of the reference below. The two-dimensional case uses a smoothing parameter derived from a single value, scaled by the standard deviation of each component. This function does not employ a sophisticated algorithm and some adjustment of the search parameters may be required for different sets of data. An initial estimate of the value of h which minimises the cross-validatory criterion is located from a grid search using values which are equally spaced on a log scale between \code{hstart} and \code{hend}. A quadratic approximation is then used to refine this initial estimate. } \note{As from version 2.1 of the package, a similar effect can be obtained with the new function \code{h.select}, via \code{h.select(x, method="cv")}. Users are encouraged to adopt this route, since \code{hcv} might be not accessible directly in future releases of the package. When the sample size is large \code{hcv} uses the raw data while \code{h.select(x, method="cv")} uses binning. The latter is likely to produce a more stable choice for \code{h}. } \references{ Bowman, A.W. and Azzalini, A. (1997). \emph{Applied Smoothing Techniques for Data Analysis:} \emph{the Kernel Approach with S-Plus Illustrations.} Oxford University Press, Oxford. } \seealso{ \code{\link{h.select}}, \code{\link{hsj}}, \code{\link{hnorm}} } \examples{ # Density estimation x <- rnorm(50) par(mfrow=c(1,2)) h.cv <- hcv(x, display="lines", ngrid=32) sm.density(x, h=hcv(x)) par(mfrow=c(1,1)) # Nonparametric regression x <- seq(0, 1, length = 50) y <- rnorm(50, sin(2 * pi * x), 0.2) par(mfrow=c(1,2)) h.cv <- hcv(x, y, display="lines", ngrid=32) sm.regression(x, y, h=hcv(x, y)) par(mfrow=c(1,1)) } \keyword{nonparametric} \keyword{smooth} % Converted by Sd2Rd version 1.15. sm/man/follicle.Rd0000644000176200001440000000112113773656220013532 0ustar liggesusers\name{follicle} \alias{follicle} \title{Ovarian follicle counts} \description{ These data record the number of ovarian follicles, on a log scale, counted from sectioned ovaries of women of various ages. The variables are: \tabular{ll}{ \code{Age} \tab age of the woman \cr \code{Count} \tab follicle count \cr \code{Source} \tab an indicator of the source of the data } The data were reported by Block (1952; 1953), Richardson et al. (1987) and A Gougeon. They are analysed by Faddy & Gosden (1996) and Faddy & Jones (1997). } \keyword{smooth} \keyword{regression} sm/man/sm.discontinuity.Rd0000644000176200001440000001253014265557440015273 0ustar liggesusers\name{sm.discontinuity} \alias{sm.discontinuity} \title{The detection of discontinuities in a regression curve or surface. } \description{ This function uses a comparison of left and right handed nonparametric regression curves to assess the evidence for the presence of one or more discontinuities in a regression curve or surface. A hypothesis test is carried out, under the assumption that the errors in the data are approximately normally distributed. A graphical indication of the locations where the evidence for a discontinuity is strongest is also available. } \usage{ sm.discontinuity(x, y, h, hd, \dots) } \arguments{ \item{x}{ a vector or two-column matrix of covariate values. } \item{y}{ a vector of responses observed at the covariate locations. } \item{h}{ a smoothing parameter to be used in the construction of the nonparametric regression estimates. A normal kernel function is used and \code{h} is its standard deviation(s). However, if this argument is omitted \code{h} will be selected by an approximate degrees of freedom criterion, controlled by the \code{df} parameter. See \code{sm.options} for details. } \item{hd}{ a smoothing parameter to be used in smoothing the differences of the left and right sided nonparametric regression estimates. A normal kernel function is used and \code{hd} is its standard deviation(s). However, if this argument is omitted \code{hd} will be set to \code{h * sqrt(0.25)}, and \code{h} reset to \code{h * sqrt(0.75)}, when \code{x} is a vector When \code{x} is a matrix, \code{hd} will be set to \code{h * sqrt(0.5)} and \code{h} will be reset to the same value. } \item{\dots}{ other optional parameters are passed to the \code{sm.options} function, through a mechanism which limits their effect only to this call of the function; those relevant for this function are \code{add}, \code{eval.points}, \code{ngrid}, \code{se}, \code{band}, \code{xlab}, \code{ylab}, \code{xlim}, \code{ylim}, \code{lty}, \code{col}; see the documentation of \code{\link{sm.options}} for their description. }} \value{ a list containing the following items \item{p}{the p-value for the test of the null hypothesis that no discontinuities are present.} \item{sigma}{the estimated standard deviation of the errors.} \item{eval.points}{the evaluation points of the nonparametric regression estimates. When \code{x} is a matrix, \code{eval.points} is also a matrix whose columns define the evaluation grid of each margin of the evaluation rectangle.} \item{st.diff}{a vector or matrix of standardised differences between the left and right sided estimators at the evaluation points.} \item{diffmat}{when \code{x} is a vector, this contains the locations and standardised differences where the latter are greater than 2.5.} \item{angle}{when \code{x} is a matrix, this contains the estimated angles at which the standardised differences were constructed.} \item{h}{the principal smoothing parameter.} \item{hd}{the smoothing parameter used for double-smoothing (see the reference below).} } \section{Side Effects}{ a plot on the current graphical device is produced, unless the option \code{display="none"} is set. } \details{ The reference below describes the statistical methods used in the function. There are minor differences in some computational details of the implementation. Currently duplicated rows of \code{x} cause a difficulty in the two covariate case. Duplicated rows should be removed. } \references{ Bowman, A.W., Pope, A. and Ismail, B. (2006). Detecting discontinuities in nonparametric regression curves and surfaces. \emph{Statistics & Computing}, 16, 377--390. } \seealso{ \code{\link{sm.regression}}, \code{\link{sm.options}} } \examples{ par(mfrow = c(3, 2)) with(nile, { sm.discontinuity(Year, Volume, hd = 0) sm.discontinuity(Year, Volume) ind <- (Year > 1898) plot(Year, Volume) h <- h.select(Year, Volume) sm.regression(Year[!ind], Volume[!ind], h, add = TRUE) sm.regression(Year[ ind], Volume[ ind], h, add = TRUE) hvec <- 1:15 p <- numeric(0) for (h in hvec) { result <- sm.discontinuity(Year, Volume, h, display = "none", verbose = 0) p <- c(p, result$p) } plot(hvec, p, type = "l", ylim = c(0, max(p)), xlab = "h") lines(range(hvec), c(0.05, 0.05), lty = 2) }) with(trawl, { Position <- cbind(Longitude, Latitude) ind <- (Longitude < 143.8) # Remove a repeated point which causes difficulty with sm.discontinuity ind[54] <- FALSE sm.regression(Position[ind,], Score1[ind], theta = 35, phi = 30) sm.discontinuity(Position[ind,], Score1[ind], col = "blue") }) par(mfrow = c(1, 1)) # The following example takes longer to run. # Alternative values for nside are 32 and 64. # Alternative values of yjump are 1 and 0.5. # nside <- 16 # yjump <- 2 # x1 <- seq(0, 1, length = nside) # x2 <- seq(0, 1, length = nside) # x <- expand.grid(x1, x2) # x <- cbind(x1 = x[, 1], x2 = x[, 2]) # y <- rnorm(nside * nside) # ind <- (sqrt((x[, 1] - 0.5)^2 + (x[, 2] - 0.5)^2) <= 0.25) # y[ind] <- y[ind] + yjump # image(x1, x2, matrix(y, ncol = nside)) # sm.discontinuity(x, y, df = 20, add = TRUE) } \keyword{smooth} \keyword{regression} sm/man/sm.poisson.bootstrap.Rd0000644000176200001440000000435714002272153016064 0ustar liggesusers\name{sm.poisson.bootstrap} \alias{sm.poisson.bootstrap} \title{ Bootstrap goodness-of-fit test for a Poisson regression model } \description{ This function is associated with \code{sm.poisson} for the underlying fitting procedure. It performs a Pseudo-Likelihood Ratio Test for the goodness-of-fit of a standard parametric Poisson regression of specified \code{degree} in the covariate \code{x}. } \usage{ sm.poisson.bootstrap(x, y, h, degree = 1, fixed.disp = FALSE, intercept = TRUE, ...) } \arguments{ \item{x}{ vector of the covariate values } \item{y}{ vector of the response values; they must be nonnegative integers. } \item{h}{ the smoothing parameter; it must be positive. } \item{degree}{ specifies the degree of the fitted polynomial in \code{x} on the logarithm scale (default=1). } \item{fixed.disp}{if \code{TRUE}, the dispersion parameter is kept at value 1 across the simulated samples, otherwise the dispersion parameter estimated from the sample is used to generate samples with that dispersion parameter (default=\code{FALSE}). } \item{intercept}{\code{TRUE} (default) if an intercept is to be included in the fitted model.} \item{\dots}{ additional parameters passed to \code{\link{sm.poisson}}. }} \value{ a list containing the observed value of the Pseudo-Likelihood Ratio Test statistic, its observed p-value as estimated via the bootstrap method, and the vector of estimated dispersion parameters when this value is not forced to be 1. } \section{Side Effects}{ Graphical output representing the bootstrap samples is produced on the current graphical device. The estimated dispersion parameter, the value of the test statistic and the observed significance level are printed. } \details{ see Section 5.4 of the reference below. } \references{ Bowman, A.W. and Azzalini, A. (1997). \emph{Applied Smoothing Techniques for Data Analysis:} \emph{the Kernel Approach with S-Plus Illustrations.} Oxford University Press, Oxford. } \seealso{ \code{\link{sm.poisson}}, \code{\link{sm.binomial.bootstrap}} } \examples{ ## takes a while: extend sm.script(muscle) with(muscle, { TypeI <- TypeI.P + TypeI.R + TypeI.B sm.poisson.bootstrap(log(TypeI), TypeII, h = 0.5) }) } \keyword{nonparametric} \keyword{smooth} \keyword{htest} \keyword{models} sm/man/sm.binomial.Rd0000644000176200001440000000472213773656220014163 0ustar liggesusers\name{sm.binomial} \alias{sm.binomial} \title{ Nonparametric logistic regression } \description{ This function estimates the regression curve using the local likelihood approach for a vector of binomial observations and an associated vector of covariate values. } \usage{ sm.binomial(x, y, N = rep(1, length(y)), h, \dots) } \arguments{ \item{x}{ vector of the covariate values } \item{y}{ vector of the response values; they must be nonnegative integers not larger than those of \code{N}. } \item{h}{ the smoothing parameter; it must be positive. } \item{N}{ a vector containing the binomial denominators. If missing, it is assumed to contain all 1's. } \item{\dots}{ other optional parameters are passed to the \code{sm.options} function, through a mechanism which limits their effect only to this call of the function; those relevant for this function are the following: \code{add}, \code{col}, \code{display}, \code{eval.points}, \code{nbins}, \code{ngrid}, \code{pch}, \code{xlab}, \code{ylab}; see the documentation of \code{\link{sm.options}} for their description. }} \value{ A list containing vectors with the evaluation points, the corresponding probability estimates, the linear predictors, the upper and lower points of the variability bands (on the probability scale) and the standard errors on the linear predictor scale. } \section{Side Effects}{ graphical output will be produced, depending on the value of the \code{display} parameter. } \details{ see Sections 3.4 and 5.4 of the reference below. } \references{ Bowman, A.W. and Azzalini, A. (1997). \emph{Applied Smoothing Techniques for Data Analysis:} \emph{the Kernel Approach with S-Plus Illustrations.} Oxford University Press, Oxford. } \seealso{ \code{\link{sm.binomial.bootstrap}}, \code{\link{sm.poisson}}, \code{\link{sm.options}}, \code{\link{glm}}, \code{\link{binning}} } \examples{\dontrun{ # the next example assumes that all binomial denominators are 1's sm.binomial(dose, failure, h=0.5) # in the next example, (some of) the dose levels are replicated sm.binomial(dose, failure, n.trials, h=0.5) } with(birth, { sm.binomial(Lwt[Smoke=="S"], Low[Smoke=="S"], h=20, xlab='mother weight[Smoke=="S"]') x<- seq(0,1,length=30) y<- rbinom(30,10,prob=2*sin(x)/(1+x)) sm.binomial(x,y,N=rep(10,30), h=0.25) }) } \keyword{nonparametric} \keyword{smooth} \keyword{models} % Converted by Sd2Rd version 1.15. sm/man/sm.sigma.Rd0000644000176200001440000000551514265557541013475 0ustar liggesusers\name{sm.sigma} \alias{sm.sigma} \title{Estimation of the error standard deviation in nonparametric regression.} \description{This function estimates the error standard deviation in nonparametric regression with one or two covariates.} \usage{sm.sigma(x, y, rawdata = NA, weights = rep(1, length(y)), diff.ord = 2, ci = FALSE, model = "none", h = NA, \dots) } \arguments{ \item{x}{a vector or two-column matrix of covariate values.} \item{y}{a vector of responses.} \item{rawdata}{a list containing the output from a binning operation. This argument is used by \code{sm.regression} and it need not be set for direct calls of the function.} \item{weights}{a list of frequencies associated with binned data. This argument is used by \code{sm.regression} and it need not be set for direct calls of the function.} \item{diff.ord}{an integer value which determines first (1) or second (2) differencing in the estimation of sigma.} \item{ci}{a logical value which controls whether a confidence interval is produced.} \item{model}{a character variable. If this is set to \code{"constant"} then a test of constant variance over the covariates is performed (only in the case of two covariates)} \item{h}{a vector of length two defining a smoothing parameter to be used in the test of constant variance.} \item{\dots}{other optional parameters are passed to the \code{sm.options} function, through a mechanism which limits their effect only to this call of the function; the only one relevant for this function is \code{nbins}.} } \value{a list containing the estimate and, in the two covariate case, a matrix which can be used by the function \code{sm.sigma2.compare}, pseudo-residuals and, if appropriate, a confidence interval and a p-value for the test of constant variance.} \section{Side Effects}{none.} \details{see the reference below.} \references{Bock, M., Bowman, A.W. & Ismail, B. (2007). Estimation and inference for error variance in bivariate nonparametric regression. \emph{Statistics & Computing}, to appear.} \seealso{\code{\link{sm.sigma2.compare}}} \examples{ \dontrun{ with(airquality, { x <- cbind(Wind, Temp) y <- Ozone^(1/3) group <- (Solar.R < 200) sig1 <- sm.sigma(x[ group, ], y[ group], ci = TRUE) sig2 <- sm.sigma(x[!group, ], y[!group], ci = TRUE) print(c(sig1$estimate, sig1$ci)) print(c(sig2$estimate, sig2$ci)) print(sm.sigma(x[ group, ], y[ group], model = "constant", h = c(3, 5))$p) print(sm.sigma(x[!group, ], y[!group], model = "constant", h = c(3, 5))$p) print(sm.sigma2.compare(x[group, ], y[group], x[!group, ], y[!group])) }) }} \keyword{nonparametric} \keyword{smooth} sm/man/sm.binomial.bootstrap.Rd0000644000176200001440000000431613773656220016176 0ustar liggesusers\name{sm.binomial.bootstrap} \alias{sm.binomial.bootstrap} \title{ Bootstrap goodness-of-fit test for a logistic regression model. } \description{ This function is associated with \code{sm.binomial} for the underlying fitting procedure. It performs a Pseudo-Likelihood Ratio Test for the goodness-of-fit of a standard parametric logistic regression of specified \code{degree} in the covariate \code{x}. } \usage{ sm.binomial.bootstrap(x, y, N = rep(1, length(x)), h, degree = 1, fixed.disp=FALSE, ...) } \arguments{ \item{x}{ vector of the covariate values } \item{y}{ vector of the response values; they must be nonnegative integers. } \item{h}{ the smoothing parameter; it must be positive. } \item{N}{ a vector containing the binomial denominators. If missing, it is assumed to contain all 1's. } \item{degree}{ specifies the degree of the fitted polynomial in \code{x} on the logit scale (default=1).} \item{fixed.disp}{if \code{TRUE}, the dispersion parameter is kept at value 1 across the simulated samples, otherwise the dispersion parameter estimated from the sample is used to generate samples with that dispersion parameter (default=\code{FALSE}). } \item{\dots}{ additional parameters passed to \code{\link{sm.binomial}}. }} \value{ a list containing the observed value of the Pseudo-Likelihood Ratio Test statistic, its observed p-value as estimated via the bootstrap method, and the vector of estimated dispersion parameters when this value is not forced to be 1. } \section{Side Effects}{ Graphical output representing the bootstrap samples is produced on the current graphical device. The estimated dispersion parameter, the value of the test statistic and the observed significance level are printed. } \details{ see Section 5.4 of the reference below. } \references{ Bowman, A.W. and Azzalini, A. (1997). \emph{Applied Smoothing Techniques for Data Analysis: } \emph{the Kernel Approach with S-Plus Illustrations.} Oxford University Press, Oxford. } \seealso{ \code{\link{sm.binomial}}, \code{\link{sm.poisson.bootstrap}} } \examples{ \dontrun{sm.binomial.bootstrap(concentration, dead, N, 0.5, nboot=50)} } \keyword{nonparametric} \keyword{smooth} \keyword{htest} \keyword{models} % Converted by Sd2Rd version 1.15. sm/man/mackerel.Rd0000644000176200001440000000141113773656220013526 0ustar liggesusers\name{mackerel} \alias{mackerel} \title{The abundance of mackerel eggs} \description{ These data record the abundance of mackerel eggs off the coast of north-western Europe, from a multi-country survey in 1992. The variables are: \tabular{ll}{ \code{Density} \tab egg density \cr \code{mack.lat} \tab latitude of sampling position \cr \code{mack.long} \tab longitude of sampling position \cr \code{mack.depth} \tab bottom depth \cr \code{Temperature} \tab surface temperature \cr \code{Salinity} \tab salinity } Background to the survey and the data are provided by Watson et al. (1992), Priede and Watson (1993) and Priede et al (1995). Borchers et al (1997) describe an analysis of the data. } \keyword{smooth} \keyword{regression} sm/man/sm.density.compare.Rd0000644000176200001440000000643614116124302015460 0ustar liggesusers\name{sm.density.compare} \alias{sm.density.compare} \title{ Comparison of univariate density estimates } \description{ This function allows a set of univariate density estimates to be compared, both graphically and formally in a permutation test of equality. } \usage{ sm.density.compare(x, group, h, model = "none", \dots) } \arguments{ \item{x}{ a vector of data. } \item{group}{ a vector of group labels. If this is not already a factor it will be converted to a factor. } \item{h}{ the smoothing parameter to be used in the construction of each density estimate. Notice that the same smoothing parameter is used for each group. If this value is omitted, the mean of the normal optimal values for the different groups is used. } \item{model}{ the default value is \code{"none"} which restricts comparison to plotting only. The alternative value \code{"equal"} can produce a bootstrap hypothesis test of equality and the display of an appropriate reference band. } \item{...}{ other optional parameters are passed to the \code{sm.options} function, through a mechanism which limits their effect only to this call of the function. Relevant parameters for this function are: \code{method}, \code{df}, \code{band}, \code{test}, \code{nboot}, plus those controlling graphical display (unless \code{display = "none"} is set) such as \code{col}, \code{col.band}, \code{lty} and \code{lwd}; see the documentation of \code{\link{sm.options}} for their description. The parameter \code{nboot} controls the number of permutations used in the permutation test. }} \value{ A list is returned containing: \item{estimate}{a matrix whose rows contain the estimates for each group.} \item{eval.points}{the grid of common evaluation points for the estimates.} \item{h}{the common smoothing parameter used in the construction of the estimates.} \item{levels}{the levels of the group factor.} \item{col, lty, lwd}{plotting details which can be useful in constructing a legend for the plot; see the examples below.} When \code{"model"} is set to \code{"equal"}, the output list also contains the p-value (\code{p}) of the test. When \code{band = TRUE}, and there are only two groups to compare, the output list also contains the upper (\code{upper}) and lower (\code{lower}) edges of the reference band for equality. } \section{Side Effects}{ a plot on the current graphical device is produced, unless \code{display="none"}. } \details{ For a general description of the methods involved, see Section 6.2 of the reference below. The colours and linetypes of the density estimates are set by \code{col} and \code{lty} which can be passed as additional arguments. By default these are set to \code{1 + 1:ngroup}, where \code{ngroup} is the number of groups represented in the \code{group} variable. } \references{ Bowman, A.W. and Azzalini, A. (1997). \emph{Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-Plus Illustrations.} Oxford University Press, Oxford. } \seealso{ \code{\link{sm.density}}, \code{\link{sm.ancova}}, \code{\link{sm.options}} } \examples{ y <- rnorm(100) g <- rep(1:2, rep(50,2)) sm.density.compare(y, g) comp <- sm.density.compare(y, g, model = "equal") legend("topleft", comp$levels, col = comp$col, lty = comp$lty, lwd = comp$lwd) } \keyword{nonparametric} \keyword{smooth} % Converted by Sd2Rd version 1.15. sm/man/citrate.Rd0000644000176200001440000000170314116472317013375 0ustar liggesusers\name{citrate} \alias{citrate} \title{The relationship between plasma citrate and carbohydrate metabolites} \description{ These data were collected in an experiment to study the relationship between possible daily rhythms of plasma citrate and daily rhythms of carbohydrate metabolites during feeding with a citrate-poor diet. During the experiment, plasma citrate concentrations were determined for each of 10 subjects at 14 successive time points during the day. The measurements covered the period 8a.m. to 9p.m. at hourly intervals. Meals were given at 8a.m., noon and 5p.m. The variables are denoted by \code{C08}, ..., \code{C21} and refer to plasma citrate measurements at the indicated hours. Anderson,A.H., Jensen,E.B. & Schou,G.(1981). Two-way analysis of variance with correlated errors. Int.Stat.Rev. 49,153-67. The data were taken from a report by T.T.Nielsen, N.S.Sorensen and E.B.Jensen. } \keyword{smooth} \keyword{regression} sm/man/radioc.Rd0000644000176200001440000000117014116471445013202 0ustar liggesusers\name{radioc} \alias{radioc} \title{Radiocarbon in Irish oak} \description{ These data record high precision measurements of radiocarbon on Irish oak, used to construct a calibration curve. The variables are: \tabular{ll}{ \code{Rc.age} \tab age predicted from the radiocarbon dating process \cr \code{Precision} \tab a measure of precision of the dating process \cr \code{Cal.age} \tab true calendar age } Pearson & Qua (1993). High precision 14C measurement of Irish oaks to show the natural 14C variations from AD 1840 - 5000 BC: a correction. Radiocarbon 35, 105-123. } \keyword{smooth} \keyword{regression} sm/man/geys3d.Rd0000644000176200001440000000157013773656220013147 0ustar liggesusers\name{geys3d} \alias{geys3d} \title{Duration and the time between eruptions for the Old Faithful Geyser} \description{ These data document the duration of eruptions, and the time between eruptions, for the Old Faithful Geyser in Yellowstone National Park. The variables are: \tabular{ll}{ \code{Waiting} \tab the waiting time before each eruption (minutes) \cr \code{Next.waiting} \tab the waiting time following each eruption (minutes) \cr \code{Duration} \tab the length of an eruption ( minutes) } The data were collected by by the Park Geologist, R.A.Hutchinson. An earlier set of data is reported in Weisberg (1990), Applied Linear Regression, Wiley, New York. The later set, used here, was reported by Azzalini & Bowman (1990), "A look at some data on the Old Faithful Geyser", Applied Statistics 39, 357-65. } \keyword{smooth} \keyword{regression} sm/man/wonions.Rd0000644000176200001440000000130314116471502013425 0ustar liggesusers\name{wonions} \alias{wonions} \title{Yield-density relationship for White Imperial Spanish onion plants} \description{ These data were collected in a study of the relationship between the yield of White Imperial Spanish onion plants and the density of planting. The variables are: \tabular{ll}{ \code{Density} \tab density of planting (plants/m^2) \cr \code{Yield} \tab yield (g/plant) \cr \code{Locality} \tab a code to indicate Purnong Landing (1) or Virginia (2) } The data were collected by I.S.Rogers (South Australian Dept. of Agriculture & Fisheries). They are listed in Ratkowsky (1983), Nonlinear Regression Modeling. Dekker, New York. } \keyword{smooth} \keyword{regression} sm/man/hnorm.Rd0000644000176200001440000000312013773656220013065 0ustar liggesusers\name{hnorm} \alias{hnorm} \title{ Normal optimal choice of smoothing parameter in density estimation } \description{ This functions evaluates the smoothing parameter which is asymptotically optimal for estimating a density function when the underlying distribution is Normal. Data in one, two or three dimensions can be handled. } \usage{ hnorm(x, weights) } \arguments{ \item{x}{ a vector, or matrix with two or three columns, containing the data. } \item{weights}{ an optional vector of integer values which allows the kernel functions over the observations to take different weights when they are averaged to produce a density estimate. This is useful, in particular, for censored data and to construct an estimate from binned data. }} \value{ the value of the asymptotically optimal smoothing parameter for Normal case. } \details{ See Section 2.4.2 of the reference below. } \note{As from version 2.1 of the package, a similar effect can be obtained with the new function \code{h.select}, via \code{h.select(x, method="normal", weights=weights)} or simply \code{h.select(x)}. Users are encouraged to adopt this route, since \code{hnorm} might be not accessible directly in future releases of the package. } \references{ Bowman, A.W. and Azzalini, A. (1997). \emph{Applied Smoothing Techniques for Data Analysis: } \emph{the Kernel Approach with S-Plus Illustrations.} Oxford University Press, Oxford. } \seealso{ \code{\link{h.select}}, \code{\link{hcv}}, \code{\link{hsj}} } \examples{ x <- rnorm(50) hnorm(x) } \keyword{nonparametric} \keyword{smooth} % Converted by Sd2Rd version 1.15. sm/man/sm.ancova.Rd0000644000176200001440000000721514265557374013647 0ustar liggesusers\name{sm.ancova} \alias{sm.ancova} \title{ Nonparametric analysis of covariance } \description{ This function allows a set of nonparametric regression curves to be compared, both graphically and formally in a hypothesis test. A reference model, used to define the null hypothesis, may be either equality or parallelism. Regression surfaces can also be compared in a test but a graphical display is not produced. } \usage{ sm.ancova(x, y, group, h, model = "none", h.alpha = NA, weights=NA, covar = diag(1/weights), ...) } \arguments{ \item{x}{ a vector or two-column matrix of covariate values. } \item{y}{ a vector of response values. } \item{group}{ a vector of group indicators. } \item{h}{ the smoothing parameter to be used in the construction of each of the regression curves. If this is missing the method of smoothing parameter selection specified by \code{sm.options} will be applied. } \item{model}{ a character variable which defines the reference model. The values \code{"none"}, \code{"equal"} and \code{"parallel"} are possible. } \item{h.alpha}{ the value of the smoothing parameter used when estimating the vertical separations of the curves under the parallelism model. If this is missing, it is set to 2 * r / n, where r denotes the range of the data and n the sample size. } \item{weights}{ case weights; see the documentation of \code{\link{sm.regression}} for a full description. } \item{covar}{ the (estimated) covariance matrix of y. The default value assumes the data to be independent. Where appropriate, the covariance structure of \code{y} can be estimated by the user, externally to \code{sm.ancova}, and passed through this argument. This is used in the hypothesis tests but not in the construction of the reference band for comparing two groups (and so graphics are disabled in this case). } \item{\dots}{ other optional parameters are passed to the \code{sm.options} function, through a mechanism which limits their effect only to this call of the function. Those relevant for this function are the following: \code{display}, \code{ngrid}, \code{eval.points}, \code{xlab}, \code{ylab}; see the documentation of \code{\link{sm.options}} for their description. }} \value{ a list containing an estimate of the error standard deviation and, where appropriate, a p-value and reference model. If the parallelism model has been selected then a vector of estimates of the vertical separations of the underlying regression curves is also returned. If a reference band has been requested, the upper and lower boundaries and their common evaluation points are also returned. } \section{Side Effects}{ a plot on the current graphical device is produced, unless \code{display="none"} } \details{ see Sections 6.4 and 6.5 of the book by Bowman & Azzalini, and the papers by Young & Bowman listed below. This function is a developed version of code originally written by Stuart Young. } \references{ Bowman, A.W. and Azzalini, A. (1997). \emph{Applied Smoothing Techniques for Data Analysis: } \emph{the Kernel Approach with S-Plus Illustrations.} Oxford University Press, Oxford. Young, S.G. and Bowman, A.W. (1995). Nonparametric analysis of covariance. \emph{Biometrics} \bold{51}, 920--931. Bowman, A.W. and Young, S.G. (1996). Graphical comparison of nonparametric curves. \emph{Applied Statistics} \bold{45}, 83--98. } \seealso{ \code{\link{sm.regression}}, \code{\link{sm.density.compare}}, \code{\link{sm.options}} } \examples{ x <- runif(50, 0, 1) y <- 4*sin(6*x) + rnorm(50) g <- rbinom(50, 1, 0.5) sm.ancova(x, y, g, h = 0.15, model = "equal") } \keyword{nonparametric} \keyword{smooth} % Converted by Sd2Rd version 1.15. sm/man/mildew.Rd0000644000176200001440000000141413773656220013227 0ustar liggesusers\name{mildew} \alias{mildew} \title{Mildew control} \description{ The data refer to study of mildew control sponsored by Bainbridge, Jenkyn and Dyke at Rothamsted Experimental Station. There were four treatments, one of which was a control. There were 36 adjacent plots, with an extra plot at each end. Nine blocks were created by grouping the plots in fours. The variables are: \tabular{ll}{ \code{t1, t2, t3} \tab indicators of the four treatment groups \cr \code{p1, ..., p8} \tab indicators of the nine blocks\cr \code{Yield} \tab tons of grain per hectare } Draper & Guttman (1980). Incorporating overlap effects from neighbouring units into response surface models. Applied Statistics 29, 128-134. } \keyword{smooth} \keyword{regression} sm/man/sm.survival.Rd0000644000176200001440000000510213773656220014235 0ustar liggesusers\name{sm.survival} \alias{sm.survival} \title{ Nonparametric regression with survival data. } \description{ This function creates a smooth, nonparametric estimate of the quantile of the distribution of survival data as a function of a single covariate. A weighted product-limit estimate of the survivor function is obtained by smoothing across the covariate scale. A small amount of smoothing is then also applied across the survival time scale in order to achieve a smooth estimate of the quantile. } \usage{ sm.survival(x, y, status, h , hv = 0.05, p = 0.5, status.code = 1, \dots) } \arguments{ \item{x}{ a vector of covariate values. } \item{y}{ a vector of survival times. } \item{status}{ an indicator of a complete survival time or a censored value. The value of \code{status.code} defines a complete survival time. } \item{h}{ the smoothing parameter applied to the covariate scale. A normal kernel function is used and \code{h} is its standard deviation. } \item{hv}{ a smoothing parameter applied to the weighted to the product-limit estimate derived from the smoothing procedure in the covariate scale. This ensures that a smooth estimate is obtained. } \item{p}{ the quantile to be estimated at each covariate value. } \item{status.code}{ the value of \code{status} which defines a complete survival time. } \item{\dots}{ other optional parameters are passed to the \code{sm.options} function, through a mechanism which limits their effect only to this call of the function; those relevant for this function are \code{add}, \code{eval.points}, \code{ngrid}, \code{display}, \code{xlab}, \code{ylab}, \code{lty}; see the documentation of \code{\link{sm.options}} for their description. }} \value{ a list containing the values of the estimate at the evaluation points and the values of the smoothing parameters for the covariate and survival time scales. } \section{Side Effects}{ a plot on the current graphical device is produced, unless the option \code{display="none"} is set. } \details{ see Section 3.5 of the reference below. } \references{ Bowman, A.W. and Azzalini, A. (1997). \emph{Applied Smoothing Techniques for Data Analysis:} \emph{the Kernel Approach with S-Plus Illustrations.} Oxford University Press, Oxford. } \seealso{ \code{\link{sm.regression}}, \code{\link{sm.options}} } \examples{ x <- runif(50, 0, 10) y <- rexp(50, 2) z <- rexp(50, 1) status <- rep(1, 50) status[z